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Spin-orbit coupling and electron spin resonance theory for carbon nanotubes
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A theoretical description of electron spin resonance (ESR)
in 1D interacting metals is given, with primary emphasis on
carbon nanotubes. The spin-orbit coupling is derived, and the
resulting ESR spectrum is analyzed using a low-energy field
theory. Drastic differences in the ESR spectra of single-wall
and multi-wall nanotubes are found. For single-wall tubes,
the predicted double peak spectrum is linked to spin-charge
separation. For multi-wall tubes, a single narrow asymmetric
peak is expected.

PACS numbers: 71.10.-w, 73.63.Fg, 76.30.-v

Electron spin resonance (ESR) serves as a valuable tool
to experimentally probe the intrinsic spin dynamics of
many systems. In ESR experiments one applies a static
magnetic field and measures the absorption of radiation
polarized perpendicular to the field direction. In the ab-
sence of SU(2) spin symmetry breaking terms in the sys-
tem Hamiltonian, the absorption intensity is then simply
a δ-peak at the Zeeman energy [1]. Since spin-orbit (SO)
interactions are generally the leading terms breaking the
SU(2) invariance, deviations in the ESR intensity from
the δ-peak, e.g. shifts or broadenings, are directly con-
nected to these couplings. In this Letter we theoretically
address the spin-orbit interaction and the resulting ESR
spectrum for interacting 1D metallic conductors, in par-
ticular for carbon nanotubes. Nanotubes constitute a
new class of mesoscopic quantum wires characterized by
the interplay of strong electron-electron interactions, re-
duced dimensionality, disorder, and unconventional spin
dynamics [2–6]. ESR is an important technique to elu-
cidate aspects of this interplay inaccessible to (charge)
transport experiments. For interacting many-body sys-
tems, surprisingly little is known about ESR although it
represents an interesting theoretical problem.

Two main classes of nanotubes may be distinguished,
namely single-wall nanotubes (SWNTs) which consist
of just one wrapped-up graphite sheet, and multi-wall
nanotubes (MWNTs). MWNTs contain additional inner
shells, but transport is generally limited to the outermost
shell [4]. Evidence for the Luttinger liquid (LL) behavior
of interacting 1D electrons has been reported for charge
transport in SWNTs [3], where one also expects to find
spin-charge separation [5,6]. Conventional wisdom holds
that the SO coupling in 1D conductors destroys spin-
charge separation [7]. Below we show that this state-
ment is incorrect. Indeed, the SO interaction considered

in Ref. [7] was intended for the limited class of semicon-
ductor quantum wires in strong Rashba and confinement
electric fields, but in fact does not represent the generic
SO Hamiltonian for 1D conductors. The latter is derived
below and determines the ESR intensity in SWNTs and
MWNTs. A totally different ESR spectrum compared to
expectations based on Ref. [7] emerges. In particular, the
single δ-peak is split into two narrow peaks in SWNTs,
while for the SO coupling of Ref. [7] the spectrum forms a
broad band with thresholds at the lower and upper edge
[8]. This qualitative difference can be traced back to
the fact that the SO interaction in SWNTs [see Eq. (5)
below] does not spoil spin-charge separation. Experi-
mental observation of the peak splitting could therefore
provide strong evidence for the elusive phenomenon of
spin-charge separation. In MWNTs, inner shells cause a
rather strong Rashba-type SO coupling, leading instead
to a single narrow asymmetric ESR peak. To experimen-
tally observe our predictions, it will be crucial to work
with samples free of magnetic impurities whose presence
has drastically affected previous ESR measurements for
nanotubes [4].

In the standard Faraday configuration, the ESR inten-
sity at frequency ω is proportional to the Fourier trans-
form of the transverse spin-spin correlation function [1],

I(ω) =

∫

dt eiωt〈S+(t)S−(0)〉, (1)

where the static magnetic field points along the z-axis
and ~S =

∑

i
~Si is the total spin operator. Equation (1)

is connected to the dynamical susceptibility via I(ω) ∼
ωχ′′(ω). The Hamiltonian is H = H0 +HZ +H ′, where
H0 represents the SU(2) invariant nanotube Hamiltonian
including electron-electron interactions, HZ = −BSz is
the Zeeman term [9], and H ′ represents SU(2) break-
ing terms, in particular the SO coupling. Inserting a
complete set of eigenstates |a〉 of H in Eq. (1), the ESR
intensity follows as

I(ω) =
1

Z

∑

a,b

e−Eb/T δ(ω − (Ea − Eb)) |〈a|S−|b〉|2.

If H is SU(2) invariant (apart from HZ), I(ω) only re-
ceives contributions from matrix elements between eigen-
states with equal total spin Sa = Sb. Then all states with
Sz

a = Sz
b −1 will contribute to form a δ-peak at frequency

ω = B. At zero temperature, the application of a mag-
netic field B, taken as large enough to overcome a spin
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gap possibly present at B = 0, leads to a ground state
with finite magnetization, S0 6= 0, and the states with
Sz

a = Sz
0 − 1 yield the δ-peak. Any perturbation pre-

serving SU(2) invariance will neither shift nor broaden
this peak, even at finite temperature, and it is therefore
crucial to identify H ′. For quantum spin chains, stag-
gered magnetic fields and Dzyaloshinskii-Moriya interac-
tions have been emphasized [1].

Let us start with the derivation of the SO interaction
in nanotubes. In this derivation we neglect electron-
electron interactions which only weakly renormalize the
SO strength [10]. In a single-particle picture, the SO in-
teraction then appears because an electron moving in the
electrostatic potential Φ(~r), e.g. due to the ions, sees an
effective magnetic field ~v × ∇Φ. With ~p = m~v and the
standard Pauli matrices ~σ, the SO interaction reads in
second-quantized form:

H ′ = −geµB

4m

∫

d~r Ψ† [(~p×∇Φ) · ~σ]Ψ. (2)

The electron spinor field Ψσ(~r), defined on the wrapped
graphite sheet, can be expressed in terms of the elec-
tron operators ci for honeycomb lattice site i at ~ri,
Ψσ(~r) =

∑

i χ(~r − ~ri) ciσ, where χ(~r) is the 2pz orbital
wavefunction. The localized orbitals can be chosen as
real-valued functions even when hybridization with 2s
orbitals is taken into account, but their specific form is
of no immediate interest here. We then obtain the SO
interaction, see also Refs. [11,12],

H ′ =
∑

〈jk〉

ic†j(~ujk · ~σ)ck + h.c. (3)

which indeed breaks SU(2) symmetry. With obvious
modifications, Eq. (3) applies to other 1D conductors and
thus represents a generic SO Hamiltonian. The SO vector
~ujk = −~ukj has real-valued entries,

~ujk =
geµB

4m

∫

d~rΦ(~r) [∇χ(~r − ~rj) ×∇χ(~r − ~rk)] . (4)

The on-site term (j = k) is identically zero, and since the
overlap decreases exponentially with |~rj − ~rk|, we keep
only nearest-neighbor terms in Eq. (3). We mention in

passing that Eq. (3) has previously been found from ~k ·~p
theory by Ando [12]. However, his approach makes rather
special model assumptions and is technically demanding,
yet it does not allow to reliably compute the SO vector
~ujk to better accuracy than specified in Eq. (4). In addi-
tion, the effect of SO interactions within the low-energy
theory of nanotubes [5] has not been analyzed. We there-
fore take Eq. (3) as the SO Hamiltonian for SWNTs and
MWNTs, with the SO vector (4). This formulation also
allows to incorporate electric fields due to impurities or
close-by electrodes in a simple and elegant manner.

Let us first turn to SWNTs, where SO couplings are
expected to be small. This can be rationalized from our

approach since the SO vector (4) vanishes by symmetry
for an ideal 2D honeycomb lattice. A finite (nearest-
neighbor) SO coupling can only arise due to the curva-
ture of the wrapped sheet, stray fields from nearby gates,
or due to defects, all of which break the high symme-
try and in principle allow for significant SO couplings
[6]. Focusing on the curvature-induced SO coupling for
nonchiral SWNTs, the SO vector only depends on bond
direction, ~u~ri,~ri+~δa

= ~ua, for the nearest-neighbor bonds

~δa (a = 1, 2, 3) of the graphite sheet [2].
To make progress, we employ the effective field the-

ory approach [5]. Neglecting the (here inessential) “fla-
vor” index due to the presence of two Fermi (K) points
[2], H0 then corresponds to a spin-1/2 LL described by
charge/spin interaction parameters Kc < 1,Ks and ve-
locities vc/s = vF /Kc/s with the Fermi velocity vF =
8 × 105 m/sec; SU(2) invariance of H0 fixes Ks = 1
[13]. The LL Hamiltonian completely decouples when ex-
pressed in terms of spin and charge boson fields [13], and
the Zeeman term HZ only affects the spin sector. Writ-
ten in terms of right- and left-moving fermions ψR/L, the
continuum version of Eq. (3) is (up to irrelevant terms)
H ′ = H1 +H2 with

H1 =

∫

dx ~λ · ( ~JL − ~JR), (5)

H2 =

∫

dx
∑

r=R/L

ψ†
r
~λ′ · ~σ i∂xψr + h.c. (6)

With the unit vector êt along the tube axis, we use

~λ = 2 Im
∑

a

ei ~K·~δa~ua, ~λ′ =
∑

a

ei ~K·~δa(êt · ~δa)~ua ,

and neglect oscillatory terms which average out on large
length scales. These oscillations are governed by the
wavevector 2kF corresponding to the doping level µ,
kF = |µ|/vF , with typical values |µ| ≈ 0.3 to 0.5 eV

[14]. Finally, ~JR,L = ψ†
R/L(~σ/2)ψR/L are the standard

SU(2) spin currents. The perturbation (5) has scaling
dimension 1 (relevant) whereas Eq. (6) has dimension 2
(marginal). Therefore the leading SO contribution re-
tained in what follows is Eq. (5).

Remarkably, the SO interaction (5) acts exclusively in
the spin sector and hence does not spoil spin-charge sepa-

ration. As a consequence, since electron-electron interac-
tions affect only the charge sector, the ESR intensity can
be computed using the equivalent fermionic spin Hamil-
tonian

Hf =
∑

r=R/L=±

∫

dx
[

−irvsψ
†
r∂xψr + ~λr · ~Jr

]

, (7)

where ~λ± = ~B ± ~λ. Since Hf is bilinear in the fermions,
after some straightforward algebra, the exact ESR spec-
trum follows for arbitrary temperature
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I(ω) =
∑

r=±

(

1 +
λz

r

λr

)2
λr

4vs(1 − e−λr/T )
δ(ω − λr), (8)

with λ± = |~λ±|. As a consequence of SO coupling, the
single δ-peak splits into two peaks but there is no broad-
ening. The peak separation is |λ+ − λ−|, and the peak
heights are generally different. To lowest order in λ/B,
the two peaks are located symmetrically around ω = B.
Notice that for ~B perpendicular to the effective SO vector
~λ, the splitting is zero. It should be stressed that these
results hold both for the non-interacting and the inter-
acting case. The double peak is therefore not directly re-
lated to the doubling of singularities in the single-electron
Greens function commonly associated with spin-charge
separation. However, for the interacting case realized in
SWNTs [3], the double peak structure is only possible if
spin-charge separation is present. Otherwise the charge
sector will mix in, leading to broad bands with threshold
behaviors [8]. Closer inspection shows that inclusion of
the subleading term (6) preserves the splitting into two

peaks, but the peaks now acquire a finite width ∼ |~λ′|.
Experimental observation of the predicted double-peak

spectrum could then provide strong evidence for spin-
charge separation. In practice, to get measurable inten-
sities, one will have to work with an ensemble of SWNTs.
The proposed experiment may be possible using electric-
field-aligned SWNTs, or by employing arrays of identical
SWNTS [15]. In more conventional samples containing

many SWNTs, however, the SO vector ~λ can take any
direction. Assuming a uniform probability distribution
for the orientation of ~λ, the average can easily be done.
For T = 0 and ~λ′ = 0, we find

I(ω) =
[(ω +B)2 − λ2]2

16vsB3λ
θ(B + λ− ω) θ(ω − |B − λ|)

(9)

with the Heaviside function θ(z). For B > λ, this asym-
metric spectrum has the width ∆ω = 2λ, which in turn
allows to extract the SO coupling strength λ from ESR
measurements.

For the remainder, we then focus on MWNTs where
we first contemplate a simple two-shell model. Exper-
imental evidence [4] is consistent with the assumption
that inter-shell tunneling is strongly suppressed. There-
fore doping due to charge transfer from the substrate,
the attached leads, or due to oxygen absorption, should
only affect the outermost shell, while µ ≈ 0 for inner
shells. Under this assumption, basically all conduction
electrons contributing to the ESR signal reside in the
outermost shell. Moreover, the electrostatic potential Φo

of the outer shell differs from the inner-shell potential
Φi. In effect, we can then restrict attention to the out-
ermost shell (of radius R) alone, but in a radial electric
field of size E ≈ 2c12∆Φ/R, where c12 is the inter-shell

capacitance per length and ∆Φ = Φi − Φo. The general
expression (4) for the SO vector then yields after some

algebra for a given bond ~δa

~ua = (u/vF )Ê × ~δa, (10)

where Ê is a unit vector perpendicular to the tube sur-
face, and u ≈ c12e∆Φ/(m2dR) with the C-C distance
d = 1.42 Å.

To proceed, we turn to the low-energy theory, again
for only one K point. The influence of interactions
is expected to be less dramatic in MWNTs compared
to SWNTs, and here we focus on the non-interacting
case. In real space, we then have a Dirac Hamiltonian,
H0 = −ivF

∫

d~rΨ†(~τ · ~∇)Ψ, where the integral extends
over the tube surface and the Pauli matrices ~τ act in
sublattice space. The SO contribution appropriate for
MWNTs follows by inserting Eq. (10) into Eq. (3), which
yields the manifestly Hermitian term

H ′ = −iuvF

∫

d~r Ψ†(τ−σ+ − τ+σ−)Ψ. (11)

We take the magnetic field parallel to the tube axis and
include both orbital and Zeeman contributions [16].

The full Hamiltonian can then be diagonalized. The
dispersion relation contains four branches, ǫ(~k) =
±ǫ±(k), where the ± signs are independent and

ǫ±(k) =
[

v2
F (k2 +Q2) + (B/2)2 ± vF (12)

×
{

(B2 + 2v2
FQ

2)k2 + v2
FQ

4
}1/2

]1/2

,

with Q = 2
√

2u measuring the SO strength and k = |~k|.
Using Eq. (12), the ESR intensity at finite temperature
T reads

I(ω) =
−1

1 − e−ω/T

∫

d~k

8π

Π(ǫ+, k;ω) δ(ω − ǫ+ + ǫ−)

ǫ+ǫ−(ǫ2+ − ǫ2−)2
×

[nF (ǫ+) − nF (−ǫ+) − nF (ǫ−) + nF (−ǫ−)] , (13)

where nF (ǫ) = 1/(1 + e−(µ−ǫ)/T ) is the Fermi-Dirac dis-
tribution function. The integral in Eq. (13) includes an
integration over the momentum parallel to the MWNT
axis and a discrete summation over the quantized trans-
verse momenta, k⊥ = (n−φ)/R, where φ = πR2B/(h/e)
is due to the orbital effect of the applied magnetic field
and the summation extends over integer n. Furthermore,
with ω̄′ = ω′ − ω and f(ω′, k) = v2

F k
2 − (B/2 + ω′)2,

Π(ω′, k;ω) = 2f(ω′, k)f(−ω̄′, k) ×
[

(B/2 − ω′)(B/2 + ω̄′) − v2
Fk

2
]

−2v2
FQ

2 [(B/2 − ω′)(B/2 − ω̄′)f(ω′, k)

+(B/2 + ω′)(B/2 + ω̄′)f(−ω̄′, k)] . (14)

As a simple check, for Q = 0 one recovers the expected
δ-peak from Eq. (13).
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The result (13) can be understood in simple physical
terms. The ESR intensity receives contributions from
transitions between states of energy ǫ− to states of energy
ǫ+, and each contribution is weighted by a factor which
takes into account the occupation of the levels. In order
to arrive at Eq. (13), we have neglected a contribution
coming from transitions between −ǫ± and ǫ∓ states. This
is consistent because these transitions only contribute for
very large frequencies ω ≥ |µ|, while the frequency scales
relevant to ESR are much lower. In addition, the signal
given by this contribution is very small in comparison to
the term that we keep.

Inspection of Eq. (13) shows that the ESR spectrum
of a MWNT at low temperatures contains only a sin-

gle narrow asymmetric peak, whereas more structure ap-
pears at higher temperature due to the activation of the
transverse subbands [17]. Here we focus on the low-
temperature ESR spectrum, which is shown in Fig. 1 for
typical parameters. The peak has an asymmetric line-
shape which strongly depends on temperature. At zero
temperature, the intensity maximum is at the frequency

ω0 = ǫZ

[

1 − ǫ2Z
2µ2

− v2
FQ

2B2

4µ2ǫ2Z
+ O

(

(ǫZ/µ)3
)

]

(15)

where ǫZ =
√

B2 + 2v2
FQ

2. As is apparent in Fig. 1,
when increasing the temperature, the position of the
maximum slowly moves to smaller frequencies. The
linewidth is of the order of

∆ω ≈ v2
FQ

2B2/µ3 . (16)

To conclude, we have presented a theoretical descrip-
tion of the spin-orbit coupling and the ESR spectrum for
1D conductors, in particular for carbon nanotubes. In
SWNTs, spin-charge separation should not be affected
by spin-orbit coupling, and hence we expect a double
peak. The peak distance and their height provides infor-
mation about the spin-orbit coupling strength, and their
width points to violations of spin-charge separation. The
ESR spectrum of a MWNT only exhibits a single narrow
peak, whose location, lineshape and linewidth provide
information about the Rashba-type spin-orbit coupling
and intrinsic electric fields. The ESR spectra of SWNTs
and MWNTs are therefore fundamentally different and
reflect distinct mechanisms of spin-orbit coupling.
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Phys. Rev. B 63, 121310 (2001); M. Governale and U.
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FIG. 1. Typical ESR intensity of a MWNT at low temper-
atures. Parameters in the plot are φ = 0, µ = 0.1, B = 0.0014
and vF Q = 0.05, where energies are measured in units of
2πh̄vF /R. The value of B corresponds to a field of 10 Tesla.
Note the frequency units, pointing to a very narrow ESR peak.
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