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Abstract: Planar velocity fields in flows are determined on parallel 

measurement planes simultaneously by means of an in-house manufactured 

light-field camera. The planes are defined by illuminating light sheets with 

constant spacing. Particle positions are reconstructed from a single 2D 

recording taken by a CMOS-camera equipped with a high-quality doublet 

lens array. The fast refocusing algorithm bases on synthetic-aperture particle 

image velocimetry (SAPIV). Reconstruction quality is tested by ray-tracing 

of synthetically generated particle fields. Influence of image processing is 

documented. The introduced single-camera SAPIV is applied to a 

convective flow within a measurement volume of 30x30x50mm³.  
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1 Introduction 

Particle image velocimetry (PIV) is nowadays one of the most common tools used in 

experimental flow studies, e.g. [1]. PIV provides two components of the flow velocity in two 

spatial dimensions in the measurement plane, which is generated by a light sheet. 

Comprehensive understanding of unsteady flow structures often requires velocity data not 

only in a single plane, but in multiple planes or in the complete 3D volume. Therefore, 

manifold techniques were developed extending the classical single-plane PIV to 3D space. In 

Fig. 1, we arrange in order the herein presented 3D-PIV technique to existing ones. After two 

decades of 3D-PIV developments two branches emerge: I) PIV by multiple light-sheet 

illumination and II) PIV by volumetric illumination. Another classification type may be the 

number of detectable spatial dimensions (short: D) and velocity components (short: C) [2], 

which is used subsidiary in this work. 

 

 
 

Fig. 1 Classification of 3D-PIV techniques by light-sheet and volumetric illumination. The 

encircled synthetic aperture PIV is introduced in the present work. 

 

One advantage of light-sheet illumination is concentrating available light energy into one 

or more planes within the measurement volume. Locally, this enables much higher intensity 

compared to volumetric illumination. Furthermore, the seeding density of tracer particles in 

the flow can be much higher. The signals from multiple, parallel light sheets are analyzed 

quasi-simultaneously by multiplexing techniques. Multiplexing means light from multiple 

light sheets is collected by common optics. But, signals from different light sheets are encoded 

differently, e.g. by wavelength, time, phase or defocus blur. Consequently, data from each 

light sheet is recovered separately at the receiving end. 
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At least six physical quantities allow the separation of particle stray-light from different 

light sheets: polarization [3], wavelength [4,5], time [6], phase (holography) [7], size of 

defocus blur [8] and parallax (herein presented). Techniques using volumetric illumination 

are: holographic PIV [2], tomographic PIV [9], defocussing PIV [10], astigmatism PIV [11] 

and synthetic-aperture PIV [12].  

Light-field imaging was introduced to fluid mechanics as synthetic-aperture particle 

image velocimetry (SAPIV) [12]. The name is retained in this work. Belden et al. use eight 

cameras mounted in an aluminum frame. All cameras image the same particle-laden flow. 

Recorded images are recombined by algorithms known from computer vision in order to 

obtain depth information, e.g. [13]. 

Especially for SAPIV large depth resolution is obtained in the expense of sensor size. As 

the parallax between adjacent views is essential for depth estimation, reducing the sensor size 

inevitably reduces depth resolution. Combining SAPIV with multiple light-sheet illumination 

enables downsizing to a single-camera setup, which is applied herein. Two components of the 

velocity field are measured by the sensor in multiple planes (3D2C), which already provides 

important spatial information of the flow in many applications. Separating the signals of 

different light-sheets is straight forward. No inverse multiplexing units  are required (see e.g. 

[3–7]). Such a single-camera 3D-technique enables the observation of flows through narrow 

viewports and minimizes hardware complexity. The working principle of SAPIV in multiple 

measurement planes is explained in section 2. The generation of synthetic particle images for 

testing the SAPIV refocusing algorithm is presented in section 2.4. The validating experiment 

is illustrated in section 3. Results and Discussion are given in section 4, followed by 

Conclusions in section 5. 

 

 

2 Method 

The principle of light-field imaging is to capture not only spatial coordinates of the intensity 

distribution on the sensor plane, but also angles of the light that forms the image [14]. This 

allows the reconstruction of 3D spatial information by refocusing on different planes. The first 

technologically relevant work on light-field imaging is by Adelson et al., who named their 

device a plenoptic camera [15]. Commercial plenoptic cameras using the Adelson-approach 

are available recently, see e.g. [16]. Beside this light-field technique there is another approach, 

the focused plenoptic camera [17]. The lens array images the focal plane of the photo lens, 

instead of focusing at infinity like in a traditional plenoptic camera. The first publication on 

light-field imaging in fluid mechanics is akin to it. It was named synthetic-aperture particle 

image velocimetry (SAPIV) [12]. The technique presented herein bases on the focused 

plenoptic approach. In the following we will focus on a single-camera solution with a planar 

sensor field, which is depicted in Fig. 2. Different viewing angles are realized by a lens array 

in front of the sensor plane. The imaging process is discussed in this section. 

 

 
Fig. 2. Setup of the SAPIV receiving optics. Randomly distributed light rays propagate between 

particle and camera chip. 100 layout rays are displayed. (Simulated by ZEMAX.)  
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2.1 Refocusing 

The basic principle of SAPIV with a lens array and a single camera is illustrated in Fig. 3. 

Two particles P1 and P2 at axial positions Z1 and Z2 are imaged through the planar lens array. 

The numerical aperture of the lenses in our application is about NA=0.008. Therefore, the 

depth of field is large. Hence, both particles are imaged sharply. For illustration the particle P1 

is colored green and P2 is colored black. In the following we discuss how the two different 

particles are reconstructed out of the 2D image on the sensor plane.  

 

 

Fig. 3. (Color online) Basic principal of synthetic-aperture imaging. Two differently colored 

particles are imaged though optics containing a lens array. Each lens images both particles 

resulting in the given image. 

 

When imaging P1 and P2 through the optics shown in Fig. 2, the magnification is different 

for each particle due to different Z-positions. Each lens in the array images the particle pair at 

different angle, hence the magnification also depends on particle and lens position. This leads 

to the diverging dot pattern in Fig. 3. As the lens array is static, the variation of the dot pattern 

only depends on the particle position Z. The “image” in Fig. 3 consists of twenty-one sub-

images corresponding to twenty-one lenses in the array. Image processing is used to refocus 

particle images on the different planes Z1 or Z2. The first step is the decomposition of the 

image plane into sub-images, which each correspond to one lens of the array (Fig. 4). In order 

to refocus on position Z1 all sub-images are superposed such that the green dots finally overlie, 

see step two in Fig. 5. Therefore, all sub-images are shifted appropriately against the central 

sub-image. Shifts are defined in a shift-map, Fig. 4. This procedure is repeated with another 

shift-map to refocus on plane Z2. Hence, different shift-maps refocus on different planes.  

 

 

Fig. 4. Lens array and shift-maps containing shift-vectors h for matching particle images from 

different depths Z1 and Z2. The image plane is decomposed into sub-images for all lenses. One 

shift-vector is used for one sub-image.  

 

Calibration is required to determine the corresponding shift-maps. In principle, this 

corresponds to the application of a central projection mapping between two sub-images, which 

is called homography. In general, each sub-image needs to be decomposed by non-linear grids 

to take care of off-axis aberrations including distortion, e.g. [18]. In this work decomposition 

is not necessary, rather a constant shift-vector h can be applied for all pixels in the sub-image. 

This approach is sufficient herein for refocusing at sub-pixel accuracy, since we use high-
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quality doublet lenses in the array, see section 2.4. For imaging at large field angles 

homographies with non-linear grids should be applied.  

In step three, all shifted sub-images are summed up. Because of constructive summation 

of images of particles in the refocused plane, large peaks appear as in Fig. 5, where the peak 

belongs to particle P1 at position Z1. The evolved image is cropped to the dimensions of the 

central sub-image and intensity is normalized. Finally, in step four, a threshold is applied to 

eliminate destructively summed gray-scale values, which belong to out-of-focus particles. 

Step two to four may be repeated with different shift-maps to refocus on different Z-positions. 

All steps of the refocusing algorithm are sketched in Fig. 5. 

  

 

Fig. 5. Schematic of the four-step algorithm for refocusing images obtained by SAPIV. 

2.2 Uncertainty of depth 

To determine the uncertainty in depth, we consider two particles P1 and P2 at different depths. 

This time they represent particles within a light sheet; one in the center, another one at the 

edge of the light sheet. Only if the images of P1 and P2 can be separated clearly, their depth 

position can be determined uniquely. In Fig. 6, ray propagation is illustrated through lens b) of 

a lens array for an object height that equals the lens pitch p. The present case only considers a 

cross-section through the lens array. Meaning, image heights h1, h2 and pitch p are scalars. 

 

 

Fig. 6. Imaging of particles P1 and P2 at different Z-position through lens b) along one line 

through the lens array. The object height equals lens pitch p. Image heights are denoted by h1 

and h2. 

 

Both particles P1 and P2 are imaged at different magnification resulting in different image 

point positions, spaced by ∆h = h1 – h2. As a necessary condition both particle images need to 

be separated by at least one pixel edge length lpx, which requires
px

h l∆ ≥ . On the other hand, 

the lower bound |∆h| = lpx determines the measurement uncertainty in depth. With a given 

spacing between both particles of δZ, the distance between both image points calculates to 
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, where b denotes the image distance and Zi the central light-sheet location. The magnification 

at light-sheet position Zi is i i-b / Zβ = . With the condition
px

h l∆ = ± , distance δZ becomes the 

uncertainty [ ]i iZ b 1/ ( ) 1/δ = ± γ + β − β , with the geometrical factor γ=lpx/p. The final equation 

for δZ reads: 

 i i

i

Z
Z

1 /

β
δ = ±

+ β γ
 (2)  

As known from stereo imaging, uncertainty δΖ is inversely proportional to the detectable 

parallax [19], which is a determined by lens pitch p. With Eq. (2) and γ β≪ , the following 

proportionality holds
px

Z (FOV l ) / pδ ⋅∼ . Note that magnification β~1/FOV. Reducing the 

pixel size of the used camera lpx could decrease δZ significantly. On the other hand, if the 

FOV has to be enlarged without exchanging the optics, the light-sheet spacing ∆Z should be 

increased in order to retain high reconstruction quality.  

As the real optics include further lenses along the optical axis (o.a.) like the field lens, the 

object distance Zi or image distance b cannot be measured directly. The uncertainty δZ is 

determined experimentally by measuring the scale of magnification on adjacent measurement 

planes at Zi and Zi+1. Then, the image distance is calculated by
i i 1b - 1/ -Z / [ ]1 / +∆ β β= , with 

∆Z the spacing between adjacent light-sheets.  

Knowledge of δΖ is important, as it determines the maximum light-sheet thickness d and 

the minimum required light-sheet spacing ∆Ζ for unique depth measurements. The light-sheet 

thickness d is determined by the smallest feasible δΖ.  It is calculated by largest βi and largest 

pitch pmax, which equals the distance between the central and the outermost lens in the lens 

array. Then, d should be chosen
mind 2 Z≤ δ , which is typically in the order of a millimeter for 

flow applications. Otherwise, refocusing quality might be deteriorated by too many out-of-

focus particles. The uncertainty δΖ is maximal for smallest βi and smallest pitch pmin, which 

equals the distance between the central lens and its nearest neighbor. For optimum conditions, 

the light-sheet spacing should be maxZ 2 Z∆ ≥ δ .  

2.3 Calibration 

In Fig. 6 the image heights h1 and h2 equal the x-dimension of shift-vectors h for different 

depths Z, between the central lens and its nearest neighbor. Typical shift-vector maps are 

shown exemplarily in Fig. 4. Magnification β  can be calculated analytically by laws of 

geometric optics. With effective focal length f, the conditional equation reads: 

 [ ]2 2 - (Z b) / f 1 0β + + β + =   (3) 

The experimentally determined trend of β along Z is plotted in Fig. 7.  



- 7 - 

 

Fig. 7. Image magnification β as a function of depth Z, measured within a flow basin of 

D=100mm edge length. The fit-function reads β=0.054(Z/D)²-0.13Z/D+0.16. 

 

The difference βi+1-βi is a measure for the capability of separating particles on adjacent light 

sheets. The key task of sensor adjustment is its maximization. Eq. (3) is valid for perfect 

alignment of the lenses in the array, especially in absence of lens tilt. Following Fig. 6, shift-

vectors can be calculated by h = βp. Here, p is the pitch vector. In practice, measured shifts 

will differ from theoretic values. Hence, it is inevitable to calibrate the sensor. Measured 

magnitudes of h for all present pitches |p| are given in Fig. 8.  

 

 

Fig. 8. Measured shift magnitudes |h| for selected sub-images as a function of Z/D within a 

flow basin with an edge length of D=100mm. Four different curves corresponding to four 

different lens pitches |p| (1-4) are displayed. 

2.4 Optical simulation 

The sensor´s ability to reconstruct the particle positions in 3D is simulated by synthetic 

particle images and ray tracing. Therefore, the SAPIV optics is implemented in the simulation 

code ZEMAX. Reconstruction quality is analyzed as a function of the applied refocusing 

threshold and the seeding density. 

In ZEMAX the photo lens is modeled as paraxial plane to account for its high-quality 

imaging characteristics. The field lens and the lens array are modeled by original glass, radii 

and thickness data. The implemented setup is identical to the experimental one in section 3.1.  

The layout is given in Fig. 2. Tracer particles are modeled by plane, circular surfaces, 100µm 

in diameter, which emit Gaussian-shaped light. Ray tracing is conducted using ZEMAX´s 

non-sequential mode. The number of analysis ray for coherent ray tracing is 3e5. Rays 

originate at the particle position and hit the 1024x1024 pixel detector (sensor chip).  

A real measurement situation is simulated by particles distributed randomly on five 

equally spaced XY-planes. These planes correspond to the light sheets used in practice. 

Intensity fields are calculated and exported for each Z-position. Later on, the five exported 

intensity fields are compared directly to refocused images. 
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The detector image is then the sum of intensity fields of all illuminated particles in the 

measurement volume. This image is refocused using the SAPIV algorithm described in 

section 2.1. Refocusing on the Z-positions that were preset in ZEMAX should result in images 

similar to the previously exported intensity fields. Any deviations between exact and 

refocused images are due to reconstruction errors. Naturally, these errors deteriorate 

reconstruction quality. Simulated intensity fields generated at three different seeding densities 

are shown in Fig. 9. The images are generated by 10, 50 and 100 randomly distributed 

particles on each of the five Z-planes. Particle densities on the detector are 0.002, 0.008 and 

0.015 particles per pixel (ppp). The 1/e²-diameter of a particle is 2px. The particle density is 

determined by the number of all particles on the detector divided by the detector area in pixel. 

 

 

Fig. 9. Simulated intensity fields generated by the SAPIV optics at 0.002, 0.008, 0.015 particles 

per pixel (ppp). Particles are randomly distributed on five equidistant measurement planes, 

imaged by the optics shown in Fig. 2.  

Refocusing of the images given in Fig. 9 is carried out by means of the shift maps, like that 

shown in Fig. 4. The shift map for each depth Z is determined by calibration. Therefore, a 

single particle at X=0, Y=0 is imaged. A cross-correlation procedure between all sub-images 

and the central sub-image then provides the shift maps, see section 2.3. Sub-images in the 

recordings are interpolated using a grid of 0.1px step size, which allows shifting at a precision 

of 0.1px. From the mid image in Fig. 9, the central sub-image is depicted magnified in Fig. 

10, left. Refocused images of five different measurement planes are merged into one color-

coded illustration, Fig. 10, right.  

 

 

Fig. 10. (Color online) Comparison of raw (left) and refocused (right) particle images at 

0.008ppp seeding density. Depth Z is color-coded.  

Obviously, darker particles at the rim of the raw image are not reconstructed. They are much 

darker than the brightest particles. Decreasing the threshold value increases the effective field 

of view (FOV). However, this will deteriorate the reconstruction quality. 

2.4.1 Reconstruction quality 

For correlation-based velocimetry the quality factor Q was introduced [9], see Eq. (4). Q² is an 

estimate for the correlation coefficient in the assumption of perfect cross-correlation between 

subsequent particle images. It was found that correlation-based methods work reliably for 
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Q>0.75 [9]. The same argument is used here to estimate the maximum seeding density up to 

which correlation-based velocimetry will work with the presented light-field camera. 

 
( )

i

i

r i 0 iX,Y,Z

2 2

r i 0 iX,Y,Z X,Y,Z

I X,Y, Z I (X,Y, Z )
Q

I (X,Y, Z ) I (X,Y, Z )

⋅
=

⋅

∑

∑ ∑
  (4) 

As described in section 2.1, refocused images are obtained by applying a threshold to the sum 

of the twenty-one shifted sub-images. In Fig. 11, the reconstruction quality Q is plotted as a 

function of the threshold in gray-scale values and the seeding density in ppp.  

 

 

Fig. 11. Reconstruction quality Q as a function of the refocus-threshold in gray-scale values 

and the seeding density in particles per pixel (ppp).  

The displayed set of curves is Gaussian, as the histogram of refocused and original intensity 

field, Ir and I0, is Gaussian as well. Beside the maxima of the curves the average change in 

reconstruction quality is Q / threshold 0.004∆ ∆ ≈ − . In first approximation, the maximum 

reconstruction quality Qmax decreases linearly with increasing seeding density, which is 

illustrated in Fig. 12, left. A linear fit is applied and plotted as solid line. If you assume 

Q=0.75 as minimum acceptable reconstruction quality [9], the maximal seeding density is 

about 0.03ppp. 

 

 

Fig. 12. Maximum reachable reconstruction quality Q (left) and corresponding threshold in 

gray-scale values as a function of the seeding density in particles per pixel (ppp). The linear 

trends (solid lines) are: Qmax=0.94-6.5ppp and threshold=65.8+2400ppp. 

 

The required threshold to achieve a maximum of Q is a function of the seeding density. 

The relation is given in Fig. 12, right. The linear trend helps to estimate optimum thresholds 

for refocusing. Required thresholds increase for increasing particle density.  

The proposed light-field camera can be used also for particle tracking velocimetry (PTV). 

For estimating the reconstruction quality of the particle position the rms deviation between 

exact and refocused particle positions is determined. Therefore, particle positions are replaced 

by weighted centroids, which are determined geometrically. Root mean square values of the 

deviations between exact and refocused positions rmsx and rmsy are calculated in X and Y on 
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all measurement planes. The overall uncertainty is
2 1/22

r X Y(rms rms )σ = + . Values of σr at 

largest reconstruction quality Qmax are plotted in Fig. 13 over the seeding density. At seeding 

densities larger than 0.005ppp particle images overlap more and more and the calculation of 

centroid positions fails. For this reason large seeding densities are not possible in PTV, the 

upper limit is about 0.005ppp [20], see Fig. 13.  

  

 

Fig. 13. Root mean square deviation σr between exact and refocused positions of particles 

present in the measurement volume. The linear trend (solid lines) is: σr=0.14+28.8ppp. 

 

3 Experiment 

3.1 Sensor Setup 

 

Fig. 14. Experimental setup for single-camera SAPIV. The illuminating laser beam is expanded 

to five light sheets by an optical grating. The receiving optics is aligned normal to the light 

sheets. Tracer particles from all light sheets are imaged onto the sensor plane at the same time.  

The complete optics is sketched in Fig. 14. Illuminating optics and flow basin are mounted on 

an aluminum frame. Their orientation is illustrated in Fig. 14. The laser is a Minilite 

(Continuum, USA) with 5ns pulse width and 5mJ pulse energy is used for experiments. The 

repetition rate of the laser is 1Hz, forced by an external trigger. The 2mm laser beam is 

expanded to a sheet by a negative cylindrical lens (focal length f=-25mm). Subsequently, the 

beam propagates a phase grating. In a distance of about 300mm behind the grating five 

diffraction orders are parallelized by a cylindrical lens, f=300mm. After parallelization the 
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light sheets are equally spaced by ∆Z=12.5mm. The grating exhibits nearly the same intensity 

distribution in the +1
st
, 0 and –1

st
 diffraction order. In the +2

nd
 and –2

nd
 order the diffracted 

intensity is lower. Applying neutral density filters for the inner three orders equalizes light 

intensity in all light sheets. This is important as inhomogeneous sheet intensities could disturb 

the reconstruction quality.  

The receiving optics and the camera are mounted on a rail allowing on-axis shifting 

relatively to the flow basin. The front lens is a photo lens, focal length f=50mm with a free 

aperture diameter of D=30mm, located at a distance of 100mm to the nearest light sheet. The 

photo lens can be zoomed in and out, which allows controlling the working distance without 

changing the alignment of the optics. The field lens is a singlet lens with f=50mm, D=28mm. 

The lens array consists of twenty-one doublet lenses (Edmund Optics) with f=9mm, D=2mm. 

The doublets are aligned in a quadratic grid and glued into a frame consisting of two identical 

silicon plates by polydimethylsiloxane (PDMS). The outer edges of the square array are left 

free, as imaging quality would be insufficient for lenses located there. 2mm holes are etched 

into both silicon plates as apertures. The lens pitch between adjacent lenses is 3.13mm. The 

distance between photo and field lens is 90mm, between field lens and lens array it is 30mm. 

The intermediate image is a demagnified version of the flow. At its position an aperture plate 

with variable diameter enables fine adjusting the final size of the measurement volume. It 

prevents sub-images from overlapping and blocks large field angles, which minimizes 

distortion aberration. The aperture plate, field lens and the lens array and are mounted in a 

LINOS micro bench. As we apply a simple homography for refocusing (see section 2.1) the 

lens array should provide superior imaging characteristics. Doublet lenses exhibit 

considerably less wave-front aberration compared to singlet lenses [21]. The used camera is a 

Photron APX RS 1024x1024px with a CMOS chip, 17.8x17.8mm² in size and 17.4µm pixel 

edge length. The camera is triggered by the same electronics determining the repetition rate of 

the laser. 

Applying Eq. (2) with minimum pitch, p=3.13mm, and minimum magnification (see Fig. 

7) yields
max

Z 6mmδ = ± . Therefore, the optimum light-sheet spacing should be larger than 

12mm. The optical simulation in section 2.4.1 reveals sufficiently high Q for ∆Z=12.5mm. 

Applying the maximum occurring pitch in the used lens array, p 5 3.13mm= ⋅ (see Fig. 8), 

and maximum magnification yields 
min

Z 2mmδ = ± . Consequently, the light-sheet thickness d 

should be smaller than 4mm for high reconstruction quality. In practice, it is d=1.5mm, which 

is advantageous for highly seeded flows, as only a fraction of the seeding is imaged onto the 

camera chip. 

The field of view (FOV) is imaged multiplied onto the CMOS chip by the lens array. In 

the present case the effective chip area used to capture the FOV is 204x204px. The active chip 

area is given by the number of lenses in the array. Magnification β is significantly different for 

each light sheet. Knowledge of the exact value of β is required for determination of lateral 

particle positions on individual light sheets. 

3.2 Calibration 

The calibration is carried out in-situ at zero-flow condition using tracer particles as target. In 

single-camera SAPIV the coordinate system is given by the camera itself. For calibration all 

light sheets except of one are blocked. For each light-sheet position a particle image is 

recorded. Two-dimensional cross-correlation is used to calculate shifts between sub-images. 

In the cross-correlation function the highest peak is fitted by 2D Gaussian using a Levenberg-

Marquardt least-squares minimization. Therefore, image shifts are determined at sub-pixel 

accuracy, which is 0.1px herein. The magnitudes of calibrated shift-vectors are sketched in 

Fig. 8. Shifts are given in pixel as a function of the Z-position within the flow basin. The set 

of curves is parameterized by occurring pitches |p| in the used lens array. Shift magnitudes |h| 

represent the measured correction shift of an image of an individual lens relative to the central 
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sub-image. Shifts are determined at positions of the five light sheets and connected by straight 

lines. The maximal measured shift is 72px, the smallest one is 17px. The sensor´s depth 

sensitivity is given by the gradient of the shift function.  

3.3 Convective flow 

For validation single-camera SAPIV is applied to a three-dimensional convective flow. The 

fluid is heated laterally, which is a relevant configuration for the manufacture of bulk semi-

conductor crystals, see i.e. [22]. The flow is generated in a basin with D=100mm edge length. 

One side wall of the basin is connected to the heating, the opposite wall to the cooling circuit, 

see Fig. 17. Both circuits are realized by independently working water thermostats (Julabo 

HC, Germany). The remaining four walls of the flow basin are adiabatic. Adiabatic walls are 

made from PMMA and therefore are transparent. The temperature controlled walls are made 

from aluminum. Thermo couples log the wall temperature during measurements. In 

thermodynamic equilibrium, the temperature controlled walls exhibit mean temperatures of 

76.88°C and 5.86°C respectively. 

The basin is filled completely by a 0.73:0.27 water-glycerin solution resulting in 

1.061g/cm3 fluid density at 30°C (Glycerine Producers' Association, 1963). Glycerin is added 

to the fluid in order to adapt the fluid´s density to the used tracer particles. Tracers are made 

from polyamide 12 base polymer (Vestosint 1141, Evonik, Germany). The fraction of 55 % of 

particles ranges from 100µm to 250µm in diameter. The realized particle density is 0.007 

particles per pixel (ppp), which equals 0.06 particles per mm³ in the illuminated measurement 

volume. After reaching thermodynamic equilibrium the recording is started at 1Hz repetition 

rate of laser firing and camera exposure. 2048 images are recorded. In Fig. 15 a 1024x1024px 

snapshot of particles present on all five light sheets is displayed.  

 

 

Fig. 15. 1024x1024px snapshot of tracer particles in the flow basin. The image is formed by 

twenty-one single lenses. Tracer particles are distributed in depth on five light sheets equally 

spaced by 12.5mm. The diameter of the field of view is about 30mm.  

All twenty-one sub-images are interpolated at 0.1px steps to allow sub-pixel shifting in 

accordance to the calibrated shift map. Subsequently, all sub-images are shifted two-

dimensionally by values given in Fig. 8. Summing and thresholding all images enables 

identification of particles on individual light sheets. In Fig. 16 (left) the raw central sub-image 

is displayed. It might be noted, preprocessing of this image is limited to a simple threshold 

filtering because of the selective illumination by the light sheets. The mid part of Fig. 16 is the 

summed image (compare Fig. 5, step 3) for Z/D=0.46. Destructive summation of the sub-

images leads to smeared patterns and blurred particles in the refocused plane. Undesired 

patterns and blur are blocked by applying threshold 65.8 2400 ppp= + ⋅ , Fig. 12 (right). In the 

present case, the threshold is 83. The thresholded image is given in Fig. 16, right. 
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Fig. 16. Process chain of refocusing tracer particles. The refocused plane is at Z/D=0.46. Left: 

Unprocessed 204x204px central sub-image. Mid: Normalized sum of 21 shifted sub-images. 

Right: Refocused imaged, generated by applying a threshold.  

4 Results and Discussion 

The process chain indicated in Fig. 16 is repeated for each light-sheet Z-position. Due to low 

seeding density a complete velocity field is computed by averaging 2048 recordings. Particle 

displacements are evaluated by the open source code fluere by K. P. Lynch on sequenced 

image pairs. The magnification scale is adapted for each light sheet in accordance to Fig. 7. A 

three pass algorithm is applied starting at 64x64px, continuing with 32x32px and ending at 

16x16px interrogation window size. Windows are weighted uniformly. 50% overlap leads to a 

smallest window size of 8x8px, which determines the spatial resolution of the vector field to a 

minimum of 1.3mm edge length. Depth resolution is given by the light-sheet thickness of 

1.5mm. Velocity vectors are validated in MATLAB using the ratio of the two largest 

correlation peaks. 2D Cross-correlation is applied for each Z-position separately. All validated 

two-component vectors are averaged over time. The orientation of the measurement volume 

within the flow basin is given in Fig. 17. Dimensions are related to the edge length D=100mm 

of the flow basin. As already mentioned, the measurement volume is composed of five XY-

planes. The first one is at Z/D=0.08, the last one Z/D=0.58. All slices are spaced by 

Z/D=0.125. The lateral extension of measurement planes increases for larger values Z/D, as 

image magnification decreases.  

 

 

Fig. 17. Orientation of the measurement plane at Z/D=0.58 within the flow basin. The heated 

plate is bordered dotted, the cooled one bordered dash-dotted.  

The mean velocity field absv  is displayed in Fig. 18. It is composed of five XY-slices at five 

different Z-positions. The edges of the slices form a cuboid widening conically in Z-direction. 

The size of the displayed vector-cones is a measure for the absolute velocity. Cone peaks 

point the direction of the flow. The magnitude of the temporally averaged velocity is denoted 

color-coded for the smallest and largest Z/D.  

 



- 14 - 

 

Fig. 18. (Color online) Left: Section of temporally averaged, 3D velocity field in a laterally 

heated convective flow, determined by single-camera SAPIV. Five equally spaced light sheets 

between 0.08 Z / D 0.58≤ ≤ are used for illumination. The hot wall is at Y/D=0, the cold wall 

at Y/D=1. Two-component velocity vectors are depicted as black vector-cones. The mean 

absolute velocity is given color-coded on XY-slices bordering the measurement volume. Right: 

Maximum average velocity on each measurement plane. 

 

Single XY-slices are displayed in Fig. 19. The flow is directed upwards. As expected, the flow 

accelerates along X because of buoyant forces acting on the fluid. The flow seems to exhibit a 

single-roll pattern, whose center of rotation is underneath the center of the basin.  

 

 

 

Fig. 19. Velocity fields on five measurement planes from Z/D=0.08 to Z/D=0.58 (from left to 

right), spaced by Z/D=0.125. Vectors point the direction of the flow in the XY-plane. For 

velocity magnitudes see Fig. 18, right.   

5 Conclusions 

For correlation-based velocimetry high in-plane spatial resolution is required. As the 

presented light-field camera utilizes the focused plenoptic principle, the full image resolution 

of the applied CMOS-chip can be used. In commercial plenoptic cameras image resolution 

may be reduced due to the formation of macro-pixels; see [15]. Especially in applications 

using cameras with large pixels (e.g. high-speed imaging) the proposed optics is superior. The 

realized in-plane resolution is at least 80µm.  

In fluid mechanics, up-to-now light-field imaging was realized with bulky setups by 

multiple cameras, see synthetic-aperture particle image velocimetry (SAPIV) [12]. In contrast 

to this, a single-camera 3D-PIV technique utilizing light-field imaging is presented. The 

technique allows two-component velocity measurements on multiple planes quasi-

simultaneously (2C3D velocimetry). A lens array consisting of doublet lenses enables twenty-

one views on a particle-laden flow at different angles. Simulations reveal that a reconstruction 

quality [9] of Q>0.75 is realistic for the present optics at seeding densities smaller than 0.03 

particles per pixel (ppp). Compared to literature, reconstructed particle fields can be correlated 

at high quality.  

Despite poor depth resolution of Z 6mmδ = ± , refocusing is feasible in combination with 

light-sheet illumination. The measurement volume is 30x30x50mm³ in size. Larger field of 
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views (FOV) are feasible at larger light-sheet spacing or by a camera with smaller pixel size. 

As SAPIV is a threshold technique, knowledge of the threshold scaling in dependence of the 

seeding density is fundamental. An optimal threshold is found by optical simulations.  

In a validation experiment a seeding density of 0.007ppp is realized. This is low 

compared to existing 3D-PIV techniques [20] and reasoned by a maximum parallax of 1°. For 

instance, in tomographic PIV the angle of choice is typically 30° [9]. The working distance of 

the sensor can be varied easily by a zoom photo lens. No fine tuning is required between lens 

array and camera chip. Therefore, the technique is robust and easy to implement in the lab. 

Single-camera, multiple-plane SAPIV is especially suited to environments not accessible 

for multiple-camera setups, like reactors or engines.  
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