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Abstract

We study the quantum integrability of the O(N) Nonlinear σ (nlσ) model and the

O(N) Gross-Neveu (GN) model on the half-line. We show that the nlσ model is

integrable with Neumann, Dirichlet and a mixed boundary condition and that the

GN model is integrable if ψa
+|x=0 = ±ψa

−|x=0. We also comment on the boundary

condition found by Corrigan and Sheng for the O(3) nlσ model.
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1 Introduction

The purpose of this letter is to investigate the quantum integrability of certain boundary

conditions of two theories defined on the half-line [1, 2]: the O(N) nonlinear sigma model

(nlσ) and the O(N) Gross-Neveu (GN) model. These two models have some very similar

properties, such as asymptotic freedom and dynamical mass generation, but are also

quite different, the former being bosonic and no bound states, and the latter fermionic

and with a very rich spectrum of bound states, for example. Their bulk version has been

established to be integrable long ago, at the classical [3, 4] and at the quantum level [5, 6].

The study of these models on the half-line is hindered more difficult, because many of the

techniques available on the full-line, such as the Lax pair, cannot be easily extended to the

half-line. The structure of this letter is as follows. In the next section we briefly review

the two models and exhibit a bulk conserved charge of spin 3 for each model, in section

3 we show that the Neumann, Dirichlet and the “mixed” boundary condition preserve

integrability for the nlσ model, and discuss the condition found by Corrigan and Sheng

in [7] for the O(3) nlσ model; in section 4 we show that the GN model on the half-line

is integrable if ψa
+|x=0 = ±ψa

−|x=0, where ψa
± are the chiral components of the Majorana

fermions. In the final section we present our conclusions and possible extensions of this

work.

2 The Models

In this section we briefly review the main properties of the nlσ model and of the GN

model. We also discuss the conserved currents of spin 4 that are going to be used later.

2.1 The O(N) Nonlinear σ Model

The O(N) nonlinear σ (nlσ ) model is defined by the following Lagrangian

Lnlσ =
1

2g0
∂µ~n · ∂µ~n , (2.1)

where ~n is a vector in N -dimensional space, subject to the constraint ~n · ~n = 1 1. We

can introduce a Lagrange multiplier ω that takes care of the constraint ~n · ~n = 1, the

Lagrangian being modified to

L′
nlσ =

1

2g0

∂µ~n · ∂µ~n + ω(~n · ~n − 1) . (2.2)

1Our conventions throughout this paper are: The Minkowski metric is ηµν = diag(-1,1), the gamma

matrices are γ0 = iσ2 and γ1 = σ1, where σi are the Pauli matrices. The light-cone variables are

x± = (x0 ± x1)/2.
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By using this Lagrangian and the constraint on the length of ~n it is easy to show that

the classical equation of motion in light-cone coordinates is

∂+∂−~n + ~n(∂−~n · ∂+~n) = 0 . (2.3)

At the classical level this model is conformally invariant, which implies the vanishing of

the off-diagonal components of the energy-momentum tensor

T+− = T−+ = 0 . (2.4)

The non-vanishing components are

T++ = ∂+~n · ∂+~n and T−− = ∂−~n · ∂−~n . (2.5)

Notice that the conservation law

∂±T∓∓ = 0 (2.6)

implies ∂±(T∓∓)n = 0 for any integer n.

At the quantum level there is dynamical mass generation. This means that this model

has an anomaly and so, conserved charges in the classical theory have to be corrected.

It is not clear in principle that this model will be still integrable. Nonetheless Polyakov

proved the quantum integrability of the nlσ model in [5] (see also [8]).

In [9] Goldschmidt and Witten have analyzed conserved charges of some two-dimen-

sional models in a similar way as Polyakov did for the nlσ model, and showed their

quantum integrability. Their argument goes as follows. Since the theory is anomalous,

the right hand side of ∂±(T∓∓)2 = 0 is not zero anymore, and we have to include, in

principle, all possible operators of dimension 5 and Lorentz weight ∓3. We should then

list these operators and check which ones can be written as total derivatives. In the

case of the nlσ model they showed that ∂±(T∓∓)2 = 0 can only pick up anomalous

contributions that can be written as total derivatives, namely ∂± of something. So the

classical conservation law is inherited to the quantum level.

If we take the spin 3 conservation law, ∂±(T∓∓)2 = 0, our previous discussion shows

that at after quantization it becomes

∂+(T−−)2 = c1 ∂+(∂2
−~n · ∂2

−~n) + c2 ∂−(∂+~n · ∂−~n ∂−~n · ∂−~n) + c3 ∂−(∂3
−~n · ∂+~n) , (2.7)

where the ci are constants. Of course we have a similar expression for ∂−(T++)2, taking

+ ↔ −, with the same coefficients ci. This result implies the existence of two nontrivial

charges in the nlσ model at the quantum level, and therefore its integrability [10].

The boundary version of the nlσ model was first considered by Ghoshal in [11], where

it is also conjectured the integrability of the Neumann, (∂1~n|x=0 = 0) and Dirichlet
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(∂0~n|x=0 = 0), boundary conditions. In that paper Ghoshal solved the boundary Yang-

Baxter equation consistent with this choice (and this is the main argument for its inte-

grability!). The classical integrability of the Neumann condition for the O(N) nlσ model

was established by means of a generalization of the Lax pair to the half-line by Corrigan

and Sheng in [7].

2.2 The O(N) Gross-Neveu Model

The Gross-Neveu model [12] is a fermionic theory with quartic Fermi coupling defined

by the following Lagrangian

Lgn = iψ̄ 6∂ψ +
g2

4
(ψ̄ψ)2 , (2.8)

where ψ is a N component Majorana spinor in the fundamental representation of O(N),

with components ψa, a from 1 to N . The chiral components of the ψa are (ψa
+, ψ

a
−). In

light-cone coordinates the GN model Lagrangian becomes

Lgn = −ψa
+i∂−ψ

a
+ − ψa

−i∂+ψ
a
− + g2(ψa

+ψ
a
−)2 . (2.9)

Notice that ∂± → exp(±θ)∂± and ψa
± → exp(±θ/2)ψa

±, under a Lorentz transformation
2. This means that ψ± has Lorentz weight ±1/2, and ∂± has Lorentz weight ±1. The

equations of motion are

i∂∓ψ
a
± = ±g2ψa

∓(ψb
+ψ

b
−) . (2.10)

The classical integrability of this model was established by Neveu and Papanicolaou

in [4]. The quantum integrability of the GN model was established in [13], where it was

proved, in the large N limit, that there is no particle production. The construction of

quantum conserved charges for the GN model was done in an analogous way to Polyakov’s

construction for the nlσ model, in [6].

Following Witten [6], we start by looking at the classical conservation laws due to

the conformal invariance of 2.8. The diagonal components of the energy-momentum

tensor are T±± = ψa
±∂±ψ

a
±, the off-diagonal components, T+− and T−+ being zero. Let us

consider the spin 3 conservation law, ∂−(T++)2 = 0. The left hand side of this equation

has dimension 5 and Lorentz weight 3. This implies that the possible anomalies have to

be either linear in ∂− and zeroth order in ψa
− or zeroth order in ∂− and quadratic in ψa

−.

The operators of the former type can be converted into operators of the latter type by

using the equations of motion. Analyzing all local operators with the required properties,

Witten showed in [6] that these terms can be written as total derivatives. We list these

terms in the appendix. This means that anomalies destroy conformal invariance but do

not destroy the conservation law, and the GN model is integrable at the quantum level.

2θ is the rapidity variable parameterizing the Lorentz transformation.
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3 Integrable Boundary Conditions

for GN and nlσ Models

When considering the boundary version of an integrable field theory not all charges will

still be conserved. Therefore one should investigate whether some combination of the

bulk charges can be preserved after the introduction of a boundary. If we have some spin

s conservation law of the form

∂−J
(s+1)
+ = ∂+R

(s−1)
− and ∂+J

(s+1)
− = ∂−R

(s−1)
+ , (3.1)

then we know that

Q+ =
∫ +∞

−∞
dx1 (J

(s+1)
+ −R

(s−1)
− ) and Q− =

∫ +∞

−∞
dx1 (J

(s+1)
− −R

(s−1)
+ ) (3.2)

are conserved, ∂0Q± = 0. In proving that these charges are conserved we have to use

the fact that we can discard surface terms. When we restrict our model to the half-line

we can not do that with one of the surface terms. On the other hand, if the following

condition [1] is satisfied

J
(s+1)
− − J

(s+1)
+ +R

(s−1)
− − R

(s−1)
+ |x=0 =

d

dt
Σ(t) (3.3)

for some Σ(t), then

Q̃ =
∫ 0

−∞
dx1 (J

(s+1)
− + J

(s+1)
+ − R

(s−1)
− −R

(s−1)
+ ) − Σ(t) (3.4)

is a conserved charge. Note that 3.3 depends on the specific boundary action we are

considering. In this section we prove the integrability of Neumann (∂1~n|x=0 = 0), Dirichlet

(~n|x=0 = ~n0 a constant, or equivalently ∂0~n|x=0 = 0), and a mixed boundary condition

(where some components of ~n satisfy Neumann and the others Dirichlet). We also analyze

the boundary condition proposed by Corrigan and Sheng in [7] for the O(3) nlσ model.

For the GN model we show that the spin 4 charge discussed in the previous section, with

the boundary condition ψa
+|x=0 = ǫaψ

a
−|x=0, ǫa = ±1, provides a conserved charge in the

boundary case.

3.1 Nonlinear σ Model

As we explained, we have to look at the combination 3.3 of the spin 4 currents at x = 0

and verify that it can be written as a total time derivative. In our case the conservation

laws are

∂+(T−−)2 = c1 ∂+(∂2
−~n · ∂2

−~n) + c2 ∂−(∂+~n · ∂−~n ∂−~n · ∂−~n) + c3 ∂−(∂3
−~n · ∂+~n),

∂−(T++)2 = c1 ∂−(∂2
+~n · ∂2

+~n) + c2 ∂+(∂−~n · ∂+~n ∂+~n · ∂+~n) + c3 ∂+(∂3
+~n · ∂−~n).(3.5)
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The condition we have to analyze is

(∂−~n · ∂−~n)2 − c1 ∂
2
−~n · ∂2

−~n− (∂+~n · ∂+~n)2 + c1 ∂
2
+~n · ∂2

+~n −

−c2 (∂−~n · ∂+~n ∂−~n · ∂−~n) − c3 ∂
3
−~n · ∂+~n +

+c2 (∂+~n · ∂−~n ∂+~n · ∂+~n) + c3 ∂
3
+~n · ∂−~n|x=0 =

d

dt
Σ(t) . (3.6)

Let us look at the Neumann boundary condition first 3. Since we have ∂1~n = 0 whenever

there is a term like ∂±~n we can substitute it by ∂0~n. The term ∂2
±~n becomes ∂2

0~n± ∂2
1~n.

By appropriately combining terms in 3.6, we see immediately that they all add up to

zero and we can pick Σ(t) = 0. This means that the Neumann boundary condition is

integrable.

We can now look at the “dual” condition to Neumann, namely the Dirichlet boundary

condition, ~n|x=0 = ~n0, constant, which is equivalent to ∂0~n|x=0 = 0. Notice that in this

case ∂n
0 ~n = 0 for any integer n. The manipulations are very similar as in the Neumann

case. Wherever there is ∂±~n we should replace by ±∂1~n, ∂2
±~n should be replaced by

±2∂0∂1~n + ∂2
1~n, and by using the equations of motion and the constraint ~n · ~n = 1, we

see that ∂3
+~n · ∂−~n− ∂3

−~n · ∂+~n = 0. So once again, by appropriately collecting terms we

see that 3.6 vanishes and we can pick Σ(t) = 0.

Finally we can look at the more general boundary condition, which is a mixture of

Neumann and Dirichlet in the following sense: take ∂0ni|x=0 = 0 for some collection of

indices {i}, with, say, k elements and ∂1nj|x=0 = 0 for the remaining N − k indices.

Neumann condition is obtained when k = 0, and Dirichlet when k = N . The analysis

is very similar to the preceding cases and we shall skip technical comments. The final

conclusion is that this boundary condition too is integrable.

In [7] Corrigan and Sheng showed that (classically) the O(3) nlσ model on the half-line

is integrable if

∂1~n = −(~k × ∂0~n) + (~n · (~k × ∂0~n))~n and ~k · ∂0~n = 0 , (3.7)

at x = 0, ~k arbitrary. By using the equation of motion plus the constraint ~n · ~n = 1,

this condition is compatible with our spin 4 current, with Σ(t) = 16 c3 ∂0~n · ∂0∂1~n. This

indicates that 3.7 is integrable at the quantum level.

3.2 Gross-Neveu Model

Let us consider now the following boundary condition

ψa
+|x=0 = ǫaψ

a
−|x=0 , (3.8)

3Notice that we are always considering fields and their derivatives at x = 0 now.
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with a = 1, . . . , N and ǫa = ±1. Before we continue our analysis, we should add a few

remarks about these conditions. The boundary conditions 3.8 can be obtained from the

boundary action

Sb =
∫ +∞

−∞
dx0

N∑

a=1

i

2
ǫaψ

a
+ψ

a
− . (3.9)

This is the most general form for the boundary potential without introducing new pa-

rameters in the theory. If we have N+ ǫ’s equal +1 and the remaining N− = N −N+ ǫ’s

equal −1, then we are breaking the original O(N) symmetry at the boundary to O(N+)

and O(N−) symmetric sectors. Therefore there are always two different ways to break

the symmetry at the boundary to the same groups (pick N+ ‘+’ and N− ‘−’, or N− ‘+’

and N+ ‘−’), which will correspond to different CDD factors in the reflection matrices.

Suppose ǫa is different from ±1 for some a. Then we get that both ψa
+ and ψa

−

vanish, which implies that the ath fermion does not propagate, since we have a first

order equation of motion.

Let us now return to the main discussion. Condition 3.8 implies that the equations

of motion 2.10 give the supplementary condition at the boundary

∂−ψ
a
+|x=0 = ∂+ψ

a
−|x=0 = 0 , (3.10)

since for fermion fields ψ2 = 0. The boundary condition 3.8 can be used along with 3.10

to show that

∂0ψ
a
+|x=0 = ∂1ψ

a
+|x=0 = ǫa∂0ψ

a
−|x=0 = −ǫa∂1ψ

a
−|x=0 = 0 . (3.11)

We should proceed similarly to the nlσ model case, and write down the correspondent

condition from 3.3. There are many more terms now and the procedure is a bit tedious,

but nonetheless, all appropriately collected terms cancel and we have that we can pick

Σ(t) = 0 again. This shows that the boundary condition 3.8 preserves integrability at

the quantum level.

4 Conclusions

We were able to prove the quantum integrability of the Neumann, Dirichlet, and mixed

boundary conditions for the nlσ model, and of ψa
+ = ±ψa

− for the GN model. The

reflection matrices for the nlσ model for these conditions were proposed by Ghoshal in

[11]. It would be interesting to investigate the boundary Yang-Baxter equation (BYBE)

for this model more thoroughly and see if it is possible to find more general solutions [14].

Our results seem to indicate so, since we have a variety of other boundary conditions for

the nlσ and GN models.
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In [15] Inami, Konno and Zhang studied, via bosonization, some fermionic models on

the half-line. In particular, they studied the O(3) GN model and concluded that there

were some possible integrable boundary conditions of the same form as proposed here 4.

In particular, in the O(3) GN model it is easy to see that the boundary condition 3.8

either preserves full O(3) invariance or it breaks it to O(2). In each case there are two

possibilities, in a similar fashion to the boundary Ising model [1]. The difference between

the two correspondent reflection matrices will appear as CDD prefactors.

Another connection we can make to results in the literature is the following. It is

possible to relate the O(2N) GN model to the affine Toda field theories (ATFT) with

imaginary coupling, using bosonization [16, 17], in a similar fashion to the way Witten

used to establish the mapping from the O(4) GN model to two decoupled sine-Gordon

models. The ATFT (with real coupling) on the half-line were considered by Bowcock,

Corrigan, Dorey and Rietdjik in [18], where they found that there is only a discrete set

of integrable boundary conditions. It would be interesting to investigate the relation

between their results and our boundary conditions.

One interesting direction to pursue would be to study the most general integrable

boundary conditions for these models, compatible with the spin 3 charge that we have

analyzed.

As a last remark, it should be interesting to apply our considerations to the local

charges in the principal chiral model studied by Evans, Hassan and Mackay in [19].
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A Appendix

As we mentioned in section 2, here we list the possible anomaly terms that can appear

in the right hand side of ∂−(T++)2 = 0 5. These operators have to have Lorentz weight

3, dimension 5, and by using equations of motion its easy to show that we can restrict

ourselves to operators that are zeroth order in ∂− and quadratic in ψa
−. Witten has

shown in [6] that all such operators can be written as ∂± of something. We are actually

interested in the something structure of these operators. This means that we have to

look for operators that have dimension 4 and Lorentz weight 4 (from ∂− of something)

or operators with dimension 4 and Lorentz weight 2 (from ∂+ of something). The list is

as follows

1. Dimension 4 and Lorentz weight 4

ψa
+∂

3
+ψ

a
+ ,

∂+ψ
a
+∂

2
+ψ

a
+ ,

ψa
+∂+ψ

a
+ ψ

b
+∂+ψ

b
+ .

2. Dimension 4 and Lorentz weight 2

ψa
−∂

3
+ψ

a
− ,

∂+ψ
a
−∂

2
+ψ

a
− ,

ψa
−∂

2
+ψ

a
+ ψ

b
+ψ

b
− ,

ψa
−∂+ψ

a
+ ψ

b
−∂+ψ

b
+ ,

ψa
+∂+ψ

a
+ ψ

b
−∂+ψ

b
− ,

∂+ψ
a
+∂+ψ

a
− ψ

b
+ψ

b
− ,

ψa
+∂

2
+ψ

a
+ ψ

b
+ψ

b
− ,

ψa
+∂+ψ

a
+ (ψb

+ψ
b
−)2 .

5There is an analogous analysis for the ∂−(T++)2 = 0 conservation law.
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