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Abstract

In this paper we mirror the framework of generalised (non-)linear models to define the fam-
ily of generalised Age-Period-Cohort stochastic mortality models which encompasses the
vast majority of stochastic mortality projection models proposed to date, including the
well-known Lee-Carter and Cairns-Blake-Dowd models. We also introduce the R package
StMoMo which exploits the unifying framework of the generalised Age-Period-Cohort fam-
ily to provide tools for fitting stochastic mortality models, assessing their goodness of fit and
performing mortality projections. We illustrate some of the capabilities of the package by
performing a comparison of several stochastic mortality models applied to the England and
Wales population.

Keywords: Mortality modelling; mortality forecasting; generalised linear models;
generalised non-linear models

1. Introduction

During the last two centuries developed countries experienced a persistent increase in
life expectancy. For instance, Oeppen and Vaupel (2002) estimate that during the last 160
years the world record in female life expectancy at birth has increased at an approximate
steady pace of 3 months per year. This increase in life expectancy, though a sign of social
progress, poses a challenge to governments, private pension plans and life insurers because
of its impact on pension and health costs. Actuaries and demographers have recognised the
problems caused by an ageing population and rising longevity and have thus devoted signif-
icant attention to the development of statistical techniques for the modelling and projection
of mortality rates.

One of the most influential approaches to the stochastic modelling of mortality rates
is the parsimonious mortality model proposed by Lee and Carter (1992). This model uses
principal component analysis to decompose the age-time matrix of mortality rates into a
bilinear combination of age and period parameters, with the latter being treated as time se-
ries to produce mortality projections. The Lee-Carter model has inspired numerous variants
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and extensions. For instance, Lee and Miller (2001), Booth et al. (2002), and Brouhns et al.
(2002) have proposed alternative estimation approaches in order to improve the goodness-of-
fit and the forecasting properties of the model. In particular, Brouhns et al. (2002) propose a
more formal statistical approach to estimating the parameters by embedding the Lee-Carter
model into a Poisson regression setting. Other authors have extended the Lee-Carter model
by including additional terms, such as multiple bilinear age-period components (Renshaw
and Haberman, 2003; Hyndman and Ullah, 2007), or a cohort effect term (Renshaw and
Haberman, 2006; Currie, 2006).

The two factor Cairns-Blake-Dowd (CBD) model introduced by Cairns et al. (2006) is
one of the most prominent variants of the Lee-Carter model. The CBD model relies on the
linearity of the logit of one-year death probabilities at older ages. Specifically, it assumes
that for a given year the logit of the one-year death probability is a linear function of age, and
treats the intercept and slope parameters across years as stochastic processes. Cairns et al.
(2009) consider three extensions to the original CBD model by incorporating combinations
of a quadratic age term and a cohort effect term. Plat (2009) has combined features of the
CBD and the Lee-Carter models to produce a model that is suitable for full age ranges and
captures the cohort effect.

Given the abundance and rapid increase in the number of stochastic mortality models
proposed in the literature, there have been some recent attempts to find the commonali-
ties among these models. Hunt and Blake (2015) review the structure of mortality models
and describe an Age-Period-Cohort model structure which encompasses the vast majority
of stochastic mortality models. Currie (2014) shows that many mortality models can be
expressed in terms of generalised linear models or generalised non-linear models.

In this paper, we build upon the works of Hunt and Blake (2015) and Currie (2014) to
define the family of Generalised Age-Period-Cohort stochastic mortality models by mirroring
the terminology of generalised linear models. We also introduce the R package StMoMo1

which exploits the unifying framework of the Generalised Age-Period-Cohort family to pro-
vide computational tools for implementing many of the stochastic mortality models proposed
to date. The StMoMo package is available at http://CRAN.R-project.org/package=

StMoMo. Version 0.3.1 has been used for this paper.

Several packages for mortality modelling are available in the R environment (R Core
Team, 2014). The package demography (Hyndman, 2014), whose usage is explained in
detail in Booth et al. (2014), implements the original Lee-Carter model along with the Lee
and Miller (2001), Booth et al. (2002), and Hyndman and Ullah (2007) variants. The ilc
package (Butt et al., 2014) implements the Renshaw and Haberman (2006) cohort exten-
sion of the Lee-Carter model together with the Lee-Carter model under a Poisson regression
framework. The LifeMetrics R functions implement the original CBD model and the three

1The acronym StMoMo, pronounced Saint Momo, stands for Stochastic Mortality Modelling. Momo is
the king of Carnivals in numerous Latin American festivities (Wikipedia, 2014).
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extended CBD models considered in Cairns et al. (2009), along with the Lee-Carter model
(using Poisson maximum likelihood), the Age-Period-Cohort model of Currie (2006) and the
Renshaw and Haberman (2006) model. This package, which is not on CRAN, is available at
http://www.macs.hw.ac.uk/~andrewc/lifemetrics/.

There are however several drawbacks of the existing packages which our package StMoMo
seeks to overcome. First, the existing packages are based on model-specific fitting algorithms
limiting the models available to those already predefined in the packages. By contrast,
StMoMo allows users to easily expand the number of models available. In addition, whilst
StMoMo provides forecasting and simulation functions for any model within the Gener-
alised Age-Period-Cohort family, the existing packages only provide such functions for a
limited number of models. For instance, the package ilc only includes forecasting functions
for the Lee-Carter model. Similarly, simulation with the package LifeMetrics is limited to
the Lee-Carter and the standard CBD models. Finally, StMoMo provides functions which
are not available in existing packages, such as tools for analysing the goodness-of-fit2 and
evaluating the impact of parameter uncertainty using bootstrapping techniques.

StMoMo comes with a set of functions for defining an abstract model — specifying for
instance the number of period terms, whether coefficients are parametric or not — and for
fitting a given model. This is particularly useful when estimating several models on a given
dataset or a given model to different datasets. The package also provides preset functions
for defining the most common models available in the mortality forecasting literature. In
addition, other models preferred by the user can be created in a very simple fashion, see
Section 4 where several examples are given. Therefore, the flexibility of the package allows
a user to quickly build up a battery of different models, and this is particularly useful when
seeking the most appropriate mortality model, comparing different models or assessing model
risk. StMoMo is particularly appealing for actuaries managing life and pensions portfolios
exposed to longevity risk. The code backing most functions implemented in the package has
been extensively used and tested for the development of multi population mortality models
for assessing basis risk in longevity risk transactions, see Haberman et al. (2014).

In the this paper we describe the statistical framework underlying StMoMo and illus-
trate its usage. For this purpose, we use as a running example a comparison of several
stochastic mortality models fitted to the England and Wales population. This example is
in the spirit of the comparison exercises of Cairns et al. (2009, 2011), Haberman and Ren-
shaw (2011) and Lovász (2011), allowing us to show how several of the analysis performed
in these papers can easily be replicated using StMoMo. The structure of the paper is as
follows. In Section 2 we introduce our notation. In Section 3, we mirror the framework of
generalised linear models to define the family of Generalised Age-Period-Cohort (GAPC)
stochastic mortality models and demonstrate that many of the mortality models discussed
in the literature can be framed within this family. In Section 4 we explain how the GAPC

2We note that ilc also provides some graphical tools for assessing the goodness of fit of the models
implemented in that package.
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family of models is implemented in StMoMo. In Section 5, we describe the fitting of GAPC
mortality models and illustrate how this can be accomplished using StMoMo. In Section
6 we consider the evaluation of the goodness-of-fit of GAPC models. In Section 7 we dis-
cuss the forecasting and simulation of GAPC models using time series techniques. Section
8 describes the use of bootstrapping techniques to incorporate parameter uncertainty in the
estimation and forecasting of GAPC mortality models. Finally, in Section 9 we provide some
conclusions and discuss possible extensions of the StMoMo package.

2. Notation and Data

Let the random variable Dxt denote the number of deaths in a population at age x last
birthday during calendar year t. Also let dxt denote the observed number of deaths, Ec

xt the
central exposed to risk at age x in year t, and E0

xt the corresponding initial exposed to risk.
The one-year mortality rate for an individual aged x last birthday and in calendar year t,
denoted qxt, can be estimated as q̂xt = dxt/E

0
xt . The force of mortality and central death

rates are denoted by µxt and mxt, respectively, with the empirical estimate of the latter
being m̂xt = dxt/E

c
xt . Under the assumption that the force of mortality is constant over

each year of age and calendar year, i.e. from age x to age x+ 1 and t to t+ 1, then the force
of mortality µxt and the death rate mxt coincide. We assume that this is the case throughout.

In StMoMo and throughout this paper we assume that deaths, dxt, and either central ex-
posures, Ec

xt, or initial exposures, E0
xt, are available in a rectangular array format comprising

ages (on the rows) x = x1, x2, . . . , xk, and calendar years (on the columns) t = t1, t2, . . . , tn,
When only central exposures are available and initial exposures are required (or vice-versa),
one can approximate the initial exposures by adding half the matching reported numbers of
deaths to the central exposures, i.e, E0

xt ≈ Ec
xt + 1

2
dxt. When the context is clear, we may

write Ext to refer to E0
xt or Ec

xt.

3. Generalised Age-Period-Cohort stochastic mortality models

Some authors have recently sought to identify the similarities amongst stochastic mor-
tality models. For instance, Hunt and Blake (2015) describe an Age-Period-Cohort model
structure which encompasses the vast majority of stochastic mortality models. In another
interesting contribution, Currie (2014) shows that many common mortality models can be
expressed in the standard terminology of generalised linear or non-linear models. In this
section, we build upon the aforementioned papers to define the family of Generalised Age-
Period-Cohort (GAPC) stochastic mortality models.

Akin to generalised linear models (see e.g. McCullagh and Nelder (1989)), a GAPC
stochastic mortality model is comprised of four components:

i. The random component : the numbers of deaths Dxt follow a Poisson distribution or a

4



Binomial distribution3, so that

Dxt ∼ Poisson(Ec
xtµxt)

or
Dxt ∼ Binomial(E0

xt, qxt),

with E (Dxt/E
c
xt ) = µxt and E (Dxt/E

0
xt ) = qxt, respectively.

ii. The systematic component : following Hunt and Blake (2015) the effects of age x, cal-
endar year t and year-of-birth (cohort) c = t − x are captured through a predictor ηxt
given by:

ηxt = αx +
N∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x.

Here:

• The term αx is a static age function capturing the general shape of mortality by
age.

• N ≥ 0 is an integer indicating the number of age-period terms describing the
mortality trends, with each time index κ

(i)
t , i = 1, . . . , N , contributing in specifying

the mortality trend and β
(i)
x modulating its effect across ages.

• The term γt−x accounts for the cohort effect with β
(0)
x modulating its effect across

ages.

The age modulating terms β
(i)
x , i = 0, 1, . . . , N , can be either pre-specified functions of

age, i.e. β
(i)
x ≡ f i(x), as in CBD type models, or non-parametric terms without any prior

structure and which need to be estimated as in the Lee-Carter model. In the GAPC
family we assume that the period indexes κ

(i)
t , i = 1, . . . , N , and the cohort index γt−x

are stochastic processes rather than smooth functions of time or cohort. This is the key
feature that allows the stochastic projection of GAPC models and thus the generation
of probabilistic forecasts of future mortality rates.

iii. The link function g associating the random component and the systematic component
so that

g

(
E
(
Dxt

Ext

))
= ηxt.

Although a number of link functions would be possible it is convenient to use the so-
called canonical link and pair the Poisson distribution with the log link function and the
Binomial distribution with the logit link function (see e.g. Currie (2014) for a discussion
of this in the context of mortality models and McCullagh and Nelder (1989) in the wider
context of GLMs).

3More precisely, conditionally on (µxt), the numbers of deaths are independent and follow a Poisson
distribution. Similarly, in the Binomial case, the numbers of deaths are independent conditionally on (qxt).
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iv. The set of parameter constraints : most stochastic mortality models are only identifiable
up to a transformation and thus require parameter constraints to ensure unique param-
eter estimates. These parameter constraints are applied through a constraint function
v which maps an arbitrary vector of parameters

θ :=
(
αx, β

(1)
x , ..., β(N)

x , κ
(1)
t , ..., κ

(N)
t , β(0)

x , γt−x

)
into a vector of transformed parameters

v(θ) = θ̃ =
(
α̃x, β̃

(1)
x , ..., β̃(N)

x , κ̃
(1)
t , ..., κ̃

(N)
t , β̃(0)

x , γ̃t−x

)
satisfying the model constraints with no effect on the predictor ηxt (i.e. θ and θ̃ result

in the same ηxt).

Most stochastic mortality models proposed in the literature belong to the GAPC fam-
ily. This includes the original Lee-Carter model, the extensions of the Lee-Carter proposed
in Renshaw and Haberman (2003, 2006), the original CBD model, and the extended CBD
models of Cairns et al. (2009). In addition, all the model structures considered in Haberman
and Renshaw (2011), Lovász (2011) and van Berkum et al. (2014), as well as the models of
Plat (2009), Aro and Pennanen (2011), O’Hare and Li (2012), Börger et al. (2013) and Alai
and Sherris (2014), are part of the GAPC class of models.4

Next, we describe in detail some of these models highlighting how they can be framed
within the GAPC family.

3.1. Lee-Carter model under a Poisson setting

The Lee Carter model as implemented by Brouhns et al. (2002) assumes a Poisson dis-
tribution of the deaths using a log link function to target the force of mortality µxt. The
predictor structure proposed by Lee and Carter (1992) assumes that there is a static age
function, αx, a unique non-parametric age-period term (N = 1), and no cohort effect. Thus,
the predictor is given by:

ηxt = αx + β(1)
x κ

(1)
t (1)

In order to project mortality, the time index κ
(1)
t is modelled and forecasted using ARIMA

processes. Typically, a random walk with drift has been shown to provide a reasonable fit,
that is,

κ
(1)
t = δ + κ

(1)
t−1 + ξt, ξt ∼ N(0, σκ),

where δ is the drift parameter and ξt is Gaussian white noise process with variance σκ.

4We note however that models which rely on the smoothness of mortality over both age and time, such
as the graduation approach of Renshaw et al. (1996) and the P-Spline model of Currie (2006), do not belong
to the GAPC family. The P-Spline approach is implemented in the MortalitySmooth (Camarda, 2012) R
package.
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The Lee-Carter model is only identifiable up to a transformation, as for arbitrary real
constants c1 and c2 6= 0 the parameters in Equation (1) can be transformed in the following
way (

αx, β
(1)
x , κ

(1)
t

)
→
(
αx + c1β

(1)
x ,

1

c2
β(1)
x , c2(κ

(1)
t − c1)

)
, (2)

leaving ηxt unchanged. To ensure identifiability of the model Lee and Carter (1992) suggest
the following set of parameter constraints∑

x

β(1)
x = 1,

∑
t

κ
(1)
t = 0, (3)

which can be imposed by choosing

c1 =
1

n

∑
t

κ
(1)
t , c2 =

∑
x

β(1)
x (4)

in transformation (2).

3.2. Renshaw and Haberman model: Lee-Carter with cohort effects

Renshaw and Haberman (2006) generalise the Lee-Carter model by incorporating a cohort
effect to obtain the predictor:

ηxt = αx + β(1)
x κ

(1)
t + β(0)

x γt−x (5)

Mortality projections for this model are derived using time series forecast of the estimated
κ
(1)
t and γt−x, generated using univariate ARIMA processes under the assumption of inde-

pendence between the period and the cohort effects.

To estimate the model Renshaw and Haberman (2006) assume a Poisson distribution of
deaths (random component) and use a log link function targeting the force of mortality µxt.
As with the Lee-Carter model, the predictor ηxt is invariant to the transformation:(

αx, β
(1)
x , κ

(1)
t , β(0)

x , γt−x

)
→
(
αx + c1β

(1)
x + c2β

(1)
x ,

1

c3
β(1)
x ,

c3(κ
(1)
t − c1),

1

c4
β(0)
x , c4(γt−x − c2)

)
, (6)

where c1, c2, c3 6= 0 and c4 6= 0 are real constants. Identifiability of the model can be ensured
using the following set of parameter constraints :

∑
x

β(1)
x = 1,

∑
t

κ
(1)
t = 0,

∑
x

β(0)
x = 1,

tn−x1∑
c=t1−xk

γc = 0,

which can be imposed by setting

c1 =
1

n

∑
t

κ
(1)
t , c2 =

1

n+ k − 1

tn−x1∑
c=t1−xk

γc, ci =
∑
x

β(i)
x , i = 3, 4,
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in transformation (6).

Renshaw and Haberman (2006) also consider several substructures of the predictor (5)
obtained by setting to a constant one or both of the age modulating terms. Of particular
interest is the substructure obtained by setting β

(0)
x = 1,

ηxt = αx + β(1)
x κ

(1)
t + γt−x, (7)

which has been suggested by Haberman and Renshaw (2011) as a simpler structure that
resolves some stability issues of the original model.

3.3. Age-Period-Cohort model

Another commonly used substructure of the Renshaw and Haberman model is the so-
called Age-Period-Cohort (APC) model, corresponding to β

(1)
x = 1, β

(0)
x = 1,

ηxt = αx + κ
(1)
t + γt−x,

which has a long-standing tradition in the fields of medicine and demography (see, e.g.,
Clayton and Schifflers (1987) and Hobcraft et al. (1982)), but has not been widely used in
the actuarial literature until it was considered by Currie (2006). The APC model is known
to be invariant with respect to the following two transformations:

(
αx, κ

(1)
t , γt−x

)
→
(
αx + φ1 − φ2x, κ

(1)
t + φ2t, γt−x − φ1 − φ2(t− x)

)
(8)(

αx, κ
(1)
t , γt−x

)
→
(
αx + c1, κ

(1)
t − c1, γt−x

)
, (9)

where c1, φ1, and φ2 are real constants. However, we can ensure identifiability of the model
by imposing the set of constraints :

∑
t

κ
(1)
t = 0,

tn−x1∑
c=t1−xk

γc = 0,

tn−x1∑
c=t1−xk

cγc = 0,

where the last two constraints imply that the cohort effect fluctuates around zero with
no discernible linear trend. Following Haberman and Renshaw (2011, Appendix A), the
constraints on the cohort effect can be imposed by applying transformation (8) with constants
φ1 and φ2 obtained by regressing γt−x on t− x, so that

γt−x = φ1 + φ2(t− x) + εt−x, εt−x ∼ N(0, σ2) i.i.d.

The constraint on the period index can then be imposed by applying transformation (9) with

c1 =
1

n

∑
t

κ
(1)
t .
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3.4. CBD model

Cairns et al. (2006) propose a predictor structure with two age-period terms (N = 2) with

pre-specified age-modulating parameters β
(1)
x = 1 and β

(2)
x = x − x̄, no static age function

and no cohort effect. Thus, the predictor of the CBD model is given by:

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t ,

where x̄ is the average age in the data. Cairns et al. (2006) obtain mortality forecasts by

projecting the period effects κ
(1)
t and κ

(2)
t using a bivariate random walk with drift.

The CBD model does not have identifiability issues and hence the set of parameter
constraints is empty. In order to estimate the parameter of the CBD model we can follow
Haberman and Renshaw (2011) and assume a Binomial distribution of deaths using a logit
link function targeting the one-year death probabilities qxt.

3.5. M7: Quadratic CBD model with cohort effects

Cairns et al. (2009) extend the original CBD model by adding a cohort effect and a
quadratic age effect to obtain the predictor:

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + κ

(3)
t

(
(x− x̄)2 − σ̂2

x

)
+ γt−x, (10)

where σ̂2
x is the average value of (x − x̄)2. This model, usually referred to as model M7, is

not identifiable as the transformation(
κ
(1)
t , κ

(3)
t , κ

(3)
t , γt−x

)
→
(
κ
(1)
t + φ1 + φ2(t− x̄) + φ3

(
(t− x̄)2 + σ̂2

)
, κ

(2)
t − φ2 − 2φ3(t− x̄),

κ
(3)
t + φ3, γt−x − φ1 − φ2(t− x)− φ3(t− x)2

)
, (11)

for real constants φ1, φ2 and φ3 , leave the predictor unchanged. To identify the model
Cairns et al. (2009) impose the set of constraints :

tn−x1∑
c=t1−xk

γc = 0,

tn−x1∑
c=t1−xk

cγc = 0,

tn−x1∑
c=t1−xk

c2γc = 0,

which ensure that the cohort effect fluctuates around zero and has no discernible linear or
quadratic trend. Following Haberman and Renshaw (2011, Appendix A), these constraints
can be imposed by applying transformation (11) with constants φ1, φ2 and φ3 obtained by
regressing γt−x on t− x and (t− x)2, so that

γt−x = φ1 + φ2(t− x) + φ3(t− x)2 + εt−x, εt−x ∼ N(0, σ2) i.i.d.

Cairns et al. (2009) also consider the simpler predictor structures

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x,

ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + (xc − x)γt−x,

where xc is a constant parameter to be estimated. These structures are typically referred to
as models M6 and M8, respectively.
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3.6. Plat model
Plat (2009) combines the CBD model with some features of the Lee-Carter model to

produce a model that is suitable for full age ranges and captures the cohort effect. The
proposed predictor structure assumes that there is a static age function, αx, three age-
period terms (N = 3) with pre-specified age-modulating parameters β

(1)
x = 1, β

(2)
x = x̄− x,

β
(3)
x = (x̄ − x)+ = max(0, x̄ − x), and a cohort effect with pre-specified age-modulating

parameters β
(0)
x = 1. Thus, the predictor is given by:

ηxt = αx + κ
(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x. (12)

Plat (2009) targets the force of mortality µxt with the log link and estimates the parameters
of the model by assuming a Poisson distribution of the deaths. The following parameter
transformations leave the predictor in (12) unchanged:(

αx, κ
(1)
t , κ

(2)
t , κ

(3)
t , γ̃t−x

)
→
(
αx + φ1 − φ2x+ φ3x

2, κ
(1)
t + φ2t+ φ3(t

2 − 2x̄t),

κ
(2)
t + 2φ3t, κ

(3)
t , γt−x − φ1 − φ2(t− x)− φ3(t− x)2

)
(13)(

αx, κ
(1)
t , κ

(2)
t , κ

(3)
t , γt−x

)
→
(
αx + c1 + c2(x̄− x) + c3(x̄− x)+,

κ
(1)
t − c1, κ

(2)
t − c2, κ

(3)
t − c3, γt−x

)
, (14)

where c1, c2, c3, φ1, φ2, and φ3 are any real constants. The following set of parameter
constraints can be imposed to ensure identifiability:∑

t

κ
(1)
t = 0,

∑
t

κ
(2)
t = 0,

∑
t

κ
(3)
t = 0,

tn−x1∑
c=t1−xk

γc = 0,

tn−x1∑
c=t1−xk

cγc = 0,

tn−x1∑
c=t1−xk

c2γc = 0 (15)

The first three constraints ensure that the period indexes are centred around zero, while the
last three constraints ensure that the cohort effect fluctuates around zero and has no linear
or quadratic trend. Following Haberman and Renshaw (2011, Appendix A), the constraints
on the cohort effect can be imposed by applying transformation (13) with constants φ1, φ2,
and φ3 obtained by regressing γt−x on t− x and (t− x)2, so that

γt−x = φ1 + φ2(t− x) + φ3(t− x)2 + εt−x, εt−x ∼ N(0, σ2) i.i.d. . (16)

The constraints on the period indexes can then be imposed by applying transformation (14)
with

ci =
1

n

∑
t

κ
(i)
t , i = 1, 2, 3. (17)

In the cases where only older ages are of interest, Plat (2009) suggests to drop the third
period term from predictor (12)5:

ηxt = αx + κ
(1)
t + (x̄− x)κ

(2)
t + γt−x. (18)

We note that this reduced Plat model has the same identifiability issues as the complete
model with the omission of the transformations and constraints involving κ

(3)
t and c3.

5Note that the reduced Plat model is essentially the M6 model of Cairns et al. (2009) with an added
static age term αx.
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4. GAPC stochastic mortality models with StMoMo

The StMoMo package provides an R implementation of the GAPC family of stochastic
mortality models using the standard S3 object-oriented system. StMoMo can be installed
with the code:

install.packages("StMoMo")

The package is loaded within R as follows:

library(StMoMo)

In package StMoMo, GAPC stochastic mortality models are constructed using the
StMoMo function. This function takes as input information on the link function (and the
associated distributional assumption), the predictor structure, and the set of parameter con-
straints to create an object of the type "StMoMo" representing a GAPC mortality model:

• The argument link defines the link function and the random component associated
with the mortality model. Setting link = "log" assumes that deaths follow a Poisson
distribution and uses a log link targeting the force of mortality µxt, while setting link

= "logit" assumes that deaths follow a Binomial distribution and uses a logit link
targeting one-year mortality rates qxt.

• The predictor of the model is defined via arguments staticAgeFun, periodAgeFun and
cohortAgeFun. Argument staticAgeFun is a logical variable indicating whether the
model has a static age function αx or not. Argument periodAgeFun is a list of length N

containing the definitions of the period age-modulating parameters β
(i)
x , i = 1, . . . , N ,

with each entry being either "NP" for non-parametric age terms, "1" for β
(i)
x = 1, or

a predefined parametric function of age6. Argument cohortAgeFun defines the cohort

age modulating parameter β
(0)
x and can take values "NP" for non-parametric age terms,

"1" for β
(0)
x = 1, a predefined parametric function of age, or NULL if the model does

not have a cohort effect.

• The set of parameter constraints are defined via the argument constFun which is a
user-defined implementation of the constraint function v mapping an arbitrary vector
of parameters to a vector of transformed parameters satisfying the model constraints.

We note that due to limitations of the R functions used for fitting "StMoMo" objects to data
(see Section 5), the current version StMoMo does not support models combining paramet-

ric and non-parametric age-modulating functions, β
(i)
x , 0 = 1, . . . , N . However, such model

are not typically considered and the majority of models proposed in the literature are either
extension of the Lee-Carter model with all age-modulating terms being non-parametric or

6Note that we can define a model with no age-period terms (N = 0) by making periodAgeFun = NULL.
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Table 1: Model structures considered in this paper.

Model Predictor

LC ηxt = αx + β
(1)
x κ

(1)
t

CBD ηxt = κ
(1)
t + (x− x̄)κ

(2)
t

APC ηxt = αx + κ
(1)
t + γt−x

RH ηxt = αx + β
(1)
x κ

(1)
t + γt−x

M7 ηxt = κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σ̂2

x)κ
(3)
t + γt−x

PLAT ηxt = αx + κ
(1)
t + (x̄− x)κ

(2)
t + γt−x

extension of the CBD model with all age-modulating terms being parametric.7

In order to illustrate the creation of particular GAPC mortality models and other ca-
pabilities of StMoMo, in the rest of this paper we will focus on the models summarised
in Table 1. From now onwards, LC stands for the Lee-Carter model; CBD for the origi-
nal Cairns-Blake-Dowd model; APC for the Age-Period-Cohort model of Currie (2006); RH
for the cohort extension of the Lee-Carter model defined in equation (7) and proposed by
Renshaw and Haberman (2006); M7 for the quadratic CBD model defined in equation (10);
and PLAT for the reduced Plat model defined previously in equation (18). For the sake of
comparability, in all cases we will assume a Binomial distribution of deaths and use the logit
function to link qxt to the predictor structure ηxt.

Below, we show how to define each of the models in Table 1 using the package StMoMo.

Lee-Carter model. The LC model under a Binomial setting can be defined using the
following code:

constLC <- function(ax, bx, kt, b0x, gc, wxt, ages){
c1 <- mean(kt[1, ], na.rm = TRUE)

c2 <- sum(bx[, 1], na.rm = TRUE)

list(ax = ax + c1 * bx, bx = bx / c2, kt = c2 * (kt - c1))

}
LC <- StMoMo(link = "logit", staticAgeFun = TRUE, periodAgeFun = "NP",

constFun = constLC)

7For instance, a model with predictor structure ηxt = αx + (x − x̄)κ
(1)
t + β

(2)
x κ

(1)
t , corresponding

to StMoMo(staticAgeFun = TRUE, periodAgeFun = c(f1, "NP")), with f1 <- function(x, ages) x -

mean(ages), is not supported.

12



Recalling Section 3.1, we note that the constraint function constLC is the R implementation
of transformation (2) with constants c1 and c2 calculated using Equation (4) to impose the
constraints defined in equation (3). The StMoMo package also contains the function lc to
facilitate the definition of Lee-Carter models. Hence, we could define the LC model using
the much simpler predefined command:

LC <- lc(link = "logit")

CBD model. To define the CBD model we use the following commands:

f2 <- function(x, ages) x - mean(ages)

CBD <- StMoMo(link = "logit", staticAgeFun = FALSE,

periodAgeFun = c("1", f2))

Here, we note that function f2 defines the second age-modulating parameter β
(2)
x = x − x̄

and that a constFUN argument needs not be provided since the CBD model does not have
identifiability issues. Alternatively, we can define the CBD model using the predefined
function cbd:

CBD <- cbd()

APC model, RH model and model M7. These three models could be defined by
implementing explicitly the discussions in Sections 3.2, 3.3 and 3.5. However, StMoMo
includes predefined functions apc, rh, m7 that facilitate the definition of the APC model, the
RH model and model M7, respectively8. Thus, these models are defined with the code:

RH <- rh(link = "logit", cohortAgeFun = "1")

APC <- apc(link = "logit")

M7 <- m7()

PLAT model. Package StMoMo does not include a predefined function for the Plat
model. Nevertheless, recalling Section 3.6, we can define the reduced Plat model using the
code:

f2 <- function(x, ages) mean(ages) - x

constPlat <- function(ax, bx, kt, b0x, gc, wxt, ages){
nYears <- dim(wxt)[2]

x <- ages

t <- 1:nYears

c <- (1 - tail(ages, 1)):(nYears - ages[1])

8The StMoMo package also includes functions m6 and m8 for defining models M6 and M8. We also note
that the Renshaw and Haberman (2006) cohort extension of the Lee-Carter in Equation (5) can be defined
using function rh with argument cohortAgeFun = "NP".
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xbar <- mean(x)

#\sum g(c)=0, \sum cg(c)=0, \sum c^2g(c)=0

phiReg <- lm(gc ~ 1 + c + I(c^2), na.action = na.omit)

phi <- coef(phiReg)

gc <- gc - phi[1] - phi[2] * c - phi[3] * c^2

kt[2, ] <- kt[2, ] + 2 * phi[3] * t

kt[1, ] <- kt[1, ] + phi[2] * t + phi[3] * (t^2 - 2 * xbar * t)

ax <- ax + phi[1] - phi[2] * x + phi[3] * x^2

#\sum kt[i, ] = 0

ci <- rowMeans(kt, na.rm = TRUE)

ax <- ax + ci[1] + ci[2] * (xbar - x)

kt[1, ] <- kt[1, ] - ci[1]

kt[2, ] <- kt[2, ] - ci[2]

list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc)

}
PLAT <- StMoMo(link = "logit", staticAgeFun = TRUE,

periodAgeFun = c("1", f2), cohortAgeFun = "1",

constFun = constPlat)

We note that the constraint function constPlat is the R implementation of transformations
(13) and (14) omitting the terms involving κ(3) and c3, and with constants φ1, φ2, φ3 ob-
tained via the linear regression defined in (16) and constant c1 and c2 as in Equation (17).
Function constPlat imposes the constraints in Equation (15).

5. Model fitting

Parameter estimates of GAPC stochastic mortality models can be obtained by maximis-
ing the model log-likelihood, which is given by

L(dxt, d̂xt) =
∑
x

∑
t

ωxt

{
dxt log d̂xt − d̂xt − log dxt!

}
in the case of a Poisson distribution of deaths, and by

L(dxt, d̂xt) =
∑
x

∑
t

ωxt

{
dxt log

(
d̂xt
E0
xt

)
+ (E0

xt − dxt) log

(
E0
xt − d̂xt
E0
xt

)
+

(
E0
xt

dxt

)}
in the case of a Binomial distribution of deaths. In both cases, ωxt are weights taking the
value 0 if a particular (x, t) data cell is omitted or 1 if the cell is included, and

d̂xt = Ext g
−1

(
αx +

N∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x

)
is the expected number of deaths predicted by the model, with g−1 denoting the inverse of
the link function g.
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In the mortality literature, maximisation of the log-likelihood is typically performed us-
ing the Newton-Raphson iterative procedure tailored for each model (see e.g. Brouhns et al.
(2002), Renshaw and Haberman (2006) and Cairns et al. (2009)). This is in fact the approach
implemented in the packages ilc and LifeMetrics. Nonetheless, as discussed extensively by
Currie (2014), many stochastic mortality models are examples of generalised linear models
or generalised non-linear model, which facilitates their fitting using standard statistical soft-
ware9. Currie (2014) exemplifies this fact by fitting several stochastic mortality models in R
using the standard function glm or the function gnm of the package gnm (Turner and Firth,
2012)10.

StMoMo provides the generic function fit for estimating the parameters of GAPC
mortality models. In line with the remarks of Currie (2014), the corresponding S3 method
for objects of the class "StMoMo" relies on function gnm of the package gnm to estimate
the parameters of a GAPC model11. Internally, this is accomplished by constructing the
equivalent gnm formulation of the GAPC mortality model12 . For instance, the gnm formula
of the Binomial LC model created before is

LC$gnmFormula

## [1] "D/E ~ -1 + offset(o) + factor(x) + Mult(factor(x), factor(t),

inst = 1)"

while the gnm formula of the Binomial CBD model defined before is

CBD$gnmFormula

## [1] "D/E ~ -1 + offset(o) + factor(t) + B2:factor(t)"

We now illustrate the usage of the function fit of the package StMoMo by fitting the
six models defined before to England and Wales mortality data. The object EWMaleData

included in the package StMoMo contains data on deaths and central exposures for Eng-
land and Wales males for the period 1961-2011 and for ages 0-100 obtained from the Human
Mortality Database (2014). However, in our examples we concentrate on ages 55 to 89 as
the CBD model and the M7 model have been particularly designed to fit higher ages. Addi-
tionally, since some models include cohort effects and in agreement with the usual practice
(see e.g Cairns et al. (2009) and Haberman and Renshaw (2011)), we exclude (by setting
ωxt = 0) all cohorts that have fewer than three observations.

9Haberman and Renshaw (2011) have also noticed this fact and profit from GLM facilities in standard
statistical packages when fitting CBD type models.

10Debón et al. (2010) also discuss the use of the package gnm for fitting Lee-Carter type models.
11The current version of StMoMo only includes the S3 method fit.StMoMo for objects of class "StMoMo",

but future versions may provide tailored fit methods for particular stochastic mortality models.
12We note that when all the β

(i)
x are parametric functions of age, the model is a GLM and therefore gnm

by default resorts to the glm function of R when fitting the parameter of the model.
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Models LC, APC, CBD, M7 and PLAT can be fitted to England and Wales male mortality
data for ages 55 to 89 using the code:

Dxt <- EWMaleData$Dxt

Ext <- EWMaleData$Ext + 0.5 * EWMaleData$Dxt

ages <- EWMaleData$ages

years <- EWMaleData$years

ages.fit <- 55:89

wxt <- genWeightMat(ages = ages.fit, years = years, clip = 3)

LCfit <- fit(LC, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

APCfit <- fit(APC, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

CBDfit <- fit(CBD, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

M7fit <- fit(M7, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

PLATfit <- fit(PLAT, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt)

From this code we note the following:

• In order to match the logit-Binomial setting used before in the definition of the mor-
tality models, initial exposures are approximated by transforming the available central
exposures.

• The first and last three cohorts years are excluded from the fitting via argument wxt.
The appropriate 0-1 weighting matrix, wxt, is constructed using the utility function
genWeightMat of package StMoMo.

The fitting of the RH model requires some care as it is well known that fitting cohort
extensions of the Lee-Carter models is problematic (Hunt and Villegas, 2015). In particular,
Currie (2014) has encountered convergence issues when using package gnm to fit the RH
model. As a possible way to circumvent these issues, Currie (2014) suggests the use of
appropriate starting values when fitting model RH. This can be achieved in function fit

via input arguments start.ax, start.bx, start.kt, start.b0x, and start.gc. Using the
parameters of the Lee-Carter model as starting values, model RH can be fitted with the
code:

RHfit <- fit(RH, Dxt = Dxt, Ext = Ext, ages = ages, years = years,

ages.fit = ages.fit, wxt = wxt, start.ax = LCfit$ax,

start.bx = LCfit$bx, start.kt = LCfit$kt)

The output from the function fit is an object of the class "fitStMoMo" including, among
other things, the following information:

• model: the "StMoMo" object defining the underlying GAPC stochastic mortality model;
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Figure 1: Parameters for the Lee-Carter (LC) model fitted to the England and Wales male population for
ages 55-89 and the period 1961-2011.

• ax, bx, kt, b0x, gc: the estimated parameters;

• loglik: the log-likelihood of the model;

• deviance: the model deviance;

• nobs: the number of observations in the data;

• npar: the effective number of parameters of the model;

• fittingModel: the output of the gnm call used to fit the model.

There are print, plot, fitted, and residuals methods for the "fitStMoMo" class. For
instance, Figures 1, 2 and 3 depicting the fitted parameters of the LC model, the CBD model
and the APC model, respectively, were produced with the code:

plot(LCfit, nCol = 3)

plot(CBDfit, parametricbx = FALSE)

plot(APCfit, parametricbx = FALSE, nCol = 3)

6. Goodness-of-fit analysis

The goodness-of-fit of mortality models is typically analysed by inspecting the residuals
of the fitted model. Regular patterns in the residuals indicate the inability of the model
to describe all the features of the data appropriately. With a Poisson or Binomial random
component, it is appropriate to look at the scaled deviance residuals defined as:

rxt = sign(dxt − d̂xt)

√
dev(x, t)

φ̂
, φ̂ =

D(dxt, d̂xt)

K − ν
,
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Figure 2: Parameters for the CBD model fitted to the England and Wales male population for ages 55-89
and the period 1961-2011.
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Figure 3: Parameters for the APC model fitted to the England and Wales male population for ages 55-89
and the period 1961-2011.

where

dev(x, t) = 2dxt log

(
dxt

d̂xt

)
− (dxt − d̂xt)

for a Poisson random component, or

dev(x, t) = 2dxt log

(
dxt

d̂xt

)
+ (E0

xt − dxt) log

(
E0
xt − dxt

E0
xt − d̂xt

)
for a Binomial random component. Further,

D(dxt, d̂xt) =
∑
x

∑
t

ωxtdev(x, t)

is the total deviance of the model, K =
∑

x

∑
t ωxt is the number of observations in the data

and ν is the effective number of parameters in the model.
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In StMoMo standardised deviance residuals can be obtained with the generic function
residuals applied to a fitted stochastic mortality model of the class "fitStMomo". For
example, to obtain the residuals of the LC model and of the CBD model fitted before we
use the commands:

LCres <- residuals(LCfit)

CBDres <- residuals(CBDfit)

Graphs of these residuals can be produced using the generic function plot. This function
supports, via argument type, three types of plots:

• scatter plots of residuals by age, period and cohort such as those extensively used in
Haberman and Renshaw (2011);

• black and white sign-plots of the residuals such as those used in Cairns et al. (2009)
and Lovász (2011); and

• colour maps (heat-maps) of the residuals.

Figure 4 presents heat-maps of the deviance residuals for the six models fitted to the
England and Wales male mortality experience. These charts were produced using function
plot with option type = "colourmap". For instance, Figure 4b was obtained with the code:

plot(CBDres, type = "colourmap", reslim = c(-3.5, 3.5))

From Figure 4 we see that models LC, CBD and APC display strong residual patterns while
the residuals of models RH, M7 and PLAT look reasonably random. The APC model shows
a strong clustering of residuals due to its inability to allow for varying improvement rates
with age. The LC and CBD models, which do not incorporate a cohort effect, show very
marked diagonals patterns indicating the inability of these models to capture the well-known
cohort effect observed in the England and Wales population (Willets, 2004). The issues with
the fit of the LC and CBD models become more evident when looking at scatter plots of the
residuals by age, period and cohort. Such plots for the LC model (Figure 5a) and the CBD
model (Figure 5b) can be produced using argument type = "scatter" of function plot via
the commands:

plot(LCres, type = "scatter", reslim = c(-3.5, 3.5))

plot(CBDres, type = "scatter", reslim = c(-3.5, 3.5))

The right panels in Figure 5 clearly show that the LC and CBD models are unable to capture
the cohort effect. In addition, the left panel in Figure 5b reveals some strong patterns by
age, reflecting the the lack of a quadratic age term in the CBD which may be necessary to
capture the commonly observed curvature of the mortality rates in a logit scale.

When evaluating the goodness-of-fit of different models, it is generally anticipated that
models with more parameters provide a better fit to the data. To rule out the possibility
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Figure 4: Heat-maps of deviance residuals for different model fitted to the England and Wales males popu-
lation for ages 55-89 and the period 1961-2011.
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Figure 5: Scatter plots of deviance residuals for models LC and CBD fitted to the England and Wales males
population for ages 55-89 and the period 1961-2011.

that the better fit observed in a model is the result of over-parametrisation and compare the
relative performance of several models, it has become common in the mortality literature to
use information criteria which modify the maximum likelihood criterion by penalising models
with more parameters13. Two of these criteria are the Akaike Information Criteria (AIC) and
the Bayesian Information Criteria (BIC), defined as AIC = 2ν−2L and BIC = ν logK−2L,
respectively, with a lower value of AIC and BIC being preferable. In R these information
criteria can be computed using the generic functions AIC and BIC. For example, we can get
the AIC and BIC of the CBD model as follows:

AIC(CBDfit)

## [1] 34697.82

BIC(CBDfit)

## [1] 35256.83

13For examples of such analysis see Cairns et al. (2009, Section 6.1.1), Haberman and Renshaw (2011,
Section 3.3), and Lovász (2011, Section 4.1).
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LC CBD APC RH M7 PLAT
Number of Parameters 119 102 162 197 229 211
AIC 29866 34698 24469 21779 21406 21624
BIC 30518 35257 25357 22859 22661 22780

Table 2: Number of parameters, AIC and BIC values for different model fitted to the England and Wales
males population for ages 55-89 and the period 1961-2011

Table 2 presents AIC and BIC values for the six models fitted to the England and Wales male
data. We note that both criteria lead to the same ranking of models with M7, PLAT, and
RH being the best performing models. Overall, these results are consistent with the existing
literature comparing single population models, where the Renshaw-Haberman extension of
the Lee-Carter model and the M7 model have been identified as good candidates for modelling
mortality in the England and Wales population (Cairns et al., 2009; Haberman and Renshaw,
2011).

7. Forecasting and simulation with stochastic mortality models

In the family of GAPC stochastic mortality models the dynamics of mortality are driven
by the period indexes κ

(i)
t , i = 1, . . . , N , and the cohort index γt−x. Therefore, the forecasting

and simulation of mortality rates requires the modelling of these indexes using time series
techniques.

For the period indexes we follow the standard approach (Cairns et al., 2006, 2011; Haber-
man and Renshaw, 2011; Lovász, 2011) and use a multivariate random walk with drift.
Specifically, we assume that

κt = δ + κt−1 + ξκt , κt =

 κ
(1)
t
...

κ
(N)
t

 , ξκt ∼ N(0,Σ), (19)

where δ is an N -dimension vector of drift parameters and Σ is the N×N variance-covariance
matrix of the multivariate white noise ξκt .

As pointed out by Currie (2014), the main challenge when forecasting stochastic mortality
models is specifying the dynamics of the cohort effect. To have a simple starting point, we
follow previous studies (Renshaw and Haberman, 2006; Cairns et al., 2011; Lovász, 2011) and
assume that the cohort index, γt−x, follows a univariate ARIMA process which is independent
of the the period index, κt. In general, we assume that γc ≡ γt−x follows an ARIMA(p, q, d)
with drift, so that

∆dγc = δ0 + φ1∆
dγc−1 + · · ·+ φp∆

dγc−p + εc + δ1εc−1 + · · ·+ δqεc−q, (20)

where ∆ is the difference operator, δ0 is the drift parameter, φ1, . . . , φp are the autoregressive
coefficients with φp 6= 0, δ1, . . . , δq are the moving average coefficients with δq 6= 0 and εc is

22



Table 3: ARIMA Models for the cohort effect for models APC, RH, M7 and PLAT.

Mortality Model Model for γt−x

APC ARIMA(1, 1, 0) with drift

RH ARIMA(1, 1, 0) with drift

M7 ARIMA(2, 0, 0) with non-zero intercept

PLAT ARIMA(2, 0, 0) with non-zero intercept

a Gaussian white noise process with variance σε.

The time series models in (19) and (20) can be used to obtain projected (simulated) values

of the period index κ̇tn+s :=
(
κ̇
(1)
tn+s, . . . , κ̇

(N)
tn+s

)′
and cohort index γ̇tn+s−x1 , s = 1, . . . , h,

respectively, to derive forecasted (simulated) values of the predictor

η̇x,tn+s = αx +
N∑
i=1

β(i)
x κ̇

(i)
tn+s + β(0)

x γ̇tn+s−x,

which can in turn be used to obtain forecasted (simulated) age-specific central mortality
rates, µ̇x,tn+s or age-specific one-year mortality rates, q̇x,tn+s.

In the package StMoMo the forecasting of GAPC stochastic mortality models is imple-
mented via the generic method forecast. This function estimates and forecasts the multi-
variate random walk with drift in Equation (19) using the approach described in Haberman
and Renshaw (2011, Appendix B)14 and uses function Arima of package forecast (Hyndman
and Khandakar, 2008) to estimate and forecast the ARIMA process of Equation (20). For
instance, if we assume that the cohort indexes of the APC, RH, M7, and PLAT model follow
the ARIMA processes specified in Table 3, 50-year ahead (h = 50) central projections of the
period indexes, cohort index, and one-year death probabilities for the England and Wales
mortality experience can be obtain with the code:

LCfor <- forecast(LCfit, h = 50)

CBDfor <- forecast(CBDfit, h = 50)

APCfor <- forecast(APCfit, h = 50, gc.order = c(1, 1, 0))

RHfor <- forecast(RHfit, h = 50, gc.order = c(1, 1, 0))

M7for <- forecast(M7fit, h = 50, gc.order = c(2, 0, 0))

PLATfor <- forecast(PLATfit, h = 50, gc.order = c(2, 0, 0))

The output from the function forecast is an object of the class "forStMoMo" including,
among other things, the following information:

14This is implemented in function mrwd of the package StMoMo.
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• rates: a matrix with the central projection of the mortality rates, µ̇x,tn+s or q̇x,tn+s,
s = 1, . . . , h;

• kt.f: a list containing information on the multivariate random walk with drift fitted
to the period index κt; and

• gc.f: a list containing information on the ARIMA model fitted to the cohort index
γt−x.

There are print and plot methods for the "forStMoMo" class. For instance, plots of the
forecast of the period indexes of models RH, M7 and PLAT (see Figure 6) can be produced
using the code:

plot(RHfor, only.kt = TRUE)

plot(M7for, only.kt = TRUE, nCol = 3)

plot(PLATfor, only.kt = TRUE)

Similarly, plots of the forecast of the cohort indexes of the APC, RH, M7 and PLAT models
(see Figure 7) can be obtained with the commands:

plot(APCfor, only.gc = TRUE)

plot(RHfor, only.gc = TRUE)

plot(M7for, only.gc = TRUE)

plot(PLATfor, only.gc = TRUE)

Package StMoMo also provides the function simulate for simulating trajectories from
GAPC stochastic mortality models. To simulate the period index, κt, StMoMo implements
a multivariate adaptation of Algorithm 2 in Haberman and Renshaw (2009) without provision
for parameter error15, while to simulate the cohort index, γt−x, function simulate uses the
equivalent S3 method for objects of class "Arima" provided by the package forecast. For
example, the code below produces 500 simulated trajectories for the next 50 years of the
six stochastic mortality models fitted previously to the England and Wales male mortality
experience:

set.seed(1234)

nsim <- 500

LCsim <- simulate(LCfit, nsim = nsim, h = 50)

CBDsim <- simulate(CBDfit, nsim = nsim, h = 50)

APCsim <- simulate(APCfit, nsim = nsim, h = 50, gc.order= c(1, 1, 0))

RHsim <- simulate(RHfit, nsim = nsim, h = 50, gc.order= c(1, 1, 0))

M7sim <- simulate(M7fit, nsim = nsim, h = 50, gc.order= c(2, 0, 0))

PLATsim <- simulate(PLATfit, nsim = nsim, h = 50, gc.order= c(2, 0, 0))

15We note that Algorithm 2 in Haberman and Renshaw (2009) is itself an adaptation of the prediction
interval approach of Cairns et al. (2006).
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Figure 6: Forecast of the period indexes of the RH, M7 and PLAT models applied to the England and Wales males population for ages 55-89 and the
period 1961-2011. Dashed lines represent central forecast and dotted lines represent 95% prediction intervals.
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Figure 7: Forecast of the cohort indexes of the APC, RH, M7 and PLAT models applied to the England and
Wales males population for ages 55-89 and the period 1961-2011. Dashed lines represent central forecast and
dotted lines represent 95% prediction intervals.

The output from the function simulate is an object of the class "simStMoMo" including,
among other things, the following information:

• rates: a three dimensional array with the future simulated mortality rates;

• kt.s: a list containing information on the simulated paths of the period index κt; and

• gc.s: a list containing information on the simulated paths of the cohort index γt−x.

This output can be used to extract sample trajectories from a model. For instance, Figure
8, which depicts 20 trajectories of the period index, cohort index and one-year death rates
at age 65 from model RH, was produced with the code:

#Plot period index

par(mfrow = c(1, 3))

plot(RHfit$years, RHfit$kt[1, ],

xlim = range(RHfit$years, RHsim$kt.s$years),
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Figure 8: 20 simulated trajectories of the period index κ
(1)
t , cohort index γt−x and one-year death rates at

age 65 qxt for model RH fitted to the England and Wales males population for ages 55-89 and the period
1961-2011.

ylim = range(RHfit$kt, RHsim$kt.s$sim[1, , 1:20]),

type = "l", xlab = "year", ylab = "kt", main = "Period index")

matlines(RHsim$kt.s$years, RHsim$kt.s$sim[1, , 1:20], type = "l", lty = 1)

#Plot cohort index

plot(RHfit$cohorts, RHfit$gc,

xlim = range(RHfit$cohorts, RHsim$gc.s$cohorts),

ylim = range(RHfit$gc, RHsim$gc.s$sim[, 1:20], na.rm = TRUE),

type = "l", xlab = "year", ylab = "kt",

main = "Cohort index (ARIMA(1,1,0) with drift)")

matlines(RHsim$gc.s$cohorts, RHsim$gc.s$sim[, 1:20], type = "l", lty = 1)

#Plot rates at age 65

qxt <- Dxt / Ext

plot(RHfit$years, qxt["65", ], xlim = range(RHfit$years, RHsim$years),

ylim = range(qxt["65", ], RHsim$rates["65", , 1:20]), type = "l",

xlab = "year", ylab = "rate", main = "Mortality rates at age 65")

matlines(RHsim$years, RHsim$rates["65", , 1:20], type = "l", lty = 1)

We can also use the output from function simulate to produce fan charts depicting the
uncertainty associated with a model forecast. According to Cairns et al. (2011), such plots
are central to the analysis of the plausibility of the forecast from a model, and can be used
as a criterion when deciding upon what is the most appropriate model amongst a group of
possible stochastic mortality models. Figure 9 shows fan charts depicting 50%, 80% and
95% prediction intervals for mortality rates at ages 65, 75 and 85 for each of the six models
fitted to the England and Wales experience. Figure 9b, for instance, was produced with the
code:

library(fanplot)

probs = c(2.5, 10, 25, 50, 75, 90, 97.5)

qxt <- Dxt / Ext
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#age 65

plot(CBDfit$years, qxt["65", ], xlim = c(1960, 2061), ylim = c(0.0025, 0.2),

xlab = "year", ylab = "mortality rate (log scale)",

pch = 20, log = "y")

fan(t(CBDsim$rates["65", , ]), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("black", "white")), ln = NULL)

#age 75

points(CBDfit$years, qxt["75", ], pch = 20)

fan(t(CBDsim$rates["75", , ]), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("red", "white")), ln = NULL)

#age 75

points(CBDfit$years, qxt["85", ], pch = 20)

fan(t(CBDsim$rates["85", , ]), start = 2012, probs = probs, n.fan = 4,

fan.col = colorRampPalette(c("blue", "white")), ln = NULL)

#labels

text(1965, qxt[c("65", "75", "85"), "1990"],

labels = c("x = 65", "x = 75", "x = 85"))

From Figure 9 we note the following:

• Whilst for models CBD, RH, M7 and PLAT the fans at age 85 are wider than at age
65 in accordance with historical evidence (see Cairns et al. (2011, Appendix B)), for
models LC and APC the fans at age 85 are narrower than at age 65. This suggest
that forecasts from models LC and APC are not plausible for the dataset used in this
paper.

• Forecasts for the PLAT model show an implausible increase of mortality rates. This
is because the central trend is linked to the estimated cohort effect γt−x for the PLAT
model (see Figure 7d) which shows a steep upward trend between 1935 and 1955.

• The central trend and uncertainty levels produced by the each of the models have
noticeably differences. This highlights the importance of recognising model risk as a
significant issue when modelling mortality (Cairns et al., 2011).

8. Parameter uncertainty and bootstrapping

When analysing the uncertainty in mortality projections in an actuarial context it is im-
portant to consider all sources of risk. However, the prediction intervals (fan charts) obtained
in the previous section only account for the uncertainty arising from the error in the forecast
of the period and cohort indexes and ignore the uncertainty arising from the estimation of
the parameters of the GAPC model.

Due to the analytical intractability of many stochastic mortality models, parameter un-
certainty is typically accounted for using the bootstrap procedure. This procedure yields
B samples αbx, β

(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γbt−x, b = 1, . . . , B, of the parameters
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Figure 9: Fan charts for mortality rates qxt at ages x = 65 (bottom fan), x = 75 (middle fan) and x = 85
(top fan) from the six models fitted to the England and Wales males population for ages 55-89 and the period
1961-2011. The dots show historical mortality rates for 1961-2011. Shades in the fan represent prediction
intervals at the 50%, 80% and 95% level.

of the GAPC model which can then be used to produce confidence and prediction intervals
of demographic and actuarial quantities. To sample the parameters of GAPC models we
consider the semiparametric bootstrap proposed by Brouhns et al. (2005) and the residual
bootstrap first considered in Koissi et al. (2006):

• Semiparametric bootstrap. Brouhns et al. (2005) propose a semiparametric boot-
strap where first B samples of the number of deaths dbxt, b = 1, . . . , B, are generated by
sampling from the Poisson Distribution with mean dxt. Each bootstrapped sample dbxt,
b = 1, . . . , B, is then used to re-estimate the model to obtain B bootstrapped parameter
estimates αbx, β

(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γbt−x, b = 1, . . . , B. Renshaw and

Haberman (2008) use the fitted number of death d̂xt (instead of the observed deaths
dxt) to perform the sampling from the Poisson distribution. Wang and Lu (2005)
consider a similar semiparametric approach using a Binomial distribution of deaths.

• Residual bootstrap. Another possibility is to bootstrap the residuals of the model
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as suggested by Koissi et al. (2006). Under this approach the deviance residuals rxt
are resampled with replacement to generate B replications rbxt, b = 1, . . . , B, which
are mapped to the corresponding resampled death counts dbxt, b = 1, . . . , B, using the
inverse formula. The model is then re-fitted using these resampled number of deaths to
produceB sets of estimated parameters αbx, β

(1),b
x , . . . , β

(N),b
x , κ

(1),b
t , . . . , κ

(N),b
t , β

(0),b
x , γbt−x,

b = 1, . . . , B. We refer to Koissi et al. (2006) and Renshaw and Haberman (2008) for
details on the inverse formula under a Poisson distribution of deaths and to Debón
et al. (2010) for the inverse formula under a Binomial framework. Finally, we note
that in implementing the residual bootstrap we follow Renshaw and Haberman (2008)
and apply the inverse formula to produce samples of the observed number of deaths
rather than samples of the fitted number of deaths as originally done by Koissi et al.
(2006).

In what follows we illustrate the assessment of the parameter uncertainty using the pack-
age StMoMo. In doing so we deviate from the England and Wales example we have used so
far and use instead New Zealand mortality data. This new example follows closely the work
of Li (2014) who uses New Zealand mortality data to compare several simulation strategies
for assessing the risk in mortality projections with a Poisson Lee-Carter model. The main
rationale for the change of dataset is that parameter uncertainty is particularly important
when analysing the mortality of smaller populations such as smaller countries or pension
plans16. This new example also serves as a means for illustrating the use of the StMoMo
package with other datasets.

Mortality data for New Zealand can be extracted from the Human Mortality Database
(2014) using function hmd.mx of the demography package with the code:

library(demography)

NZdata <- hmd.mx(country = "NZL_NP", username = username,

password = password)

We note that the username and password above are for the Human Mortality Database and
should be replaced appropriately. Following Li (2014), we fit a Poisson Lee-Carter model to
New Zealand male data for ages 0 to 89 and for the period 1985 to 2008. This can be carried
out with the commands:

Ext_NZ <- NZdata$pop$male

Dxt_NZ <- NZdata$rate$male * Ext_NZ

LCfit_NZ <- fit(lc(), Dxt = Dxt_NZ, Ext = Ext_NZ, ages = NZdata$age,

years = NZdata$year, ages.fit = 0:89, years.fit = 1985:2008)

16While the population of England and Wales in 2008 was 54.8 million, the population of New Zealand in
2008 was 4.3 million.
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Figure 10: Bootstrapped parameters for the Poisson Lee-Carter model fitted to the New Zealand male
population for ages 0-89 and the period 1985-2008. Shades in the fan represent confidence intervals at the
50%, 80% and 95% level.

In the StMoMo package the bootstrap of GAPC stochastic mortality models is imple-
mented with the generic function bootstrap. This functions supports both the semipara-
metric bootstrap and the residual bootstrap. For instance, 5000 semiparametric bootstrap
samples of the Lee-Carter model can be obtained with the code17:

LCboot_NZ <- bootstrap(LCfit_NZ, nBoot = 5000, type = "semiparametric")

The output from function bootstrap is an object of the class "bootStMoMo" in which the
component bootParameters contains the nBoot replications of the bootstrap parameters.
A fan chart depicting the 50%, 80% and 95% confidence intervals of the bootstrapped Lee-
Carter model (Figure 10) can be obtained with the command:

plot(LCboot_NZ)

From Figure 10 we note that whilst the parameter uncertainty in the static age function αx
and the period index κ

(1)
t is modest, the uncertainty in the age-modulating parameters β

(1)
x

is more significant.

Once a stochastic mortality model has been bootstrapped we can simulate it forward to
obtain simulated trajectories which account for both the forecast error in the period and
cohort indexes and the error in the model fitting. In StMoMo we can accomplish this using
the function simulate applied to an object of class "bootStMoMo". Thus, to obtain 5000
simulated trajectories of the Lee-Carter model for the next 24 years taking into account
parameter uncertainty we use the instruction:

17We note that the bootstrap is a computer intensive procedure. In particular, the 5000 semiparametric
bootstrap samples of the Lee-Carter model took about two hours to run in a computer with an Intel Core
i5-3320m processor running at 2.60 GHz under Windows 7 Home Premium Edition (64 bits) with 8 GB of
RAM.
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LCsimPU_NZ <- simulate(LCboot_NZ, h = 24)

To highlight the impact of parameter risk on mortality rate projections it is instructive to
compare prediction intervals with and without the allowance of parameter uncertainty. 24-
year ahead central forecast together with 5000 trajectories of the Lee-Carter model allowing
only for forecast error in the random walk with drift and ignoring the model fitting error
can be obtained with the code:

LCfor_NZ <- forecast(LCfit_NZ, h = 24)

LCsim_NZ <- simulate(LCfit_NZ, nsim = 5000, h = 24)

Figure 11 depicts 95% prediction intervals for mortality rates at age 40, 60 and 80 with
and without allowance for parameter uncertainty. This graph was produced with the code:

#Observed, fitted and central forecasts

mxt <- LCfit_NZ$Dxt / LCfit_NZ$Ext

mxtHat <- fitted(LCfit_NZ, type = "rates")

mxtCentral <- LCfor_NZ$rates

#95% Prediction intervals without parameter uncertainty

mxtPred2.5 <- apply(LCsim_NZ$rates, c(1, 2), quantile, probs = 0.025)

mxtPred97.5 <- apply(LCsim_NZ$rates, c(1, 2), quantile, probs = 0.975)

#95% intervals with parameter uncertainty (in sample, and predictions)

mxtHatPU2.5 <- apply(LCsimPU_NZ$fitted, c(1, 2), quantile, probs = 0.025)

mxtHatPU97.5 <- apply(LCsimPU_NZ$fitted, c(1, 2), quantile, probs = 0.975)

mxtPredPU2.5 <- apply(LCsimPU_NZ$rates, c(1, 2), quantile, probs = 0.025)

mxtPredPU97.5 <- apply(LCsimPU_NZ$rates, c(1, 2), quantile, probs = 0.975)

#Plot

x <- c("40", "60", "80")

matplot(LCfit_NZ$years, t(mxt[x, ]),

xlim = range(LCfit_NZ$years, LCfor_NZ$years),

ylim = range(mxtHatPU97.5[x, ], mxtPredPU2.5[x, ], mxt[x, ]),

type = "p", xlab = "years", ylab = "mortality rates (log scale)",

log = "y", pch = 20, col = "black")

matlines(LCfit_NZ$years, t(mxtHat[x, ]), lty = 1, col = "black")

matlines(LCfit_NZ$years, t(mxtHatPU2.5[x, ]), lty = 5, col = "red")

matlines(LCfit_NZ$years, t(mxtHatPU97.5[x, ]), lty = 5, col = "red")

matlines(LCfor_NZ$years, t(mxtCentral[x, ]), lty = 4, col = "black")

matlines(LCsim_NZ$years, t(mxtPred2.5[x, ]), lty = 3, col = "black")

matlines(LCsim_NZ$years, t(mxtPred97.5[x, ]), lty = 3, col = "black")

matlines(LCsimPU_NZ$years, t(mxtPredPU2.5[x, ]), lty = 5, col = "red")

matlines(LCsimPU_NZ$years, t(mxtPredPU97.5[x, ]), lty = 5, col = "red")

text(1986, mxtHatPU2.5[x, "1995"], labels = c("x=40", "x=60", "x=80"))
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Figure 11: 95% Prediction intervals for mortality rates qxt at ages x = 40 (bottom lines), x = 60 (middle
lines) and x = 80 (top lines) for the Poisson Lee-Carter model fitted to the New Zealand male population for
ages 0-89 and the period 1985-2008. Dots show historical mortality rates for 1985-2008 and solid black lines
show the corresponding fitted rates. Dashed lines represent central forecast, black dotted lines represent
95% prediction intervals excluding parameter uncertainty and dot-dashed red lines depict 95% confidence
and prediction intervals including parameter uncertainty.

In Figure 11 we can clearly see that parameter uncertainty has an important impact on the
prediction intervals. This is particularly notable at age 40 where in year 2030, for instance,
the width of the prediction interval with parameter uncertainty is around 3 times bigger
than that without parameter uncertainty. These results are in line with the results obtained
by Li (2014) using the same dataset.18

9. Conclusion

In this paper we have introduced the family of Generalised Age-Period-Cohort stochastic
mortality models by paralleling the standard framework of generalised linear models. In
addition, we have presented the R package StMoMo which takes advantage of the unifying
framework of the GAPC family to provide tools for fitting a diverse number of stochastic
mortality models, assessing their goodness of fit and also performing mortality projections.
A key feature of the GAPC family and of StMoMo is that they not only encompass models
from the Lee-Carter and CBD families, but can also accommodate possible new models.
Furthermore, model risk is a prevalent issue when forecasting mortality and we therefore
believe that the possibility of easily implementing and comparing a wide range of models
makes StMoMo a valuable addition to the toolkit for measuring and managing longevity
risk.

18We note that our prediction intervals without and with parameter uncertainty correspond to methods
(I) and (IVa) in Li (2014), respectively.
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Our package can be expanded in several directions. The current version of StMoMo
only allows the use of a log link with a Poisson distribution of deaths or a logit link with a
Binomial distribution of deaths. However, we plan to expand the possible combinations of
error distribution and link function to include, for instance, Binomial errors with a comple-
mentary log-log link as suggested by Currie (2014).

In agreement with the standard in the literature, the StMoMo package assumes a mul-
tivariate random walk with drift for the dynamics of the period index κt. Nevertheless, the
package could be expanded to accommodate more general time series models which might be
more appropriate for some datasets or some models. For instance, Renshaw and Haberman
(2006) use an ARIMA(2, 1, 0) for κ

(1)
t when forecasting mortality for England and Wales

males with the Lee-Carter model with cohorts, while Plat (2009) uses general univariate

ARIMA(p, d, q) for each κ
(i)
t , i = 1, . . . , N , fitted using seemingly unrelated regressions to

allow for correlations between the different period indexes.

In the GAPC family it is assumed that the age-modulating terms β
(i)
x , i = 0, . . . , N , are

either non-parametric functions of age which need to be estimated or parametric functions
of age with a pre-specified functional form f (i)(x). This latter case could be extended to
include the more general case of a pre-specified functional form with a set of parameters that
need to be estimated, that is, β

(i)
x = f (i)(x; θi) with θi being some model parameters. This

generalisation would allow the implementation of the family of models considered in Hunt
and Blake (2014).

Finally, the increasing attention that multiple population mortality models are receiving
in the mortality forecasting literature provides an avenue for a wealth of extensions of our
package. In particular, we are considering the development of a two-population version of
StMoMo that implements the class of relative two-population models considered in Villegas
et al. (2015).
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