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Introduction 
 
 
On behalf of the joint Longevity Basis Risk Working Group (LBRWG) established by the Life and 
Longevity Markets Association (LLMA) and the Institute and Faculty of Actuaries (IFoA), I am 
delighted to introduce the results of this research project.   

This technical report details the methodology developed on behalf of the LBRWG to assess longevity 
basis risk.  A user-guide which provides a high level summary of this report has also been produced.  
Together these documents form the key outputs of the first phase of a longevity basis risk project 
commissioned and funded by the IFoA and the LLMA, and undertaken on our behalf by Cass 
Business School and Hymans Robertson LLP. 

 

The importance of longevity basis risk 

Longevity basis risk arises because different populations, or subpopulations, will inevitably experience 
different longevity outcomes.  This is a significant issue for those wishing to hedge longevity risk using 
a published mortality index – whether they be pension schemes, insurers, reinsurers or banks.  To put 
it simply, actual longevity outcomes, and therefore cashflows, of the hedged portfolio will differ from 
those under the hedging instrument. 

In addition, longevity basis risk can also present a wider issue for insurers using, in their reserving 
models, external data, such as population data, rather than their own policy data.  The need to 
quantify and reserve for any potential basis risk is receiving increasing focus, particularly under 
Solvency II. 

 

Demographic aspects of longevity basis risk 

There are several aspects of longevity basis risk.  This research focuses on the impact of 
demographic and socio-economic differences between the portfolio and the index population, which 
can lead to different initial rates and trends in mortality. To date, there has been no well-established 
methodology for assessing these demographic aspects of longevity basis risk. 

 

Historical differences demonstrate the need to assess basis risk 

A review of existing literature and analysis of  pension scheme data have provided evidence that 
historic mortality improvement rates have varied by socio-economic class and deprivation.  These 
variations have been significant and sometimes as large as the variation by gender.  This 
demonstrates the significance of demographic basis risk and confirms the need to model longevity 
basis risk. 

 

 

 



The need for a two-population model 

To be able to assess demographic basis risk, the required model needs to able to capture the 
mortality trends in both the reference population backing the hedging instrument and in the population 
of the portfolio being hedged.  Given this model, the assessment of other aspects of basis risk, such 
as sampling risk and structuring risk, becomes (in theory, at least) more straightforward. 

 

Delivering a framework to assess longevity basis risk 

I am delighted that the research has delivered a framework for assessing longevity basis risk.  This 
recognises the fact that different users, with different portfolios, will have different constraints on the 
models they can use in practice.  The research has identified specific models and techniques for 
different situations, which we believe will provide a good starting point for assessing basis risk. 

We are delighted to be able to present this research and hope it will prove of value to practitioners 
and enable an important step change in the ability to assess longevity basis risk. 

 

Pretty Sagoo 

Chair of the LLMA and IFoA Joint Longevity Basis Risk Working Group 
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Scope, reliances and limitations 

This report has been produced by Hymans Robertson LLP and Cass Business School for the Longevity Basis Risk Working 

Group (LBRWG) of the Institute & Faculty of Actuaries (IFoA) and the Life and Longevity Markets Association (LLMA).   

The scope of this phase of work is limited to producing a proposed methodology for assessing (demographic) basis risk.  For 

example identification and development of appropriate metrics for assessing basis risk, quantification of potential capital 

savings and presentation of basis risk results to regulatory authorities are excluded from this initial phase and (potentially) 

form part of a secondary phase of this project. 

This report is addressed to the LBRWG.  It may be shared with members of the IFoA and LLMA and other relevant third 

parties.  This report does not constitute advice and should not be considered a substitute for specific advice in relation to 

individual circumstances. While care has been taken to ensure that it is accurate, up to date and useful, neither Hymans 

Robertson LLP, Cass Business School, the IFoA nor the LLMA accept liability for actions taken by third parties as a 

consequence of the information contained in this report. 
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Executive Summary 

This paper summarises the work to date of Cass Business School and Hymans Robertson LLP in relation to 

assessing longevity basis risk.  This work was commissioned by the Longevity Basis Risk Working Group 

(LBRWG) and funded by the Life and Longevity Markets Association (LLMA) and Institute and Faculty of 

Actuaries (IFoA).  The LBRWG was formed by the LLMA and IFoA in December 2011 with a remit to investigate 

how to provide a market-friendly means of analysing longevity basis risk. 

The key outputs of this work are: 

 for modelling books which are ‘self-credible’ (i.e. a large number of lives & sufficient back history) 

a shortlist of ‘best of breed’ 2 –population models (specifically the M7-M5 model, or in some situations 

the CAE+Cohorts model); 

 for modelling the majority of books which are not self-credible, an alternative, easy to apply 

“characterisation approach”; 

 a clear decision tree framework to aid the selection of an appropriate methodology for assessing basis 

risk from those mentioned above; 

 a clear recognition of the importance of choice of time series underpinning any 2- (or multi-) 

population model 

These outputs are backed up by an extensive body of research, including: 

 a review of how trends have varied between different (sub) populations in the past, covering both the 

highlights of existing literature and additional research based on the Club Vita dataset of UK occupational 

pension schemes; 

 a review, classification and general formulation of two-population models that could be considered for 

modelling longevity basis risk; 

 a thorough and systematic assessment of candidate two-population mortality models to identify 

those which provide the most suitable balance between flexibility, simplicity, parsimony, goodness-of-fit to 

data and robustness; 

 case studies, review of key challenges and consideration of practical issues in relation to both the 

M7-M5 model and the characterisation approach. 

Introduction to longevity basis risk 

When insurance companies and pension schemes consider managing their longevity risk one of the available 

options is to use a hedging instrument based upon published mortality indices.  However this has a risk that the 

actual longevity outcomes (and so cashflows) of the hedged portfolio may differ from those under the hedging 

instrument. 

This may happen due to structuring risk (i.e. the hedging instrument having a different payoff structure to the 

hedged portfolio), sampling risk (arising from the different random outcomes of the individual lives within the 

portfolio and the index population) or demographic risk (with demographic and socio-economic differences in 

the composition of the portfolio and the index population leading to different initial rates of mortality and trends 

therein).  This project focuses specifically on the question of demographic risk which has no well-established 

assessment methodology. 
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Historical differences in mortality improvement rates demonstrate the need to assess basis risk 

Our review of existing literature demonstrates clearly that mortality improvement rates have historically varied by 

socio-economic class and deprivation.  These variations have been significant – indeed they have been as large 

as the variation seen by gender.  This conclusion is confirmed by analysis of the trends in the Club Vita dataset 

of occupational pension schemes.   

The size of these variations demonstrates the significance of demographic basis risk and confirms the need to 

model longevity basis risk. 

The need for a two-population model 

In order to be able to assess basis risk, we need a model that is able to capture the mortality trends in the 

reference population backing the hedging instrument and in the book population, the longevity risk of which is to 

be hedged. This modelling is needed in order to generate a distribution of future scenarios to evaluate the 

possibly different evolution of mortality in the two populations. Given this model, the assessment of sampling 

risk and structuring risk becomes (in theory, at least) straightforward. 

Directly modelling basis risk 

If a book is ‘self-credible’ (i.e. has large number of lives and sufficient back history) it is possible to parameterise 

a two-population model directly from mortality experience data relating to i) the population underlying the index 

and ii) the book population. 

Our systematic assessment of candidate two-population mortality models identified two particular ‘best of breed’ 

two–population models (specifically the M7-M5 model, or in some situations the CAE+Cohorts model). 

Parametric form for shape of mortality with age (‘M7-M5’) 

The M7-M5 model is a two-population extension of the Cairns-Blake-Dowd (CBD) model of mortality introduced 

in Cairns, Blake, & Dowd (2006). 

Readers may be familiar with the Cairns-Blake-Dowd family whereby the logit of mortality (as measured by 𝑞𝑥) 

takes up to a quadratic form with age.  Within this family of models we find incorporating both a quadratic term 

(to capture shape sensitivities at older ages) and a cohort term leads to the best performance for the reference 

population, and results in the model often referred to as ‘M7’ as per Cairns et al (2009): 

Thus the (M7) model for the reference population R takes the form: 

 logit 𝑞𝑥𝑡
𝑅 = 𝜅𝑡

(1,R)
+ (𝑥 − �̅�)𝜅𝑡

(2,R)
+ ((𝑥 − �̅�)2 − 𝜎𝑥

2)𝜅𝑡
(3,R)

+ 𝛾𝑡−𝑥
𝑅  

The difference between book population B and reference population R takes the form of a simplified Cairns-

Blake-Dowd model, with linear age sensitivity and no cohort effect, often referred to as ‘M5’. 

Hence the (M5) model for the difference between book population B and reference population R takes the form: 

 logit qxt
B − logit qxt

R = κt
(1,B)

+ (x − x̅)κt
(2,B)

  

Non-parametric form for shape of mortality with age (‘CAE+cohorts’) 

If we instead allow the shape of mortality to have a non-parametric relationship with age we obtain the extended 

Lee-Carter family of models. Within these models we find a Lee-Carter model with the addition of a cohort term 

performs best for the reference population 

Thus the (Lee-Carter with cohort term) model for reference population R takes the form:  

 logit 𝑞𝑥𝑡
𝑅 = 𝛼𝑥

𝑅 + 𝛽𝑥
𝑅𝜅𝑡

𝑅 + 𝛾𝑡−𝑥
𝑅  
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The difference between book population B and reference population R takes the form 

 logit qxt
B − logit qxt

R = αx
B + βx

Rκt
B 

This model is referred to as the common age effect as the book population has a Lee-Carter form with the same 

sensitivity by age to time based improvements as the reference population. 

Indirectly modelling basis risk – Characterisation approach 

If the book is not ‘self-credible’, (i.e. it does not have a sufficiently large number of lives or lacks a sufficient back 

history) then it is not possible to robustly parameterise the book element of a two-population model directly from 

mortality experience data.  In this situation an alternative approach is required.  

Indeed, even where the book is sufficiently large with long enough experience history to use direct modelling, an 

alternative indirect approach may still be useful; either as a means of a pragmatic initial assessment of the 

quantum of basis risk, or as an alternative approach as part of considering model risk. 

The alternative we propose, which we describe as a “characterisation approach” enables an assessment of 

basis risk based on the characteristics of the book in question; leveraging an alternative larger dataset to 

provide the required volumes and back history of data. 

Instead of using the experience data of the book itself, the basic principle of the characterisation approach is to 

map the book onto a small number of characterising groups which: 

 capture the majority of the source of demographic risk 

 can be projected using an alternative data source with a more reliable and longer back-history of mortality 

experience 

Schematically, this approach can be thought of as: 

 

 

 

 

 

 

 

 

 

 

 

In the schematic above, the book population 𝐵 is subdivided into three distinct subgroups 𝐵1, 𝐵2 and 𝐵3, 

according to some characterising criteria.  Both 𝐵 and the subpopulations 𝐵1, 𝐵2 and 𝐵3 are too small for direct 

modelling.  However, a larger characterising population 𝐶 is available, and has previously been segmented 

(using the same characterising criteria) into subgroups 𝐶1, 𝐶2 and 𝐶3.  Importantly, 𝐶 has been chosen such that 

𝐶1, 𝐶2 and 𝐶3 are sufficiently large for direct modelling (in conjunction with the reference population 𝑅). 
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It is now possible to simulate 𝐵 indirectly, by first simulating 𝐶1, 𝐶2 and 𝐶3and mapping those simulations across 

to 𝐵1, 𝐵2 and 𝐵3. 

Choosing between approaches 

A flow chart (see next page) has been developed to assist users (based on their requirements) in choosing 

between direct modelling and the characterisation approach.  In addition, it provides assistance in choosing 

between M7-M5 and CAE+Cohorts models where direct modelling is preferred. 

Having assessed direct modelling under M7-M5 and CAE+Cohorts models for book populations of different size 

and history length, a key requirement for direct modelling (reflected in the first question) is sufficient data; 

typically over 25,000 lives and in excess of 8 years history. 

In addition direct modelling relies on the assumption that “past data is a good guide to the future”.  This may not 

always be the case, hence the second question relating to whether there have been any major changes in the 

socio-economic mix in the book over time. 

There are a number of considerations which could be taken into account in choosing between M7-M5 and 

CAE+Cohorts (including user familiarity or preference), but a specific practical issue, relating to the typical need 

to allow for inter-age mortality correlations is covered by the third question. 

Finally, in some cases there could be a strong belief in a book specific cohort effect (which would require an 

extension to the form of the model for book population); this is covered by question 4. 

Case studies, key challenges and practicalities 

Case studies are provided for both direct modelling and the characterisation approach.  In addition we seek to 

identify (and suggest approaches to tackle) key challenge and practicalities in the application of these methods. 

Sensitivity to choice of model and choice of time series 

The alternative methods illustrated (M7-M5 and CAE+Cohorts for direct modelling, and the characterisation 

approach) provide for the most part similar conclusions on the amounts of basis risk.  But differences do exist, 

illustrating the issue of model risk. 

We focus on a number of well-established choices of time series in the models; the alternatives used 

demonstrate the model risk associated with choice of time series; a comprehensive exploration of alternatives 

and their impact is outside the scope of this research project.  Nonetheless it is appropriate to flag the risk 

associated with choice of time series and highlight the benefit that further assessment, development and 

guidance on the choice of time series would bring to practitioners. 

Nature of this paper 

Please note this paper is designed to provide sufficient detail for a knowledgeable user to understand the 

methods we are proposing and the reasoning why we have chosen those methods.  As such it is necessarily 

technical in places.  Readers seeking a high level overview of the methodology and the key considerations in 

applying this method are directed to our accompanying user guide. 
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1 Introduction 

1.1 Longevity risk transfer market 

Recent years have seen a huge growth in longevity risk transfer, both in the insurer to reinsurer market, and 

from pension schemes to the insurance market
1
. An effective, growing market with sufficient capacity to meet 

demand would be to the benefit of all participants, whether to enable business to be done, or to manage risk. 

To date most transactions have been “bespoke” deals, with the payouts linked directly to the actual experience 

or lifespans of the individuals being covered.  But index-based solutions – where the payouts are linked to a 

longevity index or metric based on an external reference population – are possible.  They have the potential to 

provide important benefits: lower costs, faster execution, potential for liquidity, and greater transparency. 

1.2 Enabling the development of index based solutions 

Many steps have been taken to enable index-based solutions to develop.  Publication of indices by the LLMA, 

Deutsche Börse and others; continued innovation of possible structures such as the Longevity Experience 

Options introduced by Deutsche Bank; and papers on standard derivative structures such as q- and S- 

forwards
2
.  

But one key issue remains – that of “longevity basis risk”.  How good a match will there be between a portfolio’s 

experience, and that reflected by an external, published, longevity index?  How much protection can index- 

based solutions provide? 

1.3 The question of longevity basis risk 

In its simplest form an index based longevity swap involves a payment to the pension scheme or insurer that is 

based on the longevity experience of a reference index.  An index–based swap provides a means to obtain 

(partial) protection from longevity risk both for pensioners but also deferred pensioners who are generally not 

covered by the “bespoke” transactions. In the case of life insurers they offer a potentially flexible way to manage 

exposure to longevity risk, or to facilitate a more capitally optimal balance between longevity and mortality risk. 

However index-based swaps do not provide a perfect risk reduction.  The index based payments will not exactly 

match the actual annuity payments being made by the insurer or pension scheme.  

Understanding the residual longevity risk and “how good” the risk reduction is, is key.  The kinds of practical 

questions asked about index-based swaps include: 

 What is the risk that index payments will fall short of annuity payments? 

 How can we determine the “hedge effectiveness”? 

 How can we do a cost-benefit analysis of an index-based hedge? 

 How do we determine an appropriate capital reduction for an index-based hedge? 

To answer these questions, we need a practical and realistic way of modelling and quantifying basis risk. 

  

                                                      
1
 For example in the year to 30 June 2014 £39bn of longevity risk was transferred from pension schemes to insurers and reinsurers via buy-

ins, buy-outs and longevity swaps. Of this £27bn related to longevity only transactions (longevity swaps), close to double the volume written 

in the preceding 4 years. (Hymans Robertson (2014)) 

2
 See for example http://www.llma.org/publications.html 
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1.4 Sources of basis risk 

There are three primary sources of basis risk
3
: 

1 Structuring risk due to the pay-off of the hedging instruments being different to that of the portfolio (for 

example the hedging instrument making annual payments whereas the portfolio pays annuities or 

pensions monthly, or the hedge may be of shorter duration than the liabilities).   

2 Sampling risk arising from the random outcomes of the individual lives within the portfolio and the index 

population meaning the actual mortality experienced by the two populations will not be the same, other 

than by chance. 

3 Demographic risk owing to demographic and socio-economic differences in the composition of the 

actual portfolio being hedged and the index population referenced in the hedge, leading to different 

underlying mortality rates now - and in the future. 

Well-established methods for modelling the first two of these exist.  Structuring risk can be assessed by 

simulating the cashflows under the portfolio and the payoffs under the instrument, whilst sampling risk can be 

modelled by simulating the outcomes for the respective populations.   

1.5 Demographic risk 

In contrast there is no well-established methodology for assessing demographic risk. Yet it is this risk which 

worries (re)insurers and pension schemes when they consider entering index-based longevity transactions. The 

absence of a method for quantifying such risk makes it very difficult to assess whether such a transaction looks 

good value for money, or what impact the transaction would have on the insurer’s or pension scheme’s overall 

risk profile and hence capital / funding requirements. Our research is focused on this demographic aspect of 

longevity basis risk. 

When considering a transaction we will know certain things about the portfolio: size, affluence, locations, maybe 

historical mortality experience.  How then do we model the portfolio (and the reference population) in order to 

assess basis risk? 

The key question that we explore is: 

“What is an appropriate model for the mortality rates over time in the two populations?” 

1.6 Scope of this research 

This paper provides a detailed summary of the key elements of the work undertaken by Hymans Robertson and 

Cass Business School for the first phase of a research project commissioned by a joint Longevity Basis Risk 

Working Group (LBRWG) of the Institute & Faculty of Actuaries (IFoA) and of the Life and Longevity Markets 

Association (LLMA) aimed at answering the above question.  

Fuller details of the LBRWG’s call for proposals are provided as Appendix F. In summary that call split the 

project into two phases, with commissioning of Phase 2 dependent upon completion of Phase 1. 

Phase 1 

Provision of: 

 Review of evidence of different mortality improvement rates among different subgroups to inform 

projection methodology (sections 2 & 3 of this report) 

                                                      
3
 As described by Mosher & Sagoo (2011) 
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 Critical review of existing models for relationship between a specific book (portfolio) and reference 

population mortality  (sections 4, 5 & 6 of this report) 

 Detailed specification of a proposed methodology (sections 7 & 10) 

 Analysis of the limitations of the methodology and description of alternatives (sections 9 & 12; building on 

sections 6 & 7) 

 Clear specification of work to be completed and anticipated outputs of Phase 2 (not covered in this report) 

Phase 2 

 Identification of basis risk metrics covered by the proposed model and demonstration of how outputs of 

methodology can be used for these metrics 

 Application of the model on practical, realistic, illustrative examples based on the data reasonably 

available to potential users (sections 7 & 10, and Appendix D, of this report provide some initial case 

studies) 

 Demonstration of how outputs from the methodology can be presented as robust quantification of basis 

risk to third parties such as regulators 

1.7 Structure of this paper 

This report covers the analyses carried out by the team in response to Phase 1 and includes a proposed 

methodology. We start by considering what history tells us about longevity basis risk.  Section 2 summarises 

how trends have varied between different (sub) populations in the past, and section 3 provides a high level 

review of the drivers of those trends.  This context informs the choice of models and the way in which users 

ultimately apply and interpret any results. 

Sections 4 and 5 set out the modelling problem more formally and provide an overview of the models available 

to tackle the question at hand. 

In section 6, we summarise the steps taken to narrow down the wide range of models to those likely to be most 

useful to practitioners.  Section 7 explores in more detail the two main contenders identified, including their 

strengths and weaknesses, and proposes a decision tree suggesting which modelling approach may be a good 

starting point in different situations.  An illustrative case study of the approach where the user can rely on the 

portfolio experience data (‘direct modelling’) is provided in section 8. 

In many cases the portfolio experience data will be insufficient to calibrate models directly and so alternative 

techniques are required. Before we move on to these alternative techniques, section 9 reviews some of the key 

challenges and addresses several practical questions on the use of the direct modelling techniques described 

so far. This section in particular moves the debate on from choice of model (e.g. Cairns-Blake-Dowd) to 

highlighting the need for users to consider the type of time series driving these models.  

In section 10, the focus moves away from modelling the reference and book populations directly, and considers 

a more indirect approach whereby the book population is “characterised” into buckets for which alternative 

datasets can provide a measure of demographic basis risk.  As such it extends the scope of Phase 1 in order to 

create a methodology with wide practical application.  A case study of this “characterisation approach” is 

provided in section 11, with section 12 considering the practical issues associated with a characterisation 

approach. 
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Finally, it is anticipated that a subsequent phase of the project (and reports) will look at such issues as 

appropriate metrics for quantifying the basis risk and further back testing of the realised vs predicted hedge 

effectiveness for a range of portfolios. As such further work may lead to some refinements to the conclusions 

drawn here, however we believe this work provides an appropriate starting point for those seeking to assess 

basis risk.  
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2 Observed differences in mortality improvements 

Differences in baseline mortality are generally well understood by practitioners who are well-versed in allowing 

for these differences. There are many sources of evidence – both from the UK population as a whole, and from 

the experience of pensioners and annuitants – that show very significant differences (up to approximately 10 

years) in lifespans for different types of individuals (ONS (2014); Madrigal et al. (2012)).  

Differences in historically observed improvement rates between populations are also well known by the life and 

pensions industry but less commonly modelled prospectively. In this section, we review existing published 

evidence on differences in observed improvements (section 2.1) and provide additional, new, results specific to 

the experience of pension scheme annuitants using the Club Vita dataset (section 2.2; further details on dataset 

in Appendix A).   

2.1 Existing research 

2.1.1 Improvement differentials by gender 

Figure 2.1 shows the average annual improvement rate over a 30 year period, for men and women from the 

England & Wales population at various ages. 

 

Figure 2.1: Annual rate of improvements in England and Wales by gender (1981-2011) based on HMD data. 

We can see clear and consistent differences; with men having experienced annual improvements around 0.5%-

0.75% higher than women between 1981 and 2011. These faster improvements for men underpin the well-

known closing of the life expectancy gap between men and women.  However, existing longevity indices provide 

separate values for men and women; as such, these are differences in improvements which, if replicated in the 

future, can be hedged and so are unlikely to be a source of longevity basis risk in practice.  
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2.1.2 Improvement differentials by deprivation 

In contrast there are currently limited options to access longevity indices which differentiate by socio-economic 

status.  However, the differences in improvements seen historically for different socio-economic groups are 

comparable to those seen between men and women. We can see this by, for example, looking at improvements 

by deprivation. 

There are various options for measuring deprivation, including Townsend’s and Carstairs’ index and the Index of 

Multiple Deprivation (IMD). We have focused on IMD in our analysis and used the 2007 version. 

IMD 2007 combines indicators across seven deprivation domains (e.g. income, employment, health, education, 

crime rates, etc.) into a single deprivation score. These scores are available for a range of geographical regions.  

In our analysis we have focussed on the scores for Lower Layer Super Output Areas (LSOAs), each of which 

have an average of 1,500 residents and around 650 households
4
.  

The LSOAs are ranked by their IMD score and grouped into quintiles where Q1 represents the least deprived 

areas and Q5 the most deprived areas
5
. Figure 2.2 shows the observed annual improvement rates within 

England for each quintile, over a similar period as shown for men and women in section 2.1.1. 

Average annual rate of improvement in England by deprivation quintile (1982-2006) 

Men Women 

  

 Figure 2.2: Annualised improvements in mortality, England by deprivation quintile. Based on Table 1 and 2 in Lu et al. (2013) 

We can see how for:  

 Men: The least deprived areas (Q1 red line) have experienced average annual improvements of around 

0.5-0.75% higher than the most deprived areas (Q5 in purple).  

 Women: The improvements are generally lower (consistent with Figure 2.1) but the pattern and spread is 

very similar as for men.  

Notice how the differences in improvements between the least and most deprived areas are of a very similar 

magnitude to the differences between men and women shown in Figure 2.1. In the context of longevity risk, this 

                                                      
4
 http://neighbourhood.statistics.gov.uk/HTMLDocs/nessgeography/superoutputareasexplained/output-areas-explained.htm 

5
 For further information, see (Indices of Deprivation 2007 for Super Output areas, 2007). 
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highlights the potential for index-based solutions to provide a less than perfect hedge, and hence the need to be 

able to quantify demographic basis risk. 

2.1.3 Improvement differentials by condensed NS-SEC (Socio economic class) 

 

Figure 2.3 shows the improvement rates in the 

England & Wales male population by an alternative 

measure of socio-economics; the condensed NS-

SEC
6,7

 (National Statistics Socio-Economic 

Classification).  

We can see how the managerial & professional groups 

experienced the highest annual rate of improvements 

at most older ages and the routine & manual group the 

lowest. The data here is more volatile as it is based on 

the 1% sample in the ONS longitudinal study; but 

again there is a clear difference in past annual 

improvement rates (1% on average) and hence in 

trends over that period. 

 
Figure 2.3: Annualised mortality improvements by NS-SEC. 

Source: ONS Longitudinal Study 

2.1.4 Mortality differentials by income 

Various studies have explored how improvements in mortality rates differ by income.  

For example evidence of the potential for improvements to vary by affluence is provided by Adams (2012) which 

analysed mortality differences by pension income in Canada between 1993 and 2007. Pension income was split 

into five (non-distinct) classes based upon the maximum level:  

 Class 1: <35% Maximum pension  (omitted from charts below in original paper) 

 Class 2: 35% - 94% Maximum pension 

 Class 3: 95% - 100% Maximum pension 

 Class 4: 35% - 100% Maximum pension 

 Class 5: All income 

The figures below extracted from that paper, show the (fitted) annualised mortality improvement for each of 

income classes 2, 3, 4, and 5 by different age for men and women. Looking at the chart for men, it is clear how 

class 3 (which represents the most affluent group) shows the highest annual improvements, in particular when 

focusing on ages 60-80. We also see how income class 2 (which represents those on the lower end of the 

affluence spectrum) has shown relatively lower improvement rates over most of the post-retirement age range.  

The results for women (figure 2.5) are a lot more volatile but similar trends appear as in the case for men where 

income class 3 (highest pensions) seems to have the highest annual improvement rates between ages 60 and 

80.  

                                                      
6
 See The National Statistics Socio-economic classification (2010).   

7
 Note that the National Statistics moved to a revised new measure in year 2000, SOC 2000 from SOC 90 (See Rose & Pevalin (2005)), 

which limits our ability to look beyond 2006 in this analysis.   
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Figure 2.4: Annualised mortality improvements by income class for Canadian men, at various ages, between 1993 and 2007; extracted from 

Adams (2012) 

 
Figure 2.5: Annualised mortality improvements by income class for Canadian women, at various ages, between 1993 and 2007, extracted 

from Adams (2012) 
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2.2 Separating improvements by socio-economic factors  

The previous section has highlighted some clear differences in mortality improvements when segmenting 

national data by gender, income, deprivation quintiles or socio-economic classes. Each of the analyses 

presented shows the improvements across a single one of these dimensions (within gender). However, these 

analyses cannot be combined owing to the interrelated nature of deprivation, socio-economics and affluence.  In 

the context of modelling demographic risk it would be more insightful if we could understand which of these 

factors are most predictive of historical trends, as this might indicate the factors which are most relevant to 

future demographic risk. To do this, we need to turn to a more granular dataset. 

One such dataset is Club Vita, which holds detailed information (postcode, affluence, occupation, etc.) for living 

and deceased members of UK occupational pension schemes.  (See Appendix A for further information.) 

2.2.1 A model to identify the key predictors of historical improvements 

To identify the main characteristics that explain differentials in mortality improvements, we have carried out a 

multivariate analysis of observed historical improvements within the Club Vita dataset, separately for men and 

women. The aim of this analysis is to identify which factors are closely linked to strong differences in historical 

improvements rather than optimising the best possible model.  As such a simplified model was constructed 

using the framework of GLMs (generalised linear models), with a logit link function under a binomial setting. 

Specifically, we carried out a two-step process to fit to the observed improvement data
8
: 

1 Fit a baseline model as a linear function of the key mortality predictors identified by Club Vita; age, 

retirement health, pension amount, postcode based lifestyle
9
, and IMD deprivation quintile i.e.   

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡𝑖𝑗𝑘𝑙) = α + β0𝑥 + 𝑎𝑖
(0)

+ 𝑎𝑖
(1)

𝑥 +  𝑏𝑗
(0)

+ 𝑏𝑗
(1)

𝑥 +  𝑐𝑘
(0)

+ 𝑐𝑘
(1)

𝑥 +  𝑑𝑘
(0)

+ 𝑑𝑘
(1)

𝑥 

Where: 

 𝑞𝑥𝑡𝑖𝑗𝑘𝑙 is the one year mortality rate for a person age 𝑥 at time 𝑡 belonging to healh status group 𝑖, 

pension band 𝑗, lifestyle 𝑘, and IMD quintile 𝑙 

 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡𝑖𝑗𝑘𝑙) = 𝑙𝑜𝑔 (
𝑞𝑥𝑡𝑖𝑗𝑘𝑙

1−𝑞𝑥𝑡𝑖𝑗𝑘𝑙
) 

 α + β0𝑥 describes the average level of logit mortality with respect to age 𝑥 as linear with age 

 The terms 𝑎𝑖
(0)

, 𝑏𝑗
(0)

, 𝑐𝑘
(0)

,  and 𝑑𝑘
(0)

 determine the relative adjustment
10

 to the intercept for someone 

belonging to retirement health status group 𝑖, pension band 𝑗,  lifestyle 𝑘, and IMD quintile 𝑙, 

respectively 

 The terms 𝑎𝑖
(1)

, 𝑏𝑗
(1)

, 𝑐𝑘
(1)

,  and 𝑑𝑘
(1)

 determine the relative adjustment to the linear relationship for 

someone belonging to retirement health status group 𝑖, pension band 𝑗,  lifestyle 𝑘, and IMD 

quintile 𝑙, respectively 

This provides a proxy to the general industry approach of using a granular model to capture the baseline 

for a portfolio, and was fitted to data spanning 1993-2011. By incorporating pension amount within this 

model we also (broadly) capture the impact of amounts vs lives weighted mortality. 

                                                      
8
 The data ranged from 1993 to 2011, focusing on pensioners aged from 65 to 94 living in England only (to enable use of postcode based 

deprivation scores). See Appendix A for more details on data used 

9
 Using Club Vita’s proprietary postcode based lifestyle rating factors – see Appendix A 

10 
Relative to the reference level of each predictor i.e. where 𝑎𝑖

(0)
, 𝑏𝑗

(0)
, 𝑐𝑘

(0)
, 𝑑𝑙

(0)
and 𝑎𝑖

(1)
, 𝑏𝑗

(1)
, 𝑐𝑘

(1)
, 𝑑𝑙

(1)
are fixed at 0 for a particular 

reference group 
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2 The resulting baseline model was then extended by adding mortality improvements to the models, 

conditional on the already fitted baseline parameters i.e. 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡𝑖𝑗𝑘𝑙) = Baseline +  𝜏𝑥𝑡 + 𝑡(𝑏𝑗
(2)

+ 𝑐𝑘
(2)

+ 𝑑𝑙
(2)

) 

Where: 

 Baseline is derived from step 1 

 𝑡 is our time index (with 𝑡 = 0 corresponding to 1993) 

 𝜏𝑥 is the average annual improvement observed at age 𝑥 

 The terms  𝑏𝑗
(2)

, 𝑐𝑘
(2)

,  and 𝑑𝑘
(2)

 determine the relative adjustment to the annual improvement for 

someone belonging to pension band 𝑗,  lifestyle 𝑘, and IMD quintile 𝑙, respectively 

As the aim here is to investigate the relative importance of the variables with respect to mortality 

improvements in a simple way, rather than coming up with the ‘perfect’ model for historic improvements, 

we have omitted the cohort effect. This has the benefit of substantially simplifying the construct of the 

model (as removes identifiability issues), the parameter estimation and the interpretation of the results. 

Step 2 was repeated varying which predictors were included in the improvements component. When 

considering available covariates to be included in this component we focused on those predictors which are 

generally available to the industry. By doing so we ensure that the results have a practical application. For 

example, pension amount was chosen as the affluence covariate (instead of salary amount) due to its wider 

availability. Within this analysis we retained two postcode based metrics – one based upon publicly available 

deprivation scores, and the other using Club Vita’s ‘lifestyle’ groupings based upon ACORN classification. 

Whilst the later of these is not publicly available, it is included in this analysis as a proxy to the proprietary 

postcode based lifestyle proxies used by many practitioners.  

Table 2.1 shows the results of this analysis, identifying the most significant rating factors, in relation to past 

improvements, after having penalised for extra complexity of introducing additional parameters to the model
11

. 

  

                                                      
11

 When penalising for extra parameter complexity in the model the AIC (Akaike Information Criteria) was used which is defined as 

 2(𝑛 − log(𝐿))  where 𝑛 is the number of parameters in the model and 𝐿 is the likelihood under the model of the observed values (here 

improvements) 
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Variables included in fitting 

improvements 

Rank 

Men  

∆ AIC12   

Men 

Rank 

Women 

∆ AIC13 

Women 

Comments 

Deprivation (IMD via postcode)  

                       + Pension amount 

1 0  2 1
14

 Best fit for men and 

(essentially) for women 

Deprivation (IMD via postcode) 2 4  1 0 Narrowly best fit for women 

Lifestyle (via postcode)  

                     + Pension amount 

4 21 3 10  

Lifestyle (via postcode) 6 28 4 11  

Pension amount 3 16 5 13  

“No specific improvements predictor” 5 24 6 14 The worst fit is given by a 

model with no allowance 

for socio-economic factors 

Table 2.1: Results of GLM analysis of fitting to historical mortality improvements within the Club Vita dataset 

Reassuringly, the results for men and women give a very consistent message, that a model allowing for both the 

IMD deprivation index and pension amount
15

 provides the best balance between fit to historical improvements 

and simplicity.  

 

2.2.2 The relationship between the key predictors and improvements 

We can look at the best fitting model above in more detail.  Specifically it provides three additive terms which we 

can look at in turn: 

 a general level of annual improvement at each age; 

 an adjustment depending on deprivation; and  

 an adjustment based on pension amount. 

So, for example to calculate the annual rate of improvement applicable to men aged 70-74, living in an area 

within IMD quintile 2 and with a pension over £10,000pa we can add together the values shown in each of the 

charts in this section. 

  

                                                      
12

 Reference AIC for men (Postcode (IMD) + Pension  amount)  was 760,477.5 

13
 Reference AIC for women (Postcode (IMD)) was 353,059.4 

14
 Although a slightly higher AIC than for deprivation without postcode the difference is sufficiently small that the two models can essentially 

be considered equally good 

15
 When looking at the above table, note that the pension amount has 3 levels, whilst the postcode metrics have 5 levels. All else being 

equal this would favour ranking postcode metrics higher up the table than pension based metrics. We initially considered using five levels for 

pension to ensure comparable numbers of levels, but regrouped into three groups on grounds of parsimony as there were little difference 

between the first three quintiles both in terms of improvements and mortality levels. It is reassuring therefore to see that adding pension to a 

postcode based model improves fit, confirming it is beneficial to include both pension and deprivation.   
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2.2.2.1 Age 

Figure 2.6 shows how the fitted mortality 

improvement rates vary with increasing age, for men 

and women. In each case the solid line is the fitted 

value, and the dotted lines a 95% confidence interval 

based on the uncertainty in the fitted parameters. 

We can see how:  

 improvements decline with increasing age for 

both men and women.  

 the improvement rates at the oldest ages have 

not completely converged to zero which 

indicates that we are still observing significant 

improvements in mortality at the oldest ages. 

 mortality improvements have generally been 

lower for women than men, which is consistent 

with previous results from England and Wales 

data in Figure 2.1.  

(We observe more uncertainty in the average 

rates for women as shown by the wider 

confidence intervals due to smaller population 

size) 

 

Figure 2.6: Age component of fitted improvements 

 

2.2.2.2 Adjustment for deprivation (IMD 2007) 

Figure 2.7 demonstrates the relationship between the 

IMD deprivation index and the historical mortality 

improvement rates, relative to the average level of 

deprivation, for men and women. 

This suggests that: 

 those living in the most deprived areas have 

experienced significantly faster improvements 

than those living in average deprivation areas 

(as indicated by the confidence interval for the 

improvements for Q5 excluding 0); whilst 

 those living in less deprived areas have had 

similar improvement rates on average, 

especially for men. 

 

 

Figure 2.7: Deprivation component of fitted annual improvements 

(relative to average level across all deprivations) 
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2.2.2.3 A deprivation paradox? 

By comparing historical improvements by IMD for occupation pension members to what has been observed on 

the national level we observe very different trends. Figure 2.8 below compares the results for men from the 

multivariate analysis of Club Vita data with the univariate analysis of Lu et al. (2013).  

 

Figure 2.8: Average annual improvement rates by deprivation index (IMD 2007) for pensioner men using data from 1993 to 2011 (left hand 

side) and national data for men from 1995 – 2005, Lu et.al (2013) (right hand side) 

At first sight the results look contradictory in that for the pension scheme data we see high improvements for the 

most deprived areas whereas research on the national data has found low improvements for the most deprived 

areas. The results for the least deprived areas are far more similar. One possible explanation for this 

‘deprivation paradox’ is the difference in analyses i.e. multivariate vs univariate analysis.  For example the 

univariate analysis of Lu may be confounded by an affluence effect associated with decreasing deprivation. 

However, we believe that we can largely rule this out as the adjustments in the GLM to allow for affluence 

(pension amount) are modest (see section 2.2.2.4). Thus this appears to be something specific to the nature of 

the two populations and potentially worthy of further research
16

.  

We believe that this feature is likely to be a consequence of a selection effect when focusing on pension 

scheme annuitants only. In the national data, those living in the most deprived areas will have, for example, high 

levels of unemployment and long term sickness. Those living in the most deprived areas but in occupational 

pension schemes are less likely to be typical of those areas. For instance, they are very unlikely to be long term 

unemployed. Indeed they may be those individuals improving their health outcomes via an element of upward 

socio-economic migration.  So the annuitant data will be a very select – and different - subset of the national 

data. Such effects are often seen in the demographic literature where they are termed the ‘ecological fallacy’: a 

subgroup of individuals can exhibit very different pattern to the population as a whole (Greenland (2001)). 

In short, conclusions drawn from the national data cannot be expected to translate well to the world of pension 

scheme and insurance company annuitants where there is a high level of socio-economic selection present. 

Thus care is needed in using models calibrated to national IMD data as they may be misleading in the 

management of annuitant basis risk. 

  

                                                      
16

 For example it could be insightful to look at additional variations of the multivariate model described here where multiple postcode rating 

factors (IMD and lifestyle) are included in the improvements component 
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2.2.2.4 Pension amount 

Turning to the other key predictor of historical improvements, pension amount, the graphs in figure 2.9 

demonstrates the relationship between affluence (current pension amount) and historical mortality improvement 

rates, controlling for the impact of deprivation shown in 2.1.2.2.  

Figure 2.9: Pension amount component of annual improvements (relative to average level across all pension amounts) 

The pension amount has been split into three pension bands – these are different for men and women, 

reflecting the lower pension amounts that have been accrued historically by women arising from differences in 

career and working patterns.  For the avoidance of any doubt this analysis is restricted to pensioners only (i.e. 

excludes any in payment dependent pensions) in order to ensure comparability of pension amounts within each 

gender.  

We can see how: 

 the impact of affluence on mortality improvements is more modest than for deprivation, covering a spread 

of around 0.4% (figure 2.9) compared to around 0.8% for deprivation (figure 2.7). 

 the differences in improvements between different affluence bands are generally weak (especially for 

women). 

 the trend in improvements by affluence appears to have a ‘smile’ effect, especially for men, whereby 

higher improvements are being experienced by the lower and higher income pensioners. 

2.2.3 Comparing different pension and deprivation combinations 

Figure 2.10 demonstrates the materiality of differences in (fitted) annual improvement rates for a selection of 

different combinations of deprivation quintiles and affluence groups once compounded up over the period used 

to measure them (1993-2011).  

In each case, the size of the bubble indicates the relative amount of pension in that group within Club Vita, and 

thus is a proxy to the financial significance of each group to the finances of a typical pension scheme. The 

number within the bubble is the level of total improvements between 1993 and 2011, with the red numbers 

reflecting above average increases. 

Over this 18 year time period (1993-2011) the range in total mortality improvements has been between 36% and 

49%. This 13% difference in mortality improvements is equivalent to a difference in liabilities of around 5%. This 

range clearly indicates the importance of demographic risk when assessing index-based solutions. 
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Figure 2.10: Total (fitted) improvement (reduction) in mortality rates (1993-2011) where differences in circle sizes refer to relative amount of 

pension for each socio-economic group. 

2.3 Conclusions 

The existing literature shows that material differences in mortality improvements have been identified, in 

particular when data has been segmented into groups according to gender, socio-economic class or 

deprivation.  

Focusing on the Club Vita pensioner dataset, we observe that pension amount combined with deprivation had 

the strongest link to past improvements. Therefore, when looking for factors to characterise annuity data with 

respect to improvements, a combination of pension and deprivation is a good starting point. This result becomes 

very important when looking at the “characterisation approach” introduced in section 10.  

We also observed how the IMD effect is very different in annuitant data to the whole population which is 

believed to be the consequence of a selection effect when focusing on annuitants only. Therefore, care is 

needed when using basis risk models parameterised using the whole UK IMD data. 

Further, we have seen how the industry’s concerns around demographic risk being a significant issue is valid; 

differences in historical improvements by socio-economic classes have been of a similar magnitude to the gap 

between genders (which of the two is the only one currently allowed for when hedging longevity improvements). 

  

Least deprived 

Most deprived 
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3 High level review of drivers 

We have shown that amongst those variables available to pension schemes two factors – deprivation as 

determined via postcode, and pension amount – are powerful in combination at modelling the historical 

observed improvements. 

However, when considering the projection of mortality trends and how these might differ by socio-economic 

group it is important to understand the drivers of historical trends. This should inform matters of user judgement, 

such as the structural assumptions of any times series which drive modelling forecasts (see section 9.2.3). 

3.1 The cohort effect 

Much evidence has been presented for both the UK population and annuitants (both within the CMI dataset and 

the Club Vita dataset) experiencing a cohort effect. Specifically, the generation born broadly between the two 

World Wars are surviving in far greater numbers to an older age than their predecessors, as a consequence of 

experiencing markedly lower mortality rates than the generation preceding them.  This is often illustrated using 

heat maps, such as the one in figure 3.1, which plot the annual reduction in mortality rates by age (age 0 to 100, 

y-axis) and calendar year (1962 to 2012, x-axis).  Here the warm colours (yellows, oranges and reds) plot 

periods of particularly rapid reductions in mortality. 

 

 

Figure 3.1:  Heat map of p-spline improvements in England & Wales population data (ages 0-100, years 1962-2012). Age-cohort p-spline 

smoothing with 5 year knot spacings in both age and birth year dimensions. Underlying data as per that used in CMI 2013 sourced from 

http://www.actuaries.org.uk/research-and-resources/cmi-community/documents/cmi-mortality-projections-model-data-underlying-cmi20.  

In charts such as this, birth generations move diagonally up the chart from bottom left to top right as they age.  

We can see a number of very clear cohort effects in this picture, including a period of strong improvements for 

those born between 1925 and 1940.   

http://www.actuaries.org.uk/research-and-resources/cmi-community/documents/cmi-mortality-projections-model-data-underlying-cmi20
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There are a number of reasons postulated for the cohort effect (see Willets (2004)) including: 

 Introduction of the welfare state and particularly the NHS 

 First generation to benefit from widespread use of antibiotics 

 The positive impact conveyed by a high dietary intake of fresh vegetables and fish by the children 

growing up at this time 

 Smoking cessation being most rapid amongst this generation 

Whatever the underlying reasons, observations of this phenomenon led both GAD (see GAD 2001)) and the 

CMI to revisit previous projections.  Within the context of modelling basis risk, it is important that our models 

allow for the now well-accepted cohort effect, separating out general improvements over time to those specific 

to a given birth cohort. 

3.2 A causal perspective 

Ultimately individuals die of something – low income or high deprivation per se do not kill individuals, although 

they will influence behaviours, the environment within which a person lives and their risk/predisposition to 

certain morbidities. 

Figure 3.2 shows how age-standardised
17

 mortality per 100,000 lives has been falling by the four major disease 

groups amongst the ages most relevant to demographic basis risk, ages 65+. 

 

Figure 3.2:  Age standardised mortality amongst UK over 65 year olds, per 100,000 lives (own calculations based on WHO data) 

We can see how recent declines in mortality amongst over 65 year olds have been driven (within the UK) by 

dramatic declines in circulatory disease.  Similar declines are seen in many other developed countries. 

                                                      
17

 Age standardised against 2008 UK population (5 year age grouped, ONS 2008 central projections)  and using cause of death data 

sourced from WHO 
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In understanding the potential for 

continued falls in mortality it is helpful to 

consider what has driven the falls in 

circulatory diseases.  In particular Belgin 

Unal and colleagues looked at changes in 

coronary heart disease (CHD) mortality 

amongst adults
18

 in England & Wales 

between 1981 and 2000 (Unal et al 

(2004)).  They identified that lifestyle and 

behavioural changes had been the 

biggest contributor to the decline - at 58% 

compared to 42% from medical 

interventions (figure 3.3).   

Within the lifestyle and behavioural 

factors smoking dominates, accounting 

for nearly half the overall decline in heart 

disease mortality. The decline in smoking 

has, however, been different across the 

different professions and socio-economic 

groups.  

Figure 3.3: Attribution of change in CHD mortality amongst adults 

in England & Wales (summary of results of Unal et (2004)) 

For example ONS(2011) highlights how the proportion of smokers amongst manual occupations fell by around 

25%
19

 between 1992 and 2009, compared to over a 30% fall amongst non-manual occupations. 

3.3 Differences within society 

Different parts of society respond to the drivers of improving mortality in different ways.  In the case of medical 

interventions for example there is some evidence that lower socio-economic groups are more reluctant to avail 

themselves of available resources (see for example Goddard & Smith (2001) and Morris et al (2005)), are less 

likely to be referred to specialist services (Dixon et al (2007)
20

), and have poorer adherence to treatment 

programmes, including for example the taking of regular medication (WHO (2003)).  

With regard to lifestyle and behavioural factors one school of social epidemiology describes a ‘social cascade’ 

whereby the more educated socio-economic groups tend to be earlier, and fuller, adopters of healthier 

behaviours / new services such as the NHS.  The same theory suggests that the less educated parts of society 

will be more sceptical and so be later, less whole-hearted adopters, tending to wait until they can see the 

positive effects in others.   

                                                      
18

 This study included individuals aged 25 to 84 - however as the majority of heart disease deaths occur in later life the results of that study 

should be relevant when considering trends amongst pensioner populations 

19
 from 33% to 25% 

20
 Note that Dixon et al (and Banks et al (2006)) also suggest that there is little evidence of socio-economic differences in accessing primary 

care. For a fuller discussion on these issues see LSE for the Equality and Human Rights Commission 
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Within the context of the drivers of UK 

mortality there is some limited empirical 

evidence to support this theory – for 

example the analysis of Evandrou & 

Falkingham (2002) of smoking patterns by 

manual and non-manual socio-economic 

group for a variety of birth cohorts.   

However, one thing which can be stated 

with confidence is that the different socio-

economic groups have different 

propensities to the different causes of 

death. We can see this in figure 3.4 which 

highlights how cancers (neoplasms) are a 

larger contributor to mortality amongst 

those living in the least deprived areas than 

to those living in the most deprived areas.  

Although the overall proportion of mortality 

associated with circulatory diseases is 

similar between these two groups, the 

overall mortality rate associated with each 

cause is noticeably higher for the most 

deprived group.  In the case of circulatory 

disease this is likely to reflect the persistent 

socio-economic inequalities in risk factors 

such as obesity, systolic blood pressure 

and physical activity as highlighted by 

Scholes et al (2012). 

Figure 3.4: Split of mortality by cause of death for the most and least 

deprived quintiles of England, ages 25-84 (Villegas et al (2014)) 

To the extent these socio-economic groups will respond differently to government interventions, or be the focus 

of targeted health policies, demographic basis risk emerges. 

3.4 Is the past a guide to the future? 

Whilst we are able to cast some light on the drivers of historical trends, a natural concern is whether past 

improvements are a guide to future improvements.  For example it is only possible to cease smoking once.  It 

might therefore be argued that in the absence of replacement drivers future improvements might be slower than 

seen in the past, or indeed impinged by such factors as rising obesity (Olshansky et al (2005)). An alternative 

school of thought might be that historical trends are sustainable as medical and behavioural interventions 

successfully shift to keep pace with the prevailing causes of deaths of the time
21

.  Naturally there is also the 

likelihood of new emerging drivers not yet identifiable in the historical data, and as the leading cause of death 

shifts from the circulatory disease to cancers the pace and shape of future improvements is changing.  Caution 

is therefore needed in extrapolating the trends seen in historical data when modelling basis risk. 

In the context of demographic basis risk we are particularly concerned with the scope for differences in the 

trends seen within the mix of lives within a specific book, and the reference population.  In this regard the past 

has historically shown divergence amongst socio-economic groups (as per figure 2.2); however more recently, 

and particularly within the subset of lives likely to be covered by index swaps, we have seen faster 

                                                      
21

 See for example Baxter (2007) for further discussion of historical drivers and a selection of possible future drivers  
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improvements in the lower socio-economic groups (figure 2.10) and some convergence of mortality rates. When 

fitting models for the mortality of the book population vs the reference population care is therefore needed to: 

1 Understand how the model reflects this shifting dynamic, and whether it implicitly incorporates an 

assumption of divergence or convergence of mortality and of life expectancies between the different 

socio-economic groups, or allows some possibility of either eventuality. 

2 Interact with the modelling to apply user judgement where you have strong reason to believe that future 

outcomes may differ from those implied by historical trends. 
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4 Modelling problem 

In order to be able to assess basis risk, we need a model that is able to capture the mortality trends in the 

reference population backing the hedging instrument and in the book population, the longevity risk of which is to 

be hedged. This modelling is needed in order to generate a distribution of future scenarios to evaluate the 

possibly different evolution of mortality rates in the two populations. Given this model, then the assessment of 

sampling risk and structuring risk becomes straightforward. 

We denote by 𝑅 the reference population and by 𝐵 the book and assume that the following data is available. 

 For the reference population, 

- 𝐷𝑥𝑡
𝑅  number of deaths aged 𝑥 last birthday in calendar year 𝑡 

- 𝐸𝑥𝑡
𝑅  initial exposed to risk for age 𝑥 and calendar year 𝑡. 

- The corresponding 1-year death rate for an individual in the reference population aged x last 

birthday and in calendar year t, denoted 𝑞𝑥𝑡
𝑅 , can be computed as 𝑞𝑥𝑡

𝑅 = 𝐷𝑥𝑡
𝑅 /𝐸𝑥𝑡

𝑅 . 

 Similarly, the corresponding quantities for the book population are denoted 𝐷𝑥𝑡
𝐵 ,  𝐸𝑥𝑡

𝐵 and 𝑞𝑥𝑡
𝐵 = 𝐷𝑥𝑡

𝐵 𝐸𝑥𝑡
𝐵⁄ . 

We assume that this data is available for a given set of ages and given numbers of years that can differ in the 

reference and the book. More precisely, we assume that 𝐷𝑥𝑡
𝑅 , 𝐸𝑥𝑡

𝑅 are available for consecutive ages 𝑥 = 𝑥1, … , 𝑥𝑙 

and consecutive calendar years 𝑡 = 𝑡1, … , 𝑡nR
 in the reference population, while in the book 𝐷𝑥𝑡

𝐵 , 𝐸𝑥𝑡
𝐵  are available 

for ages 𝑥 = 𝑥1, … , 𝑥𝑚 and calendar years 𝑡 = 𝑢1, … , 𝑢nB
.  

Typically, data for the reference population will be available over a longer horizon than in the book, that is 

nR ≥ nB.  Also, the set of calendar years of data in the book may be a subset of the corresponding calendar 

years in the reference population i.e. we may find that 𝑢nB
≠ 𝑡nR

. Further the ages available within the book may 

be a subset of those available in the reference population. 

The modelling problem is then to identify a suitable model for 𝑞𝑥𝑡
𝑅  and 𝑞𝑥𝑡

𝐵  which produces consistent, stochastic, 

forecasts of future mortality
22

. 

 

 
  

                                                      
22

 We would note that for user convenience we have chosen to work with one-year death probabilities 𝒒𝒙𝒕, as this a typical quantity of 

interest. However, if interested in central death rates, mx, or the force of mortality, μx, then the general modelling framework can be easily 

reformulated. When only central exposures are available and initial exposure are required, one can approximate the initial exposures to the 

risk of death by adding half the matching reported numbers of deaths to the central exposures (e.g. Section 2.2 Forfar et al., 1988). In 

addition, we do not expect to see any material differences in our analysis if central death rates, mx, or the force of mortality, μx, were 

considered instead. 
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5 Overview of available models 

This section provides a general introduction to the available models to represent the mortality dynamics in the 

reference and the book populations. Figure 5.1 contains a schematic representation of the multi-population 

models currently available in the published literature, broadly grouped according to three main categories which 

we introduce in the next section.
23

 

 

Figure 5.1: Universe of multi-population models 

5.1 Literature review 

Many models have been proposed in the literature to represent the mortality evolution of two or more related 

populations. All such contributions extend known single population models by specifying the correlation and 

interaction between the involved populations. 

Although most of the academic contributions to the modelling of multi-populations are fairly recent, the first 

ideas go back to the seminal paper by Carter & Lee (1992), which suggested possible ways of extending their 

single population model in order to forecast differentials in US mortality between men and women. 

Many existing models focus on the mortality rates of two or more related populations such as: 

 National populations of different countries 

 Men and women within a given country/population 

 Smokers and non-smokers within a given country/population. 

                                                      
23

 Note that some models in Figure 5.1 are expressed in terms of force of mortality rather than the one year probability of death (our 

preferred choice) 
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A review and comparison of multi-population models can be found in Li and Hardy (2011), Villegas and 

Haberman (2014), Danesi et al. (2014), and Li et al. (2014). 

Some relevant papers are as follows: 

 Li and Lee (2005) first explicitly formulated the joint modelling of two related populations using an 

extension of the Lee-Carter model where specific and common period terms are included. 

 Li and Hardy (2011) contains a comparison of some models in the context of assessing longevity basis 

risk. 

 Cairns et al (2011b) and Jarner and Kryger (2011) recognize the relative importance of the reference 

population backing the index and the population whose longevity risk is to be hedged. Therefore, the 

model focuses on the reference population first and then on the spread between the reference and the 

book. 

 Li et al. (2014) compare several two population extensions of the CBD – M5, M6 and M7 type models. 

Many of the models shown in Figure 5.1, including both the extensions of the Lee-Carter approach (based on a 

non-parametric age term) and of the CBD approach (based on a parametric age term), can be fitted into a 

common framework – see the next section.  There are, however, other contributions in the literature which 

attack modelling multi-population mortality from a different point of view. For instance, Biatat and Currie (2010) 

extend to two populations the P-spline methodology that has been successfully applied in the single population 

case, while Hatzopoulos and Haberman (2013) use a multivariate GLM. 

5.2 Modelling the reference and the book population: A general formulation 

We have identified a general framework under which most models that have been introduced in the literature 

can be accommodated. However, in order to facilitate this comparison between models, the way such models 

are proposed here may slightly differ from their original formulation. 

As in Jarner and Kryger (2011) we choose a “relative approach” where the reference population is modelled 

first, and then the book mortality dynamics are specified so as to incorporate features from the reference 

population. This relative approach has some interesting features: 

 It allows data mismatch between the reference and the book. 

 It is well suited to the usual situation of the reference population being considerably larger than the book 

population. 

 Reference population models are readily available and extensively studied, so this part of the model may 

be well established; allowing the focus to be on making an informed decision for the book part of the 

model, whilst retaining a good fit to the reference population. 

 It provides consistency of approach when modelling several books using the same reference population. 

Recall that 𝐷𝑥𝑡
𝑅  and 𝐷𝑥𝑡

𝐵  are the number of deaths aged 𝑥 last birthday in the calendar year 𝑡 in the reference 

population (𝑅) and the book population (𝐵) respectively. The corresponding initial exposures and 1-year death 

rates are 𝐸𝑥𝑡
𝑅 , 𝐸𝑥𝑡

𝐵 , 𝑞𝑥𝑡
𝑅  and 𝑞𝑥𝑡

𝐵 .   
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5.2.1 Reference population 

A general model for the reference population can be written as
24

 

 𝐷𝑥𝑡
𝑅 ∼ 𝐵𝑖𝑛(𝐸𝑥𝑡

𝑅 , 𝑞𝑥𝑡
𝑅 ) (1) 

 
𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) = log (
𝑞𝑥𝑡

𝑅

1 − 𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + ∑ 𝛽𝑥
(𝑗,𝑅)

𝜅𝑡
(𝑗,𝑅)

𝑁

𝑗=1

+ 𝛾𝑐
𝑅 (2) 

Here: 

 The term 𝛼𝑥
𝑅 determines the reference mortality level for age group 𝑥. 

 𝑁 is some integer, allowing the user flexibility on the number of components which contribute to the 

mortality trend for the reference population with:  

- Each time index 𝜅𝑡
(𝑗,𝑅)

 contributing to the reference mortality trend. 

- Each coefficient 𝛽𝑥
(𝑗,𝑅)

 dictates how mortality in the corresponding age group 𝑥 reacts to a change 

in the corresponding time index 𝜅𝑡
(𝑗,𝑅)

 i.e. it modulates the sensitivity of the reference population at 

different ages to the general trend. 

 The term 𝛾𝑐
𝑅 is the cohort effect in the reference population (for birth cohort 𝑐 = 𝑡 − 𝑥).

25
 

5.2.2 Book population 

Given the reference population model, the book population is then specified through 

 𝐷𝑥𝑡
𝐵 ∼ 𝐵𝑖𝑛(𝐸𝑥𝑡

𝐵 , 𝑞𝑥𝑡
𝐵 ) (3) 

 
𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝐵 + ∑ 𝛽𝑥
(𝑗,𝐵)

𝜅𝑡
(𝑗,𝐵)

𝑀

𝑗=1

+ 𝛾𝑐
𝐵 (4) 

Note that we are modelling the difference in the (logit of) mortality in the book and the reference populations. 

Therefore: 

 The term 𝛼𝑥
𝐵 determines the mortality level differences of the book population compared to the reference 

population for age group 𝑥. Hence the mortality level in the book is 𝛼𝑥
𝑅 + 𝛼𝑥

𝐵. 

 𝑀 is some integer (generally less than or equal to 𝑁), allowing the user flexibility on the number of 

components which contribute to the trend in differences in mortality between the book population and 

reference population with:  

- Each time index 𝜅𝑡
(𝑗,𝐵)

 contributes in shaping the difference in mortality trends. 

- Each coefficient 𝛽𝑥
(𝑗,𝐵)

 dictates how mortality differences for age group 𝑥 react to a change in the 

corresponding time index 𝜅𝑡
(𝑗,𝐵)

. 

 The term 𝛾𝑐
𝐵 accounts for the differences in cohort effect in the two populations (again for birth cohort 

𝑐 = 𝑡 − 𝑥). Hence the cohort effect in the book is  𝛾𝑥
𝑅 + 𝛾𝑥

𝐵 

Depending on how the model is specified, identification constraints may have to be added to (1)-(4) in order to 

ensure that there is a single set of parameters which will yield a given set of mortality rates. 

                                                      
24

 Here, we have chosen to work with one-year death probabilities 𝒒𝒙𝒕. Therefore, it is most natural to use the logit function and model 

deaths using a binomial distribution. However, if interested in central death rates, mx, or the force of mortality, μx, then the general modelling 

framework can be easily reformulated using a log link function and a Poisson Distribution. 

25 Note that equation (2) does not allow for an age-modulating factor in the cohort term. Models including such a factor have been 

considered by Haberman and Renshaw (2011) and Cairns et al (2009) and have been found to have robustness issues. 
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The estimation of the parameters of the model is performed in two stages whereby by the reference population 

part of the model is estimated in a first stage and then, conditional on the reference population parameters, the 

book population part of the model is estimated in a second stage
26

. 

5.2.3 Time series dynamics 

The modelling is completed by specifying the dynamics of the period indices and the cohort terms which are 

needed for forecasting and simulating future mortality. Although alternatives have been explored by some 

authors (see e.g. Li et al (2013)) for the choice of the time series used in the dynamics, we (initially) confine our 

work to those commonly used in the literature.  We discuss some of the consequences of this and alternative 

time series for the book population in section 9. A review of these basic time series choices and their properties 

is in Appendix C. 

5.2.3.1 Reference population 

Starting with the reference population, we assume that 

𝜅𝑡
𝑅 = 𝑑 + 𝜅𝑡−1

𝑅 + 𝜉𝑡
𝑅 , 𝑑 = [

𝑑1

⋮
𝑑𝑁

]  , 𝜅𝑡
𝑅 = [

𝜅𝑡
(1,𝑅)

⋮

𝜅𝑡
(𝑁,𝑅)

]  ,   𝜉𝑡
𝑅 ∼ 𝑁(0, 𝛴𝑅) (5) 

𝛥𝛾𝑐
𝑅 = 𝜙0 + 𝜙1𝛥𝛾𝑐−1

𝑅 + 𝜀𝑐
𝑅 , 𝜀𝑐

𝑅 ∼ 𝑁(0, 𝜎𝑅
2) (6) 

where 𝛴𝑅 is an 𝑁 x 𝑁 variance-covariance matrix of the multivariate white noise 𝜉𝑡
𝑅 and 𝛥𝛾𝑐

𝑅 denotes 𝛾𝑐
𝑅 − 𝛾𝑐−1

𝑅 . 

Further: 

 The time index 𝜅𝑡
𝑅 is modelled as a multivariate random walk with drift (MRWD), so that a trend is 

implicitly assumed and the variance is growing with time (following Haberman & Renshaw (2011)) 

 The cohort index 𝛾𝑐
𝑅 is modelled as an integrated auto-regressive process ARI(1,1) so as to capture a 

possible linear trend in the cohort effect when extending to the more recent birth years than covered by 

the data (following Renshaw & Haberman (2006)) 

5.2.3.2 Book population 

As for the book population, we follow the assumption commonly made in the literature (see e.g. Jarner and 

Kryger (2011) and Li and Lee (2005)). More precisely we assume that in the long-run the two populations 

experience similar improvements
27

 and therefore model the spread in the time indexes and in the cohort effects 

as stationary processes: 

𝜅𝑡
𝐵 = 𝛷0 + 𝛷1𝜅𝑡−1

𝐵 + 𝜉𝑡
𝐵 , 𝛷0 = [

𝛷01

⋮
𝛷0𝑀

]  ,   𝜅𝑡
𝐵 = [

𝜅𝑡
(1,𝐵)

⋮

𝜅𝑡
(𝑀,𝐵)

]   ,   𝜉𝑡
𝐵 ∼ 𝑁(0, 𝛴𝐵) (7) 

𝛾𝑐
𝐵 = 𝜓0 + 𝜓1𝛾𝑐−1

𝐵 + 𝜀𝑐
𝐵 , 𝜀𝑐

𝐵 ∼ 𝑁(0, 𝜎𝐵
2). (8) 

where 𝛴𝐵 is an 𝑀 x 𝑀 variance-covariance matrix of the multivariate white noise 𝜉𝑡
𝐵 and 𝛷1 is an 𝑀 x 𝑀matrix.  

 

                                                      
26

 An alternative approach would be to estimate simultaneously the parameters in the reference and book populations. This would in 

principle not materially change the fitted parameters as it is expected that book population has a small size relative to the reference 

population. A further possibility would be to fit the reference and book models in equations (1)-(4) jointly with the time series specified in (5)-

(8) using a Bayesian approach as done in in Cairns et al (2011a).  

27
 This will clearly have implications for the quantification of basis risk – a point we shall return to in section 9 
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 The time indices 𝜅𝑡
𝐵 are then modelled as a vector auto-regressive process of order 1 (VAR(1)), for which 

we assume that the eigenvalues of the matrix 𝛷1 are smaller than 1 in absolute value. 

 The cohort difference 𝛾𝑐
𝐵 follows an AR(1) process for which we assume that 𝜓1 to be smaller than 1. 

 We are assuming independence of the time series determining the reference population and those 

determining the difference between the reference and the book populations. Considering correlation 

between 𝜉𝑡
𝑅 and 𝜉𝑡

𝐵 or between 𝜀𝑐
𝑅 and 𝜀𝑐

𝐵 is in principle possible, as has been done e.g. in Cairns et al. 

(2011a). However, we have refrained from implementing this due to the fact that estimation of the 

correlations may become complicated. For example, this is the case when the time series for the 

reference and the book have different lengths, which is very frequent in practice. 

5.3 Classification of models 

The universe of two population mortality models covered by the general formulation in 5.2 can be broadly 

classified into the following, non-exclusive, categories: 

 Lee-Carter family (non-parametric age parameters): Here age is treated as factor, and the parameters 

𝛼𝑥
𝑖 , 𝛽𝑥

(𝑖,𝑗)
 (𝑖 = 𝑅, 𝐵), when present, are not subject to any restriction and represent parameters to be 

estimated. An example is the augmented common factor model 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + 𝛽𝑥
𝑅𝜅𝑡

𝑅 , 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) = 𝛼𝑥
𝐵 + 𝛽𝑥

𝐵𝜅𝑡
𝐵 

 CBD family (parametric age structures):  Age is treated as a continuous variable and the parameters 

𝛼𝑥
𝑖 , 𝛽𝑥

(𝑖,𝑗)
 (𝑖 = 𝑅, 𝐵) are specified as functions of age 𝑥 and therefore do not need to be estimated. An 

example is the two population M5 model 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝑅 ) = 𝜅𝑡

(1,𝑅)
+ (𝑥 − 𝑥)𝜅𝑡

(2,𝑅)
, 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝑅 ) = 𝜅𝑡

(1,𝐵)
+ (𝑥 − 𝑥)𝜅𝑡

(2,𝐵)
 

 Other models: Models that do not fit into the previous two families. For instance models that include both 

parametric and non-parametric age parameters such as the Plat+Lee-Carter model 

𝑙𝑜𝑔𝑖𝑡( 𝑞𝑥𝑡
𝑅 ) =  𝛼𝑥

𝑅 + 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ 𝛾𝑡−𝑥
𝑅 , 

 logit 𝑞𝑥𝑡
𝐵 − logit 𝑞𝑥𝑡

𝑅 = 𝛼𝑥
𝐵 + ∑ 𝛽𝑥

(𝑗,𝐵)
𝜅𝑡

(𝑗,𝐵)

𝑀

𝑗=1

 

Figure 5.2 depicts the 3 categories of models and their relationship.  
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Figure 5.2. Universe of two-population mortality models 
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6 Identifying an appropriate two population model 

With the vast number of existing two population models, the main problem is identifying which model(s) are 

most likely to provide a practical solution to assessing basis risk. To provide structure to this analysis, it is useful 

to test each model against certain criteria that a good and practical two population model for basis risk 

assessment should satisfy. 

6.1 Criteria  

Building on the literature comparing single population models (e.g. Continuous Mortality Investigation (2007); 

Cairns et al (2009); Cairns et al (2011b), Haberman and Renshaw (2011)), we consider the following criteria: 

1 The model should be easy to implement using standard statistical methods likely to be available to 

practitioners. 

2 The model should be transparent enough so that the model assumptions, limitations and outputs are 

understood by the users and can be easily explained to non-experts.   

3 The model should be compatible with the data that is likely to be available when doing basis risk 

exercises.  

4 The model should allow the disentanglement of level and improvement differences so that previous 

knowledge or alternative models for level differences can be readily incorporated. 

5 The model should permit the consideration of a cohort effect if necessary. 

6 The model should be relatively parsimonious.  

7 The model should produce a non-perfect correlation between year-on-year changes in mortality at 

different ages.
28

 

8 The model should produce a non-perfect correlation between mortality rates in the two populations.
29

   

9 The model should permit the generation of sample paths and the calculation of prediction intervals. 

10 The structure of the model should allow the incorporation of parameter uncertainty in simulations using, 

for instance, bootstrapping techniques. 

11 The model should show a reasonable goodness-of-fit to historical data in both the reference population 

and the book population for a wide range of book populations. 

12 The model should show a reasonable goodness-of-fit for metrics involving the two populations such as 

differences or ratios in mortality rates or life expectancies for a wide range of book populations. 

13 The model should produce mortality rates which are consistent with the observed and expected mortality 

characteristics e.g. be biologically reasonable with mortality increasing with age. 

14 The model should produce plausible and reasonable best estimate projections of both single-

population and two-population metrics. 

                                                      
28

 This refers to the correlation between 𝑞𝑥,𝑡+1
𝑅 − 𝑞𝑥,𝑡

𝑅  and 𝑞𝑦,𝑡+1
𝑅 − 𝑞𝑦,𝑡

𝑅  (or between 𝑞𝑥,𝑡+1
𝐵 − 𝑞𝑥,𝑡

𝐵  and 𝑞𝑦,𝑡+1
𝐵 − 𝑞𝑦,𝑡

𝐵  ) for 𝑥 ≠ 𝑦. Note that this 

correlation may not be perfect, although it will be close to one, even when correlation is perfect on logit scale used by the models introduced 

in section 5  

29
 This refers to the correlation between 𝑞𝑥𝑡

𝑅  and 𝑞𝑧𝑡
𝐵 . Note that this correlation may not be perfect, although it will be close to one, even when 

correlation is perfect on the logit scale used for modelling.  
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15 The model should produce plausible and reasonable forecast level of uncertainty in projections of both 

single-population and of two-population metrics, which are in line with historical levels of variability. 

16 The model should produce a non-trivial implied basis risk. 

17 The model should be robust to changes in the amount of exposures available in the book population. 

18 The model should be robust to changes in the length of the historical data available in the book 

population. 

19 The model should be robust to changes in the socio-economic composition of the book population.  

Criteria 1 to 10 are theoretical properties of the model which can, in principle, be evaluated without reference to 

a specific data set, whereas criteria 11 to 19 can only be evaluated after the model has been fitted to data (and 

the conclusions drawn may therefore be dependent on the choice of dataset). 

6.2 Assessment 

Given the wealth of models available and the large number of criteria, we have followed a multi-stage filtering 

process to identify a shortlist of models likely to be suitable for basis risk assessment. In the first stage (section 

6.2.1) we focus on data-independent criteria (criteria 1-10) and in the second and third stages we focus on 

those criteria that require data to be assessed (section 6.2.2 and section 6.2.3). More specifically, in the second 

stage of filtering we evaluate
30

 the goodness-of-fit and the reasonableness of the output of various models 

(criteria 11-16), whilst in the third stage we investigate the robustness of those models which have passed the 

previous levels of filtering in order to ensure that they perform well in a wide range of circumstances (criteria 17 

to 19).  Appendix B contains further details of the assessment of each model against the criteria. 

6.2.1 Stage 1 filtering: Criteria requiring no data to assess 

We first evaluate all the candidate models against those criteria that can be assessed independently of data or 

the actual fitting of the models.  This process permits the identification of a number of models which could be 

rejected, either because their theoretical properties are not suitable for basis risk assessment or because they 

are unlikely to be accessible to the wider industry.  The main considerations which lead to models being 

rejected are: 

 Criterion 8 - Non-perfect correlation between mortality rates in the two populations:  If a model 

assumes or implies a perfect correlation between mortality rates in the two populations then it will imply 

that the reference population provides a perfect match for the book population. Although this might not be 

an issue for other purposes, this is clearly inappropriate for basis risk assessment as it will trivially lead to 

no (or very little) demographic basis risk
31

. This leads to the rejection of those Lee-Carter based models 

with a single common period effect for both populations including the Stratified Lee-Carter, the Piggyback 

Model, the Common Factor Model, the Three-way Lee-Carter, and the Joint-κ model. 

 Criterion 3 - Compatibility with available data: The data requirements of some of the models are 

incompatible with the likely available data. For instance, it is unlikely that the book population will provide 

the same length of history as the reference population, hindering the application of models which cannot 

deal with such a scenario. In particular, this requirement leads to the rejection of two further Lee-Carter 

based models, namely the Lee-Carter VAR/VECM and the Co-integrated Lee-Carter. In addition, models 

                                                      
30

 As part of our assessment of the models we verified criteria 16 at the second stage, however we present the results verifying this as part 

of our case study 
31

 A perfect correlation between the reference and the book populations always implies no or very little basis risk as the two populations 

move in parallel. However, depending on the basis risk metrics used, no or very little basis risk could occur for models where the two 

populations are not perfectly correlated. For instance, this is the case of the Relative Lee-Carter +Cohorts models when considering 

aggregate measures such as survival probabilities (see section 6.2.2.4 and Figures 6.6 and 6.8)  
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which use several book-specific period terms are poorly rated against the data compatibility criterion, as 

the more period terms a model has, the longer the data history that is required to estimate appropriately 

the time series processes needed for forecasting.  

 Criteria 1 & 2 – Ease of implementation and transparency: Ease of implementation and transparency 

are essential for a model to be of general use by practitioners. Accordingly, these two criteria lead to the 

rejection of several other models. In particular, the Co-integration approach, the Relative P-splines and 

the Multipopulation GLM are considered to be impractical for basis risk assessment as they are complex 

models which are computationally involved to implement and may be difficult to communicate to non-

experts. In addition, although the Bayesian Two Population model proposed in Cairns et al. (2011a) is 

particularly amenable to the short history and modest exposures sizes of most book datasets, the 

implementation and transparency issues related to the underlying Bayesian approach have led us not to 

consider this model. Finally, the Plat+Lee-Carter model was rejected (apart from other reasons discussed 

later) because it combines a parametric structure for the reference with a non-parametric structure for the 

book, and we believe that for the sake of interpretability of the parameters both parts of the model should 

be within the same family of models. 

After carrying out this initial data-independent assessment 9 models were identified as candidates which are 

worth testing against the data dependent criteria (see figure 6.1). These models are: the Common Age Effect 

Model (with inclusion of a reference population cohort effect – see later), the Augmented-Common-Factor 

model, the Relative Lee-Carter models with cohorts, the Gravity model, the two-population M5, the two-

population M6, the two-population M7, the SAINT model, and the Plat relative model. 

 

Figure 6.1: Remaining models after stage 1 filtering. Rejected models are greyed-out. 
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6.2.2 Stage 2 filtering: Reasonableness criteria requiring data to assess  

In the second stage of filtering we focus on the reasonableness of fitting and output of the models.  This 

involves the evaluation of the historical goodness-of-fit and the (subjective) evaluation of the reasonableness of 

the forecast level of uncertainty produced by the models. This stage enables us to further refine the list of 

candidate models before carrying out in stage 3 additional analysis on the robustness of a shortlist of candidate 

models.   

6.2.2.1 Data 

The evaluation of the reasonableness criteria requires data for model fitting.   We have used as the reference 

population data the England and Wales male mortality experience as obtained from the Human Mortality 

Database (2013). For the purposes of our analysis we have focussed on a subset of this data covering calendar 

years 1961–2010 and those older ages as most relevant to longevity hedging, namely ages 60-89.
 32

  

For the book population we use synthetic datasets generated based on the profile of membership within 

individual Club Vita schemes but using the national mortality data split by IMD. The synthetic datasets used 

throughout this project have been generated by randomly sampling from the national data to obtain a dataset of 

exposure size, history length, and IMD profile desired. The technical details of this data sampling process are 

described in Appendix E. 

The use of synthetic data as opposed to actual pension scheme data from Club Vita facilitates a more thorough 

assessment of the models. Concretely, synthetic datasets permit us to control some key characteristics of the 

book population data while changing others. For instance, it allows us to vary the history length and exposure 

size of the book data whilst keeping the socio-economic and age composition constant (preventing distortions 

arising either from gentrification or ageing of the portfolio over time). Moreover, synthetic datasets let us rely on 

the longer history of the national IMD mortality data to perform back testing exercises such us those described 

in Section 6.2.3. 

For the assessment of the goodness-of-fit of the models, we consider four different synthetic datasets to reflect 

the variety of socio-economic mixes observed in real pension schemes and annuity books. In each case, the 

socio-economic splits are informed by the profiles seen within the Club Vita dataset. Table 6.1 describes the 

socio-economic profiles of these datasets while Figure 6.2 depicts the ratio of the mortality in each of the four 

datasets to the mortality in England and Wales. In all cases we use sample books with historical exposures of 

100,000 male lives per year, which we believe is the largest exposure any scheme or insurer is likely to have. 

We also assume that book data are available for the period 1981–2010 and ages 60 to 89. (We return to smaller 

book sizes and shorter periods of experience data in 6.2.3.)  

From Figure 6.2 it is worth noting that:  

 The ordering of the ratios in the four data sets is consistent with their socio-economic mixes, with the 

“Extreme Wealthy” dataset having below average mortality (ratio < 1) and the “Extreme-Deprived” dataset 

having above average mortality (ratio > 1).  

 The mortality ratios for both the “Typical Lives” and “Typical Amounts” dataset are close to 1 reflecting the 

socio-economic mix of these datasets being close to the average in England and Wales.  

 In all of the datasets the mortality ratios converge with rising age. This is consistent with the commonly 

reported decrease in socioeconomic mortality differences as people age (Hoffmann, 2005).  

                                                      
32

 Although data are available above age 90, we have decided not to use them as age at death is often misreported at these higher ages 

resulting in unreliable estimates of mortality rates. 
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 None of the datasets show any very clear increasing or decreasing time trend in the mortality ratios, albeit 

there is a slight upward trend to the “Extreme Deprived” and a slight downward trend in the “Extreme 

Wealthy” 

 

Dataset Description 

Percentage of exposure by 

IMD quintile 

Q1 Q2 Q3 Q4 Q5 

Typical Lives This is the typical IMD split we would expect to see in a book 

population weighted by lives (head-count). 
23% 22% 21% 20% 14% 

Typical Amounts This uses the same split as the typical (lives) but weighted by 

individual pension amounts to approximate the effect of a 

typical portfolio’s liability distribution amongst the IMDs 

30% 25% 20% 15% 10% 

Extreme Wealthy This reflects the split by IMD (on an amounts weighted basis) 

that we would expect to see in a very affluent book population 
45% 30% 20% 5% 0% 

Extreme Deprived This reflects the split by IMD (on a lives weighted basis) that 

we would expect to see in a book skewed towards lower socio-

economic groups 

10% 15% 15% 25% 35% 

Table 6.1: Description of the book datasets used for model testing 

 

Figure 6.2: Ratio of the mortality in each of the four synthetic book datasets to the mortality in England and Wales. The top graph shows this 

ratio by age while the bottom one presents the time evolution of this ratio 
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6.2.2.2 Model fitting 

To facilitate the fitting of the 9 models that passed our first-stage filtering, we have followed the general 

modelling framework described in section 5.2 whereby each model can be viewed as a model for the reference 

population combined with a model for the book population (or perhaps more accurately, a model for the logit 

difference between reference and book).  As such, the fitting and the assessment of the goodness-of-fit of a 

model can be carried out in two stages: fitting and assessing the goodness-of-fit of the reference model, 

followed by the fitting and the assessment of the goodness-of-fit of the book part of the model.  

We note that conclusions regarding the goodness-of-fit of the model to the reference may lead us to slightly 

modify the original formulation of certain of the two-population models before assessing the goodness-of-fit of 

the book part of the model. The specific modifications for each particular two-population model are described 

later in this section. 

6.2.2.3 Goodness-of-fit for the reference population 

For the reference population we concentrate on the six models described in Table 6.2 which are labelled Lee-

Carter, Lee-Carter+Cohorts, APC, M5, M6 and M7. The Lee-Carter+Cohorts
33

 is one of the Renshaw & 

Haberman (2006) extensions of the original Lee-Carter model. The APC model is a special case of the Lee-

Carter+Cohorts. Models M6 and M7 are extensions of the original CBD model (M5) and were proposed in 

Cairns et al. (2009). These models encompass the reference population models underlying the models that 

passed our first stage filtering with the exception of the SAINT model. For the SAINT model, instead of the 

frailty-type model considered originally by Jarner & Kryger (2011) which we believe is too complex to be 

accessible to practitioners, we will use M7 to model the mortality of the England and Wales reference 

population.  

Model Formula 

Lee-Carter logit(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + 𝛽𝑥
𝑅𝜅𝑡

𝑅 

Lee-Carter + Cohorts logit(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + 𝛽𝑥
𝑅𝜅𝑡

𝑅 + 𝛾𝑡−𝑥
𝑅  

APC logit(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + 𝜅𝑡
𝑅 + 𝛾𝑡−𝑥

𝑅  

M5 logit(𝑞𝑥𝑡
𝑅 ) = 𝜅𝑡

(1,𝑅)
+ (𝑥 − �̅�)𝜅𝑡

(2,𝑅)
 

M6 logit(𝑞𝑥𝑡
𝑅 ) = 𝜅𝑡

(1,𝑅)
+ (𝑥 − �̅�)𝜅𝑡

(2,𝑅)
+ 𝛾𝑡−𝑥

𝑅  

M7 logit(𝑞𝑥𝑡
𝑅 ) = 𝜅𝑡

(1,𝑅)
+ (𝑥 − �̅�)𝜅𝑡

(2,𝑅)
+ ((𝑥 − �̅�)2 − 𝜎𝑥

2)𝜅𝑡
(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

Table 6.2: Mathematical description of the six models considered for the reference population. 

We first assess the goodness-of-fit of the candidate reference population models by examining sign plots of 

deviance residuals. Regular patterns in the residuals are an indication of the inability of the model to describe all 

of the features of the data appropriately. Figure 6.3 plots the sign of the residuals in an age-period grid for the 

six reference population models. From this figure we note the following:  

                                                      
33

 It is well known that cohort extensions of the Lee-Carter model have robustness and stability issues (see e.g. Cairns et al. (2009)) with 

model being very sensitive to changes in the data or the fitting algorithm. Therefore, when implementing the Lee-Carter+Cohorts model we 

do not consider an age-modulating factor in the cohort term and follow the approach suggested in Hunt & Villegas (2014) which helps 

resolve many of the stability issues. (See page 59 for further details). 
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 The Lee-Carter and M5, which do not incorporate a cohort effect, show diagonal clusters of positive and 

negative residuals. This provides strong evidence for the existence of a cohort effect in the England and 

Wales reference population.  

 The APC models show a strong clustering of positive and negative residuals. This is due to its inability to 

allow for varying improvement rates with age. 

 

Figure 6.3: Sign plots of deviance residuals for the England and Wales males reference population. Positive residuals in grey and negative 

residuals in black. 

Figure 6.4: Scatterplots of deviance residuals for the England and Wales males reference population using models Lee-Carter+Cohorts and 

M6.  

Lee-Carter Lee-Carter + Cohorts APC 

M5 M6 M7 

Lee Carter + Cohorts 

M6 
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 The Lee-Carter+Cohorts and M6 look reasonably random, but still with some clustering of positive and 

negative residuals. Closer inspection of scatterplot of the residuals of these two models (see Figure 6.4) 

reveals that the Lee-Carter+Cohorts doesn’t show any clear pattern while model M6 shows a strong 

pattern by age. This latter pattern reflects the lack of a quadratic age term in model M6 which may be 

necessary to capture the commonly observed curvature of the mortality rates in a logit scale. 

 The M7 look reasonably random, indicating a satisfactory fit to the data. 

In order to assess more formally the goodness-of-fit of the six reference population models, we present in table 

6.3 the Akaike Information Criterion (𝐴𝐼𝐶), defined as 2𝜈𝑅 − 2ℓ𝑅, where ℓ𝑅 is the loglikelihood of the reference 

model and 𝜈𝑅 is the number of parameters of the models. The 𝐴𝐼𝐶 provides a way of assessing the balance 

between quality of fit and parsimony. In general, a lower value of 𝐴𝐼𝐶 is preferable. We note that the Lee-

Carter+Cohorts and M7 are the best fitting models. 

Model Number of parameters AIC (rank) 

Lee-Carter 107 77,500,234 (5) 

Lee-Carter + Cohorts 183 77,494,610 (2) 

APC 154 77,496,340 (4) 

M5 98 77,501,279 (6) 

M6 174 77,494,736 (3) 

M7 222 77,494,283 (1) 

Table 6.3: Effective number of parameters, and AIC for different models fitted to the England and Wales reference population. AIC rankings 

across models are presented in brackets 

The previous observations are consistent with the existing literature comparing single population mortality 

models (e.g. Cairns et al. (2009) and Haberman & Renshaw (2011)), where the Lee-Carter+Cohorts and M7 

have been identified as appropriate models for modelling mortality in the England and Wales population. 

Accordingly, in our subsequent evaluation of two-population extensions of the Lee-Carter model, we will assume 

that the reference population is modelled using a Lee-Carter model with cohorts. Similarly, when assessing the 

two-population extensions of the CBD model, we will assume that the reference population is modelled using an 

M7 model. 

6.2.2.4 Goodness-of-fit for the book population and two population metrics 

To correct some of the goodness-of-fit issues discussed above, we have adapted several of the candidate two-

population models before carrying out further goodness-of-fit assessments. Specifically, we have made the 

following adaptations: 

 The Common Age Effect model, as proposed in Kleinow (2013), does not include a cohort effect. 

Therefore, given that there is strong evidence of a cohort effect in England and Wales, in our testing we 

extend this model to include such an effect. The reference population model is then a Lee-Carter + 

Cohorts model in the terminology of 6.2.1.   

 Similarly, for the Augmented Common-Factor model we should consider a cohort effect, but doing so 

would turn the model into the Relative Lee-Carter model with cohorts. Consequently, the Augmented 

Common-Factor model is not considered further in the analysis. 

 In the two-population M5 and the two-population M6 models we replace the corresponding M5 and M6 

models for the reference population with an M7 model.   
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 For the Relative Plat model we assume an M7 model for the reference population as opposed to the M5 

model originally assumed by Plat (2009b).  

 For the SAINT model we assume an M7 model for the reference population instead of the frailty-type 

model originally used by Jarner & Kryger (2011).  

For comparison purposes, in some of our additional goodness-of-fit and reasonableness testing we will consider 

the Common Factor Model with cohorts. This model, which was previously deemed inappropriate as it 

unrealistically implies zero basis risk, is useful for illustrating some of the undesired characteristics in a model to 

put the other models into context. 

Table 6.4 (next page) summarises the models whose goodness-of-fit will be investigated further. The Common 

Factor models with cohorts (CF+Cohorts), the Common Age Effect model with cohorts (CAE+Cohorts), and the 

relative Lee-Carter model with cohorts (RelLC+Cohorts) belong to the Lee-Carter family of models described in 

section 5.3. The CF+Cohorts only allows for level differences between the reference and the book population, 

whilst the CAE+Cohorts and the RelLC+Cohorts also allow for improvement differences. Nevertheless, the latter 

two models differ in the specification of the age-modulating factor 𝛽𝑥
𝐵 accompanying the book-specific time index 

𝜅𝑡
𝐵: in the RelLC+Cohorts 𝛽𝑥

𝐵 is estimated directly from the observed logit difference of mortality between the 

book and reference data, whilst in the CAE+Cohorts 𝛽𝑥
𝐵 is inherited from the reference population model, i.e. 𝛽𝑥

𝐵 

≡ 𝛽𝑥
𝑅. 

Models M7-M5, M7-M6,  M7-M7, M7-SAINT, and M7-Plat (which are the implemented versions of the two 

population CBD, the two population M6, the two population M7, the SAINT model, and the Relative Plat model, 

respectively) all belong to the CBD family of models. These models differ in the type of differences between the 

book and the reference population that are allowed for in the parametric age functions:  

 M7-M5 and M7-M6 allow only for level and slope differences with M6 also allowing for cohort differences; 

 M7-SAINT, M7-M7 allow for level, slope and curvature differences with M7 also allowing for cohort 

differences; and 

 M7-PLAT is a constrained version of M7-M5 assuming that at age 100 there is no difference between the 

reference and the book.   
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Original model Model tested Reference formula (𝐥𝐨𝐠𝐢𝐭(𝒒𝒙𝒕
𝑹 )) Book differences formula (𝐥𝐨𝐠𝐢𝐭(𝒒𝒙𝒕

𝑩 ) − 𝐥𝐨𝐠𝐢𝐭(𝒒𝒙𝒕
𝑹 )) 

Common Factor CF+Cohorts 𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 + 𝛾𝑡−𝑥

𝑅  𝛼𝑥
𝐵 

Common Age Effect CAE+Cohorts 𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 + 𝛾𝑡−𝑥

𝑅  𝛼𝑥
𝐵 + 𝛽𝑥

𝑅𝜅𝑡
𝐵 

Relative Lee-Carter 

with cohorts 

RelLC+Cohorts 𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 + 𝛾𝑡−𝑥

𝑅  𝛼𝑥
𝐵 + 𝛽𝑥

𝐵𝜅𝑡
𝐵 

Gravity  Gravity (APC) 𝛼𝑥
𝑅 + 𝜅𝑡

𝑅 + 𝛾𝑡−𝑥
𝑅  𝛼𝑥

𝐵 + 𝜅𝑡
𝐵 + 𝛾𝑡−𝑥

𝐵  

Two-population M5 M7-M5 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

𝜅𝑡
(1,𝐵)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝐵)

 

Two-population M6 M7-M6 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

𝜅𝑡
(1,𝐵)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝐵)

+ 𝛾𝑡−𝑥
𝐵  

Two-population M7 M7-M7 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

𝜅𝑡
(1,𝐵)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝐵)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝐵)
+ 𝛾𝑡−𝑥

𝐵  

SAINT model M7-SAINT 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

𝜅𝑡
(1,𝐵)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝐵)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝐵)
 

Plat relative model M7-Plat 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

100 − 𝑥

100 − �̅�
𝜅𝑡

(1,𝐵)
 

 

Table 6.4: Mathematical description of the two population models considered for goodness-of-fit assessment. In the equations  x̅ is the average age in the data and σx
2 is the average value of 

(x − x̅)2. Note the commonality of the reference formula for the first three rows, and similarly for two–population M5 onwards. 
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A good two-population model should show a reasonable fit to the historical mortality rates in both the reference 

population and the book population. In addition, the model should show a good fit to metrics involving the two 

populations such as differences or ratios of mortality rates. This last criterion is very relevant as demographic 

basis risk emerges from the mismatch in the mortality of the reference and the book population. 

When assessing the quality of the fit of the models with respect to the book population and with respect to two-

population metrics, we have found that the inspection of residual sign plots is not very informative. In principle, 

this can be attributed to the fact that cohort and age patterns in the book residuals may be confounded with the 

sampling noise in the book data.  

Indeed when assessing the goodness-of-fit to mortality at individual ages we run the risk of focussing on the 

goodness-of-fit at a specific age (typically less than 5% of data) and thus gearing up sampling noise.  In practice 

users of the basis risk methodology will use q- or s- forward structures in order to provide a hedge against 

anticipated annuity payments. Consequently there is less interest in precisely hedging mortality at a single age, 

rather hedging the mortality dynamic over a range of ages.  As an alternative we have therefore examined (for 

this phase of the work) metrics closely related to the quantities someone entering an index-based hedge will be 

seeking to hedge, annuity payments across the age spectrum.  We therefore examine plots of fitted vs. 

observed period survival probabilities in the book and the corresponding plots for ratios of period survival 

probabilities in the book and the reference can give useful insight into the goodness-of-fit of the models.  

As an illustration figure 6.5 depicts the fitted and observed 30 years period survival probabilities at age 60 for 

the ‘Typical Lives’ sample scheme using several models. Figure 6.6 plots the corresponding ratios of fitted to 

observed period survival probabilities between the ‘Typical Lives book’ and the England and Wales reference. 

Figure 6.5 shows that, with the exception of the M7-Plat model which shows a slight underestimation in the later 

years, all the models show a similar and reasonable fit to the period survival probabilities in the book. By 

contrast, when considering ratios of survival probabilities the models show very different performances. In 

particular, from Figure 6.6 we note: 

 The M7-Plat model shows some bias in the fitted ratios consistent with the underestimation seen in the 

period survival probabilities in the book population. The poor fit of this model becomes more evident when 

considering the ‘Extreme Deprived’ dataset (see Figure 6.7). This suggests that the M7-Plat model might 

be too restrictive for some datasets and, thus, we do not consider it further as a candidate for basis risk 

assessment. 

 The CF+cohort and the RelLC +Cohort models produce very smooth ratios of survival probabilities which 

seem to understate the observed volatility in the ratios. Whilst the poor performance of the CF+cohort 

model was expected due to perfect correlation between populations assumed by this model, the poor 

performance of RelLC +Cohort was not.  

 Further investigation of the parameters of the RelLC +Cohort, indicates that the over-smoothed fitted 

ratios can be linked to the presence of a book-specific non-parametric 𝛽𝑥
𝐵 which needs to be estimated 

from the book data. The estimation of this parameter requires large amounts of data, and, hence, with the 

relatively small population sizes of the book populations, the estimated 𝛽𝑥
𝐵 values tend to be erratic and 

lack robustness. In particular, there exists the possibility that 𝛽𝑥
𝐵 fluctuates around 0 (see Figure 6.8) 

which results in mortality differentials between the book and the reference cancelling out when 

aggregated measures of mortality such as survival probabilities and life expectancies are calculated.  

Given that this over fitting of the 𝛽𝑥
𝐵 may result in an inappropriate perfect correlation between the 

reference and the book populations, we consider that the RelLC +Cohort is inadequate for basis risk 

assessment. This conclusion extends to other models with non-parametric 𝛽𝑥
𝐵 parameters such as the 

Augmented Common-Factor model and the Plat+Lee-Carter model.   
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 Some models, such as M7-SAINT and M7-M7 show signs of potential over-fitting to the data 

 

 

Figure 6.5: Fitted vs. observed 30 year period survival probabilities at age 60 for the ‘Typical Lives’ scheme 

  

CF+Cohorts CAE+Cohorts RelLC+Cohorts 
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M7-M7 M7-SAINT M7-Plat 
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Figure 6.6: Fitted vs. Observed ratio of 30 year period survival probabilities at age 60 for the ‘Typical Lives’ scheme 

 

Figure 6.7:  Fitted vs. Observed 30 year period survival probabilities at age 60 for the ‘Extreme Deprived’ scheme using the M7-Plat model 

  

CF+Cohorts CAE+Cohorts RelLC+Cohorts 

Gravity M7-M5 M7-M6 

M7-M7 M7-SAINT M7-Plat 
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Figure 6.8 Fitted age modulating parameter 𝛽𝑥
𝐵 for the RelLC+Cohorts fitted to ‘Typical Lives’ scheme 

 

 

 

6.2.2.5 Trade-off between parsimony and goodness-of-fit (AIC) 

The testing of the goodness-of-fit of the models leaves us with six potential candidate models for basis risk 

assessment. These models are: CAE+Cohorts, Gravity, M7-M5, M7-M6, M7-M7, and M7-SAINT.  

The balance between goodness-of-fit and parsimony of these models is investigated in Table 6.5 where we 

show the 𝐴𝐼𝐶 values
34

 for the book part of each model when applied to the four sample schemes, together with 

the corresponding ranking across models (in brackets). 

From Table 6.5 we note the following: 

 CAE+Cohort and M7-M5 models perform very similarly and show the best compromise between 

goodness-of-fit and parsimony, consistently ranking in the top two places. 

 The Gravity model, M7-M6 and M7-M7, which have a book-specific cohort effect, have the worst trade-off 

between goodness-of-fit and parsimony. 

This suggests that we should generally reject models with a non-parametric book cohort effect on 

grounds of parsimony. However, for the moment we shall retain such models for further investigation.  

 M7-SAINT and M7-M7, which have a quadratic age term in the book model, have a poor trade-off 

between goodness-of-fit and parsimony.  

This suggests that when considering models from the CBD-Family it is necessary to allow for differences 

in “level” of mortality and “gradient” by age, but that an additional parameter for a “curvature” by age is not 

necessary i.e. it is sufficient to inherit the curvature from the reference population.  Thus, we eliminate the 

M7-M7 and M7-Saint models from our list of candidate models. 

  

                                                      
34

 Recall, the AIC value is computed as 𝐴𝐼𝐶 = 2𝜈𝐵 − 2ℓ𝐵 where ℓ𝐵 is the binomial log-likelihood of the book part of the model under the 

assumption that the reference population is treated as a known offset and 𝜈𝐵 is the number of book-specific parameters of the models  
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Model Number of book 

parameters 

Typical 

Lives 

Typical 

Amounts 

Extreme 

Wealthy 

Extreme 

Deprived 

CAE+Cohorts 58 609,078 (2) 593,795 (1) 556,617 (2) 659,538 (1) 

Gravity (APC) 114 609,136 (5) 593,866 (5) 556,639 (5) 659,573 (4) 

M7-M5 58 609,077 (1) 593,800 (2) 556,604 (1) 659,543 (2) 

M7-M6 114 609,136 (4) 593,865 (4) 556,623 (3) 659,597 (5) 

M7-M7 142 609,170 (6) 593,895 (6) 556,654 (6) 659,623 (6) 

SAINT 87 609,114 (3) 593,830 (3) 556,626 (4) 659,561 (3) 

Table 6.5:  Effective number of parameters and AIC for the book part of different two-population models fitted to the four test books. 

6.2.2.6 Reasonable-forecast level of uncertainty 

The outcome of a basis risk assessment exercise will be strongly driven by the expected level of uncertainty 

around the central forecast of the demographic and financial quantities underlying the index-based hedge. More 

specifically, the effectiveness of an index-based hedge will be determined by the quantified magnitude of the 

uncertainty pre and post hedge.  

So far, we have shortlisted the CAE+Cohorts, Gravity, M7-M5 and M7-M6 models based on their theoretical 

properties, practicality and goodness-of-fit performance. However, for basis risk purposes it is crucial to check 

that these models produce reasonable forecast levels of uncertainty for both single and two population metrics. 

This entails judging whether or not the forecasted patterns of uncertainty are in line with historical variability. 

Following Cairns et al (2011b), we assess this property by examining fan charts of the forecasts produced by 

the models. Figure 6.9 presents fan charts of 30 year period survival probabilities at age 60 for the England and 

Wales reference population. Figure 6.10 shows equivalent fan charts of 30 year period survival probabilities at 

age 60 for the “Extreme Wealthy” test book together with fan charts of the difference between the survival 

probabilities in the book and the reference population. Each fan chart presents 95% prediction intervals and 

depicts this forecast output from the stochastic mortality models by dividing the density into 2.5% percentiles. In 

producing the fan charts we have considered the following sources of uncertainty (risk): 

 Process risk (PR) arising from the possible future trajectories of the time series of the period and cohort 

indices; 

 Parameter uncertainty (PU) arising from the estimation of the parameters of the model (including those 

of the time series); and 

 Sampling risk (SR) due to the volatility of the actual mortality experience depending on the size of the 

population. 

In the context of the sources of basis risk introduced in section 1.4, demographic risk arises from the 

combination of process risk and parameter uncertainty. 

In practice, process risk is taken into account by simulating trajectories of the period and cohort indices
35

, 

parameter uncertainty is allowed for by using a binomial adaptation of the bootstrapping approach proposed by 

                                                      
35

 To model process risk we use a multivariate adaptation of Algorithm 2 in Haberman & Renshaw (2009) without provision for parameter 

error. We note that Algorithm 2 in Haberman & Renshaw (2009) is itself an adaptation of the prediction interval approach of Cairns et al. 

(2006). 
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Koissi et al (2006)
36

, and sampling risk is considered by randomly sampling the number of deaths from the 

binomial distribution 𝐷𝑥𝑡
𝐵 ∼ 𝐵𝑖𝑛(𝐸𝑥𝑡

𝐵 , 𝑞𝑥𝑡
𝐵 ) once parameter uncertainty and process risk have been taken into 

account
37

. We note that due to the considerable exposure of the England and Wales population (chosen as the 

reference population), we have deliberately ignored parameter uncertainty and sampling risk in the reference 

population. 

From Figure 6.9 and Figure 6.10 we can conclude that: 

 For all the models the central forecast and their levels of uncertainty for single population metrics are 

reasonable and consistent in the reference and the book. We note however that there are noticeable 

differences between the models with M7-M5 and M7-M6 producing significantly higher uncertainty (wider 

fan widths) than the CAE+cohorts model and the APC (Gravity) model. This reflects the existence of 

more random period effects in M7-M5 and M7-M6 than in the CAE+cohorts and the APC (Gravity) model. 

 The levels of uncertainty in the difference in survival probabilities vary considerably across models and 

are on the low side when only process risk is contemplated. In particular, the unreasonably tight fan 

widths of the CF+cohorts confirm the issues with models assuming a perfect correlation between the 

reference and the book populations. 

 The consideration of parameter uncertainty has little impact on single population metrics but makes the 

confidence intervals in the differences start to look reasonable and in line with the historical volatility. 

 Once sampling risk is added the levels of uncertainty still look plausible. However, the differences 

between the book and the reference populations for some models (e.g. M7-M6) may be considered to 

lead to levels of uncertainty that are too high in the context of the variation observed historically. 

Overall, once all the relevant sources of risk have been included, the four shortlisted models (see figure 6.10) 

produce plausible forecast levels of uncertainty, but with big enough differences between the models for us to 

acknowledge model risk as an important issue.  

 

Figure 6.9: Fan charts of 30 year period survival probabilities at age 60 for the England and Wales male reference population using different 

mortality models. Note that in order to see the fans for different models some are truncated. 

                                                      
36

 We note that in adapting the bootstrap we follow Renshaw & Haberman (2008) and solve for the observed number of deaths instead of 

the fitted number of deaths as done by Koissi et al (2006)  

37
When taking into account sampling risk we assume that in all future years the book exposure will be equal to the book exposure in the last 

year of observation.  
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Figure 6.10:  Fan charts of 30 year period survival probabilities at age 60 for the “Extreme Wealthy” test book using different mortality 

models and different sources of risk (PR=process risk; PU=parameter uncertainty; SR=sampling risk). Left panes present results for the 

book population and right panes results for the difference in survival probabilities in the book and the reference population.  
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Figure 6.11: Remaining models after stage 2 filtering. Rejected models are greyed-out. Note that in some cases the model tested in this 

stage 2 differed slightly from the original proposed model (see Section 6.2.2.4) 

6.2.3 Stage 3 filtering: Robustness criteria requiring data to assess 

In this final stage of assessment we focus on the robustness of the four models which passed the previous 

levels of filtering to ensure that they perform well in a wide range of circumstances and to test the (lower) limits 

on data volumes required. In particular, we investigate the robustness of the models with respect to changes in 

the size of the exposure of the book population, changes in the length of the historical data available, and time-

varying socio-economic compositions in the book. 

6.2.3.1 Robustness to book size 

The smaller the exposure of the population is, the bigger the sampling noise in the data, and the more uncertain 

the estimates of the parameters of our models are. This additional variability arising from a smaller population 

size can potentially have a material impact on basis risk assessment.   

To explore this phenomenon, we investigate, how the contribution of the different sources of uncertainty to the 

total level of risk varies by population size. Figure 6.12 decomposes for each of the four shortlisted models: 

 the variance of the 30 year period survival probabilities in 10 years’ time at age 60 for the “Extreme 

Wealthy” test book,.30 𝑝60,2020
𝐵  (middle column); and  

 the variance of the corresponding differences with respect to the England and Wales reference 

population, .30 𝑝60,2020
𝐵 −.30 𝑝60,2020

𝑅  (left hand column). 
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Figure 6.12:  Variance decomposition by risk and population size for 30 year period survival probabilities in 10 years’ time at age 60 for the “Extreme Wealthy” test book (Left); variance 

decomposition by risk and population size for the corresponding differences with respect to the England and Wales reference population (Centre); and variance reduction by risk and population 

size (Right). Book size refers to the total exposure of the book between ages 60 and 90 
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Figure 6.12 also illustrates for different book sizes the impact of parameter uncertainty and sampling risk on 

basis risk assessment in terms of the reduction in variance obtained by hedging 30 year period survival 

probabilities using an index-based swap (right hand column). For each model, combination of risks and book 

population size, the reported variance reductions are computed as  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 − 𝑉𝑎𝑟(.30 𝑝60,2020
𝐵 −.30 𝑝60,2020

𝑅 )/𝑉𝑎𝑟(.30 𝑝60,2020
𝐵 )  

We can see how: 

 The magnitude of the variance of survival probabilities starts to stabilise around a book size of 25,000 

lives. This is particularly noticeable when considering only process risk. 

 For book sizes smaller than 25,000 lives, parameter uncertainty is significantly distorting the assessment 

of basis risk.  

 Parameter uncertainty accounts for a significant proportion of the variance for the smaller book sizes.  

 For book sizes smaller than 15,000 lives, process risk is unrealistically high distorting the assessment of 

basis risk and producing artificially low variance reductions 

 Models M7-M6 and Gravity which allow for book-specific cohort effects show a significantly higher 

parameter uncertainty than the CAE+Cohorts model and M7-M5 which do not have a book-specific cohort 

term. 

These observations suggest that, to avoid a distorted assessment of basis risk, the four shortlisted models 

should only be used when the book exposure is around 25,000 lives. As our analysis here has been based upon 

men, this book exposure should be considered to apply separately to men and women, unless the book and 

reference population are to be modelled without regard to gender (see section 9.2.2 for further discussion). In 

addition, unless there is strong reason to believe in the existence of a different cohort effect in the book to the 

reference population, the parameter uncertainty in fitting a book-specific cohort term will greatly outweigh any 

benefits in terms of goodness-of-fit to historical experience. 

6.2.3.2 Robustness to history length 

In order to assess the impact of changes in history length on the forecasting performance of the models, in this 

section we carry out a back testing exercise in the spirit of Booth et al. (2006) and Jarner & Kryger (2011, 

Section 4).  This exercise entails the fitting and forecasting of the models using data for the period 1981 to 2010 

for different history lengths, book sizes, and IMD compositions in the book population; and the evaluation of 

different metrics of forecasting performance.  

Specifically, the four models were fitted to history lengths ranging from 5 years to 20 years
38

, book sizes ranging 

from 5,000 lives to 100,000 exposed lives between ages 60 to 89 and the four test IMD compositions described 

before in table 6.1. The performance of the models is evaluated by comparing the actual mortality rates in the 

book population and actual differences in mortality between the book and the reference population with their 

corresponding predicted counterparts over the rest of the period until 2010. Forecast bias (actual-fitted) is 

summarised by averaging across ages, years, book sizes and IMD compositions. The matching absolute errors 

are also averaged to provide a measure of forecast accuracy.  

                                                      
38

 For instance when considering a history length of 5 years the models were fitted using data for the book population covering the periods 

1981-1985, 1983-1987,…, 2003-2007, 2005-2009. In all cases, the reference population data was assumed to start in 1961 and end in the 

same year as the book population data.   
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The forecast bias (mean errors) and the forecast accuracy (mean absolute errors) for both rates in the book and 

differences in rates between the book and the reference, plotted against history length are shown in Figure 6.13. 

We note the following: 

 CAE+cohorts stands out as the best model for forecasting mortality rates in the book with almost no bias 

on average and with the smallest mean absolute error.  

 For differences in mortality rates where we have more than 8 years of for history, the models perform very 

similarly both in terms of bias and accuracy, with all of them showing a small downward bias. 

History length has a material impact on the out-of-sample performance of the models: For history lengths 

shorter than 8 years the forecasting performance of the models is poor, particularly for models M7-M5 

and M7-M6. The poorer performance of M7-M5 and M7-M6 for the shorter history length is explained by 

the fact these models have two period indices for the book, implying a more complex and data 

demanding time series process for the forecasting. 

 

 

Figure 6.13: Forecasting error in mortality rates in the book (left) and difference in mortality rates between the reference and the book (right). 

Top panels display mean errors (actual-fit) and bottom panel display results of absolute errors. In all cases, the results are averaged across 

ages, years, book sizes and socio-economic compositions.  

 

6.2.3.2 Robustness to time-varying socio-economic compositions 

So far, in all of our assessments, we have assumed a fixed IMD deprivation split by time in the test books. In 

order to test the robustness of the models in relation to time varying socio-economic composition in the book, 

we consider a test book with time varying IMD deprivation split. Specifically, we consider a book exhibiting a 

“divergence” in socio-economic composition with a relatively even split at the start of the period but heavy 

migration from the two most deprived IMD quintiles towards the two least deprived quintiles (Q1 and Q2) with 

time (See figure 6.14, next page). 
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Figure 6.14: Distribution of the exposure by IMD quintile for the book showing a “Divergence” in socio-economic composition 

 

Figure 6.15: First book period index 𝜅𝑡
(1,𝐵)

 for the CAE+cohorts model.and model M7-M5 fitted to test books with a “divergence” IMD pattern 

and a “Typical amounts” IMD composition 

 

Figure 6.15 (above) plots the historical pattern of 𝜅𝑡
(1,𝐵)

≡ 𝜅𝑡
𝐵  for the Common Age Effect and 𝜅𝑡

(1,𝐵)
 for the M7-

M5 model, for time varying socio-economic mix for the book (“divergence” pattern). For comparison the fixed 

IMD composition (“Typical amounts”) used earlier is plotted as a dotted line.  

The book with time varying IMD composition shows a clear downwards trend in the 𝜅𝑡
(1,𝐵)

 terms in contrast to a 

relatively stable trend for the fixed composition. The downward trend in 𝜅𝑡
(1,𝐵)

 would, in principle, indicate that 

mortality experience is improving faster in the book than in the reference population. However, this mainly 
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reflects the changing socio-economic composition of improving average IMD over time so lighter mortality, 

rather than a true mortality feature in the data. As such, this possible confounding of true improvement 

differences between the book and the reference populations with changes in the socio-economic mix of the 

book population introduces challenges when forecasting the book period indices of a two-population model. In 

such circumstances alternative approaches to direct modelling may be preferable (see section 7). 

6.2.4 Summary of assessment 

The main conclusions of our systematic assessment of the candidate two-population mortality models for basis 

risk assessment can be summarised as follows: 

 We should not expect any single model to satisfy all possible desirable criteria of a practical solution to 

assessing basis risk  

 However, models M7-M5 and CAE+Cohorts stand out as the models which provide the most suitable 

balance between flexibility, simplicity, parsimony, goodness-of-fit to data and robustness. 

 Both M7-M5 and CAE+Cohorts produce reasonable best estimate projections with plausible levels of 

uncertainty, but with sufficient differences to recognise model risk as an important issue. 

 Unless there is strong reason to believe in the existence of a different cohort effect in the book to the 

reference population, the parameter uncertainty in fitting a (non-parametric) book-specific cohort term will 

greatly outweigh any benefits in terms of goodness-of-fit to historical experience. 

 The fitting of two-population models should in principle only be pursued when: 

- the book annual exposure is over 25,000 lives – for smaller exposures, the impact of parameter 

uncertainty may result in a distorted assessment of basis risk 

- there are at least 8 years of reliable book data– for shorter history lengths, the quality of the 

forecasts is likely to be poor. 

 Care needs to be taken when forecasting two-population models fitted to book populations which have 

undergone significant changes in their socio-economic mix. In these cases, genuine improvement 

differences may be confounded with changes in the socio-economic mix of the book population. 

The above conclusions are underpinned by analysis based on England & Wales population data and the profile 

of sample schemes drawn from the Club Vita database.  We would expect many of the key conclusions to hold 

for other populations, although specific results (such as AIC rankings) are necessarily dependent on the choice 

of data.  The application of this research to other reference populations and non-UK hedging is considered 

further in sections 9.1.6 and 9.1.7.
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7 A framework for modelling demographic basis risk 

In this section we translate our conclusions from the evaluation of the existing two-population models into 

practical guidelines for the modelling of the demographic basis risk arising from index-based longevity hedges.  

We start by proposing a model selection decision tree which provides an easy to use framework for practitioners 

so that they can identify a suitable approach to assessing the hedge effectiveness of an index-based solution 

without requiring detailed knowledge of the landscape of multi-population mortality models (Section 7.1).  

Next, in Section 7.2, we provide further details on the two mortality models underlying this decision tree. Finally, 

as we appreciate that in practice some users may have good reason to consider alternative models we discuss 

some general considerations for the construction of two population models for the assessment of demographic 

basis risk (Section 7.3). 

7.1 Model selection decision tree 

The decision tree in Figure 7.1 provides a framework by which practitioners can identify an appropriate 

approach for modelling the demographic risk associated with an index-based transaction.   

By answering a few key questions, users can navigate their way along the tree in order to select the modelling 

approach which is likely to best suit their particular circumstances (i.e. the demographic and other 

characteristics of their particular book population). Alternative decision pathways lead to single models which we 

believe provide the best balance (amongst the wide range of possible models) between flexibility, simplicity, 

goodness-of-fit to data and robustness to the range of book populations to which it may be applied to.  

7.1.1 Two general cases 

We have identified two pathways through the decision tree which we believe most practitioners will end up 

following. 

7.1.1.1 A data rich portfolio 

The first of these is where the user has a book which is sufficiently large, with a long and stable enough history 

of data to enable a statistical model to be fitted directly to the practitioners own data. In such circumstances, the 

user will generally follow the top line of our decision tree resulting in an approach where the M7-M5 model is 

used to model the reference population and the book. 

7.1.1.2 Data does not support direct modelling of the portfolio 

We expect that many users will not have sufficient data to follow the direct modelling route. This may be due to 

insufficient book size (number of lives in the book), lack of historical data, or because the socio-economic mix of 

the book has changed dramatically over time and so the trends in mortality within the book population are as 

much attributable to ‘socio-economic drift’ as demographic risk. 

In such circumstances, users are likely to apply a “characterisation approach” whereby the book is modelled 

indirectly by reference to a characterising population with a more reliable and longer mortality experience. Such 

a characterisation approach is discussed in section 10. 

7.1.1.3 Other scenarios 

We expect the other scenarios in the decision tree to be less common; although, we have identified an 

appropriate method to use in each case, and more information is provided on these in section 7.2. 
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Figure 7.1: Methodology decision tree  
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7.1.2 The decision tree questions 

In the decision tree the user needs to answer four questions (1-4).  Taking each in turn: 

Question 1: Does the scheme have more than 25,000 lives and at least 8 years of reliable data? 

For books with more than 25,000 lives the methods are reasonably robust; both in terms of goodness-of-fit to 

historical data and forecasting performance. Where the user intends to model the men and women in their book 

separately (e.g. as using separate indices for men and women) then the 25,000 lives guideline would apply to 

each gender separately. 

The 25,000 lives need not be treated as a very ‘hard’ cut-off. For example books a little smaller than this e.g. 

20,000-25,000 then the user is likely to still find direct modelling informative.  However, users with smaller book 

sizes are likely to find material parameter uncertainty when trying to fit models directly, poor goodness-of-fit and 

forecasting performance. As the book size falls, so users will also find that sampling risk dominates the 

assessment of basis risk. Here, users should favour a characterisation approach rather than trying to fit models 

directly to the experience data.  In particular for a very small book size (say, less than 10,000 lives) parameter 

uncertainty and sampling risk will be too high and a characterisation approach will be unavoidable in order to 

obtain a meaningful measure of basis risk / hedge effectiveness.  

Similarly, where the book has less than 8 years of reliable data direct modelling using purely the book data is 

not practical. The issue here is the limited data with which to fit the coefficients of a time series – indeed, in 

extremis, there may be no reliable experience data.  A characterisation approach – which can leverage the long 

back history of an alternative data source – is likely to be preferable. 

Since different considerations
39

 are driving the thresholds in the lives and back-history dimension, any scope to 

‘offset’ more data in one dimension for less in another (e.g. more lives and less back history) is limited. 

Question 2: Have there been any major changes in the socio-economic mix in the book over time?  

Where a book has undergone very significant shifts in socio-economic mix it is very likely that any fitted time 

series coefficients will reflect both improvements in mortality for the book’s average socio-economic mix and the 

changing mix over time. 

For example, suppose blue-collar workers experience double the mortality rates of white-collar workers, and 

over the period in question the book’s mix changed from 100% blue-collar to 100% white-collar workers.  In 

such circumstances the book would show a 50% improvement in mortality even if there has been no change in 

the mortality of blue or white collar workers. 

In practice, most books will have only undergone modest changes in socio-economic mix over time and so this 

is unlikely to be an issue. However, where the book has seen a fundamental shift in the underlying population – 

for example a change in target market for an insurer, or a major change in the nature of business for a pension 

scheme sponsor – then we suggest using the characterisation approach.  This is because direct modelling of 

the trend in the difference between the book and the reference would usually assume: 

(i) Either some reversion to an average socio-economic mix (if, as commonplace, the VAR(1) time series is 

used); or 

(ii) A continuation of the historical trend in shifting socio-economic mix (if a random walk with drift or other 

times series with a trend is used).   

By applying a characterisation approach, the user is able to make more of an explicit assumption as to how the 

socio-economic mix will change over time
40

.   

                                                      
39

 namely levels of parameter uncertainty in both the trends and levels of mortality vs ability to fit times series respectively 
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Question 3:  Do you wish to allow for inter-age mortality correlations? 

The evaluations of models in section 6 highlighted M7-M5 and CAE+cohorts model as the best performing 

models against a range of desirable criteria, with the CAE+cohorts outperforming the M7-M5 model in terms of 

goodness-of-fit and back-testing performance. However, a key weakness of the CAE+cohorts
41

 model is that it 

imposes a very simple structure to the correlation between mortality rates at different ages compared to models 

which use more than one period time index such as M7-M5.  

In choosing between the two alternative paths at this point in the decision tree, the user should take into account 

the following considerations: 

 Structuring: When structuring a longevity hedge, it is likely to be important to have a rich structure to 

inter-age mortality correlations. In most cases the user will be looking to hedge a book population 

covering a wide range of ages. Where a model assumes perfect correlation between changes in mortality 

at different ages it could lead the user to conclude that forward contracts for a single age (such as age 

60) provide just as good a hedge as holding contracts at a range of different ages. In such scenarios, the 

user should favour the richness of the M7-M5 model. 

 User’s own view of existing longevity risk? In many instances the user will want to assess the 

indicative reduction in basis risk following the implementation of an index-based hedge, without 

necessarily considering in detail the precise structuring of the instruments held. In such cases it will 

suffice to compare the uncertainty pre- and post-hedge. 

Where the user does not have an existing method for assessing the longevity risk in the book population, 

then using a modelling framework which provides a reliable assessment of longevity risk for both the book 

population and the difference between the book and reference population (i.e. post hedge exposure) will 

be important. In such circumstances, the user may prefer the CAE+cohorts model which we have found 

to perform better for forecasting the individual populations. 

 Short history length: Where the history length is on the short side, users may prefer the CAE+cohorts 

model as its forecasting is less data demanding. 

 Model risk: Some users may want to consider both paths of the decision tree at this stage as a way of 

assessing model risk. 

A detailed comparison of the main features of models M7-M5 and CAE+cohorts is presented in section 7.2.3. 

Question 4: Do you have a strong belief in a book-specific cohort effect? 

In general a (non-parametric) book-specific cohort effect cannot be justified on grounds of parsimony (balance 

between simplicity and goodness-of-fit to historical data).  However, some users may have good reason to 

believe that there is a material book-specific cohort effect different to that inherited from the reference 

population. In such circumstances, the user is recommended to adapt the model best suited to his/her 

requirements for the richness of the inter-age correlations by including a book-specific cohort effect.  We would 

suggest that (generally) such a cohort effect should have a parametric form as it is unlikely that users’ data 

would support the fitting of a non-parametric form without considerable parameter uncertainty. 

                                                                                                                                                                                     
40

 An exception to this guidance would be where the user believes this shift will continue to apply in the future to the particular population 

covered by the hedging instrument – however as such populations tend to be a specific cohort of lives the potential for continued major 

shifts in the socio-economic mix would generally be far less. 

41
 Note that a richer correlation structure can be obtained if the CAE+cohorts model is further extended with the addition of an extra bilinear 

term. However this raises additional challenges in terms of estimating the parameters and applying identifiability criteria. 
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7.2 Direct modelling – choosing the model 

The decision tree proposes the M7-M5 and the CAE+cohorts models as the default statistical models for the 

direct modelling branches of the tree. In this section, we describe in detail these two models and compare their 

features.  

7.2.1 Parametric form for shape of mortality with age (‘M7-M5’) 

The M7-M5 model is a two-population extension of the Cairns-Blake-Dowd (CBD) model of mortality introduced 

in Cairns, Blake, & Dowd (2006).  The single population CBD model can be expressed as:  

 logit qxt = κt
1 + (x − x̅)κt

2 (7.1) 

where x̅ is the average age in the data and κt
1 and κt

2 are random period effects. The CBD model, also known as 

M5, assumes that for a fixed calendar year t the logit death rates are linear functions of age with the level at x̅ 

determined by κt
1 and slope κt

2. In contrast to the Lee-Carter model (which considers only one period factor), the 

CBD model includes two period factors. As a result, the model can capture the imperfect correlation structure in 

mortality rates improvements across ages.  

Model M7, introduced by Cairns et al. (2009), is an extension to the original CBD model in which a quadratic 

age term and a cohort effect are added. Mathematically, M7 is given by,  

 logit qxt = κt
1 + (x − x̅)κt

2 + ((x − x̅)2 − σx
2)κt

3 + γt−x (7.2) 

where σx
2 is the average value of (x − x̅)2. 

In the context of two population mortality modelling CBD type models have been used by Li et al (2014). For 

instance, they consider two populations where an M7 model is fitted independently to each of the two 

populations:   

 logit qxt
i = κt

(1,i)
+ (x − x̅)κt

(2,i)
+ ((x − x̅)2 − σx

2)κt
(3,i)

+ γt−x
i ,   i = 1,2 (7.3) 

and the relationship between the populations is considered through the joint modelling of the period indices  

κt
(j,i)

, 𝑗 = 1,2,3. 

Starting from the two population M7 in equation (7.3), we have made the following considerations to obtain the 

M7-M5 under the general relative formulation described in section 5.2: 

 Assume that the curvature term and the cohort effect are common for the two populations as in our model 

testing it was found that these differences were not statistically significant for most populations. 

 Assume, thus, that  

 logit 𝑞𝑥𝑡
𝑅 = 𝜅𝑡

(1,R)
+ (𝑥 − �̅�)𝜅𝑡

(2,R)
+ ((𝑥 − �̅�)2 − 𝜎𝑥

2)𝜅𝑡
(3,R)

+ 𝛾𝑡−𝑥
𝑅  (7.4) 

and,   

 logit qxt
B − logit qxt

R = κt
(1,B)

+ (x − x̅)κt
(2,B)

 (7.5) 

which is equivalent to  

 logit qxt
B = (κt

(1,R)
+ κt

(1,B)
) + (x − x̅)(κt

(2,R)
+ κt

(2,B)
) + ((x − x̅)2 − σx

2)κt
(3,R)

+ γt−x
R  

(7.6) 

In (7.4) 𝜅𝑡
(1,R)

, 𝜅𝑡
(2,R)

, 𝜅𝑡
(3,R)

 are stochastic period effects driving mortality change in the reference population and 

𝛾𝑡−𝑥
𝑅  captures cohort effects. From (7.6), it is clear that κt

(1,B)
 captures differences over time between the 
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reference and the book populations in the general level of mortality, while κt
(2,B)

 captures differences of the age-

slope of mortality in the book population relative to the age-slope of mortality in the reference population. 

The parameters of Model M7 are not uniquely identified as there are a variety of equivalent solutions to equation 

(7.4). For example we can switch from 𝛾𝑡−𝑥
𝑅  to �̃�𝑡−𝑥

𝑅 = 𝛾𝑡−𝑥
𝑅 + 𝜙1 + 𝜙2(𝑡 − 𝑥 − �̅�) + 𝜙3(𝑡 − 𝑥 − �̅�)2 and 

corresponding adjustments to 𝜅𝑡
(1,R)

, 𝜅𝑡
(2,R)

, and 𝜅𝑡
(3,R)

, with no impact on the fit of the 𝑞𝑥𝑡
𝑅 .  

In order to be able to fit the model we therefore need some identifiability constraints. We use the standard 

constraints as per Cairns et al (2009):  

∑ 𝛾𝑐
𝑅

c

= 0 

∑ 𝑐𝛾𝑐
𝑅

c

= 0 

∑ 𝑐2𝛾𝑐
𝑅

c

= 0 

where 𝑐 = 𝑡 − 𝑥. The consequence of these constraints is that  𝛾𝑐
𝑅 will fluctuate around 0 and will have no 

discernible linear trend or quadratic curvature. 

7.2.2 Non-parametric form for shape of mortality with age (‘CAE+cohorts’) 

A wealth of multi-population extensions of the Lee-Carter model have been proposed recently in the mortality 

modelling literature. For instance, Kleinow (2013) considered the Common Age Effect (CAE) model where the 

mortality of population 𝑖, 𝑖 = 1, … , 𝐾, is modelled as
42

 

log𝜇𝑥𝑡
𝑖 = 𝛼𝑥

𝑖 + ∑ 𝛽𝑥
𝑗
𝜅𝑡

𝑖,𝑗

𝑗

 

The main feature of this model is that there is a common set of age-response parameters (βx
j
) across the 

different populations. Here, αx
i  represent the age-specific mortality pattern of population 𝑖 and the κt

i,j
, 𝑗 = 1, … , 𝐽 

are stochastic period effects driving mortality change in population 𝑖. 

In order to adapt the original formulation of the CAE and derive the CAE+cohorts model under the general 

relative formulation described in section 5.2 we have made the following considerations: 

 Reformulate the model in terms of logit of mortality probabilities (q values). 

 Consider a single bi-linear term and add a common cohort effect in the reference and book populations. 

 Assume, thus, that  

 logit 𝑞𝑥𝑡
𝑅 = 𝛼𝑥

𝑅 + 𝛽𝑥
𝑅𝜅𝑡

𝑅 + 𝛾𝑡−𝑥
𝑅  (7.7) 

and 

 logit qxt
B − logit qxt

R = αx
B + βx

Rκt
B (7.8) 

In (7.7) 𝛼𝑥
𝑅 captures the general age-specific mortality pattern in the reference population, 𝜅𝑡

R is a stochastic 

period effect driving mortality change in the reference population, 𝛽𝑥
𝑅 measures the age-specific response to 

changes in 𝜅𝑡
R and 𝛾𝑡−𝑥

𝑅  captures cohort effects. 

                                                      
42

 A similar model was considered by Zhou, Li, & Tan (2013). 
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Equation (7.8) is equivalent to  

logit qxt
B = (αx

R + αx
B) + βx

R(κt
R + κt

B) + 𝛾𝑡−𝑥
𝑅  (7.9) 

which implies that: αx
B determines the average level mortality difference between the book and the reference 

populations, and κt
B determines the deviations of the mortality improvements of the book population around the 

mortality improvements of the reference population.   

Similarly to model M7-M5, the CAE+cohorts model has an identifiability problem. For example multiplying each 

𝛽𝑥
𝑅 by a constant 𝑏 and each 𝜅𝑡

𝑅 by 
1

𝑏
 will yield the same fit. To ensure identifiablity we use the following 

constraints: 

∑ 𝛽𝑥
𝑅

x

= 1 (7.10) 

∑ 𝜅𝑡
𝑅

t

= 0 (7.11) 

∑ 𝛾𝑐
𝑅

c

= 0 (7.12) 

∑ 𝜅𝑡
𝐵

t

= 0 (7.13) 

These constraints imply that  𝛼𝑥
𝑅 can be interpreted as the average level of mortality in the reference population 

across the period of the reference data and that  𝛼𝑥
𝐵 can be interpreted as the average mortality deviation of the 

book from the reference across the period of the book data. 

In order to improve the stability and robustness of the CAE+cohorts used for the reference population, we also 

add the constraint 

∑ 𝑐𝛾𝑐
𝑅

c

= 0 

as suggested in Hunt & Villegas (2014). This ensures that 𝛼𝑥
𝑅 adheres to the typical shape of a life table, and 

that 𝛾𝑐
𝑅 will fluctuate around 0 with no discernible linear trend. In addition, when 𝜅𝑡

𝑅 is well approximated by a 

straight line as is the case of the England and Wales experience, this constraint will have minimal impact on the 

fit to data obtained by the model. 

7.2.3 Comparing the two models 

In choosing between the M7-M5 and the CAE+Cohorts, it is worth taking the following considerations into 

account. 

7.2.3.1 Ease of use 

Both models require the user to fit to historical data and then forecast.   

 The M7-M5 model is easy to fit to historical data as it can be formulated under a GLM framework. In 

particular, the M7 reference part is a binomial GLM model which is estimated via maximum likelihood 

using standard statistical software (see for instance Currie (2014)). In addition, conditional on the 

reference population parameters, the M5 part is also a binomial GLM and can be estimated similarly. By 

contrast, the estimation of the reference part of the CAE+cohorts model is less straightforward because of 

the bilinear term 𝛽𝑥
𝑅𝜅𝑡

𝑅 and the known robustness and stability issues of cohort extensions of the Lee-

Carter model (see e.g. Cairns et al. (2009); Hunt & Villegas (2014)). 
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 The CAE+cohorts model uses univariate time series for both the period effects within the reference 

population and the book population, compared to the multivariate time series used by the M7-M5 model. 

This means that the CAE+cohorts is easier to use and potentially requires a shorter back history when it 

comes to generating the time-series for forecasting. 

Overall, we see little difference between the two models for ease of use and both could readily be programmed 

in a freeware format (akin to the LifeMetrics Excel add-in
43

). 

7.2.3.2 Richness of correlation structure 

Within the CAE+cohorts model, there is a simple correlation structure between annual changes in mortality at 

different ages. In particular the existence of a single period effect for the reference population implies that there 

is perfect correlation at all ages except at the youngest ages, where there is potentially additional randomness 

arising from the arrival of new cohorts with an unknown cohort effect (see Cairns et al (2009)). In contrast, M7-

M5 model allows for imperfect correlation between annual changes in mortality at different ages due to the 

presence of multiple period factors in the reference population. 

7.2.3.3 Applying known base rates  

Both of the models produce base rates for the mortality of the book population (i.e. the mortality rates by age for 

a recent point in time).  In practice though, the user may have an alternative approach to the base rates which 

he or she would prefer to use – for example due to an established mechanism for assessing this such as 

experience analyses on the book, or due to using a more granular method.  

Given the natural interpretation of 𝛼𝑥
𝐵 as mortality level difference under the CAE+cohorts model, the 

superposition of the user’s preferred base mortality rates can be easily done (see section 9.2.1.1).  

By contrast, the M7-M5 model does not directly allow the superposition of the user’s preferred base rates. 

Nevertheless, this can be achieved by either: 

 including an age specific non-parametric term as done in Plat (2009a), which may, however, complicate 

considerably the identifiability of the model (see Hunt & Blake (2014));  

 applying the year on year implied improvements at each age produced by the book projection to the 

user’s known base rates (see section 9.2.1.2) 

7.2.3.4 Extension to older ages 

In practice the user is likely to want to be able to model mortality, and basis risk, across the age spectrum, 

including older ages beyond those to which there is adequate data to reliably fit the models. In the case of the 

M7-M5 model there is a ‘natural’ extension in so far as the functional form could be applied at older ages – 

however care would be needed as the curvature term could create mortality tables which might be deemed as 

biologically unreasonable (i.e. mortality declining with age).  In the case of the CAE+Cohorts model more 

thought would be needed as there is no ‘natural’ functional extension. In practice though, some form of 

subjective (structural) assumption is likely to be needed under both models.   

7.3 General comments on constructing a two-population model 

Our previous sections have suggested the use of either M7-M5 or the CAE+cohorts when undertaking a direct 

modelling exercise of the mortality of the reference and the book populations. However, this need not preclude a 

user from considering additional models. Indeed users may wish to look at alternative models as part of 

sensitivity testing; or in order to gain a better understanding of model risk; or to err on the side of adding more 

features into the model than historic back-testing alone might suggest are needed as part of a personal belief on 

                                                      
43

 Available at http://www.macs.hw.ac.uk/~andrewc/lifemetrics/ 
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the ‘complexity’ of mortality.  Further as time goes on new models will enter the actuarial literature – and our 

work to date can help users in integrating those models into a basis risk assessment. 

Therefore, in this section we provide some general guidelines for the construction of alternative two-population 

models for basis risk assessment. 

When building a two population model for assessing longevity basis risk, it is usual to find that the reference 

population is considerably larger and has a longer back history of data than the book population. It is therefore 

natural to start by selecting an appropriate model for the reference population since: 

 the larger reference population will tend to influence the book mortality but not the other way round 

 good models for the reference population will generally already exist and so will be a useful source of 

information when modelling the book population 

Once the reference population model is chosen a reasonable approach would be to select the book part of the 

model from within the same model family of the reference part. This is because:  

 modelling the reference parts provides useful insights and model structures when constructing models for 

the book; and 

 there is a correspondence between the model parameters in the book and the reference populations 

which makes interpretation of the parameters consistent and makes the subsequent analysis more 

comprehensive and coherent in both populations. 

Our research on different models has also identified that: 

 it is desirable to include at most two book-specific time-dependent terms 

 any parameter which moderates the sensitivity of the book to these time trends at different ages should 

be inherited from the reference book (i.e. 𝛽𝑥
(𝑖,𝐵)

≡ 𝛽𝑥
(𝑖,𝑅)

)
44

 

 it is generally appropriate not to include a book specific cohort effect 

In mathematical terms, if the preferred reference population model is given by 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + ∑ 𝛽𝑥
(𝑖,𝑅)

𝜅𝑡
(𝑖,𝑅)

𝑁

𝑖=1

+ 𝛾𝑡−𝑥
𝑅  

then a good starting point for the book model would in general be of the form:  

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) = 𝛼𝑥
𝐵 + ∑ 𝛽𝑥

(𝑖,𝑅)
𝜅𝑡

(𝑖,𝐵)

𝑀

𝑖=1

 

We would usually expect 𝑀 to be at most 2 as it is unlikely that the book population can support more than two 

time series i.e. 𝑀 ≤ min (2, 𝑁)45.  

By way of example, if the user chooses to model the reference population using
46

 

                                                      
44

 As noted previously in section 6.2.2.4 and illustrated in Figure 6.8 the paucity of book data can hardly support the estimation of 𝛽𝑥
𝐵 without 

resulting in non-robust and erratic parameter estimates. 

45
 Note that the M7-M5 model and the CAE+cohorts can be derived from this form by applying the previous rules if we start by modelling the 

reference population using a M7 model or a Lee-Carter +Cohorts model, respectively. 

46
 As described in Börger et al (2013)  
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𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝑅 ) = 𝛼𝑥

𝑅 + 𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ (𝑥𝑦𝑜𝑢𝑛𝑔 − 𝑥)𝜅𝑡
(3,𝑅)

+ (𝑥 − 𝑥𝑜𝑙𝑑)𝜅𝑡
(4,𝑅)

+ 𝛾𝑡−𝑥
𝑅 , 

where 𝑥𝑦𝑜𝑢𝑛𝑔 and 𝑥𝑜𝑙𝑑  are predefined constants, then the suggested book model would be  

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) = 𝛼𝑥
𝐵 + 𝜅𝑡

(1,𝐵)
+ (𝑥 − �̅�)𝜅𝑡

(2,𝐵)
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8 Case study – Direct modelling 

8.1 Introduction 

This case study illustrates how practitioners can use the decision tree in figure 7.1 to select a modelling 

approach which may be a good starting point in their particular circumstances. We then illustrate the 

methodology using a simple measure for the level of longevity risk before and after an index-based hedge.  

The case study is based on men from a sample scheme drawn from the Club Vita dataset (See Appendix A) 

which has the following characteristics: 

 Contains between 20,000 and 27,000 male lives for each year under consideration 

 Has relatively long back history, with good quality data covering the period 1993-2011 

 Consists of a lower socio-economic composition than the reference population (England & Wales) 

8.2 Model selection process 

Question 1: Does the scheme have more than 25,000 lives and at least 8 years of reliable data? - YES 

The chosen scheme has between 20,000 and 27,000 lives available each year and a history length of 18 years 

so is a good candidate to be modelled directly. 

Question 2: Have there been any major changes in the socio-economic mix in the book over time? - NO 

In general, trustees and insurers have a deep understanding of the nature of their schemes and should 

therefore be in a good position to assess whether the socio-economic mix has substantially changed over time. 

In this case, there have been no major changes in the nature of the business of the sponsor of the pension 

scheme. 

Figure 8.1 confirms that while there has been a small drift away from the most deprived IMD, there has been no 

fundamental change. (The figure also highlights how this scheme has a bias towards areas of higher 

deprivation.) 

 

Figure 8.1: Development of the socio-economic mix over time in the sample scheme used in this case study.  
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Question 3: Do you wish to allow for inter-age mortality correlation structure?  - YES 

In our case study the scheme is looking to structure an index-based swap and so requires an inter-age 

correlation structure.   

Question 4: Is there a strong belief in a book-specific cohort effect?  - NO 

The scheme has no reason to believe that there is a material book-specific cohort effect different to that 

inherited from the reference population. Therefore there is no need to allow for any such an effect in this case 

study modelling. 

Conclusion 

By following the decision tree in figure 7.1, our answers to the four questions lead us to fit the data from the 

sample scheme to the M7-M5 model.   

 
8.3 Model fitting 

In this section we illustrate the results of fitting the M7-M5 model to the historical data for the book and 

reference populations. 

8.3.1 M7-M5 Model – Fitted parameters 

Reference:  𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕
𝑹 ) Book:  𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕

𝑩 ) −  𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕
𝑹 ) 

𝜅𝑡
(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ ((𝑥 − �̅�)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)
+ 𝛾𝑡−𝑥

𝑅  𝜅𝑡
(1,𝐵)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝐵)

 

 

 Levels Slope Curvature Cohort 

Reference 

Figure 8.2: Fitted parameters of the M7-M5 model using the sample pension scheme. 

Book 

 

 

Figure 8.2 shows the parameters of the M7-M5 model when fitted to the sample scheme from Club Vita and the 

reference population (England & Wales). The top row shows the fitted parameters for the M7 model fitted to the 

reference population and the bottom row represents the parameters for M5 model fitted to the difference 

between the book and the reference population. 
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Starting with the reference population, we can see how: 

 the 𝜅𝑡
(1,𝑅)

 parameter shows a clear downward sloping trend which demonstrates steady mortality 

improvements in the reference population over time 

 𝜅𝑡
(2,𝑅)

 reflects how the age effect of mortality changes with time 

  𝜅𝑡
(3,𝑅)

 shows how the curvature of mortality rates with age changes with time 

 𝛾𝑡−𝑥
𝑅  reflects any cohort related effects in the reference data.  We can see the faster decline in mortality 

for birth cohorts between 1925 and 1945 which coincides with the well-known UK golden generation 

The book parameters define how the book mortality differs from that of the reference population.   The positive 

values of 𝜅𝑡
(1,𝐵)

 reflect the higher mortality rates in the book than in England & Wales (consistent with the weight 

towards the more deprived areas).  The negative values of 𝜅𝑡
(2,𝐵)

 moderate these higher mortality rates by 

reducing the slope of the resulting mortality curves over age, helping to maintain a compensation law
47

 of 

mortality whereby the mortality of the book and reference populations converges at older ages. 

8.3.2 M7-M5 Model – Time varying trend 

When modelling future rates using the M7-M5 model in section 5.2.3 a multivariate random walk with drift 

(MRWD) was used for the reference population and, given the absence of any clear trends over time for 𝜅𝑡
(1,𝐵)

 

and 𝜅𝑡
(2,𝐵)

 in figure 8.2, a vector-autoregressive process of order 1 was used for the book population i.e.: 

 

  

Figure 8.3: Projected time indices of the M7-M5 model fitted to a sample pension scheme with VAR(1) process 

 

Figure 8.3 demonstrates the behaviour of a full simulation of the 𝜅𝑡
(1,𝐵)

 term when projected over 30 year time 

horizon.  By using an autoregressive model of order 1 to model future mortality rates, we assume that  𝜅𝑡
(1,𝐵)

 

reverts to its historical mean. This seems a reasonable assumption with respect to the trend in the fitted 

historical rates and is consistent with typical practice; however, this assumption and alternatives are considered 

further in Section 9. 

  

                                                      
47

 See Gavrilov & Gavrilova (1991) 

𝜿𝑡
B = 𝚽𝟎 + 𝚽𝟏𝜿𝑡−1

B + 𝝃𝑡
B ,          𝝃𝑡

B ∼ 𝑁(𝟎, Σ𝐵) 
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8.4 Hedge effectiveness results 

Having determined a suitable parameterisation of the 

M7-M5 model the book and reference population are 

simulated to generate 10,001 model points. The 

simulations allow for process, parameter and sampling 

risk as described in section 6.2.2. We illustrate the 

output of the model in the form of a simple hedge 

effectiveness metric, specifically the variance 

reduction in 30 year survival probabilities at age 60 

with 10 year time horizon
48

. The graphics to the right 

show the impact of an index-based swap on a book of 

pensioners currently in payment.  

Figure 8.4 shows simulated density plots where the x-

axis represents the range of outcomes for the 30 year 

survival probabilities relative to the mean and the y-

axis shows the density. The black line represents the 

unhedged book (i.e. the book population as 

simulated). The pink line shows the difference 

between the book and reference population and so 

illustrates the case when an index-based hedge is 

applied to the book. In each case an allowance is 

made for all three sources of uncertainties in the 

model (process risk, parameter risk and sampling 

risk). The tails for the hedged distribution are much 

smaller than in the unhedged case which indicates 

that some part of the uncertainty has been mitigated.   

The bar chart in the bottom graphic (Figure 8.5) shows 

the total uncertainty in the book (as measured by the 

variance of the simulated 30 year survival probabilities 

at age 60, allowing for various types of risk sources), 

before and after applying an index-hedge. The colours 

represent different sources of risk where the process 

risk (the pink colour) is the dominant one for the book. 

By comparing the heights of these two bars, we see 

that total reduction in variance by hedging the book 

with an index-based hedge is 80%, which is mainly 

due to the substantial reduction in process risk.  

Figure 8.4: Simulated distributions of 30 year survival 

probability, as measured 10 years into the projection period.  

‘Unhedged’ is distribution relative to the mean survival 

probability for the book. ‘Hedged’ is the distribution (relative to 

the mean) of the difference in survival probabilities between the 

book and the reference population and is a proxy to the residual 

risk post application of an index-based hedge 

 

Figure 8.5: Variance of survival probabilities from age 60-90 

allowing for process risk (PR), parameter uncertainty (PU) and 

sampling risk (SR). Recall that PR and PU combined is 

demographic risk. 

                                                      
48

 The variance reduction is defined as: 1 −
𝑉𝑎𝑟(30𝑝60,10

𝐵 −30𝑝60,10
𝑅 )

𝑉𝑎𝑟(30𝑝60,10
𝐵 )

 .  It is a crude proxy to the impact of a hedge on the valuation of annuities 

since annuity rates are closely linked to survival probabilities.  However, please note that the derivation and assessment of appropriate 

basis risk metrics is out of scope of this phase of the research project.  Phase 2 of this research (as originally specified) is intended to look 

at appropriate basis risk metrics. 
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8.5 Comparison of M7-M5 vs CAE+Cohort Model – Hedge effectiveness results 

If there were no need to allow for richer correlations structure in our model, for example if a broad assessment 

of the residual basis risk associated with a particular contract is required, then the model decision tree would 

have led us to the CAE+cohort model.  

We end this case study by comparing the outputs of these two models when fitted to our sample scheme. 

 

Figure 8.6: Variance of survival probabilities for book and book minus reference under M7-M5 and CAE+cohort models. PR=Process risk; 

PU=Parameter uncertainty; SR=sampling risk 

Focusing on the same variance reduction statistics as used in 8.4, we see in figure 8.6 how: 

 both models demonstrate a large reduction in longevity risk when applying an index-based hedge 

 the CAE+cohort model projects less uncertainty in the unhedged book than the M7-M5 model due to its 

simpler structure
49

. This results in a 68% variance reduction from the hedge, compared to around 80% for 

the M7-M5 model.  

 whilst they differ in relative measures (between unhedged and hedged position), they show similar 

residual risk in the hedged case.  

8.6 Summing up 

This case study has demonstrated how the flow chart can be used to select a model to assess basis risk and 

how that model (in this case the M7-M5 model) can be applied. Simulations can be generated, allowing for 

process, parameter and sampling risk, to assess the benefit of an index-based hedge. Risk reduction metrics 

can be derived and an understanding of the element of risk being removed (primarily process risk) can be 

gained.  We believe that this methodology is of value to practitioners wishing to form a view on the merits (or 

otherwise) of index-based solutions.  

                                                      
49

 CAE+Cohort allows for a much simpler correlation structure between annual changes in mortality at different ages than M7-M5 by 

including a simple time series process. M7-M5 allows for non-perfect correlation between annual changes in mortality at different ages due 

to the presence of multiple time series. 

Demographic risk 
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9 Key challenges and practicalities of direct modelling 

9.1 Key challenges of direct modelling 

Sections 6, 7 and 8 identified and illustrated the M7-M5 model and (in some situations) the CAE+cohorts model 

as suggested approaches where the user has sufficient data to support direct modelling.  Whilst useful in many 

situations, it is important for users to consider the limitations, challenges and underlying assumptions inherent in 

these models when considering their use and drawing conclusions from their output. 

A number of key issues to be aware of are discussed below.  These challenges are not unique to the M7-M5 

and CAE+cohorts models; they are general features which apply to most, if not all, direct modelling approaches. 

9.1.1 The past as a guide to the future 

When using time series models fitted to historical data there is an implicit assumption that the past is a good 

guide to the future, both in terms of the: 

 ‘direction’ and ‘pace’ of travel of mortality improvements within the reference and the book populations; 

and 

 level of future volatility in mortality. 

However, akin to the world of financial markets, there are a number of reasons why the past might not be a 

good guide to the future.  In the context of demographic risk reasons could include: 

1 The drivers of future changes in longevity may differ from those seen historically as per our discussion in 

section 3 

2 The period used to calibrate the model may – in hindsight - be relatively ‘benign’, either in the sense of: 

2.1 the drivers of historical longevity trends (e.g. smoking cessation) having impacted society more 

evenly than future drivers (e.g. affordability of access to anti-ageing therapies) leading us to 

understate demographic risk.  

2.2 the level of volatility seen between book mortality and reference population mortality, which serves 

to calibrate the level of future volatility 

3 Alternatively, the period used to calibrate the model could – with hindsight – be relatively volatile in terms 

of book vs reference mortality and so overstate demographic risk 

Thus, whilst models fitted to historical data provide an objective starting point for assessing basis risk, we would 

expect users to wish to interact with the models to incorporate a degree of personal beliefs and / or judgement 

regarding their wider contextual understanding of the drivers of longevity trends both within their specific book 

population and the wider population.  This is explored further in section 9.2.3. 

9.1.2 Default choice of time series 

The usual assumption is that the spread between the mortality in the reference and the book will conform to the 

non-divergence hypothesis in the long run i.e. that the ratio of 𝑞𝑥𝑡
𝐵 /𝑞𝑥𝑡

𝑅  will tend to a constant value as 𝑡 → ∞. 

(See for example Li and Lee (2005), Jarner and Kryger (2009), Cairns et al (2011), Li et al (2014) and Zhou et al 

(2014)). 

The non-divergence constraint is commonly captured via the use of a (vector) autoregressive process for the 

time series indices (𝜅𝑡
𝐵) in the book part of the model.  This implies that, in the long-run, the spread between the 

logit of mortality for the book and the reference population will revert from the current level to the historical 

mean. If the book mortality has moved away from the reference population then it will be projected to converge 

to the average level of difference over the period to which the model has been fitted.  Similarly if historically the 



LONGEVITY BASIS RISK 074 

 

 

December 2014  

141204 LONGEVITY BASIS RISK - PHASE 1 REPORT (FINAL, SESSIONAL MTG FORMAT) 

gap between the book and the reference population has closed then it will be projected to widen to a ‘steady 

state’ of the average historical difference. 

However, using such time series has important implications for the projected mortality trend within the book 

population and also the difference in mortality between the book and reference population. Specifically: 

 it constrains the ‘direction of travel’ for future mortality differentials 

 the variance of the difference in (logit) mortality between the book and the reference population is 

bounded, limiting the width of the prediction intervals (‘funnels of doubt’) for the difference in mortality 

between the book and the reference populations.   

In combination these might be considered to understate demographic basis risk and hence overstate the hedge 

effectiveness. This is of particular significance for users considering longer term hedging instruments (e.g. 20+ 

years) than the shorter term (typically 10 year) structures which are currently receiving most focus. 

No thorough investigation on the implications of this assumption has been performed so far.  Detailed guidance 

on the choice of alternative time series models, allowing or not for divergence, and allowing for the nuances of 

user judgement, is beyond the scope of this phase of the research.  However, the work we have done suggests 

that this is a very important assumption. This is illustrated in section 11 where we highlight the implications of 

different choices of time series model within the context of the multi-population modelling required under the 

characterisation approach.  

We, therefore, would encourage users to interact with the choice of time series in order to: 

 understand the implicit assumptions; and  

 potentially modify the choice of time series process to reflect their own beliefs. 

Appendix C sets out a range of time series which could be considered.   

9.1.3 Potential overestimation of basis risk for smaller populations 

For small book populations, the instability in crude death rates may transfer to the estimates of the time index 

values.  The time series will be more volatile as they implicitly incorporate part of the sampling noise of death 

rates.  Consequently, both parameter and process risk may be overestimated resulting in an underestimation of 

the hedge effectiveness.  

We can see this by contrasting the results from our case study in section 8 with those seen for a smaller 

scheme with just 5,000 lives and 7 years of back history. Figure 9.1 shows the variance of the difference 

between the book and reference population in terms of the period survival probability from age 60 to 90, ten 

years into the future under the CAE+Cohorts approach.  This is a broad proxy to the variability of outcomes post 

an index-based hedge.  We can see how each of the elements of risk increases for the smaller book, including 

the two key components of demographic risk, i.e. parameter uncertainty and process risk. 
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Figure 9.1 Comparison of variance of difference between book and reference population under CAE+cohort for two different book 

populations. 

 Sampling risk: Having a smaller book size should lead to a greater variability in actual outcomes arising 

from sampling risk as seen in the chart. 

 Parameter uncertainty: By having a smaller number of lives we are less certain about the parameters in 

our model for the difference in mortality between the book and the population.  Hence the value shown is 

artificially high reflecting the difficulty in evaluating the underlying mortality trends rather than the 

underlying uncertainty in those trends. For example if we understood more about the underlying nature of 

demographic risk we may have more confidence in the underlying trends within the book.  

 Process risk: The small size of the book leads to increased variability in the observed values of the time 

indices for the difference in mortality between the book and the reference populations.  This feeds 

through to the volatility parameters of the random innovation terms within our time series (the 𝜉𝑡
𝐵), and so 

is also liable to lead to overestimation of basis risk. 

It is reassuring that Cairns et al (2014) hint at this issue beginning to be material for book sizes less than about 

25,000 lives i.e. a similar threshold to that contained in our decision tree. 

For books below 25,000 lives, our approach of focussing on a characterisation approach (rather than direct 

modelling) for smaller books mitigates this risk.  An alternative way to avoid this issue would be to consider a 

Bayesian approach, as proposed in Cairns et al (2011). 

9.1.4 Forecasting horizon 

Our research has focussed on assessing the performance for up to a 15 year forecasting horizon.  The 

effectiveness of the models is untested over longer time periods.   

Evaluating hedging instruments’ effectiveness over longer horizons requires further analysis and care from the 

user to ensure that the considered models remain appropriate, or to adopt alternatives as necessary. 

This issue is of particular importance when considering longer dated instruments or structuring a hedge to 

provide run off protection. 

0.000

0.001

0.002

0.003

0.004

Large scheme
(25,000 lives; 19 years history)

Small scheme
(5,000 lives; 7 years history)

Sampling risk

Parameter uncertainty

Process risk

Together = Demographic risk 
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9.1.5 Older ages 

The modelling approaches adopted only fit to and project the range of ages included in the data.  Older ages 

(typically 90+ or 95+) will require some form of subjective (structural) assumption to be applied.  Care is needed 

in doing this, as the approach taken can impact the modelled variability of outcomes for the reference and book 

populations and hence also the view of demographic risk and hedge effectiveness. 

9.1.6 Alternative reference populations 

Our model testing is based on using England and Wales data as the reference population.  Therefore the results 

may not directly carry over to other reference populations (especially if materially different in nature, such as 

from a different country). 

In cases where the user is attempting to carry the results of this work across to other reference populations, 

close attention should be given to the goodness-of-fit of the model for the reference population.  If the results 

are unsatisfactory then further analysis and model testing may be required.  Nevertheless, the research 

approach we have taken should be replicable for other countries and we would expect many of the key 

conclusions still to hold. 

9.1.7 Hedging non-UK portfolios 

In our specification and analysis of the two population model for the reference and the book populations, we 

have implicitly assumed that the book is a subset or is closely related to the reference population on which the 

index is based.  

Other cases (hedging UK mortality with another country, say US, mortality) would require a deep understanding 

of the differences between the two countries’ mortality.  Such differences may not be captured by the structure 

of the two population models we have proposed and the relative approach we have pursued may have to be 

substituted by a simultaneous modelling of the two countries’ mortality. 

9.2 Addressing the practicalities of direct modelling 

Sections 6, 7 and 8 identified and illustrated pure direct modelling approaches with a focus on men.  In practice 

users may wish to combine stochastic direct modelling techniques with their own views on certain aspects of 

longevity (particularly for the book) and will be concerned with portfolios containing both men and women.   

9.2.1 Allowing for known base rates  

Both of the direct modelling approaches suggested in our decision tree produce base rates for the book 

population.  In practice, however, the user may have an alternative approach to the base rates which he or she 

would prefer to use – for example due to an established mechanism for assessing this, or due to a more 

granular method such as individual underwriting. This may lead the user to having base rates 𝑞𝑥
𝐵,𝑢𝑠𝑒𝑟 𝑏𝑎𝑠𝑒

 which 

are to apply at time 𝑇. 

9.2.1.1 Direct substitution 

In some circumstances it is possible to substitute the user’s base rates into the fitted model prior to projection of 

future mortality rates. 

For example under the CAE+cohorts approach the 𝛼𝑥
𝐵 has a natural interpretation as the difference in mortality 

levels between the book and the reference population. This means that it is easy to superpose the user’s 

preferred base rates by: 

1 Substituting the fitted 𝛼𝑥
𝐵 with calculated 𝛼𝑥

𝐵,𝑢𝑠𝑒𝑟
 for each age 𝑥 : 

𝛼𝑥
𝐵,𝑢𝑠𝑒𝑟 = 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥

𝐵,𝑢𝑠𝑒𝑟 𝑏𝑎𝑠𝑒) − 𝛼𝑥
𝑅 − 𝛽𝑥

𝑅(𝜅𝑇
𝑅 + 𝜅𝑇

𝐵) − 𝛾𝑇−𝑥
𝑅  



LONGEVITY BASIS RISK 077 

 

 

December 2014  

141204 LONGEVITY BASIS RISK - PHASE 1 REPORT (FINAL, SESSIONAL MTG FORMAT) 

2 Modifying the identifiability constraints used to fit the model to enable the direct substitution. Specifically: 

remove the constraint defined by equation (7.13) as by fixing  𝛼𝑥
𝐵 changes in levels of 𝜅𝑡

𝐵 are no longer 

permitted. 

 

9.2.1.2 Use of reduction factors 

Some models, such as the M7-M5 model, do not support direct substitution without modification to the model 

(e.g. as per Plat (2009a)) and overcoming the associated identifiability challenges (see Hunt and Blake 2014b). 

Here, an alternative approach is to: 

1 Calculate the implied annual improvements (reduction factors) from the simulation of future mortality for 

the book population: 

𝑅𝐹𝑥,𝑡
𝐵,𝑓𝑖𝑡𝑡𝑒𝑑

=
𝑞𝑥,𝑡

𝐵,𝑓𝑖𝑡𝑡𝑒𝑑

𝑞𝑥,𝑇
𝐵,𝑓𝑖𝑡𝑡𝑒𝑑

 

2 Apply these to the users own base table to obtain revised simulations for the book population: 

𝑞𝑥,𝑡
𝐵,𝑢𝑠𝑒𝑟 = 𝑞𝑥,𝑇

𝐵,𝑢𝑠𝑒𝑟   𝑅𝐹𝑥,𝑡
𝐵,𝑓𝑖𝑡𝑡𝑒𝑑

 

9.2.2 Modelling men and women 

In practice most book populations contain a mix of men and women and so the user may want to model men 

and women as part of assessing hedge effectiveness. A number of possible approaches exist, with the choice 

depending on the type of hedge that is being considered and whether the available indices are gender based 

(the usual case) or unisex. 

9.2.2.1 Hedging with separate indices for men and women – modelling men and women separately 

If hedging is to be done using two sets of indices, one for men and one for women, then direct modelling of 

reference and book populations (as illustrated in section 8) could be undertaken separately for both genders, 

provided the data for each gender met the number of lives / back history criteria.  

The primary challenge would then be to allow for the correlation between the genders (at both reference and 

book level).  This can be overcome by either: 

 modelling mortality for men and women simultaneously (at least for the reference population), for instance 

with the use of a multivariate time series model for the period indices of men and women (see Li and 

Hardy (2011)); or 

 modelling mortality for men and women independently and aggregating the results with an adjustment to 

allow for correlation (similar to what is done when aggregating risks in, for example, the framework of 

Solvency II)   

9.2.2.2 Hedging with separate indices for men and women – unisex modelling 

A challenge of modelling men and women separately is that book data volumes may be too low to allow 

separate direct modelling for men and (particularly) women. Most books will be below 25,000 lives in aggregate, 

and (almost) certainly will be below this for one or other gender. 

One possible approach is to treat the book as a single entity (notwithstanding the fact that it is a mix of men and 

women) and model the reference population using an appropriate blend of male and female reference 

populations.  This would allow the direct modelling approach illustrated in section 8 to be applied. 

Care would be needed to weight the historical reference population data in line with appropriate male / female 

weights e.g. in line with the mix of male / female hedging instruments to be used. 
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9.2.2.3 Hedging with a single index – modelling men and women separately 

In some circumstances, only a single index may be available – or indeed the user may elect to use a single 

index on grounds of broader considerations such as liquidity. For example, with the majority of UK pension 

liabilities linked to the longevity of men it is conceivable that we will see greater liquidity developing for a male 

index. 

One approach would be to model the men and women within the book population separately. Taking the 

example where hedging involves only a male index, the output of interest would be simulations for both male 

and female books but only the male reference population.  Nevertheless, it is highly likely that fitting and 

simulation of the female reference population would be required in order to model the female book population 

mortality relative to that reference population. 

This approach is akin to that described in section 9.2.2.1 with one important caveat.  Modelling men and women 

independently and aggregating the results with an adjustment to allow for correlation is unlikely to be suitable, 

as it would not capture the basis risk between male reference population and female book.  It would therefore 

be necessary to model mortality for men and women simultaneously (at least for the reference population), for 

instance with the use of multivariate time series models. 

9.2.2.4 Hedging with a single index – unisex modelling 

Alternatively, modelling the book population on a unisex basis avoids the need for simultaneous modelling of 

men and women.  Here, the unisex approach to the book population described in section 9.2.2.2 could be 

applied.  The reference population would be male only, and the book population would be the combined (male 

and female) book. 

Care may need to be taken in relation to any time trend in mix of men and women in the book (akin to the issue 

of a changing socio-economic mix over time) and the weight of liabilities for men and women in order to ensure 

that the resulting assessment of hedge effectiveness is appropriate. 

9.2.3 Applying user judgement 

The most likely area where the user will wish to apply judgement is the extent to which he or she relies on the 

past as a guide for the future, and thus amends the parameters of the processes used for the projection of the 

time series and/or the nature of the times series used to reflect this view.   

Users may also wish to move away from the usual VAR(1) assumption for the time indices given the embedded 

assumption that in the long-run the spread in mortality between the book and the reference population will 

converge to its historical mean and the limited width to the funnel of doubt for this difference.  

Appendix C describes a selection of possible time series.  The appropriate choice will very much depend on a 

combination of what the book data supports and the user’s beliefs.  As a very high level guide: 

 Capturing linear trends in historical data: Use time series such as multivariate random walk with drift 

(MRWD) when the user prefers unbounded prediction intervals (‘funnels of doubt’) or vector 

autoregressive processes (VAR) about a linear trend for bounded variability and prediction intervals. 

 Trending to a view of stable relative mortality: Convergence to a pre-specified long-term level input by 

the user can be achieved by – for example – constraining the parameters of the AR(1) process in line with 

Börger
 
et al (2013) 

 More complex evolutions of book vs reference population: In principle more complex structures can 

be embedded in the time series structure. Taking the VAR processes described in Appendix C as an 

example, this would mean replacing the linear trend term (Φ01𝑡) with an alternative more complex 
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function of time. Alternative co-integration or vector error correction models could be used (see e.g. Yang 

and Wang (2013) and Zhou et. al (2014)). 

Users may also wish to combine some of these options; for example starting with some linear trends capturing 

narrowing or widening of differentials in the shorter term before trending to some stable relative rates.  A 

detailed description of how users might achieve this is beyond the scope of this stage of our research – 

however, we would encourage further research into appropriate choices of times series and the possible ways 

of embedding judgement into the modelling.   
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10 Characterisation Approach 

In practice, most pension scheme books and life company portfolios will fall below the size requirements for 

direct modelling – having fewer than 25,000 annuitants (even across men and women) or less than 8 years of 

reliable back history.  Most users will, therefore, find themselves requiring an alternative approach if they are to 

avoid overestimating demographic basis risk as per 9.1.3. 

Even where the book is sufficiently large with long enough experience history to use direct modelling, an 

alternative indirect approach is still likely to be useful; either as a means of a pragmatic initial assessment of the 

quantum of basis risk, or as an alternative approach as part of considering model risk. 

This section explains the construction and implementation of a characterisation approach.  Case studies are 

provided in section 11. 

10.1 How the characterisation approach works 

Instead of using the experience data of the book itself, the basic principle of the characterisation approach is to 

map the book onto a small number of characterising groups which: 

 capture the majority of the source of demographic risk 

 can be projected using an alternative data source with a more reliable and longer back-history of mortality 

experience 

Schematically, this approach can be thought of as: 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.1: High level schematic of characterisation approach 

 

The modelling process takes two stages: 

Stage 1: Pre generate simulations for a set of characterising groups (𝑪𝟏,𝑪𝟐,…) and the reference 

population (R) 

This need only be done once and can be done quite separately to the application to the specific book.  These 

simulations will include both parameter uncertainty and process risk. 
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Stage 2: Create simulations for the book and reference population 

This involves: 

 Segmenting the book into groups 𝐵1,𝐵2,… using the same criteria as define the characterising groups 

 Obtaining the pre-generated simulations of mortality rates applicable to each characterising group and the 

reference population for each age and each future year  

 Simulating survivorship of each segment of the book (𝐵1,𝐵2,…) using binomial sampling and the pre-

generated simulated mortality rates for the corresponding characterising group (𝐶1,𝐶2,…) 

 Adding together the simulations for each segment to get a simulation for the total book population 

 Using that simulation of the book population with the corresponding (pre-generated) reference population 

simulation to compare index and book outcomes 

These steps result in the large number of simulations required to form the assessment of basis risk. 

10.2 Key questions within characterisation approach 

In order to apply the method outlined in section 10.1 five key questions need to be answered: 

1 What dataset (‘characterising population’) should be used for the pre-generated simulations?  

2 How should the characterising population be segmented into ‘characterising groups’? 

3 What stochastic model (and time series) should be used to simulate these groups? 

4 How should the book population be simulated given these pre-generated simulations? 

5 What adjustment, if any, should be made for potential residual basis risk? (i.e. the extent to which the 

characterising groups may not capture all of the underlying basis risk) 

Sections 10.3-10.7 look at each of these decisions in turn using example characterising populations to illustrate 

the thought process that is involved in each decision. 

10.3 What dataset to use for characterising population? 

The dataset used for the characterising population needs to be large and have sufficiently long back history in 

order for it to give reliable simulations. Specifically, it will ideally be an order of magnitude greater than the 

minimum threshold for direct modelling, i.e. of the order of 250,000 lives, so that it can support direct modelling 

on the characterising sub-populations. 

In order to be useful for the characterisation approach, the dataset needs to have sufficient information to allow 

segmentation into sub-groups that are likely to capture future longevity variations.  In addition the variables used 

for segmentation must be available and have a consistent definition / meaning within the book populations.  

Example variables could be postcode or pension/annuity income. However in the latter case care would be 

needed to understand whether the characterising population related to defined benefit pensioners / bulk-

purchase annuitants or individual annuitants as pension potentially has a different meaning between these 

groups.   

In a similar vein it is important that the characterising population is relevant to the book population in order to 

reduce the scope for material residual basis risk not captured by this approach. This means that it would be 

quite reasonable – and indeed where the book population is a select group of lives desirable – for the 

characterising population to differ from the reference population. In the case of using an England & Wales 

reference population, possible options for the characterising population include: 

 ONS data (split for example by a socio-economic variable such as postcode based index of multiple 

deprivation); 
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 CMI dataset (e.g. the SAPS data which has a back history of experience data split by pension amount); 

and 

 Club Vita dataset (which can be split by a range of affluence and postcode metrics). 

In the context of this report, we have chosen to illustrate only one of the ONS and CMI dataset since each can 

only be used to create characterising groups using one variable. The more limited back-history (currently 2000-

2012
50

) combined with the year to year variation in contributing schemes for the CMI SAPS dataset pose 

challenges in calibrating the time series models, and hence we focus on the ONS dataset.  The ONS data 

contains exposure and death data for individual calendar years and five year age bands split by Index of 

Multiple Deprivation (2007 base).  This dataset is restricted to England by necessity (as the IMD weights several 

components each of which are expressed relative to the national average). 

We also illustrate the considerations in choosing and projecting the sub-populations for the Club Vita data.  This 

is informative in two regards. Firstly, it enables a discussion of determining the characterising populations when 

we have multiple dimensions available for use in the segmentation.  Secondly, the historical data support the 

use of different time series to the ONS data enabling us to illustrate some important considerations in respect of 

the choice of time series.  

10.4 Choosing the characterising groups 

Having chosen our characterising population we need to identify how to segment it into groups which we believe 

will capture most of the heterogeneity in future longevity trends and thus demographic risk.  A natural starting 

point in this regard would be differences in historical improvements, although the user may also wish to keep 

certain groups separate where he or she has a particular belief regarding the potential for divergent trends 

between those groups. 

We suggest six core principles that should be applied and balanced when choosing the characterising groups: 

1 Credible size: Each resulting group needs to be sufficiently large that we can confidently apply direct 

modelling to it, but not so large that it dominates the assessment of basis risk for individual books. 

2 Separate clear differences in improvements: We wish to ensure that the groups capture the major 

differences seen in historical improvements between different parts of the characterising population. 

3 Group where similar improvements: Where particular parts of the characterising population have 

experienced similar levels of improvement we would generally keep these together. 

4 Separate clear differences in mortality levels: Where different groups of the characterising population 

have very different current levels of mortality we would wish to keep these separate as they are liable to 

be subject to different major causes of death and so respond differently to future longevity improvements 

(even if they have exhibited similar trends in the past). 

5 Interpretable: The resulting groups should contain like individuals (i.e. similar in terms of real world 

features such as affluence) and thus have some interpretable and intuitive meaning.  This enables the 

user to apply their broader understanding of the drivers of improvements in exercising judgement within 

the modelling of these groups. 

6 Manageable number: The resulting number of groups should not be very large as this will materially 

increase the number of parameters in the multi-population model which will be used to simultaneously 

simulate the reference population and each of the characterising populations. This in turn will magnify the 

parameter uncertainty. Equally, the number of groups should not be too small as otherwise we will 

inadequately characterise the demographic risk.  For the purposes of illustration we have not sought to 

                                                      
50

 Working paper 73 covers data over the period 2005 to 2012; earlier Working Papers cover data back to 2000. 
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determine an optimal number; and have instead illustrated the approach to achieving the other principles 

based upon having 3 clustering groups. 

We illustrate the application of these principles to the ONS and Club Vita characterising populations below.  

The details of the application of the principles to the Club Vita dataset are covered in Appendix D. 

10.4.1   One dimension (ONS IMD data for English men) 

The ONS IMD data enable us to group a characterising population of the English population by deprivation 

quintile. Here we are looking to reduce the five groups available in the data into three characterising groups.  

Whilst this can be done using the kind of statistical techniques described in 10.4.2, in these circumstances a 

pragmatic application of the principles may be preferable. 

By virtue of each quintile capturing 20% of the national data we can be confident that any grouping we produce 

will meet the credible size requirement; and, thus, our focus is on principles 2-4 above. 

From Figure 2.2 in section 2.1 (repeated to the right) 

we can immediately see how: 

 There are clear differences in improvements for 

the most deprived quintiles (Q4 and Q5) 

compared to the other quintiles 

 Q1, Q2 and Q3 have similar levels of historical 

improvement and so potentially can be grouped 

together 

Looking at the levels of mortality for each group we 

find that there are clear differences in mortality levels 

with Q3 much higher than Q1 and Q2 (see Villegas 

and Haberman (2014)).  The potential for the drivers to 

be different for Q3 therefore suggests that this quintile 

is treated as a separate group. 

Bringing this together gives the following three groups, 

which clearly also adhere to the interpretability 

principle:  

 Below average deprivation (Q1-Q2) 

 Average deprivation (Q3) 

 Above average deprivation (Q4-Q5) 

 

Figure 10.2: Annualised improvements in mortality, England by 

deprivation quintile. Based on Table 1 and 2 in Lu et al. (2013) 

 

10.4.2   Multiple dimensions available (Club Vita data for men) 

The Club Vita DB annuitant dataset enables us to group individuals by a wide range of characteristics which 

could be indicative of differences in future longevity trends and thus demographic risk.  In Section 2.1 we saw 

that – of those characteristics which are widely available within pension schemes / BPA books – combining 

pension income and postcode based deprivation measures provided the most parsimonious fit to historical 

experience.   

We create our characterising groups via the following steps: 
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1 Segment the spectrum of values each variable can take into discrete groups, and so in turn the 

characterising population into ‘cells’  

2 Identify a distance metric which measures the level of dissimilarity between these cells striking a balance 

between our competing principles  

3 Use statistical techniques (specifically partitioning about medoids and fuzzy analysis) to cluster these 

cells into our desired number of groups  

4 Interpret the results of the clustering and consider whether appropriate to adjust to ensure groups are 

both interpretable and credible in size 

The detail of applying these steps is covered in Appendix E and leads to three illustrative groups which could be 

described as the ‘modest means’
51

, ‘middling’ and the ‘higher wealth’.  

Pen/IMD Q5 

(most) 

Q4 Q3 

(mid) 

Q2 Q1 

(least) 

<5k    

5-10k    

10k+    

 

It is reassuring that the resulting characterising groups meet our principle of having credible data volumes – 

having comfortably in excess of the 25,000 lives required for direct modelling: 

 Modest means Middling Higher wealth 

Number of lives (2010)
52

 61,879 81,883 90,722 

 

We can also see from Figure 10.3 that the resulting groups have captured meaningful differences between the 

groups both in terms of the mortality levels (which have the expected ordering) and mortality improvements 

(which for the example age range
53

 of 75-84 exhibit a ‘smile’ shape). 

  

Figure 10.3: Mortality rates and smoothed annual improvements for characterising groups based on Club Vita data (ages 75-84) 

                                                      
51

 Modest means in the sense that low pension and high deprivation geography liable to lead to modest non-pensions wealth 

52
 Men aged 65-90 with good quality pension and postcode data (and post application of scheme level exclusions for biases between clean 

death and exposure data as per Appendix A) 

53
 A curtailed age range is used to reduce any confounding arising from changes in the average age of each group over time.  
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Looking across pension schemes within the Club Vita dataset we can also note how the groups are likely to be 

informative in capturing differences in exposure to longevity trends and demographic risk.  Whilst the typical 

scheme
54

 has a broadly even split of membership across the groups (on a lives basis), some schemes are 

noticeably skewed either towards the ‘healthy wealthy’ groups or the ‘unhealthy poor’ groups. 

Typical scheme ‘Higher wealth’ biased 

scheme 

‘Modest means’ biased 

scheme 

   

Figure 10.4: Distribution of membership by our illustrative characterising group for different schemes within the Club Vita dataset. 

Within any specific book population the financial exposure to demographic risk will be skewed towards the 

‘healthy wealthy’ group compared to the lives distributions shown above.  In light of this feature, some users 

may wish to further split the wealthy group, particularly if, on an amounts basis, the liabilities are almost 

exclusively within that group.  

10.5 Which model to use 

Having identified the characterising groups we need to simulate these populations, simultaneously with the 

reference population. By construction, each of the characterising groups is large enough so that, if we were to 

treat it as a book population, then under the flowchart introduced in section 7 we would use the M7-M5 model to 

simulate it alongside the reference population. A natural approach therefore is to use a multi-population 

extension of the M7-M5 whereby each of the characterising groups is modelled using the M5 formulation but 

where an allowance is made for correlation between the characterising groups.  

10.5.1 Multi-population M7-M5 

10.5.1.1 Reference population 

Using the notation introduced in section 4 we have: 

 

𝐷𝑥𝑡
𝑅 ~𝐵𝑖𝑛 (𝐸𝑥𝑡

𝑅 , 𝑞𝑥𝑡
𝑅 ) 

logit 𝑞𝑥𝑡
𝑅 = 𝜅𝑡

(1,𝑅)
+ (𝑥 − �̅�)𝜅𝑡

(2,𝑅)
+ ((𝑥 − �̅�)2 − 𝜎𝑥

2)𝜅𝑡
(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

 

The vector of time series indices 𝜿𝒕
𝐑 = (𝜅𝑡

(1,𝑅)
, 𝜅𝑡

(2,𝑅)
, 𝜅𝑡

(3,𝑅)
)

𝑇
 are then modelled as a MRWD as per section 5.2 

i.e. 

𝜿𝒕
𝑹 = 𝒅 + 𝜿𝒕−𝟏

𝑹 + 𝝃𝒕
𝑹 ,          𝝃𝒕

𝑹 ~𝑵(𝟎, 𝚺𝐑), 

If it is necessary to extend the cohort term 𝛾𝑡−𝑥
𝑅  outside of the birth generations included in the dataset then we 

follow an ARIMA(1,1,0) approach as per section 5.2: 

Δ𝛾c
𝑅 = 𝜙0 + 𝜙1Δ𝛾c−1

𝑅 + 𝜀c
𝑅 ,              𝜀c

𝑅 ∼ 𝑁(0, 𝜎𝑅
2 ) 

where Δ𝛾c
𝑅 

= 𝛾c
𝑅 

− 𝛾c−1
𝑅 

. 

                                                      
54

 As measured by the mix in the aggregate dataset 
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10.5.1.2 Characterising groups 

Denoting by a superscript of 𝐶𝑖 the quantities for each of the characterising groups we have: 

 

𝐷𝑥𝑡
𝐶𝑖~𝐵𝑖𝑛 (𝐸𝑥𝑡

𝐶𝑖 , 𝑞𝑥𝑡
𝐶𝑖)  

logit(𝑞𝑥𝑡
𝐶𝑖) − logit(𝑞𝑥𝑡

𝑅 ) = 𝜅𝑡
(1,𝐶𝑖)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝐶𝑖)

 

 

We then need to model the multivariate time series 𝜅𝑡
𝐶: 

𝜿𝒕
𝑪 = (𝜅𝑡

(1,𝐶1)
, 𝜅𝑡

(1,𝐶2)
, … , 𝜅𝑡

(1,𝐶𝑛)
, 𝜅𝑡

(2,𝐶1)
, 𝜅𝑡

(2,𝐶2)
, … , 𝜅𝑡

(2,𝐶𝑛)
)

𝑇

 

in an appropriate way. Possible multivariate time series which will embed a correlation structure include 

multivariate random walk with drift and vector-autoregressive processes (see Appendix C). 

10.5.2 Choice of time series 

Similar to the direct modelling situation, the choice of appropriate time series depends on both the trends in the 

historical data for the characterising groups and the user’s beliefs / judgements. As such it is not appropriate to 

give a general time series formula, although we discuss the key issues that are likely to need to be addressed 

below by looking at the 𝜅𝑡
(1,𝐶𝑖)

 time indices for our two illustrative characterising populations.  We return to the 

other time series indices in our case study (section 11). 

ONS IMD Club Vita Dataset 

  

Figure 10.6: Fitted 𝜅𝑡
(1,𝐶𝑖)

 terms for two different characterising populations (ONS IMD and Club Vita) 
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10.5.2.1 ONS IMD 

We can see how: 

 𝜅𝑡
(1,𝑄4−𝑄5)

 is positive with a clear upward trend, i.e. average levels of mortality are rising relative to the 

reference population (i.e. the gap in mortality is widening vs England & Wales) 

 𝜅𝑡
(1,𝑄1−𝑄2)

 is negative and shows a slight downward trend, i.e. average levels of mortality are falling 

relative to reference population (so gap widening vs England & Wales) 

A natural inclination would be to model continuation of these trends – this could be achieved via time series 

such as: 

 Multivariate random walk with drift (MRWD) 

 VAR with linear trend 

In each case this would assume a perpetual widening of the gap in relative mortality as measured by the logit of 

mortality
55

. Alternative assumptions could be: 

 A stable gap in mortality differentials at the last known value (VAR with a known constant) 

 Convergence to the average level of differential over the time period fitted to (VAR about constant) 

 A continued widening of the gap before a closing of gap (e.g. VAR with appropriate function of time for 

the trend) 

10.5.2.2 Club Vita data 

We can see how: 

 there is less clear evidence of strong trends for the Club Vita data; and  

 the ‘higher wealth’ group shows some evidence of an upward trend. 

We could therefore use a multivariate random walk with drift or VAR with linear trend to capture the slight trends 

in the historical data.   If we do this, then care is needed as the trend in the ‘higher wealth’ group is liable to be 

sufficiently strong that it will ultimately catch up, and overtake the other groups leading to counter-intuitive 

relative levels of mortality.   

This can be avoided by using alternative time series which: 

 limit the period for which drift occurs to a specific time period; or 

 use a more complex time function to dampen, cease or reverse the trend over time; or 

 have no trend term for example VAR with constant. 

10.6 Simulating the book population using the characterising groups 

Having generated simulations of the 𝑞𝑥𝑡 for the characterising groups and the reference population – allowing 

for parameter uncertainty and process risk – we then need to apply these to the book population including 

capturing the sampling risk therein. 

First, we need to map the book population on to the characterising groups.  In general this will be a simple task. 

Inevitably, though, some individuals in the book may have missing or unreliable information in the rest of the 

                                                      
55

 Note that this need not feed through to a widening of the gap in life expectancy though.  In general if we have two groups of individuals, 

then the group with the highest mortality levels will see slightly larger increases in life expectancy for the same level of year on year 

reductions in mortality. Thus the widening of gap in logit mortality may not be sufficient to cause a widening of gap in life expectancy. 
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variables used in the characterisation.  For example they may have an overseas postcode (which for the 

purposes of IMD can include Scotland & Wales
56

). Provided the proportion of individuals whose data does not 

enable them to be mapped to a characterising group is modest, a pragmatic approach can be adopted. This 

would typically involve assigning these individuals in accordance with the split between characterising groups 

seen in the book as a whole (with the results rounded to the nearest integer as we must have an integer number 

of lives). Where the characterising groups are defined across multiple dimensions it would be desirable to apply 

this allocation using the splits seen between groups seen in the book conditional on any known values. For 

example, if we had an individual with a pension of £7,000 p.a. but without IMD information then under the Club 

Vita characterising groups we know this individual cannot be in the ‘Middling’ group and we should reflect this 

when assigning his exposures. 

Having calculated the number of individuals currently alive at each age in each characterising group we then 

simulate each sub-group separately using binomial sampling as illustrated below
57

:   

 

Figure 10.7: Simulating the survivorship of the initial membership within each characterising group 

where 𝑁𝑥,𝑡,𝑗
𝐶𝑖 , the number of individuals in characterising group 𝐶𝑖 within the book who are alive aged 𝑥 at time 𝑡 

under simulation 𝑗, is drawn as a binomial simulation from 𝐵𝑖𝑛(𝑁𝑥−1,𝑡−1,𝑗
𝐶𝑖 , 1 − 𝑞𝑥−1,𝑡−1,𝑗

𝐶𝑖 ). 

Finally, for each age and each future point in time we can sum the numbers alive within the book for each 

characterising group to get a simulation for the book population. 

10.7 What adjustment (if any) should be made for residual demographic risk? 

In applying the characterisation approach we are assuming that we can effectively capture all the potential for 

demographic risk via a small number of characterising groups.  Although the groups have been chosen so as to 

distinguish individuals in terms of mortality improvements there will be demographic risk which cannot be 

captured. Thus, the ‘true’ level of basis risk is likely to be a little higher than implied under this approach.  In this 

regard it is reassuring that our (limited number of) case study book populations in section 11 show modest 

differences between the hedge effectiveness calculated by the characterisation approach and direct modelling, 

with the characterisation approach giving variance reduction statistics up to 6% higher
58

. However, as we will 

                                                      
56

 The IMD values as publically available apply are not comparable across nations in the UK.  However it is relatively easy to compute a pan 

UK IMD value – see section 12 for further discussion. 

57
 This differs to the approach followed in sections 6 and 8. Specifically, here we assume that the book is modelled under a run-off basis and 

thus decrease over time.  This replicates the application of index-based hedges. In our earlier analysis we were assuming that the size of 

the scheme was kept constant at the size in the last year of observation to facilitate comparisons between models.  

58
 Where comparable time series are used 

Age/year

Start Simulated period

2010 2011 2012 2039 2040

60

61

62

89

90
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also see in Section 11, it need not be the case that the characterisation approach suggests higher variance 

reduction / hedge effectiveness than the direct modelling approach.  
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11 Case study – characterisation approach 

Section 10 gave a detailed description of the characterisation approach which will most likely become practical 

for users with books/portfolios smaller than required for direct modelling. For a user to apply the procedure to 

his book/portfolio a number of modelling assumptions need to be made, such as which characterisation 

population and which time series to use. Section 10 has provided the user with a general guide to these 

questions along with considering a few alternatives.  

This case study of the characterisation approach will demonstrate the actual modelling process, and the results 

of applying the characterisation simulations when applied to five different pension schemes from Club Vita. Two 

different characterising populations (ONS data and Club Vita data for men only) will be used to illustrate the 

approach using the M7-M5 multi-population model.  

11.1 Example A: ONS IMD Data 

As highlighted in section 10.5.1.1, a natural choice of time series to model the historical trends in 𝜅𝑡
(1,𝐶𝑖)

 when 

fitted to the ONS data (split into three socio-economic groups) was either: 

 Multivariate random walk with drift (MRWD); or 

 VAR with linear trend 

By choosing these time series for the two time dependent variables in the M7-M5 model we assume a 

continuation of the historical trend when projecting as per the funnels of doubt for 𝜅𝑡
(1,𝐶𝑖)

 and 𝜅𝑡
(2,𝐶𝑖)

 in figure 11.1. 

MRWD VAR with trend 

𝜅𝑡
(1,𝐶𝑖) 𝜅𝑡

(2,𝐶𝑖) 𝜅𝑡
(1,𝐶𝑖) 𝜅𝑡

(2,𝐶𝑖) 

 
 

Figure 11.1: Future projections of the fitted parameters for 𝜅𝑡
(1,𝐶𝑖)

 and 𝜅𝑡
(2,𝐶𝑖)

, using the ONS data split by three IMD clusters. 

Note the reverse order of the clusters in the graphs above, independent of which time series is applied. For 

𝜅𝑡
(1,𝐶𝑖)

 the least deprived group (Q1-Q2) has the lowest value in relative mortality (on the logit scale) and the 

most deprived group (Q4-Q5) the highest but for 𝜅𝑡
(2,𝐶𝑖)

 the opposite ordering occurs. This is consistent with the 

“compensation law of mortality” (Gavrilov & Gavrilova (1991)) whereby mortality converges at older ages; thus 

increasing/decreasing trends (away from the reference population) in 𝜅𝑡
(1,𝐶𝑖)

 need to be levelled off with inverse 
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15 16 17 18 19 20 21

Life expectancy in 2010
(from age 65, curtate at age 90)

Q4-Q5 Q3 Q1-Q2

15 16 17 18 19 20 21

Life expectancy in 2020
(from age 65, curtate at age 90)

Q4-Q5 Q3 Q1-Q2

patterns of 𝜅𝑡
(2,𝐶𝑖)

 to ensure that the book population converges to the reference (England & Wales) as age 

increases. 

The main reason for considering MRWD and VAR with trend as appropriate time series for the ONS data is to 

make sure that the clear historical trend would be continuously modelled when forecasting. However, the width 

of the prediction intervals under the VAR with trend model look unreasonably tight. In contrast, when using the 

MRWD to model the time series the prediction intervals look more natural. For this reason, our case study 

models the time depending variables κt
(1,Ci)

 and κt
(2,Ci)

 using the MRWD time series. 

11.1.1 Simulations under MRWD approach 

One way of assessing the reasonableness of the resulting simulations is to look at the simulated life 

expectancies.  

We start by looking at the distribution of simulated period life expectancies at age 65 in 2010 in each 

characterising group in the ONS data. Since 2010 is the last year of observed data, these distributions reflect 

parameter uncertainty only, and consequently have very tight densities. 

  

Figure 11.2:  Life expectancy projections for ONS IMD characterising groups. 

Looking at the simulations in 2020, we observe a much wider spread of outcomes in the life expectancy 

distributions compared to 2010 since we now have ten years of compounded process risk.  

Although the densities overlap come 2020, this need not suggest that the projections are incoherent i.e. the life 

expectancy of lower socio-economic groups overtakes those of higher socio-economic groups.  The correlated 

nature of the projections for the individual characterising groups means that simulations to the left (right) of the 

bell curve for one group, will also tend to be to the left (right) of the bell curve for the other groups.  Indeed on 

closer inspection of the projected differences in life expectancy, we find a very small probability that for example 

Q3 outlive Q1 & Q2 (0.1%) or that Q4 & Q5 are outliving Q3.   
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We can also see that all groups experience a 

broadly similar increase in life expectancy between 

2010 and 2020, despite the divergence happening 

in underlying mortality differentials (chart to right). 

This reflects the mortality / longevity dynamics 

whereby a smaller percentage reduction in mortality 

is required amongst the shorter lived groups for the 

same absolute increase in life expectancy.  

 

Figure 11.3: Projected increase in life expectancy for ONS IMD 

characterising groups, 2010 to 2020. 

 

11.2 Example B: Club Vita data 

In section 10.5.1 we have observed less clear evidence of strong trends (relative to the ONS data) in the 

historical values for 𝜅𝑡
(1,𝐶𝑖)

 and 𝜅𝑡
(2,𝐶𝑖)

 when using the Club Vita data as the characterising population. Section 

10.5.1.2 has highlighted a few time series options to model these trends seen in historical Club Vita data. We 

consider in more depth:   

 VAR with linear trend 

 VAR around a constant 

By choosing these time series for the time dependent variables in the M7-M5 model, we either assume a 

continuation of the historical trend when projecting or keeping it static respectively. 

 VAR with linear trend VAR around constant 

𝜅𝑡
(1,𝐶𝑖)

 

  

Figure 11.4a: Projections of the fitted parameters for 𝜅𝑡
(1,𝐶𝑖)

, split by three Club Vita clusters, using both VAR around a constant (left hand 

side) and VAR with linear trend (right hand side).  
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 VAR with linear trend VAR around constant 

𝜅𝑡
(2,𝐶𝑖)

 

   

  

  

Figure 11.4b: Projections of the fitted parameters for 𝜅𝑡
(2,𝐶𝑖)

, split by three Club Vita clusters, using both VAR with linear trend (left hand side) 

and VAR around a constant (right hand side).  
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As highlighted in section 10.5.1.2, care needs to be taken when using a VAR with trend to model the historical 

trend in the Club Vita data since the trend in the ‘higher wealth’ group might be strong enough to overtake the 

other groups leading to counter-intuitive relative levels of mortality.  This is hinted at on the left hand side of 

Figure 11.4a where the higher end of the funnel for the higher wealth group crosses the lower end of the funnel 

for the middling group.  On this basis, the time depending variables in the M7-M5 model, 𝜅𝑡
(1,𝐶𝑖)

  and 𝜅𝑡
(2,𝐶𝑖)

 will 

be modelled by VAR with constant in this case study for the Club Vita dataset (See Appendix C for more details 

of these time series). 

11.2.1 Simulations under the VAR with constant 

The charts below demonstrate the simulated period life expectancies at age 65 for each cluster in the Club Vita 

data, in 2010 (left) and 2020 (right). 

 

Figure 11.5a: Increase in life expectancy from 2010 to 2020 at age 

65. 

 

Figure 11.5b: Increase in life expectancy from 2010 to 2020 at age 

65. 

 

The density distributions of the simulated life 

expectancies at age 65 in 2010 (Figure 11.5a) 

demonstrate a clear separation between the three 

Club Vita clusters, all in a reasonable order. As in the 

ONS case, the narrow spread in the distributions 

reflects parameter uncertainty only due to 2010 being 

the last calendar year of the historical data fitted to, 

and no projections have been implemented at this 

stage
59

.  

Looking at the simulations in 2020 (Figure 11.5b) we 

observe a much wider spread of outcomes in the life 

expectancy distributions compared to 2010 (as in the 

case when using the ONS data) since we now have 

ten years of compounded process risk.  

 

Figure 11.5c: Increase in life expectancy from 2010 to 2020 at age 

65. 

Despite the overlapping of densities in 2020, it is reassuring that on closer inspection of the projected 

differences in life expectancies we find a small probability of the middling are outliving the higher wealth 

(0.3%) or of the modest means outliving the middling.   

The modest means group is also projected to experience slightly faster increases in life expectancy between 

2010 and 2020 (Figure 11.5c). 

                                                      
59

 The sampling risk will be included when these simulated rates will be applied to the book 
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11.3 Hedge effectiveness results 

In Sections 11.1 and 11.2 we have seen how different characterisation data result in different assumptions and 

implications when generating future mortality projections. The following analysis highlights the hedge 

effectiveness results for a selection of pension schemes when taken through the characterisation approach. 

11.3.1   Test schemes 

Choosing relevant pension schemes for this case study on the characterisation approach is important since 

ideally we would like to test the impact of the approach on a wide selection of different schemes. The following 

schemes were chosen to demonstrate the results of applying the characterisation approach 

 

Figure 11.6: Illustrating the test schemes from the Club Vita dataset 

Looking at each scheme in turn: 

Large Scheme A 

 The scheme is clearly large enough to be modelled directly (with annual exposure of around 28,000) and 

contains very long back history (1993-2011).  

Large Scheme B and C  

 Similar characteristics as Scheme A, i.e. large enough for direct modelling but with less back history 

available. 

 Scheme C has been chosen, in particular, for the potential of giving particularly different results for the 

direct modelling and the characterisation approach since; 

- It is borderline in terms of available history for direct modelling  

- The scheme has considerable number of records where the characterising variables (pension 

amount or IMD score) are not available (grey segment in the pie charts). This might lead to some 

unexpected noise in the results for the characterisation approach. 
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Medium scheme 

 Includes around 20,000 annual exposures covering data from 1997 to 2011.  

 This scheme has been chosen to show how results of the two modelling approaches (direct modelling 

and characterisation approach) compare using a scheme which is of borderline size and history length to 

be modelled directly.  

Small scheme 

 Relatively small scheme with annual exposure around 12,000 lives.  

 This scheme has been chosen to show results of the characterisation approach when applied in typical 

situations, i.e. when the scheme is too small to be taken through the direct modelling approach.   

11.3.2   Results 

The table below shows the variance reduction
60

 for period survival probabilities
61

 age 70 to 90 measured 10 

years into the forecasting for the five chosen sample schemes. Each of the columns labelled (3) to (5) in the 

table shows the hedge effectiveness for the schemes for a different characterising population / time series 

assumption.  

(1) Example scheme (2) Direct Modelling 

M7-M5 

(VAR with Constant) 

(3) Club Vita 

Characterisation 

(VAR with Constant) 

(4) ONS 

Characterisation 

(MRWD) 

(5) ONS 

Characterisation 

(VAR around Trend) 

Large A 78% 84% 77% 88% 

Large B 80% 79% 73% 85% 

Large C 65% 77% 73% 84% 

Medium 77% 80% 75% 85% 

Small N/A 75% 70% 79% 

Table 11.1: Variance reduction for period survival probabilities age 70 to 90 (measured 10 years from the last year of historical book data) 

Whilst only a small selection of schemes, looking at the table we can draw a series of informative observations. 

11.3.2.1  Direct modelling vs Club Vita (VAR with constant) 

First we start by comparing  columns (2) and (3) of the table which show the variance reduction for the sample 

schemes derived from applying the direct modelling approach (column 2) on the one hand and the 

characterisation approach (using Club Vita data) on the other (column 3).   

The time series assumptions are directly comparable in these two approaches i.e. VAR with constant. Thus, 

comparisons between these columns help inform us about the level of adjustment that may be needed for 

residual basis risk not captured by the characterisation approach. We can see that: 

 The characterisation approach provides a credible alternative to direct modelling as the results are very 

similar (Large scheme C aside – see below). 

                                                      
60

 Variance Reduction = 1 − 𝑉𝑎𝑟(20𝑝70,10
𝐵 −20𝑝70,10

𝑅 )/𝑉𝑎𝑟(20𝑝70,10
𝐵 ) 

61
 Notice the different hedge effectiveness statistics p7020  being used at this stage of the report compared to one used in the direct modelling 

section. This reflects the run-off approach used for simulating the book under the characterisation approach as described in Figure 10.7. 
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 For each of the three large schemes the differences in variance reductions within the schemes are 

modest so that any allowance for residual basis risk is likely to be small. 

 The characterisation approach may suggest lower hedge effectiveness than direct modelling (Large 

Scheme B), and may therefore be more informative about the underlying demographic risk than direct 

modelling i.e. it is clearly a helpful alternative to direct modelling, even for books large enough to be 

modelled directly.  

 Scheme C exhibits large differences in variance reduction (around 12%). This difference is likely to be a 

consequence of a combination of shorter history providing less certainty for direct modelling, and more 

variability in the characterisation results due to the significant amount of unknown records. Consequently 

this could be viewed as providing an indication of how disparate the results between the two methods 

could be. 

 For the medium scheme we observe similar results as in the cases for large schemes A and B. This is 

reassuring since this scheme is a borderline case of being appropriate for the direct modelling approach.   

11.3.2.2  Club Vita (VAR with constant) vs ONS (VAR around tend) 

Whilst we saw in section 11.1 that the VAR with trend is unlikely to be an appropriate time series for modelling 

the ONS dataset it is instructive to consider the impact of changing the dataset without changing the nature of 

the underlying time series (in terms of bounded or unbounded variability). For this reason we have included the 

ONS (VAR around trend) results in column (5) of the table
62

. 

Focussing on columns (3) and (5), it is reassuring to see we observe similar magnitudes of hedge effectiveness 

when using either the ONS data or the Club Vita data as the characterisation population combined with a 

consistent choice of time series (i.e. bounded variability).  

11.3.2.3  ONS (MRWD) vs ONS (VAR around trend) 

By comparing the results in column (4) and (5) we notice how the adoption of a more appropriate time series 

model (MRWD) for the ONS dataset noticeably changes the hedge effectiveness results. 

The difference in variance reduction, around 10%, is comparable to the difference previously observed in Figure 

6.10 of section 6 for different choices for the structure of our two population model, i.e. the choice of time series 

is potentially as important as a model choice decision and so requires careful user engagement. However, the 

choice of the times series will be specific to the nature of the characterising population and to what views the 

user will wish to embed in the projections. As such it is less amenable to the kind of structured framework / 

decision tree we have provided for the model choice. 

We can also see how the greater complexity (and therefore wider potential variability in results) in the structure 

of MRWD time series model, coupled with the use of drift rather than constant trend over time, leads, as we 

would expect, to a greater residual basis risk than under both direct modelling and the characterisation 

approach with a VAR time series (columns 3 and 5).  

11.3.2.4  Overall perspective on basis risk 

Overall, we generally observe a material and meaningful variance reduction (and thus hedge effectiveness) in 

the table above with broadly similar results across the schemes for those time series approaches which appear 

reasonable (i.e. we see around a 10% spread between columns 2, 3 & 4).  

                                                      
62

 Note that we have included the ONS (VAR around trend) as column (5) rather than column (4) to keep the most credible results (columns 

(2)-(4)) together 
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This is reassuring since it indicates that the characterisation approach is not only a relevant solution for small 

schemes when hedging basis risk but also a good alternative for those schemes which are large enough to be 

modelled directly. 
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12 Practicalities of characterisation approach 

At the heart of the characterisation approach is direct modelling of multi-populations.  As such the challenges 

and practicalities described in Section 9 apply equally to the characterisation approach. 

There are also a number of additional practical considerations of which the user needs to be aware. 

12.1 Characterising variables 

When mapping the book population, care is needed to ensure that the mapping is ‘consistent’ and to handle 

missing variables. 

12.1.1 Consistent variables 

Some variables may have a very different meaning in the book population and the characterising population.  

For example an insurer with a book of individual annuities would not be able to use the pension bands 

described in section 10 without some modification, since the typical individual retail annuity payment is 

considerably smaller than the typical DB pension. 

12.1.2 Missing or unassignable variables 

We will often find that one or more of the variables needed to map the book population onto the characterising 

population are only available for some individuals.  Whilst we would generally expect pension/annuity amount to 

be available, both of the example characterisations given in section 11 have relied on postcode being available.  

This is not always the case – it may be absent, or mistyped – or indeed where it is available it may be overseas 

or outside the region (e.g. England) for which we have a consistent measure of deprivation and so 

‘unassignable’. 

In order to apply the characterisation approach we need a means of assigning these individuals to a 

characterising subpopulation.  One such pragmatic approach, using the known splits within the book population, 

has been described in Section 10.6.  This effectively assumes that (conditional on the known values for any 

other characterising variables) the variable of concern is ‘missing at random’.  Generally this will be a 

reasonable assumption, but does introduce noise and potentially additional basis risk. 

It is therefore preferable to reduce the number of individuals for whom this is an issue.  Data cleaning can help 

in this regard (to correct mistyped postcodes etc…).  It may also be possible to extend the coverage of the 

characterising variable – for example by creating an IMD index which is consistent across England, Scotland, 

Wales and Northern Ireland as per Payne & Abel (2012)
63

. 

12.2 Projecting men and women 

Under the characterisation approach we will have sufficient data volumes for the characterising groups for both 

men and women.  Consequently this removes the need to carry out the unisex modelling described in section 

9.2.2.  However care will be needed to ensure that the projections for the characterising groups for men and 

women are coherent, particularly when they have a directly comparable meaning.  For example, when the 

characterising population is the ONS IMD data we would want the resulting simulations for a specific IMD to 

retain the ordering of male mortality being higher than female mortality.   

It is likely, therefore, that, as a minimum, simultaneous modelling of the male and female reference population 

will be required. This could be achieved for instance with the use of a multivariate time series model for the 

period indices of men and women (see Li and Hardy (2011)).  It may also be necessary to extend the 

                                                      
63

 An application of this approach is illustrated in the joint National Association of Pension  Funds (NAPF) and Club Vita publication ‘The 

NAPF Longevity Model’ (NAPF, 2014) with the details of the construction of a UK-wide IMD score available in the supporting Technical 

Appendices (Club Vita, 2014) 
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multivariate time series modelling of the differences between the book and reference population so that the 

model captures correlations within gender between characterising groups, and between genders within each 

characterising group. 

12.3 Applying user judgement 

As well as needing to apply judgement on the nature of the time series used in modelling the characterising 

groups, there are other areas where there is potential for user judgement, most notably the correlations 

assumed between the characterising groups.  The year-on-year correlations are usually fitted as a time-invariant 

parameter to the historical data, i.e. the average level of correlation seen historically.  However the user may 

have a reason to vary these correlations as the simulation evolves, e.g. if they hold the view that future drivers 

of longevity will apply less equitably across society. 

However, care is needed when modifying the correlation matrices in order to ensure that the resulting matrices 

remain positive semi-definite at each future point in time and so continue to be valid as correlation matrices; and 

that the projections remain coherent (in terms of the ordering of mortality). 
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Appendix A: Club Vita data 

A1 Introduction to Club Vita 

Club Vita was founded in 2007 with a primary focus on helping pension schemes understand one of their major 

risks - longevity.  In return for submitting membership data, participating pension schemes receive analysis of 

the longevity of their members.  The main aim of this analysis is to help these schemes understand the unique 

characteristics at individual scheme level and appreciate the consequences of how they are likely to change 

over time. 

The participating schemes span a wide range of sizes including some of the largest DB schemes, which are 

comparable in (monetary) size to the annuity books of larger insurers. The varying sizes of the schemes enable 

us to test both the direct modelling approach and characterisation approach.  

A2 Club Vita dataset 

The Club Vita database (VitaBank) is a pool of data of individual pension scheme member records, submitted 

by the member schemes. This database (as at September 2014) consists of nearly 6 million member records; 

including: 

 2.1 million pensioners and widow(er)s; 

 3.7 million members below the retirement age; and 

 0.7 million deaths. 

The records received include personal, but non-sensitive information from pension scheme administration, i.e. 

information relevant to predicting longevity, such as date of birth, postcode, pension, salary and retirement 

health are collected.   

A number of checks are carried out on the data received to ensure it is correct and reliable, and where possible 

corrections are made. Where a member record has a predictor which our checks suggest is unreliable it is 

excluded from analysis of the impact of that predictor.  We also check for concentrations of unreliable records 

within schemes, and biases in exclusions between living and deceased records and limit a scheme’s inclusion in 

our analysis accordingly. 

By using this cleaned data Club Vita is able to analyse and understand the impact of longevity on affluence, 

gender, occupation, lifestyle and other predictive rating factors, and how these impacts have been changing 

over time.  

A3 Data extract used in this analysis 

Club Vita collects data annually for each of its subscribers with these data feeds spread over the calendar year.  

As such it is regularly refreshed with the latest longevity data. 

For the purposes of our analysis into longevity basis risk we have needed to have a static dataset. Accordingly 

we have focussed on an extract of the database as at January 2013 and have used this throughout our 

analysis.  

The growing number of schemes participating in Club Vita mean that this extract contains fewer records then 

are currently held in the Club Vita dataset: with approximately 12.9 million life years of exposure and 0.4 million 

deaths. 
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A2.1 Exposed to risk 

The chart below shows the pattern of (pensioner and dependant) exposures over time for men (blue bars) and 

women (pink bars) within the data analysed in this report. 

 

Figure A1: Exposed to risk by calendar year for the Club Vita data analysed in this report 

We can see how: 

 The exposures increase over time reflecting  

- schemes within the Club having reliable data starting at different points in time due to historical 

administration practices; and 

- the maturation of pension schemes leading to larger numbers of pensioners  

 There is a drop in exposures around 2008 and 2009. This reflects a number of schemes which, having 

participated in a free initial pilot, did not continue to subscribe to Club Vita. 

 The exposures for 2011 are low compared to earlier years – owing to this being a partial year of exposure 

for many schemes due to when they had last submitted data prior to the point of data extract 

A4.2 Deaths 

The chart below shows the number of deaths each year in the dataset we have used. This follows a similar 

pattern to the exposed to risk. 

 

 

Figure A2: Deaths by calendar year for the Club Vita data analysed in this report 
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A4 Key rating factors in VitaBank  

By virtue of collecting information at the individual level, VitaBank contains a wide range of rating factors 

potentially relevant to both baseline mortality and improvements therein. These rating factors include gender, 

retirement health, pensioner type, lifestyle (geo-demographics), affluence, age and occupation (manual and 

non-manual)
64

.  We briefly discuss some of the rating factors used in our analysis below.   

A4.1 Lifestyle  

The lifestyle variable is created by using a third party service provider of geo-demographic data (ACORN) which 

maps UK postcodes onto a demographic profile specific to the full postcode. 

Within Club Vita we have condensed these 57 different ACORN categories using statistical clustering methods 

into 7 different lifestyle categories which are predictive of material differences in longevity. 

A4.2 Deprivation (IMD)  

An alternative postcode based socio-economic measure is deprivation. Deprivation encompasses of the 

following domains; financial, health, education, service or crime scores. These domains are used by the national 

statistics agencies to construct Index of Multiple Deprivation (IMD) scores within each of England, Scotland, 

Wales and Northern Ireland.   

We have used IMD as a rating factor for improvement patterns as it is easily accessible and a well-known 

measure for deprivation; and can if needed be easily restated onto a consistent basis across all four countries 

using the technique described in Payne & Abel (2012). We have focussed on quintiles of IMD for England within 

our analysis.  The chart below shows the distribution of our data between quintiles ranging from the least 

deprived (Q1) to the most deprived (Q5). 

Figure A3: Split of Club Vita data by deprivation quintile 

We can see how over time there is a growing propensity towards the least deprived quintiles (Q1 and Q2) and 

declining proportions in the most deprived quintiles (Q4 and Q5).  This will reflect, at least in part, the 

survivorship bias whereby within any cohort of retirees, a greater proportion of those in the least deprived 

quintiles will survive to the most recent calendar years. 

                                                      
64

 See Madrigal et al (2012) for more detail on how Club Vita have determined the key ratings factors for mortality levels 
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For both deprivation and lifestyle we have relied on using an individual’s postcode at date of death when 

assigning a value for historical death records.  This implicitly assumes that where gentrification of an area has 

occurred over time this is would not change the broad grouping (lifestyle or deprivation quintile) that would apply 

(see e.g., Appendix D in Lu et. al (2012)). For lifestyle groupings which use the full six digit postcode this is likely 

to be more of an issue than for the deprivation score focussed on here, which are measured at the broader local 

super output area; these are less sensitive to (but not immune to) the gentrification of particular streets / 

neighbourhoods. 

A4.3 Pension and salary  

The Club Vita data contains two measures of affluence: pension and last known salary (usually the last salary at 

retirement).  

Pension can be a poor proxy to affluence as it depends not only on earnings but length of service in the pension 

scheme – a modest pension could arise from long service on low pay, or very short service on high pay.  

However, whilst salary is a better measure of affluence, pension will generally be available, whereas salary may 

be harder to extract from some pension scheme records.  

To allow for inflation both pension and salary are revalued from their as at date to a common date (1 January 

2010) in line with RPI.  For deceased pensioners the revaluations occur at a proportion of RPI (below 100%) for 

broad consistency with the pension increases paid historically to surviving pensioners which will typically be a 

mix of full RPI, limited price inflation and nil increases. 
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Appendix B: Landscape of two-population models 

The table below sets out the key features of each the models considered in sections 5 & 6.  

Model References Reference population 

𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕
𝑹 ) 

Book population 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) 

Key features 

Stratified Lee-Carter 

 

 Butt & Haberman (2009) 

 Debon et all (2011) 

𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 𝛼𝐵   Age independent  level 

differences
65

 

 Equal improvements 

Piggyback model  Currie (2009) 𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 𝑎𝐵 + 𝑏𝐵𝑥  Linear in age level differences 

 Equal improvements 

Common-Factor   Carter & Lee (1992) 

 Li & Lee (2005) 

 Li & Hardy (2011) 

𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 𝛼𝑥

𝐵  Age specific level differences 

 Equal improvements 

Three-Way Lee-Carter  Russolillo et al.(2011) 𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 𝛼𝑥

𝐵 + 𝜆𝐵𝛽𝑥
𝑅𝜅𝑡

𝑅  Age specific level differences 

 Trivial (perfectly correlated) 

improvements 

Joint-𝜅  Carter and Lee (1992) 

 Li and Hardy (2011) 

 Wilmoth and Valkonen(2001) 

 Delwarde et al. (2006) 

𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 𝛼𝑥

𝐵 + 𝛽𝑥
𝐵𝜅𝑡

𝑅  Age specific level differences 

 Trivial (perfectly correlated) 

improvements 

Common-age effect   Kleinow (2013) 𝛼𝑥
𝑅 + ∑ 𝛽𝑥

(𝑗,𝑅)
𝜅𝑡

(𝑗,𝑅)

𝑗

 𝛼𝑥
𝐵 + ∑ 𝛽𝑥

(𝑗,𝑅)
𝜅𝑡

(𝑗,𝐵)

𝑗

  Age specific level differences 

 Non perfectly correlated 

improvements 

 Same age response to change in 

period terms 

                                                      
65

Level and improvement differences here refer to the logit level and improvements. 
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Model References Reference population 

𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕
𝑹 ) 

Book population 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) 

Key features 

Lee-Carter + VAR/VECM  Zhou et al. (2013) Cannot be formulated in relative terms  Requires book and reference 

histories with same length  

Cointegrated Lee-Carter   Carter and Lee (1992) 

 Li and Hardy (2011) 

 Yang and Wang (2013) 

Cannot be formulated in relative terms  Requires book and reference 

histories with same length  

Augmented-Common 

Factor  

 Li and Lee (2005) 

 Li and Hardy (2011) 

 Hyndman et al. (2013) 

𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 𝛼𝑥

𝐵 + 𝛽𝑥
𝐵𝜅𝑡

𝐵  Age specific level differences 

 Non perfectly correlated 

improvements 

Relative Lee-Carter + 

cohort  

 Villegas and Haberman 

(2013) 

𝛼𝑥
𝑅 + 𝛽𝑥

𝑅𝜅𝑡
𝑅 + 𝛾𝑡−𝑥

𝑅  𝛼𝑥
𝐵 + 𝛽𝑥

𝐵𝜅𝑡
𝐵  Age specific level differences 

 Non perfectly correlated 

improvements 

 Allows for cohort effect 

Gravity Model - Two 

population APC 

 Dowd et al. (2011) 𝛼𝑥
𝑅 + 𝜅𝑡

𝑅 + 𝛾𝑡−𝑥
𝑅  𝛼𝑥

𝐵 + 𝜅𝑡
𝐵 + 𝛾𝑡−𝑥

𝐵   Separate age, period and cohort 

effect differences additively 

Bayesian Two Population 

-  Two population APC  

 Cairns et al. (2011) 𝛼𝑥
𝑅 + 𝜅𝑡

𝑅 + 𝛾𝑡−𝑥
𝑅  𝛼𝑥

𝐵 + 𝜅𝑡
𝐵 + 𝛾𝑡−𝑥

𝐵   Accounts for short book histories 

 Relatively complex to implement 

Two Population CBD – 

M5 

 Li et al (2014)) 𝜅𝑡
(1,𝑅)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝑅)

 𝜅𝑡
(1,𝐵)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝐵)

  Linear in age level differences 

 Period indices give level and slope 

 Non perfectly correlated 

improvements 
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Model References Reference population 

𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕
𝑹 ) 

Book population 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) 

Key features 

Two Population M6  Li et al (2014) 𝜅𝑡
(1,𝑅)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

𝜅𝑡
(1,𝐵)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝐵)

+ 𝛾𝑡−𝑥
𝐵  

 Linear in age level differences 

 Two period indices give level and 

slope 

 Non perfectly correlated 

improvements 

 Allows for cohort differences 

Two Population M7  Li et al (2014) 𝜅𝑡
(1,𝑅)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝑅)

+ 

((𝑥 − 𝑥)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝑅)

+ 𝛾𝑡−𝑥
𝑅  

𝜅𝑡
(1,𝐵)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝐵)

+ 

((𝑥 − 𝑥)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝐵)

+ 𝛾𝑡−𝑥
𝐵  

 Quadratic in age level differences 

 Period indices give level, slope and 

curvature 

 Non perfectly correlated 

improvements 

 Allows for cohort differences 

Saint model   Jarner and Kryger (2011) 

 Jarner and Moller (2013)) 

Frailty based model 𝜅𝑡
(1,𝐵)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝐵)

+ 

((𝑥 − 𝑥)2 − 𝜎𝑥
2)𝜅𝑡

(3,𝐵)
 

 Can be reformulated as a model 

with parametric age term 

Co-integration Approach   Salhi and Loisel (2013) Cannot be formulated in relative terms   Sequence of age-by-age models 

 Complex to implement 

 Can hardly accommodate a cohort 

effect 

Plat Relative Model  Plat (2009) 𝜅𝑡
(1,𝑅)

+ (𝑥 − 𝑥)𝜅𝑡
(2,𝑅)

 100 − 𝑥

100 − �̅�
𝜅𝑡

(1,𝐵)
  Can be reformulated as a model 

with parametric age term 

Relative P-Splines   Biatat and Currie (2010) Complex p-splines formula  Complex to implement 

 Forecasting may be problematic 

 inclusion of cohort-effect is non-

trivial 



LONGEVITY BASIS RISK 112 

 

 

December 2014  

141204 LONGEVITY BASIS RISK - PHASE 1 REPORT (FINAL, SESSIONAL MTG FORMAT) 

 

Model References Reference population 

𝒍𝒐𝒈𝒊𝒕(𝒒𝒙𝒕
𝑹 ) 

Book population 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡
𝐵 ) − 𝑙𝑜𝑔𝑖𝑡(𝑞𝑥𝑡

𝑅 ) 

Key features 

Plat+Lee-Carter  Wan et al. (2013) 𝛼𝑥
𝑅 + 𝜅𝑡

(1,𝑅)

+ (𝑥 − �̅�)𝜅𝑡
(2,𝑅)

+ 𝛾𝑡−𝑥
𝑅 , 

𝛼𝑥
𝐵 + ∑ 𝛽𝑥

(𝑗,𝐵)
𝜅𝑡

(𝑗,𝐵)

𝑀

𝑗=1

 
 Non perfectly correlated 

improvements 

Multipopulation GLM   Hatzopoulos and Haberman 

(2013) 

 Ahmadi and Lee (2014) 

Generalised linear modelling formulations  Complex to implement 

 Not simple to understand 
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Appendix C: Overview of time series 

This appendix contains a brief and concise overview of the series used in the project. Extensive introduction to 

time series, their properties and forecasting procedures can be found in Brockwell and Davis (2002), Chatfield 

(2013) and Lütkepohl (2007). 

C1 Introducing time series 

 A time series is made of a sequence of observations  

𝑋1, … 𝑋𝑡 , …  

where the index is interpreted as time. A time series is stationary (weakly or second-order) if the first two 

moments exist, 𝐸(𝑋𝑡) is constant and 𝐶𝑜𝑣(𝑋𝑡+ℎ, 𝑋𝑡) only depends on ℎ. 

C2 Stationary time series 

A first example of stationary time series is the autoregressive of order 1, or AR(1), which is the solution of the 

equation 

𝑋𝑡 = 𝜙0 + 𝜙1𝑋𝑡−1 + 𝜉𝑡 

where 𝜉𝑡 is a white noise, that is a sequence of uncorrelated, zero mean, variables. The process is 

(asymptotically) stationary if  |𝜙1| < 1. This type of dynamics implies that the long term behaviour of the 

sequence approaches a stable, time independent distribution. 

C3 Non-stationary time series 

A typical example of a non-stationary process is one including a trend. Such a process can be modelled using 

an integrated process, defined through the first order difference Δ𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1. A process is autoregressive of 

order 1, integrated of order 1, or ARI(1,1), if Δ𝑋𝑡 is an AR(1), that is 

Δ𝑋𝑡 = 𝜙0 + 𝜙1Δ𝑋𝑡−1 + 𝜉𝑡 . 

The special case 𝜙1 = 0 is known as random walk with drift, or RWD. Its dynamic can be written as 

𝑋𝑡 = 𝜙0 + 𝑋𝑡−1 + 𝜉𝑡 . 

A straightforward calculation shows that the mean and variance of 𝑋𝑡 grow linearly with time. 

C4 Multivariate time series 

Coming to multivariate time series, we consider a sequence 

𝑿1, … , 𝑿𝑡 , …  

where each term is a vector composed by 𝑑 observations, 

𝑿𝑡 = [
𝑋𝑡1

⋮
𝑋𝑡𝑑

]. 

Such a process is stationary if the vector 𝐸(𝑋𝑡) is constant and the matrix 𝐶𝑜𝑣(𝑋𝑡+ℎ, 𝑋𝑡) depends on ℎ only. A 

vector autoregressive model of order 1, or VAR(1), satisfies the equation 

𝑿𝑡 = Φ0 + Φ1𝑿𝑡−1 + 𝛏t , 

where Φ0 is a column vector, Φ1 is a square matrix and 𝝃𝑡 is a multivariate white noise, that is a sequence of 

uncorrelated zero-mean variables. The correlation between the 𝑑 observations in 𝑿𝑡 comes from the 
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dependence on all variables at time 𝑡 − 1 and the covariance matrix of 𝝃𝑡. Stationarity is guaranteed if the 

modulus of the eigenvalues of 𝐴 are smaller than 1. 

C5 Incorporating a trend in multivariate time series 

A process incorporating a trend can be modelled explicitly using a VAR(1) around a deterministic trend or 

implicitly with a multivariate random walk with drift (MRWD). A VAR(1) around a deterministic trend is specified 

by the following equation: 

𝑿𝑡 = Φ00 + Φ01𝑡 + Φ1𝑿𝑡−1 + 𝛏t , 

where Φ00 and Φ01 are vectors of intercepts and slope parameters. A MRWD satisfies the following equation: 

𝑿𝑡 = Φ0 + 𝑿𝑡−1 + 𝛏t . 

Although both models allow for linear trends in the mean, they differ in the variability that is permitted around 

this trend, with the VAR(1) having bounded variability and the MRWD having unbounded variability. 
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Appendix D: Characterising groups for the Club Vita dataset 

The Club Vita DB annuitant dataset enables us to group individuals by a wide range of characteristics which 

could be indicative of differences in future longevity trends and thus demographic risk.  In Section 2.2.1 we saw 

that – of those characteristics which are widely available within pension schemes / BPA books – combining 

pension income and postcode based deprivation measures provided the most parsimonious fit to historical 

experience.  In this Appendix we describe in more detail the steps taken to create the characterising groups 

across pension and IMD for the Club Vita Dataset.  These steps (and underlying thought processes) could be 

repeated on alternative multi-dimension characterising population datasets available to the user.  

D1 Overview of clustering approach 

We create our characterising groups via the following steps: 

1 Segment the spectrum of values each variable can take into discrete groups, and so in turn the 

characterising population into ‘cells’ (D2) 

2 Identify a distance metric which measures the level of dissimilarity between these cells striking a balance 

between the competing principles given in section 10.4 (D3) 

3 Use statistical techniques (specifically partitioning about medoids and fuzzy analysis) to cluster these 

cells into our desired number of groups (D4)  

4 Interpret the results of the clustering and consider whether it is appropriate to adjust the allocation of cells 

to ensure groups are both interpretable and credible in size (D5) 

D2 Segmenting the characterising population into cells 

Both deprivation and affluence are measured on a continuous spectrum.  One possible approach to identify 

cells is to use optimisation techniques to identify the splits of pension and deprivation which optimise the 

resulting clusters in terms of their fit to historical trends.  This would be computationally more complex and time-

consuming, and liable to the fallacy of self-prophecy.  

Given the desire to form sensible groups, and the acceptance that the past is at best a guide to the future, we 

take a more pragmatic approach of splitting each variable. Both the deprivation and the IMD spectrum have 

been split broadly into quintiles, thus forming 25 cells which is reassuringly an order of magnitude larger than 

the number of characterising groups we are aiming for (3), yet sufficiently few to avoid excessive noise when 

measuring mortality rates and improvements for these cells. 

For deprivation we have used the publicly available IMD quintiles, accepting that the distribution of pensioners 

may be skewed a little away from the most deprived quintiles and so will not form perfect quintiles within the 

Club Vita dataset.  

For pension we have identified the Club Vita quintiles within the data, and then rounded these to avoid 

spuriously precise cut-offs between groups. The resulting bands are (in 1 January 2010 monetary terms); below 

£2,000 p.a., £2,000 - £3,000 p.a., £3,000 - £5,000 p.a., £5,000 - £10,000 p.a., and over £10,000 p.a. 
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The resulting cells can be visualised as 

per the table to the right.  The 

percentages within each cell refer to the 

proportion of the Club Vita dataset which 

lies in each cell.  There is an element of 

concentration of the data along the 

leading diagonal (top left – bottom right) 

of the table consistent with an element of 

correlation between affluence (pension) 

and socio-economics (deprivation). 

Pen/IMD Q5 

(Most 

deprived) 

Q4 Q3 

(Mid) 

Q2 Q1 

(Least 

deprived) 

Total 

<2k 6% 6% 6% 5% 4% 27% 

2-3k 3% 3% 3% 3% 2% 14% 

3-5k 5% 4% 4% 4% 3% 20% 

5-10k 4% 4% 5% 5% 4% 22% 

10k+ 1% 2% 3% 5% 6% 17% 

Total 19% 19% 21% 22% 19% 100% 
 

 

D3 Dissimilarity matrix 

In order to be able to apply standard statistical clustering techniques we need a measure of ‘distance’ between 

the cells in order to group cells which are ‘closest’ together. Principles 2-5 from section 10.4 provide us with 

three dimensions across which to measure the distance: 

1 Characteristics: The similarity of characterising cells in terms of the underlying variables which define 

the cell e.g. pension and deprivation.  (Our interpretability principle) 

2 Mortality levels: The similarity of cells in terms of the levels of mortality.  (Our mortality levels principle) 

3 Mortality improvements: The similarity or otherwise of cells in terms of observed mortality 

improvements (Our principles of grouping similar improvements, but separating clear differences.) 

Formally this resulting ‘distance’ between cells is expressed in the form of a dissimilarity matrix. If there are 𝑛 

characterising cells then the dissimilarity matrix is an 𝑛 x 𝑛 lower triangular matrix 𝑑 where 𝑑𝑖𝑗  is the ‘distance’ 

(dissimilarity) between cluster cell 𝑖 and clustering cell 𝑗.  

A wide range of distance metrics exist and could be used to measure the dissimilarity between cells. In 

choosing a metric we need to be sensitive to having a mix of ordinal variables (e.g. IMD quintile or pension 

band) and nominal variables (mortality levels and improvements).  We follow the approach suggested in 

Kaufman & Rousseeuw (2005) whereby each of the variables is measured using an interval scaled approach.  

This involves converting each dimension to a numerical quantity and then measuring the distance between two 

cells as the absolute value of the difference in these quantities, divided by the maximum absolute value the 

difference takes. 

Taking each dimension in turn: 

Characteristic dimension:  We rank the characteristics in their natural order (high to low deprivation;  order of 

increasing pension band) and use the ranks as our numerical value.  We apply equal weight to the ranks and 

then interval scale. 

Mortality levels:  As a nominal value we can interval scale this by taking the difference in mortality levels. 

However, different cells may have difference age distributions, and as such care is needed not to confound 

differences in mortality levels arising due to differences in age distribution. We broadly control for this by 

calculating the mortality levels for three different age bands (65-74, 75-84, 85-94) and giving each equal weight 

in the interval scaling. In each case we use the mortality levels for 2008-2010. 
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Mortality improvements: By applying linear regression to the crude 𝑞𝑥𝑡 for each characterising group we 

obtain a smoothed average annual improvement rate (as the gradient of the linear regression) to which we can 

apply interval scaling. As improvements are liable to be different at different ages we also need to control for 

possible differences in average age by calculating this for different age bands (65-74, 75-84, 85-94).  We have 

annualised the improvements over the whole period for which we have reliable data, i.e. 1993-2010. If the user 

were to be worried about changing patterns over time, for example certain cells seeing slower improvements 

earlier in the period and faster improvements later in the period, it would be possible to refine this by creating 

separate smoothed improvement rates for different parts of the period 1993-2010. Care is needed not to create 

too many improvements dimensions as this could lead to the clustering being driven by statistical noise rather 

than genuine differences. 

We then take a weighted average of the dissimilarities in each dimension to give the overall dissimilarity.   

Formally we therefore have: 

𝑑𝑖𝑗 = 𝜔𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠  𝑑𝑖𝑗
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 + 𝜔𝑙𝑒𝑣𝑒𝑙𝑠  𝑑𝑖𝑗

𝑙𝑒𝑣𝑒𝑙𝑠 + 𝜔𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑑𝑖𝑗
𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

 

𝜔𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 + 𝜔𝑙𝑒𝑣𝑒𝑙𝑠 + 𝜔𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 = 1 

with the individual distances given by: 

𝑑𝑖𝑗
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 =

1

2
(

|𝑅𝑎𝑛𝑘 𝑐𝑒𝑙𝑙 𝑖 𝑓𝑜𝑟 𝑝𝑒𝑛𝑠𝑖𝑜𝑛−𝑅𝑎𝑛𝑘 𝑐𝑒𝑙𝑙 𝑗 𝑓𝑜𝑟 𝑝𝑒𝑛𝑠𝑖𝑜𝑛|

4
+

|𝑅𝑎𝑛𝑘 𝑐𝑒𝑙𝑙 𝑖 𝑓𝑜𝑟 𝐼𝑀𝐷−𝑅𝑎𝑛𝑘 𝑐𝑒𝑙𝑙 𝑗 𝑓𝑜𝑟 𝐼𝑀𝐷|

4
) 

𝑑𝑖𝑗
𝑙𝑒𝑣𝑒𝑙𝑠 =

1

3
(

|𝑞65−74,2008−2010
𝑐𝑒𝑙𝑙 𝑖 −𝑞65−74,2008−2010

𝑐𝑒𝑙𝑙 𝑗
|

𝑚𝑎𝑥.  𝑎𝑏𝑠 𝑑𝑖𝑓𝑓 𝑖𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑎𝑔𝑒𝑠 65−74
+

|𝑞75−84,2008−2010
𝑐𝑒𝑙𝑙 𝑖 −𝑞75−84,2008−2010

𝑐𝑒𝑙𝑙 𝑗
|

𝑚𝑎𝑥.  𝑎𝑏𝑠 𝑑𝑖𝑓𝑓 𝑖𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑎𝑔𝑒𝑠 75−84
+

|𝑞85−94,2008−2010
𝑐𝑒𝑙𝑙 𝑖 −𝑞85−94,2008−2010

𝑐𝑒𝑙𝑙 𝑗
|

𝑚𝑎𝑥.𝑎𝑏𝑠 𝑑𝑖𝑓𝑓 𝑖𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑎𝑔𝑒𝑠 85−94
) 

𝑑𝑖𝑗
𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

=
1

3
(

|∆𝑞65−74,2008−2010
𝑐𝑒𝑙𝑙 𝑖 −∆𝑞65−74,2008−2010

𝑐𝑒𝑙𝑙 𝑗
|

𝑚𝑎𝑥.  𝑎𝑏𝑠 𝑑𝑖𝑓𝑓 𝑖𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑔𝑒𝑠 65−74

+
|∆𝑞75−84,2008−2010

𝑐𝑒𝑙𝑙 𝑖 −∆𝑞75−84,2008−2010
𝑐𝑒𝑙𝑙 𝑗

|

𝑚𝑎𝑥.  𝑎𝑏𝑠 𝑑𝑖𝑓𝑓 𝑖𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑔𝑒𝑠 75−84
+

|∆𝑞85−94,2008−2010
𝑐𝑒𝑙𝑙 𝑖 −∆𝑞85−94,2008−2010

𝑐𝑒𝑙𝑙 𝑗
|

𝑚𝑎𝑥.  𝑎𝑏𝑠 𝑑𝑖𝑓𝑓 𝑖𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑔𝑒𝑠 85−94
) 

Here the ∆𝑞 notation is used to signify the average annual improvement rate derived from the linear regression, 

and max. abs diff refers to the maximum absolute difference 

What weights to use? 

Having defined our measures of dissimilarity our final decision is what weights we apply to the different 

dimensions, i.e. the values for 𝜔𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 , 𝜔𝑙𝑒𝑣𝑒𝑙𝑠, and 𝜔𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠.  From a purely theoretical perspective 

we are able to make a number of observations: 

 The greater the weight given to 𝜔𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 the more liable the method is to group contiguous blocks 

within the clusters. 

 However, the construction of 𝑑𝑖𝑗
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 favours forming ‘crosses’ within the grid of characterising 

cells. This is because it considers the cells marked B below to be closer to A (0.125)  than the cell marked 

C is to A (0.25) 

 B C 

 A B 
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 In mortality terms it is likely that cell C is closer to cell A than either of the cells marked B is, as the 

reduction in pension in moving from cell A to cell C may be compensated by the reduction in deprivation. 

This suggests we should provide slightly more weight to the mortality levels than the characteristics, as 

the mortality levels are both a principle in their own right, but also aid in creating interpretable clusters. 

 We need to have some weight to improvements (𝜔𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠) as this is our variable of interest – 

however putting too much weight on improvements risks clustering very disparate cells purely due to the 

noise in observed improvements. This suggests we may wish to limit 𝜔𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 to around 50%. 

Whilst we have not sought to optimise the exact weightings used, we have tried a variety of combinations and 

found that setting 𝜔𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 = 0.2, 𝜔𝑙𝑒𝑣𝑒𝑙𝑠 = 0.3, and 𝜔𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 = 0.5 enabled us to identify interpretable 

clustering groups with meaningful differences in mortality and improvements.  

D4 Cluster cells 

Using the dissimilarity matrix we can cluster cells which have the lowest dissimilarity (i.e. most alike in terms of 

a blend of characteristics, mortality levels and mortality improvements).  A host of statistical techniques exist for 

doing this.  We have looked at the results under two approaches
66

: 

 Partitioning about medoids (PAM):  Partitioning about medoids selects a single cell per desired cluster 

to be representative of that cluster.  The remaining cells are then clustered with whichever of these 

representative cells they have the smallest dissimilarity.  By varying the initial choice of representative 

cells the algorithm seeks to minimise the aggregate dissimilarity, i.e. the sum of the dissimilarities 

between each cell and the representative cell with which it is clustered. 

 Fuzzy analysis:  Fuzzy analysis seeks to minimise a (weighted) sum of the dissimilarities between the 

cells within each cluster, However, rather than allocating each cell to a cluster, it instead considers that 

each cell could be split between clusters i.e. belong, in part, to one or more clusters.  The proportions in 

which each cell is split between the clusters is optimised. 

Both methods are readily available to users through statistical software such as R. One advantage of the fuzzy 

analysis approach is that it avoids condensing each group down to a single representative cell at each stage 

and so retains more of the underlying information at each stage of the cluster. However, this also makes it 

technically a more complex method to understand. 

Another advantage of the fuzzy analysis approach is that it produces a form of ‘probability’ associated with each 

cell belonging to each of the three groups, i.e. the optimised proportions. This enables the user to apply 

judgement where some reallocation of cells to groups might improve the credibility of size of the group or aid the 

interpretation of the resulting groups.   

Applying these two methods using a dissimilarity matrix with 20% weight to characteristics, 30% weight to 

mortality levels and 50% weight to mortality improvements suggests the following groupings, where for the fuzzy 

analysis we have shown the groupings implied by allocating each cell to the group with which it has the greatest 

associated probability: 

  

                                                      
66

 For more information on these, and other clustering methods, see Kaufman & Rousseeuw (2005) 
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Partitioning about medoids Fuzzy analysis 

 

Pen/IMD Q5 Q4 Q3 Q2 Q1 

<2k   X   

2-3k  X    

3-5k      

5-10k    X  

10k+      

 

Cells marked in darker shade and with an X are the medoids for 

each group.  

 

Pen/IMD Q5 Q4 Q3 Q2 Q1 

<2k 88% 78% 64% 65% 59% 

2-3k 87% 69% 35% 73% 41% 

3-5k 83% 61% 39% 57% 65% 

5-10k 78% 44% 49% 50% 47% 

10k+ 48% 72% 55% 66% 60% 

 

Percentages in individual cells refer to the proportion of the cell 

which would be allocated to the coloured group. This is the highest 

‘probability’ for each cell.  Each cell will also have ‘probabilities’ of 

being in the other groups produced by the analysis. 

 

D5 Interpreting the results 

Reassuringly the results of the two methods are broadly consistent with just 5 cells allocated to different groups 

under the two approaches.  The main ambiguities over allocation of cells relate to the mid deprivation (Q3) for 

pensions up to £10k, and the low deprivation / low pension combinations shown in pink under partitioning about 

medoids (PAM) and green under fuzzy analysis. 

Under the PAM partitioning we can see how we can readily get groups with a natural interpretation if we 

reallocate the £2-3k pension / Q3 IMD cell to the green group.  We would then have a low income / high 

deprivation group, a wealthy group, and a middling group.  In this case though the wealthy group is likely to be 

very large and so the characterising groups may fail to adequately discriminate between individuals. 

In contrast, the fuzzy analysis provides us with ‘probabilities’ as to which group each cell lies in.  Looking at the 

ambiguous cells we have: 

Cell “Probability” belongs to Notes 

Pension IMD Blue Green Pink 

£2-3k Q1 19% 41% 40% Pink under PAM, Green under fuzzy 

£3-5k Q1 7% 64% 28% Pink under PAM, Green under fuzzy 

£3-5k Q2 13% 57% 30% Pink under PAM, Green under fuzzy 

<£2k Q3 18% 64% 18% Green under both approaches, but to aid 

interpretation would want to be blue 

£2-3k Q3 35% 34% 32% If <2k, Q3 cannot be blue then this would ideally be 

green to get a natural interpretation to the groups 

£3-5k Q3 39% 33% 28% Green under PAM, Blue under fuzzy 

£5-10k Q3 11% 49% 40% Pink under PAM, Green under fuzzy 
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We can see how: 

 we can be confident that Q1 and Q2 cells in the £3-5k row are better placed in the green group rather 

than the pink group as suggested by the PAM approach (second & third rows of table) 

 the £2-3k Q1 combination which is pink under the PAM method and green under fuzzy analysis is a 

borderline case – however given the certainty of the green groupings in the £3-5k row for Q1 and Q2 we 

propose that it be kept as green to avoid an isolated cell (first row of table)  

 within the Q3 IMD column 

- the below £2k cell is clearly green (64%) and so to get groupings with natural meanings the rest of 

the column should be green or pink (fourth row) 

- the £2-3k cell can reasonably reallocated from the blue group to the green group (fifth row) 

- the grouping of the £3-5k Q3 cell is ambiguous and it would be reasonable to include this in the 

green middling group rather than the blue group (sixth row) 

- the £5-10k Q3 group could reasonably be in the pink (wealthy) group (seventh row) 

This leads us to three groups which could be described as the ‘modest means’, ’middling’ and the ‘higher 

wealth’.   

Pen/IMD Q5 

(most) 

Q4 Q3 

(mid) 

Q2 Q1 

(least) 

<5k    

5-10k    

10k+    
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Appendix E: Generation of synthetic data 

In this appendix we present a procedure for generating, based on a reference dataset, synthetic mortality 

datasets which have a given exposure size with a given distribution of this exposure across population 

subgroups. 

Assume that we have a reference dataset containing observed number of deaths 𝐷𝑥𝑡𝑔 in year 𝑡 for people age 𝑥 

in subgroup 𝑔 with matching central exposures 𝐸𝑥𝑡𝑔 and matching death rates 𝜇𝑥𝑡𝑔=𝐷𝑥𝑡𝑔/𝐸𝑥𝑡𝑔. 

Let 𝐶𝑡
′ be the target total exposure for year 𝑡 in the synthetic dataset and (𝑤𝑡𝑔1

′ , … , 𝑤𝑡𝑔𝑚
′ ) be a vector of weights 

adding to one which represents the splitting of this exposure among the subgroups. 

The synthetic central exposures 𝐸𝑥𝑡𝑔
′  in year 𝑡 for people age 𝑥 in subgroup 𝑔 are obtained as  

𝐸𝑥𝑡𝑔
′ = 𝐶𝑡

′
∑ 𝐸𝑥𝑡𝑔𝑔

∑ ∑ 𝐸𝑥𝑡𝑔𝑔𝑥

𝑤𝑡𝑔
′ = 𝐶𝑡

′
𝐸𝑥𝑡

𝐸𝑡

𝑤𝑡𝑔
′  

where 𝐸𝑥𝑡 = ∑ 𝐸𝑥𝑡𝑔  𝑔  are the total exposed to risk at age 𝑥 in year 𝑡 across all groups and 𝐸𝑡 = ∑ ∑ 𝐸𝑥𝑡𝑔𝑔𝑥  are 

the total exposed to risk in year t across all groups and ages. Hence the exposure for the reference dataset is 

being used to obtain the split by age for a particular year and group. The corresponding synthetic number of 

deaths 𝐷𝑥𝑡𝑔
′  is generated by drawing a random sample from a Poisson distribution with mean 𝐸𝑥𝑡𝑔

′ 𝜇𝑥𝑡𝑔. 
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Appendix F: Original call for proposals (abridged) 

This appendix contains sections 1 to 4 of the original call for proposals issued by the LBRWG and has been 

reproduced with the LBRWG’s permission. 

 

Project to develop a method of assessing basis risk for longevity transactions 

 

F1 Summary 

This document is an invitation to tender for a research project for the Longevity Basis Risk Working Group 

(LBRWG).  

The aim of the project is:  

 to develop a readily-applicable methodology for quantifying the basis risk arising from the use of 

population-based mortality indices for managing the longevity risk inherent in specific blocks of 

pension benefits or annuitant liabilities.  

 

The methodology will be statistically rigorous and practical: it will use data likely to be available in respect of the 

population and the block of business being hedged.  

The LBRWG has received a commitment to fund the project from the Institute and Faculty of Actuaries (IFoA) 

and the Life and Longevity Markets Association (LLMA), subject to receipt of a satisfactory proposal and to 

achievement of interim project targets.  

We believe this project will offer the successful party an opportunity to use statistical knowledge and/or original 

research to produce a solution to a real industry problem. If the project were successful and facilitated the 

transfer of longevity risk between market participants, the work would be ground-breaking and very high-profile. 

We would expect that the methodology would use the indices published by the LLMA but be applicable in any 

territory world-wide subject to the availability of appropriate data.  

We expect the project to last between 12-18m from the time the project is awarded; further details of the 

timeline are set down below. However, credible proposals that could be completed in a shorter time frame would 

be considered.  

We are seeking proposals from actuarial consultancies and academic institutions. Responses to the tender 

should be received by Monday 15th April 2013.  

F2 Background to the project  

The LLMA began publishing indices linked to population mortality statistics in March 2012 with the goal of 

facilitating the hedging of longevity risk for pension funds and annuity books. The launch of the LLMA indices 

was an important milestone towards a longevity market where risk management can be carried out through 

transactions that are linked to standardised population-level data. Index-based hedges have considerable 

potential to provide effective risk and capital management for all holders of longevity risk.  

In addition to the mortality indices, the LLMA has also produced a significant body of work around possible 

derivative transactions that could reference mortality indices and offer ‘standardised’ longevity risk management 

tools (see www.LLMA.org.uk/Library).  
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However the building blocks described above have not proved sufficient to develop a ‘liquid market’ in longevity 

and have not led to transactions based on these standardized measures. Indeed, both are underutilised relative 

to more traditional longevity transactions that occur in the market. Some institutions currently use risk 

management tools linked to indices – the concept is proven. Even so, we believe that a major obstacle to 

widespread use of longevity risk management tools that reference population-based mortality indices is the 

difficulty in quantifying, and hence managing, longevity basis risk.  

There are two major considerations for longevity basis risk:  
• The need to understand the nature of the risk and its impact in different circumstances, and  
• The need to account for the basis risk underlying the transaction in reported results.  
 

In December 2011 the LLMA and IFoA formed the LBRWG […]. Its remit is straightforward: to investigate how 

to provide a market-friendly means of analysing longevity basis risk.  

Having carefully considered the matter, we have concluded that the task is beyond the scope of the working 

group by itself. The challenge is technically complex and time-consuming. Further research, or considerable 

work to synthesise existing research, is required before a solution can be developed. So we require the 

assistance of either a consultancy firm or an academic/research institution to perform that research.  

A short summary of the work done to date by the working group is outlined in […].  

F3 A description of Longevity Basis Risk  

Longevity basis risk is the potential mismatch between the behaviour of a longevity hedge and the portfolio of 

pensioners or annuitants being hedged, in cases where the hedging transaction’s cash flows are determined by 

reference to a mortality index and not directly linked to the actual pool of lives.  

There are three major sources of basis risk between the pension fund/annuity book risk to be hedged and the 

value of the hedging tools employed to reduce that risk. These are:  

 Demographic risk: the difference between μ1 and μ2, the underlying forces of mortality for the reference 

portfolio and the pension fund/annuity book, respectively, due to demographic or socio-economic 

differences. This difference may comprise two elements: the initial (current) level of mortality and the 

rates of future improvement.  

 Sampling risk: the difference in the population sizes (exposures) and varying levels of annuity amounts, 

because any sub-population is a random sample of the large population, so the observed mortality rates 

in the two populations will not be the same, except by chance.  

 Structural risk due to the payoff structure of the hedge. We could for example use a portfolio of S-

Forward derivatives and compare how the value of that portfolio behaves versus the original liabilities 

being hedged (see the LLMA website for a description of S-Forward hedges). The pay out of the hedge is 

unlikely to exactly match the liabilities being hedged.  

 

These three sources of basis risk all contribute to a longevity hedge being a less-than-perfect match to the 

portfolio being hedged. We believe that demographic risk and sampling risk are most usefully analysed through 

stochastic projections of mortality rates. Structural risk can be analysed relatively simply after the other two, 

because structural risk can be quantified in a straightforward fashion once scenarios of mortality rates have 

been projected for the different populations under consideration. Such quantification involves calculating the 

value of the hedge instrument under every scenario of mortality and then looking at the expected value of the 

result, either in isolation or relative to the pension or annuity portfolio value using a relevant metric. Therefore 
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defining and optimising a hedge portfolio is a separate exercise from trying to estimate the relationship between 

the progression of mortality behaviours between μ1 and μ2.  

F4 The proposal  

Throughout the project, the goal will be an outcome that is practically applicable to analysing basis risk 

arising from standard information available to a regular market participant. Original academic research 

may be required, but only in so far as it leads towards that goal.  

Our proposal is for an overall project delivered in two phases:  

Phase 1 would be the demonstration of the feasibility of a methodology for determining the relationship between 

μ1 and μ2 in the future.  

Deliverables for Phase 1 would be:  

 Details of relevant background research, including:  

- a review of evidence of different mortality improvement rates among different subgroups (e.g. by 

socioeconomic group, affluence or location) to inform underlying assumptions and structure of 

relationship between μ1 and μ2 in projection methodology;  

- a critical review of existing models for the structure of the relationship between μ1 and μ2 in 

projection methodologies, in light of above review of evidence;  

 Detailed specification of a proposed methodology, to include a general description and a detailed 

technical/statistical analysis;  

 Analysis of the limitations of the methodology and a description of any alternative methodologies that 

may have been considered with an explanation of why the proposed methodology best achieves the aims 

of the project;  

 A clear specification of the work to be completed, and the anticipated outputs from that work, in Phase 

2.  

Funding for Phase 2 would be dependent on satisfactory completion of Phase 1, to be determined by 

the LBRWG and the sponsoring organisations. The LBRWG and sponsoring organisations would need 

to be satisfied that the aims of the project remained realistically achievable.  

Phase 2 would be the practical application of the Phase 1 work to demonstrate the use of the initial research in 

practice.  

Deliverables for Phase 2 would be:  

 Definition of metrics covered by the proposed model and a demonstration of how the outputs from the 

methodology can be used for those metrics;  

 Application of the model on practical, realistic, illustrative examples based on the data reasonably 

available to potential users;  

 Demonstration of how the outputs from the model can be presented as a robust quantification of basis 

risk to third parties such as regulators.  
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