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Abstract

In dynamic risk measurement the problem emerges of assessing the

risk of a financial position at different times. Sufficient conditions are

provided for conditional coherent risk measures, in order that the require-

ments of acceptance-, rejection- and sequential consistency are satisfied.

It is shown that these conditions are often violated for standard methods

of updating. A method is consequently proposed for constructing a se-

quentially consistent risk measure, which entails the modification of the

set of probability measures used to obtain the risk assessment at an ini-

tial time. This is demonstrated for the coherent entropic risk measure and

for the class of Choquet risk measures, which generalizes the well-known

TVaR. Finally we consider the situation where the term of risk exposures

is longer than the time horizon used in solvency assessment. Then, reg-

ulation such as Solvency II requires replacing the financial position itself

with its fair value at the time horizon. We show that in this setting ac-

ceptance consistency can be preserved, though the same is not true about

rejection consistency.
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1 Introduction

The correct quantification of risks faced by financial institutions or insurance

companies is a central task for both investors and regulators. Risk measures are

essential tools for quantifying financial risks. Static risk measures, where un-

certainty is resolved over a single period, have been extensively studied, see for

example Artzner et al. (1999), Föllmer and Schied (2002), Frittelli and Gianin

(2002), Goovaerts et al. (1984). Recent years have also seen an increasing inter-

est in a dynamic approach to risk measurement, where several time periods are

considered. In a dynamic setting, several issues emerge: the impact of available

information on the risk assessment, the occurrence of intermediate payoffs, the

time consistency among measurements of the same position at different points

in time, and the assessment time horizon. Detlefsen and Scandolo (2005) in-

troduced conditional risk measures, where the assessment outcome depends on

new information becoming available. Riedel (2004), Weber (2006), Frittelli and

Scandolo (2006), Artzner et al. (2007), Cheridito et al. (2006), among others,

focused on risk measurements for stochastic processes. Roorda et al. (2005),

Föllmer and Penner (2006), Gianin (2006), Tutsch (2006), Weber (2004), Ro-

orda and Schumacher (2007) discussed different types of time consistency. In the

literature on dynamic preferences, properties of time consistency were already

studied by Koopmans (1960) and Epstein and Schneider (2003).

In the first part of the paper, we discuss the time consistency between assess-

ments of the same financial position at several times. A risk measure satis-

fying appropriate time consistency can lead to more efficient capital manage-

ment and reduce the risk of insolvency. A key notion in this area is that of

dynamic consistency, see for example Föllmer and Penner (2006). It states that,

if two positions are assessed in the same way in every future state, then should

have the same assessment at the present time as well. Roorda and Schumacher

(2007) proved that this requirement is equivalent to an attractive tower law

property. However, in many cases dynamic consistency leads to a risk measure

that produces very high capital requirement (see Tutsch (2006), Roorda and

Schumacher (2008)). Furthermore, Kupper and Schachermayer (2008) prove

that, under technical conditions, law-invariance (where the risk assessment de-

pends only on the distribution of the position) and dynamic consistency reduce

the class of possible risk measures to the entropic one. In this paper we focus

on the weaker requirement of sequential consistency (Roorda and Schumacher

(2007)), combining the ideas of acceptance and rejection consistency (Weber
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(2004), Tutsch (2006)). This states:

a) A financial position cannot be considered acceptable at an initial time if

it will be unacceptable in each successor state (acceptance consistency).

b) If the position is rejected in any state of nature at a future time point,

then it should be rejected at an earlier time as well (rejection consistency).

We investigate sequential consistency for two of the standard ways of updat-

ing a coherent risk measure, discussed by Detlefsen and Scandolo (2005) and

Tutsch (2008). The first update is obtained assuming that the new available in-

formation reduces the set of generalized scenarios that are used to construct the

corresponding static risk measure. The second type of update assumes instead

that new information does not influence this set. In both cases, we present

sufficient conditions to ensure sequential consistency. Our results show that

standard updates of a coherent risk measure (such as TVaR) often satisfy only

the conditions for either acceptance or rejection consistency.

Consequently we provide a general method of constructing sequentially consis-

tent dynamic risk measures, which requires modification of the risk measure

used at the initial time. The technique is illustrated by building a sequentially

consistent version of TVaR, which essentially coincides with the one proposed by

Roorda and Schumacher (2008), for the coherent entropic risk measure recently

introduced by Föllmer and Knispel (2011) and then extending the method to

the general class of Choquet risk measures.

The last part of the paper concerns the time horizon of risk assessment. Even

when exposure is to long term positions, the portfolio holder or the regulator

is interested in determining the capital required at a future time point δ. For

example, the impending Solvency II framework for European insurers requires

that the safely invested capital corresponds to 99.5% VaR with 1 year time

horizon. When the financial position expires before or at the time horizon δ, all

the results of the first part apply. However, for longer term exposures, typical in

insurance liabilities, the risk measure is applied to the fair value of the position

at time δ, rather than to the position itself. This situation is outside the usual

framework in the risk measures literature, as it essentially corresponds to risk

measurement with an argument that changes over time, as the fair value at δ

time units after measurement changes with new information. We show that
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even in this setting, acceptance consistency can still be preserved, but rejection

consistency will in general not hold.

The paper is organized as follows. In Section 2 we review the notion of con-

ditional coherent risk measures and discuss sequential consistency. In Section

3, we present technical conditions on the set of generalized scenarios to ensure

acceptance and rejection consistency for two different types of update. In Sec-

tion 4 a procedure for constructing a sequentially consistent risk measure is

presented. Section 5 discusses the relation between sequential consistency and

time horizon of risk assessment.

2 Conditional risk measures and time consis-

tency

2.1 Conditional risk measures

Let (Ω,F ,P) be a probability space and define X = L∞(Ω,F ,P) the set of all

bounded financial positions. Every inequality and equality involving elements of

X is meant as holding P-a.s. In order to take into account the role of new infor-

mation, we introduce a non-trivial σ-algebra G, such that {∅,Ω} ⊂ G ⊂ F . This

means that at an intermediate time point before the expiry date of the portfolio,

the investor or the regulator receives additional information G. A re-assessment

of the riskiness of the position at that time becomes of interest. The outcome

of the new risk measurement ρG will depend on the information contained in

G, and ρG(X) will be a G-measurable random variable. We will often refer to

the starting time of the position as time 0 and the intermediate point in time,

when the information is G is revealed, as time 1. Let XG := L∞
G (Ω,G,P) denote

the set of all bounded random variables that are G-measurable. Detlefsen and

Scandolo (2005) introduce the following definition:

Definition 1. A map ρG : X −→ XG is called a conditional convex risk measure

if, for every X,Y ∈ X , it satisfies the following properties:

Monotonicity: If X ≤ Y , then ρG(X) ≥ ρG(Y ).

Conditional cash invariance: If Z ∈ XG, then ρ(X + Z) = ρ(X)− Z.
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Conditional convexity: ρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ) for λ ∈ XG,

0 ≤ λ ≤ 1.

Normalization: ρG(0) = 0.

If it also satisfies

Conditional positive homogeneity: ρ(λX) = λρ(X) for λ ∈ XG, λ ≤ 0,

it is called a conditional coherent risk measure.

From the above properties, we can recover the definition of static coherent and

convex risk measures introduced by Artzner et al. (1999) and Föllmer and Schied

(2004), by simply substituting the σ-algebra G with the trivial one {∅,Ω}. In

this case, we simply denote the risk measure ρ(·).

In the next sections we will make extensive use of the following sets:

M1(P) := {Q is a probability measure on (Ω,F) | Q ≪ P}

PG := {Q ∈ M1(P) | Q ≡ P on G}.

Detlefsen and Scandolo (2005) proved that any risk measure of the form

ρG(X) = ess sup
Q∈QG

EQ[−X|G]

for QG ⊆ M1(P) is a conditional coherent risk measure.

A collection of conditional risk measures, with increasing level of information, is

called dynamic risk measure. In our simple setting, the dynamic risk measure

is given only by an unconditional and a conditional risk measure (ρ, ρG). Unless

otherwise specified, the conditional risk measure ρG(X) will be an update of ρ,

meaning that ρG = ρ whenever G = {∅,Ω}. There does not exist a unique update
for a risk measure. For example, for a set of probability measures Q ⊆ M1(P),
one can define the coherent risk measure:

ρ(X) = sup
Q∈Q

EQ[−X] (1)
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and the updates:

ρ̂G(X) = ess sup
Q∈Q̂G

EQ[−X | G] (2)

where Q̂G ⊆ {PG ∩ Q} and

ρ̃G(X) = ess sup
Q∈Q

EQ[−X | G] (3)

where the set Q remains unchanged over time. Update (3) is probably one of

the simplest and most intuitive way of updating a risk measure, (Tutsch (2008)).

Update (2), actually representing a class of possible updates, is more sophisti-

cated and encompasses two key features of conditional risk measurement. First,

the newly available information allows us to drop some probability measures,

by the requirement Q̂G ⊆ Q. Secondly, the property Q ≡ P on G, means that

at time 1 risk measurement proceeds so that the set of measures constructed

is forward rather than backward looking. This way of updating a risk measure

was used, among others, by Detlefsen and Scandolo (2005). In what follows we

use extensively the two updates (2) and (3).

2.2 Examples of conditional risk measures

For an example consider the risk measure Tail Value at Risk (TVaR), that was

proposed by Artzner et al. (1999) as a way to address the shortcomings of V aR.

TVaR is a coherent risk measure and admits the following representation:

TV aR(X) = sup
Q∈Q

EQ[−X] (4)

where

Q := {Q ∈ M1(P) |
dQ

dP
≤ λ−1}.

A possible update of type (2) for TVaR, proposed by Detlefsen and Scandolo

(2005), corresponds to:

T̂ V aRG(X) = ess sup
Q∈Q̂G

EQ[−X | G] (5)

where

Q̂G := {Q ∈ PG | dQ
dP

≤ λ−1},
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here Q̂G = {PG ∩Q}. Update (3) for TVaR corresponds to the conditional risk

measure:

T̃ V aRG(X) = ess sup
Q∈Q

EQ[−X | G]. (6)

A conditional risk measure that is introduced in this paper is the conditional

coherent entropic risk measure. This arises as a natural generalization of the

static coherent entropic risk measure of Föllmer and Knispel (2011). In the

unconditional case, this risk measure is defined as:

ρe(X) := sup
Q

EQ[−X] (7)

where

Q := {Q ∈ M1(P) | H(Q | P) ≤ c}

and

H(Q | P) =

{
EQ[ log(dQdP ) ] = EP[dQdP log(dQdP ) ] if Q ≪ P
+∞ otherwise

is the relative entropy of Q with respect to P. A possible update, consistent

with (2), is given by:

ρ̂eG(X) := ess sup
Q̂G

EQ[−X|G] (8)

where

Q̂G := {Q ∈ PG | HG(Q | P) ≤ c}

and

HG(Q | P) := EQ[log(
dQ

dP
) | G] = EP[

dQ

dP
log(

dQ

dP
) | G]

is the conditional relative entropy of Q with respect to P. To verify that (8)

is in the class of updates (2), we have to check if Q̂G ⊆ {PG ∩ Q}. The first

inclusion Q̂G ⊆ PG is given. Now consider Q ∈ Q̂G :

HG(Q | P) ≤ c ⇒ EP[ HG(Q | P) ] ≤ c ⇒

EP[ EQ[ log(
dQ

dP
)|G] ] ≤ c ⇒ EQ[ log(

dQ

dP
) ] = H(Q | P) ≤ c
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Figure 1: Probability distribution of −X and −Y under P.

where we used Q ≡ P on G.

2.3 Sequential consistency

It is reasonable to assume that a dynamic risk measure satisfies some notions of

consistency. To illustrate this issue we present here two examples of inconsis-

tency that are not desirable in a dynamic risk measure and that generally occur

when we use updates (2) and (3).

Example 1. Consider the dynamic risk measure (TV aR, T̃V aRG) defined as

in (4) and (6). Let Ω = {uu, um, ud, du, dm, dd} be the event space and P assign

equal weight to every possible outcome as suggested by the binomial tree in figure

1. Set λ = 2/3. The set of probability measures Q is given by:

Q := {Q ∈ M1(P) | Q(ω) ≤ 3

2
P(ω) =

1

4
∀ ω ∈ Ω}.

For the financial position:

X = [−10, 12, 20,−14, 22, 22],

TVaR(X) is obtained assigning the highest admissible probability (i.e. 1/4) to

the worst loss, then to the second worst one and so on until the probabilities

used sum up to 1. Hence:

TV aR(X) = (14 + 10− 12− 20)
1

4
= −2 ≤ 0.

For the conditional risk measure T̃ V aRG we seek to maximize independently the
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conditional expectations EQ[−X| u] and EQ[−X| d] over Q ∈ Q. For the upper

(u) branch, we set Q(uu|u) = 1, Q(um|u) = Q(ud|u) = 0 and Q(u) = 1
4 . Then

it may be assumed that Q(du|d) = Q(dm|d) = Q(dd|d) = 1
3 . For the lower

branch (d) we obtain supQ∈Q EQ[−X| d] = 14. Therefore we have:

T̃ V aRG(X)(ω) = ess sup
Q∈Q

EQ[−X | G] =

{
10 ≥ 0 if ω ∈ {uu, um, ud}
14 ≥ 0 if ω ∈ {du, dm, dd}.

Here, the position is acceptable at time 0 and 2 units of capital can be withdrawn

from it. In contrast, at time 1, in both scenarios, the position is considered

unacceptable and an amount of respectively 10 and 14 units of capital is required.

This type of inconsistency, is particularly undesirable from the regulatory point

of view as the risk holder may not be able to raise all the money needed (12

and 16 units in this example), leading to a possible insolvency risk. A good risk

measure should detect the certainty of future capital needs, so that appropriate

levels of capital can already be held at time 0.

The above example is close to the one used by Artzner et al. (2007) to illustrate

a different type of inconsistency as follows:

Example 2 (Artzner et al. (2007)). Here we consider update (2) for TVaR.

Using the same setting than the previous example, we have

Q̂G := {Q ∈ PG | Q(ω|ω′) ≤ 3

2
P(ω|ω′) =

1

2
∀ ω ∈ Ω and ω′ = u, d.}

For the financial position:

Y = [−10, 12, 14,−20, 22, 22],

the risk measurement at time 0 is:

TV aR(Y ) = (20 + 10− 12− 14)
1

4
= 1 ≥ 0.

To calculate T̂ V aRG, we need to maximize the conditional probability of adverse

outcomes, under the constraint Q(ω|ω′) ≤ 1
2 . The probability of the upper and

lower branch is already fixed to be equal to P, so Q(u) = Q(d) = 1
2 for every
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Q ∈ Q̂G. Then, we obtain:

T̂ V aRG(Y ) =

{
(10− 12) 12 = −1 ≤ 0 if ω ∈ {uu, um, ud}
(20− 22) 12 = −1 ≤ 0 if ω ∈ {du, dm, dd}.

At time 0, the position Y is considered unacceptable and an amount of 1 unit

of capital is required. At time 1, the position is considered acceptable in every

state of the world and 1 unit of capital can actually be withdrawn. It means that

TVaR penalizes a position that will anyway be accepted later on, requiring some

capital that is not needed and that could be invested in a better way.

The same inconsistency holds for the coherent entropic risk measure ρe(·) and
the update ρ̂eG(·) as it is shown in the following example.

Example 3. Assume the same setting as in Example 1 and set c = − ln(2/3).

For the financial position:

Z = [−3, 14, 10,−9, 32, 32],

standard optimization techniques give ρe(Z) = 0.6821 ≥ 0. The probability

measure that attains the maximum in (7) is

Q = [0.2931, 0.0913, 0.1201, 0.4424, 0.0266, 0.0266].

For the conditional entropic risk measure, we have:

ρ̂eG(Z) =

{
−0.3483 ≤ 0 if ω ∈ {uu, um, ud}
−0.3108 ≤ 0 if ω ∈ {du, dm, dd}.

Again, at time 0 it is required to hold some capital, that in no-case will be asked

at time 1.

To address such inconsistencies the notion of sequential consistency was pro-

posed by Roorda and Schumacher (2007). It emerges as a combination of the

two requirements of acceptance and rejection consistency, introduced by Weber

(2004) for cash-flows and Tutsch (2006) for random variables.

Definition 2. An unconditional and a conditional risk measure ρ and ρG are
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said to be sequentially consistent if, for every X ∈ X , they satisfy:

ρG(X) ≤ 0 =⇒ ρ(X) ≤ 0 acceptance consistency (9)

ρG(X) ≥ 0 =⇒ ρ(X) ≥ 0 rejection consistency. (10)

A risk measure satisfying (9) would not be subject to the inconsistencies seen in

Example 2. Similarly, a risk measure satisfying (10) would avoid inconsistency

faced in Example 1.

As stated by Roorda and Schumacher (2008) a dynamic risk measure (ρ(X), ρG(X))

is sequentially consistent if and only if, for every X ∈ X ,

inf
ω∈Ω

ρG(X) ≤ ρ(X) ≤ sup
ω∈Ω

ρG(X). (11)

This implies that the capital requirement at time 0 cannot be higher than the

highest amount that could ever be asked in the future. On the other side, it

cannot be smaller than the lowest amount of capital that would ever be required

in the future.

3 Conditions for sequential consistency

3.1 Preliminaries

Before starting, we recall some notions that are essential for the next sections.

Let L0(R) be the space of extended random variables, i.e. of maps from Ω to

R := [−∞,∞].

Definition 3. A set Y ⊆ L0(R) is upward directed if, for any two elements Y1,

Y2 ∈ Y, there is always a third one Y ∈ Y such that Y ≥ max(Y1, Y2).

For upward directed sets, the following result holds:

Lemma 1. If Y ⊆ L0(R) is upward directed, then

EP[ess supY] = sup
Y ∈Y

EP[Y ],

provided that the expectation exists.

11



The same holds if we replace the expectation with the expectation conditional to

a σ-algebra G ⊆ F (for a proof, see Detlefsen and Scandolo (2005)). In what fol-

lows we will extensively apply the above result to the set C := {EQ[−X | G], Q ∈
Q̂G}. Here, for every X ∈ X , each probability measure Q ∈ Q̂G identifies a ran-

dom variable EQ[−X | G] and the essential supremum of C can be expressed

as

ess sup
Q∈Q̂G

EQ[−X|G].

Following Detlefsen and Scandolo (2005), consider a probability space (Ω,F ,P)
and a σ-algebra G ⊆ F . A regular conditional probability QG is defined as a

map QG : (Ω×F) → [0, 1], that is, a version of the expected conditional value of

IA for any A ∈ F and a probability measure for ω ∈ Ω. For every Q ∈ M1(P),
the pasting probability PQG is defined as

PQG(A) := EP[QG(·, A)] ∀A ∈ F ,

where QG(·, A) is a version of EQ[IA|G].

In the case of a two-period binomial tree this concept becomes straightforward.

The probability PQG is obtained using P for the first period, from time 0 to

time 1, and then switching to Q in the second one, from time 1 to time 2. The

main property of pasting probability is:

EPQH [X | G] = EP[ EQ[X | H] | G] for H ⊆ G,

for any σ-algebra H such that H ⊆ G ⊆ F .

3.2 Conditions for sequential consistency

3.2.1 Sequential consistency conditions for update ρ̂G(·)

Consider two risk measures as in (1) and (2). For the dynamic risk measure

(ρ, ρ̂G), the following proposition holds:

Proposition 2. (i) If, for every X ∈ X , the set C := {EQ[−X | G], Q ∈
Q̂G} is upward directed, then the risk measures ρ and ρ̂G are rejection

consistent.
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(ii) If, for every Q in Q, the pasting probability PQG is in Q̂G , then the risk

measures ρ and ρ̂G are acceptance consistent.

Hence, if (i) and (ii) hold, then ρ and ρ̂G are sequentially consistent.

Proof. (i) Let ρ̂G(X) ≥ 0. Since the expected value of a positive random variable

is again positive, we have:

ρ̂G(X) = ess sup
Q∈Q̂G

EQ[−X|G] ≥ 0 =⇒ EP[ ess sup
Q∈Q̂G

EQ[−X|G] ] ≥ 0.

As the set C is upward directed, Lemma 1 leads to:

EP[ ess sup
Q∈Q̂G

EQ[−X | G] ] = sup
Q∈Q̂G

EP[ EQ[−X | G] ] ≥ 0

but Q ≡ P on G, therefore

EP[ EQ[−X|G] ] = EQ[ EQ[−X|G] ] = EQ[−X] =⇒ sup
Q∈Q̂G

EQ[−X] ≥ 0.

Since Q̂G ⊆ Q, we obtain:

ρ(X) = sup
Q∈Q

EQ[−X] ≥ sup
Q∈Q̂G

EQ[−X] ≥ 0

as desired.

(ii) If ρ̂G(X) ≤ 0 then

EQ[−X | G] ≤ 0 ∀Q ∈ Q̂G .

As PQG ∈ Q̂G for every Q ∈ Q:

EPQG [−X | G] ≤ 0 ∀Q ∈ Q.

By definition of the pasting probability:

0 ≥ EPQG [−X | G] = EP[ EQ[−X | G] | G] = EQ[−X | G] ∀Q ∈ Q.

Hence:

EQ[−X] = EQ[ EQ[−X | G] ] ≤ 0 ∀Q ∈ Q
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and

ρ(X) = sup
Q∈Q

EQ[−X] ≤ 0

as desired.

Remark 1. (i) is a technical condition ensuring that we can exchange the es-

sential supremum and the expectation, where (ii), instead, requires that at time

0, we only use probability measures that will be also used for the risk assessment

at time 1. In this way, we avoid measuring risk using probability measures that,

in any case, will not even be considered when the information G is revealed.

Remark 2. Risk measures as in (1) and (2) generally fail acceptance consis-

tency. Indeed, the proof of Prop. 2 cannot be applied in this case, because:

ess sup
Q∈Q̂G

EQ[−X|G] ≤ 0 =⇒ sup
Q∈Q̂G

EQ[−X] ≤ 0

but generally,

sup
Q∈Q

EQ[−X] ≥ sup
Q∈Q̂G

EQ[−X] ≤ 0,

so we cannot deduce

ρ(X) ≤ 0.

Lemma 3. TV aR and T̂ V aRG are rejection consistent.

Proof. To prove it, we need to verify that the set C := {EQ[−X | G], Q ∈ Q̂G}
is upward directed , i.e. condition (i). Consider two probability measures Q′

and Q′′ in Q̂G and define Q as

Q(B) = Q′(A ∩B) +Q′′(Ac ∩B) (12)

where the set A ∈ G is defined as

A := {EQ′
[−X | G] ≥ EQ′′

[−X | G]}.

It is not difficult to see that Q ∈ Q̂G . For every C ∈ G

Q(C) = Q′(A ∩ C) +Q′′(Ac ∩ C) = P(A ∩ C) + P(Ac ∩ C) = P(C)

so Q ≡ P on G. Similarly, for every B ∈ F

Q(B) = Q′(A ∩B) +Q′′(Ac ∩B) ≤ λ−1(P(A ∩B) + P(Ac ∩B)) ≤ λ−1P(B)
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so dQ
dP ≤ λ−1 and

EQ[−X | G] = IAEQ′
[−X | G]+IAcEQ′′

[−X | G] ≥ max{EQ′
[−X | G], EQ′′

[−X | G]}.

Therefore C is upward directed and TV aR and T̂ V aRG are rejection consistent.

TVaR and the update T̂ V aRG do not satisfy sequential consistency because,

as we have already seen in Example 2, they are acceptance inconsistent. It is

immediate to verify that condition (ii) of Proposition 2 is not satisfied because

the probability measure Q∗ ∈ Q that maximizes supQ∈Q EQ[−X] in Example

2, is such that PQ∗
G does not belong to Q̂G .

Lemma 4. The coherent entropic risk measures ρe(·) and ρeG(·) are rejection

consistent.

Proof. Again, we only need to prove that the set C := {EQ[−X|G], Q ∈ Q̂G} is

upward directed for every X ∈ X . Following the steps of Lemma 3, we define

a probability measure Q as in (12). We already know that Q ≡ P on PG . By

definition:

HG(Q|P) = EQ[log
dQ

dP
| G]

= IAEQ′
[log

dQ′

dP
|G] + IAcEQ′′

[log
dQ′′

dP
|G]

≤ max{EQ′
[log

dQ′

dP
|G], EQ′′

[log
dQ′′

dP
|G]} ≤ c

so that Q ∈ Q̂G and the set is upward directed.

Also (ρe(·), ρeG(·)) does not satisfy sequential consistency as follows from Exam-

ple 3.

3.2.2 Sequential consistency conditions for update ρ̃G(·)

We now discuss time consistency for risk measures where the set of probability

measures is not updated when new information arrives, that is, the risk measures

(1) and (3).
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Proposition 5. (i) The risk measures ρ and ρ̃ are acceptance consistent.

(ii) If, for every X ∈ X

(a) the set C := {EQ[−X | G] | Q ∈ Q} is upward directed and PQG ∈ Q
for every Q in Q; or

(b) the supremum in the definition of ρ̃ is attained, i.e. :

∃ P ∗ ∈ Q : EP∗
[−X |G] = ess sup

P∈Q
EP [−X |G] ≥ EP ′

[−X |G], ∀P ′ ∈ Q

(13)

then ρ and ρ̃ are rejection consistent. Hence, if (a) or (b) hold, then ρ and ρ̃

are sequentially consistent.

Proof. (i) is proved by Tutsch (2008). Now we show that either of the conditions

(a) and (b) implies rejection consistency. For (a) the proof follows the same steps

of Prop. 2(i). For (b), condition (13) together with

ρ̃G(X) ≥ 0,

imply that

∃P ∗ ∈ Q such that EP∗
[−X | G] = ρ̃G(X) ≥ 0.

Then,

EP∗
[EP∗

[−X | G]] = EP∗
[−X] ≥ 0.

As P ∗ ∈ Q, we have:

ρ(X) = sup
Q∈Q

EQ[−X] ≥ EP∗
[−X] ≥ 0.

Remark 3. Conditional risk measures with the additional property of being

continuous from below admit a representation in terms of probability measures

where the supremum is attained. Nevertheless, it is usually attained on a differ-

ent set than Q, such that condition (13) is not necessarily verified. For details

see Bion-Nadal (2004). The situation becomes easier if we work in a setting

where Ω is finite. In this case, the supremum is attained if the set Q is closed
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and convex and there exists a probability measure P ∈ Q such that

PQG ∈ Q for every Q ∈ Q. (14)

An example of such a risk measure, satisfying sequential consistency on a finite

probability space, was proposed by Roorda and Schumacher (2007). Define

STV aR(X) = sup
Q∈Q′

EQ[−X]

where

Q′ := {Q ∈ M1(P) |
dQ

dP
≤ λ−1,

dPQG

dP
≤ λ−1}

and consider the update

˜STV aRG(X) = ess sup
Q∈Q′

EQ[−X | G].

When Ω is finite, the set Q′ is a polytope and P satisfies condition (14), so, using

convex analysis arguments, it is possible to show that the essential supremum

is attained and the risk measure is sequentially consistent. A similar argument,

where the supremum is attained, is used by Fasen and Svejda (2010) to con-

struct a sequentially consistent version of distortion risk measures in a finite

framework.

4 Constructing sequentially consistent risk mea-

sures

4.1 General construction

In the previous sections, conditions for the sequential consistency of dynamic risk

measures were presented. However no risk measure considered actually satisfies

these conditions on an in finite probability space. Now, drawing inspiration from

Roorda and Schumacher (2007), we show that it is possible to slightly modify a

dynamic risk measure in order to turn it into a sequentially consistent one. The

method is applied to produce a sequentially consistent version of the coherent

entropic risk measure as well as the class of coherent Choquet risk measure. A

numerical example is given for TVaR.
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Start again with a coherent risk measure as in (1). Suppose that we consider

ρ suitable for our measurement purposes, but the update ρ̂G does not satisfy

the conditions for sequential consistency required by Proposition 2. In order to

construct a sequentially consistent risk measure, starting from the update ρ̂G ,

we work backwards, defining a new unconditional risk measure as:

ρ̂′(X) = sup
Q∈Q̂′

EQ[−X]

where

Q̂′ := {Q ∈ M1(P) | Q ∈ Q, PQG ∈ Q̂G}.

Proposition 6. If the set C := {EQ[−X |G] | Q ∈ Q̂G } is upward directed,

then the risk measures ρ̂′(X) and ρ̂G(X) are sequentially consistent.

Proof. From Prop. 2 they are sequentially consistent by construction.

Remark 4. Notice that ρ(X) and ρ̂′(X) admit the same update (2), i.e.

ρ̂′G(X) = ess sup
Q∈Q̂′

G

EQ[−X | G] = ρ̂G(X)

where

Q̂′
G := {Q ∈ PG | Q ∈ Q̂G}.

Moreover, they are close in the sense that ρ̂′(X) requires, at time 0, all the con-

ditions on the set of measures, required by ρ(X), but in addition the conditions

that will be required at time 1, when new information arrives. In other words,

the condition PQG ∈ Q̂G excludes, at time 0, probability measures that will not

be used in the representation of the update. In this way, we avoid rejecting

financial positions that would be accepted when the information in G is revealed.

Remark 5. Once we have constructed the new unconditional risk measure

ρ̂′(X) = sup
Q∈Q̂′

EQ[−X]

where

Q̂′ := {Q ∈ M1(P) | Q ∈ Q, PQG ∈ Q̂G},

we can easily see that, if the set C := {EQ[−X |G] | Q ∈ Q } is upward directed,

also the update (3)

ρ̃′G(X) = ess sup
Q∈Q̂′

EQ[−X|G]
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satisfies sequential consistency as it verifies all the conditions required in Prop.

5. We remark that in this case, the two updates are actually the same, ie:

ess sup
Q∈Q̂′

EQ[−X|G] = ess sup
Q∈Q̂′

G

EQ[−X|G]

due to the structure of the probability measure sets Q̂′ and Q̂′
G.

4.2 Examples of sequentially consistent risk measures

In this section, sequentially consistent versions of TVaR, coherent entropic, and

Choquet risk measures are introduced.

We start from the static TVaR and the update T̂ V aRG . From Example 2, we

already know that this update fails acceptance consistency. As shown in Lemma

3, the set C := {EQ[−X | G] | Q ∈ Q̂G} is upward directed. Therefore, we can

define a new unconditional risk measure, as:

T̂ V aR
′
(X) = sup

Q∈Q̂′
EQ[−X]

where

Q̂′ := {Q ∈ M1(P) |Q ∈ Q, PQG ∈ QG} = {Q ∈ M1(P) |
dQ

dP
≤ λ−1,

dPQG

dP
≤ λ−1}.

From Prop. 6, T̂ V aR
′
and T̂ V aRG are sequentially consistent.

In the following example it is seen how the sequentially consistent version of

TVaR solves the inconsistencies faced in the examples 1 and 2.

Example 4. To see this, consider again the same setting as in Example 2,

where Ω = {uu, um, ud, du, dd, dm}, P(ω) = 1/6 for every ω ∈ Ω and λ = 2/3.

The set of probability measures considered at time 0 and time 1 are respectively:

Q̂′ := {Q ∈ M1(P) | Q(ω) ≤ 3

2
P(ω) =

1

4
,

Q(ω|ω′) ≤ 3

2
P(ω|ω′) =

1

2
∀ ω ∈ Ω, ω′ = {u, d}}
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and

Q̂G = {Q ∈ PG | Q(ω|ω′) ≤ 3

2
P(ω|ω′) =

1

2
∀ ω ∈ Ω, ω′ = {u, d}}.

For the financial position:

Y = [−10, 12, 14,−20, 22, 22],

we have

T̂ V aR
′
(Y ) = (10− 12 + 20− 22)

1

4
= −1 ̸= TV aR(Y )

and

T̂ V aRG(Y ) =

{
(10− 12) 12 = −1 if ω = uu, um, ud

(20− 22) 12 = −1 if ω = du, dm, dd

Therefore, the acceptance inconsistency has been eliminated.

The new risk measure does not present the rejection inconsistency of Example

1 either. Indeed for the random variable:

X = {−10, 12, 20,−14, 22, 22},

we have

T̂ V aR
′
(X) = (10− 12 + 14− 22)

1

4
= −5

2

while

T̂ V aRG(X) =

{
(10− 12) 12 = −1 if ω = uu, um, ud

(14− 22) 12 = −4 if ω = du, dm, dd.

Now we show how Prop. 6 can be used to construct a sequentially consistent

version of the coherent entropic risk measure. As shown in Lemma 4, the set

C := {EQ[−X|G], Q ∈ Q̂G} is upward directed. To have sequential consistency

we define a new risk measure

ρ′e(X) := sup
Q̂′

EQ[−X] (15)

where

Q̂′ := {Q ∈ M1(P) | H(Q|P) ≤ c and HG(PQG |P) ≤ c}.
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From Prop. 6 (15) and (8) are sequentially consistent.

The same procedure can be used to obtain a sequentially consistent version of

Choquet risk measures, which can be seen as generalizations of TVaR. A similar

result was obtained by Fasen and Svejda (2010) for Choquet risk measures in a

finite setting. For a comprehensive discussion of Choquet risk measures we refer

to Carlier and Dana (2003) and Tsanakas (2004). Here, we define a Choquet

risk measure as:

ρC(X) = sup
Q∈Q

EQ[−X],

where

Q = {Q ∈ M1(P) | Q(A) ≤ g(P(A)) ∀A ∈ F}

and g : [0, 1] 7→ [0, 1] is an increasing, concave function such that:

g(0) = 1; g(1) = 1.

A possible update for a Choquet risk measure is the following:

ρ̂CG (X) = sup
Q̂G

EQ[−X|G] (16)

where

Q̂G := {Q ∈ PG | QG(·, A) ≤ g(PG(·, A)) ∀A ∈ F}

and QG(·, A) is a version of EQ[IA|G]. To see that (16) belongs to the class of

updates (2), we show that Q̂G ⊆ Q. For every Q ∈ Q̂G and for every A ∈ F :

QG(·, A) ≤ g(PG(·, A)) ⇒ (17)

PQG(·, A) = EP[QG(·, A)] ≤ EP[g(PG(·, A))] ⇒ (18)

Q(A) ≤ g(EP[PG(·, A)]) = g(P(A)), (19)

where, in (18) we used the definition of pasting probabilities and (19) follows

from Q ∈ PG and the Jensen’s inequality. We have already seen from Example

1 that this kind of update generally is not acceptance consistent. Now, consider

the new risk measure:

ρ̂′C(X) = sup
Q∈Q̂′

EQ[−X] (20)

where

Q̂′ := {Q ∈ M1(P) |Q(A) ≤ g(P(A)) and QG(·, A) ≤ g(PG(·, A)) ∀A ∈ F},
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the following result holds:

Lemma 7. The risk measures (20) and (16) are sequentially consistent.

Proof. We need to prove that the set C := {EQ[−X|G], Q ∈ Q̂G} is upward

directed. To see it, consider again a probability measure Q and the set A defined

as in (12), we only need to show that Q ∈ Q̂G . If P(A) = {0, 1} the proof is

immediate. Assume now that P(A) ̸= {0, 1}, by the definition of Q′ and Q′′, for

every B ∈ F we have:

Q(B) = P(A)Q′(B|A) + P(Ac)Q′′(B|Ac)

≤ P(A)g(P(B|A)) + P(Ac)g(P(B|Ac))

≤ g(P(A)P(B|A) + P(Ac)P(B|Ac)) = g(P(B)),

where we used the concavity of g(·). It follows from Prop. 6 that (ρ̂′C , ρ̂CG ) is

sequentially consistent.

5 The solvency time horizon in dynamic risk

measurement

5.1 Sequential consistency in multiple periods

Here we briefly discuss the results of Sections 3 and 4 in a multi-period setting.

Let (Ω,F ,P) be a probability space and {F}n∈[0,N ] a filtration with N ∈ N and

F ≡ FN . A dynamic coherent risk measure is then defined as a collection

(ρ0, ρ1, . . . , ρN−1), (21)

where:

ρn(X) := ρFn(X) = ess sup
Q∈Qn

EQ[−X | Fn] ∀n ∈ [0, . . . , N − 1].

for a certain set of measures Q0, . . . ,QN−1.

The extension of the notion of sequential consistency to this setting is straight-

forward.
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Definition 4. The dynamic risk measure (ρ0, ρ1, . . . , ρN−1) is sequentially con-

sistent if, for every X ∈ X , it satisfies:

(i) acceptance consistency

ρn(X) ≤ 0 =⇒ ρn−1(X) ≤ 0 ∀n ∈ [0, N − 1]; and (22)

(ii) rejection consistency

ρn(X) ≥ 0 =⇒ ρn−1(X) ≥ 0 ∀n ∈ [0, N − 1] (23)

Again, given a static risk measure as in (1) we can define the updates:

ρ̂n(X) = ess sup
Q∈Q̂n

EQ[−X|Fn] (24)

and

ρ̃n(X) = ess sup
Q∈Q

EQ[−X|Fn] (25)

where

Q̂n ⊆ {Q ∈ Pn ∩ Q ∈ Q}

and

Pn := {Q ∈ M1(P) | Q ≡ P on Fn}

The results presented in Section 3 still hold. Specifically we have:

Corollary 8. (i) If, for every X ∈ X , the set C := {EQ[−X | Fn], Q ∈ Q̂n}
is upward directed for every n ∈ [0, . . . , N − 1], then the risk measure

(ρ, ρ̂1, . . . , ρ̂N−1) is rejection consistent.

(ii) If, for every Q in Q, the pasting probability PQFn
is in Q̂n for every

n ∈ [0, . . . , N − 1], then the risk measure (ρ, ρ̂1, . . . , ρ̂N−1) is acceptance

consistent.

Hence, if (i) and (ii) hold, then (ρ, ρ̂1, . . . , ρ̂N−1) is sequentially consistent.

Corollary 9. (i) The dynamic risk measure (ρ, ρ̃1, . . . , ρ̃N−1) is acceptance

consistent.

(ii) If, for every X ∈ X ,
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(a) the set C := {EQ[−X | Fn] | Q ∈ Q} is upward directed and PQn ∈ Q
for every Q in Q for every n ∈ [0, . . . , N − 1], or

(b) the supremum in (25) is attained, i.e. :

∃ P ∗ ∈ Q s.t. EP∗
[−X |Fn] = ess sup

P∈Q
EP [−X |Fn] ≥ EP ′

[−X |Fn] ∀P ′ ∈ Q

(26)

then (ρ, ρ̃1, . . . , ρ̃N−1) is rejection consistent.

Hence, if (a) or (b) hold, then (ρ, ρ̃1, . . . , ρ̃N−1) is sequentially consistent.

Remark 6. The procedure to build a sequentially consistent version of a dy-

namic coherent risk measure, is the same as the one seen in Section 4. We start

from the update (24) at time N − 1 and we proceed backwards, adding all the

conditions that we need. For a random variable X, the new risk measure will be

(ρ̂′n)n∈[0,N ], where:

ρ̂′n(X) = ess sup
Q∈Q̂′

n

EQ[−X|Fn]

and the set Q̂′
n is defined as:

Q̂′
n := {Q ∈ Pn | PQl ∈ Q̂′

l ∀l ∈ N, s.t. n ≤ l ≤ N − 1}.

Note that, at the penultimate time, ρ̂′N−1 coincides with ρN−1.

5.2 Dynamic risk measures and solvency time horizon

Here we consider the effect of a solvency time horizon on risk measurement.

Often regulatory capital requirements are specified in relation to a fixed time

horizon, eg 1 year in insurance regulation such as Solvency II (or a much shorter

horizon of 10 days, in banking under Basel II). When a portfolio contains long

term liabilities (eg insurance contracts) that expire beyond the time horizon,

the random terminal payoff has to be substituted with its (random) market

consistent value at the time horizon. Valuation may be carried out either us-

ing “mark-to-market” replication arguments or, if that is not possible, using

a “mark-to-model” cost of capital approach (see eg Wüthrich and Salzmann

(2010)).

Here, we assume that a “mark-to-market” valuation is possible via a risk neutral
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measure Q∗. Hence, the position X is substituted with its price at the solvency

time horizon δ. In insurance, this price is for example the price of reinsuring the

position at time δ. In what follows, we will introduce a new risk measure that

takes into account this aspect. Consider a random variable X ∈ X and define

the functional:

ρδ0(X) := sup
P∈Q

EP
[
−EQ∗

[X | Fδ]
]

for a certain pricing measure Q∗. In general, for n ∈ [0, N − 1],

ρδn(X) := ess sup
P∈Qn

EP
[
−EQ∗

[X|Fn+δ] | Fn

]
.

For the moment, we do not specify the set Qn and thus what kind of update we

will be using. Note that ρδn(X) is nothing but the application of a conditional

coherent risk measure

ρn(·) = ess sup
P∈Qn

EP [− · |Fn ]

to the conditional expectation of the position X under a certain probability

measure Q∗. It is straightforward to prove that the conditional risk measure

ρδn(X) is coherent.

5.3 Sequential consistency of ρδ(·)

We now consider whether the coherent risk measures

ρδn(X) = ρn(E
Q∗

[X | Fn+δ])

and

ρδn+1(X) = ρn+1(E
Q∗

[X | Fn+1+δ])

inherit some time consistency from ρn and ρn+1. For convenience, consider

ρδ0(X) and ρδ1(X):

ρδ0(X) := sup
Q∈Q

EQ[ EQ∗
[−X | Fδ] ] (27)

and

ρδ1(X) := ess sup
Q∈Q1

EQ[ EQ∗
[−X | F1+δ] | F1] (28)
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for certain sets Q and Q1.

Lemma 10. If ρ0(X) and ρ1(X) are acceptance consistent, then so are ρδ+1
0 (X)

and ρδ1(X).

Proof. If ρ0(X) and ρ1(X) are acceptance consistent, then

ρδ1(X) = ρ1( E
Q∗

[X | F1+δ] ) ≤ 0 =⇒ ρ0( E
Q∗

[X | F1+δ] ) = ρδ+1
0 (X) ≤ 0.

To establish consistency between ρδ0 and ρδ1, we need some additional conditions

on the set Q and the probability measure Q∗. In particular, we recall that a

risk measure is law-invariant, if it assigns the same value to financial positions

having the same distribution.

Proposition 11. If the risk measures ρ0 and ρ1 are acceptance consistent, and

either

(i) The probability measure Q∗ belongs to Q and QQ∗
n ∈ Q for every Q ∈ Q

and for every n ∈ [0, N − 1]; or

(ii) Q∗ ∈ M1(P) and the risk measure ρ(·) is coherent law-invariant and con-

tinuous from below,

then ρδ0 and ρδ1 are acceptance consistent.

Proof. (i) We already know that ρδ1(X) ≤ 0, implies

ρ1+δ
0 (X) = sup

Q∈Q
EQ[ EQ∗

[−X | F1+δ] ] ≤ 0

so

EQ[ EQ∗
[−X | F1+δ] ] ≤ 0 ∀Q ∈ Q

In particular we can choose Q = RQ∗
δ ∈ Q for every R ∈ Q and obtain

ERQ∗
δ [ EQ∗

[−X | F1+δ] ] = ER[ EQ∗
[−X | Fδ] ] ≤ 0 ∀R ∈ Q

therefore

ρδ0(X) = sup
R∈Q

ER[ EQ∗
[−X | Fδ] ] ≤ 0.
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(ii) The proof follows from Corollary 4.59 in Föllmer and Schied (2004), where

is proved that ρ is monotone with respect to the second order stochastic

dominance ≽. From

EQ∗
[−X | F1+δ] ≽ EQ∗

[−X | Fδ]

and Lemma 10, we obtain the acceptance consistency of ρδ0 and ρδ1.

Therefore, acceptance consistency can still be valid when we substitute X with

EQ∗
[X|Fδ].

Remark 7. The same does not hold for rejection consistency. Even if ρ0(X)

and ρ1(X) are rejection consistent, this does not imply that ρδ0(X) and ρδ1(X)

are as well. To see it, consider

ρδ0(X) := sup
Q∈Q

EQ[ EQ∗
[−X | Fδ] ] (29)

and

ρδ1(X) := ess sup
Q∈Q1

EQ[ EQ∗
[−X | F1+δ] | F1] (30)

for certain sets Q and Q1. Again from the rejection consistency of ρ0(X) and

ρ1(X), we have

ρδ1(X) ≥ 0 =⇒ ρ
1+δ(X)
0 ≥ 0

but in general we do not have enough information to derive

ρ1+δ
0 (X) ≥ 0 =⇒ ρδ0(X) ≥ 0.

Then, if a position is rejected, this does not give enough information to reject

also its conditional expectation, which is generally less volatile than the position

itself.

6 Conclusions

We contribute to the discussion of the properties of dynamic risk measures, fo-

cusing on the time consistency of conditional coherent risk measures. Technical
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conditions are discussed to ensure sequential consistency for different types of

updates. These requirements are generally not satisfied by coherent risk mea-

sures, such as e.g. TVaR. Hence, it becomes sometimes necessary to modify

slightly the risk measure in order to obtain consistent dynamic risk measure-

ments. This is achieved by an adjustment to the coherent risk measure set of

generalized scenarios. The procedure amounts to excluding, a priori, probability

measures that will not be taken into account, in any case, when new informa-

tion is available. As an example, an application of this approach to TVaR, to

the coherent entropic risk measure and to the class of Choquet risk measures is

presented. Finally, we discuss the role of the solvency time horizon. When the

position has a long term, solvency regulation often requires that risk is mea-

sured at an earlier time horizon. In this case, the argument of the risk measure

is the position’s fair value at that horizon. In this changed setting, acceptance

consistency can be preserved, but in general we lose rejection consistency.
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