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Abstract: This paper considers a distributed LQR design framework for a multi-agent network
consisting of identical dynamically decoupled agents. A systematic method is presented for
computing the performance loss of various distributed control configurations relative to the
performance of the optimal centralized controller. Necessary and sufficient conditions have
been derived for which a distributed control configuration pattern arising from the optimal
centralizing solution does not entail loss of performance if the initial vector lies in a certain
subspace of state-space which is identified. It was shown that these conditions are always
satisfied for systems with communication/control networks corresponding to complete graphs
with a single link removed. A procedure is extended for analyzing the performance loss of an
arbitrary distributed configuration which is illustrated by an exhaustive analysis of a network
consisting of agents described by second-order integrator dynamics. Presented results are useful
for quantifying performance loss due to decentralization and for designing optimal or near-
optimal distributed control schemes.

Keywords: Distributed control, Linear quadratic regulator, Multi-agent systems, Robustness,
Performance cost.

1. INTRODUCTION

Distributed coordination of multi-agent systems has re-
ceived considerable attention in recent years. This prob-
lem has broad applications in many fields, e.g. unmanned
aerial vehicles, distributed sensor networks and congestion
control in communication networks (see Ren and Beard
(2010), Jadbabaie et al. (2003), Cortes et al. (2004) and
Paganini et al. (2001)). Typically in this type of systems,
agents interact with each other in a distributed manner
through local information exchange in order to achieve a
common objective.

Literature tends to favour distributed control of multi-
agent systems due to its advantages over centralized and
decentralized control methods which become infeasible or
unpractical as the number of agents and distance be-
tween them increases. An overview of these three control
methods in multi-agent systems is given in Massioni and
Verhaegen (2009). Often the problem of controlling the
multi-agent system is combined with the graph theory
where the information exchange is represented in terms
of a graph, see e.g. Langbort et al. (2004) and Lin et al.
(2007). Further, Fax and Murray (2004) proposed the
graph theory based method for analysis of a formation of
interacting and cooperating identical agents. The authors
analyzed necessary and sufficient stability conditions for
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a given undirected communication topology. This frame-
work was extended in Popov and Werner (2009) to the
robust formation control method which is applicable to an
arbitrary communication topology.

In general, optimal control of agents formations is a topic
of considerable interest to the control community. It can
be carried out to minimize the relative formation errors
(Zhang and Hu (2007)), energy expenditure (Bhatt et al.
(2009)), etc. Linear Quadratic Regulator (LQR) has been
widely used in vast variety of scenarios due to its guar-
anteed robustness properties. For example, in Rogge et al.
(2010) LQR-based method is proposed as a solution to the
consensus problem over a ring network. Similarly, in Cao
and Ren (2010) LQR theory has been successfully applied
to control of multi-agent systems with single-integrator
dynamics. Furthermore, the problem of controlling a for-
mation of interacting and cooperating systems by employ-
ing a distributed LQR design was considered in Huang
et al. (2010). Distributed LQR framework was also used
to control a collection of identical dynamically coupled sys-
tems in Deshpande et al. (2011) and Borrelli and Keviczky
(2008). Proposed control laws guarantee a certain level of
performance in terms of LQR cost at network level, but
they use different LQR cost functions. In Deshpande et al.
(2011) the solution is depended on the total number of
agents, while in Borrelli and Keviczky (2008) the solution
is derived as a function of the maximum vertex degree.



In the present work we use the distributed LQR design
strategy for dynamically decoupled multi-agent systems
introduced in Borrelli and Keviczky (2008). By solving
a simple local LQR problem whose size is limited by
the maximum vertex degree, a stabilizing distributed con-
troller can be found. The aim of this paper is to compare
the family of the distributed suboptimal controllers that
has been introduced in Borrelli and Keviczky (2008) with
the optimal centralized controller. It is shown that for
any distributed control configuration which differs from
a complete graph by a single link, there is no performance
loss if the initial vector lies in a certain subspace of
state-space. Additionally, the near-optimal schemes can
be identified. A procedure is extended for analyzing the
performance loss of an arbitrary distributed configuration
which is illustrated by an example in which individual
agents are described by second-order integrator dynamics.
The results presented allow the application of the method
described in Borrelli and Keviczky (2008) to decentralized
control schemes optimized with respect to the structure.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the notations used in paper, which is followed
by a brief summary of relevant results from graph theory.
In Section 3 two different LQR control designs, centralized
and distributed, are proposed. The main results of the pa-
per are described in Section 4. Distributed control config-
urations that do not entail loss of performance relative to
the LQR optimal centralized controller are identified. Also,
the method for finding near-optimal distributed configura-
tions for an arbitrary network is presented. These results
are illustrated in Section 5 by an exhaustive analysis of
a network consisting of five agents. Finally, the paper’s
conclusions appear in Section 6.

2. PRELIMINARIES

The following notation will be used through the pa-
per: In denotes the n × n identity matrix; AT and
aT are, correspondingly, the transpose of matrix A and
the transpose of column vector a = [a1, . . . , an]T ;
S(A) = {λ1(A), λ2(A), . . . , λn(A)} denotes the spectrum
of matrix A = AT ∈ Rn×n, where for a real spectrum of
A the eigenvalues, λi(A) for i = 1, . . . , n, are indexed in
decreasing order; A⊗B denotes the Kronecker product of
A ∈ Rm×n and B ∈ Rp×q.
Definition 1. A matrix A ∈ Rn×n is called stable or
Hurwitz if all its eigenvalues have negative real part, i.e.
S(A) ⊆ C .

Definition 2. Let A ∈ Rn×n and B ∈ Rn×n. The matrix A
is similar to B if there is an invertible matrix P ∈ Rn×n,
such that A = P−1BP .

Next, we present some concepts and basic results on graph
theory, which are necessary for the development of the
paper.

A multi-agent system is represented by an undirected
graph G = (V, E), where V is the set of nodes (or vertices),
V = {1, 2, . . . , N}, and E ⊆ V × V is the set of edges,
E ⊆

{
(i, j) : i, j ∈ V, j 6= i

}
. Communication between

agents is bidirectional and agents i and j are said to be
neighbours if (i, j) ∈ E . Each node has associated degree
or valency, di for i = 1, 2, . . . , N , which represents the

number of neighbours of agent i. Any undirected graph can
be represented by its adjacency matrix, A(G). Let Ai,j ∈ R
be the (i, j) element of adjacency matrix. Then Ai,i = 0
for i = 1, 2, . . . , N as we assume that there is no edge from
node to itself, and

Ai,j =

{
0 if (i, j) /∈ E ∀i, j = 1, 2, . . . , N, i 6= j,

1 if (i, j) ∈ E ∀i, j = 1, 2, . . . , N, i 6= j.

An undirected graph is said to be complete if there is an
edge between every pair of nodes. Then all nodes will have
the same degree, d = N − 1, where N is the number of
nodes (agents).

Definition 3. (Borrelli and Keviczky (2008)) The class of
matrices denoted as KNd

n,m(G) is defined as

KNd
n,m(G) ={M ∈ RnNd×mNd |Mij = 0 if (i, j) /∈ A,

(Mij = M [(i− 1)n+ 1 : in, (j − 1)m+ 1 : jm]

if (i, j) ∈ A where i, j = 1, 2, . . . , Nd}.

3. PROBLEM FORMULATION

3.1 Centralized LQR Control of Multi-Agent Systems

Let consider the linear continuous-time system of ith agent
whose dynamics can be described as

ẋi(t) = Axi +Bui, x(0) = xi0 (1)

where A ∈ Rn×n, B ∈ Rn×m and xi(t) ∈ Rn, ui(t) ∈ Rm
are the state and input vectors of the system at time t,
respectively. Then, the collective dynamics of N identical
and decoupled systems, indexed as 1, 2, . . . , N , is given by

ẋ(t) = Aax+Bau, x(0) = x0 (2)

where the column vectors x(t) = [xT1 (t), . . . ,xTN (t)]T and
u(t) = [uT1 (t), . . . ,uTN (t)]T collect the states and inputs
of the N systems, while Aa = IN ⊗ A and Ba = IN ⊗B,
with A and B defined as in (1).

The LQR problem for the system (2) is described through
the cost function of the form

J
(
u(t),x0

)
=

∫ ∞
0

( N∑
i=1

(
xi(t)

TQiixi(t) + ui(t)
TRiiui(t)

)
+

N∑
i=1

N∑
j=1
j>i

((
xi(t)− xj(t)

)T
Qij

(
xi(t)− xj(t)

)))
dt.

In the more compact notation the LQR cost is defined as:

J
(
u(t),x0

)
=

∫ ∞
0

(
x(t)TQax(t) + u(t)TRau(t)

)
dt (3)

where the matrices Qa and Ra have the following struc-
ture:

Qa =

 Qa11 Qa12 . . . Qa1N
...

...
. . .

...
QaN1

QaN2
. . . QaNN

 , Ra = IN ⊗R, (4)

with Qaii =
∑N
k=1Qik for i = 1, . . . , N ; Qaij = −Qij for

i, j = 1, . . . , N, i 6= j; Qii = QTii ≥ 0 and Rii = RTii > 0
for ∀i, Qij = QTij = Qji ≥ 0 for ∀i 6= j.

We are assuming that the pairs (A,B), (Aa, Ba) are
stabilizable and the pairs (A,C), (Aa, Ca) are observable
for any Q = QT ≥ 0 and Qa as in (4) (where CTC = Q,



CTa Ca = Qa). Then, the optimal control law for the
quadratic cost function (3) is given by

u = −R−1a BTa Pax (5)

where Pa is the symmetric positive definite stabilizing
solution of the following (large-scale) Algebraic Riccati
Equation (ARE):

ATa Pa + PaAa − PaBaR−1a BTa Pa +Qa = 0. (6)

If the weighting matrices in (4) are chosen as Qaii = Q1

∀i = 1, . . . , N , and Qaij = Q2 ∀i = 1, . . . , N , i 6= j, Pa is
of the form:

Pa =


Pa11 Pa12 . . . Pa12
Pa12 Pa11 . . . Pa12

...
...

. . .
...

Pa12 . . . . . . Pa11

 (7)

where individual blocks of Pa, Pa[(i−1)n+1 : in, (j−1)n+
1 : jn] for i, j = 1, . . . , N , have the following properties:

(1)
∑N
j=1 Paij = P for all i = 1, . . . , N , where P ∈ Rn×n

is the symmetric positive definite solution of the ARE:

ATP + PA− PBR−1BTP +Q1 = 0. (8)

Therefore, Pa11 = P − (N − 1)Pa12 .
(2) All off-diagonal blocks of Pa, namely Paij for i 6= j,

are equal matrices, denoted as Pa12 . Furthermore,
Pa12 is the negative semi-definite solution of the ARE

ATclPa12 + Pa12Acl +NPa12XPa12 −Q2 = 0 (9)

where Acl = A−BR−1BTP and X = BR−1BT .

Similarly, this structure of diagonal and off-diagonal blocks
will be preserved in the gain matrix Ka, given as

Ka = R−1a BTPa. (10)

For more details and proofs see Borrelli and Keviczky
(2008).

3.2 Distributed LQR Control of Multi-Agent Systems

The distributed optimal control problem can be described
as (Borrelli and Keviczky (2008)):

min
K̃

J̃
(
ũ(t), x̃0

)
=

∫ ∞
0

(
x̃(t)T Q̃x̃(t) + ũ(t)T R̃ũ(t)

)
dt

subj. to ˙̃x(t) = Ãx̃ + B̃ũ, x̃(0) = x̃0

K̃ ∈ KNd
n,m(G)

Q̃ ∈ KNd
n,n(G), R̃ = INd

⊗R (11)

where Nd is a number of identical decoupled systems;
Ã = INd

⊗ A and B̃ = INd
⊗ B with A and B defined

as in (1); x̃(t) and ũ(t) are the vectors which collect the
states and inputs of the Nd systems; KNd

n,m(G) is defined as

in Definition 3; Q̃ = Q̃T ≥ 0 and R̃ = R̃T > 0.

In general, computing the solution of (11) is an NP-
hard problem. Therefore, the procedure for designing a
suboptimal distributed controller is given next.

Theorem 1. (Borrelli and Keviczky (2008)). Consider the
large-scale system composed of Nd identical decoupled
subsystems whose collective dynamics is described as:

˙̃x(t) = Ãx̃+ B̃ũ, x̃(0) = x̃0. (12)

LQR problem for the system (12) is defined through the
cost function:

J
(
ũ(t), x̃0

)
=

∫ ∞
0

(
x̃(t)T Q̃x̃(t) + ũ(t)T R̃ũ(t)

)
dt (13)

where Q̃ and R̃ are structured as in (4) with Q̃ii = Q̃1 for

all i = 1, . . . , N and Q̃ij = Q̃2 for all j = 1, . . . , N , i 6= j.
Then, the distributed controller can be constructed as:

K̃ = INd
⊗R−1BTP −M ⊗R−1BTP12 (14)

where P is the symmetric positive definite solution of (8)
and P12 represents the off-diagonal block of Pa in (7). The
size of the problem in (6) is a function of the maximum
vertex degree in network, such that Nmin = dmax(G) + 1
agents. The structure of the graph G is reflected through
matrix M given by

M = aINd
− bA(G), b ≥ 0 (15)

where A(G) is the adjacency matrix. Coefficients a and b
are chosen to satisfy a−bdmax ≥ 0, which follows from the
gain margin properties of the proposed controller. Then,
the closed loop system:

Ãcl = Ã− B̃K̃ = INd
⊗A+ (INd

⊗B)K̃ (16)

will be asymptotically stable and P̃ is the unique solution
of the following Lyapunov equation:

ÃTclP̃ + P̃ Ãcl + Q̃+ K̃T R̃K̃ = 0. (17)

Proof. See Borrelli and Keviczky (2008).

4. MAIN RESULTS

In this section the method for identifying optimal and
near-optimal distributed control schemes is proposed. Two
different control designs given in Section 3 are compared
with regards to their performance cost. Note that in the
case of complete graph distributed gain matrix (K̃) in (14)
is equivalent to the centralized (large-scale) gain matrix
(Ka) in (10) and optimality is preserved. Next results
are valid for multi-agent systems consisting of minimum
4 agents.

Consider the distributed multi-agent network that differs
from centralized only in a single link (i.e. one agent is not
connected to the remaining (N −1) agents and has degree
d = N − 2). Then, two gain matrices will differ for ∆K
which in the case of (1, 2) /∈ E is given by

∆K =


0 −R−1BTPa12 . . . 0

−R−1BTPa12 0 . . . 0
...

...
. . .

...
0 . . . . . . 0

 (18)

and the following result can be established.

Theorem 2. Suppose that Theorem 1 holds and let E =
P̃ − Pa, where Pa is solution of (6) and P̃ is the solution
of the Lyapunov equation:

(Aa−BaK̃)T P̃+P̃ (Aa−BaK̃)+K̃TRaK̃+Qa = 0. (19)

Then, E = ET is the unique positive semi-definite solution
of the following Lyapunov equation:

ÃTclE + EÃcl + (∆K)TRa∆K = 0 (20)

in which Ãcl = Aa − BaR−1a BTa Pa + Ba∆K is Hurwitz.
In particular, E = ET > 0 if and only if the pair
(Aa − BaR

−1
a BTa Pa,∆K) is observable.

Proof. Asymptotic stability of (Aa − BaKa) and (Aa −
BaK̃) implies that Pa and P̃ are positive semidefinite
solutions. Subtracting equation (6) from equation (19)
shows (after some algebra) that E is the solution of (20).



Theorem 1 implies that Ãcl is Hurwitz which in turn
implies that E = ET ≥ 0. From the standard theory of
Lyapunov equations E is positive definite if and only if
the pair (Ãcl,∆K) is observable, which is equivalent to
the observability of the pair (Aa −BaR−1a BTa Pa,∆K).

Furthermore, E will be always singular when a single link
is removed from a complete graph. The result is established
in Theorem 4, but before stating and proving this theorem
we need to state some preliminary results on the spectrum
of the centralized closed-loop matrix.
Theorem 3. Consider LQR problem in (1)-(3) with state
and control weighting matrices Q1 and R, respectively.
Let Acl = A−BR−1BTP be the closed-loop matrix of the
problem defined where P is the symmetric positive definite
solution of (8). Similarly, let Acla = Aa − BaR

−1
a BTa Pa

be the closed-loop matrix of the (large-scale) centralized
LQR problem in (6) with state and control weighting
matrices Qa and Ra respectively. Pa is the symmetric
positive definite solution of (6) decomposed into N2 blocks
of dimension n× n as in (7). Then, the spectrum of Acla ,
i.e. S(Acla) is given by:

S(Acla ) = S(Acl) ∪ S(Acl1−2
) ∪ . . . ∪ S(Acl1−2

)︸ ︷︷ ︸
(N-1) times

(21)

where Acl1−2 = A−BR−1BT (Pa11 − Pa12), in which Pa11
and Pa12 are n× n blocks of Pa in (7).

Proof. The proof is straightforward, so full details are
omitted due to space restrictions. The proof is based on
the transformation of closed-loop matrix Acla = Aa −
BaR

−1
a BTa Pa into a block lower-triangular matrix by using

the similarity transformations. The transformation matrix
is given by

T =


I −I 0 . . . 0
0 I −I . . . 0
.
..

.

..
. . .

. . .
.
..

0 0 . . .
. . . −I

0 0 . . . . . . I

 . (22)

Since eigenvalues of closed-loop matrix are preserved under
similarity transformations equation (21) follows.

Theorem 4. Consider the fully connected multi-agent net-
work consisting of at least four agents. Then, if a single link
is removed between any two agents, E will be singular.

Proof. Using results of Theorem 1 and Theorem 2, Ãcl is
Hurwitz and E = ET ≥ 0. To show that E is singular it
suffices to show that the pair (Aa −BaR−1a BTa Pa,∆K) is
unobservable which is equivalent to the existence of λ ∈ C

such that the matrix

(
Acla − λI

∆K

)
is rank deficient. For

the network of N agents and link removal between agents
1 and 2 this matrix can be written as:

A11 − λI −XPa12 . . . −XPa12

−XPa12 A11 − λI . . . −XPa12

..

.
..
.

. . .
...

−XPa12 −XPa12 . . . A11 − λI

0 −R−1BTPa12 . . . 0
−R−1BTPa12 0 . . . 0

...
...

. . .
...

0 0 . . . 0


(23)

where A11 = A − XPa11 . Using the state-space transfor-

mation

(
T (Acla − λI)T−1

∆KT−1

)
, where the large-scale trans-

formation matrix is given by

T =



I I I I I I . . . I
0 I 0 0 0 0 . . . 0
0 −I I 0 0 0 . . . 0
0 I I I I I . . . I

0 0 0 0 I 0 . . . 0
0 0 0 0 0 I . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 . . . I


, (24)

matrix in (23) will lose the rank along the third col-
umn if λ is chosen as an eigenvalue of the matrix
A−X(Pa11−Pa12) (using Theorem 3). Since the rank of a
matrix remains invariant under similarity transformations
the system (Ãcl,∆K) is unobservable in this case and
hence E is singular.

Remark 1. Theorem 4 is proved under assumption that
link between agents 1 and 2 is removed from the complete
graph of any size. Different choice of link to be removed will
change the structure of ∆K, but eigenvalue distribution
in P̃ and Ãcl will be unchanged (as all similar matrices
have the same spectrum). Also, this can be related to
the automorphism group of a graph G that arises in the
enumeration of nodes known as labeling (for more details
see Cameron (2001)). Therefore, E is singular for any of
N(N−1)

2 configurations corresponding to complete graph of
N agents with a single link removed.

The analysis can be extended to the case when more than
one link is removed from a complete network. Then, by
using appropriate transformation matrices we can always
choose the direction where E is singular. However, the
complexity of the analysis will increase with the number
of agents and number of links to be removed. Proofs
are omitted due to space restrictions, but an numerical
example is given in Section 5.

Next, we present the results obtained by comparing the
costs of the centralized LQR controller and distributed
LQR controller.

Proposition 5. The cost of using distributed LQR design
will be always equal or higher that the optimal cost
imposed by centralized LQR design.

Proof. We assume that the distributed controller is stabi-
lizing. Therefore, cost is finite. Using Theorem 2, P̃ = Pa+
E with all matrices being symmetric positive semi-definite.
Applying Weyl’s inequality (see Horn and Johnson (1994))
we get:

λk(Pa) + λn(E) ≤ λk(P̃ ) for any 1 ≤ k ≤ n
where the eigenvalues are indexed in decreasing order. The
required result follows from Theorem 2 since λn(E) ≥ 0.

The case when two costs are equal is summarised in the
next theorem.

Theorem 6. The cost of a stabilizing distributed controller
defined in Theorem 1 is equal to the cost of the centralized
optimal LQR controller if and only if the pair (Aa −
BaR

−1
a BTa Pa,∆K) is unobservable and x̃0 ∈ Ker(E)

where E = P̃ − Pa.



Proof. The cost of a stabilizing distributed controller is:

J(ũ, x̃0) = x̃T0 P̃ x̃0 = x̃T0 Pax̃0 + x̃T0 Ex̃0. (25)

The term x̃T0 Pax̃0 represents the optimal LQR cost of the
centralized controller. Since E = ET ≥ 0, the term x̃T0 Ex̃0

is zero if and only if E is singular and x̃0 ∈ Ker(E).
Using Theorem 2 this will be satisfied only if the pair
(Aa − BaR

−1
a BTa Pa,∆K) is unobservable.

Remark 2. Theorem 4 and Theorem 6 can be extended
along various directions. Consider first the case of near-
optimal distributed configurations for which the cost in-
crease along specific directions ξ is small relative to
the optimal LQR cost. For these directions the pair
(Aa − BaR

−1
a BTa Pa,∆K) is close to unobservability, in

the sense that for certain λ0 ∈ C and ‖ξ‖ = 1 the norm of
the vector (

λ0I − Aa + BaR
−1
a BTa Pa

R
1/2
a Ka

)
ξ (26)

is small. Specifically, let E = ET > 0 be a solution of (20)
with λmin(E) = ε > 0. Then, the cost of the corresponding
distributed controller (guaranteed to be stabilizing under
the previous assumptions) is:

J(ũ, x̃0) = x̃T0 P̃ x̃0 = x̃T0 Pax̃0 + x̃T0 Ex̃0 (27)

where the term x̃T0 Ex̃0 ≥ ε‖x̃0‖2. In particular, if x̃0

is chosen to lie in the eigenspace of E corresponding to
its minimum eigenvalue, x̃T0 Ex̃0 = ε‖x̃0‖2. Therefore,
for small values of ε and along these directions the cost
increase from the optimal level will be minimal. Next
consider the case that E = ET ≥ 0 and singular. Let
λ1 ≥ . . . ≥ λm > λm+1 = . . . = λm+r > λm+r+1 =
. . . = λn = 0. In this case there is no cost increase
along all directions in the null-space of E. If x̃0 lies in
the r-dimensional eigenspace corresponding to λm+1(E),
then the cost increase is exactly λm+1(E)‖x̃0‖2. Thus
the sequence of eigenvalues of E indicate the progressive
deviation from optimality if the initial state lies in the
corresponding eigenspace. A final measure of deviation
from optimality for each decentralized control scheme is
average cost. Assuming that x̃0 is uniformly distributed
on the surface of an n-dimensional hyper-sphere we define
the average cost as the expected value:

µ(E) :=

∫
‖ξ‖=1

ξTEξ dS∫
‖ξ‖=1

dS
=

trace(E)

nNd
(28)

which may be considered as a measure of average cost
increase due to decentralization over all initial state direc-
tions.

5. NUMERICAL EXAMPLE

Consider a network of N = 5 identical, dynamically
decoupled agents described by double-integrator dynamics
in both spatial dimensions:

ẍi = ux,i, ÿi = uy,i, i = 1, . . . , 5. (29)

The interconnection structure is depicted in Fig. 1.

The collective dynamics in a state-space formulation is
given by

˙̃x(t) = Ãx̃+ B̃ũ, x̃(0) = x̃0. (30)

where Ã = I5 ⊗ A and B̃ = I5 ⊗B with A and B defined
as

5 2

4 3

1

Fig. 1. The complete graph with N = 5 agents

A =

 0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =

 0 0
1 0
0 0
0 1

 . (31)

The augmented system (30) is altered by adding dumping
elements to the diagonal of matrix A (i.e. diag(A) =
( 0.1 −0.1 0.1 −0.1 )) such that local and global stabiliz-
ability assumptions in Section 3.1 are satisfied. Then, the
LQR problem for a formation in Fig. 1 is defined as

min
K̃

J̃
(
ũ(t), x̃0

)
subj. to ˙̃x = Ãx̃+ B̃ũ, x̃(0) = x̃0

where the cost function J̃
(
ũ(t), x̃0

)
is defined as in (13)

with Q̃ (its diagonal and off-diagonal blocks) and R̃ struc-

tured as Q̃ii = diag(5, 0, 5, 0), Q̃ij = diag(−1, 0, −1, 0)

and R̃ = I5 ⊗R in which R = I2.

By using the distributed control method proposed in Sec-
tion 3.2 each agent is stabilized and for the configuration
given in Fig. 1 the cost is optimal due to the equivalence
with centralized LQR problem. For a given initial state
vector x̃0 such that ‖x̃0‖ = 1 we get the optimal cost
Jc. As we are interested in the minimum cost, average
cost, and maximum cost imposed by centralized design,
for a given example these are Jcmin

= 0.705, Jcavg
=

5.413 , and Jcmax
= 10.381, respectively.

Next, we consider a number of different distributed config-
urations obtained by removing one, two of three links from
a complete graph in Fig. 1. Distributed configurations are
depicted in Fig. 2. Please note that number of links re-
moved could be larger than three and asymptotic stability
will be still achieved, but these configurations are omitted
due to space restrictions. However, same conclusions would
apply.

Table 1 shows the cost change in distributed case for a
different directions in space relative to the optimal design
(i.e. centralized network). Minimum, average and maxi-

mum cost increase correspond to the λmin(E), trace(E)
dim(E) and

λmax(E), respectively. Please note that number of possible
configurations for up to four cuts is reduced to six based
on graph properties in Remark 1.

Table 1. Cost increase for distributed designs

Configuration a) b) c) d) e) f)

Minimum
cost increase

0 0 0 0 0 0

Average
cost increase

0.010 0.021 0.019 0.033 0.031 0.030

Maximum
cost increase

0.049 0.112 0.066 0.194 0.150 0.121
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a) Single cut, dmin = 3
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b) Double cut, dmin = 2

5
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c) Double cut, dmin = 3

5
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1

d) Triple cut, dmin = 1

5

4

2

3

1

e) Triple cut, dmin = 2

5

4

2

3

1

f) Triple cut, dmin = 2

Fig. 2. Different distributed configurations

Note that for each configuration there is always one di-
rection for which optimality is preserved relative to the
optimal centralized LQR controller. It can also be seen
that for the same number of cuts the average and maxi-
mum cost decreases as the minimum degree of the network
increases, which corresponds to a well-connected network.
Future work will attempt to establish precise correlations
between decentralized cost, the connectivity properties of
the network and the corresponding structured controlla-
bility properties of each distributed scheme.

6. CONCLUSION

The paper has considered a distributed LQR design frame-
work for a network of dynamically decoupled multi-agent
systems with identical dynamics. Using the robustness
properties of LQR optimal control, stability can still be
guaranteed if the fully centralized solution is relaxed be
removing up to a maximum number of network links.
Necessary and sufficient conditions have been derived for
which different distributed control configuration pattern
do not entail loss of performance. Cost increase due to
decentralization has also been quantified by introducing
three cost measures corresponding to the worst-case, best-
case and average directions in which the initial state of the
system lies. The results of the paper have been illustrated
with a numerical example. Future work will attempt to
correlate the additional cost arising due to decentralization
with the connectivity and structured controllability prop-
erties of the network and apply the results to the design of
optimal or near-optimal controllers for networks of agents
operating under communication constraints, external dis-
turbances and model uncertainty.
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