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Abstract 
 

Vehicular ad hoc Networks (VANETs) are self-organizing networks of vehicles 

equipped with radios and processors. VANETs are very promising as they can make 

driving safer by improving road awareness through sharing of information from 

sensors. Vehicles communicate with each other wirelessly to exchange information and 

this exchange of information is susceptible to attacks of different kinds. There are some 

very important issues that need to be resolved before VANETs can be deployed on 

large scale. Security and privacy issues are undoubtedly the most important factors that 

need to be resolved.  

 Amongst various problems to be solved in VANETs is the issue of rogue nodes 

and their impact on the network. This thesis discusses the problems associated with the 

security and privacy of vehicular networks in the presence of rogue nodes. The rogue 

nodes can share / inject false data in the network which can cause serious harm. The 

techniques proposed make VANETs secure and prevent them from the harmful impact 

of rogue nodes. The proposed work makes the network safer by making it fault tolerant 

and resilient in the presence of rogue nodes that can be detected and reported. As 

VANETs are highly dynamic and fast moving so, a data centric scheme is proposed 

that can determine if a node is rogue or not just by analysing its data. The work then 

enhances the developed mechanism by applying hypothesis testing and other statistical 

techniques to detect intrusions in the network by rogue nodes. The technique is 

simulated using OMNET++, SUMO and VACAMobil and the results obtained have 

been presented, discussed and compared to previous works.  



v 
 

 In order to prevent rogue nodes from becoming part of the VANETs this thesis 

also presents a novel framework for managing the digital identity in the vehicular 

networks. This framework authenticates the user and the vehicle separately from two 

authorities and allows him to communicate securely with the infrastructure using IBE 

(Identity Based Encryption). The proposed technique also preserves the privacy of the 

user. The proposed scheme allows traceability and revocation so that users can be held 

accountable and penalised. The results have been compared to previous works of 

similar nature. The thesis also discusses the Sybil attack and how to detect them using 

game theory in a VANET environment. 
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Chapter 1 : Introduction 
 

1.1 Background 
 

Vehicular Ad-hoc Network (VANET) is an interconnection of vehicles with on-

board Units (OBUs) that communicate with one another to form a wireless network. 

VANETs are considered imminent due to their huge potential in terms of road safety 

and other convenience applications. Vehicular networks are considered imminent due 

to the advancement and ease in wireless connectivity. It is just a matter of time before 

they become a reality. Vehicular networks are considered important due to their 

tremendous potential both in terms of safety and commercial applications.  

Over the last three decades there have been a lot of innovation in vehicles in 

terms of fuel efficiency, navigation, comfort and making the general feel of driving 

more pleasant and enjoyable but there hasn’t been much change in terms of road safety. 

Road travel is still considered to be quite hazardous as the mistake of a single person 

can have catastrophic results especially at high speeds. Although, there has been a lot 

of automation in vehicles by incorporating sensors, cameras and radars but the full 

potential of this technology can only be realized if vehicles are equipped with radios 
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and allowed to communicate with each other. This will lead to the deployment of 

VANETs. 

The developments in the automotive industry in the last few decades have been 

impressive. Cars today are much more fuel-efficient than ever before. However, the 

advancements in automotive technology did not have the same impact on the safety of 

the roads. Vehicles today are still as vulnerable to accidents due to fog, ice, and other 

hazards on the road, but above all, they are vulnerable to human error. However, this is 

all set to change: the automotive industry has been working actively for years to put 

different sensors in cars and connect them to an on-board computer. With advancement 

in telecommunications, it is now possible to connect vehicles to each other through 

wireless technologies to enable them to communicate and cooperate. Now, not only is 

the automotive industry pursuing autonomous vehicles—they are being encouraged by 

the governments as well. The UK government announced in March 2015 that a £100 m 

funding for research into driver-less cars will bring in companies from not only the 

automotive industry but also from Information Technology (IT), telecommunications, 

and infrastructure [1]. In the US, car manufacturers like General Motors (GM) are 

already selling 4G Long Term Evolution (LTE)-connected cars in their 2015 fleet and 

they predict having fully connected cars by the end of this decade [2]. Moreover, IEEE 

believes that the need to get a driver’s license might be eliminated by 2040 as 

autonomous cars would be ubiquitous [3]. 

Car manufacturers such as GM and Ford have opened up application 

development for their platforms by making their Application Program Interface (API) 

available to developers [4], [5]. They plan to follow the conventional business model, 

i.e., the developers submit their apps which are tested and approved before making 
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them available for download. This LTE connectivity alone will serve to improve the in-

vehicle infotainment services by providing access to high-speed internet, streaming 

movies, navigation, music, and live television, etc. The other aspect is commercial, i.e., 

offering location-based services and advertisements to the vehicle passengers. The LTE 

connectivity will not only bring internet to the vehicle but also make the vehicle a part 

of the internet, easing the way for the Vehicular Ad hoc NETworks (VANETs). 

The true potential of the connected vehicle will be realized only when vehicles 

are interconnected to each other. This network, formed by the interconnection of 

vehicles, is referred to as VANET. This paradigm shift in vehicular technology will 

usher in a new era of innovation and will open a huge range of application areas that 

can help in improving road safety and reducing accidents on roads. 

 

1.2 Problem Statement 
 

The biggest challenge in the deployment of VANETs is that of Security and 

Privacy. The vehicles will share some messages with each other to make them aware of 

the traffic and road conditions. These messages are referred to as Cooperative 

Awareness Messages (CAMs) and will be shared at regular intervals. These messages 

consist of parameters like the position, speed etc. of the transmitting vehicle which are 

broadcasted to all vehicles in range. Therefore, security is crucial as drivers might make 

life critical decisions based on the information provided by other vehicles. Similarly, 

privacy of users is important as users don’t want to be tracked or identified all the time 

while at the same time we need accountability in the network so that users behave 
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responsibly. The privacy and accountability of the user might look contradictory 

requirements but they are important and necessary in vehicular networks. 

The OBUs possess reasonable computing power and memory but as the 

vehicles are travelling at high speeds, it is necessary that vehicles are able to 

authenticate the messages quickly. At the same time the messages have to be accurate 

(recent, relevant) and reliable (true) so that they can be acted upon by the recipient. 

This accuracy and reliability is provided by securing the communication in VANETs. 

Security can be achieved by using cryptographic techniques once the user has been 

authenticated. However, these cryptographic techniques should be suitable for the fast 

moving and quickly changing nature of VANETs. 

Privacy is the ability to keep the identity of the user secret while allowing them 

to communicate and interact with other users while ensuring that the security of the 

communications is not violated. 

 

1.3 Research Objectives 
 

 VANETs are dynamic and very fast moving and therefore, have special 

requirements. The most important requirement is for the vehicles to exchange credible, 

useful and accurate information about the traffic. However, as vehicles that come in 

contact with each other are mostly meeting for the first time, therefore, there is a need 

for some mechanisms to establish the identity of the vehicle and the credibility of the 

information being shared. VANETs can expand rapidly and may consist of thousands 

of nodes all communicating with one another. This raises the problem of the 

correctness of information that is being shared. As the information being shared can be 
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used to take life saving decisions, it is imperative that the accuracy of the information is 

quickly ascertained and then auctioned upon. One answer to these issues is 

Cryptography albeit with some caveats. This means that only those vehicles are 

allowed to become part of VANETs that have been authenticated and then get the 

necessary keys. The ephemeral and fast changing nature of VANETs requires that the 

cryptographic techniques used should be scalable and efficient as otherwise there can 

be a bottleneck of messages. Also, the techniques used should preserve the privacy of 

the users. 
However, a vehicle that has been authenticated and becomes part of the 

VANET can then inject false messages in the network and is very difficult to detect. It 

is therefore, essential that the information exchange in vehicular networks is secured 

against false data injection. Even if false data is injected in the network, the network 

should be resilient to such attacks and should have the ability to detect and correct the 

information to some extent. Therefore, the research question is: 

How to detect rogue (malicious) nodes in VANETs? 

The sub questions formulated are: 

1. How to keep illegitimate / rogue nodes out of VANETs? 

2. How to create and manage Identities in VANETs? 

3. How to make VANETs resilient to false data injection attacks from nodes that 

turn rogue? 

4. How to detect rogue nodes that are part of VANETs? 

5. How to create a VANET model that can be used to determine normal or 

abnormal behaviour? 
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1.4 Research Method 
 

In order to solve the above mentioned problem first, the literature review is carried out 

to identify the security and privacy requirements of vehicular networks. This set of 

requirements then help us determine as to how these can be achieved. Also, we identify 

the different types of attacks that can be launched in VANETs and how these attacks 

can be detected and prevented. We then develop a VANET model that can be used to 

predict their behaviour in normal or special conditions. This enables us to automate the 

detection of anomalies in VANETs using various techniques. The model is then 

validated with the help of simulations under different conditions. Different techniques 

are tested and the best method is selected to detect malicious behaviour in VANETs.  

 

1.5 Contributions 
 

 Securing VANETs is a difficult task as the nodes are fast moving, connections 

are short lived and the topology of the network changes very quickly. There is a 

requirement for nodes to establish connections and trust each other for information 

exchange. This thesis also proposes and presents some solutions and techniques to help 

solve these issues. The research presented in this thesis has been published in [6], [7], 

[8] and [9]. This thesis makes the following original contributions: 

 

i. Application of a traffic model to VANETs to help detect rogue nodes and 

make them resilient to false data injection: 
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This thesis presents and implements a VANET model through which vehicles share 

their own calculated parameters about the traffic which help others to determine the 

highway conditions. The vehicles which are close together will measure similar 

parameters and share them to develop a consensus about the road conditions. Each 

vehicle can compare the values being received from other vehicles and averages them 

to form a generalized picture of the road conditions ahead. Moreover, each vehicle will 

compare the values received with the VANET model and only accept them if they 

conform to it. In this way, inconsistent values can be detected and reported. If the 

parameters don’t conform to the VANET model and inconsistent values are being 

received from only one or few vehicles then they are flagged as rogue.  

This thesis proposes that vehicles do not accept and re-broadcast an emergency 

message as soon as it is received but only do so if the parameters validate the 

emergency message. This means that the system works better as only vehicles that are 

in (or very close to) the incident region will send out the emergency message and other 

vehicles that are far away will only prompt other vehicles to slow down. Thus, the 

system will allow the information to be carried at large distances and at the same time a 

gradual reduction in speed is allowed.  

 

ii. Propose an Intrusion Detection System (IDS) for Vehicular Ad hoc Networks 

to detect and identify rogue nodes. 

This thesis proposes a host based IDS for VANETs that resides on each node 

(vehicle) that can detect intrusions in the network. The IDS uses statistical techniques 

to detect intrusions in the network and then identify the rogue nodes. The IDS is tested 

through simulations and results are presented and discussed. The results show that the 
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proposed IDS works very well even in the presence of a high number (up to 40%) of 

rogue or malicious nodes.  

 

 

iii. Evaluating our proposed false data rejection and rogue node detection 

technique using OMNET++, SUMO and VACaMobil: 

We evaluate our proposed technique that detects and rejects false data and detects 

rogue node sending the data using OMNET++, SUMO and VACAMOBIL. OMNET++ 

is a modular, component based C++ library and framework for the simulation of 

networks (wired and wireless). OMNET++ offers an eclipse based IDE and many 

useful data analysis tools. Simulation of Urban Mobility (SUMO) is a tool used to 

generate vehicular traffic and VACaMobil is a VANET Car Mobility manager for 

OMNET++ that uses SUMO to offer a comprehensive range of VANET simulations.  

 

iv. Propose a new method to create and use the Digital Identity in VANETs: 

In order to keep the rogue nodes out of VANETs in the first place, it is necessary to 

devise a mechanism that properly authenticates the user before allowing him to become 

a part of the system. The thesis proposes a new way to form digital identities in 

VANETs so that the actual user of a vehicle can be held accountable for their actions 

and not the vehicle. As the vehicle usually has a one to many relationships with drivers, 

therefore, if the vehicle is identified and revoked then the driver can later on deny using 

the vehicle. Therefore, it is the driver who needs to be identified and penalised and not 

the vehicle. The OBUs use this digital identity to create their own Pseudonyms that are 
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changed frequently but still be authenticated by the Trusted Authorities or Road Side 

Units. This will ensure that once the driver has been identified, he can be penalized for 

their actions.  

Also, we propose a new multi-authority framework which splits the power to disclose 

the identity of a user to two authorities that have to work together to de-anonymize a 

user. This is done to provide an additional layer of security for the user as the existing 

works give this ability to either the RSU or a single TA which if compromised can 

completely reveal a user’s identity.  

 

v. Propose a Game Theoretic model to detect Sybil nodes in VANETs: 

Sybil attack is a serious threat to the working of VANETs. Sybil attack is directly 

related to the unfair use of the identity or identities in VANETs. Sybil attacks are 

difficult to detect in any network but increasingly so in the case of VANETs due to 

their inherent nature. In this thesis, a game theoretic framework for Sybil attack 

detection is proposed that models such a situation in VANETs as a game and is able to 

detect the malicious node and the Sybil nodes in most cases.  

 

1.6 Assumptions and Scope 

There are certain assumptions that have been made while formulating the research 

questions, proposing solutions for problems and while setting up and running 

simulations. These assumptions are discussed here: 

i. Not Dependent on Tamper Proof Device 
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This research does not depend on and does not assume Tamper Proof Devices (TPD) or 

Trusted Platform Module (TPM) installed in vehicles. The primary reason for this is to 

keep the research and solutions as wide as possible and also because dependence on 

such hardware raises the cost of the vehicles and also limits the solutions. Moreover, it 

raises some other questions as well such as; what if a vehicle has not one but multiple 

devices connected to radios (thereby claiming multiple identities). 

 
ii. Interference in Communication: 

Interference in Vehicle to Vehicle (V2V) communication and Vehicle to Infrastructure 

(V2I) has been ignored in this research. The reason for this is that this research work 

focuses on the security and privacy aspects of the communication and doesn’t directly 

deal with the channel characteristics.  

 
iii. Bootstrapping Problem: 

The proposed Intrusion Detection System (IDS) has the ability to get up and running 

quickly i.e. it has the ability to load up and start taking decisions quickly. The IDS can 

start taking correct decisions after just a few (seven) communication exchanges with 

other vehicles. This is acceptable as this can be done in as little as 700 ms (0.7 sec).  

 
iv.  Rogue Nodes / Users: 

The rogue node / user in this thesis is assumed to be either a malicious user who has the 

intention to disturb the network by sending out false information or a node with faulty 

sensors. The malicious user sends false information to other nodes in order to paint a 

false picture of the traffic up ahead for various reasons. This could be to indicate 



Chapter 1: Introduction 

11 
 

congestion up ahead so as to cause other vehicles behind it to change route or to claim a 

false identity such as that of an emergency vehicle in order to free up the road for 

themselves. Similarly, a node with faulty sensors can do similar damage without 

knowing and therefore, they are also considered rogue nodes in this thesis. The 

Greenshield’s traffic model applied to VANETs and the averaging of the data received 

from all nodes in the vicinity enables the proposed IDS to be able to detect anomalies. 

Moreover, we are proposing that vehicles do not broadcast a received emergency 

message as is proposed in other works as this raises many problems for the bandwidth 

limited channel.  

Consider as an example a vehicle that tries to send a false ‘Emergency Braking’ 

message to all vehicles behind it in order to cause chaos. Now, this rogue vehicle has to 

be a certain distance away from the targeted vehicles in order for them to fall for it as 

otherwise the vehicles would experience or not experience the braking event 

themselves as well. When the rogue node sends the false emergency message, then 

there can be other vehicles in its vicinity that should have also experienced the 

emergency event and would send similar emergency message. If such an emergency 

message is only coming from one vehicle then it will be suspicious. Also, if the rogue 

vehicle is sending such a false message from quite further up ahead the road then other 

vehicles in between should have experienced the effects of a real braking event and 

their parameter values should have gone down as well. If this is not the case then again 

the emergence message is false.  

 

v. Security of Vehicle Control Systems 
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This thesis does not deal with the security of vehicle control systems i.e. doesn’t 

address the security issues associated with the hacking of autonomous vehicles and is 

out of scope of this thesis. This thesis deals with security and privacy of the users and 

their communications only. 

1.7 Thesis Outline 

The thesis is structured as follows: 

Chapter 2 presents the introduction to VANETs, its applications, the possibilities and 

its architecture. The standards and proposed protocols are discussed in detail. 

Chapter 3 discusses the security and privacy issues in wireless ad hoc networks in 

general and VANETs in particular. It discusses different types of attacks and possible 

precautions. It also discusses the roles and responsibilities of different entities and the 

security and privacy requirements from different perspectives. The current and past 

work done in security and privacy for VANETs is also reviewed. 

Chapter 4 presents the proposed technique to make VANETs resilient against false 

data injection with the help of a data centric scheme. The chapter provides details on 

the applied VANET model and the data aggregation and dissemination techniques 

proposed. The details on the simulation parameters and the result obtained are 

presented and discussed in detail. 

Chapter 5 presents the proposed Intrusion Detection System (IDS) for VANETs. The 

IDS uses statistical techniques to detect rogue node in the network. The IDS is tested 

by simulations under different conditions and parameters and compared to other recent 

works.  
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Chapter 6 presents the proposed framework for creating and managing digital 

identities in VANETs. It uses the Identity Based Encryption technique using the 

proposed digital identity to encrypt the Vehicle to Infrastructure communication (V2I). 

Also, Sybil attacks in VANETs which are linked to the identity management in 

VANETs are discussed and a game theoretic framework for their detection is presented.  

Chapter 7 summarizes the work done in this thesis, gives the conclusion and 

recommends the future work that needs to be done in order to take this work further.  
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2.1 Wireless Ad hoc Networks 
 

 Wireless ad hoc networks have been the subject of research for the last two 

decades now. They are decentralized networks that are connected wirelessly. They have 

been immensely popular both in the industry and military applications because of their 

ease of deployment, robustness, scalability, low cost and data acquisition capabilities. 

They do not require any infrastructure like routers in wired networks. Instead of 

routers, the network functions by allowing nodes to forward data to / for other nodes. 

Therefore, the nodes form a route dynamically based on the availability of the nodes.  

This means that efficient and dynamic routing protocols are very important for wireless 

ad hoc networks. In such a case, flooding can also be used to forward the data but this 

obviously results in congestion in the network. Ad hoc networks often refer to the IEEE 

802.11 mode of wireless networks. Wireless ad hoc networks are limited in their 

capability due to the limited computing, storage and power requirements of the nodes.  
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2.2 Mobile Ad hoc Networks (MANETs) 
 

 Mobile Ad hoc network (MANET) is a type of wireless ad hoc network in 

which the nodes are allowed to move freely and independently in any direction. As all 

the nodes are moving, therefore, the topology of the network changes quickly and 

frequently. Similar to wireless ad hoc networks, MANETs are self-configuring and 

form dynamic links to other nodes to convey information in the network. The nodes can 

communicate with each other via multiple hops. The nodes are usually slow moving 

and have a range of a few meters.  

 

2.3 Vehicular Ad hoc Networks (VANETs) 

Vehicular Ad hoc networks (VANETs) are a type of MANETs in which vehicles 

form a network to communicate with each other via radios and sometimes with the help 

of road side infrastructure. VANETs have the potential to make our roads safer by 

allowing vehicles to communicate with other vehicles on the road and therefore, allow 

them to share any safety related information amongst themselves. Road safety is just 

one aspect of VANETs; there are numerous other applications which have been 

proposed by researchers and some have already started taking shape.  

 Vehicular Ad hoc Networks (VANETs) have received a lot of attention from 

the research community in the last few years primarily because they are being seen as 

not only necessary but imminent. The advancements in sensors and wireless technology 

in the last decade have been remarkable but they have not done much to improve the 

safety of the highways. Moreover, it's both obvious and logical that equipping vehicles 
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with sensors and allowing them to communicate with each other can help in many 

hazardous situations like fog, slippery roads and accidents ahead on highways. 

 It is only a matter of time before vehicular networks become a reality. Recently, 

AT&T and GM have signed a deal to work on connected together. The vehicles will 

have 4G / LTE connectivity providing super-fast telematics services. AT&T believes it 

can be worth one billion dollars in revenue eventually [10]. This will provide the 

enabling technology for the interconnection of vehicles to form VANETs. With this 

imminent arrival of VANETs, it becomes necessary to ensure that the implementation 

of VANET is practical and provides some immediate benefit to all the stakeholders 

namely the users, service providers (i.e. insurance companies etc.) and the authorities.  

 

2.3.1  VANET Applications: 

Many different convenience and commercial applications have been proposed for 

VANETs by researchers in [11], [12], [13] and safety applications proposed by the 

Vehicle Safety Communications Consortium (VSC) of the Department of 

Transportation in [14]. Some of the applications that have been recommended and 

considered for VANETs are: 

i. Safety Applications: Notifications for crashes, hazards on the roads 

(slippery or wet road conditions), traffic violation warning, curve speed 

warning, emergency electronics brake light, pre-crash sensing, co-operative 

forward collision warning etc. 

ii. Convenience Applications: Navigation, Personal routing etc., Congestion 

advice, toll collection, parking availability info etc. 
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iii. Commercial Applications: includes entertainment and information 

exchange applications such as location based services. 

 

2.3.2  Differences between VANETs and MANETs 

VANETs can be classified as a sub class of Mobile ad hoc Networks 

(MANETs) but differ from them in the following ways: 

i. In VANETs, nodes are fast moving and the topology of the network is 

changing very quickly.  

ii. The nodes in VANETs are not constrained in terms of memory or 

processing power i.e. the OBUs have reasonable processing power. 

iii. The nodes are equipped with on board batteries and therefore, are not 

constrained in terms of power. 

 

2.3.3  VANET Architecture 

 The general architecture of a VANET is pretty much accepted as standard and 

consists of Road Side Units (RSUs) as part of the infrastructure, On Board Units 

(OBUs) which reside on the vehicles and a Trusted Authority (TA) which is 

responsible for Authentication. The OBUs are basically processors with reasonable 

amount of memory available. There is no problem of power for the OBU and the 

computing power available in OBU is assumed to be reasonable. The OBU and RSU 

enable the Vehicle to Infrastructure (V2I) or Vehicle to Roadside (V2R) 

communication and Vehicle to Vehicle (V2V) communication as shown in Figure 2-1. 
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2.3.3.1  Road Side Unit (RSU): 

The RSUs are part of the infrastructure that communicate with the vehicles and are able 

to perform many supporting functions like authentication, information dissemination, 

revocation etc. The RSUs are at regular distance apart from each other and cover the 

whole length of the highway. The RSUs are connected to the TAs with the help of high 

speed links such as fibre optic cables. The RSUs have sufficient computing and storing 

capacity and power is also not an issue as they can be powered by solar cells. 

 

2.3.3.2  On Board Unit (OBU): 

The OBUs consist of a processor with reasonable computing power, sufficient memory 

and a radio to communicate with other OBUs and RSUs. Wireless Access in Vehicular 

Environment (WAVE) is based on IEEE 802.11p standard and provides the basic radio 

standard for Dedicated Short Range Communication (DSRC) in VANETs. DSRC is 

explained in detail below. 
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Figure 2-1: VANET Architecture 

 

 

2.3.3.3  Trusted Authority (TA): 

The TA is the central authority that authenticates all vehicles. It keeps a record of all 

vehicles, drivers etc. and issues keys and certificates. There are no power, processing or 

memory limitations with the TA.  
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2.4 Communication Technologies for VANETs 

 There are various wireless communication technologies that are available to be 

used in VANETs. These include Wi-Fi, WiMAX, 3G / 4G mobile technologies and 

Dedicated Short Range Communication (DSRC). We will look at DSRC in detail as it 

is specific to VANETs. 

 

2.4.1   Dedicated Short Range Communication (DSRC) 

Dedicated short range communication refers to two-

way wireless communication channels specifically designed for automotive use based 

on the IEEE 802.11p standard. The 802.11p is the approved amended version of IEEE 

802.11 for providing Wireless Access in Vehicular Environment (WAVE) to support 

Intelligent Transportation Systems (ITS). DSRC was designed specifically for the 

vehicular environment keeping in mind the stringent latency requirements of the safety 

applications. According to [15], DSRC is the only short range wireless technology that 

provides: 

• Fast Network acquisition, low latency, high reliability communication 

link 

• Can work with vehicles travelling at high speeds 

• Prioritizing safety messages 

• Tolerance to multipath interference 

• Better performance in extreme weather conditions 

• Protection of security and privacy 
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The latency requirement of different warning messages and the performance of 

DSRC in comparison with other communication technologies is shown below: 

 

 

Figure 2-2: Latency Comparison of Communication Technologies [15] 
 

DSRC has been allocated 75 MHz in the 5.9 GHz band by the FCC in the US 

and a 30 MHz band has been allocated in the same band in Europe as well as shown in 

Table 2.1.  

 

 

 

 

Table 2.1: DSRC Spectrum Allocation Worldwide 

S/No. Region Frequency (GHz) 

1. North America 5.85 - 5.925 

2. Europe 5.795 - 5.815 

3. Japan 5.770 - 5.850 
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Vehicles use DSRC radios to communicate with each other i.e. vehicle to 

vehicle (V2V) and with the infrastructure i.e. vehicle to infrastructure (V2I) 

communication. The communication range of DSRC is between 300 and 1000 meters. 

The DSRC spectrum is split into 7 channels of 10MHz each as shown in Figure 2-3 

below. 

 

 

 

Figure 2-3: Frequency Allocation in IEEE 802.11p [16] 
 

 

 

2.4.1.2 Wireless Access in Vehicular Environment (WAVE) 

WAVE refers to the complete protocol stack of IEEE 802.11 and IEEE 1609 protocol 

family for vehicular environment as shown in Figure 2-4. A brief description of these 

standards is given below: 

 

IEEE 1609.1 is the resource manager and describes the key components of WAVE 

system architecture and the type of devices supported by OBUs. 
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IEEE 1609.2 provides the security services for applications and management messages 

and defines secure messages formats and the circumstances in which they are used. 

 

IEEE 1609.3 defines network and transport layer services including addressing and 

routing. It also defines Wave Short Messages (WSM) that is an efficient alternative to 

IPv6. 

 

IEEE 1609.4 defines the enhancements to the 802.11 Medium Access Control (MAC) 

and Physical (PHY) layers to support multi-channel wireless communications. 

 

 

 

Figure 2-4: OSI vs WAVE Protocol Stack [17] 
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2.5 VANET Characteristics 

VANETs have some unique characteristics that distinguish them from other wireless 

networks. These include: 

2.5.1   High mobility 
 

The vehicles in VANETs are highly mobile and moving at very high speeds. This 

mobility has serious implications for the working of VANETs. Some of the factors that 

must be taken into consideration due to high mobility are as follows: 

2.5.1.1 Low Latency 
VANETs are dynamic and high speed networks where nodes rely on the information 

being exchanged to make suitable decisions. Due to the inherent nature of VANETs, it 

is necessary that the information being shared is acted upon quickly. Therefore, it is 

essential that processing times / latency is kept in mind in all aspects of planning so that 

it can be kept small so as to be effective in VANETs. The latency requirements in 

VANETs are in milliseconds which only DSRC can provide. 

2.5.1.2 Trust 

In VANETs, vehicles come into contact for short periods of time and these interactions 

are short lived. Therefore, it is important that the data being shared is being received 

from trustworthy nodes. However, trust in VANETs can't be managed in the same way 

as it is done for other networks. The primary reason for this is that it is difficult to have 

an online central authority that keeps and manages the trust scores for all vehicles. 

Moreover, centralized solutions haven’t proved very efficient in other setups either.  
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2.5.1.3 Reliability  
Due to the short latency requirements in VANETs, it is important that the information 

being received is reliable, relevant and actionable.  

 

2.5.2   Communication Range 
The communication range in VANETs can be between 300m to 1000m depending on 

the transmission power selected. This range is quite big as compared to the other 

wireless networks and has some unique advantages and disadvantages associated with 

it that will be addressed in detail in the next chapter. 

 

2.5.3  Storage and Computing Power 
The storage and computing power are both abundant in OBUs in the vehicles. This 

abundance makes it possible to install applications of different types and enables a 

range of services in VANETs. However, these enhanced services also create security 

and privacy issues as each application has to follow a strict set of rules and procedures 

to ensure security and privacy of the user.  
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Chapter 3 : Security and Privacy  
 

There has been a lot of research in the security and privacy of wireless networks 

and many different methods have been proposed. Most of the techniques presented are 

based on Public Key Infrastructure (PKI) i.e. the entity identifies and authenticates 

itself with a Certificate Authority (CA) / Trusted Authority (TA) and obtains keys 

which it uses to encrypt and decrypt messages. 

 

3.1 Cryptographic Techniques 

3.1.1   Symmetric Key Cryptography 

The basic idea behind these algorithms is that there is a common shared secret 

between the sender and the receiver that is used to encrypt and decrypt the data. The 

shared key has to be transferred between the users via a secure channel and has to be 

kept secret from other users as anyone with the secret key is able to decrypt all data.  
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Symmetric key algorithms can be classified into stream ciphers and block 

ciphers. In stream cipher, a byte of data is encrypted at a time whereas in block ciphers 

a block (chunk) of data is encrypted in one go. The Advanced Encryption Standard 

(AES) currently uses 128 bit blocks. 

Some of the popular Symmetric algorithms include Advanced Encryption 

Standard (AES), Rivest Cipher 4 (RC4) and 3DES (Data Encryption Standard or Triple 

DES). AES replaced Data Encryption Standard (DES) in 2001 by National Institute of 

Standards and Technology (NIST) and approved by the National Security Agency 

(NSA) for top secret information. RC4 is a stream cipher that was fast and simple but 

various vulnerabilities lead to its prohibited use. The 3DES is a symmetric key block 

cipher that applies the DES three times to each cipher.  

Symmetric algorithms are much faster than asymmetric algorithms but the 

shared secret keys need to be updated / changed regularly as the whole system is 

compromised if the key is leaked. Symmetric ciphers have in the past been susceptible 

to known-plaintext attacks, chosen plaintext attacks and cryptanalysis. 

 

3.1.2   Asymmetric Key Cryptography 

Asymmetric key cryptography, also referred to as Public key cryptography, uses 

two different keys (public and private keys) to encrypt and decrypt data. The two keys 

are mathematically related and form a pair. The idea is that the public key for each user 

is distributed to all other users with the help of which they can encrypt the data for the 

owner of the key and only the owner can decrypt it using his private key. The private 

key cannot be obtained from the public key. The private key can also be used to 
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digitally sign messages which can be verified with the help of the public key of the user 

by the recipient. The asymmetric key cryptography relies on the difficulty of solving 

the mathematical problems that are inherent in elliptic curves, integer factorization and 

discrete logarithm relationships which are used to setup the shared key between the two 

users.  

As mentioned before, the asymmetric key algorithms are slower than the 

symmetric key algorithms. The idea of asymmetric key cryptography was first 

published by Diffie and Hellman in 1976 [18].  

RSA (Rivest, Shamir and Adleman) key exchange proposed in 1978 in [19] and 

DH (Diffie - Hellman) key exchange mechanisms solved the problem of exchanging 

symmetric keys securely i.e. they do not need a secure channel for the initial exchange 

of secret keys between the two parties. DH provides key distribution and secrecy, 

Digital Signature Algorithm (DSA) provides digital signatures and RSA provides both 

key distribution and secrecy. RSA is typically used in practice primarily because 

Verisign was a spin-off of RSA security which is the largest online Certificate 

Authority (CA). Verisign was acquired by Symantec in 2010.  

 

3.1.3   Elliptic Curve Cryptography 
 

 Elliptic Curve Cryptography (ECC) [20] is another approach to implement PKI 

using the algebraic properties of elliptic curves. The main advantage of ECC, as 

compared to non-ECC schemes, is that it is able to provide the same level of security 

with a smaller key size. ECC algorithms can be used for encryption and digital 

signature generation. 
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Public Key Cryptography is based on the infeasibility of solving certain 

mathematical problems such as factorization of large prime numbers into its large 

prime factors. Similarly, in ECC it is assumed that finding the discrete logarithm of an 

elliptic curve given a publicly known base point is infeasible. This is known as the 

Elliptic Curve Discrete Logarithm Problem (ECDLP) [21].  

 The security of ECC depends on the feasibility of computing a point 

multiplication and the inability to find the multiplicand given the product points and 

original. This Point multiplication is defined as the operation of successively adding a 

point to itself repeatedly on an elliptic curve. E.g. 

 Given a curve A = x3  + cx + d, point multiplication is defined as adding a point 

such as P to itself repeatedly i.e. nP = P + P + P + ……… + P 

    where Q = nP 

 and ECDLP is defined as the infeasibility to find n given Q and P. 

The ECC has the ability to provide same level of security as RSA with a smaller key 

size. This reduces storage and transmission size and is also the main advantage to using 

ECC. 

 

3.1.4   Identity Based Encryption 

 Identity Based Encryption (IBE) was first proposed by Shamir [22] in 1984 

when he showed how a name or any identifier could be used as a public key. However, 

he was not able to give a practical demonstration of this. The first mathematical proof 

and practical demonstration was given by Boneh & Franklin in 2001 using bilinear 
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maps [23]. Cocks, a mathematician in UK at GCHQ, had devised a similar scheme 

around the same time based on quadratic residues but it was kept classified. The 

working of IBE is explained below. 

 There are three entities in an IBE based system namely User1, User2 and a 

trusted third party known as the Private Key Generator (PKG). The PKG sets up the 

system parameters and the master public key but retains the private keys for the 

individual users. User1 (or anyone) can generate a public key for any identifier such as 

a name, telephone number, email id (belonging to User2) etc. using the published 

master key and encrypt the message using this key for User2. User2 can then 

authenticate itself to the PKG and obtain its private key to decrypt the message over a 

secure channel. This mechanism is shown in Figure 2. 

 IBE is a very useful crypto technique that is highly suitable for dynamic 

networks i.e. networks that are changing rapidly. It is also useful for forming dynamic 

coalitions i.e. networks that have to be setup quickly e.g. in an emergency where pre-

distribution of keys is not possible. Other benefits of IBE include ease of use and 

management as public keys are derived from identifiers; there is no need of a public 

key infrastructure or distribution. Also, there is a possibility of sending an encrypted 

message with an expiry timestamp. This enables the sender to define a lifetime of the 

message sent to the recipient. 
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Figure 3-1: Identity Based Encryption (IBE) Working 

 

 There are some drawbacks of IBE as well. First, if the PKG is compromised 

then all messages encrypted over the lifetime of the public / private key pair are also 

compromised. Also, a secure channel is required between the user and the PKG for 

transmitting the private key.  

 

3.2 Security and Privacy in VANETs 
 

 Vehicles are exchanging information with each other so that they are informed 

of the road traffic conditions. In the applications discussed above, the vehicles are 

sharing information in V2V & V2I communications. This information includes their 

position as well as information about road conditions. Furthermore, in VANETS a 

driver may need to take lifesaving decisions based on the information received (e.g. 

emergency brake light, forward collision warning). It is therefore, necessary that the 
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reliability, integrity and most importantly the timeliness of the messages are ensured so 

that action can be taken on the received information in a split second due to the speeds 

involved in case of vehicles. 

 The area of security and privacy in VANETs has received significant attention 

from researchers as it is considered to be the weakest link in the architecture. The 

VANET architecture consists of RSUs as part of the infrastructure and OBUs which 

reside on the vehicles and a Trusted Authority (TA) which is responsible for 

authentication. 

 There are many different convenience and commercial applications that have 

been proposed for VANETs by researchers in [11], [12] and [13] and safety 

applications proposed by the Vehicle Safety Communications Consortium (VSC) of the 

Department of Transportation USA in [14]. Some of the applications that have been 

recommended for VANETs include traffic violation warning, emergency electronics 

brake light, forward collision warning, road conditions, traffic updates, navigation, 

parking availability, vehicle diagnostics and different location based services. 

Authentication and non-repudiation is achieved by digital signatures as 

described in [24], [25], and [26]. Many different schemes have been proposed including 

Public Key Infrastructure (PKI) in [27] , [28] and elliptic curve crypto system (ECC) 

based PKI in [29]. ECC is considered computationally efficient as compared to RSA 

and has a smaller key size [30]. Privacy is achieved by using Pseudonyms (PN) or 

anonymous public and private key pairs to sign messages or by using group signatures 

[31]. In group signatures only one member of a group communicates at a time on 

behalf of the group so the identity of all members of group remains safe. However, 
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group signatures are considered to be quite expensive in terms of computation [26] and 

infeasible for OBU [32]. 

 The PNs or public and private key pairs can only be used once which means the 

OBU has to store them in large numbers. This raises the question of how to replenish 

them in the OBU once they have been used up. Furthermore, revocation is a serious 

issue in using PNs and public / private key pairs e.g. if a vehicle is revoked then all the 

PNs or public and private key pairs have to be revoked [25], [26] and added to a 

Revocation List (RL). Therefore, if a single vehicle is revoked then there might be 

several thousand entries added to the list [33]. This growing RL can cause serious 

problems at the RSU when verifying hundreds or thousands of messages every 300ms 

(as dictated by VSC [14]). 

 

 

3.3 Security and Privacy Requirements in VANETs 

 Security and privacy are serious issues in vehicular communications. A lot of 

research has gone into debating the requirements of security and privacy in VANETs. 

In [32], [25], [34]. [35], [36], [37] and [38] authors have identified various security and 

privacy requirements for VANETs. We further categorize and group the main security 

and privacy requirements and how they are achieved in VANET as shown in Figure 3-2 

and explained below. 
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Figure 3-2: Security and Privacy Requirements in VANETs 
 

 

3.3.1  Reliability: 

 Reliability is achieved through authentication by confirming the identity of the 

user and issuing them keys when they are authenticated. Authentication ensures that 

user is who he says he is and the message has not been tampered while in transit i.e. it 

ensures integrity of messages. Therefore, authentication ensures reliability. This means 

that if a user is authenticated as an emergency services vehicle e.g. ambulance, fire 

brigade, police etc. then they are indeed valid official vehicles and no one else can pose 

as such (an impersonation attack [28], [31]). Similarly, no private vehicle should be 

able to pose as anybody else. Furthermore, the contents of messages being sent out by 

any vehicle on the road can’t be changed without being noticed. 
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3.3.2  Location Privacy: 

 In [32], authors define linkability as the continuous or long term tracking of any 

user in a VANET by monitoring the transmissions or the information being exchanged 

in VANETs. This is undesirable in VANETs and is defined as breach of privacy. 

Nobody wants to be tracked or monitored so that their personal information or 

knowledge of their whereabouts could not be used for the wrong reasons. Therefore, 

preserving the location privacy of users is of fundamental importance in VANETs. This 

implies that the consecutive messages being sent by a user should not be linked to the 

same user. This is defined as unlinkability that helps achieve anonymity as shown in 

Figure 3-2. This means that a user should be able to send multiple messages 

anonymously. This anonymity is usually achieved by using PNs that are changed with 

every message or after some time. The anonymity is conditional rather than absolute 

meaning it can be revoked if the user is involved in a violation. 

 

3.3.3  Non-Repudiation: 

 Non-repudiation means the sender of a message should not be able to deny 

sending it. Non-repudiation leads to traceability i.e. the ability of the authorities to trace 

a user involved in a violation. This traceability usually leads to revocation which means 

de-anonymizing the user and taking some action against the user. The violation may 

invoke revocation if it is a serious violation e.g. a vehicle sends out a malicious 

message to the vehicles on the same highway that there is a traffic jam on the road 

ahead with the intent to clear the road for him [28], [33], [39].   
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3.4 Attacks in VANETs 
 

3.4.1 Sybil Attack 
 

 A Sybil attack is the ability of a single entity to claim multiple false or valid 

identities in a network without being detected. The attacker is then able to control a 

significant part of the network and can perform various malicious activities including 

out voting a valid / legitimate user and injecting false information in the network. Sybil 

attacks in VANETs have been discussed in [40], [41], [42], [43], [41] and [44]. The 

concept of valid identity in a network refers to distinct identities, which mean that one 

entity can be differentiated from the other. However, researchers have argued that it is 

impossible to present convincingly distinct identities for initially unknown elements in 

a distributed computing environment without the presence of a central certification 

authority [45]. Therefore, one approach to preventing such attacks is to have a trusted 

agency that certifies identities. However, having an online trusted authority that is 

accessible everywhere is not an easy task.  

 

3.4.2 False Information Injection Attack 

 In VANETs, once nodes have been authenticated, they can share information 

with other nodes. However, once nodes are allowed to share information and a node 

becomes rogue then there is no quick way to detect or stop this node from injecting 

false information in the network. This kind of attack is the most serious and easiest to 

launch in VANETs and have been discussed in [46], [47], [48], [49] and [8]. In 

VANETs, there are some emergency messages, which are exchanged e.g. emergency 
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braking, traffic light violation etc. that can cause other users to take drastic actions and 

may put lives in danger. Once the information is determined to be false then the sender 

can be penalised but a procedure is needed that allows the receivers to find out if false 

information has indeed been injected in the network and by whom. 

 

3.4.3 Wormhole Attack 

 The wormhole attacks in VANETs have been discussed in [50] and [38]. In 

wormhole attack an attacker records a message that was received at one location, and 

retransmits it to another location. This makes other nodes believe that the original 

sender of the message is within their communication range and they might try to route 

their message through this node which will fail. This attack thus prevents discovery of 

other routes other than the wormhole as the nodes try to select the route with the fewest 

hops. Moreover, this can result in wrong information being shared in VANETs causing 

chaos.  

 

3.4.4 Denial of Service (DoS) Attack 
 

 The DoS attack is considered very serious in any kind of network i.e. wired or 

wireless. However, it can have life threatening consequences in VANETs. DoS attack 

in VANETs are discussed in [51], [52], [53] and [54]. A DoS attack basically makes a 

network unavailable for legitimate users by broadcasting continuously and thus using 

up all the bandwidth. The main aim of the attacker is to consume the network resource 

(bandwidth) so that other users can't access the network services. In VANETs, the 
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attacker can launch such an attack by continuously broadcasting using single or 

multiple radios so that access to the network can be denied in a particular area. As 

bandwidth is already limited in VANETs, such an attack can be devastating as vehicles 

keep themselves aware of their surroundings by exchanging Cooperative Awareness 

Messages (CAM). 

 

3.5 Security and Privacy Preserving Schemes in 
VANETs 
 

 In order to cater for the transmission of location information: confidentiality of 

location of a user (Location Privacy) is essential for VANET security. This location 

information can be used by adversaries in tracking vehicles or routes. Different security 

schemes have been used to protect privacy or achieve anonymity and based on the 

underlying security mechanisms they use, these schemes can be classified as: 

• Pseudonyms coupled with Public Key Infrastructure (PKI) 

• Trust Based schemes 

• Group signatures 

• Identity based signature schemes. 

• K-anonymity schemes. 

There are various issues associated with each of these schemes which we will discuss 

in the next section.  
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3.5.1 Pseudonym coupled with PKI Based Schemes 

 In VANETs, the vehicles are transmitting their location info e.g. to warn other 

users of accidents. Researchers in [24] & [26] propose using pseudonyms to preserve 

privacy. The use of Pseudonyms (PNs) hides the real identity of the user and prevents 

the linking of real-ID of the user with the pseudonyms thereby providing Unlinkability. 

However, Trusted Authority (TA) which issues pseudonyms can reveal the real ID of 

the user if user commits an illegal act hence providing Traceability. 

 In all cases, the On Board Unit (OBU) is assumed to be a tamper-proof device 

which contains the unique Vehicle Identification Number or VIN. This VIN is tied to 

an identity certificate at the time of registration. From here on, the Trusted Authority 

(TA) (e.g., transport authority) is tasked with issuing new blocks of pseudonyms / 

certificates to the vehicles, to be used while communicating with the Road Side Units 

(RSUs). These certificates have a validity period and the vehicle switches its 

pseudonyms to ensure privacy. The authors in [32] suggest that short-term linkability 

should be allowed so that the receiver is able to verify that two or more messages in a 

short time frame have come from the same sender, as this might be required by 

applications. The recommended time after which the pseudonyms are switched also 

varies, e.g., every minute or every few minutes, with every message or every second 

[53]. However, the frequency of PN changes is directly proportional to the computation 

overhead at the RSU, which can slow down packet delivery. Also, the OBU is also 

supposed to store the public keys of all CA (Certificate Authority) / TA. Furthermore, 

different PKI-based techniques that use a CA/TA connected with the RSU have been 

suggested. 
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 The downside of the pseudonym scheme is that the user (OBU) has to have 

hundreds or thousands of these pseudonyms stored on board and they need to be 

refreshed after some time (e.g., once a year). Different papers have explored this and 

proposed different methods of refreshing these, e.g., downloading new pseudonyms 

when the vehicles go in for service (once a year). It is also suggested that the 

pseudonyms are refilled at social spots [26]. In [54], a PN distribution scheme is 

proposed, which incorporates control channels and service channel intervals in 

communication between vehicle and RSU for PN refill. It is important to note that 

pseudonym schemes alone do not support authentication, integrity, and non-

repudiation. Signing protocols have been proposed that provide integrity and 

authentication. In this, a large number of certified public-private key pairs are stored in 

the OBU. Each key pair is used for a short period of time and then discarded. Using 

PKI involves downloading and maintaining public key certificates, which results in 

heavy computational overhead that is not desirable in VANETs as the computing 

power of OBU is limited. 

 Anonymous certificates in PKI-based schemes can guarantee identity privacy 

but cannot guarantee location privacy. This is because an attacker can monitor the 

certificate change by a vehicle between two observation points while moving in the 

same lane with the same speed. Also, the TA/CA has the ability/capability to identify 

the real identity of a vehicle based on its anonymous certificate. In [6], a method has 

been proposed so that multiple authorities are required to de-anonymize a user to 

increase the security. In [55], authors propose that the users change their PNs only at 

predetermined locations (mix zones) where the density of vehicles is high and the speed 

and direction of vehicles changes often. However, the authors conclude that such a 
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technique provides limited privacy due to the inherent lack of randomness in vehicle 

mobility. 

 A major drawback of using PN is maintaining the Certificate Revocation List 

(CRL), which keeps track of revoked certificates of misbehaving vehicles. This list 

then has to be checked to ensure whether a vehicle is revoked or not, which is both 

time- and resource-consuming. Authors in [53] propose a reduction in CRL size by 

limiting the list to regions, i.e., each RTA will maintain its own CRL, thereby reducing 

the size of each CRL. 

3.5.2 Trust Based Schemes 

 Trust based security schemes have been proposed for VANETs by researchers 

in [56] and [57]. Trust based schemes involve attaching a trust score to each vehicle. 

The trust could either be central or self-organizing. Centralized trust means keeping and 

managing a centralized system that keeps a record of these trust scores. Self-organizing 

trust means assigning a score to users based on current or past interactions either 

directly or indirectly. Centralized trust management is problematic as it is difficult to 

maintain the list of all users and provide efficient and quick access to it. Another 

problem with trust schemes is that a new user would have to be given a default trust 

score. Also, once a group of vehicles form a network, it is then difficult to protect 

oneself from an insider. This is because an insider can transmit false information 

messages and emergency messages which will be accepted as it is a trusted node. To 

account for this, data-centric trust schemes have been suggested in [58], where a 

malicious node can be identified based on the data/information being exchanged. In [8], 

a data-centric mechanism is proposed that enables users to aggregate the data and then 
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determine if a rogue is sending false data. The rogue node can then be reported and its 

data is ignored. Data Centric schemes are discussed in detail in the next chapter.  

 VANETs share many characteristics with Mobile Ad-Hoc Networks 

(MANETs). Trust-based routing schemes have been proposed for MANETs and the 

same idea of trust has also been applied to VANETs in [59], [57], [56]. However, apart 

from a lot of similarities between them, e.g., decentralized system, mobility, and 

openness, VANETs are different as they consist of a much larger number of nodes and 

their topology changes quickly as vehicles move fast [60]. Therefore, forming a 

network based on the trustworthiness of vehicles is quite challenging. In MANETs, the 

focus is on reliable packet delivery, whereas in VANETs the aim is to increase road 

safety and, therefore, the decision-making process has to be very fast due to the high 

speeds and limited time involved. 

 In [61], authors propose trust establishment through infrastructure or in a self-

organizing manner. The former means to use a central authority or security 

infrastructure and the latter involves developing a trust score dynamically. In 

infrastructure-based trust establishment, there has to be a centralized authority, but it is 

very difficult to do that quickly in VANETs due to the size and time restrictions. In 

self-organizing trust establishment, the trust is based on the direct (self-interaction), 

indirect (receiving interaction information from other nodes), and hybrid approaches 

(combination of the two) as shown in Figure 3-3.   
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Figure 3-3: Classification of trust establishment approaches 

 

3.5.3 Group Signatures 

For VANETs, researchers have proposed grouping of vehicles travelling at the 

same speed and in the same direction. This allows group members to anonymously 

issue messages and signing them with the group signature on behalf of the group. This 

also allows extended silent periods for vehicles as only one vehicle in the network 

transmits at a time. By combining the vehicles into groups the authors proposed that a 

vehicle can reduce its V2I transmission which enhances the anonymity of vehicles. 

Group signatures allow distribution of a group public key associated with multiple 

group private keys. Therefore, an attacker will be able to detect that a message has been 

sent by a particular group but it won't be able to identify which vehicle sent the 

message [61].  

 In [32] a scheme based on group signatures and short lived keys is presented 

called temporary Anonymous Certified Keys (TACS) as an efficient way to fulfil the 

privacy & safety requirements. The scheme suggests a long term group key stored in 

the OBU provided by a Managing Authority which the OBU uses anonymously to 
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prove to the RA that it is a valid OBU and get short term certified key which is only 

valid in that RA’s region. As soon as the OBU moves into a new region, it has to 

update its TACK by getting a new short lived certified key from the new RA. This 

ensures that OBUs update their keys after entering a new region. This ensures short-

term linkability and Traceability in the long run as the Managing Authority can be 

queried by the RA for the real identity of the vehicle. 

 Group signatures provide a high level of privacy but revocation becomes a 

serious problem when the size of the group increases, thereby raising scalability issues. 

Furthermore, they can be computationally more expensive [62]. 

3.5.4 Identity Based Encryption Using Pseudonyms  

 Identity-based encryption (IBE) was first proposed in [22]. Identity-based 

cryptography allows the public key of an entity to be derived from its public identity 

information such as name, email address, or VIN, etc. Anybody who wants to send a 

message to a user can use the recipient’s identity to get their public key and encrypt the 

message using this key, which can only be decrypted by the private key of the intended 

recipient. A private key generator (PKG) is used to generate and distribute private keys 

for users (through a secure channel) and also to distribute the public key. IBE is highly 

suited to a dynamic ad hoc network like VANETs, as it allows nodes that have not met 

before to start communicating with each other quickly and safely. 

 The authors in [6], [63], [64] have used the idea of IBE in VANETs. The 

proposed architecture in [64] consists of four entities, two TAs which are trace 

authority (TRA), a PKG, an RSU at the roadside and mobile OBUs on vehicles. 

Privacy in IBE schemes is achieved by using pseudonyms that the user can request 
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from the TRA. The TRA is responsible for registration of RSUs and OBUs, and can 

reveal the actual identity of the signing OBU. The PKG is responsible for generating 

and assigning private keys for OBUs and RSUs. Self-generating pseudonyms (PNs) are 

suggested for privacy preservation. For authentication, a pool of PNs is preloaded into a 

vehicle for different regional trusted authorities (RTAs). Users from different regions 

can authenticate each other via RTAs. RTAs are responsible for generating 

cryptographic key materials for the RSUs and the vehicles in the region and deliver 

them over secure channels. The users use their self-generated pseudonyms as identifiers 

instead of real-world identities. Similarly, the idea of IBE is used in [63] to improve the 

performance and reduce the processing time of RSU when it is verifying signatures for 

a large number of users. 

 Identity-based cryptography seems to be a good candidate for security and 

privacy in VANETs but has its own limitation and challenges, especially with 

revocation, which is still a major problem and is open for research. Secure channels for 

secret key distribution and heavy computation costs are other factors to consider. 

However, IBE is suited to a dynamic network such as VANET as there is no need for 

distribution and storage of certificates / keys to the users. Moreover, the master key can 

be changed regularly to keep revocations in check.  

 

 
 

3.5.5 k-Anonymity Schemes 
 

 K-anonymity is a property of some anonymized data such that the individuals to 

whom the data belongs can't be identified. Researchers have proposed k-anonymity 
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schemes for VANETs. In [65], a k-anonymity scheme has been proposed where k 

vehicles in a region are assigned the same PN for communicating with the RSU. This 

ensures that an attacker cannot associate a message with a specific vehicle. An attacker 

can only detect that a group of nodes are receiving the messages but cannot determine 

which one in particular. The source and destination anonymity cannot be guaranteed as 

VANETs are inherently changing all the time, therefore, it is difficult to identify the 

source and destination. In k-anonymity schemes, when a message has to be delivered to 

a vehicle, the region is flooded with the message to ensure that it reaches the 

destination vehicle.  

 K-anonymity schemes provide privacy preservation but in a multi-hop scheme 

(VANETs) there is a clear problem of the scarce bandwidth resource utilization. The 

network might be flooded by the same message, causing congestion which is highly 

undesirable in VANETs. 

 

 

3.6 Performance Comparison  
 

 In order to compare the performance of different schemes discussed in this 

thesis, it is necessary to have complete details of the algorithms proposed for all the 

schemes. One parameter that can be used to judge the performance of networks is 

communication overhead, but in order to calculate this, it is necessary to know the 

exact type and size of data that the OBU will be handling. This can only be obtained 

after finalizing the type of applications that will be deployed in VANETs. Similarly, 

bandwidth utilization is another important parameter that has to be taken into account, 
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but it is difficult to calculate it as the type of data and applications in VANETs have not 

been finalized. Therefore, we have compared the major performance characteristics of 

the discussed schemes by defining or modifying some parameters in Table 3.1 and we 

have discussed the major features and disadvantages of each scheme in Table 3.2. For 

comparison of the schemes discussed, we have used the rating system of HIGH, MED, 

and LOW in Table 3.1. The performance metrics used in Table 3.1 are described 

below: 

 

 

3.6.1 Scalability  

 Scalability is a well-defined performance metric for network protocols and 

architectures and it means how well a system can cope with the expansion of the 

network while maintaining the performance standards. A LOW in this category means 

that the scheme is not suitable for a network in which the number of nodes can grow 

beyond a small number. A MED in this category means that the scheme can work well 

for a limited number of nodes but it should not exceed that limit. A HIGH means that 

the scheme is highly scalable and can work well for a very large number of nodes. 

 

3.6.2 Computing cost 
   

 The computing cost i.e. the cost of running the protocol on the CPU has been 

chosen as a metric because it is always in demand and usually it is always less than 

what is desired. Furthermore, experience has shown that the appetite of programs and 
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data eats up the computing power available very quickly. We have considered the 

computing cost in the CPU at both the RSU and OBU. This metric is especially 

important at the OBU end where we can have reasonable, but never excessive, 

computing power. A LOW here means that the computing resources (CPU) required 

are much less than available. HIGH means that computing resources available might 

fall short of what is required. Similarly, MED means that the computation resources are 

sufficient. 

 

 

3.6.3 Privacy 
  

 This is the fundamental requirement of all schemes studied and has been rated 

according to the merits and demerits of each when viewed in its entirety, e.g., in the 

case of pseudonym cum PKI schemes, the privacy has been rated as MED as the PNs 

changing and their maintenance poses a serious challenge for the successful 

deployment in VANETs. HIGH means strong, MED means acceptable but risky, and 

LOW means unacceptable or no level of privacy. 

 

3.6.4 Latency 
 This is another well-known parameter for networks that means delays which are 

experienced in a network due to any reason. A network with LOW latency is 

considered to be fast and vice versa. 
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3.6.5 Cost of deployment 
 This parameter indicates whether the infrastructure requirements make it easy to 

deploy in the practical world or not. A scheme with HIGH cost of deployment is high-

cost and difficult to deploy, i.e., with many additions/changes to the existing network 

making it impractical. A scheme which gets a LOW in this metric will be low-cost to 

deploy and will require a few changes to the existing network to make it feasible. The 

high cost is due to the deployment of infrastructure such as RSUs which will add 

significant cost to the overall deployment.  
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Table 3.1: Comparison Based on Performance Metrics 

 

S/No. Scheme Scalability Computing Cost Privacy Latency Deployment Cost 

RSU OBU     

1. Pseudonym cum PKI HIGH HIGH HIGH MED MED HIGH 

2. Group Signatures LOW  MED HIGH HIGH HIGH HIGH 

3. Trust Based Schemes LOW HIGH HIGH LOW  HIGH HIGH 

4. K-anonymity LOW MED HIGH HIGH HIGH MED 

5. IBE with Pseudonyms HIGH MED HIGH HIGH HIGH HIGH 
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Table 3.2: Qualitative Comparison of Security and Privacy Schemes in VANETs 

S. No. Schemes Features Disadvantages 
1 Pseudonym 

cum PKI [24] & 
[26] 

(a) User privacy is achieved by using 
pseudonym coupled with PKI; 
(b) Certificates (public, private key pairs) 
are downloaded from trusted authority; 
(c) Pseudonyms are changed continuously 
for preserving privacy. 

 

(a) Thousands of certificates to be downloaded to OBU; (b) 
Certificates need to be replenished periodically; (c) CRL has to be 
maintained and it keeps on changing and is time- and resource-
hungry; (d) The CA can link pseudonyms with vehicles, and 
therefore have to be secure. 

2 Group 
Signatures [32], 
[61]. 

(a) Privacy achieved by forming groups; 
(b) Reduced transmission by ways of 
periodic broadcasts by a single member of 
group. 

(a) TA can reveal the real identity of user  
(b) CRL has to be maintained and checked and it increases with the 
size of the group. 

3 Trust Based 
Schemes [56] & 
[57] 

Information accepted based on trust.  
Trust established based on previous record 
in a centralized authority or based on 
current and previous interactions with the 
user in the same session. 

(a) No initial trust information available as centralized system 
would be too slow/too huge; (b) Protection against inside attackers 
is difficult; (c) Trust score has to be maintained and checked. 

4 K-Anonymity 
Schemes [65] 

(a) Messages are disseminated by ways of 
flooding it to neighbours; (b) Ensures 
privacy as long as size of group is adequate. 

Flooding is used to disseminate messages which if not effective, 
can overwhelm the network and eat up bandwidth for the same 
message. Efficient and practical algorithm missing. 

4 Identity Based 
Encryption 
(IBE) With 
Pseudonyms [6], 
[63], [64] 

(a) User’s public key is derived from his 
public identification such as VIN, etc., 
which eliminates the need for public key 
distribution (b) No need for certificate 
downloads and storage in OBUs (c) 
Additional information such as a time stamp 
can also be added. 

(a) Secure channel needed for private key distribution; (b) PKG 
has to be highly secure; (c) TRA can reveal the real identity of 
the user, therefore must be secure; (d) Revocation is still an open 
problem. 
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3.7 Intrusion Detection System (IDS) 
 

 An intrusion can be defined as an unauthorized activity or access in the 

network. Intrusion Detection System (IDS) can be described as hardware or 

software that detects intrusions into the network. The IDS differs from firewalls in 

that firewalls look outward i.e. try to block attackers from outside whereas IDS 

protects the network from both insiders and outsiders. IDS work by examining 

network traffic and data being exchanged and raise an alarm for any suspected 

intrusion. It means that there have to be well defined policies and procedures so 

that their violation can be flagged as an intrusion. IDS have been proposed for 

MANETs in [66], [67], [68] and for VANETs in [69], [70].  

 Intrusion detection is the most reliable approach to protect vehicular 

networks against threats as it has the ability to detect insider and external attacks 

with a high accuracy [71]. Some research has been done in the area of IDS / IPS 

for Mobile Ad-hoc Networks (MANETs) and VANETs in [72] and [73]. In [74], 

the authors propose an acknowledgement scheme to prevent packet dropping and 

false misbehaviour report generation by nodes for MANETs to report or convict a 

rogue node. In [75], the authors propose a watchdog for intrusion detection in 

VANETs. The watchdog works by monitoring all packets to decide if an attack is 

under progress. In [76], trust and position information is combined to determine if 

a vehicle is falsifying its position i.e. if the position claimed by one vehicle 

overlaps the position claimed by another in which case the vehicle with low trust 

value is flagged as an intruder. In [69], a method is proposed to detect intrusions 

through trust by assigning reputation scores to vehicles and the RSUs are used to 
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compute these scores and the CA aggregates them. Similarly, in [72], rule based 

anomaly detection and reputation scores are used for the IDS in vehicular 

network. In [77], [78], intrusion prediction approaches have been discussed. 

Depending on the type of detection mechanism used in IDS or where they 

are deployed they can be divided into the following three types: 

 

3.7.1 Types of IDS based on Detection Mechanism 

3.7.1.1 Signature Based IDS 
The IDS that use this detection mechanism have a database of signatures that are 

used to compare the network traffic against so as to check for known threats and 

malicious activities. However, a new attack or intrusion will not be detected as 

there will be no known signature to compare against and therefore, will go 

undetected. The benefits of signature based IDS include: 

• They can identify known attacks very quickly 

• They don’t generate many false alarms as they are programmed to detect 

known attacks. 

The signature based IDS have the following limitations: 

• They require updated signature libraries. 

3.7.1.2 Anomaly Based IDS 
In anomaly based IDS the traffic patterns are compared against a threshold or 

baseline and anything above the threshold is categorized as an anomaly and is 

flagged as such. The threshold can be set based on the type of traffic and ports on 



Chapter 3: Security and Privacy 

54 
 

which such traffic is being generated. The threshold policies have to set carefully 

or a lot of benign activities (false positives) can be classified as anomalies which 

then have to be dealt with by the security administrators. The benefits of anomaly 

detectors are as follows: 

• They don’t need to rely on predefined attack signature files to 

identify attacks. 

• They can help identify patterns which can then become signatures for 

misuse detectors. 

The limitations of the anomaly detectors are as follows: 

• They require more experienced systems administrators because the 

detector can only point out abnormalities. 

• They may produce a lot of false positives / alarms. 

• They require more human intervention. 

 
3.7.1.3 Hybrid IDS: 
A Hybrid IDS uses the combination of both signatures and anomalies to detect 

intrusion in the network. This combination of both mechanisms will result in 

better performance for intrusion detection. 

 

3.7.2 Types of IDS based on Position of Deployment 

3.7.2.1 Network Intrusion Detection System (NIDS) 
 A NIDS is deployed at a central and strategic position or positions in the 

network to monitor all traffic in and out of the network. This enables the NIDS to 



Chapter 3: Security and Privacy 

55 
 

look at the traffic and highlight anomalies and raise alerts so that they can be dealt 

with by the security engineers. NIDS can do the following: 

• Improve Overall Security: 

• Protect Multiple Systems: 

• Raise Alert for Incoming Attacks: 

• Take Corrective Measures: by changing the configuration of a firewall 

for example. 

The NIDS has the following limitations: 

• Processing Speed: if overwhelmed then their performance can 

deteriorate 

• Encryption: NIDS generally don’t decrypt packets therefore, attacks that 

are encrypted tend to go undetected by NIDS. 

• False Positives: NIDS only reports what it is programmed to report and 

will generate false positives and true negatives. 

Some examples of NIDS are: 

1. Snort is a free open source NIDS. 

2. NetProwler is a commercial NIDS available from Symantec. 

 

3.7.2.2 Host Based Intrusion Detection System (HIDS) 
 HIDS is deployed at each host or node that needs to be protected and it 

monitors all traffic in and out from it. It monitors the changes to key files or 

directories and reports any unusual or suspicious activity to the administrator. The 

host based IDS is more suitable for distributed networks where the nodes have 
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sufficient computing power and storage capabilities.  HIDS is installed on 

individual computers to protect those systems. HIDS typically utilize OS audit 

trails and system logs. Also, HIDS can check the integrity of system files to 

ensure that they are not tampered with. Some benefits of HIDS are: 

• They are better than NIDS at monitoring and securing systems. 

• They are not helpless against encryption as they can read transmitted 

packets before they are encrypted and received packets after they are 

decrypted. 

• They can detect file modifications and Trojans etc. 

One of the main concerns for HIDS is that they use up the host resources. 

 

3.7.3 Response Types 
The IDS can generate a response to an attack once it has been identified. This 

response can be either Active or Passive. 

3.7.3.1  Active Response 

The active response is something that is automatic and might be something as 

generating an alert, creating logs, increasing data collection or reconfiguring the 

firewall or other devices. On the other hand the active response might also include 

automatic counter-attacks to bring down the attacker’s system, network or find out 

more about the attacker. 

3.7.3.2  Passive Response 
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This method means putting everything in the hands of the administrator by issuing 

an alert in the form of an email or a message to tell them that an attack might be in 

progress. The administrator can then determine the best course of action. 

 

3.7.4 Evasion Methods for IDS 
Obfuscation: This is a technique used by intruders where they manipulate the 

data so that signatures do not match and avoid detection due to it. 

Fragmentation: Using this technique an attack is broken down into multiple 

attacks to avoid detection by staying invisible to anomaly detection systems. 
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Chapter 4 : Data Centric Rogue Node 
Detection 
 

 

4.1 Introduction 
 

In VANETs vehicles communicate by different types of beacon messages 

to inform each other of their position and speed to give them a sense of traffic 

around them. Vehicles can also send emergency messages in case of accidents or 

other hazards. The very fast moving nodes have to act quickly based on these 

emergency messages. However, a rogue node which sends false emergency 

messages can wreak havoc in the network that may even result in fatalities. In this 

chapter we present and simulate a technique to detect a rogue node that is sending 

false emergency messages in VANETs by cooperative exchange of data without 

the need of any infrastructure or revocation list. Also, the proposed mechanism 

will make VANETs fault tolerant and resilient against injection of false data. 
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The vehicles exchange messages with each other periodically called 

beacon messages and can also send emergency messages. As nodes in VANETs 

are vehicles moving at very high speeds, it is imperative that messages received 

are correct and give a true picture of the road conditions. 

Existing mechanism for authenticating messages in VANETs involves the 

use of cryptography and trust. Cryptographic techniques involve paired keys and 

overhead in terms of computing cost, storage and time. Time is of the essence in 

VANETs especially in case of emergency messages when critical decisions have 

to be taken quickly. Even if emergency messages are kept unencrypted for faster 

processing, a false emergency message can cause severe damage. Emergency 

messages include emergency braking, accident, black ice on road and sudden lane 

changes. These messages are to be transmitted automatically to the vehicles 

behind so that effective safety measures can be taken. The emergency messages 

for cases like accidents or emergency braking are time critical and require 

immediate action and therefore, it is recommended to transmit these unencrypted. 

However, a false emergency message can cause severe problems on the 

highways and can even result in fatalities. The condition is exacerbated when an 

emergency message is broadcast to be relayed by vehicles to others behind them 

in a multi hop fashion to convey the information as far back as possible. This 

raises the problem of broadcast storm in an already bandwidth limited channel 

when density of vehicles is high. Also, questions such as how far the emergency 

message should travel and when should vehicles stop transmitting it has been the 

focus of discussion for many years now. Furthermore, if messages are being 
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relayed then the messages could be tampered with and would be impossible to 

detect.  

A lot of research has been done in the past to secure VANETs by 

encrypting messages with the help of paired keys. The vehicles authenticate 

themselves with the TA and then RSU and obtain keys or certificates that they can 

use within the region of the RSU to exchange messages with other vehicles. Other 

vehicles do the same and therefore, whoever has obtained valid keys / certificates 

after authentication is assumed to be a trusted user and its messages are assumed 

to be correct as long as the credentials are valid. However, if a valid user turns 

rogue or transmits false data due to a faulty sensor then he cannot be stopped and 

this can result in serious damage. Therefore, there is a need for developing 

security mechanisms for VANETs that are data centric rather than identity centric. 

 

4.2 Greenshields’s Traffic Model 

 Greenshields’s model [79] is considered to be a reasonable model in traffic 

engineering for estimating and modelling traffic when it is uninterrupted (without 

traffic signals etc.). Greenshields’s model uses standard parameters such as flow 

(vehicles per hour) and density (vehicles per km). The model describes the 

relationship between speed (v) and density (k) of vehicles as being negatively 

correlated with density increasing with the decrease in speed as shown in Figure 

4-1c. In the figure km and vm are the optimal density and speed respectively which 

allows the traffic to progress at the optimum rate of flow - qm as shown in Figure 

4-1 (a), (b) & (c).  
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Speed (v) is the speed of the vehicles in km / hr and density (k) is the number of 

vehicles per km. The relationship between v and k is expressed in the form of a 

graph in Figure 4-1. In the figure vf is the free flow speed when density is zero i.e. 

vehicles can choose to move freely as there are no or very few vehicles on the 

road. As the density of vehicles increases the speed decreases till density reaches 

the maximum which is referred to as jam density or kj at which point the speed 

becomes zero and vehicles are stuck in a jam. From Fig. 4.1 the relationship 

between speed and density is given as: 

     𝑣𝑣 =  𝑣𝑣𝑓𝑓 −  
𝑘𝑘
𝑘𝑘𝑗𝑗
𝑣𝑣𝑓𝑓 (4.1) 

The relationship between speed, density and flow is as follows: 

Flow (q) is defined as the number of vehicles going through a section per hour 

and is given as: 

 𝑞𝑞 = 𝑘𝑘 × 𝑣𝑣 (4.2) 

 

From eqs. 4.1 & 4.2 the relationship between speed and density can be found to 

be: 

 
𝑞𝑞 =  𝑣𝑣𝑓𝑓𝑘𝑘 −  

𝑘𝑘2

𝑘𝑘𝑗𝑗
𝑣𝑣𝑓𝑓 (4.3) 

The relationship between the three parameters i.e. speeds, density and flow is 

given in Figure 4-1a, b & c below: 
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a)  

b)  

c)  

Figure 4-1: Greenshields’s Fundamental Diagrams: (a) Flow vs Density, (b) 
Speed vs Density, (c) Speed vs Flow 
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4.2.1 Explanation of the Greenshields’s Fundamental 
Diagrams: 
 

Figure 4-1 (a, b & c) represent the Greenshields’s fundamental diagrams. Fig. 4.1a 

shows the relationship between Flow and Density when the average speed of 

vehicles starts increasing where the speed is zero at the origin. The average speed 

increases until it reaches the optimum speed vm at which point the flow and 

density are also at their optimum levels i.e. qm and km respectively. After this 

peak, if the average speed of vehicles increases any further then it will result in an 

increase in the density but a decrease in the flow of the vehicles.  

Figure 4-1b shows the linear relationship between the speed and density of 

vehicles. The vehicles can move with free flow speed vf when the density of 

vehicles is near zero. However, the average speed of vehicles decreases when the 

density of vehicles increases and reduces to zero when the density of vehicles 

reaches jam density kj.  

Figure 4-1c shows the relationship between the average speed and flow of 

vehicles with varying density of vehicles. As the density increases from zero, the 

graph moves from vf  to the origin at which point the Flow and average speed 

become zero and the density reaches the maximum i.e. jam density kj. 

 

 

.  
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4.3 Scheme Overview 
 

 We present a scheme, Cooperative Detection And Correction (C-DAC), in 

which all vehicles calculate their own values of flow. Vehicles send their speed, 

flow, density and location information to other vehicles and each vehicle can 

calculate their own value of flow which gives them a very good model of the 

traffic in their vicinity and up ahead as well. Each vehicle can predict the density 

of vehicles on the highway by the number of messages it receives from other 

vehicles by checking their IDs from messages. This enables each vehicle to 

calculate the density quite accurately in a moving window around itself as shown 

in Figure 4-2. The size of this density window is equal to the transmission and 

reception range of a vehicle (500 meters). This means that a vehicle can receive 

messages from a vehicle which is up to 500m ahead of it and 500m behind it. 

Therefore, each vehicle has a communication window of 1000m around it that it 

can use to calculate the density (Densitycalc). Also, each vehicle can calculate the 

average speed of vehicles (SpeedAVG) within its communication window. In C-

DAC scheme each vehicle transmits not only its location and speed but the 

calculated value of flow as well. Therefore, the vehicles calculate the traffic flow 

parameter using density and average speed of other vehicles through 

Greenshields’s model. The flow serves as a global parameter which each vehicle 

calculates on its own and should be very similar for vehicles that are close to each 

other in the same traffic conditions. 

The idea is that in case of an actual emergency situation, a vehicle will 

generate a message that has a very small value of flow that indicates that the flow 
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of vehicles on that stretch of road has suddenly reduced. This will be confirmed 

by other vehicles as well which calculate a similar small value of flow on their 

own and generate messages.  

 

 

Figure 4-2: Estimating density of vehicles in VANETs 

 

 

However, if a node generates a false message indicating a small value of flow 

either with malicious intent or due to some fault then it would be the only vehicle 

that generates such a value and can be singled out. The vehicle’s speed has been 

used by some researchers [80] to estimate density but it does not give good results 

as the assumption is that given the opportunity the vehicle will try to achieve the 

maximum speed possible which is not true in real life. 
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Figure 4-3: Varying value of flow in an Accident scenario 
 

Each vehicle transmits its FlowOWN which becomes FlowRcvd for other vehicles. If a 

vehicle receives a value of Flow from another vehicle that does not agree with the 

VANET model then the data is rejected and vehicles’ ID is noted and reported. If 

the data agrees with the model then the receiving node checks the data with its 

own calculated values to confirm if values are indeed correct (shown in Figure 

4-4). If the values do not agree with the node’s own calculated parameters of 

Flow, Speed and density then the values are discarded and the sender ID is 

reported. The two values of flow are calculated as follows: 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶       (4.4) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

𝑛𝑛

𝑛𝑛

𝑖𝑖=1
           (4.5) 

 

However, in case of an actual accident the low value should be reported by all 

vehicles and it should propagate throughout the highway efficiently and gradually 

as shown in Figure 4-3. Moreover, in case of actual accident the speed of the 

vehicle that is receiving the messages will come down as well as it can detect 

obstacles with the help of on-board radar etc.  Therefore, the main assumption is 
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that the vehicle will be able to trust its own calculated values even if it can’t trust 

anyone else. As, vehicle’s own speed comes down then from eq. (4-4) the FlowOWN 

should come down as well which is then sent to other vehicles. If the received 

data doesn’t conform to the VANET model, own calculated values or both then 

the data will be discarded and the node will be reported.  

 

Conformance to VANET model and producing an attack: 

Conformance to the VANET model means that the parameters of the 

traffic that the vehicle exchanges with other vehicles have to follow the model, if 

a vehicle is conforming to the model then it can’t produce an attack. Conversely, 

it can be said that if a vehicle is producing an attack then it is non-conformant to 

the VANET model. If a conformant vehicle sends out a false emergency braking 

message then it will be contradicting itself. Moreover, if a vehicle sends out an 

emergency message then other vehicles in that region should also experience the 

same event and send out a similar emergency message. If this is not the case then 

the single emergency message can be easily classified as false. The flow chart for 

our scheme C-DAC is shown in Figure 4-4. 
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Figure 4-4: Overview of Cooperative Detection and Correction scheme (C-
DAC) 

 

4.3.1  Rogue Node Model 
 

 A node is termed as rogue if it starts to inject false data in the network 

either on purpose with malicious intent or due to faulty sensors. Moreover, the 

rogue node can start sending false data at any time and can falsify values of their 

own speed and their calculated values of flow and density either in beacon 

message or emergency message. However, a rogue node can’t modify values of 

other nodes in the network. In case of a false emergency message the rogue node 



Chapter 4: Data Centric Rogue Node Detection 

69 
 

will start sending a low value of Flow or sudden decrease in speed or both to 

indicate an accident or emergency braking. 

 

4.3.2 Data Centric Rogue Node Detection 

 The honest nodes can decide whether a value being shared is correct or not 

by using a decision table shown in Figure 4-5 which is shown as an example and 

is directly derived from the Greenshields’s model as shown in Figure 4-1c. This 

means that if the density of the vehicles on the highway and the flow is constant 

then the speed of vehicles must also be constant. Similarly, if the density 

decreases and the flow increases then the speed must be increasing. Moreover, if 

the density is increasing and the flow is decreasing then the speed must be 

decreasing.  

As in the case of our simulation if the value of Flow being reported by a 

node is decreasing but the speed and density reported from that node remain 

constant then the value being reported is false. Similarly, another case could be 

when a node reports a decreasing value of flow and increasing value of density 

but the average speed remains constant in that region then again this implies that 

the data being reported is false and can be discarded. 
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Figure 4-5: Decision for Data Correctness 

 

The results show that by using our technique, messages can be 

authenticated based on the relevance and freshness of data without authenticating 

the identity of nodes. Such nodes can then be reported or their messages be simply 

discarded. Also, the information about an accident can be propagated down the 

highway gradually and gracefully so that the traffic keeps flowing as long as it can 

and comes to stop gradually. 

 

4.4 Simulation Setup  
 

In order to check the proposed model it is simulated using OMNET++, 

SUMO [81] and VACaMobil [82]. OMNET is a modular C++ library and 

framework that is used for network simulations. Simulation of Urban Mobility 
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(SUMO) is a software tool used to generate vehicular traffic by specifying speed, 

types, behaviour of vehicles and road types and conditions. VACaMobil is a car 

mobility manager for OMNET that works in parallel with SUMO. The scenario is 

simulated with parameters shown in Table 2. In order to validate the model, an 

accident is simulated which takes place at t=180 sec and the results are recorded. 

Nodes 0, 1, 2, 3, 4 suffer an accident and block all three lanes of the highway. The 

result for SpeedAVG, DensityAVG and FlowAVG are shown in Figure 4-6, Figure 4-7 

and Figure 4-8 respectively.  

Another scenario is simulated when there are three rogue nodes which 

start sending low false values of FlowOWN from t=180 sec, incorrectly indicating an 

accident up ahead. The time t=180 sec is chosen in the simulation so that there are 

sufficient vehicles in the simulation and the supposed accident is caused at nearly 

the end of the highway in the simulation. The results for this scenario (where 

every 10th node is a rogue node) for Densitycalc and SpeedAVG are shown in Figure 

4-12 & Figure 4-13 respectively whereas the FlowAVG values for 6 vehicles (out of 

which 2 are rogue) are shown in Figure 4-14. This means that we are looking at 

the flow values for a total of 6 vehicles at a time in order to understand the effect 

of the false information in the immediate vicinity of the rogue nodes.  
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Simulation Parameter Value 
Simulation Time  500 sec 
Scenario  3 Lane Highway 
Highway Length  5-Kms 
Max Vehicle Speed  28 m/sec or 100 Km/hr 
Mobility Tool  VACaMobil 
Network Simulation Package  OMNET++ 
Vehicular Traffic Generation Tool  SUMO 
Vehicle Density  20-30 veh / Km 
Wireless Protocol  802.11p 
Vehicle Inter-Arrival rate 1s, 2s and 3s 
Transmission Rate Every 0.2s, 0.5s and 1s 
Transmission Range  500m in each direction 

Table 4.1: Simulation Parameters 

 

The scenario is simulated with parameters shown in Table 4.1. In order to gather 

data for anomaly detection we use different scenarios.  The data is gathered when 

there is no accident and no rogue nodes to understand and develop the model 

under normal circumstances. Data is also collected for runs in case of an actual 

accident to understand how parameters will change. Furthermore, rogue nodes are 

inserted in both cases i.e. in case of normal conditions (no-accident) and in case of 

an actual accident to see how well our IDS works. The simulations are carried out 

with varying values of the following parameters: 

1) Density: The density of nodes is an important parameter for ad-hoc networks 

and especially for VANETs. As the channel bandwidth is limited, it is essential to 

keep it under consideration and observe its effects on any system. In this work, we 

vary the density of vehicles by changing their inter-arrival time i.e. the time that 

they are inserted in the simulation. We use OMNET’s exponential inter-arrival 

distribution with a time of 1, 2 and 3 seconds. 
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2) Beaconing Rate or Sampling Rate: This is the beaconing time period after 

which each vehicle is transmitting its parameters to other vehicles. We have used 

variable time periods to observe the effects of this on VANETs in general and the 

proposed IDS in particular. We have used time periods of 0.2, 0.5 and 1 seconds. 

It is worth mentioning that the recommended beaconing rate in IEEE 809.11p is a 

100 milliseconds (0.1 sec). The minimum time period of 0.2 seconds was chosen 

as the generated data set was becoming too large and data processing was 

becoming a problem. 

3) Number of Rogue Nodes: The number of rogue nodes is varied to evaluate the 

performance of the proposed scheme and the IDS in these circumstances. The 

number of rogue nodes is increased from 0 to 40% of the total number of vehicles 

in the simulation.  

 

4.5 Results 

4.5.1 Actual Accident Scenario - No Rogue Nodes 
 

 The results for the actual accident scenario when there are no rogue nodes 

are shown in Figure 4-6, Figure 4-7 and Figure 4-8. These results are shown for a 

vehicle to show how the parameters change in an actual accident scenario. It can 

be seen from Figure 4-7 that the accident is causing the number of vehicles 

(density) to build up after the accident. Similarly, the flow value that each vehicle 

is computing is decreasing immediately after the accident (Figure 4-8). Also, as 

the vehicles come to a stop their speeds decrease quite abruptly (Figure 4-6). This 
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result gives a true - real VANET model against which received values are 

compared in case of rogue nodes.  

The simulation was run multiple times to study the effect of density and 

transmission interval on the performance of the proposed mechanism and is 

shown in Figure 4-9, Figure 4-10 and Figure 4-11. 

REAL ACCIDENT SCENARIO 

 

Figure 4-6: Decreasing speed in real accident scenario 

 

Explanation of Fig. 4.6: The Average speed of vehicles goes down due to the 

accident which is occurring at t = 180 sec. The vehicles reduce their speed as they 

approach the accident. As the speed of each vehicle goes down, the flow 

parameter that each vehicle is calculating also goes down for that region. This 
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parameter is then transmitted to other vehicles coming behind which become 

aware of an ‘incident’ up ahead.  

 

 

 

Figure 4-7: Increasing density in real accident scenario 

 

Explanation of Fig. 4.7: As the vehicles approach the accident region, the density 

being calculated by vehicles starts increasing when the accident occurs at t=180 

sec. This is in accordance with the Figure 4-5. 
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Figure 4-8: Decreasing flow in real accident scenario 

 

Explanation of Fig. 4.8: The Average Flow of all vehicles in the simulation is 

shown in Figure 4-8. As expected the value of flow starts decreasing a little after 

the accident occurs at t=180 sec.  

More results for the actual accident scenario without rogue nodes are 

shown in Figure 4-9, Figure 4-10 and Figure 4-11. The density of vehicles 

(controlled by Inter-Arrival Time) and the update interval (transmission rate) are 

varied in the simulations to study their effects. What is noteworthy here is that the 

flow parameter gradually decreases which proves our earlier assumption. In 

Figure 4-9 (a), (b) & (c) the results are shown for the value of FlowAVG for 
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vehicles that are starting at approximately t=80 sec and an accident occurs at 

t=180 secs for the same density of vehicles.  

 

         (a) Node 50, Update Interval 1sec                        (b) Node 59, Update Interval 0.5sec 

 

(c) Node 56, Update Interval 0.2sec 

Figure 4-9: Accident Scenario: Inter-Arrival time = 1 sec: All Vehicles starting at 
approx t = 80sec 

 

Explanation of Fig. 4.9: It can be seen in Figure 4-9 that the value of the Flow 

parameter reduces to zero quickest when the update interval (transmission rate) is 

the lowest i.e. 0.2 sec as shown in Fig. 4.9 (c). 
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Figure 4-10(a, b, c) show the results when the density is kept constant (inter 

arrival time = 2 sec), the update interval is varied and an accident occurs at 

t=180s.   

 

 

(a) Node 39, Update Interval 1sec          (b) Node 40, Update Interval 0.5sec 

 

(c) Node 36, Update Interval 0.2sec 

Figure 4-10: Accident Scenario: Inter-Arrival time = 2 sec: All vehicles starting at 
approx t = 80sec 

It can be seen from Figure 4-10 that the value of the Flow parameter settles down 

quickest when the update interval has the lowest value i.e. in Fig. Figure 4-10(c).  
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Figure 4-11(a, b, c) show the results when the density is kept constant (inter 

arrival time = 3 sec), the update interval is varied and an accident occurs at 

t=180s.   

 

      (a) Node 32, Update Interval 1sec           b) Node 26, Update Interval 0.5sec 

 

(c) Node 24, Update Interval 0.2sec 

Figure 4-11: Accident Scenario: Inter-Arrival time = 3 sec: All vehicles starting at 
approx t = 80sec 

 

In Fig. 4.11, the inter-arrival time between vehicles is 3 sec. It can be seen the 

flow value reaches zero quickest at approx. t=275 sec when the update interval is 

the smallest i.e. 0.2 secs.  



Chapter 4: Data Centric Rogue Node Detection 

80 
 

Comparison of Simulations:  

It can be seen from Figure 4-9, Figure 4-10 and Figure 4-11 that the value of the 

Flow parameter doesn’t depend on the density of vehicles but only on the 

transmission rate as can be seen from Figs. 4.9 (c), 4.10 (c) and 4.11(c) where it 

reduces to zero quickest. The density of vehicles in the simulation is the highest in 

Fig. 4.9 and lowest in Fig. 4.11 but the Flow parameter is only dependent on the 

update interval or the transmission rate.  

 

 

 

4.5.2 No Accident - Rogue Node Scenario  

In Figure 4-12, Figure 4-13 and Figure 4-14 every 10th vehicle is a rogue 

node which are travelling normally without any accident and the rogue nodes are 

transmitting a low false value of Flow whereas the others are transmitting a (true) 

high value. In this case, the rogue nodes are not modifying the values of density or 

speed and can easily be seen and classified as faulty or rogue values. 
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ROGUE NODES SCENARIO

 

Figure 4-12: Constant density in case of No Accident 

 

Explanation: In Figure 4-12, the constant density is showing a normal flowing 

traffic without a sudden build-up of vehicles in a region at any time.  



Chapter 4: Data Centric Rogue Node Detection 

82 
 

 

Figure 4-13: Speed in No Accident Scenario 

 

Explanation: In Figure 4-13, the average speed of vehicles shows no sudden 

decrease which shows normal flowing traffic i.e. no accident.  
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Figure 4-14: 2 Rogue Nodes reporting low value of flow 

 

Explanation: In Figure 4-14, it can be seen that all honest vehicles are reporting a 

higher value but two nodes start reporting a decreasing value of Flow. As the 

values of density and speed don’t show any signs of an accident in Figs. 4.12 and 

4.13, it can be confidently assumed that the two low values of flow are false and 

can be rejected.  

 

4.5.3 Normal Traffic - No Accident - No Rogue Nodes 

In order to understand the parameters under normal circumstances we need to 

record the traffic data in case of normal traffic i.e. when there is no accident and 

no rogue nodes. Figure 4-15 shows the recorded data for the 100th node when 

update interval is 1sec and inter-arrival rate is 1 sec. As expected, the average 
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value of Flow (FlowAVG), calculated values for flow (FlowOWN) & the received 

flow values from other vehicles (FlowRCVD) are all quite close to each other and 

the received values (FlowRCVD) are in fact within one standard deviation of the 

(FlowAVG) as calculated by the node. 

 

 

 

Figure 4-15: Distribution of FlowAVG, FlowOWN & FlowRCVD in case of Normal 
Traffic / No-Accident and all Honest Nodes 
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4.6 Performance Analysis 

4.6.1 Fault Tolerance 
 

The traffic parameters are being received from other vehicles and they are 

being compared with the readings calculated by the receiving vehicle itself and 

other vehicles. Therefore, this introduces a built-in fault tolerance in the network 

which is highly useful and desirable for highly volatile and rapidly changing 

VANETs. Even if a node is able to distort the values of the reported parameters 

(Density, Flow and Speed) so as not to raise a red flag with other vehicles, it 

results in a small error in the overall reading as shown in Figure 4-16, it shows 

values of Flowown in case of no accident and two rogue nodes that start 

transmitting a false value of Flow at t=180 sec and the average value of flow 

shown in blue line. This value shows that even if the false flow values are not 

rejected initially they will cause little deviation if the number of rogue nodes is 

small as compared to honest nodes in the neighbourhood.  
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Figure 4-16: Average Flow in case of No-Accident with rogue nodes 

 

 

4.6.2 Self Detection and Correction 
 

In a vehicular ad-hoc network with fast moving nodes, it is highly 

desirable for the nodes to be able to detect and correct data on their own. Due to 

the volatile nature of VANETs it is impractical to use any techniques that rely on 

reputation or trust of users to ensure correctness of information. Moreover, a valid 

identity of vehicles is important for distinguishing them from each other but 

should not be used as the basis of the acceptance of information in a protocol. 

This means that an authenticated node doesn’t guarantee that the node will behave 

honestly.  

With the latest technology being introduced in the vehicles including 

radars and cameras for obstacle detection, these technologies can be combined 
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with a technique like ours to ensure safety of travel. With driver-less features 

becoming a reality with Google car, it is important that the vehicle starts behaving 

autonomously not only in terms of driving but also planning ahead. This means 

that at high speeds on the highways, a driverless car should be able to estimate or 

predict the road and traffic conditions quite early and with reasonable accuracy. 

This is only possible if the highway traffic is modelled and used by the OBUs to 

detect and correct anomalies in the information being received. The notion of 

revocation quickly in a highly agile and temporary network doesn’t seem realistic. 

 

4.6.3 Congestion Avoidance 

In case of emergency messages in VANETs, the currently proposed 

method of propagating such messages is by relaying the message by receiving 

vehicles to others behind them. This can cause a broadcast storm where every 

vehicle is relaying the same message repeatedly and flooding the region in an 

attempt to inform other vehicles of the emergency. This quickly, consumes the 

small bandwidth available and can choke the network. However, in our proposed 

scheme there is no channel congestion as there is no need for multi-hop 

retransmissions and a sudden drop in the flow or speed values can indicate an 

emergency. Moreover, as only the vehicles within range behind the vehicle 

experiencing the accident receive the emergency message, they are able to 

identify that vehicle quickly as they have communicated with it before. These 

vehicles then modify their own values of flow and send them to others. 
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4.6.4 Resilience to Sybil Attacks 

 In case of a Sybil attack, an attacker presents multiple identities with an 

intent to either vote out a user maliciously or in our case more likely to create the 

illusion that there is congestion or accidents up ahead. All vehicles are reporting 

their location along with their speed, density and flow values in their vicinity. In 

case of a Sybil attack, an honest vehicle which is behind a Sybil node will receive 

multiple (false) messages with different identities and each message will report a 

low value of flow but if the vehicle’s own speed is not decreasing then it can start 

ignoring those messages. Therefore, C-DAC provides resilience against Sybil 

attacks. 

 

4.6.5 Scalability 

It can be seen from Figure 4-9, Figure 4-10 & Figure 4-11 that the density has a 

negligible effect on the working of the method i.e. all vehicles receive the 

information about the attack at the same time (i.e. such as Figure 4-9b, Figure 

4-10b and Figure 4-11b) if the update interval is the same. This shows that the 

proposed mechanism is scalable. Also, it is clear that the update interval has a 

significant impact on the information flow as the value settles down the quickest 

(as shown in Figure 4-9c, Figure 4-10c and Figure 4-11c) when the update 

interval is the smallest i.e. 0.2 sec as compared to the others when the update 

interval is higher. However, this is acceptable as the standard update interval in 

VANETs can be as low as 100 msec or 0.1 sec.  

 



Chapter 4 : Data Centric Rogue Node Detection 

89 
 

4.6.6 Comparison 

The success rate of the proposed scheme C-DAC is compared with the 

AMBA (Adaptive and mobility based algorithm) presented in [80]. The success 

rate is the percentage of vehicles within a 3km distance that receive the 

emergency message successfully and is shown in Figure 4-17. In our scheme C-

DAC, the success rate reaches 100% as there is no congestion because the 

emergency messages are not being relayed as in AMBA. Instead, in C-DAC the 

emergency info is being propagated through communication of some global traffic 

parameters as discussed previously and information can be relayed to all nodes 

even very large distances away. 

 

 

Figure 4-17: Percentage of vehicles within the distance 3000m that received 
the emergency information successfully 
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4.7 Related Work 
 

Due to the highly volatile and ad-hoc nature of VANETs, the 

cryptographic algorithms that are to be used in VANETs have to be designed to be 

a trade-off between security and performance. Moreover, malicious behaviour e.g. 

injection of false data is still possible even in case of strong cryptography. 

Researchers in [58] suggest using data centric techniques to make information in 

VANETs more reliable by data centric trust establishment.  

Some data centric misbehaviour detection techniques have been proposed 

in [83], [84]. In [83] the authors propose a model of VANETs to be used to detect 

and correct errors in the data being sent out by vehicles. The messages that 

conform to the model is accepted and rejected otherwise. However, the authors do 

not specify the model in detail but only the events. In the proposed scheme a 

VANET model is defined and implemented against which messages are judged 

for correctness. In [84] emergency messages are relayed and false information is 

identified based on the kind of message and the subsequent behaviour of the 

sending vehicle. Such a technique will not be feasible for emergency messages 

which need to be acted on quickly. Also, such a scheme will increase the 

computation cost for the nodes.  

A misbehaviour detection system and eviction mechanism is proposed in 

[56] where nodes are termed misbehaving if their info is inconsistent with the 

situation. Once a node is classified as misbehaving node then the neighbouring 

nodes can temporarily evict them by sharing warning messages about them and 

later their credentials are passed on to the CA which revokes them by adding them 
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to a Revocation List (RL). However, RLs are themselves difficult to manage 

which is why data centric schemes are more suited to VANETs. 

 

4.8 Summary & Research Methodology 

The proposed scheme, C-DAC, is a decentralized mechanism that enables 

the nodes to detect and correct the data in the network. In a highly dynamic and 

fast moving network it is necessary to have a decentralized mechanism that 

enables the users to form an opinion about the validity and reliability of the data 

being exchanged without having prior knowledge of or interaction with the users. 

Moreover, as each node is calculating the parameters itself and sharing, 

comparing these parameters with other users in the network in its vicinity, each 

node should be able to experience the event directly as it gets closer. As the 

vehicle can trust its own data, therefore, once it detects false data it will start 

discarding the data it receives from that particular node. It then has the ability to 

report the identity of this node to others but they will have to form their own 

opinion about the malicious node. 

The presented technique, C-DAC will be unable to identify the actual 

rogue node during a Sybil attack when the rogue node is presenting multiple 

identities / pseudonyms. Moreover, if there are multiple attackers that collude to 

launch an attack e.g. two or three cars intentionally block the lanes of the highway 

and send multiple messages with different identities reporting an accident or 

congestion then it will not be detected by C-DAC. The reason is that in such an 

attack the data will satisfy both the VANET model and will also match the 
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vehicle’s own readings. However, such an attack is very expensive to launch as it 

requires multiple rogue nodes to be present together in a region. 

In case of an actual accident the density increases all of a sudden whereas 

the flow value doesn’t go down as quickly, therefore, the flow value that a vehicle 

will calculate will increase for a short time before going down. During this 

transition phase, it is difficult to distinguish between a rogue node and an honest 

node except for the vehicle’s own observations and calculations. However, in the 

next chapter a statistical technique is presented that resolves this issue.  
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Chapter 5 :  A Host Based Intrusion 
Detection System (IDS) for VANETs 
 

5.1 Introduction 
 

 VANETs will become a reality in the very near future. The tremendous 

safety, convenience and commercial potential of vehicular networks will not only 

drive its deployment but will be fuelled by its demand as well once consumers 

realize its effectiveness. VANETs have the ability to make roads safer especially 

in conditions which are currently considered hazardous and unavoidable. Imagine 

the ability to be able to navigate safely in otherwise very dangerous driving 

conditions like fog, accidents, black ice. However, there are some very serious 

security issues that need to be addressed before the full potential of VANETs can 

be realized. Vehicular networks are very fast moving and highly dynamic due to 

which it is very important that the information being shared is authentic and 
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actionable. As encounters will be short lived and the received information has to 

be acted upon very quickly, therefore, it is important that the reliability of the 

information is ascertained quickly. 

 In ad-hoc networks, maintaining and depending on trust or reputation is 

very expensive and a complex concept. In VANETs, centralized trust has long 

been debated as it is difficult to maintain, update and use. The existing mechanism 

for authenticating messages in vehicular networks involves the use of 

cryptography [27], [85], [28] and trust [39], [86], [87]. Cryptographic techniques 

involve paired keys and overhead in terms of computing cost, storage and time. 

Even with cryptographic techniques, security lapses are inevitable leading to 

intrusions due to stolen keys or compromised Trusted Authorities etc. An attack is 

especially difficult to prevent when it is launched from within the network. Due to 

the wireless and mobile nature of vehicular networks and its dynamic topology, it 

is not possible to use the same intrusion detection mechanisms that are used in 

wired networks. Therefore, it is essential that an intrusion detection system is 

deployed to detect attacks and help secure VANETs. The proposed IDS will 

detect different types of attacks launched by rogue or compromised nodes in the 

network. The IDS will then be able to minimize the damage to the network by 

taking necessary actions. The proposed IDS work in a distributed manner and is 

designed for deployment at each host node in the vehicular network. 

 Intrusion detection systems are very effective as they are able to detect 

attacks from insiders at real time but at the same time need to be updated for new 

attacks. Moreover, IDS need strong authentication and identification systems in 

order to work properly. Intrusion prediction systems on the other hand try to 
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predict new attacks that can protect the system from unknown attacks. However, 

the probability thresholds need to be set carefully in such intrusion prediction 

systems to get accurate results. This work proposes an IDS that does not use trust 

or reputation and only relies on the analysis of the received data to detect 

intrusions in the network. The statistical technique used in the IDS declares data 

true or false which leads to the node being declared honest or rogue instead of the 

other way around. 

5.2 IDS Overview 
 The host based Intrusion Detection System proposed in this work is 

deployed at each vehicle and is able to detect intrusions in VANETs and then take 

corrective measures to contain the damage. In order to train the IDS, a model of 

the network under normal conditions is needed so that deviations (anomalies) 

from the normal behaviour can be detected and alarms can be raised i.e. other 

vehicles can be informed. In the proposed model discussed in the previous 

section, the vehicles send their speed, calculated average flow, calculated density 

and location information to other vehicles. Also, each vehicle calculates its own 

value of average flow which provides them with a very good estimate of the 

traffic in their vicinity and up ahead as well. 

 The proposed IDS is shown in Figure 5-1. The IDS works by first 

collecting the data from neighbouring vehicles and using the host based intrusion 

detection mechanism to detect intrusions while incorporating the attack warnings 

from other vehicles. Once the intrusion is detected then a vehicle responds to the 

threat by taking some action i.e. rejecting the data from that vehicle, classifying 
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the attack and then disseminating the information to other vehicles in the 

neighbourhood.  

 

 

Figure 5-1: Proposed Intrusion Detection System for VANETs 

 

 

5.2.1 Cooperative Data Collection 

 Using the proposed scheme each node (vehicle) collects data from other 

nodes (vehicles) in its vicinity to model the traffic around it. The vehicles 

cooperate with each other and share the values of their parameters using the 

Greenshield's model described above. As a vehicle will receive the parameter 

values from all other vehicles within range, therefore, each vehicle has 

information about all the vehicles in that region. Due to this each vehicle can 

calculate the (estimate) mean μ. The trace data has shown that under all conditions 

the flow values will be close together and will lie within two standard deviations 

of the mean. This means that all vehicles that are within communication range are 
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calculating very similar value of the FlowAVG as they are under similar traffic 

conditions. This is obvious as all nodes are dependent on other nodes to calculate 

their parameter values in all circumstances i.e. free flowing traffic and in case of 

an accident.  

 

5.2.2 Normality Test 

 In order to check if we can apply t-test to our data we check if our data 

set follows a normal distribution. When all the readings / data has been gathered 

for a simulation, the conditions of the central limit theorem apply and we 

approach a normal distribution. To show this we plot the frequency distribution of 

the Average Flow Values (FlowAVG) of a random node e.g. Node No. 90 in our 

simulation with vehicle inter-arrival time of 2 sec, transmission interval of 0.5 sec 

from simulation time t=203 sec to t=325 sec as shown in Figure 5-2. The data is 

slightly left skewed as vehicles start from rest and therefore, have lower values of 

flow in the beginning. This means that we are now in a position to set up a 

hypothesis test and use the t-test for detecting false values reported by a rogue / 

malicious vehicle. The t-test for comparing the two population means is used as 

the sample size can be small.  

 The parameter values follow a normal distribution and as the received 

values are in pairs, therefore, we use the paired t-test to calculate the probabilities 

associated with getting values in different ranges. The standard deviation and the 

test statistic to are calculated as:  
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𝐷𝐷𝑜𝑜 =  
�̅�𝑥 − 𝐷𝐷�

�𝑠𝑠𝑥𝑥2

𝑛𝑛1
+

𝑠𝑠𝑦𝑦2

𝑛𝑛2

 

 

Here, �̅�𝑥 is the mean difference of the received values and 𝐷𝐷� is the mean difference 

of vehicle's own calculated values, 𝐷𝐷𝑥𝑥  and 𝐷𝐷𝑦𝑦  are the standard deviations of 

received and vehicles own calculated values respectively. 𝐷𝐷1  and 𝐷𝐷2  are the 

number of samples for the received and own values respectively. The degrees of 

freedom will be: 

𝐷𝐷1 + 𝐷𝐷2 − 2 

 

 

 

Figure 5-2: Normal Distribution of FlowAVG for Node 90 from t=203s to t=325s 
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The algorithm of the proposed IDS is given in below: 

Algorithm 1: Algorithm for proposed IDS 

Each received msg contains: (each vehicle’s calculated) Flow, Speed, Density 

 

FOR each msg received DO 

Update Densitycalc 

Update SpeedAVG 

FlowOWN = SpeedAVG x Densitycalc 

IF  Hypothesis Test == Reject  

(i.e. FlowRcvd - FlowOWN > Threshold : t-test carried out here) 

     THEN 

Reject Data 

(Node could be reported to authorities here but not being dealt with in this 
algorithm) 

Calculate FlowAVG 

END IF 

       ELSE 

Accept Data 

Calculate FlowAVG 

END FOR 
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The data is collected from all neighbouring nodes and checked if there is a 

significant difference between the calculated and received values. If there is a 

significant difference then the node is monitored and some parameter values are 

collected (accepted) initially. Once sufficient samples have been collected then the 

t-test is carried out. If the t-test gives a result within the acceptance region then the 

data is accepted else rejected. If the data is rejected then the node is highlighted as 

rogue and the attack is classified as Information Attack and subsequent values 

from that node are rejected. A message can then sent to other users informing 

them of the rogue node and the type of attack being launched by that node. The 

flow chart is given in Figure 5-3.  
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Figure 5-3: Flow Chart of proposed IDS 

 

 

5.2.3 Hypothesis Testing for Data Correctness 

 Hypothesis testing is a common technique used in engineering 

applications to test two claims when only one of them can be true. The hypothesis 

testing approach also assigns a confidence interval to a range of values that 
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enables us to accept a claim with a certain confidence. This suits us as in our 

VANET model and proposed IDS there are two possibilities i.e. either the node is 

honest and we accept its data or the node is rogue and we reject its data. To check 

whether hypothesis testing works well in our model, we ran the simulations 

numerous times in OMNET++ and then exported the data to MS Excel and 

Matlab to analyse and visualize it.  

 We use hypothesis testing to decide whether a received parameter value 

should be accepted or not. If the received value is within the 99% confidence 

interval i.e. within the acceptance region, then the value is accepted. If the 

received flow value is within the rejection region then it is rejected. This is shown 

in Figure 5-4. There are always two hypotheses stated, there is the null hypothesis 

𝐻𝐻𝑜𝑜 which we want to test (and assumed to be correct) and alternate hypothesis 𝐻𝐻𝐶𝐶. 

If the null hypothesis is rejected then the alternate hypothesis is accepted and if 

we do not have enough evidence against the null hypothesis then it is accepted. 

The null hypothesis 𝐻𝐻𝑜𝑜 in our case is that the data (Flow value) received is from 

an honest node. The alternate hypothesis  𝐻𝐻𝐶𝐶  is that the value received is false 

(from a rogue node) and we fail to accept (reject) it. In other words we say that we 

don't have enough evidence to accept the received data and therefore, we reject it. 

The Hypotheses that will be tested in the host IDSs are stated below:  

 

𝑯𝑯𝒐𝒐: Accept Received data (Node is Honest) 

𝑯𝑯𝒂𝒂: Reject (Fail to Accept) Received data (Data is false Node is Malicious or 

Rogue) 
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Figure 5-4: Distribution of to for FlowAVG 
 

The IDS in each vehicle also computes a p-value that helps it in accepting or 

rejecting the null hypothesis. The p-value gives the probability of getting a value 

which is at least as extreme so, the p-value gives information about the weight of 

evidence against the null hypothesis Ho i.e. the smaller the p-value the greater the 

evidence against Ho. There are two types of errors associated with hypothesis 

testing as shown in Table 3. In our scenario, Type-2 error (false negative) is not 

very serious as the worst case scenario is slowing down whereas Type-1 error 

(false positive) is very serious.  
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 Node is Honest - 

Ho 

Node is Rogue - 

Ha 

Accept Ho No Error  Type 2 Error 

Reject Ho Type 1 Error No Error 

Table 5.1: Decisions in Hypothesis Testing 

 

Therefore, keeping this in view we use a wide confidence interval. The level of 

significance is denoted by α. The usual values of α are taken to be 0.01(1%) or 

0.05(5%) which means the probability that the test statistic falls in our acceptance 

region is 1 - α and the confidence interval for the two values of α = 0.01 and 0.05 

are 99% and 95% respectively. We take the value of α to be 0.01 and as this will 

be a two-tailed test therefore, the upper and lower limit of our acceptance region 

will be 𝐷𝐷α/2 & −𝐷𝐷α/2 as shown in Figure 5-4. The degrees of freedom will be 𝐷𝐷1 +

𝐷𝐷2 − 2 and the corresponding limits can be looked up from the t-table. This means 

that the probability is α that the test statistic 𝐷𝐷𝑜𝑜 falls in the region 𝐷𝐷𝑜𝑜 >  𝐷𝐷𝛼𝛼/2 or 

𝐷𝐷𝑜𝑜 <  −𝐷𝐷𝛼𝛼/2  when the null hypothesis Ho is true. Therefore, we will reject the 

received value if it is outside the acceptance region i.e. we reject the value if 

either: 

−𝒕𝒕𝜶𝜶/𝟐𝟐 >  𝒕𝒕𝒐𝒐 >  𝒕𝒕𝜶𝜶/𝟐𝟐 

In our case the received flow values for any chosen node are always within the 

acceptance region or within the 99% confidence interval as long as the node is 
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honest. In the case of an accident as the values will drop, they will have an impact 

on all vehicles in the region which will bring down the FlowAVG value for the 

region and as a result the values are still within the acceptance region as the 

standard deviation increases. 

 As shown in Figure 5-4, there are two cases where the rogue node will 

falsify its values i.e. it can either deny congestion or accident or it can wrongly 

give the impression of congestion or accident. Therefore, the IDS can decide 

which category the false information falls under depending on whether 𝐷𝐷𝑜𝑜 >  𝐷𝐷𝛼𝛼/2 

or 𝐷𝐷𝑜𝑜 < −𝐷𝐷𝛼𝛼/2. 

 

5.3 Simulation under Different Conditions 
 

5.3.1 Simulation Setup 
In order to check the proposed IDS extensive simulations were done using 

OMNET++, SUMO [81] and VACaMobil [82]. OMNET is a modular C++ library 

and framework that is used for network simulations. Simulation of Urban 

Mobility (SUMO) is a software tool used to generate vehicular traffic by 

specifying speed, types, behaviour and number of vehicles. SUMO also sets up 

road types and conditions. VACaMobil is a car mobility manager for OMNET 

that works in parallel with SUMO.  
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Simulation Parameter Value 
Simulation Time  500 sec 
Scenario  3 Lane Highway 
Highway Length  5-Kms 
Max Vehicle Speed  28 m/sec or 100 Km/hr 
Mobility Tool  VACaMobil 
Network Simulation Package  OMNET++ 
Vehicular Traffic Generation Tool  SUMO 
Vehicle Density  20-30 veh / Km 
Wireless Protocol  802.11p 
Rogue Vehicles Varied from 5% to 40% 
Transmission Range  500m in each direction 

Table 5.2: Simulation Parameters 

 

5.3.2 Simulation Parameters and Assumptions 

 The simulation is run on a 3 lane highway (motorway i.e. no traffic 

signals) with a total length of 5 Kms and the total simulation time is 500 secs. On 

average there are 20 to 30 vehicles per kilometre stretch of the highway. The 

vehicles start from rest when they enter the simulation and gradually attain a 

maximum speed of 100 km/hr. The transmission power is set so that each vehicle 

can receive transmissions from up to 500m from either side. Moreover, the 

vehicles are assumed to have directional antennas so that they can determine if a 

signal was received from the front or back. The number of rogue vehicles is 

varied from 5% to 40% of the total vehicles in the simulation to study the effect 

on the stability and performance of the proposed IDS. The simulation doesn’t 

assume any radars, cameras on-board. The simulation parameters are shown in 

Table 5.2.   
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5.3.3 No Accident - Rogue Nodes Scenario 

 A scenario is simulated in which there is no accident but rogue nodes start 

transmitting a low false value of Flow after t=160 sec. We run the simulations 

both with and without the proposed IDS and also vary the number of rogue / 

malicious nodes and collect the data. The results are shown with and without the 

proposed IDS in Figure 5-5, when there are 20% rogue nodes. As shown in Error! 

Reference source not found. the flow value goes down at first while the IDS runs 

the hypothesis tests to evaluate the received data and then starts to reject the false 

values. However, in the absence of the IDS (Figure 5-5) the Flow value is reduced 

as all the values are accepted. 
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Figure 5-5: No Accident Scenario - 20% Rogue Nodes start transmitting false 
values at t=160sec Without IDS 

 

Figure 5-6: No Accident Scenario - 20% Rogue Nodes start transmitting false 
values at t=160sec With IDS 
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5.3.4 Accident Scenario - Rogue Nodes Scenario 

 An accident scenario is simulated where rogue nodes start transmitting false 

(high) values after t=230 sec after an accident has occurred to deny the accident. 

The time t=230s is chosen so that the accident occurs at the end of the highway in 

the simulation. The simulation is run both with and without the IDS and the 

results are shown in Figure 5-7 & Figure 5-8 respectively. Figure 5-7 shows that 

honest nodes have started transmitting the low flow values to account for the 

accident but the rogue nodes are still transmitting high values to show as if there 

is no accident.  

 

 

Figure 5-7: Accident Scenario: 20% Rogue Nodes - start transmitting false 
values at t=230sec Without IDS 
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Figure 5-8: Accident Scenario: 20% Rogue Nodes - start transmitting false 
values at t=230sec With IDS 

 

It can be seen in Figure 5-8 that the very high values by rogue nodes are being 

rejected by the IDS. 

 

 

5.4 Performance Evaluation 
5.4.1 Evaluation Metrics  

 The performance of the IDS is tested by computing the True Positive (TP) 

rate (detection rate), the false positive rate and the detection time. The number of 

rogue nodes was increased from 5% to 40% to test how successfully the proposed 

IDS classifies rogue nodes as rogue and honest nodes as honest. We also compare 
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our results with that of two previous schemes that deal with false information 

attacks i.e. [84] and [69]. The metrics used are described below:  

 

5.4.1.1  True Positive (TP): 

This is the detection rate of rogue nodes (RNs) i.e. what percentage of rogue 

nodes is detected and classified as rogue nodes. This is also referred to as 

sensitivity and is calculated as: 

 

𝑇𝑇𝑇𝑇 =  
𝑁𝑁𝑁𝑁. 𝑁𝑁𝑜𝑜 𝑅𝑅𝑁𝑁𝐷𝐷 𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑑𝑑𝐷𝐷𝑆𝑆𝑆𝑆 𝑑𝑑𝑁𝑁𝑐𝑐𝑐𝑐𝑆𝑆𝑑𝑑𝐷𝐷𝑐𝑐𝐷𝐷
𝑇𝑇𝑁𝑁𝐷𝐷𝑇𝑇𝑐𝑐 𝑁𝑁𝑁𝑁. 𝑁𝑁𝑜𝑜 𝑅𝑅𝑁𝑁𝑅𝑅𝑅𝑅𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝐷𝐷

 

 

 

5.4.1.2  False Positive (FP): 

This is the percentage of honest nodes (HNs) incorrectly classified as rogue 

nodes. Specificity is defined as the number of honest nodes correctly identified 

and given as: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝑜𝑜𝐷𝐷𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 =  
𝑁𝑁𝑁𝑁. 𝑁𝑁𝑜𝑜 𝐻𝐻𝑁𝑁𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝐷𝐷 𝐼𝐼𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝐷𝐷𝑆𝑆𝑆𝑆 𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑆𝑆𝑑𝑑𝐷𝐷𝑐𝑐𝐷𝐷

𝑇𝑇𝑁𝑁𝐷𝐷𝑇𝑇𝑐𝑐 𝑁𝑁𝑁𝑁. 𝑁𝑁𝑜𝑜 𝐻𝐻𝑁𝑁𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝐷𝐷
 

and the false positives are calculated as: 

𝐹𝐹𝑇𝑇 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝑜𝑜𝐷𝐷𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 
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5.4.1.3  Overhead: 

The overhead is the cost incurred due to the IDS working and the extra data that is 

exchanged with other vehicles. It is an important metric as it is a measure of the 

efficiency of any scheme. 

 

5.4.2 Comparison with Existing Schemes 

The proposed IDS is able to detect false information attacks very 

effectively by only analysing the data without taking into account any Trust or 

Reputation scores. The proposed mechanism is compared with two schemes i.e. 

DCMD [84] and ELIDV [69]. ELIDV uses the greedy forwarding protocol i.e. the 

vehicle which is furthest away from the communicating vehicle transmits the 

packets. Therefore, if a vehicle is a forwarder node then it should be located on 

the transmitter’s radio range boundary. ELIDV analyses the behaviour of the 

nodes after it sends an emergency message to determine if the information is 

correct or not. DCMD checks the time it takes the message to reach the node 

receiver based on the claimed position. Even if the sender changes the time stamp, 

it can still be detected as the sender vehicle doesn’t know the distance to the 

receiver node accurately.  

 

5.4.3 False Information Attack Detection  
The detection rates are shown in Figure 5-9 and false positive rates are compared 

in Figure 5-10. The detection rate (True Positives) of the proposed scheme is 

better than DCMD and ELIDV up to 30% rogue nodes and almost the same as 
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ELIDV after that till 40%. The false positive rate of the proposed scheme is better 

than DCMD and ELIDV up to 20% rogue nodes but increases slightly above 

ELIDV at 40%. The proposed IDS works better than DCMD and ELIDV mainly 

because the other two schemes are based on verifying the claimed location of the 

vehicles whereas the proposed IDS looks at the overall situation of traffic and 

analyses to see if it receives emergency messages from other vehicles in the same 

region. This means that in DCMD and ELIDV, as the number of rogue nodes 

increases, the performance of the system degrades. However, in the proposed IDS 

even if vehicles collude they can’t affect the overall parameter values in the whole 

region. This performance comparison can be seen in Figure 5-9 and Figure 5-10.  

 

 

Figure 5-9: Detection Rate Comparison in case of False Information Attack 
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Figure 5-10: False Positive Rate Comparison in case of False 
 

5.4.4 Resilience to Sybil Attacks 
 In a Sybil attack, an attacker presents multiple identities with an intent to 

either create the illusion of congestion or accidents or deny their existence. So, a 

rogue vehicle will send multiple messages in order to cause confusion in the 

network by bringing the parameter value down. However, the proposed IDS 

aggregates the parameter values, therefore, the IDS will work very well and will 

be resilient to Sybil attacks as long as the total number of Sybil identities is less 

than 40% of the total identities (nodes) as shown in Figure 5-9 & Figure 5-10. 

 

5.4.5 Overhead Comparison 
 The overhead of the proposed IDS is compared with the schemes in [84] 

and [69] and result is shown in Figure 5-11. The overhead in the proposed IDS is 

less as compared to DCMD and ELIDV except when there are 40% nodes at 

which point it is slightly higher than DCMD. The overhead in the proposed IDS 
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increases with the increase in number of rogue nodes as the IDS starts to collect 

more past values to run the hypothesis test. However, the proposed IDS does not 

need to keep past parameter values as long as they agree with the calculated 

values which is the reason why the initial overhead is low and increases with the 

increase in the number of rogue nodes as shown in Figure 5-11. 

 

 

Figure 5-11: Overhead Comparison in case of False Information 

 

 

5.4.6 Bootstrapping Problem 
 Any system needs time to start-up and start working correctly which is 

known as bootstrapping. Similarly, the proposed IDS has to start-up and collect a 

few samples before it can give correct decisions. The analysis shows that the IDS 

can bootstrap quickly and can give correct decisions by successfully conducting 

tests by taking only 7 samples from any node and performing the t-test on the 

population mean of two populations. The 7 samples can be collected in a 
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minimum of 0.7 seconds if the beaconing rate is 100 ms. This means that the IDS 

enables the nodes to quickly decide whether to accept or reject the data received 

without generating a lot of overhead. Therefore, the bootstrapping problem is 

quite manageable in the proposed IDS. 

 

5.4.7 Countermeasures & Fault Tolerance 
 The proposed VANET model and exchange of parameters give the 

vehicular network a built-in resilience to launch countermeasures against false 

information attacks. The data is highlighted as false or malicious if it does not 

conform to the VANET model or if it fails the hypothesis test. The 

countermeasures include rejecting the data of that node and reporting the node as 

malicious. This was shown in Error! Reference source not found. & Figure 5-8 

where the values were too low or too high as compared to the node’s own values 

and were detected (and then rejected) by the IDS. The IDS is therefore, fault 

tolerant as it can work in the presence of false information. 

 

5.4.8 Effective Information Dissemination 
 The widely proposed method of propagating emergency messages is by 

repeatedly broadcasting the message by vehicles to others behind them. This can 

quickly cause a broadcast storm in an already bandwidth limited channel. In the 

proposed scheme there is no channel congestion as there is no need for multi-hop 

retransmissions and the information is still disseminated effectively. 
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5.4.9 Limitations of proposed IDS 
 The proposed IDS works extremely well when the difference between the 

received values and the calculated values is high i.e. the values being received 

from the rogue nodes are too high or too low. However, if the rogue nodes 

coordinate and gradually decrease (or increase) their parameter values and launch 

the attack over some time then it will be very difficult to detect the attack. The 

reason is that the gradual decrease in the parameter values will not be flagged as 

an anomaly and thus never tested for correctness. However, as discussed 

previously doing this defeats the main purpose of the rogue / malicious vehicles 

i.e. to cause maximum damage or confusion in the network. 

 

5.5  Summary & Research Methodology 

 The results show that the proposed IDS is scalable and has an excellent 

performance when the number of rogue nodes is small. The performance degrades 

when the number of rogue nodes increases but still works reasonably well. The 

proposed model and IDS demonstrate the effectiveness of the statistical technique 

used to determine if the data is false based on the overall collected data without 

using Trust or reputation scores. The IDS does not depend on any infrastructure 

which is a major benefit as compared to other schemes. The false data is much 

easier to detect if it differs too greatly from the calculated data and difficult to 

detect if it varies slightly. However, the target of the rogue node is to drop or raise 

the value of its parameters quickly to damage the network and increasing or 

dropping it gradually is not in its interest. 



Chapter 5 :  A Host Based Intrusion Detection System (IDS) for VANETs 

118 
 

 In the future, the work can be extended by modifying the IDS to detect 

other types of attacks in VANETs such as Denial of Service and false position 

reporting by rogue nodes in the network or a stationary user outside the network. 

This can be done by simulating the attacks using the developed platform and then 

detecting them with the help of anomaly or rule-based detection. 
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Chapter 6 : Identity Management and 
Sybil Attack Detection in VANETs 
 

6.1 Introduction 
 

 The concept of identity in computer networks has been under discussion 

for a long time now. An excellent definition of identity in networks is given by J. 

R. Doucer in [45] as: 

“An identity is an abstract representation that persists across multiple events” 

Identities are important in networks as they establish a user’s physical presence in 

the network. Therefore, it is important that these identities are easy to create, use 

and verify. However, there are many complexities involved in the creation and 

verification of identities in the digital world that will be discussed in detail in this 

chapter. It is also important to note that the failure to handle identities in VANETs 

can result in Sybil attack which can have serious consequences. The Sybil attack 

and its detection will be discussed later in this chapter but first the security and 

privacy goals in VANETs are discussed briefly to understand the intricacies. 
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Figure 6-1: Security and Privacy Goals in VANETs 

 

 

6.2 Security and Privacy Goals in VANETs 
 

The security and privacy goals in VANETs, how they are achieved and what they 

provide are shown in Figure 6-1. Thus the goals are: 

i. Reliability  

ii. Location Privacy 

iii. Non Repudiation 

 

6.2.1 Reliability 
 As the information in VANETs is very critical for safety, it is imperative 

that it should be reliable. Reliability is achieved through authentication, which 
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ensures the integrity of the messages, i.e., they have not been tampered with in 

transit. Authentication can be done between the Certificate Authority and the 

vehicle using PKI. 

 

6.2.2 Location Privacy 
 It is essential for VANET security that the location of a vehicle is 

transmitted while preserving the location privacy of the user. However, this 

location information can be used by adversaries in tracking vehicles or routes. As 

discussed previously, location privacy requires unlinkability, which ensures 

anonymity. This unlinkability is achieved by changing Pseudonyms so that 

successive messages can't be linked to each other. 

 

6.2.3 Non-Repudiation 
 Another requirement for VANETs is non-repudiation, which means that users 

should not be able to deny sending a message so that they can be tracked and 

penalized in case of a false message. This is achieved by making the messages 

traceable but only by the authorities so that they can be revoked. We have 

proposed in [6] that the tracing should be done by multiple authorities in order to 

provide extra security and privacy. 
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6.3 Identity in VANETs 

 The current concept of identity in VANETs needs to be revisited. The 

existing concept of using the identity (ID) of the vehicle i.e. Vehicle identification 

number (VIN) number or its registration number might not be useful for the 

authorities as the driver can later deny using the vehicle when a particular 

violation occurred or claim that it was stolen. On the other hand, it is also possible 

that the vehicle might actually be stolen and might be used to launch an attack 

from inside the VANET. Our scheme provides a solution to these problems. 

 The nature of VANETs requires reliability of messages and this implies 

authentication and non-repudiation. Moreover, the messages being transmitted by 

the vehicles should be verified quickly and efficiently. At present we are only 

presenting the mechanism for V2I communication as the RSUs have much higher 

computation power available than the OBU. We present a way to join the driver’s 

identity with that of the vehicle and use this as the Digital Identity in VANETs 

(DIVA). The idea is that when there is a driver’s (human’s) ID being used for 

signing the messages, the user will be bound to act much more responsibly as it 

can carry serious consequences. DIVA scheme uses ID based cryptography which 

enables the user to encrypt the messages to the RSU using the RSU’s public ID 

and sign it using his own ID. Furthermore, we propose two trusted authorities 

(TA1, TA2), as shown in Figure 6-2, for added security and privacy and to 

remove the strong assumption of tamper proof devices for keeping the ID of the 

user secure. 
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Figure 6-2: Proposed VANET Architecture 

 

6.3.1 Digital Identity in VANETs 

 The current concept of identity in VANETs is the registration number of 

the vehicle or the VIN number of the vehicle [24], [88]. However, this identity is 

not very useful as it is the driver who is responsible for the vehicle and not the 

owner. Also, the driver might later deny using the vehicle at the time a violation 

occurred. Therefore, the current suggestions of revoking a vehicle in case of a 

violation are not really practical as it is the driver who should be penalised and not 

the vehicle. Also, penalising a vehicle is difficult as the vehicle might be used by 

multiple drivers. 
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 In order to solve the above mentioned issues, a scheme is proposed - 

Digital Identity in VAnets - DIVA [6]. We propose that the driver’s identity 

(driver’s license) be linked to the vehicle thereby, forming a new joint identity. 

This allows authorities to penalise the driver by giving penalty points (in case of 

minor offence) or driver revocation (in case of serious offence). However, the 

identity of the driver and the vehicle are only authenticated with the TAs that do 

not share this information with any other entity. Furthermore, it is only the TAs 

who can de-anonymize the driver and vehicle and nobody else. This digital 

identity (combination of the Driver Identity- DrID and the vehicle identity - VID), 

will now function as the digital identity (DID) in VANETs as shown below 

(Figure 6-3). 

 

 

Figure 6-3: Digital ID (DID) in VANETs 
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6.3.2 Assumptions 
 

 We propose minor changes in the capability of the OBUs. The enabling 

technologies are already in place to be made use of for making our system smarter 

and more efficient. We propose that the OBU, apart from having some storage 

and processing power has following added capabilities: 

i.   The ability to read a driver’s license 

ii.   An on-board keyboard for input. 

iii.  An LCD screen 

iv.  Wireless Internet capability 

These capabilities of the OBU are shown in Figure 6-4. 

 

 

Figure 6-4: OBU Capabilities 

 

 

Driver's License 
Reader / Scanner 

Touch screen / 
Keyboard

Wifi / 3G 
Capability Memory Storage

OBU
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6.3.3 Registration and Key Management 

 The OBU connects to the TAs using wifi / 3G using TLS/ SSL and 

establishes a secure connection. The driver first authenticates himself with TA1 

using two factor authentication (TFA). The driver has to swipe his driver’s license 

and use the keyboard to enter his PIN or password and another piece of 

information which only the holder of the license will have (e.g. a number on the 

driver’s license counterpart in UK or the output of a smart phone app 

corresponding to the driver’s license number). The PIN or password is a pre-set 

password between the user and the TA1 - Licensing Authority (e.g. DVLA in the 

UK). This password can initially be setup between the two parties while getting 

the driver’s license and then the user has the option of changing this by going 

online at the authority’s website. In [26], authors propose a similar technique i.e. 

the user has many keys with him at home provided by the TA which the user 

manually stores in the OBU before going out. Similarly, the OBU authenticates 

itself withTA2 - Motor Vehicle Registration Authority, which contains the record 

of all vehicles, where driver enters a password for the vehicle and some 

information which is provided in the Vehicle Registration document (i.e. ensuring 

TFA). This ensures that the vehicle is indeed being operated by the owner or an 

authorized person. 

 Upon successful authentication the driver is issued a token- TK1 by TA1 

which is signed by TA1 and the master secret key s1 is also transferred to OBU. 

Similarly, the OBU is issued a token - TK2 by TA2 and issued the master secret 

key s2.This key setup mechanism is shown in Figure 6-5. 
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Figure 6-5: Sequence Diagram for Proposed Scheme 
 
 

 

6.3.4 Scheme Details 
 

The tokens and master keys s1, s2 received by the user are used to generate PNs to 

sign and encrypt messages sent to the RSUs. Our scheme uses the Boneh and 

Franklin’s Identity Based Encryption using Weil pairing [23] and extends the 

schemes presented in [24], [89]. The OBU uses the public ID of the RSU to 
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encrypt its messages whereas the RSU uses its private key dID to decrypt the 

message. The details of our scheme are given below in detail. 

i. Setup: 

Let G1 be a group of prime order q. Let e : G1 x G1→ G2 be an admissible bilinear 

map i.e. e(aP; bQ) = e(P;Q)ab for all P, Q ϵ G1 and all a; b ϵ Z and let P be a 

generator of G1. In such groups the DDH problem is easy but the CDH problem is 

believed to be hard [21] e.g. given P; aP; bP; cPϵ G and any a; b; P ϵ Z, there 

exists an efficient algorithm to determine ab = c mod q by checking e(aP; bP) = 

e(P; cP) while there exists no algorithm to compute abPϵ G within polynomial 

time. 

TAs pick a random s1 and s2 ϵ Z and set Ppub = s1P.Choose hash functions H1, H2, 

H3, H4. System Parameters are {P, Ppub, H1, H2, H3, H4}. The master keys are s1 

and s2. 

 

OBU Uses: 

PID (Pseudo-ID) = TK1║TK2, where ║denotes concatenation 

gID = e(QID; Ppub), 

ID1 = r.P 

ID2 = PID ⊕ H (r.Ppub), where ⊕ denotes XOR operation, 

where r is a random nonce and changes each time therefore, 

ID1 and ID2 change providing unlinkability 

SK1 = s1.ID1 , SK2 = s2.H(ID1║ID2), 
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𝐼𝐼𝐷𝐷𝑖𝑖 =  𝐼𝐼𝐷𝐷1𝑖𝑖║𝐼𝐼𝐷𝐷2𝑖𝑖  

 

ii. Extract:  

For a given RSU ID, the algorithm computes 

QID = H1(ID) and set private key of RSU to dID= s1.QID 

 

iii. Encryption: Compute QID_RSU = H1(IDRSU) 

𝜎𝜎i =𝑆𝑆𝑆𝑆1𝑖𝑖 +  𝐻𝐻2(𝑀𝑀𝑖𝑖)𝑆𝑆𝑆𝑆2𝑖𝑖 

Set R = H3 (𝜎𝜎i, Mi) 

The transmitted message has the following format: 

{U, V, W, X} = {ID, 𝜎𝜎i ⊕H2 (𝑅𝑅𝐼𝐼𝐼𝐼𝑟𝑟 ), Mi ⊕ H4(𝜎𝜎), R . P} 

 

iv. Decryption and Signature Verification:  

In order to verify the signature the RSU does 

1. Compute 𝜎𝜎 = V ⊕H2 (e (dID; ID1)) where ID1 = rP 

2. Compute M = W ⊕H4(𝜎𝜎) 

3. Set R = H3 (𝜎𝜎, M):  

Test that X = R.P and if not then reject the message. 
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iv. Traceability & Revocation:  

In the event of a violation or misuse the RSU can trace the user by doing the 

following: 

ID2 ⊕ H(s1. ID1) = PID ⊕ H(r.Ppub) ⊕ H(s1.ID1) 

= PID ⊕ H(r.s1.P ) ⊕ H(r.s1.P ) 

= PID 

= TK1║TK2 

The RSU can now add the tokens TK1 and TK2 to its RL and also forward to 

other RSUs for adding to their RL. RSU now sends the tokens to TA1, TA2 to de-

anonymize and penalise the user. 

 

6.3.5 Authentication & Non-Repudiation 
 

The user authenticates himself with TAs to get s1, s2 and TK1, TK2 and 

then signs all messages to RSU based on his secret keys SK1 and SK2 which are 

based on TK1 and TK2. Therefore, nobody else can forge a user’s signature 

without knowing TK1 and TK2. Moreover, even if the RSU or the master key is 

compromised, the attacker still won’t be able to determine the real ID of the user 

i.e. DrL and VID. The attacker only retrieves TK1 and TK2 which only TA1 and 

TA2 can trace. Therefore, there is an added layer of security and privacy in our 

scheme. Similarly, the driver can’t deny having authenticated themselves with 

TAs using TFA thereby preventing impersonation. However, authentication only 

proves that a user was trusted at least when the keys were issued [27]. To check if 
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the user has been revoked since then, the RL would have to be looked up and the 

information in messages would have to be verified by correlating it with other 

sources for reliability. 

 

6.3.6 Location Privacy 

As explained in earlier, in order to preserve the privacy of the user it is 

important that two messages of the same user are unlinkable. Therefore, it is 

necessary that each message uses a different PN. In our scheme we are generating 

the PNs at the OBU and each PN is different from the previous as a random nonce 

r is used to generate the ID1, ID2 and r is changing each time. This ensures that 

messages are unlinkable but at the same time traceable by the authorities. 

Moreover, we are encrypting messages which ensure that an eaves dropper can’t 

listen in and hence can’t use the location info for profiling or tracking, making our 

scheme very secure. 

 

6.3.7 Traceability and Revocation 

 In order to fully de-anonymize a user, RSU will contact TA1, TA2 and 

provide them TK1, TK2. Our scheme offers authorities the ability to separately 

revoke the driver and vehicle depending on the nature of the offence. This added 

benefit enables the authorities to penalise the driver for minor faults by assigning 

points on the driving license or cancelling a driver license in case of accumulating 

large number of points. Also, the problem of long RLs can be solved if master 
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keys of TAs are changed regularly e.g. every day. In this case, all users will have 

to update their master keys by authenticating themselves with TA1 and TA2 daily. 

Therefore, RSUs will have to maintain short RLs for the current day only as only 

those users will become part of VANET who have the current valid master keys 

and all others will be unable to join the network. 

 

6.4 Performance Analysis of DIVA 
6.4.1 RSU Latency 

 To compute latency at the RSU, we use the same parameters as in [24] i.e. 

key sizes of 160 bits and the time required for a pairing operation to be 7.3 ms and 

for point multiplication to be 8.5ms. We compare our scheme with PACP [24] and 

ECPP [28] protocols. The dominating operations in our scheme for RSU to 

perform decryption, signature verification include two pairing operations (PO) 

and one point multiplication (MP). We ignore the time required for Hash and 

XOR operations in all cases as they are negligible. ECPP requires 13 MPs, 6 POs 

and PACP requires two POs and one MP for verification at RSU. However, in 

both PACP and ECPP the RSU generates and verifies the PN tokens and short 

lived key pairs respectively for the vehicles which cause the extra delay as shown 

in Figure 6-6. The graph shows the latency when only one token is being 

generated for each vehicle as number of vehicles increase from 1 to 100. In our 

scheme as the PNs are being generated at the OBU there is no extra delay at the 

RSU and hence the reduced latency at RSU which is desirable. 
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Figure 6-6: Comparison of Protocol Latency at RSU 

 

6.4.2 OBU Computation & Storage Cost 

 It is important that the messages are being signed and encrypted by the 

OBU in a very short time. Our scheme requires 6 point multiplications and 1 

pairing operation at the OBU to sign and encrypt a message which gives a delay 

of less than 58.3ms using same values as used for calculating latency. Also, in our 

scheme OBUs need to compute gID once for each RSU saving a lot of computation 

time at the OBU. As the PNs are being generated at the OBU, there is no storage 

or replenishing requirements at the OBU as in the case of public and private key 

pairs or certificates.  
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6.4.3 Comparison in terms of desirable properties 

A comparison of our scheme with PACP[24] and ECPP[28] in terms of desirable 

properties is given in table below: 

 ECPP PACP DIVA 

Separate Driver 
Identity 

NO NO YES 

Anonymous 
Authentication 

YES YES YES 

Unlinkability YES YES YES 

Encryption NO YES YES 

Tokens / 
Certificates 

Required from 
RSU 

YES  YES  NO 

RSU Latency HIGH MED LOW 

Revocation Delay HIGH MED LOW 

Table 6.1: Comparison of Proposed Scheme with others in terms of desired 
properties 

 

 

6.5 Security Analysis of DIVA 
 

6.5.1 Privacy Preservation 
 

In the proposed scheme - DIVA, the vehicles have the ability to generate their 

own PNs (ID1, ID2) using the tokens TK1, TK2 from the TAs. Also, a random 

nonce r is used to generate ID1, ID2. This enables the vehicles to change their PNs 

periodically which give them unlinkability and ensure privacy. This is done by: 
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ID1 = r.P 

ID2 = PID ⊕ H (r.Ppub) 

Where PID(Pseudo-ID) = TK1║TK2 and r is the nonce 

The PN is 𝐼𝐼𝐷𝐷 =  𝐼𝐼𝐷𝐷1 ║𝐼𝐼𝐷𝐷2  

 

6.5.2 Unforgeability 
 

The one time signature of vehicles in DIVA is unforgeable due to the DDH 

problem in G being easy and the CDH problem being hard, it is difficult to derive 

SK1 and SK2 from ID1, Ppub and P. Therefore, It is infeasible to forge a valid 

signature. The signature is given by 

𝝈𝝈i = 𝑺𝑺𝑺𝑺𝟏𝟏
𝒊𝒊 +  𝑯𝑯𝟐𝟐(𝑴𝑴𝒊𝒊)𝑺𝑺𝑺𝑺𝟐𝟐

𝒊𝒊  

Where  

SK1 = s1.ID1 and SK2 = s2.H(ID1║ID2), 

 

6.5.3 De-Anonymizing and Revocation 
 

One of the advantages of DIVA is that even if the secret keys s1 and s2 are 

compromised, the adversary still only manages to obtain the tokens - TK1 and 

TK2. These tokens can only be linked to the original Identity of the user by the 

two trusted authorities and therefore, only the trusted authorities can reveal the 

true identity of the user.  
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6.6 Impact of DIVA in VANETs 
Some incentives for both parties i.e. the road users and the authorities are listed 

below: 

• The owner can opt for mandatory authentications in order to start the 

vehicle and after regular time intervals to ensure security of vehicle. 

• Authorities will be able to accurately identify the driver of a vehicle that is 

involved in any traffic violation and the driver will not be able to refute the 

evidence. 

• Toll collection can be automated by identifying users from their tokens 

and charging their linked accounts. 

 

The identities created in VANETs using the above method solve many security 

and privacy problems discussed previously. However, there are still some issues 

that need to be resolved. One of these is that as each vehicle can either generate its 

own Pseudonyms (PNs) or has public / private key pairs stored, therefore, a 

malicious vehicle will be able to use more than one identity (PN) at a time and 

claim multiple identities. This will be discussed in detail next.  

 

6.7 Sybil Attack in VANETs 
  

 In VANETs, a malicious or rogue node can launch a Sybil attack i.e. when 

a rogue node claims multiple identities simultaneously with malicious intent. In 

order to achieve this vehicle transmits multiple messages each with a different ID 

to indicate that it is not one vehicle but many vehicles thereby creating a situation 
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where these identities can be used with intent to disturb or damage the network. 

The IDs could either have been spoofed or stolen from compromised nodes. This 

is done to achieve a variety of goals including: creating a false impression of 

traffic congestion, outvote honest users, disable a functional network that works 

on a majority rule. Also, Sybil identities can also inject false information in the 

network causing it to degrade or collapse. The node that is claiming multiple 

identities is referred to as malicious and its fake identities are referred to as Sybil 

identities. The goal of detecting a Sybil attack is to identify the false (additional) 

identities being claimed by a malicious node as Sybil identities and additionally 

identify the malicious node if possible. 

 The wireless connectivity in VANETs is based on IEEE 802.11p protocol 

and provides wireless connectivity through the standard known as Wireless 

Access in Vehicular Environments (WAVE) or Dedicated Short Range 

Communication (DSRC). The WAVE / DSRC standard provides the basic radio 

standard for connectivity in VANETs. Vehicles use it to communicate with each 

other i.e. vehicle to vehicle (V2V) and with the infrastructure (Road Side Units - 

RSUs) i.e. vehicle to infrastructure (V2I) communication. Vehicular networks are 

very fast moving and highly dynamic due to which it is imperative that the 

information being shared is authentic and reliable. The interactions are short lived 

and information exchanged has to be processed quickly, therefore, it is important 

that the reliability of the information is assessed quickly. Therefore, like any other 

attack, there will be Sybil attacks in VANETs for various malicious intents and 

purposes and it is important to devise strategies to counter them. 
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6.7.1 Response to Sybil Attack 
 

 Sybil attack can be responded to in three steps; the first step is to detect 

that a Sybil attack is ongoing - attack detection, secondly the Sybil nodes have to 

be identified - Sybil identification and third the malicious (attacker) node has to 

be identified - attacker identification. In VANETs, none of the these are easy due 

to the nature of the network e.g. if a Sybil attack is established and there are two 

actual (physical) nodes in front then it is very difficult to ascertain which one is 

the malicious node creating the Sybil nodes 

 

6.7.2 Sybil Attack Detection Techniques in VANETs 
 

 Sybil attacks can occur in VANETs as the identities are not authenticated 

by the users and any vehicle carrying valid certificate / keys are allowed to 

become part of the network. However, due to the broadcast nature of VANETs a 

vehicle can use many different identities at the same time while transmitting [90]. 

In [83], [91] four methods of detecting Sybil attacks in wireless ad-hoc networks 

are identified: 

 

i.  Radio resource testing 

ii.   Identity registration 

iii.  Position verification.  

iv.   Key validation for random key pre-distribution. 
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 Radio resource testing is not suitable in VANETs as a malicious vehicle 

might be carrying more than one radio and is also not constrained in terms of 

resources. Similarly, identity registration does not prevent Sybil attacks in 

VANETs as identities can be obtained from compromised nodes or may be stolen. 

In vehicular networks, vehicles authenticate themselves with a central authority to 

obtain credentials that are used to become part of the network. The authentication 

establishes the identity of the users i.e. they are who they say they are and then 

they are issued with certified keys also called Pseudonyms (PNs). The security 

keys are used for signing their outgoing messages and are used by the receivers to 

authenticate the messages. However, due to privacy concerns hundreds of PNs are 

issued to one user so that they can be switched periodically to avoid being 

tracked. This means that vehicles can have many identities in their possession that 

can be used to claim multiple identities simultaneously which results in a Sybil 

[45] attack. Such attacks are not only difficult to detect but also have serious 

consequences. The attacking node is called the malicious user and the identities it 

claims are called the Sybil identities / nodes. The malicious user might use their 

own keys, as a user can have many keys, or keys stolen from others. Therefore, 

the reliance on PKI does not protect the network from Sybil attacks [90]. 

 In order to preserve privacy, strict registration is not feasible in VANETs 

[92]. Absence of a Central Authority (CA) in VANETs results in identity 

registration difficulties and this makes Sybil attacks possible [45]. Moreover, 

assigning a unique identity is not scalable and therefore, unsuitable for VANETs. 

Different mechanisms [83], [92] have been proposed for position verification 

including signal strength measurement in [93], [40], direction of arrival in [83]. 
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However, when traffic is heavy then it becomes difficult to determine direction of 

incoming messages.  

 In [94], a scheme is discussed where the Road Side Units (RSUs) are 

connected to the Central Authority (CA) to authenticate the vehicle identities. 

Also, the paper proposes that all PNs of a user hash to the same value so that a 

malicious vehicle can’t use its PNs to claim multiple identities. However, there 

are two problems with the proposed mechanism in [94]. First, the assumption of 

RSU being readily deployed along the highways is costly and depending on them 

can be problematic if they are compromised. Secondly, the scheme will not be 

able to detect Sybil nodes that are using PNs from different vehicles which are 

either stolen or obtained otherwise. 

 

6.7.3 Game Theory in Network Security 
 

 Game theory has mostly been used for modelling the cooperative 

behaviour of nodes in networks including VANETs in [95], [96], [97], [98], [99], 

[100]. However, in some cases, game theory has also been applied to network 

security. Game theory has been used for modelling user behaviour for information 

security in [101] & [102]. It has been used for intrusion detection as a game 

between the attacker and the defender in [103], [104], [105], [106], [107]. In 

[108], a game theoretic model is presented for vehicular networks that take into 

account attacker behaviour for defensive resource allocation. The model is based 

on betweenness centrality i.e. how many nodes are connected to a node and 

therefore, that node is most vulnerable to attack. The model then discusses 
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different strategies of the attacker and defender based on the most vulnerable node 

but does not deal specifically with Sybil attacks. In [103], a game theoretic model 

is proposed for collaborative networks such as wireless networks and social 

networks where good users detect bad users by playing the game repeatedly. The 

good users get a positive pay-off for collaborating with good users and negative 

pay-off for collaborating with bad users. This enables the user to detect malicious 

users and break ties with them. In [109], the author proposes a game theoretic 

model for a voting mechanism to out-vote a malicious vehicle injecting false data 

in vehicular networks. 

 The model in [103] does not provide a mechanism to detect the attacks. 

Moreover, the model is generalized for intruder detection and packet forwarding 

attacks. Similarly, the work in [109] deals with false information attacks without 

providing a method to detect false information attacks. However, this paper 

presents a mechanism that first detects a Sybil attack and then is used to detect the 

malicious node and its Sybil identities using a game theoretic model. 

 

 

6.8   Proposed Game Theoretic Approach to Sybil 
Node Detection in VANETs 
 

 Game theoretic approaches have been proposed to enhance and improve 

network security. Game theory helps in scenarios where multiple players with 

conflicting goals compete with each other while trying to maximize their own pay 

off or reward. Moreover, game theory is very useful in analysing different 
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scenarios before determining the appropriate course of action [110]. This 

approach provides a way to predict the behaviour of the attacker and strategies for 

the defender in different scenarios which helps in improving the network 

architecture and security.  

 The key to using a game theoretic approach is to formulate a game so that 

each player is able to maximize their own profit using a minimax strategy while 

reaching the Nash Equilibrium (NE). Nash Equilibrium is defined as a set of 

strategies such that each player (node) maximizes his / her pay-off given the 

strategies of other players. Moreover, NE is the selection of choices such that no 

player would deviate from this selection independently without compromising his 

reward. 

 The game is designed so that the best response of each user is to 

cooperate. We also discuss the actions of the honest nodes and the attacker in 

VANETs with an ability to launch a Sybil attack i.e. to claim multiple identities 

simultaneously with malicious intent. We define the Sybil attack as a game 

between the attacker and the honest nodes such that it captures the essential 

characteristics of a vehicular network. The game is a non-cooperative, dynamic 

game of complete information between an honest node H and a Sybil attacker S. 

These terms are explained below: 

i) Non-Cooperative Game: A game is non-cooperative if the entities are 

interacting competitively.  

ii) Dynamic Game: A dynamic game involves multiple stages or moves by the 

players and they get a payoff at the end of each stage / move. 
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iii) Complete Information Game: A game of complete information is one in 

which all players know the payoff of every player. 

In a game the strategy of the ith user is given by si and the set of strategies of all 

players except i is represented by s-i. The utility of a player i is given as ui. Now 

the Nash Equilibrium (NE) is given as: 

 

 𝑅𝑅𝑖𝑖(𝐷𝐷𝑖𝑖∗, 𝐷𝐷−𝑖𝑖∗ ) ≥  𝑅𝑅𝑖𝑖�𝐷𝐷𝑖𝑖 , 𝐷𝐷−𝑖𝑖∗ � (6-1) 

where s* is the dominant strategy of the players. The above expression means that 

the NE is the outcome when both players are playing their dominant strategy (to 

maximize their payoff) such that no player can gain by deviating independently 

from this strategy. 

 

6.8.1 Game Model 
 

 The game model is simplified for explanation with one Verifier V and two 

other (physical or actual) nodes: Node 1 (N1) & Node 2 (N2). The same model 

will then be expanded to consider situation when there are more than 3 nodes in 

total. The verifier knows that one of N1 or N2 is malicious but it doesn't know 

which one. Therefore, V queries N1 & N2 if they have had contact with the new 

nodes before. The Payoff or Utility matrix of the first stage of the proposed game 

is shown in Table 6.2. The two nodes and their responses are shown along with 

their pay-offs. The two possible strategies of the nodes are a) Reply or b) Don't 

Reply to a query from another (third node). If one node replies and the other 
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doesn't then the node that replies receives a positive pay-off and the other one 

receives a negative pay-off and all Sybil nodes become suspect. Also, the node 

that doesn't reply will subsequently be highlighted as the suspect node. This 

means that not replying is a strictly dominated strategy and can never be the best 

response so will never be chosen. Therefore, the dominant strategy in this case is 

for both nodes to reply (either honestly or dishonestly), this is the first stage of the 

two stage game. An example pay-off matrix is shown in Table 6.3 in which the 

dominant strategy is highlighted in yellow and is the best response for both 

vehicles.  

  

Node 2 
Node 1 Reply Don't Reply 

Reply (𝜶𝜶𝑩𝑩,𝜶𝜶𝑩𝑩) (𝜶𝜶𝑨𝑨,−𝜶𝜶𝑨𝑨) 

Don't Reply (−𝜶𝜶𝑨𝑨,𝜶𝜶𝑨𝑨) (𝜶𝜶𝑩𝑩,−𝜶𝜶𝑩𝑩) 

Table 6.2: Game Pay Off / Utility Matrix for Stage - 1 

 

Node 2 
Node 1 Reply Don't Reply 

Reply (1, 1) (10, -10) 

Don't Reply (-10, 10) (-5, -5) 

Table 6.3: Example Utility Matrix for Stage - 1: 
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Node 2 
Node 1 Seen Before Not Seen Before 

Seen Before (A, A) (0, 0) 

Not Seen Before (0, 0) (A, A) 

Table 6.4: Game Pay Off / Utility Matrix for Stage - 2 

 

Node 2 
Node 1 Seen Before Not Seen Before 

Seen Before (10, 10) (0, 0) 

Not Seen Before (0, 0) (10, 10) 

Table 6.5: Example Utility Matrix for Stage - 2 

 

The second stage of the game is shown in Table 6.4. If N1 replies honestly that it 

hasn't heard from the new nodes before and N2 replies that it has heard from them 

before then both nodes receive a zero (or negative) pay-off. This means that V 

cannot distinguish between the malicious and honest node but can safely assume 

that all the suspect nodes (identities) are Sybil nodes. Table 6.5 shows an example 

matrix for stage 2 with numerical weights allocated and the dominant strategy of 

both vehicles is highlighted in yellow which is the best response for both vehicles 

i.e. both vehicles agree with each other when responding to the verifier vehicle.  
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6.8.2 Finding Nash Equilibrium 
 

 The solution of the proposed model is finding the NE so that it is in the 

best interest of all users to be honest. Therefore, two example payoff matrices are 

created as shown in Table 6.3 and Table 6.5 to represent the game as an extensive 

form game as shown in Figure 6-7. Extensive form game allows sequencing of 

player’s possible moves, their possible choices at every decision point and the 

pay-offs received by each player. The extensive form representation allows the 

whole game to be represented in one diagram. Backward induction is then used to 

find the solution to the game which is shown by the dotted lines. Backward 

induction means that the solution to the game is found by starting from the last 

stage of the game by looking at the dominant strategy and working upwards to 

find the Nash Equilibrium at each stage. Backward induction solution is shown 

using the dotted lines in Figure 6-7. The solution shows that in order to maximize 

their payoff, both honest and malicious nodes will be truthful which will help 

identify the Sybil nodes. In stage 1, the NE is Reply-Reply and in stage 2, there 

are two Nash equilibriums i.e. Yes-Yes and No-No. This means that both nodes 

are better off by being honest and worse off if they are dishonest (disagree with 

each other). 
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Figure 6-7: Extensive Form Game Representation and Game Solution using 
Backward Induction 

 

 

 

6.8.3 Attack Model 
 

There are different ways in which a Sybil attack can take place in VANETs. We 

will be looking at the Sybil attack by making some assumptions. 

Assumptions: We make the following assumptions in our game theoretic model: 
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i. The vehicles are equipped with directional antennas so they can 

determine whether a transmission has been received from their 

front or back. 

ii. The verifier node can choose other nodes that are some distance 

ahead of it. 

iii. Majority of the nodes in the network are honest. 

 

6.8.4 Sybil Attack Detection 

 In vehicular networks, the nodes are communicating with other nodes and 

sharing their position and speed info periodically. This enables each node to 

monitor the traffic conditions in their surroundings. This means that vehicles will 

approach each other gradually but if there are a group of vehicles that suddenly 

appear in the vicinity of a vehicle then it is an indication of a Sybil attack. This 

can be seen in Figure 6-8 where a vehicle launches a Sybil attack by reporting 

false density parameter starting from t=285 sec whereas other nodes are reporting 

a lower value. Also, there is a direct correlation of speed of vehicles with the 

number of vehicles i.e. if there are more vehicles in a particular area then the 

speed of vehicles will decrease. Therefore, if a Sybil attack is launched then the 

number of vehicles in an area increases suddenly but the speed of vehicles does 

not change and the reason is that the speed of vehicles is changing based on the 

actual number of vehicles and not on the number of vehicles being reported.  
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Figure 6-8: Sybil Attack Detection in VANETs 
 

 

6.8.5 Strategic Physical Separation 
  

 One of the results that we were able to obtain is that there is a strong 

advantage to having the Verifier and the other two nodes in a line or 

longitudinally placed as shown in Figure 6-9. This enables the verifier V to query 

the other two nodes as the other two nodes should hear / interact with the 

suddenly appearing nodes before they become visible to V. We use this to our 

advantage in detecting malicious and Sybil nodes as the directional antenna in 

vehicles is able to determine if the transmission is being received from ahead or 

behind the vehicle. 



Chapter 6 : Identity Management and Sybil Attack Detection in VANETs 

150 
 

 

 

Figure 6-9: Sybil Attack in VANETs 

 

 

6.8.6 Revocation and Reporting 

Once the nodes N1 & N2 are given negative pay-offs, they are monitored for a 

while and the negative score is recorded. Subsequently, this negative score can be 

used to confirm whether a node is indeed malicious or not e.g. if the verifier 

overtakes N1 and it is still receiving the transmission of the fake Sybil nodes from 

in front of it then it can safely decide that N2 is malicious and N1 is honest. This 

information can then be shared with other nodes so that they can be ignored / 

revoked. 
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6.8.7 Detecting Sybil Nodes with only two physical nodes 
 

6.8.7.1   Malicious Node between two Honest Nodes 

 One of the cases we have considered is when the malicious node N1 is in 

between two nodes i.e. the verifier V and another node N2 that have been in 

contact with for a while in the past (shown in Figure 6-9). As shown, the 

malicious node N1 creates the Sybil nodes and transmits their locations as shown 

dotted in the figure. As the Sybil nodes appear suddenly, the verifier V is 

suspicious of these nodes and it knows that they haven't caught up from behind it. 

So, V reconfirms the same by asking N1 and N2. Now the two stage game starts: 

In the first stage the verifier V queries N1 and N2 if they have seen / encountered 

the Sybil nodes before. The nodes N1, N2 have the option of replying or not 

replying. If N2 replies and N1 doesn't reply then N1 is the malicious node and the 

Sybil identities are assumed to have been generated by it. This situation is shown 

in Table 6.2 and Table 6.3 i.e. N2 gets a positive pay-off and N1 gets a negative 

pay-off. If both N1 & N2 reply and N1 says that it has not encountered them 

before and N2 replies that it has encountered them before then all new nodes are 

considered suspect (Sybil) nodes and are discarded as false nodes. Also, both N1 

and N2 get a negative pay-off as shown in Table 6.4 and Table 6.5. In this case, it 

will not be possible to determine whether N1 is malicious or N2 but at the same 

time all Sybil nodes are detected and their positions are discarded.  
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6.8.7.2   Malicious Node in front of two Honest Nodes creating Sybil 
identities around them 

 The second case we consider is when a malicious node N2 is in front of 

two nodes V and N1. This is shown as case 2 in Figure 6-9 where the Sybil nodes 

are generated as shown. As the Sybil nodes appear all of a sudden close to V, 

therefore, V queries N1 and N2. Again, if N1 and N2 give conflicting replies then 

both get a negative pay-off but all new nodes will be deemed suspect and 

highlighted as Sybil nodes. Once nodes are marked as Sybil nodes then their 

positions and future messages are discarded. 

 

6.8.7.3   Malicious Node creating Sybil identities in front of two honest 

nodes 

 In this case, if the Sybil identities are created in front of the two honest 

nodes i.e. V and N1 and they become visible to V and N1 gradually as they come 

within range then there is no way of detecting the Sybil nodes by the proposed 

method.  

 

6.8.8 Detecting Malicious and Sybil Nodes when number of 
honest nodes are greater than Malicious Nodes 
 

 We now expand the original scenario and consider the case when there are 

n number of malicious nodes and p number of honest nodes in range of the 

verifier V. Now as long as p is greater than n i.e. the number of honest nodes is 

greater than the number of colluding malicious nodes then the verifier V will be 
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able to play the same game and detect the malicious nodes and the Sybil nodes. 

However, now the game pay-off for the second stage will become 𝑨𝑨 𝒑𝒑�  instead of 

A. 

6.9 Performance Evaluation of Proposed Game 
Theoretic Model  
 

 In order to check the proposed model it is simulated using OMNET++, 

SUMO [81] and VACaMobil [82]. These parameters are chosen as they are 

typical of a highway scenario and number of rogue nodes are varied to test the 

system under various conditions. 

 

Simulation Parameter Value 
Simulation Time  500 sec 
Scenario  3 Lane Highway 
Highway Length  5-Kms 
Max Vehicle Speed  28 m/sec or 100 Km/hr 
Mobility Tool  VACaMobil 
Network Simulation Package  OMNET++ 
Vehicular Traffic Generation Tool  SUMO 
Vehicle Density  20-30 veh / Km 
Wireless Protocol  802.11p 
Rogue Vehicles Varied from 5% to 40% 
Transmission Range  500m in each direction 

Table 6.6: Simulation Parameters 

 

 The scenario is simulated with parameters shown in Table 6.6. In order to 

validate the model we implement the game theoretic model in a vehicle which is 

the verifier vehicle that is able to challenge the vehicles in front of it and assign 

them pay-offs depending on their response based on Table 6.2 and Table 6.4. 
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Malicious vehicles are introduced in the simulation that start generating messages 

using different (Sybil) identities in order to give the illusion of more vehicles in 

the vicinity. The number of malicious vehicles is then increased and the results are 

recorded.  

 

6.9.1 Comparison of Proposed Game Theoretic Model with 
previous schemes 
 

 In this section we discuss the performance of the proposed mechanism as 

compared to two other existing works. We compare our work to the Cooperative 

Location Verification (CLV) scheme given in [111] and Secure Location 

Verification (SLV) given in [112]. We compare our proposed scheme in terms of 

the successful detection rate of the malicious vehicles when the percentage of 

malicious vehicles increases from 5% to 40%. The comparison of the proposed 

method with CLV and SLV is shown in Figure 6-10. 
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Figure 6-10: Comparison of Proposed Game Theoretic Scheme with previous 
schemes 

6.9.2 Effectiveness of Game Theory 
 

 The adoption of game theory works very well to detect and correct Sybil 

attacks in VANETs. The game is designed so that it is in the best interest of all 

players to act honestly. As vehicles try to increase their pay-off, they will have to 

be honest. By being dishonest, the illusion they try to create is still detected and 

they get a negative pay-off which will lead to their revocation. The two stage 

game works effectively to detect Sybil nodes and malicious nodes that create 

them. 

 

6.10   Summary & Research Methodology 

The proposed scheme DIVA solves an important practical problem in 

VANETs i.e. how should the user be revoked / penalised effectively while 

preserving the user privacy. DIVA is based on combining the identity of the driver 
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(Driver's License etc) and the identity of the vehicle (Vehicle registration number 

etc.) to produce a new identity known as Digital ID (DID) in VANETs. The driver 

and the vehicle authenticate themselves with two different trusted authorities and 

obtain different keys. The advantage of this is that the privacy of the user is 

preserved and the vehicle or the driver can't be identified by anyone other than the 

trusted authorities working together. If a situation arises that the user has to be 

identified then both trusted authorities have to work together to reveal the true 

identity of the user. The use of the driver's real identity will force the user to 

behave honestly and responsibly and the authorities will be able to penalise them 

if he doesn't. 

DIVA enables the user to preserve their privacy by changing their 

Pseudonyms after generating it themselves. This obviates the generation and 

replenishing problem of PNs. It also reduces the storage requirement and cost of 

the OBU. The proposed scheme uses IBE to encrypt its communication with the 

RSUs thereby securing its communication. We show that our scheme is more 

efficient in terms of faster computation when compared with two other similar 

privacy preserving encryption schemes.  

In this chapter, a game theoretic model is also presented to detect the 

wrong use of the identities in VANETs. A game theoretic framework is developed 

and shared that can detect malicious and Sybil nodes. The proposed method is 

unique as it can successfully detect the Sybil nodes even if the number of 

malicious nodes and honest nodes in the network is the same. However, in this 

situation the verifier is unable to detect between the honest and malicious 

vehicles. Moreover, the proposed scheme can successfully identify the malicious 
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nodes and all Sybil nodes as long as the number of honest nodes is greater than 

the number of colluding malicious nodes. Moreover, the proposed game theoretic 

model is not dependent on any hardware such as radars, Lidars or RSUs.  
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Chapter 7 : Conclusion and Future Work 
 

This thesis presented an overview of the security and privacy issues in VANETs. 

The connected car and vehicular networks will be a reality in the next few years as 

the required technology is already available and there is already demand for it. 

The requirement of the user to be connected anywhere-anytime will also fuel the 

deployment of vehicular networks. This thesis covered the existing works that 

proposed solutions to the identified problems in VANETs. Trust and reputation 

has long been used in online networks as a measure of trustworthiness of the user 

and the information that is being shared. Researchers have proposed different 

mechanisms to give reputation scores and maintain them in both a centralized and 

decentralized manner. However, for ad-hoc and dynamic networks such as 

VANETs, it is not very straight forward. The difficulties arise due to the inherent 

nature of VANETs i.e. nodes are fast moving, topology is changing continuously, 

the number of nodes can be very large, the number of nodes can increase very 

sharply and most importantly the information being shared in VANETs can have 

life threatening consequences. Therefore, trust and reputation based schemes are 
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not very suitable for VANETs and a different approach is needed that fulfils the 

stated requirements.  

 

7.1 Contributions 
 

The main problem that has been addressed in this thesis is the security and privacy 

issues associated with the VANETs. The overall contributions of this thesis are 

discussed below briefly. 

 

7.1.1 Establishing Security and Privacy Requirements for 
VANETs 
 This thesis investigated the various security and privacy issues in the 

emerging vehicular ad-hoc networks. The traditional security and privacy 

techniques employed in other sensor networks are not feasible for vehicular 

networks. Similarly, trust and reputation schemes are not suitable due to the fast 

moving and ephemeral nature of VANETs. Due to the unique nature of VANETs 

the security and privacy requirements also differ from other ad-hoc sensor 

networks. Therefore, the security and privacy requirements are established and 

their dependencies are highlighted so that they can be achieved and implemented. 

 

7.1.2 Implementing a Data Traffic model for VANETs 
 A data traffic model for VANETs is implemented that obviates revocation 

lists which are difficult to implement and use. The proposed method is a data 



Chapter 7 : Conclusion and Future Work 

160 
 

centric method for detecting rogue nodes in VANETs. The proposed data centric 

method - C-DAC, is not only suitable for VANETs but is also very effective in 

conveying information to long distances without causing congestion in the 

network by avoiding broadcast storms. This model gives the proposed system the 

ability to define a normal behaviour for VANETs and then classify any deviations 

from this as anomalous behaviour. 

 

7.1.3 Developing a Host Based IDS for VANETs 
 This thesis also presents a host based intrusion detection system for 

VANETs that is based on the VANET model developed. The proposed host based 

IDS has the ability to detect false data injected into the network by rogue nodes 

automatically based on hypothesis testing and t testing. The IDS is validated by 

extensive simulations under different conditions and the effect of the parameters 

are recorded. The IDS performance is compared with other previous schemes [86] 

and [71], proposed for VANETs and is found to be better in terms of true 

positives, false positives and CPU overhead.  

 

7.1.4 Proposing a new ID Management Technique in 
VANETs 
 The identity in VANETs is also a tricky issue and this thesis presents a 

method - DIVA, to generate and manage these identities so that the user's privacy 

can be assured while providing non-repudiation and traceability to the trusted 

authorities. The thesis proposes to merge the identities of the driver and the 
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vehicle together to form a new digital identity. The power of completely de-

anonymizing a user is split between two authorities so as to improve the security 

and privacy from the user’s perspective. The performance of the presented scheme 

DIVA is compared to other schemes namely PACP [24] and ECPP [28], and is 

found to be more efficient in terms of the latency at the RSU.  

 

7.1.5 Developing a Game Theoretic model for VANETs to 
detect Sybil Attacks 
 The thesis also discusses Sybil attacks in VANETs and presents a method 

to detect the malicious and Sybil nodes based on game theory. The game theoretic 

model is described in detail and the solution to it is discussed. The proposed 

mechanism has the ability to detect the malicious nodes and their generated Sybil 

nodes. The proposed method also shows that the vertical separation of the 

vehicles can be helpful in determining the truthfulness of the identities without the 

use of any hardware. The model is validated by simulation and is found to be 

better than the existing methods CLV [113] and SLV [114].  

 

7.2 Future Work 
 Due to the unique nature of VANETs and their imminent deployment, it is 

imperative that these security and privacy issues are addressed as soon as 

possible. Some of the areas on which we plan to continue our research are 

discussed below. 
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7.2.1 Reporting / Revoking Rogue Nodes 
This thesis has presented an IDS which identifies rogue nodes based on a 

data centric mechanism. However, this work doesn’t address the problem of 

dealing with these rogue nodes i.e. how should they be reported to the authorities 

and to other vehicles and any revoking mechanism. Therefore, the work can be 

extended by proposing mechanisms that address these issue and present a 

solution.  

 

7.2.2 Securing Autonomous Vehicles against Remote 
Hacking 

This thesis does not deal with the hacking of autonomous vehicles. 

However, this is going to be a major challenge going forward in the development 

and deployment of Autonomous vehicles. It is clear that the control systems and 

the messaging part of the vehicle will be connected to the On-Board Unit 

(OBU/CPU) of the vehicle. But this introduces the problem of remote hacking. 

Therefore, addressing this problem can be a very pertinent and important piece of 

work for the future.  

 

7.2.3 Using RSUs to improve the performance of Data 
Centric Schemes 
 The data centric work presented in the thesis does not use RSUs for rogue 

node detection. The main reason for this was the high cost of deployment of 

RSUs, the serious consequences if they are compromised and their deployment at 

regular intervals of the highway. However, it is clear that RSUs will be deployed 
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to some extent at some stage of the VANET deployment. Using RSUs to assist 

vehicles in computing the correct value of parameters can be very beneficial for 

the network. The RSUs have a unique advantage as they can be trusted by the 

nodes in the network, therefore, the RSUs can calculate a global parameter for 

each region and share this value with the vehicles in that region. This will help the 

vehicles in reducing the error in their own readings and calculation of the global 

parameter.  

 

7.2.4 Extending the developed Intrusion Detection System to 
detect other attacks 

The proposed IDS in the thesis detects false information attacks. However, 

the proposed work can be extended by modifying the IDS to detect other types of 

attacks in VANETs such as Denial of Service and false position reporting by 

rogue nodes in the network or a stationary user outside the network. This can be 

done by simulating the attacks using the developed platform and then detecting 

them with the help of anomaly or rule-based detection. 

 

7.2.5 Ability to anonymously share data and access Location 
Based Services 

As VANET deployment spreads, it is reasonable to expect that the 

vehicles will share not just the traffic information but much more. The readings 

from hundreds of on-board sensors can be used to form weather or traffic maps. 

Similarly, Location Based Services (LBS) should be accessible to VANET users 

without compromising on Privacy. Also, vehicles can share entertainment 
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material amongst themselves but it is imperative that the anonymity of both the 

users is ensured. Therefore, it is important that schemes are devised and 

implemented that enable users to share data and access LBS without worrying 

about their privacy and security. 
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