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Abstract

The systemic risk (SR) has been shown to play an important role in explaining
the �nancial turmoils in the last several decades and understanding this source of risk
has been a particular interest amongst academics, practitioners, and regulators. The
precise mathematical formulation of the SR is still scrutinised, but the main purpose is
to evaluate the �nancial distress of a system as a result of the failure of one component
of the �nancial system in question. Many of the mathematical de�nitions of the SR
are based on evaluating expectations in extreme regions and therefore, Extreme Value
Theory (EVT) represents the key ingredient in producing valuable estimates of the SR
and even its decomposition per individual components of the entire system. Without
doubt, the prescribed dependence model amongst the system components has a ma-
jor impact over our asymptotic approximations. Thus, this paper considers various
well-known dependence models in the EVT literature that allow us to generate SR
estimates. Interestingly, our �ndings reveal sensible results. That is, the SR has a
signi�cant impact under asymptotic dependence, while weak tail dependence, known
as asymptotic independence, produces an insigni�cant loss over the regulatory capital.
Keywords: asymptotics; dependence; max-domain of attraction; regular variation;

rapid variation; systemic risk
Mathematics Subject Classi�cation: Primary 62P05; Secondary 62H20, 60E05

1 Introduction

Let (
;F ;P) be a probability space and denote by L+(P) the set of non-negative random
variables with ultimate right tails. Consider X 2 L+(P) and Y 2 L+(P) as two random
insurance risks possessing distribution functions F and G, respectively. The corresponding
survival functions are F := 1� F and G := 1�G.

�Corresponding author: Phone: +86-22-23501233.
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The systemic risk (SR) has played an important role in explaining the recent �nancial
turmoils from the banking and insurance industries and understanding this source of risk
has been a particular interest amongst academics, practitioners, and regulators. The precise
mathematical formulation of the SR is still debated, but the main purpose is to evaluate the
�nancial distress of a system as a result of the failure of one component of the �nancial system
in question. We follow in this paper the precise methodology from Acharya et al. (2012),
where the SR represents the expected capital shortfall of the system when one component
of the system is in �nancial distress. The system could be viewed as the entire industry or a
conglomerate/group of �rms, while individual components could be a single �rm within the
industry, a legal entity/subsidiary of the group, or even a line of business. In a nutshell, this
paper evaluates conditional expectations of the under-capitalisation of the system when one
component is under-capitalised. This could be viewed as an insurance de�nition, rather than
a corporate �nance de�nition, but it is su¢ ciently general to be acceptable for applications
within banking and insurance industries.
Alternative SR de�nitions to that provided in Acharya et al. (2012) have appeared in

various forms in the existing literature. For example, a quite similar approach is given in
Adrian and Brunnermeier (2009), while speci�c SR de�nitions to a generic banking system
are investigated in Acharya (2009) and Rogers and Veraart (2013). A more comprehensive
work is given in Chen et al. (2013), where an axiomatic approach to the SR is developed.
Finally, Feinstein et al. (2016) investigates a more general mathematical representation for
the SR, which incorporates many of the previously-mentioned approaches.
We choose the more simple SR de�nition from Acharya et al. (2012), since it is more

transparent than all other de�nitions from the pedagogical point of view. That is, we consider
the following expected shortfall:

�X;Y (q) := E
h�
X � t1(q)

�
+
jY > t2(q)

i
; (1.1)

where t1(q) and t2(q) are two positive functions for q 2 (0; 1) such that limq"1 t2(q) = 1,
and by de�nition, b+ := maxfb; 0g for any real number b. The de�nition from (1.1) is very
�exible and it is very sensitive to the chosen extreme region, which naturally could be related
to the level of available capital. In this paper, we aim to �nd asymptotic evaluations for
�X;Y (q) as q " 1.
The rest of this paper consists of four sections. Section 2 introduces some necessary

preliminaries of various concepts and notations, Section 3 shows our main asymptotic results
for �X;Y (q), Section 4 provides some SR applications of our main results, and all proofs are
relegated in Section 5.

2 Preliminaries

Let
�
Z;Zi; i � 1

	
be a sequence of independent and identically distributed random variables

with common distribution function V possessing an ultimate right tail. Extreme Value
Theory (EVT) assumes that there are constants an > 0 and bn 2 (�1;1) such that

lim
n!1

P
�
an

�
max
1�i�n

Zi � bn
�
� x

�
= H(x); x 2 (�1;1):
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In this case, H is called an Extreme Value Distribution and V is said to belong to the max-
domain of attraction of H, denoted by V 2 MDA(H). By the Fisher-Tippett Theorem (see
Fisher and Tippett, 1928), if the limit distribution H is non-degenerate, then it is of one of
the following two types: ��(x) = expf�x��g for all x > 0 with � > 0, or �(x) = exp

�
�e�x

	
for all x 2 (�1;1). In the �rst case, Z has a Fréchet tail, which implies that its survival
function is regularly varying at 1 with index �� for some � > 0, i.e.

lim
t!1

V (tx)

V (t)
= x��; x > 0:

We signify the above relation by V 2 R��. In other words, V 2 MDA(��) if and only if
V 2 R��. In the second case, Z has a Gumbel tail and it is well-known that there exists a
positive auxiliary function a(�) such that a(t) = o(t) as t!1 and

lim
t!1

V (t+ xa(t))

V (t)
= e�x; x 2 (�1;1): (2.1)

As usual, we write V 2 MDA(�) if (2.1) holds. Additionally, by Theorem 3.3.26 of Em-
brechts et al. (1997), the auxiliary function a can be chosen such that

a(t) =
1

V (t)

Z 1
t

V (s)ds; t 2 (�1;1): (2.2)

Moreover, relation (2.1) implies that Z has a rapidly varying tail, written as V 2 R�1,
which by de�nition means that

lim
t!1

V (tx)

V (t)
= 0; x > 1:

We refer the reader to Bingham et al. (1987) or Embrechts et al. (1997) for further details
of the above statements.
For a distribution function V with an ultimate right tail, we de�ne its lower Matuszewska

index as

��V := sup

(
� log V

�
(x)

log x
: x > 1

)
2 [0;1];

where V
�
(x) := lim supt!1 V (tx)=V (t). It is clear that 0 < �

�
V � 1 if and only if V

�
(x) < 1

for some x > 1. In this case, Proposition 2.2.1 of Bingham et al. (1987) tells us that, for
every 0 < �0 < ��V , there are some K > 1 and t0 > 0 such that the relation

V (tx)

V (t)
� Kx��0 (2.3)

holds for all tx > t > t0. It is not di¢ cult to see that if V 2 R�� for some 0 < � � 1 then
��V = �.
We now introduce the concept of copula, which is a commonly-used tool for measuring

dependence amongst random variables. Let Z1 and Z2 be two random variables with dis-
tribution functions V1 and V2, respectively. It is well-known that the dependence structure

3



associated with the distribution of a random vector can be characterized in terms of its cop-
ula, whenever it exists. A bivariate copula is a two-dimensional distribution function de�ned
on [0; 1]2 with uniformly distributed marginals. Due to Sklar�s Theorem (see Sklar, 1959), if
V1 and V2 are continuous, then there exists a unique copula, C(�; �), such that

P
�
Z1 � x; Z2 � y

�
= C

�
V1(x); V2(y)

�
:

Similarly, the survival copula, Ĉ(�; �), is de�ned as the copula corresponding to the joint
survival function satisfying

P
�
Z1 > x;Z2 > y

�
= Ĉ

�
V 1(x); V 2(y)

�
:

Clearly, C(�; �) and Ĉ(�; �) are connected by the following relation:

Ĉ(u; v) = u+ v � 1 + C(1� u; 1� v); (u; v) 2 [0; 1]2:

We refer the reader to Nelsen (2006) for a comprehensive discussion on copulas.
For a non-decreasing function f(�), de�ne its generalized inverse function by

f (y) = inf
�
x : f(x) � y

	
;

where by convention, inf ; =1. Two random variables Z1 and Z2 with distribution functions
V1 and V2 are said to be asymptotically independent if

lim
q"1
P
�
Z2 > V

 
2 (q)jZ1 > V  1 (q)

�
= 0: (2.4)

Moreover, Z1 and Z2 are said to be asymptotically dependent if

lim inf
q"1

P
�
Z2 > V

 
2 (q)jZ1 > V  1 (q)

�
> 0: (2.5)

Recall that the concept of asymptotic independence stems from De�nition 5.30 of McNeil
et al. (2005) and not only, while the asymptotic dependence is related to equation (1.2) of
Asimit et al. (2011). It is not di¢ cult to �nd that, if Z1 and Z2 are continuous random
variables with copula C(�; �), then (2.4) and (2.5) can be respectively rewritten as

lim
u#0

Ĉ(u; u)

u
= 0 and lim inf

u#0

Ĉ(u; u)

u
> 0: (2.6)

An important notion for detailing our examples is the vague convergence. Let f�n;n � 1g
be a sequence of measures on a locally compact Hausdor¤space B with countable base. Then,
�n converges vaguely to some measure �, written as �n

v! �, if for all continuous functions
f with compact support we have

lim
n!1

Z
B
f d�n =

Z
B
f d�:

Note that we deal only with Radon measures, i.e. measures that are �nite for every compact
set in B. A thorough background on vague convergence is given by Kallenberg (1983) and
Resnick (1987).
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We end this section with a summary of notations used in this paper. Unless otherwise
stated, all limit relationships hold as q " 1 or t!1, which will be further speci�ed whenever
a relation appears. For two positive functions f1(�) and f2(�), we write f1(�) � f2(�) if
lim f1(�)=f2(�) = 1, write f1(�) = O

�
f2(�)

�
if lim sup f1(�)=f2(�) < 1, write f1(�) = o

�
f2(�)

�
if lim f1(�)=f2(�) = 0, and write f1(�) � f2(�) if both f1(�) = O

�
f2(�)

�
and f2(�) = O

�
f1(�)

�
.

Finally, 1f�g represents the indicator function.

3 Main Results of Expected Shortfall

This section investigates asymptotic approximations for the expected shortfall �X;Y (q) de-
�ned in (1.1). Our main results require a general assumption stated as Assumption 3.1, in
which (3.1) describes a general dependence structure including both asymptotic indepen-
dence and asymptotic dependence cases. Recall that the distribution functions of X and Y
are F and G, respectively.

Assumption 3.1. Let F (t) = O
�
G(t)

�
and let the limit

lim
t!1

P
�
X > txjY > t

�
:= h(x) 2 [0; 1] (3.1)

exist almost everywhere for x > 0.

Remark 3.1. Clearly, Assumption 3.1 may not be symmetric with respect to X and Y , i.e.
given that (X;Y ) satis�es Assumption 3.1 we can not conclude that the same assumption
holds for (Y;X). However, if the limit

lim
t!1

G(tx)=F (t) := �(x) 2 (0;1) (3.2)

exists at x = 1 and almost everywhere for other x > 0, then (X; Y ) satis�es Assumption 3.1
if and only if the same assumption holds for (Y;X). In fact, if (3.1) holds for (X; Y ) then
we have for almost all x > 0 that

lim
t!1

P (Y > txjX > t) = lim
t!1

P
�
Y > tx;X > tx 1

x

�
G(tx)

G(tx)

F (t)
= h

�
1=x
�
�(x);

provided that condition (3.2) holds. This indicates that (3.1) also holds for (Y;X) with h(�)
replaced by h(1=�)�(�). Similarly, one may verify that if relation (3.1) holds for (Y;X) with
a function h(�), then (3.1) also holds for (X; Y ) with a function h(1=�)=�(1=�).

Remark 3.2. It is not di¢ cult to check that if F 2 R�� with 0 < � � 1, then (X;X)
satis�es Assumption 3.1 with

h(x) =

�
1; 0 < x � 1;
x��1f�<1g + 0 � 1f�=1g; x > 1:

For properties of the function h in (3.1), we refer the reader to Lemma 3.1 of Asimit
and Li (2016). The following Proposition 3.1 gives some su¢ cient conditions to verify the
asymptotic independence and asymptotic dependence between X and Y that satisfy As-
sumption 3.1 within the scope of regular variation and rapid variation.
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Proposition 3.1. Let X and Y satisfy Assumption 3.1.

(i) Assume that F 2 R��, G 2 R�� for some � > 0, and limt!1 F (t)=G(t) = r for some
r � 0. Then, X and Y are asymptotically independent if there is some 0 < r1 < r1=�

(hence, r > 0 must hold) such that h (r1) = 0. Moreover, X and Y are asymptotically
dependent if there is some r2 > r1=� such that h (r2) > 0.

(ii) Assume that F 2 R�1, G 2 R�1, and F (tr) � G(t) as t ! 1 for some r > 0.
Then, X and Y are asymptotically independent if there is some 0 < r1 < r such that
h (r1) = 0. Moreover, X and Y are asymptotically dependent if there is some r2 > r
such that h (r2) > 0.

We are now ready to state our �rst asymptotic result for �X;Y (q), which is provided in
the next theorem. Recall that ��F represents the lower Matuszewska index of F as de�ned
in Section 2.

Theorem 3.1. Consider the expected shortfall �X;Y (q) de�ned as (1.1). Assume that 1 <
��F � 1 and Assumption 3.1 holds. If limq"1 t1(q)=t2(q) = c for some c � 0, then

lim
q"1

�X;Y (q)

t2(q)
=

Z 1
c

h(x)dx: (3.3)

Observing (3.3), one may �nd that this relation could fail to provide a precise approxi-
mation for �X;Y (q) under various asymptotic independence cases, for which the function h
from (3.1) is often 0 on (c;1). To overcome this drawback, we next introduce between X
and Y a general asymptotic independence assumption, under which a precise approximation
for �X;Y (q) can be obtained within the scope of regular variation and rapid variation.

Assumption 3.2. There is some � > 0 such that

P
�
X > t1; Y > t2

�
� �F

�
t1
�
G
�
t2
�
;
�
t1; t2

�
! (1;1):

Clearly, if (X; Y ) satis�es Assumption 3.2, then it satis�es Assumption 3.1 with h(x) �
0. Hence, Assumption 3.2 is actually a re�nement to Assumption 3.1 in the asymptotic
independence case. It should be clear how to translate Assumption 3.2 into a copula form.
That is, if (X;Y ) has copula C(�; �), then there is some � > 0 such that

Ĉ(u; v) � �uv; (u; v)! (0+; 0+):

The above relation clearly represents the asymptotic independence in view of (2.6). It is
interesting to note that Li (2016) proposes Assumption 3.2 in the context of ruin theory and
provides many copula examples to illustrate the high degree of generality of this assumption.
Some commonly-used copulas satisfying Assumption 3.2 are listed in Examples 3.1�3.3, but
for further details one could �nd in Section 2 of Li (2016).

Example 3.1. The Farlie-Gumbel-Morgenstern (FGM) copula

C(u; v) = uv + �uv(1� u)(1� v); � 2 (�1; 1];

satis�es Assumption 3.2 with � = 1 + �.
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Example 3.2. The Ali-Mikhail-Haq copula

C(u; v) =
uv

1� �(1� u)(1� v) ; � 2 (�1; 1];

satis�es Assumption 3.2 with � = 1 + �.

Example 3.3. The Frank copula

C(u; v) = �1
�
ln

 
1 +

�
e��u � 1

� �
e��v � 1

�
e�� � 1

!
; � 6= 0;

satis�es Assumption 3.2 with � = �e�=
�
e� � 1

�
.

Our second main asymptotic result for �X;Y (q) is now given in the next theorem.

Theorem 3.2. Consider the expected shortfall �X;Y (q) de�ned as (1.1) with limq"1 t1(q) =

1. Assume that Assumption 3.2 holds.

(i) If F 2 R�� for some � > 1, then

�X;Y (q) �
�

�� 1t1(q)F
�
t1(q)

�
; q " 1:

(ii) If F 2 MDA(�) with an auxiliary function a, then

�X;Y (q) � �a (t1(q))F
�
t1(q)

�
; q " 1:

4 Applications to Systemic Risk

This section is devoted to apply our main �ndings from Section 3 to provide SR evaluations
within a system consisting of a �nite number of components. Assume that there are d lines
of businesses or legal entities with random liabilities X1; : : : ; Xd and that the regulator sets
a total capital in amount of

Pd
i=1Ci, where Ci is the capital allocated to each entity. In

what follows, we write Sd :=
Pd

i=1Xi. Without loss of generality, we assume that the �rst
line of business or legal entity is in �nancial distress. Therefore, the aggregate SR becomes

SR := E

" 
Sd �

dX
i=1

Ci

!
+

�����X1 > C1

#
:

The individual SR contribution to the kth component is de�ned as follows:

SRk := E
h�
Xk � Ck

�
+
jX1 > C1

i
; k 2 f1; : : : ; dg:

Clearly, the above de�nitions heavily depend on the way the regulatory capital is de�ned.
Now, a CV aRq-based regulatory environment requires a total capital of CV aRq

�
Sd
�
and the
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most common and practical capital decomposition rule is the Euler one, where Ck is replaced
by the following:

Ck;CV aR(q) := E
h
XkjSd > V aRq

�
Sd
�i
; k 2 f1; : : : ; dg:

Thus, the SR and SRk�s under the CV aRq-based allocations can be expressed as

SRCV aR(q) := E

" 
Sd �

dX
i=1

Ci;CV aR(q)

!
+

�����X1 > C1;CV aR(q)

#
(4.1)

and

SRk;CV aR(q) := E
h�
Xk � Ck;CV aR(q)

�
+
jX1 > C1;CV aR(q)

i
; k 2 f1; : : : ; dg: (4.2)

If the entire system is V aRq regulated, then the total capital is V aRq
�
Sd
�
and it is decom-

posed at the individual component (via Euler decomposition) in the following fashion:

E
h
XkjSd = V aRq

�
Sd
�i
; k 2 f1; : : : ; dg:

However, this capital allocation raises many issues and it is di¢ cult to evaluate or estimate
and hence, a more practical solution (for example, see Overbeck, 2000, Kalkbrener, 2005,
or Bluhm et al., 2006) is to use a surrogate CV aR�(q)-type allocation rule in the following
fashion:

Ck;V aR(q) := E
h
XkjSd > V aR�(q)

�
Sd
�i
; k 2 f1; : : : ; dg;

where
�(q) := inf

u2(0;1]

n
V aRq

�
Sd
�
� CV aRu

�
Sd
�o
:

As before, we write the SR and SRk�s under the V aRq-based allocations as

SRV aR(q) := E

" 
Sd �

dX
i=1

Ci;V aR(q)

!
+

�����X1 > C1;V aR(q)

#
(4.3)

and
SRk;V aR(q) := E

h�
Xk � Ck;V aR(q)

�
+
jX1 > C1;V aR(q)

i
; k 2 f1; : : : ; dg: (4.4)

The next corollary of Theorem 3.1 enables us to obtain asymptotic approximations for
SRCV aR(q), SRk;CV aR(q), SRV aR(q), and SRk;V aR(q) de�ned in (4.1)�(4.4) as q " 1.

Corollary 4.1. Consider the expected shortfall �X;Y (q) de�ned as (1.1) with

t1(q) = E [X jZ > t(q) ] and t2(q) = E [Y jZ > t(q) ] ;

where Z 2 L+(P) is another random variable and t(q) is a positive function for q 2 (0; 1)
such that limq"1 t (q) = 1. Assume that (X; Y ), (X;Z), and (Y; Z) satisfy Assumption
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3.1 with limiting functions h, h1, and h2, respectively, such that
R1
0
h2(x)dx > 0. Assume

further that 1 < ��F � 1 and 1 < ��G � 1. Then, we have

lim
q"1

�X;Y (q)

t(q)
=

Z 1
eh1 h

�
xeh2
�
dx; (4.5)

where ehi = Z 1
0

hi(x)dx; i 2 f1; 2g:

Corollary 4.1 is applicable in multiple situations. We next give four general examples
where

�
X1; : : : ; Xd

�
is a non-negative random vector with marginal distribution functions

F1; : : : ; Fd.

Example 4.1. Assume that there is some function H	(�) such that the relation

lim
t!1

P (X1 > tx1; : : : ; Xd > txd)

F 1(t)
= H	(x) (4.6)

holds for every x := (x1; : : : ; xd) 2 [0;1]dnf0g.
By Lemma 2.2 of Asimit et al. (2011), in this case X1, . . . , Xd are pairwise asymptoti-

cally dependent, which can also be veri�ed by our Proposition 3.1(i). Relation (4.6) implies
that the relation

P ((X1=t; : : : ; Xd=t) 2 �)
F 1(t)

v! �	(�); t!1; (4.7)

holds on [0;1]dnf0g with a measure �	 such that

�	
�
y : yi > xi; for all i 2 f1; : : : ; dg

�
= H	(x):

Example 4.1 of Asimit and Li (2016) tells us that F1 2 R�� for some � 2 [0;1) with
��F1 = �,

lim
t!1

F k(t)

F 1(t)
= �	(y : yk > 1) > 0; k 2 f1; : : : ; dg; (4.8)

lim
t!1

P (Sd > tx)
F 1(t)

= �	

 
y :

dX
i=1

yi > x

!
> 0; x > 0; (4.9)

and (Xk; Sd) satis�es Assumption 3.1 with

hk;S(x) =

�	

 
y : yk > x;

dX
i=1

yi > 1

!

�	

 
y :

dX
i=1

yi > 1

! 1f0<x<1g +
�	 (y : yk > 1)

�	

 
y :

dX
i=1

yi > 1

!x��1fx�1g (4.10)

for each k 2 f1; : : : ; dg. Note that (4.8) and (4.9) indicate that the distribution functions of
Xk�s and Sd belong to R��. Assuming � > 1, we may now derive the asymptotic approxi-
mations for SRCV aR(q), SRk;CV aR(q), SRV aR(q), and SRk;V aR(q) de�ned in (4.1)�(4.4) via
Corollary 4.1.
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We �rst deal with SRCV aR(q) and SRV aR(q), which quantify the aggregate SR evaluations.
Recalling (4.1), (4.3), and Corollary 4.1, it is quite transparent to evaluate SRCV aR(q) and
SRV aR(q) via Corollary 4.1 by setting

X = Z = Sd; Y = X1; (4.11)

and

t(q) =

�
V aRq (Sd) ; for the CV aRq-based SR;
V aR�(q)(Sd); for the V aRq-based SR:

(4.12)

In view of (4.10), (Y; Z) =
�
X1; Sd

�
satis�es Assumption 3.1 with h1;S, which corresponds

to the function h2 in Corollary 4.1. It follows from (4.7) that (X;Y ) =
�
Sd; X1

�
satis�es

Assumption 3.1 with

hS;1(x) = 1f0<x�1g + �	

 
y : y1 > 1;

dX
i=1

yi > x

!
1fx>1g;

which corresponds to the function h in Corollary 4.1. In fact, the above relation may be
also obtained by Remark 3.1 and (4.9) with noting the fact that �	 is homogeneous, i.e.
�	 (xA) = x���	 (A) for every x > 0 and A � [0;1]dnf0g, but utilising (4.7) is more
transparent for this example. Moreover, recalling Remark 3.2, we know that (X;Z) = (Sd; Sd)
satis�es Assumption 3.1 with

hS;S(x) = 1f0<x�1g + x
��1fx>1g; (4.13)

which corresponds to the function h1 in Corollary 4.1. Now, plugging h = hS;1, h1 = hS;S,
and h2 = h1;S into (4.5), we have that

lim
q"1

SRCV aR(q)

V aRq (Sd)
= lim

q"1

SRV aR(q)

V aR�(q)(Sd)

=

Z 1
�=(��1)

hS;1

 
xeh1;S
!
dx

=

Z 1
�=(��1)

�	

 
y : y1 > 1;

dX
i=1

yi >
xeh1;S
!
dx;

where eh1;S = R10 h1;S(x)dx. Note that the last step of the above derivations follows from the
fact that eh1;S � Z 1

0

hS;S(x)dx = �= (�� 1) ;

which is a consequence of the fact that h1;S(x) � hS;S(x) for all x > 0.
We next focus on the individual SR contributions, namely SRk;CV aR(q) and SRk;V aR(q).

Recalling (4.2), (4.4), and Corollary 4.1, we evaluate SRk;CV aR(q) and SRk;V aR(q) via Corol-
lary 4.1 by setting (4.12) and

X = Xk; Y = X1; Z = Sd: (4.14)
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By keeping (4.7) in mind, it is not di¢ cult to check that (X; Y ) = (Xk; X1) satis�es As-
sumption 3.1 with

hk;1(x) = �	 (y : y1 > 1; yk > x) :

Also, (X;Z) =
�
Xk; Sd

�
and (Y; Z) =

�
X1; Sd

�
satisfy Assumption 3.1 with hk;S and h1;S

given by (4.10). Plugging h = hk;1, h1 = hk;S, and h2 = h1;S into (4.5) gives that, for each
k 2 f1; : : : ; dg,

lim
q"1

SRk;CV aR(q)

V aRq
�
Sd
� = lim

q"1

SRk;V aR(q)

V aR�(q)(Sd)
=

Z 1
ehk;S �	

 
y : y1 > 1; yk >

xeh1;S
!
dx;

where ehk;S = R10 hk;S(x)dx.

Example 4.2. Let F1 2 R�� for some � > 1. Assume that F k(t) � bkF 1(t) holds as t!1
with bk > 0 for each k 2 f1; : : : ; dg. Moreover, for any 1 � i 6= j � d, it holds that

lim
t!1

P
�
Xi > tx;Xj > t

�
F 1(t)

= 0; x > 0: (4.15)

One may check via Proposition 3.1(i) that X1; : : : ; Xd are pairwise asymptotically inde-
pendent. In addition, Fk 2 R�� with ��Fk = � > 1 for each k 2 f1; : : : ; dg. Further, by
Lemma 2.1 of Davis and Resnick (1996) or Theorem 3.1 of Chen and Yuen (2009), we have

lim
t!1

P
�
Sd > t

�
F 1(t)

=
dX
i=1

bi > 0; (4.16)

which implies that the distribution function of Sd also belongs to R��.
Consider �rst SRCV aR(q) and SRV aR(q) that are further evaluated by setting (4.11) and

(4.12). Similar derivations to those in Example 4.3 of Asimit and Li (2016) imply that, for
every 0 < x � 1,

lim
t!1

P
�
Xk > txjSd > t

�
=

bkPd
i=1 bi

; k 2 f1; : : : ; dg:

Now, for every x > 1, it holds that

lim
t!1

P
�
Xk > txjSd > t

�
= lim

t!1

F k(tx)

F 1(tx)

F 1(tx)

F 1(t)

F 1(t)

P
�
Sd > t

� = bkx
��Pd

i=1 bi
; k 2 f1; : : : ; dg;

where in the last step we used (4.16), F1 2 R��, and F k(t) � bkF 1(t) as t ! 1. Hence,�
Xk; Sd

�
satis�es Assumption 3.1 with

hk;S(x) =
bk
�
1f0<x�1g + x

�� � 1fx>1g
�Pd

i=1 bi
; k 2 f1; : : : ; dg; (4.17)

which together with b1 = 1 indicate that (Y; Z) =
�
X1; Sd

�
satis�es Assumption 3.1 with

h1;S(x) =
1f0<x�1g + x

�� � 1fx>1gPd
i=1 bi

:
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Thus, by Remark 3.1, (4.16), and F1 2 R��, we get that (X;Y ) =
�
Sd; X1

�
satis�es As-

sumption 3.1 with

hS;1(x) = h1;S(1=x) lim
t!1

P
�
Sd > tx

�
F 1(tx)

F 1(tx)

F 1(t)
= 1f0<x�1g + x

��1fx>1g:

Moreover, by Remark 3.2, (X;Z) =
�
Sd; Sd

�
satis�es Assumption 3.1 with hS;S given by

(4.13). Plugging h = hS;1, h1 = hS;S, and h2 = h1;S into (4.5) leads to

lim
q"1

SRCV aR(q)

V aRq
�
Sd
� = lim

q"1

SRV aR(q)

V aR�(q)
�
Sd
�

=

Z 1
�=(��1)

 
x

�=(�� 1)

dX
i=1

bi

!��
dx

=
�

(�� 1)2
�Pd

i=1 bi

�� : (4.18)

Next, we turn our attention to SRk;CV aR(q) and SRk;V aR(q) that are evaluated by keeping
in mind the settings speci�ed in (4.12) and (4.14). Clearly, (4.15) and Remark 3.2 imply
that (X; Y ) =

�
Xk; X1

�
satis�es Assumption 3.1 with hk;1(x) � 0 for k 6= 1 and

h1;1(x) = 1f0<x�1g + x
��1fx>1g:

Furthermore, (X;Z) =
�
Xk; Sd

�
and (Y; Z) =

�
X1; Sd

�
satisfy Assumption 3.1 with hk;S and

h1;S as given by (4.17). Plugging h = hk;1, h1 = hk;S, and h2 = h1;S into (4.5) leads to

lim
q"1

SR1;CV aR(q)

V aRq
�
Sd
� = lim

q"1

SR1;V aR(q)

V aR�(q)
�
Sd
� = �

(�� 1)2
Pd

i=1 bi
(4.19)

and

lim
q"1

SRk;CV aR(q)

V aRq
�
Sd
� = lim

q"1

SRk;V aR(q)

V aR�(q)
�
Sd
� = 0; k 2 f2; : : : ; dg: (4.20)

As mentioned immediately after Theorem 3.1, although Corollary 4.1 is applicable to
Example 4.2, it fails to provide precise approximations for SRk;CV aR(q) and SRk;V aR(q) with
k 2 f2; : : : ; dg in (4.20) under such a framework of pairwise asymptotic independence. To
remedy this drawback, we further discuss the next example, namely Example 4.3, which
is a special case of Example 4.2 and allows us to obtain precise approximations for all
SRk;CV aR(q) and SRk;V aR(q) with k 2 f1; : : : ; dg by the help of Theorem 3.2.

Example 4.3. Consider the same set of conditions as in Example 4.2 with the additional
condition that Assumption 3.2 holds for any

�
Xi; Xj

�
with 1 � i < j � d, i.e. there are

some �ij = �ji > 0 such that

P
�
Xi > t1; Xj > t2

�
� �ijF i

�
t1
�
F j
�
t2
�
;
�
t1; t2

�
! (1;1): (4.21)

Clearly, (4.21) implies (4.15) due to F k(t) � bkF 1(t) as t!1 and hence, this example
is a special case of Example 4.2. Therefore, (4.18) and (4.19) still hold for SRCV aR(q),

12



SRV aR(q), SR1;CV aR(q), and SR1;V aR(q). For each k 6= 1, by recalling (1.1), (4.2), and (4.4),
we may �nd that the quantity t1(q) in (1.1) for SRk;CV aR(q) and SRk;V aR(q) corresponds to
E
�
XkjSd > t(q)

�
, where t(q) is given by (4.12). As analysed in Example 4.2,

�
Xk; Sd

�
satis�es Assumption 3.1 with hk;S shown in (4.17). Thus, applying Theorem 3.1 to t1(q), we
have

t1(q) �
�Z 1

0

hk;S(x)dx

�
t(q) =

�bk

(�� 1)
Pd

i=1 bi
t(q); q " 1; (4.22)

which implies that t1(q)!1 as q " 1. Then, applying Theorem 3.2(i) to SRk;CV aR(q) with
t(q) = V aRq

�
Sd
�
leads to

SRk;CV aR(q) � �k1
�� 1t1(q)F k

�
t1(q)

�
� �1���k1b

2��
k

(�� 1)2��
�Pd

i=1 bi

�1�� t(q)F 1�t(q)�; q " 1; (4.23)

where the last equivalence is due to (4.22), F1 2 R��, and F k(t) � bkF 1(t) as t ! 1.
By using the same arguments, we could �nd that (4.23) also holds for SRk;V aR(q) with
t(q) = V aR�(q)

�
Sd
�
. Hence, we may conclude that the following holds for each k 2 f2; : : : ; dg:

lim
q"1

SRk;CV aR(q)

V aRq
�
Sd
�
F 1

�
V aRq

�
Sd
�� = lim

q"1

SRk;V aR(q)

V aR�(q)
�
Sd
�
F 1

�
V aR�(q)

�
Sd
��

=
�1���k1b

2��
k

(�� 1)2��
�Pd

i=1 bi

�1�� :
We next show an example concerning the rapid variation case, in which the dependence

structure is motivated by Mitra and Resnick (2009) (see also Asimit et al., 2011, Hashorva
and Li, 2015, and Asimit and Li, 2016).

Example 4.4. Let F1 2 MDA(�) with an auxiliary function a. Assume that F k(t) � bkF 1(t)
holds as t ! 1 with bk > 0 for each k 2 f1; : : : ; dg. Moreover, for any 1 � i 6= j � d,
Assumption 3.2 holds for

�
Xi; Xj

�
, i.e. (4.21) holds, and we also have

lim
t!1

P (Xi > a(t)x;Xj > t)

F 1(t)
= 0; for every x > 0; (4.24)

and

lim
t!1

P (Xi > Lija(t); Xj > Lija(t))

F 1(t)
= 0; for some Lij > 0: (4.25)

Note that, if a(t)!1 as t!1, then (4.24) is implied by (4.21) and F k(t) � bkF 1(t)
as t!1. This example is a special case of Example 4.3 of Asimit and Li (2016), by which
we know that (4.16) also holds and

�
Xk; Sd

�
satis�es Assumption 3.1 with

hk;S(x) =
bkPd
i=1 bi

1f0<x�1g + 0 � 1fx>1g: (4.26)
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Relation (4.16) implies that the distribution function of Sd also belongs to MDA(�) � R�1
with the auxiliary function a. Then, by the similar arguments used in Example 4.2, we
can check that Corollary 4.1 is also applicable to this example but fails to provide precise
approximations for all of SRCV aR(q), SRV aR(q), SRk;CV aR(q), and SRk;V aR(q) with k 2
f1; : : : ; dg. Thus, we have to seek precise approximations by other methods.
As before, consider �rst SRCV aR(q) and SRV aR(q). Recalling (1.1), (4.1) and (4.3), we

�nd that the quantities t1(q) and t2(q) in (1.1) for SRCV aR(q) and SRV aR(q) correspond
respectively to E

�
SdjSd > t(q)

�
and E

�
X1jSd > t(q)

�
, where t(q) is given by (4.12). Recalling

Remark 3.2, we know that (Sd; Sd) satis�es Assumption 3.1 with

hS;S(x) = 1f0<x�1g + 0 � 1fx>1g:

Thus, applying Theorem 3.1 to t1(q) and t2(q), we have

t1(q) �
�Z 1

0

hS;S(x)dx

�
t(q) = t(q); q " 1; (4.27)

and

t2(q) �
�Z 1

0

h1;S(x)dx

�
t(q) =

1Pd
i=1 bi

t(q); q " 1; (4.28)

where we used (4.26) and b1 = 1. Clearly, (4.27) and (4.28) means that both t1(q)!1 and
t2(q)!1 as q " 1. Now, for any two numbers t1 and t2, we have

P (Sd > t1; X1 > t2) = P (Sd > t1)� P (Sd > t1; X1 � t2)

� P (Sd > t1)� P
 

d[
i=2

fXi > t1g ; X1 � t2

!

= P (Sd > t1)� P
 

d[
i=2

fXi > t1g
!
+ P

 
d[
i=2

fXi > t1g ; X1 > t2

!

� P (Sd > t1)�
dX
i=2

P (Xi > t1) +
X

2�i<j�d

P (Xi > t1; Xj > t2)

+

dX
i=2

P (Xi > t1; X1 > t2) :

Combining the above estimate with (4.16), (4.21), and F k(t) � bkF 1(t) as t!1, we obtain
that

lim sup
(t1;t2)!(1;1)

P
�
Sd > t1; X1 > t2

�
F 1
�
t1
� �

dX
i=1

bi �
dX
i=2

bi + 0 + 0 = b1 = 1:

On the other hand, if we restrict the point (t1; t2) within the range f(x1; x2) : x1 � x2g, then
it is trivial that

lim inf
(t1;t2)!(1;1)

t1�t2

P
�
Sd > t1; X1 > t2

�
F 1
�
t1
� � lim inf

(t1;t2)!(1;1)
t1�t2

F 1
�
t1
�

F 1
�
t1
� = 1:
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Thus, it holds that

lim
(t1;t2)!(1;1)

t1�t2

P
�
Sd > t1; X1 > t2

�
F 1
�
t1
� = 1: (4.29)

Therefore, with t(q) = V aRq
�
Sd
�
, we have

SRCV aR(q) =

Z 1
t1(q)

P
�
Sd > xjX1 > t2(q)

�
dx

=
1

F 1
�
t2(q)

� Z 1
t1(q)

P
�
Sd > x;X1 > t2(q)

�
dx

� 1

F 1
�
t2(q)

� Z 1
t1(q)

F 1 (x) dx

=
a
�
t1(q)

�
F 1
�
t1(q)

�
F 1
�
t2(q)

� ; q " 1; (4.30)

where the third step is due to (4.29) and t1(q) � t2(q) and the last step follows from (2.2).
Obviously, (4.30) also holds for SRV aR(q) with t(q) = V aR�(q)

�
Sd
�
. Note that, although

we have (4.27) and (4.28), we can not further re�ne (4.30) to a form with respect to t(q),
because in the rapid variation case F 1 is much more sensitive to its variable than that in the
regular variation case shown in Example 4.3.
Finally, we deal with SRk;CV aR(q) and SRk;V aR(q) for each k 2 f1; : : : ; dg. As analysed

in Example 4.3, the quantity t1(q) in (1.1) for SRk;CV aR(q) and SRk;V aR(q) corresponds to

E
�
XkjSd > t(q)

�
=: t1;k(q);

where t(q) is given by (4.12). For k = 1, with t(q) = V aRq
�
Sd
�
, it is easy to see from (2.2)

that

SR1;CV aR(q) =

Z 1
t1;1(q)

P
�
X1 > xjX1 > t1;1(q)

�
dx

=
1

F 1
�
t1;1(q)

� Z 1
t1;1(q)

F 1 (x) dx

= a
�
t1;1(q)

�
: (4.31)

For k 6= 1, since
�
Xk; Sd

�
satis�es Assumption 3.1 with hk;S shown in (4.26), Theorem 3.1

tells us that

t1;k(q) �
�Z 1

0

hk;S(x)dx

�
t(q) =

bkPd
i=1 bi

t(q); q " 1;

which indicates that t1;k(q) ! 1 as q " 1. Thus, applying Theorem 3.2(ii) to SRk;CV aR(q)
with t(q) = V aRq

�
Sd
�
leads to

SRk;CV aR(q) � �k1bka
�
t1;k(q)

�
F 1
�
t1;k(q)

�
; q " 1; (4.32)

where we used F k(t) � bkF 1(t) as t ! 1. Similarly, we can check that (4.31) and (4.32)
also hold for SRk;V aR(q) with t(q) = V aR�(q)

�
Sd
�
.
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We end this section with four interesting remarks, in which Remarks 4.1�4.3 explain in
great details some speci�c scenarios of Examples 4.2�4.4 while Remark 4.4 further discusses
the limit of the right-hand side of (4.30) in Example 4.4 as q " 1.

Remark 4.1. The dependence structure given by (4.21) in Example 4.3 is satis�ed if the
random vector (X1; : : : ; Xd) follows a multivariate FGM copula, which means that

P
�
X1 � x1; : : : ; Xd � xd

�
=

 
dY
i=1

Fi
�
xi
�! 

1+
dX
k=2

X
1�j1<���<jk�d

�j1���jkF j1
�
xj1
�
� � �F jk

�
xjk
�!
;

where j�j1���jk j � 1 with 2 � k � d and 1 � j1 < � � � < jk � d are some real numbers such
that the right-hand side of the above relation is a proper multivariate distribution function
(for details, see Hashorva and Hüsler, 1999). In this setting, for any 1 � i < j � d,

P
�
Xi > xi; Xj > xj

�
= F i

�
xi
�
F j
�
xj
��
1 + �ijFi

�
xi
�
Fj
�
xj
��
;

which implies that (4.21) holds with �ij = �ji = 1 + �ij given that �ij > �1.

Remark 4.2. Consider another well-known dependence structure for the random vector�
X1; : : : ; Xd

�
. That is, for any 1 � i 6= j � d, there is some bounded function gij : (0;1) 7!

(0;1) such that the relation

P
�
Xi > tjXj = x

�
� gij(x)F i(t); t!1; (4.33)

holds uniformly for x 2 (0;1) (for details, see Asimit and Badescu, 2010, Li et al., 2010,
Asimit et al., 2011, Chen and Yuen, 2012, Yang et al., 2016, and the references therein).
If F k(t) � bkF 1(t) holds as t ! 1 with bk > 0 for each k 2 f1; : : : ; dg, as we assumed in
Example 4.2, then it is not di¢ cult to check that (4.33) implies (4.15). In fact, noting the
uniformity of (4.33), we have for every x > 0 that

P
�
Xi > tx;Xj > t

�
=

Z 1
t

P
�
Xi > txjXj = y

�
P
�
Xj 2 dy

�
� F i(tx)

Z 1
t

gij(y)P
�
Xj 2 dy

�
= F i(tx) �O

�
F 1(t)

�
= o

�
F 1(t)

�
; t!1; (4.34)

where the third step is due to F k(t) � bkF 1(t) as t ! 1 and the boundedness of gij.
Assuming that F1 2 R�� for some � > 1, relation (3.13) of Asimit et al. (2011) gives an
asymptotic approximation for E

�
XkjSd > t

�
as t!1, which in our tail equivalence case is

reduced to

E
�
XkjSd > t

�
� �bk

(�� 1)
Pd

i=1 bi
t; t!1:

The above relation coincides with (4.22) derived via Theorem 3.1 and our approach also im-
plies that the extra condition (3.8) of Asimit et al. (2011) is redundant for the tail equivalence
case. Moreover, if we further assume that the limit

lim
x!1

gij(x) := g
�
ij > 0 (4.35)
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exists for any 1 � i 6= j � d, then it follows from the similar derivations as in justifying
(4.34) (see also Proposition 2.1 of Li, 2016) that Assumption 3.2 holds for

�
Xi; Xj

�
with

�ij = g
�
ij = g

�
ji. Therefore, if (4.33) holds together with (4.35), which is true for all examples

about (4.33) appeared in the aforementioned literatures, then this setting is a special case of
the dependence structure given in Example 4.3.

Remark 4.3. Although condition (4.25) in Example 4.4 seems especially strong, it is also
satis�ed by many interesting scenarios. For instance, under the other conditions of Example
4.4, if the relation

F
2

1(La(t)) = o
�
F 1(t)

�
; t!1; (4.36)

holds for some L > 0 (hence, limt!1 a(t) = 1 must hold), then (4.21) obviously implies
(4.25). Two well-known examples of F1 satisfying (4.36) include the LogNormal case in
which

F 1(t) = �

�
log t� �

�

�
; t > 0;

with a(t) = �2t= (log t� �) and the case in which

F 1(t) = e
�(log t) ; t > 1; (4.37)

with a(t) = t=
�
 (log t)�1

�
, where � (�) is the standard normal distribution function, � 2

(�1;1), � > 0, and  > 1 (for details, see Proposition 4.1 of Asimit et al., 2011 and the
discussions after it).

Remark 4.4. Denote by I(q) the right-hand side of (4.30) obtained in Example 4.4, i.e.

I(q) :=
a
�
t1(q)

�
F 1
�
t1(q)

�
F 1
�
t2(q)

� :

In general, we can not conclude that I(q) tends to 0 or 1 as q " 1. However, if the auxiliary
function a is regularly varying with some index � 2 (�1; 1), written here as a 2 R�, then we
can verify that I(q)! 0 as q " 1. In fact, recalling (4.27) and (4.28) in Example 4.4, we have
t2(q) � wt1(q) as q " 1 with w = 1=

Pd
i=1 bi 2 (0; 1): Hence, for any 0 < w1 < w < w2 < 1,

the relation
a
�
t1(q)

�
F 1
�
t1(q)

�
F 1
�
w1t1(q)

� � I(q) �
a
�
t1(q)

�
F 1
�
t1(q)

�
F 1
�
w2t1(q)

� (4.38)

holds for q in the left neighborhood of 1. Then, we can obtain that I(q) ! 0 as q " 1 if we
can prove that

J2(t) :=
a (t)F 1 (t)

F 1 (w2t)
! 0; t!1:

By the representation of Von Mises functions (for example, see Proposition 1.4 of Resnick,
1987), we have, as t!1,

J2(t) � a(t) exp
�
�
Z t

w2t

1

a(z)
dz

�
= exp

�
�
�Z 1

w2

t

a(tz)
dz � log a(t)

��
: (4.39)
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Since a 2 R� with � 2 (�1; 1), for some � < �� < 1, we have a(t) � t�
�
for all large t.

Thus, for t large enough,Z 1

w2

t

a(tz)
dz � log a(t) �

�Z 1

w2

1

z��
dz

�
t1��

� � �� log t;

which clearly tends to 1 as t ! 1. Combining this fact with (4.39) gives J2(t) ! 0 as
t ! 1, which implies I(q) ! 0 as q " 1 by (4.38). Note that, since a(t) = o(t) as t ! 1,
if a 2 R� for some index �, then � must be in the range (�1; 1]. Nevertheless, for the
critical case of a 2 R1, both I(q) ! 0 and I(q) ! 1 are possible as q " 1. It depends on
the speci�c form of the function a and even the value of w. Actually, the survival function
given as (4.37) in Remark 4.3 is just an example. Concretely speaking, assume that (4.37)
holds for F1 with a(t) = t=

�
 (log t)�1

�
2 R1, where  > 1. For i 2 f1; 2g, we consider the

quantities

Ji(t) :=
a (t)F 1 (t)

F 1 (wit)
=
1


exp

n
� (log t) + (log t+ logwi) + log t� ( � 1) log log t

o
:

It is clear that (log t+ logwi)
 � (log t) �  logwi (log t)

�1 as t ! 1. By this fact and
logwi < 0 for i 2 f1; 2g, we know that limt!1 J2(t) = 0 (limq"1 I(q) = 0) if  > 2,
limt!1 J1(t) =1 (limq"1 I(q) =1) if 1 <  < 2, while the limits also depend on the value
of w if  = 2.

We conclude this section with a summary of our �ndings that have shown to be quite
sensible. Examples 4.1�4.4 consider the case where the system components have set indi-
vidual levels of capital that are allocated from the aggregate regulatory capital set for the
entire system. Speci�cally, Example 4.1 deals with an asymptotic dependent portfolio of
risks and all the SRs, both at aggregate and individual levels, become very large in the limit,
suggesting a signi�cant impact of the SR when the asymptotic dependence is present. The
results change in Examples 4.2�4.4, when the asymptotic independence arises. Examples 4.2
and 4.3 show an in�nite limit for the aggregate SR, while conclusive results for the individual
SR are obtained only for Example 4.3, which is a special case of Examples 4.2. The individ-
ual SR in Example 4.3 becomes negligible in the limit and the same pattern is observed in
Example 4.4. In a nutshell, provided that one component of the system is under-capitalised,
all other components are individually under-capitalised only if the asymptotic dependence
is present; otherwise, the individual under-capitalisation may be insigni�cant. On the other
hand, provided one component of the system is under-capitalised, the entire system is over-
all under-capitalised whenever the individual risk distributions are regularly varying, which
shows how vulnerable the entire system is. Thus, a chain reaction in the system is likely
to happen, as a result of �nancial distress observed in one single system component, if the
asymptotic dependence arises, otherwise all other components are solvent even though the
whole system is under �nancial distress.

18



5 Proofs

Proof of Proposition 3.1. We �rst deal with case (i), in which F 2 R��, G 2 R�� for
some � > 0, and limt!1 F (t)=G(t) = r for some r � 0. By Proposition 0.8(vi) of Resnick
(1987) or Lemma 2.1 of Asimit et al. (2011), we have

lim
q"1

F (q)

G (q)
= r1=�:

The above relation implies that, for 0 < r1 < r1=� < r2 and q in the left neighborhood of 1,
we have

r1G
 (q) � F (q) � r2G (q): (5.1)

Hence, if Assumption 3.1 holds with h
�
r1
�
= 0 then

lim
q"1
P
�
X > F (q)jY > G (q)

�
� lim

q"1
P
�
X > r1G

 (q)jY > G (q)
�
= h

�
r1
�
= 0;

which together with (2.4) indicate that X and Y are asymptotically independent. On the
other hand, if Assumption 3.1 holds with h

�
r2
�
> 0 then

lim inf
q"1

P
�
X > F (q)jY > G (q)

�
� lim inf

q"1
P
�
X > r2G

 (q)jY > G (q)
�
= h

�
r2
�
> 0;

which together with (2.5) indicate that X and Y are asymptotically dependent.
We next focus on case (ii), in which F 2 R�1, G 2 R�1, and F (tr) � G(t) as t ! 1

for some r > 0. By Lemma 2.4 of Asimit et al. (2011), we have

F (q) � rG (q); q " 1;

which implies that (5.1) holds for 0 < r1 < r < r2 and q in the left neighborhood of 1. Thus,
case (ii) can be veri�ed in a similar manner to case (i) above. 2

Proof of Theorem 3.1. By (2.3), for every 1 < �0 < ��F there are some K1 > 1 and t0 > 0
such that the relation

F (tx)

F (t)
� K1x

��0

holds for all tx > t > t0. Since F (t) = O
�
G(t)

�
, there is some K2 > 1 such that the relation

F (t)

G(t)
� K2

holds for all t � 0. Thus, letting K = K1K2, we have for all tx > t > t0 that

P
�
X > txjY > t

�
=
P
�
X > tx; Y > t

�
F (t)

F (t)

G(t)
� F (tx)

F (t)

F (t)

G(t)
� Kx��0 : (5.2)

It is clear that

�X;Y (q) =

Z 1
t1(q)

P
�
X > xjY > t2(q)

�
dx = t2(q)

Z 1
t1(q)=t2(q)

P
�
X > t2(q)xjY > t2(q)

�
dx;
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which is equivalent to

�X;Y (q)

t2(q)
=

Z 1
0

P
�
X > t2(q)xjY > t2(q)

�
1fx>t1(q)=t2(q)g dx: (5.3)

Keeping in mind (5.2) and t2(q)!1 as q " 1, we �nd that the relation

P
�
X > t2(q)xjY > t2(q)

�
� Kx��0

holds for q in the left neighborhood of 1 and x > 1. Hence, for q in the left neighborhood of
1, the integrand of (5.3) is not greater than

P
�
X > t2(q)xjY > t2(q)

�
� 1f0<x�1g +Kx��

0
1fx>1g;

which is obviously integrable on (0;1). This fact together with (3.1) and limq"1 t1(q)=t2(q) =

c allow us to apply the Dominated Convergence Theorem to (5.3) to obtain (3.3). This
completes the proof. 2

Proof of Corollary 4.1. Applying Theorem 3.1 to the given t1(q) and t2(q) leads to

lim
q"1

ti(q)

t(q)
=

Z 1
0

hi(x) dx = ehi; i 2 f1; 2g: (5.4)

Hence, we have

lim
q"1

t1(q)

t2(q)
=
eh1eh2 :

Applying Theorem 3.1 once again to �X;Y (q) and noting (5.4), one may get that

lim
q"1

�X;Y (q)

t(q)
= eh2 Z 1eh1=eh2 h(x) dx =

Z 1
eh1 h

�
xeh2
�
dx:

This completes the proof. 2

Proof of Theorem 3.2. Noting Assumption 3.2 and limq"1 t1 (q) =1, we have, as q " 1,

�X;Y (q) =

Z 1
t1(q)

P
�
X > xjY > t2(q)

�
dx

=
1

G
�
t2(q)

� Z 1
t1(q)

P
�
X > x; Y > t2(q)

�
dx

� �

Z 1
t1(q)

F (x)dx

�

8><>:
�

�� 1t1(q)F
�
t1(q)

�
; if F 2 R��;

�a
�
t1(q)

�
F
�
t1(q)

�
; if F 2 MDA(�);

where the last step follows from Karamata�s Theorem (see Theorem 1.5.11(ii) of Bingham et
al., 1987) when F 2 R�� while from (2.2) when F 2 MDA(�). This completes the proof.2
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