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Abstract: This paper studies a buyer sourcing a product from multiple suppliers under stochas-

tic demand. The buyer uses a (Q,s) continuous review, reorder point, order quantity inventory 

control system to determine the size and timing of orders. Lead time is assumed to be deter-

ministic and to vary linearly with the lot size, wherefore lead time and the associated stockout 

risk may be influenced both by varying the lot size and the number of contracted suppliers. 

This paper presents mathematical models for a multiple supplier single buyer integrated inven-

tory problem with stochastic demand and variable lead time and studies the impact of the de-

livery structure on the risk of incurring a stockout during lead time. 

 

Keywords: Variable lead time; Supply chain coordination; Supplier selection; Multiple sourc-

ing; Delivery structure; Integrated inventory 

 

Introduction 

The management of risks in supply chains has received increased attention among both practi-

tioners and researchers in recent years. Reasons for the growing importance of risk manage-

ment are manifold and originate from various trends that enhance the exposure of supply chains 

to risks. Business concepts, such as outsourcing initiatives, global sourcing, reduced supplier 

bases and inventory buffers aim to improve the performance of the supply chain in a stable 

environment, but also increase its vulnerability to potential disruptions (see, e.g., Norman and 

Jansson, 2004; Hendricks and Singhal, 2005a). Empirical studies indicate that companies suf-

fering from supply chain disruptions experience significant declines in operating performance 

(Hendricks and Singhal, 2005b) as well as lower stock returns and higher equity risks relative 

to their industry benchmarks (Hendricks and Singhal, 2005a), which illustrates the importance 

of controlling risks in the supply chain. To mitigate the impact of disruptions associated with 

various types of risks, it is necessary to coordinate the material flows in the network of organ-

isations and to collaborate with upstream and downstream members of the supply chain to 

improve operations and to ensure continuity (Tang, 2006). A continuous flow of materials 

thereby depends on the sourcing structure, i.e. on the composition of the supplier base and the 

coordination of deliveries, as well as on the allocation of inventories along the supply chain. 

 

In the area of inventory management, two main questions arise: How much inventory should 

be kept on hand in each product class to assure adequate supplies for customers and yet avoid 

unnecessary inventory investments, and how often should the inventory be replenished. In 

cases where delivery times and quantities or customer demand may not be predicted with cer-

tainty, inventory increases the robustness of the supply chain by balancing demand and supply 

and by reducing the risk of a stockout between successive deliveries, at the expense of higher 

inventory carrying costs. Since a variation of the sourcing structure may also impact disruption 

risks, both alternatives have to be considered as potential risk reduction methods. 
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Various publications addressed the determination of safety stocks in cases where customer de-

mand and/or lead times are uncertain. In this context, many authors studied multiple sourcing 

as a means to reduce supply risks and showed that in case of stochastic lead times, contracting 

multiple suppliers is an appropriate measure to reduce the risk of a stockout in the period be-

tween the issue and receipt of an order. Sculli and Wu (1981), for instance, considered a con-

tinuous review inventory model with two suppliers under normally distributed lead times and 

assumed that the replenishment quantity is split into two portions, which are ordered simulta-

neously at the suppliers. In this case, the effective lead time is the minimum of the set of random 

variables representing the lead time of each supplier, which helps to reduce stockout risk and 

consequently expected total costs. Hayya et al. (1987) conducted a simulation study to estimate 

the effects of splitting orders between two suppliers on stockout risk and average inventory. 

Sculli and Shum (1990) extended the model to include multiple suppliers, and Kelle and Silver 

(1990a,b) considered the case of splitting replenishment orders among two or more suppliers 

with identical lead times following a Weibull distribution. Ramasesh et al. (1991, 1993) pro-

vided further extensions to the model and studied uniform and exponential lead times as well 

as identical and nonidentical suppliers. The case where demand and lead times are both sto-

chastic was analysed by Lau and Zhao (1993), who studied the impact of order splitting among 

two suppliers on reducing stockout risk. The authors showed that order splitting lowers cycle 

inventory and that contracting a second supplier with a larger mean lead time than the first 

supplier may not necessarily increase expected total costs. Chiang and Benton (1994) provided 

a comparative analysis of single and dual sourcing practices under normally distributed demand 

and shifted-exponential lead times. Numerical studies indicated that dual sourcing provides a 

higher service level and results in higher order quantities than single sourcing. A study of order 

splitting from an inventory perspective under a generic lead time distribution can be found in 

Hill (1996), who showed that multiple sourcing reduces average stock levels. Ganeshan et al. 

(1999) investigated the benefits of splitting orders between a reliable and an unreliable supplier 

that offers a purchase price discount. Cost comparisons were used to derive the discount rates 

the unreliable supplier needs to provide to make splitting worthwhile for different order allo-

cations. Order splitting between two suppliers with different lead time characteristics was also 

studied by Kelle and Miller (2001), who investigated its effects on stockout risk. They showed 

that dual sourcing can provide lower stockout risks even for a second supplier with an inferior 

delivery performance, and that an optimal order split leads to lower stockout risks in the case 

of different lead time characteristics, as compared to an equal split. Ryu and Lee (2003) con-

sidered dual sourcing models with lead time expedition cost functions and showed that these 

investments lead to significant savings. Sajadieh and Eshghi (2009) extended dual sourcing 

models and introduced order quantity-dependant lead times and unit purchase prices. Numeri-

cal results indicated that purchase quantity discounts decrease savings obtained from order 

splitting and result in unequal splits even if suppliers are identical. Furthermore, order splitting 

seems to be favourable when delivery characteristics are similar. A comprehensive overview 

of different alternatives of splitting orders between multiple suppliers can further be found in 

Thomas and Tyworth (2006). 

 

A second stream of research that studies measures to reduce lead time risk assumes that lead 

times may be crashed to a given minimum duration at an additional cost and analyses the im-

pact of lead time reduction efforts on the stockout risk and the expected total costs of the sys-

tem. One of the first papers dealing with a variable lead time in a continuous review model is 

the one of Liao and Shyu (1991). The authors assumed that demand is normally distributed and 

showed that reducing lead time may result in lower stockout risk and consequently lower ex-

pected total costs. While Liao and Shyu (1991) assumed that the order quantity is predeter-

mined, Ben-Daya and Raouf (1994) proposed a model that treats both lead time and order 



3 

 

quantity as decision variables and studied the cases of a linear and an exponential lead time 

crashing cost-function. Ouyang et al. (1996) introduced another extension and include short-

ages in the model. They assumed that a certain fraction of the demand during the stockout 

period is backordered and that the remaining fraction results in lost sales. Chandra and Grabis 

(2008) assumed that reduced lead time is accompanied by increased procurement costs due to 

premium charges imposed by the supplier or higher transportation costs, and studied the inter-

dependencies between a reduction in stockout risk and an increase in procurement costs. Jha 

and Shanker (2009) formulated an integrated inventory model with controllable lead time for 

items with a constant decay rate and optimised order quantity, lead time and the number of 

shipments under a service level constraint. Other authors studied lead time reduction in inven-

tory models with stochastic demand and permitted further model parameters to be varied as 

well, such as setup costs or product quality. Examples are the models of Ouyang and Chang 

(2002), Ben-Daya and Hariga (2003), Zequeira et al. (2005), and Pan and Lo (2008). A contin-

uous review model with variable, lot size-dependent lead time can finally be found in Ben-

Daya and Hariga (2004) and Glock (2009, In Press a). The authors assumed that lead time 

varies linearly with the lot size and studied the impact of a variation in the lot size on the safety 

stock and the expected total costs of the system. 

 

A closer look at the literature reviewed above reveals that previous research has mainly focused 

on analysing multiple sourcing in cases where lead time is stochastic, but that the case where 

lead time is deterministic and varying with the lot size has thus far not been studied in a setting 

with multiple suppliers. This is insufficient inasmuch as many real world scenarios exist where 

stochastic influences on the replenishment lead time are negligible (for example if buyer and 

supplier are located in close geographic proximity), but where the length of the lead time is 

primarily influenced by the quantity ordered (for example in serial production processes). If 

demand during lead time is assumed to be stochastic in such a setting, the buyer may influence 

stockout risk by splitting the replenishment order on multiple suppliers and by thus reducing 

the length of the individual lead times, as well as by varying order quantities and replenishment 

policies. To close this gap, a single item integrated inventory system consisting of multiple 

suppliers and a single buyer who faces stochastic demand and splits the replenishment orders 

among the suppliers is studied in this paper. Our work focuses explicitly on the total costs of 

the supply chain under study (for reviews of so-called integrated inventory models see Goyal 

and Gupta, 1989; Ben-Daya et al., 2008; Glock, In Press b) to examine how supply chain op-

erations and the management of risks can be improved through coordination and collaboration 

among the supply chain partners (Tang, 2006; Cao et al., 2010). This also enables us to assess 

the impact of individual decisions on the risk and performance of the supply chain partners and 

helps to develop strategies that improve the competitive position of the supply chain as a whole. 

 

The remainder of the paper is organised as follows: In the next section, the article outlines the 

assumptions and definitions which are used in the paper. Accordingly, Section 3 develops for-

mal models which consider stochastic demand and variable lead time in a system with multiple 

suppliers. Section 4 contains a numerical study and Section 5 concludes the article. 

 

Problem description 

This paper studies the case where a buyer sources a product from multiple suppliers under 

stochastic demand. The buyer uses a (Q,s) continuous review, reorder point, order quantity 

inventory control system to determine the size and timing of orders and issues an order when-

ever the inventory position reaches the reorder point. Lead time is assumed to be deterministic 

and to vary linearly with the lot size. This functional form is representative for (serial) produc-

tion processes where each product is manufactured individually and may be transported to the 



4 

 

subsequent stage or the customer after its completion (note that this scenario is studied in many 

papers, see e.g. Kim and Benton, 1995; Ben-Daya and Hariga, 2004; Hsiao 2008; Glock 2009, 

In Press a, among others). However, we note that other production processes might be associ-

ated with different functional forms, such as a step-wise lead time-function for example, which 

could be representative for production processes where each batch needs a certain production 

time regardless of the number of units in the batch, for instance in case products are heated in 

an oven or treated in an immersion bath. The replenishment quantity is split evenly among the 

suppliers, who initiate production upon receipt of the order and deliver the production quantity 

to the buyer after the lead time L has elapsed. To reduce the complexity of our model, we 

assume that the suppliers are homogeneous, i.e. that all problem parameters are identical for 

the suppliers (note that this assumption is not uncommon in the literature, cf. for example Kelle 

and Silver, 1990b; Ramasesh et al.,1991; Chiang and Benton, 1994; Hill, 1996; Ganeshan, 

1999). This scenario is representative for a variety of industries, for example for industries that 

produce standard mechanical components for automotive manufacturers or for commodity 

markets (see for example Oladi and Gilbert, 2009; Smith and Thanassoulis, 2008). Further, we 

consider two alternative delivery structures which are discussed in Rosenblatt et al. (1998), 

Park et al. (2006), Kim and Goyal (2009), Kheljani et al. (2009), and Glock (2011a, 2011b), 

among others, and which are illustrated exemplarily in Figure 1. In the first case (cf. part a) of 

Figure 1), which we term simultaneous deliveries in the following, the suppliers deliver at the 

same time to the buyer. In the second case (cf. part b) of Figure 1), which we term sequential 

deliveries, the suppliers deliver alternately, such that a shipment reaches the buyer exactly 

when the shipment of the supplier who has delivered previously is expected to have been used 

up (note that the dashed line in Figure 1 represent inventory build-up with a lower production 

rate). 

 

--------------- 

Figure 1 

--------------- 

 

Apart from the assumptions already stated, we assume the following hereafter: 

1. Demand per unit of time follows a normal distribution with mean D and standard deviation 

σ. Thus, demand during lead time, x, has the probability density function f(x) with mean 

DL(Q,n) and standard deviation 𝜎√𝐿(𝑄, 𝑛).  
2. Lead time is proportional to the lot size produced by the supplier and consists of processing 

time and a fixed delay due to transportation or nonproductive time (see Ben-Daya and 

Hariga, 2004). Lead time may thus be calculated as L(Q,n) = Q/(nP)+b. 

3. Unsatisfied demand at the buyer is backordered. 

4. The focus is on the total costs of the system, since we assume that the suppliers will pass 

on savings or increases in cost to the buyer. Transfer payments between the suppliers and 

the buyer are not considered. 

5. The supplier handling and material receiving costs encompass all costs associated with the 

management of the supplier base and the receipt of incoming deliveries. The supplier han-

dling costs are assumed to vary with the number of contracted supplier with a constant, 

increasing or decreasing incremental cost trend and are calculated as 𝑎𝑛𝑡 with a and t as 

specific cost parameters (see Thomas and Tyworth, 2006). The material receiving costs are 

incurred with every receipt of a delivery, regardless of whether it is sent from a single or 

multiple suppliers (see Kelle et al., 2007). Thus, the entire supplier handling and material 

receiving costs amount to 𝑎𝑛𝑡 + 𝑌 in case of simultaneous deliveries and 𝑎𝑛𝑡 + 𝑛𝑌 in case 

of sequential deliveries. 
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In addition, the following terminology is used: 

A = ordering costs per order 

a = cost parameter of the supplier handling cost function 

b = fixed delay factor 

C(n) = supplier handling and material receiving costs 

D = demand rate in units per unit time 

hb = unit inventory carrying charges per unit of time at the buyer 

hv = unit inventory carrying charges per unit of time at the suppliers 

K = setup and transportation costs per production lot at the supplier 

L = lead time 

n = number of suppliers 

nmin = minimum number of suppliers the buyer needs to contract 

�̂� = nmin – 1 

k = safety factor 

p = inverse production rate, i.e. p = 1/P 

P = production rate in units per unit time 

π = backorder costs per unit backordered 

Q = order quantity 

q = production quantity of supplier i 

r = reorder point 

S = safety stock 

t = cost parameter of the supplier handling cost function 

σ = standard deviation of demand 

x = lead time demand 

Y = receiving costs per delivery 

 

Definitions 

[ε] denotes rounding a non-integer value ε to the nearest integer 

ε denotes rounding a non-integer value ε up to the next integer 

|ε|  the absolute value of ε, i.e. 2   

SEQ model that considers sequential deliveries from the suppliers 

SIM model that considers simultaneous deliveries from the suppliers 

 

Model development 

Simultaneous deliveries 

First, we consider the case where the buyer places orders simultaneously at the suppliers. In 

this case, it can be easily shown that it is optimal to order an equal quantity at each of the 

suppliers. If q denotes the production quantity of supplier i and n the number of suppliers, it 

follows that q(Q,n) = Q/n. As can be seen in Figure 1, the suppliers initiate production with a 

delay of b time units after receipt of the order and deliver a batch of size Q/n to the buyer as 

soon as the batch has been finished. Inventory per lot at supplier i may thus be calculated as 

Q2/(2Pn2). The total costs of supplier i are consequently given as: 

 

(1) 
Q

KD

Pn

QDhv 
22

 

The buyer, in turn, incurs ordering costs, supplier handling and material receiving costs, inven-

tory carrying costs and backorder costs. To calculate the inventory carrying costs, we use the 

common approximation of Hadley and Whitin (1963), who showed that the average inventory 
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may be expressed as Q/2 + S. The backorder costs per cycle may be derived by calculating the 

expected shortage, which is:  

 

(2)        



r

dxxfrxnQLrs ,,  

 

The sum of inventory carrying costs, ordering costs, supplier handling and material receiving 

costs and backorder costs per unit time amounts to: 

 

(3) 
  

  nQLrs
Q

D
S

Q
h

Q

DnCA
b ,,

2














 

 

The system’s expected total costs per unit of time may now be calculated as the sum of (1) and 

(3), whereby (1) has to be summed up over all suppliers: 

 

(4)      nQLrs
Q

D
Sh

Pn

Dh
h

Q

Q

D
nCnKAETC b

v

b ,,
2











  

 

Before deriving a solution for the model, it is beneficial to substitute the reorder point r in (4) 

by the safety factor k. This can be done by transforming the normal probability density function 

in (2) into a standard normal probability density function and by substituting r by k√L(Q,n) 

+ , with  being the expected demand during lead time, DL(Q,n). The safety stock, in turn, 

equals the difference between the reorder point and the expected demand during lead time, r – 

DL(Q,n). Using the expression introduced above leads to: 

 

(5)     bnQpqknQLkS  ,,   

 

It follows that: 

 

(6)

 

        kbnQpq
Q

D
hbnQpqk

Pn

Dh
h

Q

Q

D
nCnKAETC b

v
b 


 








 ,,

2
 

 

where ψ(k)=∫ (z – k)f(z)dz
∞

k
 and f(z) is the standard normal probability density function. To 

simplify notation, let G(n) = A + nK + C(n) and H(n) = hb + 
Dhv

Pn
. Consequently, the expected 

total costs can be rewritten as: 

 

(7)          kbnQpq
Q

D
hbnQpqknH

Q

Q

D
nGETC b 


  ,,

2
 

 

When searching for optimal values for Q, k and n, it has to be considered that the delivery 

quantity needs to be large enough to exceed the reorder point reduced by the safety stock, i.e. 

R – S < Q has to hold. In other words, the time to produce the lot at the suppliers has to be 

shorter than the expected consumption time of the lot at the buyer. If this condition is not met, 
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planned shortages may occur, since the suppliers are assumed to deliver after the buyer is ex-

pected to have run out of material. As the production time of supplier i depends on both Q and 

n, and the expected consumption time of the buyer is dependent on Q, it is obvious that the 

condition formulated above has to be considered when finding values for Q and n. 

 

Hadley and Whitin (1963) and Ben-Daya and Hariga (2004) suggested that an optimal solution 

to their models can be found by calculating partial derivatives of the respective objective func-

tions with respect to Q and k. However, since the values of Q and n are restricted in the present 

case, it would be necessary to derive the Karush-Kuhn-Tucker (KKT) conditions to guarantee 

optimality (see e.g. Hillier and Lieberman, 2001). Since the objective function (7) is too com-

plex to derive the KKT conditions and since convexity of (7) in Q cannot be proved, we used 

the NMinimize-Function of the software package Mathematica 7.0 (Wolfram Research, Inc.) 

to derive a solution for the problem. The NMinimize-function contains several methods for 

solving constrained and unconstrained global optimisation problems, such as genetic algo-

rithms, simulated annealing or the simplex method. Using a standard software package has 

several advantages, especially for practitioners. On the one hand, results may be easily obtained 

and reproduced without the need to develop sophisticated solution mechanisms, and further the 

user may benefit from advances in optimisation theory which may be included in future release 

versions of the software package. Numerical results for the problem are presented in Section 

4. 

 

Sequential deliveries 

As can be inferred from Figure 1, for a given lot size and a given number of suppliers, the total 

costs of supplier i are identical for both the cases of simultaneous and sequential deliveries. 

Consequently, the total costs of supplier i equal those given in (1). However, two major aspects 

are different in this model as compared to the case of simultaneous deliveries. First, for given 

values of Q, n, and k, the average inventory at the buyer is reduced to Q/(2n) + S due to the fact 

that the buyer does not receive deliveries of size Q, but more frequent deliveries of size Q/n, 

which reduces the expected maximum inventory in the system. Second, the expected shortage 

and total shortage costs may have to be calculated differently in this case, depending on the 

values of P, D, n and b. First, consider the case where Q/(nD)  Q/(nP)+b. In this case, as can 

be seen in part b) of Figure 1 (cf. the bold lines), an order is placed at one of the suppliers as 

soon as the inventory level reaches the reorder point. The supplier initiates production after a 

delay time b and delivers the order once the production lot q has been completed. As soon as 

the inventory level reaches the reorder point again, an order is placed at one of the other sup-

pliers. It is obvious that in this case, both safety stock and expected shortages may be calculated 

as in expression (7). Thereby the expected shortage, which occurs in every delivery cycle, has 

to be multiplied with n. However, in case Q/(nD) < Q/(nP)+b (cf. the dotted lines in part b) of 

Figure 1), the problem arises that the time to produce a lot of size q at one of the suppliers 

exceeds the average consumption time of this lot. To avoid excessive shortages, it is necessary 

to place an order at the suppliers in an earlier consumption cycle, which results in overlapping 

production phases. The major problem with this practice is that the model of Hadley and Whitin 

(1963) requires in its original form that there is never more than one order outstanding at a 

time, wherefore further assumptions are necessary to assure that the formulation introduced 

above may still be used in this case. As was shown by Hadley and Whitin (1963), their approx-

imation is applicable for any number of orders outstanding if the probability of the lead time 

demand exceeding r + (nmin–1)Q/n is low, which implies that after the arrival of a shipment, 

the probability is low that there are still backorders on the books, i.e. that the shipment is not 

able to remove all the backorders and inventory after the shipment does not exceed the reorder 
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point. Further, it is required that the backorder costs are independent of the length of the stock-

out period and that the contribution of the expected number of backorders to the inventory 

carrying charge is negligible. To assure that the approximation introduced above may still be 

used in case Q/(nD) < Q/(nP)+b, we assume in the following that these prerequisites are met. 

 

The following example illustrates how the expected number of backorders may be calculated. 

Assume that the buyer orders a lot of size q at supplier i at time 0. Supplier i initiates production 

after the delay time b and finishes the lot at time pq + b. However, due to q/D < q/P+b, it is 

necessary that the buyer receives further shipments during the lead time L to avoid planned 

shortages. The number of deliveries the buyer needs to receive during the lead time L to avoid 

planned shortages may be calculated as n̂ = nmin − 1, whereby nmin is the minimal number of 

suppliers the buyer needs to contract. nmin, in turn, may be calculated by considering that the 

production quantity of supplier i needs to be large enough to exceed the reorder point reduced 

by the safety stock, i.e. R – S < Q/n. It follows that: 

 

(8) 








Q

nb

P
Dn

1
min

 

 

The actual nmin is the smallest integer number for which inequation (8) is satisfied. The expected 

shortage may now be determined by calculating the expected demand during lead time exceed-

ing the reorder point r and the number of shipments the buyer receives during the lead time: 

 

(9)       





Zr
dxxfrZxnQLrs ,,     where Z = q(Q,n)�̂� 

 

Note that in case Q/(nD) ≥ Q/(nP)+b, n̂ equals 0 and expression (9) reduces to (2). The safety 

stock now equals the sum of the reorder point and the delivery quantity Z, reduced by the 

expected demand during lead time, i.e. S = r + Z – DL(Q,n). Considering that r = k√𝐿(𝑄, 𝑛) 

+  – Z, it becomes obvious that the safety stock equals the one given in (5). 

The system’s expected total costs for both the cases Q/(nD) ≥ Q/(nP)+b and Q/(nD) < 

Q/(nP)+b may now be calculated as follows: 

 

(10)

 

        kbnQpq
Q

nD
hbnQpqk

Pn

Dh

n

hQ

Q

D
nCnKAETC b
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Substituting G(n) = (A + nK + C(n)) and H(n) = (
ℎ𝑏

𝑛
+

Dhv

nP
), the expected total costs can be 

rewritten as: 

 

(11)          kbnQpq
Q

nD
hbnQpqknH

Q

Q

D
nGETC b 


  ,,

2
 

 

To find a solution for Q, k and n that minimises the expected total costs, we again used the 

NMinimize-function of the software package Mathematica 7.0 and assumed that the condition 

R – S < Q/n has to be satisfied. 
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Effects of the decision variables on the safety stock and risk 

In the models developed in this paper, two of the buyer’s decision variables directly influence 

lead time and thus the risk of incurring a stockout, which also affects safety stock: the order 

quantity Q and the number of suppliers n. Furthermore, the buyer has to decide on the desired 

service level, which is determined by the safety factor and the alternative delivery structures, 

and which, in turn, affects available stocks and stockout risk. The effect of the variables on the 

safety stock of the system and the risk of incurring a stockout during lead time will be discussed 

in the following: 

 

The impact of a variation of Q on the level of safety stock kept at the buyer for the case of a lot 

size-dependent lead time has been analysed by Kim and Benton (1995). The authors differen-

tiated between an order frequency effect and a lead time effect: The order frequency effect 

refers to the fact that a reduction in Q leads to an increase in the order frequency D/Q, which 

in turn exposes the system to the risk of stockouts more often. Consequently, for a fixed lead 

time, a reduction in the lot size increases the safety stock S to control the occurrence of stock-

outs, and vice versa. The lead time effect, in contrast, describes a negative correlation between 

the length of the lead time and the uncertainty in demand during lead time. Thus, with a de-

creasing lot size, lead time is shortened, which leads to a lower demand uncertainty and a lower 

safety stock for a given order frequency. The interrelations described by Kim and Benton 

(1995) are also valid for the model developed in this paper. 

 

Taking a closer look at the number of suppliers, an increase in n entails a smaller production 

lot size q at supplier i if Q remains constant. This, in turn, leads to a similar lead time effect 

than the one described above. In case of model SIM, the order frequency effect is not directly 

influenced by a variation in the number of suppliers if the order quantity Q remains constant. 

In model SEQ, however, an increase in the number of suppliers reduces the order cycle, which 

leads to a higher order frequency and the order frequency effect described above. Moreover, 

since an increase in n reduces inventory at the suppliers and at the buyer in case of a sequential 

delivery, we may assume that the order quantity Q is increased, which again leads to the order 

frequency effect. 

 

The safety factor k, in turn, also influences safety stock and the risk of running out of stock. If 

the system aims on reducing the probability of incurring a stockout during lead time, a higher 

safety stock needs to be kept, which increases k. Ceteris paribus, this leads to higher inventory 

in the system, and thus induces the order frequency and lead time effect. 

 

Finally, it is obvious that also the delivery structure influences the inventory position of the 

buyer. For a given lead time, a given safety factor and a given number of suppliers, sequential 

deliveries lead to lower inventory carrying costs at the buyer. This in turn favours higher order 

quantities, which may indirectly bring about the order frequency and lead time effects. 

 

Clearly, a variation in Q, k or n influences the expected total costs in a variety of ways, and the 

delivery structure also has a significant impact on the expected total costs of the system. To 

gain further insights into the model behaviour and into the impact of the delivery structure on 

the expected total costs of the system, a simulation study was conducted whose results will be 

presented in the next section. 
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Simulation study 

An analysis of equations (6) and (10) indicates that sequential deliveries result in lower costs 

for cycle inventory, at the expense of potentially higher shortage costs as compared to simul-

taneous deliveries, which may have a significant impact on sourcing decisions and the associ-

ated stockout risk. Before analysing the effects of the problem parameters and the inventory 

structure on the expected total cost and the risk in detail, a simple example illustrates the be-

haviour of the models developed in this paper. Consider a two-stage supply chain with the input 

parameters given in Table 1. Computing order quantities, numbers of contracted suppliers, ser-

vice levels and expected total costs for both supply modes, sequential deliveries lead to higher 

order quantities as well as a higher number of suppliers. Further, sequential deliveries result in 

lower costs and a higher service level as compared to simultaneous deliveries (cf. Table 2). 

 

--------------- 

Table 1 

--------------- 

 

The effects of varying the different input parameters on the order quantity, the number of sup-

pliers, the service levels and the expected total costs for both supply modes are illustrated in 

Table 2. Higher demand rates result in increasing order quantities, safety stocks and service 

levels for both supply modes which is associated with higher expected total costs. Higher pro-

duction rates, in contrast to demand rates, lead to lower costs, especially for simultaneous de-

liveries, but have mixed effects on the other parameters. For sequential deliveries, the order 

quantity increases, whereas safety stock and service level decrease. In the case of simultaneous 

deliveries, similar effects can be observed for a constant number of suppliers. A higher standard 

deviation of demand induces higher safety stocks and higher total costs. An increase in the 

ordering costs leads to increasing order quantities and higher total costs especially for simulta-

neous deliveries and an increasing number of suppliers for sequential deliveries. The results 

for various parameters of supplier handling costs show that cost increases have only little in-

fluence on simultaneous deliveries, but that they result in smaller order quantities and a de-

creasing number of suppliers for sequential deliveries where usually more suppliers are used 

and consequently supplier handling costs are more important. Higher receiving costs also have 

little influences on simultaneous deliveries where all partial deliveries are stored at the same 

time, but lead to higher order quantities and costs in the case of sequential deliveries. 

 

--------------- 

Table 2 

--------------- 

 

Lower setup and transportation costs for suppliers lead to smaller lot sizes and lower expected 

total costs for both delivery modes. Increasing inventory holding costs induce lower order 

quantities, lower safety stocks and higher expected total costs. Service levels, however, decline 

if the buyer’s inventory holding costs increase and rise if the suppliers’ inventory holding costs 

increase. Higher backorder costs lead to slightly lower order quantities and higher safety stocks, 

service levels and costs. Increasing delay time induces higher cycle and safety inventories as 

well as increases in expected total costs. 

 

To gain further insights into the behaviour of the models, we conducted a simulation study 

where we computed results for a set of 1,500 randomly generated problem instances. To gen-

erate the parameter values, the ranges presented in Table 3 were employed. An evaluation of 

the results showed that sequential deliveries (model SEQ) outperformed the model where all 
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suppliers deliver simultaneously to the buyer (model SIM) in 99.9% of the problem instances 

we studied, and that sequential deliveries led to 16.94% lower expected total costs on average 

as compared to the other delivery structure. However, as Table 4 illustrates, model SIM may 

also lead to better results than model SEQ. The backorder quantity, which we use as a measure 

for the risk incurred in the system (for alternative measures to assess risk in logistic systems, 

the reader is referred to Chopra and Meindl (2007)), was higher for model SIM for 71.93% of 

the cases studied. On average, the backorder quantity was 4.38% lower in case of model SEQ 

as compared to model SIM. Finally, the number of suppliers was higher for the case of sequen-

tial deliveries in 96.20% of all problem instances and equal for all remaining data sets. 

 

---------- 

Table 3 

---------- 

 

---------- 

Table 4 

---------- 

 

In a second step, we analysed the influence of the problem parameters on the relative advantage 

of the two delivery structures proposed in this paper. For this purpose, we conducted a regres-

sion analysis between the problem parameters and the ratio of the expected total costs of both 

structures as given by the quotient of (7) and (11). The results of the regression analysis with 

the problem parameters as independent variables and the ratio of the expected total costs as the 

dependent variable are given in Table 5. As can be seen, a statistically relevant relationship 

(with Sig. < 0.05) could be found between all problem parameters and the ratio of the expected 

total costs, with the exception of K, a and π. 

 

---------- 

Table 5 

---------- 

 

The results may be interpreted as follows: A higher demand rate or a lower production rate 

leads to a higher value for the ratio of (7) to (11) and consequently lower relative expected total 

costs for the case of sequential deliveries. This may be explained by the fact that both an in-

crease in D and a decrease in P, ceteris paribus, lead to a higher value of nmin, i.e. a higher 

minimum number of suppliers the buyer needs to contract. In case the suppliers deliver sequen-

tially to the buyer, an increase in the number of suppliers reduces inventory carrying costs both 

at the buyer and at the suppliers, whereas in case of simultaneous deliveries, inventory is only 

reduced at the suppliers. As a consequence, a higher value for nmin results in an increase in the 

supplier handling costs for both delivery structures, but in a higher reduction in inventory in 

case suppliers deliver sequentially. This explains why the relative advantage of model SEQ 

increases in nmin. 

 

A second effect that could be identified is that a reduction in receiving costs increases the 

relative advantage of sequential deliveries. The relationship between Y and the cost ratio can 

be explained by the fact that in case of model SEQ, more batches are delivered to the buyer, 

wherefore receiving costs occur more often. If Y is high, the fixed costs for receiving orders 

are high in case of sequential deliveries, which leads to a higher order quantity and a reduction 

in the number of contracted suppliers. Both effects reduce the relative advantage of sequential 
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deliveries since simultaneous deliveries lead to scale effects in the receiving department. The 

ordering costs obviously have an opposite effect. 

 

The impact of hb on the relative advantage of both delivery structures may be explained by the 

fact that in case of sequential deliveries, inventory is reduced at the buyer, wherefore this de-

livery structure is especially beneficial in case inventory carrying costs at the buyer are high. 

In contrast, since more suppliers are contracted in case of model SEQ as compared to model 

SIM, more inventory has to be kept at the suppliers. Consequently, as hv increases, the relative 

advantage of model SEQ is reduced. 

 

A last effect that could be identified is that an increase in b increases the relative advantage of 

model SEQ. This result is caused by the fact that in case of sequential deliveries, the buyer 

incurs a smaller stockout risk per delivery, but faces this stockout risk more often. Obviously, 

higher values for b reduce the overall risk stronger in case of model SEQ as compared to model 

SIM, which necessitates a lower adjustment of the other model parameters and consequently 

increases the advantage of this delivery structure. 

 

To assess the risk behaviour of both models, we conducted a second regression analysis with 

the problem parameters as independent variables and the ratio of the backorder quantities as 

the dependent variable. The results are presented in Table 6. 

 

---------- 

Table 6 

---------- 

 

The results illustrate that P, Y, hb, hv, π and b had a significant influence on the ratio of the 

backorder quantities, while the influence of the other parameters was very small or statistically 

insignificant. As can be seen, an increase in P leads to a relatively higher amount of backorders 

in the case of simultaneous deliveries. Again, this may be explained by the influence of P on 

nmin, which may reduce the number of suppliers and entail that the buyer incurs a higher stock-

out risk per delivery which he/she faces less often. As indicated above, this may reduce the 

overall stockout risk. 

 

A second aspect that could be identified is that a reduction in Y leads to a relatively higher 

amount of backorders in the case of simultaneous deliveries. This may again be explained by 

the order frequency effect: If Y adopts a high value, the number of suppliers is restricted 

stronger in model SEQ, which results in higher production quantities, longer lead times and 

consequently higher backorder quantities. Obviously, this is a result of the scale effects the 

company realises in model SIM, where deliveries are received at the same time and where the 

workload in the receiving department can be reduced. The influence of hb and hv may be ex-

plained analogous. An increase in the backorder costs also has a stronger impact on the 

backorder quantity in the case of sequential deliveries. This is due to the fact that lead time was 

on average slightly higher in model SEQ than in model SIM, wherefore an increase in π neces-

sitated a larger reduction of lead time in this case. Further, backorders occur n times per lot in 

case of model SEQ, which intensifies this effect. The influence of b on the backorder quantities 

of both models finally has already been explained above. 

 

Conclusion 

The purpose of this paper was to investigate the impact of the delivery structure and the number 

of suppliers on the expected total costs of the supply chain and the risk of incurring a stockout. 



13 

 

The contribution of the paper is twofold: First, it extends prior works on integrated inventory 

models to consider multiple suppliers and the supplier selection decision in a setting with sto-

chastic demand and variable lead time, and second it studies how multiple sourcing influences 

the risk of incurring a stockout in case of a deterministic lead time and stochastic demand. Both 

aspects have not been analysed in the literature before. 

 

The results of the paper indicate that a delivery structure with sequential deliveries outperforms 

the case where suppliers deliver simultaneously to the buyer in most cases, although the risk 

of incurring a stockout is not necessarily lower in case of sequential deliveries. Based on our 

simulation study, we conclude that sequential deliveries are especially beneficial in case a) the 

buyer faces small suppliers and consequently needs to receive products from a large number of 

sources to satisfy demand, b) receiving efforts for the considered products or materials and 

associated expenditures at the buyer are low, c) fixed lead time components are high as com-

pared to order quantity-dependant lead time components and d) inventory carrying costs at the 

buyer are high whereas inventory carrying costs at the suppliers are low. Table 7 summarises 

factors that influence the relative advantage of delivery structure SEQ.  

 

---------- 

Table 7 

---------- 

 

If one or more of these conditions are not met, the relative advantage of sequential deliveries 

decreases, although this delivery structure may still lead to lower expected total costs than the 

case of simultaneous deliveries. The question which delivery structure is better in a certain 

scenario depends on the problem parameters, although we were able to identify cost tendencies. 

The implications for practitioners clearly are that in case the conditions mentioned above are 

met, a sequential delivery structure should be implemented to reduce the total costs of ordering 

and receiving the product. In cases where some or all of these conditions are not met, choosing 

a delivery structure with simultaneous deliveries results in a lower increase in expected total 

costs. In addition, if we assume that situations may arise where companies try to minimise the 

number of shipments they receive, for example because limited resources are available in the 

receiving area of the company (for further examples, the reader is refereed to Gardner and 

Dannenbring, 1979; Schneider and Rinks, 1989; Ellram and Siferd, 1993), it may be beneficial 

to implement simultaneous deliveries. Cases with limited receiving resources may be inter-

preted as a restriction on the number of shipments a company is able to receive. In such a 

situation, a company may search for cost-optimal solutions without investing in new resources. 

Thus, it may be beneficial to implement a simultaneous delivery strategy with an optimal pa-

rameter setting as compared to a sequential strategy with a non-optimal parameter setting 

caused by this restriction. Further, the costs of receiving shipments may be difficult to estimate 

in practical situations. In such a case, if the costs of model SIM and model SEQ are close to 

each other, the company may decide to implement model SIM to reduce work in the receiving 

department without explicitly estimating receiving costs (which, in turn, may also be associated 

with costs). We conclude that there are situations where a company may want to implement a 

SIM policy although it leads to (slightly) higher total costs than model SEQ. 

 

One limitation of our work clearly is the focus on homogeneous suppliers, which restricts its 

applicability to industries with homogeneous mass products, i.e. markets which are character-

ised by almost perfect competition. Consequently, future research could concentrate on study-

ing heterogeneous suppliers in a multiple sourcing environment and analyse parameters which 
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influence the question of how many and which suppliers to select. A heuristic method for se-

lecting suppliers in an integrated inventory model, which, however, is only applicable to cases 

where demand is deterministic, can be found in Glock (2011a). Further extensions may include 

the study of batch shipments, which have also been shown to reduce stockout risk (see e.g. 

Ben-Daya and Hariga, 2004), or other types of risks, such as uncertain lead times or product 

quality. 
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D = 150 demand rate in units per unit time 

P = 160 production rate in units per unit time 

σ = 10 standard deviation of demand 

A = 75 ordering costs per order 

a = 8 first cost parameter of the supplier handling cost function 

t = 1.75 second cost parameter of the supplier handling cost function 

Y = 150 receiving costs per delivery 

K = 300 setup and transportation costs per production lot at the supplier 

hb = 6 unit inventory carrying charges per unit of time at the buyer 

hv = 3 unit inventory carrying charges per unit of time at the vendors 

π = 100 backorder costs per unit backordered 

b = 0.1 fixed delay factor 

 

Table 1: Sample data set. 

 

 

Effects of the key model parameters 

    Simultaneous Deliveries Sequential Deliveries 

    Q n SS SL ETC Q n SS SL ETC 

D 150 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 250 223 2 14 94.65 1994.33 593 4 18 96.44 1754.66 

 350 315 3 14 94.60 2706.26 649 4 20 97.22 2224.60 

P 160 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 260 141 1 13 94.36 1208.79 542 4 13 94.58 1163.66 

 360 146 1 11 94.16 1162.05 562 4 11 94.38 1118.50 

σ 5 185 2 6 92.60 1422.59 511 4 8 94.89 1198.25 

 10 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 20 181 2 24 92.76 1562.59 493 4 31 95.07 1372.67 

A 50 181 2 12 92.76 1448.71 376 3 15 94.99 1248.84 

 75 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 100 186 2 12 92.56 1489.61 634 5 15 94.93 1262.93 

a 4 182 2 12 92.72 1458.26 746 6 15 95.03 1240.35 

 8 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 12 185 2 12 92.60 1480.28 383 3 15 94.89 1269.54 

t 1.5 183 2 12 92.68 1465.81 875 7 15 95.00 1245.22 

 1.75 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 
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 2 184 2 12 92.64 1473.47 382 3 15 94.91 1265.59 

Y 100 178 2 12 92.88 1427.79 478 4 15 95.22 1195.51 

 150 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 200 189 2 12 92.44 1509.62 530 4 16 94.70 1314.53 

K 200 160 2 12 93.60 1294.64 449 4 15 95.51 1130.80 

 300 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 400 240 1 17 90.40 1587.78 555 4 16 94.45 1369.81 

hb 4 215 2 14 94.27 1245.98 575 4 18 96.17 1089.18 

 6 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 8 163 2 11 91.31 1664.26 456 4 14 93.92 1405.62 

hv 1 240 1 17 90.40 1300.28 567 4 16 94.33 1131.40 

 3 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 5 173 2 12 93.08 1552.74 460 4 15 95.40 1369.32 

π 50 185 2 9 85.20 1452.96 510 4 12 89.80 1239.08 

 100 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 

 150 183 2 14 95.12 1477.90 502 4 17 96.65 1265.86 

b 0.01 131 1 15 94.76 1299.12 503 4 15 94.97 1250.50 

 0.10 183 2 12 92.68 1469.32 505 4 15 94.95 1256.56 
 1.00 283 2 17 88.68 1639.18 516 4 22 98.84 1305.04 

 

Table 2: Results for the sample data set. 

 

 

 

Parameter ranges for simulation 

D  75 - 500 

P  75 - 500 

σ  5 - 20 

A  50 - 200 

a  5 - 10 

t  0.5 - 2.0 

Y  100 - 250 

K  100 - 500 

hb  3 - 8 

hv  1 - 6 

π  25 - 150 
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b  0.01 - 1.00 

 

Table 3: Parameter ranges employed in the generation of the random data sets. 

 

 

 

Example 1 
a A b D hb hv K P π 

7.66 151.31 0.29 427.96 3.93 5.67 131.00 146.41 86.56 

Example 2 
a A b D hb hv K P π 

8.10 70.61 0.05 233.90 7.84 3.24 459.40 355.83 115.01 

 

σ t Y ETC SIM ETC SEQ 

14.95 1.37 219.47 2720.13 2749.43 

σ t Y ETC SIM ETC SEQ 

11.70 1.50 185.51 1977.56 1915.23 

 

Table 4: Illustration of the relative advantage of model SIM and model SEQ. 

 

 
Standardized 

Beta 
t Sig. 

D 0.523 40.951 0.000 

P -0.226 -17.669 0.000 

σ -0.081 -6.323 0.000 

A 0.139 10.833 0.000 

a -0.007 -0.513 0.608 

t -0.098 -7.693 0.000 

K -0.001 0.114 0.909 

Y -0.204 -15.985 0.000 

hb 0.259 20.180 0.000 

hv -0.275 -21.509 0.000 

π -0.022 -1.745 0.081 

b 0.471 36.839 0.000 

 

Table 5: Results of the regression analysis for the ratio of the expected total costs. 

 

 

 

 
Standardized 

Beta 
t Sig. 
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D -0.031 -1.505 -0.132 

P 0.098 4.759 0.000 

σ -0.009 4.759 0.680 

A 0.043 2.086 0.037 

a 0.034 1.631 0.103 

t -0.051 -2.450 0.014 

K 0.045 2.189 0.029 

Y -0.161 -7.085 0.000 

hb 0.103 4.960 0.000 

hv 0.154 7.456 0.000 

π -0.228 -10.998 0.000 

b 0.494 23.894 0.000 

 

Table 6: Results of the regression analysis for the ratio of the backorder quantities. 

 

 

  Production conditions and parameter setting Relative advantage of a SEQ de-

livery structure RASEQ = ETCSIM / 

ETCSEQ 

a) Large number of small suppliers needs to be 

contracted 

**** 

b) Lead time is more dependant of fixed compo-

nents 

*** 

c) Inventory carrying costs at the buyer are high 

compared to the suppliers 

** 

d) Low expenses for receiving of material- or prod-

uct-shipments 

* 

(Note that * denotes the strenght of correlation between the relevant parameter and the rela-

tive advantage) 

 

Table 7: Factors that influence the relative advantage of delivery structure SEQ. 
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Figure 1. Alternative delivery structures for a system with two suppliers and a single buyer. 


