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Abstract

For many pension schemes, a shortage of data limits their ability
to use sophisticated stochastic mortality models to assess and manage
their exposure to longevity risk. In this study, we develop a mortality
model designed for such pension schemes, which compares the evo-
lution of mortality rates in a sub-population with that observed in a
larger reference population. We apply this approach to data from the
CMI Self-Administered Pension Scheme study, using UK population
data as a reference. We then use the approach to investigate the po-
tential differences in the evolution of mortality rates between these
two populations and find that, in many practical situations, basis risk

∗An extended version of this paper (Hunt and Blake (2016a)) is available on
the Pensions Institute website (http://www.pensions-institute.org/workingpapers/
wp1601.pdf), which contains additional results for female data and more technical details
on the models used.
†We are grateful to Andrew Cairns and Pietro Millossovich for their helpful review on

an earlier draft of this paper, and to Andrés Villegas for many useful discussions on this
and related topics.
‡This study was performed when Dr Hunt was a PhD student at Cass Business School,

City University London, and therefore the views expressed within it are held in a personal
capacity and do not represent the opinions of Pacific Life Re and should not be read to
that effect.
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is much less of a problem than is commonly believed.
JEL Classification: C33, C51, C52, G22, J26

Keywords: Mortality modelling, age/period/cohort models, longevity

basis risk

1 Introduction

Longevity risk is increasingly recognised as a major risk in developed coun-
tries, as rising life expectancies place unanticipated strains on social secu-
rity and healthcare systems (see Oppers et al. (2012)). As well as being of
concern for governments, however, longevity risk also affects private organ-
isations that have promised people an income for life, be this in the form
of an insured annuity or an occupational pension. In the UK, this means
that longevity risk affects the thousands of occupational pension schemes1

established by companies to provide final salary pensions to their employees.

However, when it comes to managing the longevity risk in a pension
scheme, actuaries face a critical problem: a shortage of mortality data for
the scheme. A typical UK pension scheme has fewer than 1,000 members and
may have reliable, computerised member records going back little more than
a decade. This is insufficient for use with the sophisticated stochastic mor-
tality models that have been developed in recent years to measure longevity
risk in national populations, since these models require more data to esti-
mate parameters robustly and longer time series to make projections into
the future. While the insights gained from the study of national populations
are useful for the study of longevity risk in pension schemes, actuaries are
left with a nagging doubt: “What if my scheme is different from the national
population?” The potential for divergence in mortality rates between the
scheme and the national population is often called “basis risk”, and, anec-
dotally, is often given as a key reason holding back the use of standardised
financial instruments (based on national data) to manage longevity risk in

1In this paper, we refer to “pension schemes” which administer the provision of defined
benefits to members. We draw a semantic distinction between a “pension scheme” and
a “pension plan”, which we would use as a more general term for any defined benefit
or defined contribution pension arrangement provided on either a group or an individual
basis.
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pension schemes.

The actuarial profession in the UK initiated the Self-Administered Pen-
sion Scheme study in 2002 in an attempt to overcome these issues with data.
The study pools data from almost all large occupational pension schemes in
the UK, allowing insights about how typical pension schemes differ from the
national population to be established.

In this paper, we use the data collected by the Self-Administered Pen-
sion Scheme study and develop a model for mortality in order to compare
the evolution of mortality rates in UK occupational pension schemes directly
with that observed in the national population. This model has the advan-
tages of parsimony and robustness, important properties when dealing with
the smaller datasets available for pension schemes. We then use this model
to investigate the phenomenon of basis risk between pension schemes and
the UK population, as well as the potential of using this approach on even
smaller populations comparable with the size of an individual scheme. In do-
ing so, we bring into question the potential importance of basis risk in small
populations and find that in most contexts it is likely to be substantially
outweighed by other risks in a pension scheme. This is investigated further
in Hunt and Blake (2016b).

The outline of this paper is as follows. Section 2 describes the Self-
Administered Pension Schemes (SAPS) study and how the population ob-
served by it differs structurally from the national UK population. Section 3
discusses the modelling framework we will use to compare the mortality ex-
perience of these populations. Section 4 then applies this framework to data
from the SAPS study, tests the models produced and considers the impact of
parameter uncertainty and model risk on these conclusions. Section 5 uses
the model to project mortality rates for the sub-population in the context
of assessing the basis risk between it and the national population. Section 6
then assesses the feasibility of using the model for smaller populations which
have sizes more comparable to those of actual UK pension schemes. Section
7 discusses some of the broader conclusions on the importance of basis risk
we draw from this study, whilst Section 8 summarises our findings.
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2 The Self-Administered Pension Scheme study

The Institute of Actuaries in England & Wales and the Faculty of Actuaries
in Scotland initiated the SAPS study in 2002 to investigate the mortality ex-
perience of pensioner members of occupational pension schemes in the UK.
Data from the SAPS study has been analysed by the Continuous Mortality
Investigation (CMI) to produce the graduated mortality tables2 in use by
the majority of pension schemes in the UK for funding and accounting pur-
poses.3 The CMI has also analysed the SAPS data in terms of the evolution
of mortality during the study period4 and the differences in experience for
schemes whose employers are in different industries.5

UK pension schemes with more than 500 pensioner members are asked
to submit mortality experience data to the SAPS study after each triennial
funding valuation. The CMI provides summaries of the aggregate of this
data to members of the study, categorised across a number of different vari-
ables, at regular intervals.6 We have been provided with this data in a more
complete form, comprising exposures to risk and death counts (unweighted
by the amount of pension in payment) for individual ages and years for all
men and women in the SAPS study between 2000 and 2011 by the CMI. A
summary of the data used in this paper is given in Appendix A.

Since it is sampling from a distinct subset of the national population, the
dataset collected by the SAPS study is atypical of the UK population data
for a number of reasons:

• The dataset is the mortality experience of members of occupational,
defined-benefit pension schemes. Typically, this will exclude the un-
employed, the self-employed, those employed in the informal sector
or those working for newer companies (which typically do not offer
defined-benefit pensions).

• The dataset is the mortality experience of members of reasonably large

2The S1 tables in Continuous Mortality Investigation (2008) and the S2 tables in Con-
tinuous Mortality Investigation (2014a).

3The Pensions Regulator (2013a) and Sithole et al. (2012).
4See Continuous Mortality Investigation (2011).
5See Continuous Mortality Investigation (2015).
6See Continuous Mortality Investigation (2014c) for example.
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pension schemes. According to The Pensions Regulator (2013b), only
around 20% of UK pension schemes have more than 1,000 member in
total, and therefore even fewer pensioner members. This means that
employees of large, mature companies are likely to be over-represented
in the SAPS study.

• The dataset is the mortality experience of pension schemes subject to
triennial funding valuations. This means that it excludes most public
sector employees, who are members of unfunded state pension schemes.

• The dataset is likely to have some individuals in receipt of pensions from
multiple sources, for instance, because of employment at two or more
different companies, and who will therefore be represented multiple
times.

• The dataset will include members of UK pension schemes who emigrate
and possibly die overseas, and who therefore would not be included in
the UK national population mortality data.

These factors explain why the experience of the SAPS mortality study is
believed to be a better proxy for the mortality experience of individual UK
pension schemes (even those not included in the SAPS study). The mortality
tables graduated from the SAPS data are therefore often used for pension
scheme accounting and funding purposes, as opposed to tables graduated
from national population data or the experience of individuals buying an-
nuities directly from life insurers. However, they also mean that the future
evolution of mortality rates for SAPS members may be different from that of
the national population (although they may well be similar in other respects).

Unfortunately, the SAPS dataset poses a number of difficulties for use
with the more sophisticated mortality modelling and projection techniques
which have been developed in recent years. These include:

• relatively small exposures to risk compared with the national popula-
tion (at most around 1.5 million members under observation in a single
year), leading to greater parameter uncertainty especially in complex
models;

• the short length of the study, with only twelve years of data in the
sample for analysing the trends present; and
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• the method of data collection - schemes submit data in respect of a
three-year period at a lag of up to 18 months after the period ends -
leads to a distinctive pattern of exposures shown in the data in Ap-
pendix A, with only partial data having been submitted to date for the
last five years in the study.

For these reasons, it is still advisable to use national mortality data, with
its larger exposures and longer period of availability, to produce projections
of mortality rates. The SAPS data can then be used to quantify the ways
that members of UK pension schemes are likely to differ from this baseline.
We do this by means of a “relative” mortality model, which we now describe.

3 The proposed model

A number of different models have been proposed in order to analyse mortal-
ity for various different populations. Many of these, however, have assumed
that the different populations are of comparable size (e.g., different coun-
tries in Hunt and Blake (2015c)) or the smaller populations are at least of
sufficient size to be able to estimate a large number of parameters for them
(for instance, see Dowd et al. (2011) and Villegas and Haberman (2014)).
However, with UK pension schemes, the lack of available data means that
we require a far simpler approach.

In order to achieve this, we fit a sophisticated model to the larger “refer-
ence” population (typically the national population), where we have sufficient
data to be able to robustly estimate a larger number of age, period and co-
hort terms. For the sub-population, we then use the more limited data we
have to estimate the difference in the level of mortality observed across dif-
ferent ages and a series of scaling factors, which scale the period and cohort
parameters from the reference population for the sub-population. This ap-
proach is considerably more parsimonious than fitting a separate model for
the sub-population, with a corresponding increase in the robustness of our
parameter estimates. In addition, there is no requirement that the data for
the small population covers the same range of ages and years as that for the
larger population.
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3.1 The reference model

For the reference population, we choose to use the “general procedure” (GP)
of Hunt and Blake (2014) in order to construct a model sufficient to capture
all the significant information present in the national population data. This
selects an appropriate model within the class of age/period/cohort (APC)
models7 of the form

ln
(
µ

(R)
x,t

)
= α(R)

x +
N∑
i=1

f (R,i)(x; θ(R,i))κ
(R,i)
t + γ

(R)
t−x (1)

where

• age, x, is in the range [1, X], period, t, is in the range [1, T ] and hence
that year of birth, y, is in the range [1−X,T − 1];

• α(R)
x is a static function of age;

• κ(R,i)
t are period functions governing the evolution of mortality with

time;

• f (R,i)(x; θ(R,i)) are parametric age functions (in the sense of having a
specific functional form selected a priori) modulating the impact of
the period function dynamics over the age range, potentially with free
parameters θ(R,i);8 and

• γ(R)
y is a cohort function describing mortality effects which depend upon

a cohort’s year of birth and follow that cohort through life as it ages.

The GP selects the number of age/period terms, N , and the form of the
age functions f (R,i)(x) in order to construct mortality models which give a
close but parsimonious fit to the data. This way, we aim to extract as much
information as possible from the national population dataset and have spe-
cific terms within the model corresponding to the different age/period or
cohort features of interest.

7See Hunt and Blake (2015d) for a description of this class of models.
8For simplicity, the dependence of the age functions on θ(R,i) is supressed in notation

used in this paper, although it has been allowed for when fitting the model to data.
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3.2 The sub-population model

To analyse the data for the sub-population, we use a model of the form

ln
(
µ

(S)
x,t

)
= α(R)

x + α(∆)
x +

N∑
i=1

λ(i)f (R,i)(x)κ
(R,i)
t + λ(γ)γ

(R)
t−x + νXt−x (2)

Apart from the νXy term, this is an APC model of the same form as that
used to model the reference population, i.e., with the same age/period terms
and cohort parameters. However, these are modulated by scaling factors, λ(j)

where j ∈ {1, . . . , N, γ}. The νXt−x term, where Xy is a set of deterministic
functions of year of birth and ν the corresponding regression coefficients, has
been added to the APC structure in order to ensure that the model is iden-
tifiable under invariant transformations of the cohort parameters. Details of
these issues are given in an online appendix.

It should be noted that there are two special cases for these sensitivities:

1. λ(j) = 0: the sub-population has no dependence on the jth age/period
or cohort term; and

2. λ(j) = 1: there is no difference between the reference and sub-populations
with respect to the jth factor.

In order to obtain a more parsimonious model, it may also be desirable
to simplify the non-parametric structure9 for α

(∆)
x by constraining it to be

of a specific parametric form, for example, a linear combination of a set of
pre-defined basis functions.

When fitting the model to data, we have a strong preference for parsi-
mony due to the low volume of data for the sub-population. We therefore
adopt a “specific-to-general” modelling approach: first testing a highly re-
stricted form of the model with a parametric form for α

(∆)
x and λ(j) = {0, 1}

and then relaxing these restrictions sequentially. The final model is chosen to
maximise the Bayes Information Criteria (BIC),10 which penalises excessive
parameterisation. This procedure is performed algorithmically, and is espe-
cially important when we apply the model to very small datasets comparable
to the size of individual pension schemes, as done in Section 6.

9Defined in Hunt and Blake (2015d) as being fitted without any a priori structure or
functional form.

10Defined as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
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4 Applying the model to SAPS data

4.1 The reference models for UK data

Our first task is to construct suitable mortality models for men in the na-
tional UK population.11 To do this, we apply the GP to data from the
Human Mortality Database (2014) for the period 1950 to 2011 and for ages
50 to 100. The GP produces a model with four age/period terms, described
in Table 1,12 plus a cohort term. All of these terms are shown in Figure 1.13

Term Description Demographic Significance

f (R,1)(x)κ
(R,1)
t Constant age function Level of mortality curve

f (R,2)(x)κ
(R,2)
t Linear age function Slope of mortality curve

f (R,3)(x)κ
(R,3)
t Parabolic age function Mid age-range mortality

f (R,4)(x)κ
(R,4)
t Parabolic age function Younger age mortality

Table 1: Terms in the reference model constructed using the general proce-
dure

As discussed in Hunt and Blake (2015a,b), many mortality models are not
fully identified. To uniquely specify the parameters, we impose identifiability
constraints. These constraints are mostly standard and have been used to
impose our desired demographic significance on the parameters. Details of
these constraints and further technical information about the models used
are given in an online appendix. However, they are arbitrary, in the sense
that they do not affect the fit to historical data, and so care has been taken
to ensure that our choice does not affect our conclusions.

11We have performed a similar analysis for women and find broadly comparable results.
However, for reasons of space, these results are not presented here.

12Demographic significance, as used in Table 1, is defined in Hunt and Blake (2015d)
as the interpretation of the components of a mortality model in terms of the underlying
biological, medical or socio-economic causes of changes in mortality rates which generate
them.

13In Figure 1c, one of the most notable features of the cohort parameters is the presence
of large outliers in 1919/20 and 1946/47. We believe, based on the analysis of Richards
(2008)and Cairns et al. (2015), that these are not genuine cohort effects, hence we use
indicator variables to remove the impact of outliers from the cohort parameters.
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4.2 The model for the SAPS data

We now estimate the model using these reference age, period and cohort
terms for the full SAPS dataset. As discussed in Section 3, we do this in
stages using a specific-to-general procedure. We start with the simplest and
most restricted model, i.e., where α

(∆)
x is restricted to take a parametric form

and we restrict the scaling factors λ(j) to be equal to zero. This model is re-
ferred to as Model 1 in Table 2 below.

We then allow these restrictions to be relaxed sequentially. This means
that, in turn, we estimate the model for the sub-population with all pos-
sible combinations of constraints, where α

(∆)
x is either parametric or non-

parametric and where λ(j) can be restricted to be equal to zero, unity or
allowed to vary freely. This gives us 486(= 2× 35) different combinations of

constraints for the two alternative structures for α
(∆)
x and three alternatives

for each of the five different scaling factors, λ(j). For each of these different
models, the goodness of fit to the data is calculated, as measured by the
BIC. The model which gives the best fit to data (i.e., the highest BIC) is
then selected as the preferred model, referred to as Model 8 in Table 2, for
the dataset. This process is illustrated in Figure 2.

Several of the models tested, with representative combinations of restric-
tions, are shown in Table 2 for the SAPS data.14 These have been chosen to
illustrate the impact of relaxing various restrictions, for instance, comparing
Models 1 and 2 illustrates the impact on the goodness of fit of using a non-
parametric as opposed to a parametric structure for α

(∆)
x , whilst comparing

Models 3 and 4 illustrates the impact of introducing the set of cohort param-
eters from the reference population. The preferred model which maximises
the fit to data is shown as Model 8. However, it is important to note that
the fitting procedure tests all 486 possible combinations for the structure of
α

(∆)
x and any combination of restrictions on λ(j).

The preferred model selects a parametric simplification for the difference
in the level of mortality, α

(∆)
x . This substantially reduces the number of free

parameters in the preferred model, leading to greater parsimony. This is also
borne out by comparing models which differ by the form of α

(∆)
x , but have

14In Table 2, “NP” stands for non-parametric while “P” stands for parametric.
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Observed dataset for
the reference population

Observed dataset for
the sub-population

Fitted parameters for
the reference model

Fit relative model
with different sets

of restrictions

Fitted parameters for
the relative model with
restriction set j = 1

. . .
Fitted parameters for

the relative model with
restriction set j = 486

Select set of restric-
tions, j∗, which

gives best fit to data

Fitted parameters for
the relative model

Figure 2: Flow chart illustrating the procedure for fitting and selecting the
relative model
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Model No. 1 2 3 4 5 6 7 8

α(∆) P NP P P NP P NP P
λ(1) 0 0 1 1 1 1.36 1.37 1
λ(2) 0 0 1 1 1 0.34 0.28 1
λ(3) 0 0 1 1 1 1.12 1.18 1
λ(4) 0 0 1 1 1 1.29 0.59 1
λ(γ) 0 0 0 1 1 1.00 0.51 1

Log-likelihood ×103 -2.04 -1.93 -1.98 -1.93 -1.86 -1.92 -1.85 -1.93
Free parameters 5 32 5 5 32 10 37 5

BIC ×103 -2.06 -2.03 -1.99 -1.94 -1.95 -1.95 -1.96 -1.94

Table 2: Representative sets of restrictions for the model using male SAPS
data

similar restrictions placed on the scaling factors, λ(j), e.g., Models 1 and 2,
or Models 4 and 5 in Table 2. In some respects, this supports the tradi-
tional actuarial practice of adjusting mortality rates for a pension scheme by
taking a mortality table from a reference population (in this case, the full
UK population) and making relatively simple adjustments to it. We also see

from Figure 3 that α
(∆)
x is generally negative across all ages. This indicates

that the SAPS population has generally lower levels of mortality rates than
the national population, which is consistent with the results of Continuous
Mortality Investigation (2011).

We note that the procedure selects a model where all the λ(i) for the
age/period and cohort terms are restricted to be equal to unity. This is the
same model as Model 4 in Table 2 however, the structure of Model 4 was
selected a prioiri, whilst that for Model 8 was selected after an exhaustive
search of all possible model structures. This means that the model finds no
difference between the evolution of mortality rates for men in the SAPS data
and the national population.15 This is developed further in Section 4.3.1.

Finally, we note that the BICs of many of the models with different re-
strictions are very similar, meaning that there is not much to choose between
them and so model risk (the risk of using an inappropriate model) may be

15In the terminology of Section 5, we say the model finds that there is level basis, but
no trend basis.
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a potential issue. This is developed further in Section 4.3.2. It may there-
fore be justifiable to select simpler models than suggested by looking just at
goodness of fit, on the grounds that they may be more robust to parameter
uncertainty or easier to project into the future, as done in Section 5. This
will be even more important when we investigate smaller, pension scheme-
sized datasets, as in Section 6.

4.3 Parameter uncertainty and model risk

We next consider the robustness of the preferred model selected, i.e., Model 8.
We do this in two stages, by considering the different sources of uncertainty
outlined in Cairns (2000). First, we consider only parameter uncertainty, i.e.,
the uncertainty in the free parameters of the preferred model, on the assump-
tion that the restrictions placed on the parameters in Model 8 are correctly
specified. Second, we allow for model risk by allowing the procedure to select
different models using the sequential procedure discussed above.

Both parameter uncertainty and model risk could be incorporated us-
ing a Bayesian approach with model averaging. However, doing so would
use Bayesian Markov Chain Monte Carlo techniques, which are unfamiliar
to most pension schemes and their advisors. Therefore, whilst Bayesian
approaches have much to commend them, we will adopt a more familiar fre-
quentist approach in addressing these issues.

For both stages, we use a procedure based on the residual bootstrapping
method of Koissi et al. (2006) to generate new pseudo-data. This resamples
from the fitted residuals to generate new simulated death counts to which the
model is refitted, allowing the uncertainty in the parameters to be measured.
We do this first to allow for parameter uncertainty in the reference model. It
is important to allow for parameter uncertainty in the reference model due
to the hierarchical structure of the model, i.e., that the parameters for the
reference model are implicitly assumed to be known when the model for the
sub-population is fitted. Therefore, uncertainty in the parameters of the ref-
erence model can be magnified when we come to investigate the uncertainty
in the parameters of the model.

The next step is to bootstrap new pseudo-data for the sub-population.

14
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Figure 3: 95% fan chart showing the level of parameter uncertainty in α
(∆)
x

When using a residual bootstrapping procedure, it is important that the fit-
ted residuals being used contain as little structure as possible, so that as
little information as possible in the original data is lost when these residuals
are randomly resampled. This will be the case for models which provide a
close fit to the data, i.e., a high maximum likelihood. Therefore, in our resid-
ual bootstrapping procedure we use the expected mortality rates and fitted
residuals from Model 7, since this model has the highest log-likelihood in
Table 2. However, since Model 7 is outperformed by a number of other mod-
els when the goodness of fit is penalised for the number of parameters (i.e.,
it has lower BIC than other models), we do not specifically consider it further.

4.3.1 Parameter uncertainty

For the first stage, we consider only parameter uncertainty. To do this, we
fit the model to 1,000 sets of pseudo death counts, generated by the Koissi
et al. (2006) residual bootstrapping procedure. For each of these datasets,
however, we do not test which set of restrictions give the best fit to the data.
Instead, we impose the same set of restrictions as were used for Model 8 in
Table 2.

Figure 3 shows the impact of parameter uncertainty on the level param-
eters for the SAPS population by showing the 95% fan chart. We therefore
conclude that the differences in the level of mortality between the national
and SAPS populations are statistically significant across the entire age range.
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However, substantial statistical uncertainty exists in the differences in the
level of mortality, which can have important implications for the cashflows
from pension schemes, as we discuss in Hunt and Blake (2016b).

Because the preferred model restricts the scaling factors for the reference
period and cohort functions to be equal to unity, no parameter uncertainty is
allowed for in their estimation.16 Hence, allowing for parameter uncertainty
alone will significantly understate the potential uncertainty in the approach
and so we also need to consider model risk.

4.3.2 Model risk

The second stage of testing the robustness of the model is to fit the model to
the bootstrapped data for the sub-population without specifying the form of
the preferred model. Instead, we allow the procedure to select a potentially
different preferred model in each simulation. This allows for “model risk”,
in the sense of Cairns (2000), i.e., the risk that the model selected is not an
accurate representation of the true processes generating the data. This pro-
cess is conceptually similar to the approach developed in Yang et al. (2015).
However, we are still selecting a preferred model from a relatively limited set
of comparators, and so the procedure does not fully capture the potential for
model risk.

Looking first at the preferred form of α
(∆)
x , we find that, from 1,000 boot-

strapped datasets, the preferred model restricts α
(∆)
x to have a parametric

form in only 36% of the bootstrapped datasets. Next, Table 3 shows the
frequency of observing the various restrictions on the scaling factors in the
preferred model. We note that the most common models chosen tend to
restrict the scaling factors to equal unity in the same way as preferred in
Model 8 in Table 2. The exception to this is for λ(γ), where an unrestricted
value is preferred in the majority of cases.

Table 3 shows the frequency of observing the various restrictions on the
scaling factors in the preferred model, based on the same 1,000 bootstrapped
datasets. We note that the most likely form that these restrictions take is
the one preferred for Model 8 in Table 2. The exception to this is for λ(γ),

16This is in contrast to when the model is applied to female data, where some of the
scaling factors are allowed to vary freely and hence are subject to parameter uncertainty.
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λ(j) = 0 λ(j) = 1 λ(j) unrestricted

λ(1) 0% 70% 30%
λ(2) 47% 53% 0%
λ(3) 0% 97% 3%
λ(4) 44% 55% 1%
λ(γ) 1% 37% 62%

Table 3: Frequency with which different restrictions are placed upon the
scaling factors in the preferred model, based on 1,000 bootstrapped datasets

where an unrestricted value is preferred.

In summary, we find that there is substantial model risk, and no one
set of restrictions out of the available options is universally selected. This
will be important when we project the model in Section 5. It should also,
again, caution us against using overly complicated models for the SAPS
populations, since there is substantial uncertainty not only in any parameter
estimates found but also in the fundamental form of the model.

5 Basis risk and projecting mortality for the

SAPS population

In Section 4, the model was applied to historical data for the SAPS popu-
lation. Given projections of the reference population, we can also use the
model to map these into projections for the sub-population.

Many pension schemes are concerned that the mortality experience of
the scheme in question will be substantially different to that of the national
population. This is often and informally referred to as “basis risk”. This is
important when assessing hedging strategies (for instance, in Li and Hardy
(2011), Coughlan et al. (2011) and Cairns et al. (2013)) using financial in-
struments based on national mortality rates. More fundamentally, it is an
important question when funding a pension scheme, since most standard
projections for future mortality rates are based on analysing national pop-
ulations (for instance, the CMI Mortality Projection Model in Continuous
Mortality Investigation (2009) that is widely used in the UK).
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Intuitively, basis risk can arise because of a difference in levels of mortality
rates (e.g., the specific population exhibiting systematically higher or lower
mortality rates than the reference population as a result of characteristics
such as socio-economic status which will change only slowly) and a difference
in trends in mortality rates (i.e., mortality rates evolving differently in the
sub-population, for instance, due to preferential access to new medications)
between the two populations. In order to be more precise in our analysis, we
define the following:

• the mortality basis: the difference in mortality rates between two pop-
ulations;

• the level basis: the difference in the level of mortality rates across ages
between two populations at a defined point in time;

• the trend basis: the difference in the evolution of mortality rates be-
tween two populations;

• level basis risk: the risk arising due to uncertainty in the level basis;

• trend basis risk: the risk arising due to uncertainty in the trend basis
in future; and

• basis risk: the aggregate of level basis risk and trend basis risk.

To clarify these definitions, known differences in mortality rates between
populations form the mortality basis, not the basis risk. For example, if we
knew that population A had mortality rates that were 5% higher across all
ages than population B, but these improved 1% p.a. faster, then this consti-
tutes the basis between the populations. In this case, we could still construct
portfolios using securities linked to mortality in population B to hedge mor-
tality in population A perfectly. Basis risk arises because we cannot measure
the differences in level and trend across different populations perfectly, e.g.,
we might believe the level basis is 5% across all ages but this is subject
to error (i.e., level basis risk) and the true value could lie between 4% and
6%. This distinction is not allowed for in most models of “basis risk” (for
instance, Li and Hardy (2011) and Haberman et al. (2014)), but we believe
our definitions allow for a clearer understanding and attribution of basis risk.
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Similarly, we draw a distinction between differences (and uncertainty in
the differences) in the level of mortality between two populations and the
rates of change between them. This distinction is widely made in practice,
where it is common to consider the base table and improvements in mortality
rates separately when selecting mortality assumptions.

Level differences can be measured relatively easily using traditional ac-
tuarial methods which are well within the capabilities of modern scheme
actuaries. Hence, level basis risk is not often a primary concern, albeit we
believe that it may be understated in many situations (see Hunt and Blake
(2016b)). In contrast, the difference in the evolution of mortality rate be-
tween populations is more difficult to measure reliably and, consequently,
trend basis risk is of greater concern to many scheme actuaries.

In terms of the model of Equation 2, level basis can be thought of as
relating to α

(∆)
x and trend basis to λ(j). Therefore, we note that if parameter

uncertainty and model risk are not allowed for, our proposed approach will
not allow for basis risk in the sub-population, since we have no uncertainty in
the mortality rates in the sub-population, conditional on knowing mortality
rates in the reference population. Parameter uncertainty alone is sufficient
to introduce level basis risk, since this allows for uncertainty in α

(∆)
x , as

shown in Figure 3. However, in our preferred model for the sub-population,
the λ(j) are restricted to unity and hence there will still be no uncertainty
in the trend basis in the reference population, when allowing for parameter
uncertainty alone. Hence, it is only appropriate to talk about “basis risk
in conjunction with our preferred model for the SAPS data when both pa-
rameter uncertainty and model risk are allowed for when making projections.

This trade-off is common to many multi-population mortality models de-
signed to measure basis risk. More complicated models can allow for a more
sophisticated analysis and quantification of basis risk than simpler mod-
els, but are more difficult to estimate and less robust when fitted to small
datasets. Our approach has been specifically designed for situations where
there is relatively little data over a short period range to make best use of
sparse data. However, we acknowledge that this makes it less effective at
modelling basis risk than other models. We discuss this trade-off further in
Section 7.
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In order to evaluate the potential impact of basis risk between the UK and
SAPS populations, we first need to project mortality rates for the national
population. However, it is important that our projections of mortality rates
are “well-identified” in the sense of Hunt and Blake (2015a,b) in that they
do not depend upon our chosen identifiability constraints. To project the
reference population, we therefore adopt the techniques of Hunt and Blake
(2015b) and use random walks with drift

κ
(R)
t = µ(R)

(
1
t

)
+ κ

(R)
t−1 + ε

(R)
t (3)

where κ
(R)
t =

(
κ

(R,1)
t , . . . κ

(R,N)
t

)>
, µ(R) is a matrix of drift coefficients with

respect to the period “trends”,
(
1, t

)>
, and ε

(R)
t are normally distributed,

contemporaneously correlated innovations. For the cohort parameters, we
make projections using an AR(1) around “well-identified” drifts

γ(R)
y − β(R)

 1
(y − ȳ)

((y − ȳ)2 − σy)

 = ρ(R)

γ(R)
y−1 − β(R)

 1
(y − 1− ȳ)

((y − 1− ȳ)2 − σy)

+ εy

(4)

where β(R) is a matrix of drift coefficients with respect to the cohort “trends”,(
1, (y − ȳ), ((y − ȳ)2 − σy)

)>
. These deterministic functions are chosen to

ensure that the projections are “well-identified”, i.e., that the projected mor-
tality rates for the reference population do not depend upon the identifiability
constraints used when fitting the model.

Any dependence between mortality rates for men and women is not rele-
vant to the following discussion, where only the relationships between mor-
tality rates in the reference and sub-populations for the same sex are inves-
tigated. Therefore, in these projections, we do not take into account any
dependence between male and female mortality rates in the reference pop-
ulation, and consequently project these populations independently. A more
complete analysis of the mortality and longevity risks in pension schemes,
such as in Hunt and Blake (2016b), would need to allow for dependence be-
tween sexes in the reference population. For techniques which could allow
for dependence between these populations, see Hunt and Blake (2015c) and
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the references therein.

To illustrate the basis between the SAPS and UK populations, we con-
sider annuity values at age 65 (calculated using a real discount rate of 1%
p.a.). We perform 1,000 Monte Carlo simulations using the time series pro-
cesses above to give projected mortality rates in the national population,
which are then used to generate projected mortality rates in the SAPS pop-
ulation using the relative mortality models for men and women separately.
Basis risk is accounted for by using the approach developed here and allowing
fully for both parameter uncertainty and model risk. Because all parameters
in the model are subject to uncertainty using this method (i.e., even the
restrictions that were previously found are reassessed), this approach allows
for both level and trend basis risk in both populations. Using this procedure,
we observe correlations between annuity values in the UK and SAPS popu-
lations of 85%. Analysing the impact of process, parameter and model risk
separately, we find that it is the potential for model mis-specification which
adds most significantly to the basis risk for both populations.

Figure 4 shows scatter plots of annuity values calculated using mortality
rates in the UK and SAPS populations. First, we note that the systematic
longevity risk (indicated by the range of values the annuity value can take)
is far greater than the basis risk. Indeed, the systematic longevity risk ac-
counts for around 90% of the uncertainty in an annuity value for the SAPS
population,17 indicating that basis risk may be considerably less important
than is widely believed believed. Of the remaining 10% of the uncertainty
attributable to basis risk, we find that approximately 8% is attributable to
model risk and only 2% to parameter uncertainty.18 Whilst it is true that
the preferred model for the male SAPS data may understate the impact of
parameter uncertainty in a more general case (since all the λ(j) are set to
unity), this still indicates that the large majority of basis risk arises from
fundamental uncertainty over the correct model to use. This is discussed
further in Section 7.

Second, Figure 4 shows that, the points tend to cluster depending on the

17As measured as the proportion of the observed variance explained by a regression of
the SAPS annuity value on the national population annuity value.

18Found by comparing the projected annuity values when either only systematic
longevity risk or systematic longevity risk and parameter uncertainty are considered.
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Figure 4: Projected annuity values for the UK and SAPS populations from
1,000 Monte Carlo simulations

preferred set of restrictions found. Studies which do not allow for potential
model risk will, therefore, only observe one of these clusters and hence under-
state the true potential for basis risk. In particular, we find that the second
cluster of points observed in Figure 4 arises from the 30% of simulations
where λ(1) is unrestricted (see Table 3. These tend to find values of λ(1) > 1
and hence faster improvements in mortality rates in the SAPS population
than the reference population, as shown in Figure 4.

However, it is important to note that even when model risk is allowed for,
there is limited trend basis risk between the two populations. This is because
the same processes, i.e., κ

(R)
t and γ

(R)
y , control the evolution of mortality in

both populations, albeit scaled by factors, λ(j), in the sub-population which
are uncertain. This is in contrast with other studies, such as Hunt and Blake
(2015c), which have allowed for different time series processes in each popu-
lation. This helps explain why the correlations we find are somewhat higher
than those found in other studies of basis risk, such as Cairns et al. (2013).
However, we note that most of these studies used sub-populations which were
considerably larger and covered a longer period of time than the SAPS pop-
ulation. Consequently, there is a trade-off. On the one hand, we might wish
to use more complicated models that might give a more accurate assessment
of basis risk, but which require larger volumes of data to estimate robustly
and, therefore, might involve using data for a larger sub-population which
is less relevant for the mortality experience of a specific pension scheme (for
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instance, the CMI Assured Lives dataset). On the other hand, we might
prefer to use simpler models, which can be robustly estimated from smaller
datasets that are likely to be more relevant to the specific scheme experience,
but give a less accurate assessment of basis risk. The impact of this trade-off
is discussed in Section 7.

Finally, the importance of model risk and parameter uncertainty will tend
to increase if we consider populations smaller than the SAPS population, as
we do in Section 6. Although we have not performed a detailed investiga-
tion,19 a good rule of thumb says that parameter uncertainty is inversely
proportional to the size of the dataset in terms of lives. Hence, if we reduce
the size of the population from over one million lives to around 100,000, we
would expect the importance of parameter uncertainty to more than treble.
Consequently, Wwe would therefore expect to see correlations of a similar
size to those found in other studies for population sizes that are more typical
of UK pension schemes, due to the greater parameter uncertainty and model
risk, even without allowing for different period and cohort processes in the
two populations. In addition, the cashflows experienced by a pension scheme
will also have (potentially substantial) idiosyncratic risk due to the relatively
low number of lives under observation. This suggests that, for most pension-
scheme-sized populations, it is impossible to distinguish between the trend
basis risk arising from different processes in each population and the basis
risk arising from a model such as ours where the two processes are the same,
but we include parameter and model uncertainty. This is discussed further
in Section 7 and Hunt and Blake (2016b).

6 Applying the model to small populations

While the SAPS population is small compared with the national UK popu-
lation, it does have annual exposures to risk of over one million lives each for
men and women, and so still represents a population larger than almost all
occupational pension schemes (with the exception of some state schemes).
However, the methods developed in this paper can be applied to significantly
smaller populations, such as those more comparable with the size of large
occupational pension schemes.

19Section 6 looks only at in-sample model fitting rather than projection and basis risk.
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As discussed in Section 4.2, the model applied to the SAPS population ex-
hibited a strong preference for parsimony. However, parameter uncertainty
and model risk were still important considerations, even with a relatively
simple model and the full SAPS data. It is therefore exceedingly likely that
in even smaller populations, these considerations will dominate what we can
and cannot realistically say about the evolution of mortality of a small sub-
population such as that associated with an individual pension scheme.

We investigate the effect of population size on the ability of the model
to measure mortality differences with the national population by randomly
generating scheme-sized exposures to risk and death counts based on the
SAPS data. We do this first by scaling the exposures to risk from the SAPS
data appropriately to proxy for pension schemes of the desired size. Then,
we generate random death counts for the scheme by modelling them as Pois-
son random variables with the expected number of deaths found using the
crude mortality rates observed in the SAPS dataset. We fit the model to
this pseudo-scheme data, testing all 486 sets of possible restrictions on the
parameters to determine the preferred model using the same procedure de-
scribed in Section 4.3.2.

To gain a better understanding of the impact of the size of the popula-
tion on the complexity of the preferred model, we apply this procedure for
scheme sizes at regular intervals in the range N ∈ (102, 106) and for 1,000
sets of random death counts at each scheme size. This range of population
sizes covers almost the entire range of pension scheme sizes in the UK, and
the fitting of multiple models allows for potential model risk in the selection
of the preferred model. The results of this procedure are shown in Figure 5.

First, let us consider the results shown in Figure 5a for the level of mortal-
ity in the smaller pension schemes. These figures show that the probability
of the procedure preferring a parametric restriction for α(∆) is almost unity
for schemes with up to around half a million male members. This indi-
cates an overwhelming preference for parametric restrictions for α

(∆)
x in all

but the very largest schemes with memberships far in excess of all but the
largest state schemes in the UK. The implication of this is that making sim-
ple adjustments to a standard mortality table will be sufficient to capture
the difference in levels in mortality for almost all UK schemes, with little or
no need to graduate a bespoke table (even if the data is available).
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Looking at the scaling factors for the age/period and cohort terms, we see
that, typically, the smallest schemes (fewer than 1,000 members) are indiffer-
ent between restricting λ(j) to be equal to zero or unity. For instance, Figure
5b shows that the procedure imposes the restriction λ(1) = 0 and λ(1) = 1
in approximately 50% of the simulations for small schemes, with λ(1) being
estimated without restrictions in almost no cases. This pattern is repeated
for the other scaling factors shown in Figure 5. Since the restrictions λ(j) = 0
and λ(j) = 1 give models with the same number of free parameters, the choice
between them depends entirely on the log-likelihood found when fitting the
model. However, the difference between λ(j) = 0 and λ(j) = 1 is the differ-
ence between a model which allows mortality rates to change with time and
a static model of mortality (λ(j) = 0 ∀j). We therefore find that, in very
small schemes it is almost impossible to say whether or not mortality rates
are changing, let alone whether the rate of change differs from the national
population.

Looking at Figure 5b again, we see that for larger schemes, with around
10,000 to 100,000 members, the model has a clear preference for setting
λ(1) = 1, which is preferred in almost all simulations for schemes with around
200,000 members. This pattern also holds for λ(3) and λ(γ) (albeit for slightly
larger schemes). For the other scaling factors, the model is broadly indiffer-
ent between imposing λ(j) = 0 and λ(j) = 1 for all sizes and schemes.

The implication of this is that, although there is sufficient evidence to
suggest mortality is improving in these larger schemes (unlike the smaller
schemes discussed above), there is not enough data to quantify any differ-
ences in this improvement between the scheme and the national population.
This supports the use of projection methods based on the national popula-
tion for the majority of pension schemes in the UK. It also makes it unlikely
that we can detect any trend basis between the scheme and the national
population for schemes with fewer than 100,000 members of each sex. It also
shows that there is insufficient evidence to justify the inclusion of a set of
scheme-specific cohort parameters for all but the largest pension schemes, a
result which agrees with the findings of Haberman et al. (2014).

The preference for a freely varying λ(1) for some scaling factors in schemes
with around one million members in Figure 5b illustrates that it is only in
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the very largest schemes do we find that there is sufficient data to estimate
unrestricted λ(j). Therefore, it is only for these very large schemes that we
can quantify any difference in the evolution of mortality rates between a pen-
sion scheme and the national population. However, the results of Section 5
indicate that, even when trend basis is allowed for, the impact on annuity
values is likely to be quite limited, especially when considered in the context
of the other mortality and longevity risks in the scheme. This is investigated
further in Hunt and Blake (2016b).

In summary, we find that, for datasets that are the same size as a typical
UK pension scheme, there is insufficient data to make more than a few simple
adjustments to reflect the level basis. For most practical circumstances, we
would therefore be unable to quantify any trend basis in a pension scheme,
and it is most convenient to assume that the changes in mortality in the
scheme are equal to those in the national population. Therefore, for small
schemes, we find that the basis risk is determined solely by the uncertainty
in estimating the level basis, rather than the trend basis. This is examined
further in Hunt and Blake (2016b). Given that trend basis risk is often
given as a key concern for why pension schemes are reluctant to use index
based hedging instruments to manage their longevity risk and, instead, prefer
bespoke arrangements, we believe that much of this trepidation is misplaced.

7 Discussion: Basis risk in pension schemes

There has been a lot of work regarding the quantification of basis risk be-
tween different populations, most notably in Plat (2009), Salhi and Loisel
(2009), Li and Hardy (2011), Coughlan et al. (2011), Cairns et al. (2013), Li
et al. (2015) and Haberman et al. (2014). The analysis of this risk has also
motivated many of the multi-population mortality models that have recently
been proposed, such as those of Dowd et al. (2011), Cairns et al. (2011), Zhou
et al. (2014), Villegas and Haberman (2014) and Hunt and Blake (2015c).
However, much of this work to date is not directly relevant to the situation
faced by many UK pension schemes when assessing and trying to manage
their longevity risk.

Partly, this is because the populations being considered in these studies
are far larger in terms of the size of the exposures to risk than that of a
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typical (or, indeed, even a very large) UK pension scheme. This enables
the authors of these studies to adopt a “general-to-specific” approach when
analysing trend basis risk: first mortality models are fitted separately to the
different populations under investigation and then any dependence between
the period or cohort parameters is analysed. This approach is exemplified
by the study of Li et al. (2015), which statistically determined whether or
not to simplify a model by using the same sets of parameters for different
populations (which is a very specific form of dependence). Such an approach
therefore starts from the assumption that mortality rates will have different
patterns of evolution in different populations, and then looks for evidence of
similarities.

Such an approach is entirely reasonable when looking at large populations
where there is sufficient data to estimate sophisticated mortality models in
each population under investigation. However, this is not the situation in
which most pension schemes find themselves. Instead, with relatively lit-
tle data, it is necessary for them to adopt a “specific-to-general” approach,
such as that underlying the model proposed in this paper. As there is insuf-
ficient data to estimate many sub-population-specific parameters robustly,
a specific-to-general methodology starts from the assumption that mortal-
ity rates in the sub-population evolve in the same fashion as those in the
reference population and then looks for evidence of differences between the
two. This approach naturally leads to more parsimonious models, which are
therefore likely to be more robust. However, it is less likely to overturn the
null hypothesis of no trend basis, especially when parameter uncertainty and
model risk are included in any analysis. This is the trade-off between the
ability to model the mortality basis fully and the simplicity and robustness
of the model for small datasets discussed in Section 5.

Our findings suggest that large volumes of data (in terms of both the
size of the exposures to risk and the period range of the data) are required
to overturn the null hypothesis of no trend basis, especially when parameter
uncertainty and model risk are included in the analysis. For the full SAPS
dataset, the simple model we have proposed achieves relatively good and par-
simonious fits to the data for both men and women, as shown in Section 4.
Furthermore, for the smaller datasets more typical of UK pension schemes,
even simpler models which fix the scaling factors in the model are preferred,
as shown in Section 6. This is consistent with the results of Haberman et al.
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(2014), which found that it is only possible to quantify trend basis for very
large schemes.

In addition, in order to estimate the more complicated multivariate time
series processes used in many of the general-to-specific models we need longer
periods of data than a typical pension scheme has. For instance, to estimate
the cointegration-based models of Salhi and Loisel (2009) and Hunt and Blake
(2015c) requires several decades of mortality data, which is usually far in ex-
cess of what a pension scheme will have itself. Similarly, Haberman et al.
(2014) found that eight years or more of data is required for the quantifi-
cation of basis risk, even for very large pension schemes. Specific-to-general
models, however, do not require such long data ranges, as they start from
the assumption that information about the reference population can be used
to fill in gaps in the data if required.

However, Section 5 shows that projections from the model have many of
the features we would expect from models which use more complicated time
series processes, when appropriate allowance is made for parameter uncer-
tainty and model risk, despite there being no genuine trend basis risk using
the proposed approach. This implies that it may be impossible to distinguish
between genuine trend basis risk and the effects of parameter uncertainty and
model risk in practice. Indeed, it is noticeable that few of the studies to date
which have investigated basis risk allow for parameter uncertainty and model
risk, and so the findings of these studies potentially wrongly attribute differ-
ences in historical improvements in mortality between different populations
to basis risk and, thus, overstate its importance.

Finally, we note that the confusion between the mortality basis and ba-
sis risk, and the distinction between the level and trend bases, may cause
issues with some models. For instance, many models proposed for “basis
risk”, e.g., Jarner and Kryger (2011), are actually models of the mortality
basis according to our definition, since it does not allow for any uncertainty
in the basis in future. Furthermore, models which allow for trend basis risk
using different processes in each population often do not allow for level basis
risk by ignoring parameter uncertainty, e.g., Zhou et al. (2014), and so may
understate its importance in smaller populations. We therefore believe that
it is important to make these distinctions to ensure that all users of multi-
population mortality models are able to communicate effectively about the
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advantages and disadvantages of the different modelling approaches.

We find that for most UK pension schemes, the existence or not of trend
basis between the scheme and the UK population is of little practical rele-
vance. The scheme will never have sufficient information to be able to say
with confidence that the improvements in mortality it experiences are signifi-
cantly different from that in the reference population, as any such differences
will be overwhelmed by the other sources of risk and uncertainty present in
the scheme.

This is not to dispute that trend basis can exist between different coun-
tries or amongst highly distinct sub-populations of a reference population.
Indeed, there are good reasons to suggest that it does and that there is
sufficient data to estimate it reliably using a general-to-specific approach
as in previous studies. For instance, many studies (for instance in Li and
Hardy (2011) and Hunt and Blake (2015c)) investigate differences between
the evolution of mortality rates in different countries. However, populations
in different countries may have different diets, lifestyles and access to health-
care, and so would be expected to have different patterns of evolution in
mortality rates. Other studies, such as in Villegas and Haberman (2014)
consider the differences in the evolution of mortality rates between highly
selective sub-populations of a country (for instance, based on deprivation).
The sub-populations in these studies have, therefore, been constructed in
such as fashion as to maximise the likelihood of observing different patterns
in the evolution of mortality rates.

Nor do we argue that the evolution of mortality rates in a pension scheme
is the same as in the reference population. It may be true that for very large
schemes, we may have sufficient data to be able to detect trend basis (even
when allowing for parameter uncertainty and model risk) if there is quite a
large difference in the evolution of mortality rates between the two popula-
tions. However, we note that very large pension schemes or aggregated data
sets from many pension schemes (such as the SAPS dataset) may change
in composition over the period of the data. It will therefore be unclear if
genuine trend basis is being detected, or merely a change in the composition
of the underlying data.20

20In particular, we note that the data for CMI Assured Lives has varied considerably in
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However, a pension scheme, whose only membership requirement was em-
ployment with a particular company, would be expected to be more similar to
the national population or differ only due to persistent selection effects which
affect the level of mortality rates (i.e., level basis) but not how mortality rates
evolve with time (i.e., trend basis). In order to have sufficient data to reject
the assumption that the evolution of mortality rates in the pension scheme
is the same as in the national population, the scheme must be very large
(such as being the pension scheme for a large and long-established national
company) and so entry to such schemes is likely to be relatively unselective.
Therefore, these schemes are more likely to represent a fair cross section of
the UK population. Consequently, the circumstances where we have enough
data to quantify trend basis (for example, the pension scheme of a large,
national employer) are also the circumstances when trend basis is least likely
to be important. In most practical situations, we will never have sufficient
data to quantify any trend basis and therefore an assumption of no difference
between the evolution of mortality rates in the national population and the
pension scheme is both practical and parsimonious.

The practical implications of these results are important for the develop-
ment of any market in longevity hedging. It is commonly believed in industry
that basis risk is sufficiently important as to prevent the feasibility of index-
based hedging instruments for longevity risk. To date, the vast majority of
longevity risk transfer has been performed on a bespoke basis, with only lim-
ited attempts (such as the Kortis bond discussed in Hunt and Blake (2015c))
to develop instruments linked to systematic risks alone. However, we do not
believe this view is consistent with the correlations (and hence hedge effec-
tivenesses) of around 85% in Section 5.

However, we believe a lot of this is due to the confusion between basis
(which can be solved by efficient structuring of the hedge) and basis risk
and, furthermore, the confusion between level basis risk (which can be re-
duced through the methods discussed above) and trend basis risk (which

the socio-economic makeup of the relevant population over its lifetime due to changes in
the UK annuity market. Since this dataset was used in Cairns et al. (2011), Dowd et al.
(2011) and Cairns et al. (2013), it is unclear whether any difference in the evolution of
mortality detected by these studies is the result of genuine trend basis risk or simply a
result of the changing composition of the dataset.
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is more of an “unknown unknown). Since trend basis risk is unlikely to be
important enough to be statistically significant, it is also unlikely to be fi-
nancially significant. If longevity risk is felt to be important, hedging can be
achieved by use of standardised instruments based on projected changes in
mortality rates in a reference population, making adjustments to reflect the
level of mortality observed in the pension scheme. Concerns that the trend
basis risk will make such hedges ineffective, such as those raised against the
EIB longevity bond (see Blake et al. (2006)), should be regarded as secondary
compared with the other risks a pension scheme faces, such as idiosyncratic
mortality risk. Bespoke products, such as longevity swaps tailored to the
characteristics of the pension scheme, should be regarded primarily as ve-
hicles for hedging and transferring these other risks, rather than any trend
basis risk for the scheme, and their cost effectiveness judged accordingly, as
discussed in Hunt and Blake (2016b).

8 Conclusions

In conclusion, in this study we present a parsimonious model for mortality
in a sub-population, which models the mortality rates observed in a small
population relative to those observed in a larger reference population. Such
a model has the advantages of being more parsimonious compared with the
approach of fitting separate mortality models for both populations, which
has been adopted in many multi-population mortality studies, and so is bet-
ter suited to situations where there is little data for the sub-population.

We then apply the model to investigate the mortality rates observed in
the SAPS study of UK pension schemes. We find that this simple model is
sufficient to achieve a good and parsimonious fit to the available data and
reasonable projections of mortality rates. Specifically, we find that, in ag-
gregate, members of UK occupational pension schemes generally experience
lower levels of mortality rates than the national population, which are also
improving at a faster rate than those in the national population. However,
we find relatively high levels of uncertainty in estimating the parameters even
in this simple model and that the data is insufficient to uniformly prefer one
model over any other. Furthermore, when we apply the proposed modelling
approach to sub-populations which are smaller than the SAPS population,
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and closer in size to those of typical UK pension schemes, we find that the
modelling approach prefers very simple, highly restricted models, which do
not allow for any difference in the evolution of mortality between the refer-
ence and sub-populations.

In order to analyse how mortality rates differ between populations more
completely, we introduce a new set of definitions for basis risk. These defi-
nitions seek to distinguish between differences in the level of mortality rates
between populations and differences in their rates of change, and also to
restrict discussion of basis risk to a discussion of uncertainty in these dif-
ferences. We feel that this allows for a more complete discussion of what
different models can, and cannot, say about basis risk.

These considerations lead us to the belief that a full analysis of trend basis
risk is not possible with the datasets realistically available for most pension
schemes. This is because such an analysis would require more sophisticated
models than the model proposed, with separate processes operating in each
population. We find that, in pension-scheme-sized datasets, we will never
have sufficient information to determine whether there is any difference in
the evolution of mortality rates in the sub-population compared with the
reference population when the other risks present are properly accounted for.
Therefore, we believe that an assumption of no difference in the evolution of
mortality rates between the two populations is practical and parsimonious.
Consequently, we conclude that concerns regarding trend basis risk in the
development of the market for longevity hedging and risk management tools
for pension schemes are misplaced.

A Summary of SAPS data

We are indebted to the CMI for kindly providing death counts and exposures,
weighted by individual lives, for the SAPS population for the period 2000
to 2011 and ages 60 to 90. These relate to all pensioners in the surveyed
pension schemes, and so include people receiving benefits after retiring at
normal retirement age, those who retired early or in ill-health, and those in
receipt of spousal benefits. It is likely that some of these sub-populations will
have different mortality characteristics, especially those retiring in ill-health.
However, such cases represent a relatively small proportion of the SAPS data
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and are unlikely to materially impact our results.

Large pension schemes in the UK submit their mortality experience to
the SAPS study following completion of a triennial funding valuation. There-
fore, each submission is in respect of data with a considerable time delay, e.g.,
data submitted on 30 June 2013 may result from a funding valuation with
an effective date of 31 December 2011 (due to the time taken to perform
the valuation) and cover the period 1 January 2009 to 31 December 2011.
Consequently, the last few years of the SAPS data only reflects a partial
submission to date of the mortality experience of the schemes which will,
ultimately, submit data to the study. However, we have no reason to believe
that the schemes that have submitted to date are an unrepresentative sub-
sample of the SAPS population, and so do not believe this biases our results.

Similarly, there are fewer submissions for the earliest years of the SAPS
data. Unlike the most recent years, the missing data for this period will never
be received by the CMI. Therefore, we only have data we consider complete
for roughly the period 2004 to 2008.21

Figures 6 and 7 summarise the patterns of deaths and exposures for men
and women across age and time.
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2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

200

400

600

800

1000

1200

1400

1600

E
xp

os
ur

e 
to

 R
is

k 
(’0

00
s)

 

 
Men
Women

(a) Exposure to risk by year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

60

D
ea

th
s 

(’0
00

s)

 

 
Men
Women

(b) Death count by year

Figure 7: Exposures to risk and death counts in the SAPS dataset by year

35



Cairns, A. J., 2000. A discussion of parameter and model uncertainty in
insurance. Insurance: Mathematics and Economics 27 (3), 313–330.

Cairns, A. J., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Khalaf-
Allah, M., 2011. Mortality density forecasts: An analysis of six stochastic
mortality models. Insurance: Mathematics and Economics 48 (3), 355–367.

Cairns, A. J., Blake, D., Dowd, K., Kessler, A., 2015. Phantoms never die:
Living with unreliable population data. Journal of the Royal Statistical
Society: Series A (Statistics in Society), Forthcoming.

Cairns, A. J., Dowd, K., Blake, D., Coughlan, G. D., 2013. Longevity hedge
effectiveness: A decomposition. Quantitative Finance 14 (2), 217–235.

Continuous Mortality Investigation, 2008. Working Paper 35 - The gradua-
tions of the CMI self-administered pension schemes 2000-2006 mortality
experience: Final “S1” series of mortality tables.
URL http://www.actuaries.org.uk/research-and-resources/

pages/cmi-working-papers-34-and-35

Continuous Mortality Investigation, 2009. Working Paper 38 - A prototype
mortality projection model: Part one - an outline of the proposed
approach.
URL http://www.actuaries.org.uk/research-and-resources/

pages/cmi-working-papers-38-and-39

Continuous Mortality Investigation, 2011. Working Paper 53 - An initial
investigation into rates of mortality improvement for pensioners of
self-administered pension schemes.
URL http://www.actuaries.org.uk/research-and-resources/

pages/cmi-working-paper-53

Continuous Mortality Investigation, 2014a. Working Paper 71 - Graduations
of the CMI SAPS 2004-2011 mortality experience based on data collected
by 30 June 2012: Final “S2” series of mortality tables.
URL http://www.actuaries.org.uk/research-and-resources/

pages/cmi-working-paper-71

Continuous Mortality Investigation, 2014b. Working Paper 73 - Analysis
of the mortality experience of pensioners of self-administered pension

36

http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-papers-34-and-35
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-papers-34-and-35
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-papers-38-and-39
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-papers-38-and-39
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-paper-53
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-paper-53
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-71
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-71


schemes for the period 2005 to 2012.
URL http://www.actuaries.org.uk/research-and-resources/

pages/cmi-working-paper-73

Continuous Mortality Investigation, 2014c. Working Paper 76 - Analysis
of the mortality experience of pensioners of self-administered pension
schemes for the period 2006 to 2013.
URL http://www.actuaries.org.uk/research-and-resources/

pages/cmi-working-paper-76

Continuous Mortality Investigation, 2015. Working Paper 86 - An investiga-
tion into the mortality experience by industry classification of pensioners
of self-administered pension schemes for the period 2006 to 2013.

Coughlan, G. D., Khalaf-Allah, M., Ye, Y., Kumar, S., Cairns, A. J., Blake,
D., Dowd, K., 2011. Longevity hedging 101: A framework for longevity ba-
sis risk analysis and hedge effectiveness. North American Actuarial Journal
15 (2), 150–176.

Dowd, K., Cairns, A. J., Blake, D., Coughlan, G. D., 2011. A gravity model
of mortality rates for two related populations. North American Actuarial
Journal 15 (2), 334–356.

Haberman, S., Kaishev, V. K., Millossovich, P., Villegas, A. M., Baxter,
S. D., Gaches, A. T., Gunnlaugsson, S., Sison, M., 2014. Longevity basis
risk: A methodology for assessing basis risk. Tech. rep., Cass Business
School, City University London and Hymans Robertson LLP.

Human Mortality Database, 2014. Human Mortality Database. Tech. rep.,
University of California, Berkeley and Max Planck Institute for Demo-
graphic Research.
URL www.mortality.org

Hunt, A., Blake, D., 2014. A general procedure for constructing mortality
models. North American Actuarial Journal 18 (1), 116–138.

Hunt, A., Blake, D., 2015a. Identifiability in age/period mortality models.
Tech. rep., Pensions Institute PI 15-08, Cass Business School, City Uni-
versity London.

37

http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-73
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-73
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-76
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-76
www.mortality.org


Hunt, A., Blake, D., 2015b. Identifiability in age/period/cohort mortality
models. Tech. rep., Pensions Institute PI 15-09, Cass Business School, City
University London.

Hunt, A., Blake, D., 2015c. Modelling longevity bonds: Analysing the Swiss
Re Kortis Bond. Insurance: Mathematics and Economics 63, 12–29.

Hunt, A., Blake, D., 2015d. On the structure and classification of mortality
models. Tech. rep., Pensions Institute PI 15-06, Cass Business School, City
University London.

Hunt, A., Blake, D., 2016a. Basis risk and pension schemes: A relative mod-
elling approach. Tech. rep., Pensions Institute PI 16-01, Cass Business
School, City University London.

Hunt, A., Blake, D., 2016b. Transferring mortality and longevity risks in
pension schemes via bespoke longevity swaps. Work in Progress.

Jarner, S. F., Kryger, E. M., 2011. Modelling mortality in small populations:
The SAINT model. ASTIN Bulletin 41 (2), 377–418.

Koissi, M., Shapiro, A., Hognas, G., 2006. Evaluating and extending the
Lee-Carter model for mortality forecasting: Bootstrap confidence interval.
Insurance: Mathematics and Economics 38 (1), 1–20.

Li, J. S.-H., Hardy, M. R., 2011. Measuring basis risk in longevity hedges.
North American Actuarial Journal 15 (2), 177–200.

Li, J. S.-H., Zhou, R., Hardy, M. R., 2015. A step-by-step guide to building
two-population stochastic mortality models. Insurance: Mathematics and
Economics 63, 121–134.

Oppers, S. E., Chikada, K., Eich, F., Imam, P., Kiff, J., Kisser, M., Soto,
M., Kim, Y. S., 2012. The financial impact of longevity risk. Tech. rep.,
International Monetary Fund.

Plat, R., 2009. Stochastic portfolio specific mortality and the quantification
of mortality basis risk. Insurance: Mathematics and Economics 45 (1),
123–132.

38



Richards, S. J., 2008. Detecting year-of-birth mortality patterns with lim-
ited data. Journal of the Royal Statistical Society: Series A (Statistics in
Society) 171 (1), 279–298.

Salhi, Y., Loisel, S., 2009. Longevity basis risk modeling: A co-integration
based approach. Tech. rep., University of Lyon.

Sithole, T., Haberman, S., Verrall, R., 2012. Second international compara-
tive study of mortality tables for pension fund retirees: A discussion paper.
British Actuarial Journal 7 (3), 650–671.

The Pensions Regulator, 2013a. Scheme funding. Tech. rep.
URL http://www.thepensionsregulator.gov.uk/codes/

code-funding-defined-benefits.aspx

The Pensions Regulator, 2013b. The Purple Book. Tech. rep.
URL http://www.thepensionsregulator.gov.uk/doc-library/

research-analysis.aspx

Villegas, A. M., Haberman, S., 2014. On the modeling and forecasting of
socioeconomic mortality differentials: An application to deprivation and
mortality in England. North American Actuarial Journal 18 (1), 168–193.

Yang, B., Li, J., Balasooriya, U., 2015. Using bootstrapping to incorporate
model error for risk-neutral pricing of longevity risk. Insurance: Mathe-
matics and Economics 62, 16–27.

Zhou, R., Wang, Y., Kaufhold, K., Li, J. S.-H., Tan, K. S., 2014. Model-
ing period effects in multi-population mortality models: Applications to
Solvency II. North American Actuarial Journal 18 (1), 150–167.

39

http://www.thepensionsregulator.gov.uk/codes/code-funding-defined-benefits.aspx
http://www.thepensionsregulator.gov.uk/codes/code-funding-defined-benefits.aspx
http://www.thepensionsregulator.gov.uk/doc-library/research-analysis.aspx
http://www.thepensionsregulator.gov.uk/doc-library/research-analysis.aspx

	Introduction
	The Self-Administered Pension Scheme study
	The proposed model
	The reference model
	The sub-population model

	Applying the model to SAPS data
	The reference models for UK data
	The model for the SAPS data
	Parameter uncertainty and model risk
	Parameter uncertainty
	Model risk


	Basis risk and projecting mortality for the SAPS population
	Applying the model to small populations
	Discussion: Basis risk in pension schemes
	Conclusions
	Summary of SAPS data

