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Abstract
A behaviour can be defined as a sequence of states or activities occurring one after another. A behaviour consisting
of a finite number of re-occurring states/activities may be represented by a directed weighted graph with nodes and
edges corresponding, respectively, to the possible states and transitions between them, while the weights represent the
probabilities or frequencies of the state and transition occurrences. The same applies to multiple behaviours sharing
the same set of possible states. In analysis of movement data, state transition graphs can be used to represent
semantic abstractions of mobility behaviours, where states correspond to semantic categories of visited places (such
as ’home’, ’work’, ’shop’, etc.), activities of moving objects (’driving’, ’walking’, ’exercising’, etc.), or characteristics of the
movement (’straight movement’, ’sharp turn’, ’acceleration’, ’stop’, etc.). Such a representation supports the exploration
and analysis of the semantic aspect (i.e., the meaning or purposes) of movement. For comprehensive analysis of
movement data, state transition graphs need to be combined with representations reflecting the spatial and temporal
aspects of the movement. This requires appropriate coordination between different visual displays (graphs, maps, and
temporal views) and appropriate reaction to analytical operations applied to any of the representations of the same
data. We define in an abstract way the reactions of a graph display to analytical operations of querying, partitioning,
and direct selection. We also propose visual and interactive display features supporting comparisons between data
subsets and between results of different operations. We demonstrate the use of the display features by examples of
real-world and synthetic data sets.
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Introduction

We define a behaviour as a chronological sequence of states,
such as performed actions, visited places, or events. A
state transition graph (STG) is an aggregate representation
of a behaviour by a directed weighted graph, where the
nodes stand for the possible states and the edges for the
transitions between the states. The weights of the nodes and
edges may represent the frequencies or probabilities of the
states and transitions, their absolute or relative durations, or
other attributes. STGs are used in mathematical disciplines
as visual representations of Markov chains, i.e., random
processes in which the transition from one state to another
depends solely on the current state and not on the sequence
of states that preceded it.

Representation in the form of a state transition graph may
be suitable when a behaviour consists of a finite number
of re-occurring states. Very long state sequences can be
effectively summarised in this way. Moreover, an STG can
summarise not only a single behaviour but also an arbitrarily
large set of behaviours that occurred in the same state space
(i.e., when the same states re-occur in multiple behaviours).
The STG representation is appropriate for analysis tasks
focusing on frequencies and/or durations of individual states
and transitions between them. It can be used when the exact
timing of the states is not important for the analysis and
there is also no need to analyse sub-sequences consisting of
more than two states. These limitations of applicability of the

STG representation still leave a broad range of domains and
analysis tasks where this representation can be useful.

In particular, state transition graphs can be used
in exploration and analysis of the semantic aspect of
behaviours of moving objects, i.e., the meanings or
purposes of the movements. States can represent semantic
categories of visited places (such as ’home’, ’work’, ’shop’,
etc.), activities of moving objects (’driving’, ’walking’,
’exercising’, etc.), or characteristics of the movement
(’straight movement’, ’sharp turn’, ’acceleration’, ’stop’,
etc.). This representation is an abstraction devoid of specific
spatial and temporal information. Hence, it is not a substitute
but a complement to other representations of movement
data, which reflect the spatial and temporal aspects of the
data. Comprehensive analysis of movement data with the use
of different complementary representations requires proper
coordination between tools operating on these different
representations. Analytical operations applied to one of the
representations need to have appropriate impacts on the other
representations. For example, when a subset of trajectories is
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selected according to spatial criteria, state transition graphs
representing semantics of the selected trajectories need to be
presented to the analyst’s view.

The goal of this paper is to define a general approach
to using state transition graphs in movement analysis. We
wish to define the approach at the level of abstract “meta-
tools” and “meta-operations”, that is, general categories of
tools and operations. We describe the required properties
of an STG display and its dynamic behaviour in
response to general types of analytical operations, namely,
querying, partitioning, and direct selection, regardless of
any conceivable implementations of these operations. Thus,
partitioning can be done using various kinds of clustering,
classification, or arbitrary interactive division of a data set.
Regardless of these possibilities, we consider ’partitioning’
as a single meta-operation.

To facilitate understanding of this meta-level discussion,
we include illustrated examples using a particular implemen-
tation of an STG tool. However, this implementation is used
for merely illustrative purposes and should not be considered
as our research contribution. The intended contribution of
our paper consists of (1) description of data transformations
used for deriving STG representations of singular and mul-
tiple individual and collective movement behaviours from
trajectories of moving objects, (2) general definition of the
properties and dynamic behaviour of an STG display in
response to analytical operations on data, and (3) showing
by examples how STG representations can be utilised for
semantic analysis of movement behaviours.

Related work
There are a wide variety of techniques and algorithms that
can be used for visual representation of STGs. Much research
has been done on graph drawing in general, see Gibson
et al. (2013) for a survey, and on visualisation of state
transition graphs in particular (van Ham et al. (2001), van
Ham et al. (2002), Pretorius and van Wijk (2006)). The major
problem addressed by the researchers is reducing visual
clutter and edge intersections, especially in representing very
large and complex graphs. We leave the problems of graph
visualisation beyond the scope of our work, since our goal
is to discuss the use of STGs in movement analysis on a
meta-level, irrespective of specific graph layout and drawing
methods.

Examples of deriving STGs from movement data exist
in the literature. Blaas et al. (2009) use STGs to represent
movement behaviours of animals. For this purpose, domain
experts examine time series of movement characteristics,
divide these time series into internally homogeneous
segments, and interpret the segments in terms of the activities
performed by the animals. These activities, signified by
labels, are taken as the states for creating an STG. The
sequences in which the activities occur are represented by
transitions. In this way, an individual movement behaviour is
represented by an STG.

von Landesberger et al. (2016) use graphs to represent
collective movements in geographic space. The states of
an STG correspond to areas in space, and the transitions
represent collective movements between these areas. The
weight of a transition is proportional to the number of people

that moved from the origin area to the destination area.
Such graphs are built for different time intervals, i.e., in
our terms, collective behaviours in these time intervals are
represented by a chronological sequence of STGs. Such
a sequence can also be treated as a dynamic graph, i.e.,
a graph where the nodes and/or edges appear, disappear,
or change their weights (or other attributes) over time.
The methods for visualisation and exploration of dynamic
graphs have been comprehensively surveyed recently (Beck
et al. (2014), Archambault et al. (2014), Hadlak et al.
(2015)). von Landesberger et al. (2016) group similar graphs
corresponding to different time steps into clusters and then
study the distribution of the clusters over time and the
differences between the clusters.

Andrienko et al. (2013d) and Andrienko et al. (2015)
extract repeatedly visited places from trajectories of humans
and assign labels to them according to inferred semantics
of the places, e.g., ’home’, ’work’, ’shopping’, etc. These
semantic labels are taken as the possible states of the
individuals. The state sequences are summarised into
representations called “semantic space maps”, which are
in essence state transition graphs. The STGs are used for
representing behaviours of singular or multiple individuals.

The use of STGs for representing and analysing multiple
behaviours is not a general practice. A more common
approach is to deal with behaviours as chronological
sequences of states or events and visually represent these
sequences in timeline displays (Tufte (1983), Aigner et al.
(2011)). States, events, or activities are represented by
lines or bars positioned in the display according to their
occurrence times, the lengths being proportional to the
durations (e.g., Plaisant et al. (1996)). Behaviours consisting
of multiple states are often shown as horizontal or vertical
segmented bars where coloured segments represent different
states (Vrotsou et al. (2009), Vrotsou et al. (2010)).
Behaviours can also be represented, according to the cyclic
time model, as segmented rings (Zhao et al. (2008)).

When the number of possible states (activities, event
types, etc.) is large, they are grouped into a smaller number
of higher level categories (Zhao et al. (2008), Monroe et al.
(2013)). To visualise a large number of behaviours, data
aggregation is employed. Thus, ringmaps proposed by Zhao
et al. (2008) summarise behaviours of multiple people. In
LifeFlow (Wongsuphasawat et al. (2011)) and its successor
EventFlow (Monroe et al. (2013)), multiple sequences are
aggregated hierarchically. EventFlow also provides a number
of other tools for display simplification based on filtering and
data transformations.

State transition graphs provide a much higher degree of
simplification than timeline-based representations. However,
STGs are not a suitable instrument for studying the temporal
distribution of states and transitions and for considering
sub-sequences consisting of more than two states. Blaas
et al. (2009) propose an approach in which sub-sequences
consisting of three or more states are represented by smooth
curves linking the corresponding graph nodes. However,
this approach has limitations regarding the lengths of the
sub-sequences that can be represented in this way and
the number of distinct sub-sequences that can be shown
simultaneously. Hence, STGs are not a valid alternative
but rather a complement to timeline-based representations.
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The STG representation has its specific niche, namely, tasks
focusing on frequencies or durations of states and transitions,
when behaviours can be treated as Markov chains (Norris
(1998)). Aggregation of multiple behaviours and, when
necessary, reducing the number of considered distinct states
by filtering and/or combining them into meta-categories are
used with STG analogously to the other representations
(Zhao et al. (2008), Wongsuphasawat et al. (2011), Monroe
et al. (2013)).

Another possible representation for (multiple) behaviours
is interactive Sankey diagrams (Riehmann et al. (2005), von
Landesberger et al. (2012)), which can be seen as a hybrid
between the timeline-based and graph-based representations.
A display shows frequencies of state occurrences at
different selected time steps and frequencies of step-by-step
transitions between the states. This can be considered as a
graph where for each possible state there are as many nodes
as the number of selected time steps. This multiplication of
nodes allows, in principle, preservation of state sequences
and temporality; however, information about the sequences
can be accessed only by interacting with display elements,
where each interaction provides only partial information.

As an alternative to Sankey diagrams, where intersections
of graph edges can be a problem, Zhao et al. (2015) propose
a zigzag arrangement of multiple matrices and, addition-
ally, techniques for visual comparison between two state
sequences. Gleicher et al. (2011) classify the techniques
supporting visual comparison into three general categories:
juxtaposition, superposition, and explicit encoding. Compar-
isons by juxtaposition (side-by-side comparison) and explicit
encoding (computing and visualising differences) are appli-
cable to both node-link and matrix-based representations of
STGs whereas superposition (overlay) is limited to matrix-
based displays. Zhao et al. (2015) use explicit encoding and
superposition with matrix-based representations while von
Landesberger et al. (2016) use explicit encoding and juxta-
position with node-link representations. In both examples,
differences are encoded by shades of two distinct colour
hues.

As this overview shows, there is a large repertoire of
visualisation and interaction techniques supporting data
analysis with the use of state transition graphs. It is not our
intention to propose yet another technique. Our goal is to
describe in a general way how a representation of movement
data in the form of STG can be utilised in movement
analysis. We are not going to recommend which particular
visualization and interaction techniques need to be chosen
since a variety of choices are possible. Particular techniques
have been used only to make illustrations and should thus
be treated as mere illustrations of the generic argument we
present in this paper.

Transforming data to state transition graphs

Building state transition graphs from state
sequences
A state transition graph is a tuple < V,E,AV , AE >, where
V and E are, respectively, graph vertices (nodes) and edges,
and AV , AE are, respectively, attributes of the vertices
and edges. The vertices correspond to possible states, the

edges to transitions between the states, and the attributes
include the absolute and/or relative frequencies of the states
and transitions and may also include their absolute and/or
relative aggregate durations and other attributes. An STG
can be derived from one or more sequences of states, where
the term ”states” refers to any entities, events, activities,
qualitative attribute values, etc. Two cases are possible:
simple state sequences (s1, s2, ..., sk) or time-referenced
state sequences ((s1, t1), (s2, t2), ..., (sk, tk)), where si ∈
SS, SS = {S1, S2, ..., Sm} being a finite state of possible
states called state space, and tj being time intervals, such
that tj < tj+1 for each j ∈ [1, k). In a case of multiple state
sequences, their lengths may differ, while the elements si
must belong to the same state space SS.

Given a state space SS = {S1, S2, ..., Sm} and a set of
state sequences SQ (which may, in particular, consist of one
sequence), a graph vertex Vi is created for each Si ∈ SS. The
absolute state frequency for Vi is the number of occurrences
of the state Si in all member sequences of SQ. The relative
state frequency is the ratio or percentage of the absolute
frequency to the sum of the absolute frequencies of all states
of SS, which equals the sum of the lengths of all sequences
of SQ. When the sequences are time referenced, the absolute
total state duration for a vertex Vi is the sum of the lengths of
all time intervals associated with the occurrences of the state
Si. The relative total state duration is the ratio or percentage
of the absolute total duration to the sum of the absolute total
durations of all states.

A directed graph edge Eij is created for each pair of
states (Si, Sj), Si ∈ SS, Sj ∈ SS, including also the pairs
(Si, Si). Pairs (Si, Sj) and (Sj , Si), where i6=j, are treated
as different. The absolute transition frequency for Eij is the
number of times when Si is immediately followed by Sj in
a member sequence of SQ. The relative transition frequency
is the ratio or percentage of the absolute transition frequency
of this edge to the sum of the absolute transition frequencies
of all edges. When the sequences are time referenced, for
each pair of consecutive occurrences (sn, tn), (sn+1, tn+1)
in a sequence, the duration of the transition from sn to sn+1

is computed as the time difference between the beginning of
tn+1 and the end of tn. The absolute total transition duration
for edge Eij is the sum of the durations of all transitions from
Si to Sj that occurred in the member sequences of SQ. The
relative total transition duration is the ratio or percentage
of the absolute total duration to the sum of the absolute
total transition durations of all edges. For simplification,
the vertices and edges having zero frequencies may be
removed from an STG. For further simplification of the graph
topology, the analyst may decide to ignore also edges with
very low frequencies (below a chosen threshold).

As is clear from the description, the transformation to an
STG is equally applicable to a single sequence and to an
arbitrarily large set of sequences. Furthermore, from a set
of STGs with a common state space (e.g., a set of graphs
representing individual behaviours), a summary STG can be
built. The vertices and edges of the summary graph are the
same as in the primary graphs. The absolute frequencies
and durations for the vertices and edges are obtained by
summing the respective values over the primary graphs. The
relative frequencies and durations are computed from the
absolute ones in the same way as for the primary graphs.
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Summary STGs can be built for any subsets of a set of
STG, in particular, for subsets obtained through querying,
partitioning, or direct selection.

The STG representation is obviously scalable to both
the number and the lengths of the state sequences but not
scalable to the size of the state space. When the state space
is very large, the size can be reduced by grouping similar
or semantically related states into categories and using these
categories instead of the primary states (Zhao et al. (2008),
Monroe et al. (2013)).

Let SQ be a set of time-referenced state sequences and
T = [t0, tlast] be the time span of the data, where t0 and
tlast are, respectively, the earliest and latest time moments
recorded in the data. It is possible to build an STG not
from the entire sequences but from their parts fitting within
a chosen time interval [t1, t2], t1 ≥ t0, t2 ≤ tlast. This
transformation can be done in two ways. First, it may be
done on the fly for time intervals interactively chosen by
the analyst. Second, the analyst may partition T into several
intervals, and an STG is built for each interval, resulting in
a time-referenced set of STGs, or, in other words, a dynamic
STG.

So far, we have described how STGs are built
from arbitrary state sequences, such as health records
(Wongsuphasawat et al. (2011), Monroe et al. (2013)),
activity diaries (Vrotsou et al. (2009)), or web site navigation
logs (Zhao et al. (2015)). In the next subsection, we
describe derivation of STGs from movement data specified
as trajectories of moving objects.

Transforming movement data: general approach
A trajectory is a sequence of time-referenced position
records ((l1, t1), (l2, t2), ..., (lk, tk)), where l1, l2, ..., lk are
spatial locations. This data structure is analogous to time-
referenced state sequences discussed before. However, the
number of distinct locations occurring in movement data may
be very large. Moreover, locations are most often specified
by coordinates in a continuous (e.g., geographic) space
where the number of distinct locations is infinite. Hence,
trajectories cannot be directly transformed to state transition
graphs by simply treating the spatial locations as states.
An intermediate transformation is necessary: to define a
suitable state space consisting of a moderate finite number of
distinct states and to convert trajectories into time-referenced
sequences of states taken from this state space.

There are two possible approaches to transforming tra-
jectories into state sequences: place-oriented and property-
oriented. In the place-oriented approach, possible states are
defined based on places (i.e., parts of space) visited by
moving objects. The places, in turn, may be defined either by
partitioning the space into regions or by selecting particular
parts of space, called places of interest (POI). The first
variant, which may be called space partition-based, creates
a full coverage of the space, i.e., any location belongs
to some place. In the second variant (POI-based), some
locations may remain out of any place. The places specified
in either way are given labels that can be treated as possible
states. Depending on the analysis goals, the places may be
given unique labels or more general labels specifying place
categories according to their properties, ways of use, or other
semantics. For example, Andrienko et al. (2015) describe

extraction of repeatedly visited individual and public places
from human mobility data followed by inferring the likely
meanings of these places or kinds of activities performed
there. As a result, the places receive semantic labels ’home’,
’work’, ’shopping’, ’eating’, etc., which may be taken as
possible states of the moving individuals.

After defining and labelling the places, the spatial
locations occurring in the trajectories are replaced by
the labels of the places containing these locations,
which transforms the trajectories into time-referenced state
sequences. In case of POI-based definition of states, the
trajectory points not belonging to any POI are dropped as
not relevant to the analysis.

In the property-oriented approach, possible states are
defined based on the properties of the movement, such as
speed, acceleration, and/or movement direction. Examples of
possible labels are ’stop’, ’slow movement’, ’fast movement’,
’turn’, etc. Labels may also indicate transportation modes:
car, bicycle, train, bus, etc. Such labels can be obtained using
existing methods for identifying transportation modes from
raw trajectory data, e.g., Xu et al. (2010).

Transforming movement data: examples
We shall consider four example datasets: (1) 59,439 daily
trajectories of 17,241 distinct cars that moved in Milan
over one week (Andrienko et al. (2013a)); (2) trajectories
of 35 cars used by employees of a company, a synthetic
data set provided for the VAST Challenge 2014 (VC2014),
Mini Challenge 2; (3) activities of 11,374 visitors of an
amusement park during three days, a synthetic data set
provided for the VAST Challenge 2015 (VC2015); (4)
trajectories of 20 field players from one half of a football
(soccer) game, tracked with a resolution of 25 positions per
second, about 75,000 positions per player.

Figure 1. Left: Milan territory divided into areas, which are
labelled according to the street types. Right: A summary STG
for collective movements of the cars during 336 time intervals of
the length of 30 minutes.

The purpose for transforming the Milan car trajectories
to STGs is to explore the variety of car trips in terms of
the categories of the streets and areas of the city traversed
by the cars in abstraction from the specific locations and
paths in the geographic space. We divide the territory of
Milan into compartments and give semantic labels to these
compartments according to the types of the streets they
contain or the character of the areas (Fig.1, left). For 558
compartments, we have introduced 9 semantic categories,
which make our state space. We substitute the positions in the
trajectories by the labels of their containing compartments.
We transform the resulting sequences to STGs in two ways:
(1) an STG is built for each sequence, resulting in 59,439
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STGs representing daily movements of individual cars; (2)
the time span of the data (one week) is divided into 336
30-minutes intervals, and one STG is built for each interval,
summarising the movements of all cars during that interval.
The graph on the right of Fig.1 is the summary STG of
the 336 time-based STGs. The shading of the graph nodes
represents the relative durations of the states.

The first way of transformation is suitable for the
exploration of the variety of individual car trips. Thus, the
analyst can investigate the similarities and differences in the
behaviors of the cars entering the city from the northwest
and from the northeast (Fig. 2, top and middle). The second
way of transformation allows the exploration of the collective
movements of all cars during different time intervals. For
example, the analyst may compare the collective movements
in the morning and in the evening (Fig. 2, bottom).

Figure 2. Top and middle: The behaviours of the cars entering
the Milan territory from the northeast (left) are compared with
those of the cars entering from the northwest (right). On the top,
the respective summary STGs are exhibited for comparison by
juxtaposition. In the middle, the differences are explicitly
encoded. The red and blue colours show positive and negative
differences, respectively. Bottom: The collective car movements
in the evening (left) are compared with the collective movements
in the morning (right) using explicit encoding of differences.

The VAST Challenge 2014 dataset contains trajectories
of 35 cars and 5 trucks. The time span of the data is
14 days. Our illustrations are based on the car trajectories
only. According to the scenario, the cars are used by

Figure 3. Top: A map of a fictitious city Abila (VAST Challenge
2014) with trajectories of employees of a company GasTech
and personal and public places extracted from the trajectories.
The personal places are coloured according to their meanings.
Bottom: A summary STG represents the daily behaviours of the
employees; the nodes correspond to the place meanings.

employees of a company GasTech. In Fig. 3, top, there
is a map of the fictitious city Abila where the GasTech
employees live and work. The task of Mini Challenge 2
was to describe the usual daily behaviours of these people,
which requires semantic interpretation and semantic analysis
of the given trajectories. To accomplish the task, we first
extracted repeatedly visited personal and public places from
the trajectories and identified the likely meanings of these
places based on the temporal patterns of the place visits
(Andrienko et al. (2014), Andrienko et al. (2015)). The
meanings were attached to the places as semantic labels.
Then we divided the 35 complete car trajectories into daily
trajectories, thus obtaining 471 daily trajectories. The latter
were transformed into “semantic trajectories” (Andrienko
et al. (2015)), that is, sequences of visits of the personal
and public places represented by their semantic labels. The
semantic trajectories were transformed into state transition
graphs, where the states are the place meanings.

A summary STG of all daily sequences is shown in the
lower part of Fig. 3. Apart from commonly understandable
place meanings, the graph contains a node labelled “BFMO
place”. It stands for five specific places that were visited by
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a particular group of four security employees, possibly, for
secret meetings. “BFMO” is an abbreviation from the last
names of these people.

Figure 4. Top: A map of the amusement park (VAST
Challenge 2015) with the attractions represented by dots
coloured according to the semantic categories of the attractions.
Semi-transparent curved lines in purple show aggregated
movements of the park visitors between the attractions. Bottom:
An STG represents aggregated movements of the park visitors
between the semantic categories of attractions.

The VAST challenge 2015 dataset contains trajectories of
amusement park visitors including time-referenced records
of their checking in to various attractions. There are 73
distinct attractions grouped into 11 predefined semantic
categories. The map in Fig. 4 (top) shows the park layout, the
locations of the attractions, and the aggregated movements
of the 11,374 park visitors between the attractions. In
this example, our analysis goal is to detect unusual and,
possibly, suspicious movement behaviours of park visitors.
We transform the trajectories into state sequences using the
POI-based approach, where the POI are the locations of

the attractions. The state space consists of the 11 semantic
categories of the attractions with an addition of the names of
two specific attractions Creighton Pavilion and Grionosaurus
Stage, which have a special role in the challenge. Fig. 4,
bottom shows a summary STG of the individual behaviours
of all park visitors. The shading of the graph nodes represents
the relative frequencies of the states, and the widths of the
edges are proportional to the relative frequencies of the
transitions.

Figure 5. Top: Team space with transformed trajectories of
field players (coloured curves) and division into 9 zones.
Bottom: STGs of the movement behaviours of the field players
of one team and the summary graph of the whole team.

In football, relative positions of field players in their
teams have special meanings as they correspond to the roles
and responsibilities of the players. Thus, the front positions
belong to strikers, in the back are defenders, and players
in the middle support the strikers or defenders and are
responsible for passing the ball to the strikers during an
attack and for pressing the opponents during the defense.
In our example, we demonstrate how state transition graphs
can be used for analysing the relative positions of players
in a team irrespective of their specific absolute positions in
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the pitch. For this purpose, we first transform the players’
trajectories to the ”team space”, similarly to Andrienko et al.
(2013c). The team space is determined by the position of
the team’s centre and the direction of the team’s attack.
The team’s centre is calculated in each time step as the
mean position of all field players. The team’s attack direction
is the direction from the team’s goal to the goal of the
opponent team. The X-coordinate of a player in the team
space reflects his relative position on the left or on the right
of the team centre. The Y-coordinate reflects the player’s
relative position in the front or back part of the team with
respect to the attack direction.

Having transformed the trajectories in this way, we divide
the team space into 9 semantic zones, as shown in Fig.5, top,
and replace the players’ positions in the trajectories by the
zone labels. The resulting state sequences are transformed to
STGs. The lower part of Fig.5 shows the STGs of the field
players of one team. The colours of the frames around the
graphs are the same as those of the respective trajectory lines
in Fig.5, top. The graph without a frame is the summary STG
of the whole team. While the graph of the whole team is very
symmetric, the graphs of the individual players reveal their
specific relative positions and, hence, their roles in the team.

Advantages and limitations of state
transition graphs
State transition graphs are particularly suitable for repre-
senting semantic abstractions of movement behaviours, as
demonstrated by the examples in the previous section. A
semantic abstraction enables consideration of the meaning or
purposes of movement regardless of specific spatial locations
where the movement takes place. Hence, the absence of spe-
cific spatial information is not a weakness but a strength of
an STG representation. Obviously, a comprehensive analysis
of movement requires that the abstract STG representation
is used together with a representation containing specific
spatial information, so that links between the semantic and
spatial aspects can be established. Thus, to produce the
illustrations in Fig. 2 (top and middle), we selected subsets
of trajectories using their spatial representation.

Another possible representation for movement behaviour
semantics is a state sequence. In essence, a state transition
graph is an aggregation of one or more state sequences. The
advantage of the STG representation over the representation
by state sequences is its compactness, which is especially
valuable in case of very long sequences. Besides, the STG
represents the frequencies of the states and transitions and
summary statistics of their durations (total, mean, median,
etc.). This information is not available in the state sequence
representation. One more advantage is scalability regarding
the number of behaviours: an arbitrarily large number of
behaviours can be summarized into a single STG. The
state sequence representation does not allow such an easy
aggregation of multiple behaviours. Displays of multiple
state sequences may be quite complicated (Wongsuphasawat
et al. (2011), Monroe et al. (2013)).

The STG representation becomes cumbersome when the
number of distinct states is large, but this problem also
exists for the representation in the form of state sequences.
It is alleviated by grouping semantically related states into

categories and replacing the elementary states by these
categories (e.g., Monroe et al. (2013)).

A disadvantage of the STG representation over the state
sequence representation is that state sequences consisting
of three or more states are completely lost. When this
information is important for analysis while the analyst
wishes to utilize the advantages of STGs, it is necessary to
combine the STG representation with another representation
preserving the sequences. There are various possibilities for
visual representation of state sequences. Blaas et al. (2009)
include the sequence information in a graph display (node-
link diagram) by drawing smooth curves connecting several
graph nodes. This may increase display clutter and decrease
its readability. An alternative is to represent sequence
information in another view coordinated with the graph view.
For example, state sequences can be visually represented as
sequences of coloured bars in a timeline display (Plaisant
et al. (1996)), as hierarchies (Wongsuphasawat et al. (2011))
and its successor EventFlow (Monroe et al. (2013)), or as
sequences of edges in Sankey diagrams (Riehmann et al.
(2005), von Landesberger et al. (2012)).

Figure 6. Top: A text cloud display represents state sequences
of the length 3 and more. Bottom: The summary STG on the left
represents the behaviours in which the selected sub-sequence
of states occurs. The STG on the right summarizes all
behaviours.

Yet a different possibility is demonstrated in Fig. 6.
State sequences are represented by sequences of strings.
Re-occurring sub-sequences of states are extracted using
basic text analysis tools and represented visually in a text
cloud display. The text-based representation can be used
for interactive selection of behaviours including particular
sub-sequences. The selected behaviours are shown in a
graph view. The illustration in Fig. 6 has been produced
based on the VAST Challenge data. The text cloud display
shows re-occurring sequences of visits to places with
different meanings. The mouse cursor points at the sequence
“breakfast/coffee, work, lunch/dinner, work, home”, which
occurred 267 times in the daily behaviours of the GasTech
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employees. The graph view on the bottom left represents
the summary STG of the 267 behaviours including this sub-
sequence. It can be compared with the summary STG of all
behaviours presented on the bottom right. Conveniently for
analysis, the text cloud represents the relative frequencies of
different sub-sequences.

Another disadvantage of state transition graphs may be
the lack of temporal information. This is not always the
case because movement data can be transformed into STGs
representing collective behaviours by time steps. This was
demonstrated in the previous section by example of the
Milan data, which were transformed into 336 STGs each
representing the collective movements during a particular
time interval of 30 minutes length. This allowed us to select
the collective behaviours according to the times when they
occurred. In particular, we compared the behaviours that
occurred in the morning to those having occurred in the
evening (Fig. 2, bottom).

STGs encoding individual behaviours lack explicit time
references. Accounting for the temporal aspect in analysis is
possible by combining the STG representation with another
representation preserving the original time references of the
movement data. Temporal filtering can be applied to the
time-aware representation. In response, the transformation to
STGs is only applied to the data satisfying the filter. This
possibility is demonstrated later by example of the football
data: we compared the behaviours of the players before and
after a goal.

A visual representation of an STG gives high prominence
to frequently occurring states and transitions, which may be
a disadvantage when the goal is to detect and investigate
behaviour outliers. Another aspect of the problem is that a
representation of a summary STG of multiple behaviours
does not enable convenient access to individual behaviours.
It is also not clear whether a state or transition has a high
frequency because it occurs in many individual behaviours or
because it occurs many times in a few individual behaviours.
This is a drawback of the visual representation of multiple
STGs in a summarized form, but this is not a limitation of
the STG representation by itself. It is possible to display the
information contained in the individual STGs in other ways,
which may be more suitable for revealing outliers and for
understanding how frequently the states and transitions occur
in individual behaviours.

An example is demonstrated in Fig. 7, which has been
produced using the data of the VAST Challenge 2015. In
a bar chart display, the bars correspond to the transitions
(not all transitions are simultaneously visible, but the display
can be scrolled). In the upper image, the bar lengths are
proportional to the counts of the individual behaviours
where the transitions occur at least once. This shows which
transitions occur in very few behaviours. These behaviours
may be selected for close inspection by clicking on the
respective bars. In the lower image, the bars are proportional
to the maximal transition frequencies attained in individual
behaviours. This reveals transitions that occur unusually
frequently in some individual behaviours. These behaviours
can be selected for detailed investigation. The current
selection is marked in the bar display by dark gray shading.

Generally, the STG representation alone is typically
not sufficient for analysis of movement data due to the

Figure 7. A bar chart display shows transition occurrences
and frequencies in individual behaviours. Top: The bars
represent the counts of the individual behaviours where the
transitions occur at least once. Bottom: The bars represent the
maximal frequencies attained by the transitions within individual
behaviours.

limitations discussed above. STGs need to be combined with
other representations of the same data preserving the spatial,
temporal, and/or state sequence information. This requires
proper coordination between analytical tools (including
visual displays) working on the different representations.

Defining the STG tool
Our goal is to define a general approach to using state
transition graphs for analysing movement semantics. We
refer to general categories of tools and operations, which
may be called “meta-tools” and “meta-operations”. Meta-
tools may be defined by describing their properties and their
behaviours in response to meta-operations. Meta-operations
may be defined by describing their inputs and outputs and
relationships between them.

Defining the properties of STG visualisation
An STG representation of movement data may comprise
a large number of STGs, as can be seen in the earlier
introduced VAST Challenge 2015 and Milan examples.
It is unfeasible to visually represent all individual STGs.
Consequently, the STG display must be able to represent
STG data in a summarised form. As described earlier,
multiple individual STGs can be aggregated in a summary
STG with the same structure as the original STG. The STG
tool must be able to create and visually represent summary
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STGs for the whole set and various subsets of individual
STGs. Thus, Figures 1-4 and 6 include such summary STGs
of whole sets and subsets of behaviours. When the number of
individual STGs under analysis is relatively small, analysts
should also be able to see them separately, as in Fig. 5.

A key cognitive task in any analysis is comparison: noting
similarities and differences is essential for generalization
of observations, which contributes to building of a mental
model of the studied phenomenon. Analysis with the use
of STGs may require comparisons between individual STGs
and/or subsets of STGs. Hence, the STG tool must support
such comparisons using at least one of the approaches
described by Gleicher et al. (2011): juxtaposition, in which
two or more STGs are shown side by side, superposition, in
which components of two STGs are drawn together (Zhao
et al. (2015)), and explicit encoding, in which differences
are represented by visual properties of the display elements
standing for the nodes and edges of the graphs.

The way(s) to support comparisons need to be chosen
together with the approach to graph visualisation. In
principle, STGs can be visually represented using any
currently existing or conceivable techniques for graph layout
and graph drawing. Some of the possible methods for visual
comparison support may have limited applicability regarding
the graph visualisation methods. Thus, superposition is more
suited to matrix-based representations of graphs than to
node-link diagrams. Explicit encoding of differences by
colours is not applicable to visualisations where colouring
is used for other purposes. Juxtaposition is applicable to
any representation, but it is the weakest support requiring
analysts to repeatedly move their attention focus from one
graph to another and to memorise the appearance of each
graph under comparison.

In our illustrative implementation, graphs are represented
as node-link diagrams, and comparisons are supported by
juxtaposition and by explicit encoding using colours, as in
Fig. 2. However, this is just one particular choice out of
many possibilities. We refrain from discussing its strengths
and weaknesses with regard to all others since our goal is to
define the STG visualisation in a general way, i.e., as a meta-
tool. Summarising this section, we state that the meta-tool
for STG visualisation has the following properties:

• It visually represents state transition graphs using any
graph layout and graph drawing techniques.
• It is able to aggregate multiple STGs into a summary

STG and visually represent the summary STG.
• It also provides an opportunity to see selected

individual STGs.
• It is able to show two or more STGs side by side, to

support comparisons by juxtaposition.
• It includes at least one additional technique for

supporting comparisons, i.e., superposition or direct
encoding of differences.

Defining the behaviour of the STG tool
As discussed earlier, the STG representation may need to be
used together with other representations of the same data.
This means, in particular, that a visual display showing the
data in the form of STG needs to be coordinated with other
kinds of displays using suitable coordination mechanisms,

such as consistent response to dynamic querying, brushing,
grouping, sorting, and other interactive operations (Roberts
(2007)).

Interactive operations are used not only for display
coordination but also as means for data exploration and
analysis. As we noted earlier, comparison is a fundamental
operation that is necessary for deriving a general conception
of a studied phenomenon. To perform a comparison in
the course of data analysis, the analyst needs to define
the portions of data to be compared. Regardless of
possible implementation specifics, there are three basic
approaches to choosing data portions for comparison:
querying, partitioning, and direct selection.

Querying means that the analyst specifies some criteria
differentiating data items of interest from other data and
uses a tool that applies these criteria to the available
data and extracts the requested data items. The extracted
subset of data may be then compared with the remaining
data, the whole dataset, or with results of other queries.
Partitioning means dividing the whole dataset into two or
more subsets, which are then compared. Direct selection
means that the analyst chooses data items by interacting with
their visual representations, without specifying any explicit
selection criteria. According to these three approaches,
the following common meta-operations (i.e., classes of
interactive operations) can be defined:

• Querying, or filtering. Taking a set of data items
as input, this meta-operation checks each data item
against one or more query conditions and returns the
subset of the data items satisfying the conditions.

• Partitioning, or grouping. This meta-operation
divides a set of data items into two or more subsets, or
item groups. The output is a specification of the group
membership of each item, e.g., the label of the group
it belongs to.

• Direct selection, or marking. This meta-operation
assigns one of the two states, ’selected’ (’marked’) or
’not selected’ (’not marked’), to each data item.

Please note that we disregard particular ways in which
these operations may be accomplished. A variety of
examples exist in the literature. A famous tool supporting
querying based on attribute values is Dynamic Query
(Shneiderman (1994)). Types of query tools that support
exploration of movement data are described by Andrienko
et al. (2013b). The meta-operation of direct selection is most
commonly implemented as brushing (Becker and Cleveland
(1987), Martin and Ward (1995)), in which the user selects
and deselects data items by mouse clicking or dragging
over their visual representations. This way of selection is
also applicable to aggregated representations of multiple
items, such as bars in histograms (Spence and Tweedie
(1998)). Data items may also be marked in other ways.
Thus, Bouvier and Oates (2008) propose a technique called
“staining”: display elements representing moving objects in
an animated display become automatically marked when
they get in touch with static or dynamic objects that have
been previously chosen or created by the analyst. Partitioning
of data items is often achieved through clustering (Aggarwal
and Reddy (2014)), or partitions are defined based on values
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of categorical variables or by dividing ranges of numeric
attributes into several intervals.

Irrespectively of how these meta-operations are imple-
mented, let us define how an STG visualisation tool needs
to react to them. We assume that an STG display originally
presents a summary STG for all available data, the data
being multiple individual STGs corresponding to different
moving objects and/or different time intervals of movement.
In parallel, there may be tools working on other represen-
tations of the same data, e.g., as trajectories, time series
of movement-related attributes, or spatial events (Andrienko
et al. (2013b)). Meta-operations may be applied to any
representation of the data and performed by means of any
tool. We assume that the results of the meta-operations are
propagated to all other data representations, including the
STG representation, and all other tools, in particular, to the
STG display.

Behaviour in response to querying. The result of querying
is a subset of the original set of STG. The STG display
obviously needs to represent a summary STG of this subset,
which requires the aggregation operation to be applied to this
subset. It is not appropriate to just replace the previously
shown STG by the summary STG corresponding to the
result of the querying. Such a behaviour of the display does
not allow the user to compare the result of querying with
the previous state and to note changes. Therefore, the STG
display should juxtapose the STG graph of the query result
with the previously seen graph for enabling comparisons, for
example, as shown in Fig. 2, top.

When a new meta-operation of querying is fulfilled,
the result should be presented in a way consistent with
presenting the result of the first operation. This means
that the display needs to show the graph summarizing
the last querying result and the summary graph of the
previous querying result. For example, in our illustrative
implementation, the graph that was previously shown in the
left panel is moved to the right panel, and the new graph
is put in the left panel. The graph that was earlier shown
in the right panel is removed from the display, to avoid
increasing the display size and complexity. However, it is
appropriate to keep this graph in the internal storage and
allow the user to select it at any time for comparison with
other query results. This can be implemented in various
ways. One possible strategy is to automatically store all
graphs before they are removed from the view. The stored
graphs need to be automatically labelled (annotated), e.g., by
describing the query conditions applied to the data. Another
possible strategy is to store a graph upon an explicit user
request. In this case, the user may wish to supply his/her
own label or annotation; still, the tool can help the user
by proposing a default label/annotation. The former strategy
may result in storing a large number of graphs that are not
interesting to the user, and it may be difficult to the user
to find interesting graphs among them. Hence, the latter
strategy may be preferred, but it may be user- and task-
specific.

Instead of storing summary graphs resulting from different
queries, it is possible to store the query settings and
reproduce the corresponding graphs on demand. This
approach is more economical with regard to memory use but

requires more time for graph re-generation. Which approach
to choose when implementing an STG tool, depends on the
expected number and sizes of graphs and available resources
in terms of memory capacity and CPU speed.

The user should be able to control the way in which the
STG tool reacts to a sequence of filtering operations. The
tool behaviour we described so far is to show each time the
result of the last operation and the result of the immediately
preceding operation. Another possible behaviour is to keep
a fixed reference view and juxtapose the result of the last
operation with this view whereas the result of the previous
operation is removed from the display. Depending on the
analysis goals, the user may prefer this or that behaviour and
should be able to choose between them. In both cases, either
the graphs that are removed from the view are automatically
stored, or the user has the possibility to store any graph for
later review and comparison. In the mode of fixed reference
view, the user should be able to choose any of the previously
stored graphs to be used as a reference graph.

The rationale for showing two graphs in the STG display
is to enable comparisons by juxtaposition. We have stated
earlier that the STG tool should include at least one
additional technique for supporting comparisons. Figure 2
includes examples of using direct encoding of differences.
A reference graph for comparison can be chosen by direct
manipulation, e.g., by clicking on a graph representation in
the display. In response, the attribute values associated with
the nodes and edges of the reference graph are subtracted
from the attribute values of the corresponding nodes and
edges of all other currently visible graphs. Positive and
negative differences are encoded by shades of two distinct
colour hues, e.g., red and blue. The use of an additional
comparison-supporting technique is especially helpful when
the differences are not obvious.

To summarise, an STG tool should behave in the following
way in response to meta-operations of querying:

• Apply aggregation and build a summary STG for the
data subset resulting from the querying operation.

• Juxtapose the summary STG of the last querying result
with the STG that has been shown immediately before
the querying or with a fixed reference STG selected by
the user.

• Be able to store summary STGs representing results of
different querying operations, either automatically or
upon explicit user’s request.

• Allow the user to choose any previously stored
summary STG as a reference.

• Additionally support comparisons between STGs by
superposition or direct encoding of differences.

Behaviour in response to partitioning. An appropriate way
to present results of partitioning for viewing and analysis
is to show summary STGs for the data partitions obtained.
Each partition is a subset of individual STGs. To obtain the
summary STGs, the STG tool must apply the aggregation
operation to each subset. The summary STGs are juxtaposed
within the display to enable comparisons, i.e., the technique
of “small multiples” is applied (Tufte (1983)). This can be
extended to a special case when each partition consists of
only one individual STG, as in Fig. 5. In this case, no
aggregation is done but the individual STGs are shown. In
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addition to the STGs of the partitions, the summary STG of
the whole set of individual STGs may be included, allowing
to compare the properties of each partition with the average
properties over the whole dataset. As in the case of filtering,
comparisons are supported by combining juxtaposition with
superposition or direct encoding of differences.

Visual representation of data partitions often involves
assignment of unique colours to the partitions, so that these
colours are used for painting display elements representing
partition members or the partitions as wholes. Thus, this
is a frequently used technique in representing results of
partition-based clustering. Consistent use of colours assigned
to data partitions in multiple displays is one of coordination
mechanisms allowing the user to link information pieces
from the different display. Hence, when the STG display
represents colour-encoded results of data partitioning, it must
also show the colours of the partitions. A suitable approach is
to enclose the graphs representing the partitions in coloured
frames.

Figure 8. The Milan car trajectories have been partitioned into
9 classes according to the areas of their destination. The STG
display represents the summary STGs of the classes of
trajectories. The frames around the graphs are painted in the
colours assigned to the classes.

As an example, the STG display in Fig. 8 reflects the
results of partitioning of the set of Milan car trajectories
into 9 classes depending on the geographic areas of their
destination: centre, north, northeast, east, and so on. The
partitioning has been performed by means of another
tool operating on a geographic representation of the car
trajectories. The result have been propagated to the STG
display as a set of pairs (trajectory identifier, class label)
together with a set of pairs (class label, colour). Since the

individual STGs obtained by transforming the trajectories
have the same identifiers as the trajectories they originate
from, the STG tool was able to aggregate the STGs by
the classes. The summary STGs of the classes are shown
in a “small multiples” view. The display compartments
containing these STGs have frames painted in the colours of
the classes. The class labels and member counts are shown
by texts in the lower right corners of the compartments.
The graph without a frame in the top left corner of the
display is the summary graph of the whole set of individual
STGs. In this example, the shading of the nodes encodes
the average relative durations of driving in the streets of
different types, and the widths of the link lines encode the
average relative frequencies of the transitions between the
street types. Differences between the classes are easily seen.

In data analysis, it may be necessary to compare results
of different data partitioning operations. In particular, when
cluster analysis is performed, the analyst often does not
know in advance what parameter settings to choose. The
analyst may apply clustering with different settings and study
differences between the corresponding results in order to
understand the impact of the parameters and to eventually
choose suitable settings. To support comparisons between
results of different partition operations, the STG tool may
divide the display into two parts. Each part shows the
summary graphs of the data partitions resulting from one
partitioning operation.

Figure 9. The STG display of the collective behaviours of the
Milan cars represents results of two clustering operations that
have produced 4 clusters (right side) and 5 clusters (left side).
Clustering has been applied to traffic situations in 30-minute
time steps and resulted in grouping the time steps into clusters
by similarity of the traffic situations. The calendar views (top)
show the distribution of the clusters over the week, and the STG
view shows summaries of the collective behaviours
corresponding to the clusters.

An example is presented in Fig. 9. Here we also use STGs
derived from the Milan car trajectories, but in this case we
use the STGs representing the collective behaviours of the
cars by 30-minutes time steps. Partitioning by means of
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clustering has been applied to traffic situations (Andrienko
et al. (2012), Andrienko et al. (2013b)) in the geographic
space. A traffic situation in a time interval is described in
terms of the volumes and characteristics of the traffic flows
between areas in space. In our example, the same 30-minutes
time intervals have been used for the creation of the STGs
and for the characterisation of the traffic situations.

Clustering by k-means with k = 4 (right) and k = 5 (left)
has been applied to the traffic situations, which results in
grouping the time intervals by similarity of the situations.
The calendar views in the upper part of Fig. 9 show the
distribution of the clusters over a week. The rows correspond
to the days, from Sunday on the top to Saturday in the
bottom, and the columns to the 30-minutes time intervals
within the days. Square marks in the cells are painted in the
unique colours assigned to the clusters, the square sizes being
inversely proportional to the distances of the cluster members
to their cluster centres (hence, larger squares correspond to
more typical cluster members).

In the lower part of Fig. 9, the STGs representing the
collective behaviours of the cars by the 30-minutes intervals
have been aggregated by the time clusters into summary
STGs. The right and left parts of the STG display show
the clustering results for k = 4 and k = 5, respectively.
The result of each clustering is shown by small multiples,
analogously to Fig. 8. Since in this case the differences
between the STGs are hard to perceive from juxtaposed
representations, explicit encoding of differences is applied
as additional support to comparisons. The STGs of the
clusters are compared with the STG of the whole dataset.
The representation of the node and link characteristics
of the overall STG is muted, to allow more expressive
representation of the differences in all other graphs. The user
can interactively select any other STG as a reference for
comparison and, when necessary, mute the representation of
graphs with extreme values of the node- and/or link-related
attributes, so that narrower value ranges of the attributes
could be mapped onto the available value ranges of the visual
variables ’colour darkness’ and ’line width’.

When clustering with different parameter settings is
applied to the same data, it is not guaranteed that ordering
and labeling of the clusters are consistent between results of
different runs of the clustering tool. To facilitate comparisons
between results of two runs, the STG tool should be able to
arrange the STGs of the clusters within the left and right
panels of the display so that similar STGs appear in the
same positions on the left and on the right. Arrangement
by pairwise similarity of the component graphs in the two
panels has been applied in Fig. 9. Next to the overall STG
in each display half, the STG of cluster 1 is put since this
cluster is exactly the same in the two clustering results. It is
followed by clusters 4 and 3, which changed slightly when
k = 4 was replaced by k = 5. The last in the right panel is
the STG of cluster 2, which changed the most significantly.
Its counterpart in the left panel is the STG of cluster 5, which
is more similar to the STG of the earlier obtained cluster 2
than the STG of cluster 2 returned by the clustering with
k = 5. The latter STG is put in the last position in the left
panel since it is the most dissimilar to all graphs contained in
the right panel.

To accomplish the arrangement by graph similarity, each
graph in the left panel is compared to each graph in the
right panel. The dissimilarity measure is the sum of squared
differences between the weights of the corresponding nodes
and edges. The weights are the values of the currently shown
attributes, i.e., absolute or relative frequencies or durations,
standardised to the scale [0..1]. To arrange the graphs, the
closest pair of graphs is repeatedly chosen, and the graphs are
put in the next free slots in the left and right panels, starting
from the top left corner.

Any of the multiple graphs can be interactively selected
by the user as a reference for comparison. As a result,
the differences of all other graphs with regard to the
reference graphs are explicitly encoded by colour hues, node
shades, and line widths, as described earlier. This allows,
in particular, exploring fine differences between counterpart
graphs from different panels.

When multiple partitioning operations are applied one
after another, the behaviour of the STG display must
be consistent with the behaviour in response to multiple
querying operations. That is, one of the display panels
needs to show the result of the last partitioning, and the
other display part shows the result of either the directly
preceding partitioning or a fixed reference partitioning.
Like with querying, collections of STGs representing
results of different partitioning operations are either stored
automatically or may be stored by explicit user’s requests
and later chosen for reviewing and comparison.

To summarise, an STG display has the following
behaviour in response to meta-operations of partitioning:

• It applies aggregation and produces a summary STG
for each partition.

• It shows the STGs corresponding to the different
partitions in a “small multiples” view.

• When the partitions are distinguished by colours,
these colours are shown in the display compartments
corresponding to the partitions.

• Comparisons between summary STGs of different par-
titions are supported, additionally to the juxtaposition,
by superposition or direct encoding of differences. The
user may interactively select any STG as a reference
for visual comparison.

• Results of two different partitioning operations may
be juxtaposed in the STG display. The STGs within
the display parts corresponding to these different
operations may be arranged in the order of pairwise
similarity.

• The behaviour regarding multiple partitioning opera-
tions is consistent with the behaviour regarding multi-
ple querying operations.

• Collections of STGs representing results of different
partitioning operations may be stored for later
reviewing and comparing with other results. The
storing strategy (automatic or by explicit request) is
the same as in the case of querying.

Behaviour in response to direct selection. The meta-
operation of direct selection produces results similar by their
structure to results of partitioning. Indeed, data items are
partitioned into two subsets, ’selected’ and ’not selected’.
Still, there are differences, which require the STG tool to
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behave differently in response to selection than in response
to partitioning. First, selection by direct manipulation of
display elements is a quick operation the results of which can
be easily changed by the user. It would be wrong to represent
such transient results in the same way as, for example, results
of clustering, which typically takes more time. Second, direct
selection can be applied to previously partitioned data. The
partitioning remains the same when the selection changes.
Hence, it would be wrong to replace a result of partitioning
shown in an STG display by a result of direct selection
and further react to selection changes while the view of the
partitioning result is lost. It is more appropriate to present
results of direct selections separately. They should be shown
in a visually distinct way, to preclude user’s confusion. To
fulfill this requirement in our illustrative implementation,
we chose to show transient results of direct selections in a
separate window, which appears only when a selection is
made and disappears when everything is deselected.

When the user selects a subset of data items, it is
appropriate to enable the user to compare this subset with
the subset of remaining items. To achieve this, the STG tool
must react to selection by juxtaposing two summary STGs:
the STG for the selected items and the STG for the remaining
items. Comparisons need to be additionally supported in the
same way as it is done for results of filtering and partitioning.

An example of STG behaviour in response to direct
selection is demonstrated in Fig. 10. We use interactive
histograms to explore the characteristics of the Milan car
trajectories and relate them to the behaviours in terms of the
street types. A histogram of the track lengths demonstrates
a long-tail distribution, i.e., very long trajectories exist, but
they are relatively few. We interactively select the “long
tail” in the histogram display (Fig. 10, A). The STG tool
creates a supplementary window with a summary STG of the
selected trajectories and a summary STG of the remaining
trajectories (Fig. 10, B). The former STG is enclosed in
a black frame since black colour is used to mark selected
items in the histogram and in other displays. The link widths
in the STGs represent the transition frequencies and the
darkness of the nodes represents the relative durations of
the states. We see that the longest trajectories (probably,
made by taxis or delivery vehicles) spend most of the time
in the city centre, and the most frequent transitions are
between the centre and the central ring. Still, the motorway
and inner radial streets are also quite frequently used. These
vehicles mostly do not go to the outer sides of the belt
motorway. In Fig. 10, C, we have cancelled the selection
of the long trajectories and instead selected the leftmost bar
of the histogram corresponding to the lengths below 5 km.
Our expectation has been that short trips mainly connect
places inside the city. However, the summary STG of the
selected trips (Fig. 10, D) shows us that most of the time
of the shortest trips was spent on the belt motorway. These
trajectories did not go to the centre, and the most frequent
transitions are from outer radial streets to the belt motorway
and from the belt motorway to the inner radial streets. We
also note asymmetry between the inward and outward flows.

In this example, selections were made by interacting with
another display (a histogram) while the STG display only
showed the results. Can the user interactively select subsets
of data within the STG display? The answer is: not directly,

Figure 10. A frequency histogram display is used for direct
selection of Milan car trajectories based on their length. The
upper STG view (B) has appeared in response to selecting the
trajectories with the length 45 km or more (A). The lower STG
view (D) has appeared in response to selecting the leftmost bar
of the histogram (C) where the track length is below 5 km.

for the following reason. In many display types, display
elements represent either individual data items (e.g., dots in
a scatterplot, polygonal lines in a parallel coordinates plot,
trajectory lines on a map, etc.) or subsets of data items
(e.g., bars in a histogram or aggregated trajectories on a
map). Selection of such display elements can be naturally
translated to selection of the corresponding data items. An
STG display is different from these display types. The data
items represented in an STG display are STGs; the display
shows a summary STG of these STGs. The display elements
represent not individual data items or subsets but the set of
states and the set of transitions, which are common for all or
many data items. Selection of a display element representing
a state or a transition would translate to selection of all data
items in which this state or transition appears. In most cases,

Prepared using sagej.cls



14 Journal Title XX(X)

these would be all or almost all data items, which is not
useful.

A possible solution is to perform selections in two steps.
In the first step, the user selects a state or a transition. In
response, the STG tool displays a histogram of attribute
values associated with the selected state or transition. For the
histogram, the tool takes the values of the currently shown
attribute, i.e., the absolute or relative frequency or duration.
In the second step, the user interacts with the histogram to
select data items according to the attribute values, similarly
to what we did in Fig. 10 with an external histogram display.
The histogram view once created by the STG tool needs to
stay on the screen to enable changes of the selection and as
a reminder to the user what data items are currently selected.
The user may explicitly close the histogram view when it is
not needed any more.

Let us summarise the definition of the behaviour of the
STG tool in response to direct selection:

• The STG tool applies aggregation to the subsets of
selected and remaining data items and presents the
summary STGs of these subsets together to enable
comparison by juxtaposition.
• Results of selection operations are shown separately

and distinctly from results of querying and partition-
ing.
• Additional comparison-supporting techniques (super-

position or direct encoding of differences) are pro-
vided as for querying and partitioning.

Examples of the use of state transition
graphs in movement analysis
The capability of an STG visualisation tool to react to
analytical meta-operations allows integration of this tool
into a visual analytics system for movement analysis.
According to Andrienko et al. (2013b), transformations
from one data type to another may be useful and
often even necessary in analysis of movement data. The
book describes three major representations of movement
data, trajectories, spatial events, and spatial time series,
along with the possible transformations between these
representations. By combining analytical tools working
on these different representations, movement data can be
analysed more comprehensively. In this paper, we introduce
additional representations of movement data: state sequences
and state-transition graphs. These representations support
abstraction from the geographic space and allow semantics-
oriented analysis and reasoning and finding common
behavioural patterns in geographically and temporally
unrelated movements. Owing to this high level of
abstraction, the STG representation can be a good
complement to the space- and time-based representations.
For such complementary use, the STG tool must be
responsive to analytical operations performed on other
representations of the same data, as described in the previous
section. Reciprocally, there must also be a possibility to
perform analytical operations on the STG representation
of movement data and propagate the results to other tools
working on other representations.

The STG representation allows analytical meta-operations
of querying, partitioning, and direct selection based on the

attribute values associated with the graph nodes and edges.
The attributes are the absolute and relative frequencies and
durations of the states and transitions. The general way
of using these attributes is the same as for any numeric
attributes. In this section, we shall demonstrate examples of
movement analysis where analytical operations are applied
to the STG representations.

Discovering typical daily behaviours of GasTech
employees
The analysis task in VAST Challenge 2014 is to reveal
and describe the typical daily behaviours of the GasTech
employees. Density-based clustering is a suitable tool for
detecting what is typical (i.e., frequently occurring). Density-
based clustering (Ester et al. (1996)) finds groups of similar
objects and puts them in clusters. Objects that are not
sufficiently similar to others are labelled as “noise”. In
our example, we apply a density-based clustering algorithm
OPTICS proposed by Ankerst et al. (1999). The results of
OPTICS depend on two parameters: the maximal distance
(dissimilarity) threshold D and the minimal number of
neighbours (i.e., similar objects) N . We apply OPTICS to the
vectors of the relative transition frequencies of the individual
STGs. The distance (dissimilarity) measure is the average
difference between the transition frequencies in two STGs.

The right panel of the STG view in Fig. 11 displays
the results of the OPTICS clustering with D = 1.2 and
N = 3. OPTICS detected 10 clusters of similar STGs and
labelled 68 STGs as “noise”. The clusters have been assigned
distinguishing colours; dark grey has been assigned to the
“noise”. The colours are used to indicate the clusters in
the STG display: the summary STGs of each cluster is
enclosed in a frame of the respective colour. The cluster
labels and sizes are shown in the bottom right corners within
the frames. The sizes of most of the clusters range from 4 to
52 items (i.e., individual STGs included in the clusters). The
corresponding behaviours are quite clearly perceived from
the summary STGs of the clusters.

However, there is one very large cluster, namely, cluster
1 (indicated by red colour) with 278 members. Its summary
STG is shown in the last position in the right panel. Judging
from the multitude of thin edges (i.e., infrequent transitions),
the cluster has a high internal variance. We find it appropriate
to refine cluster 1 by decreasing the distance threshold. This
can be done interactively using the earlier obtained OPTICS
output, without full re-clustering. So, we lower the distance
threshold D to 1.1, which divides cluster 1 into four new
clusters and adds 7 STGs to the “noise” category, as they are
not sufficiently similar to others regarding the new distance
threshold. Unfortunately, the cluster labels are not preserved
after the refinement operation. The descendants of cluster 1
receive labels from 1 to 4, and the remaining clusters are
labelled starting from 5.

To facilitate comparisons between the previous set of
clusters and the new one, we apply the arrangement by
similarity between the STGs in the two panels. As a result,
the clusters that did not change are put at the beginning of
the arrangement. We see that the clusters from 5 to 13 in the
new cluster set correspond to the clusters from 2 to 10 in the
previous cluster set. The summary STGs of the “noise” are
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Figure 11. Analysis of daily behaviours of GasTech employees by iterative density-based clustering of state transition graphs.

similar in the two the cluster sets. Former cluster 1 is shown
in the last position in the right panel because it has greatly
changed. In the left panel, new cluster 1 is shown in the same
position as the old cluster 1. Among the descendants of the
old cluster 1, its STG is the most similar to the STG of the
ancestor. The new clusters 2 to 4 are put at the end of the
arrangement.

After the refinement, the STGs of all clusters (disregarding
the “noise”) are easily interpretable. The most typical daily
behaviour is represented by cluster 1 consisting of 169 STGs.
It includes movements from home to a place of breakfast
or coffee, from the breakfast/coffee place to work, and from
work to home. It also includes two-way movements between
the work place and a place of lunch/dinner and between
home and lunch/dinner. Although the transition sequence
is not represented in the graphs, we can plausibly guess
that people moved in the morning from home to work with
an intermediate stop for having breakfast or coffee. At the
lunch time, they went from work to a lunch/dinner place and
then returned back to work. After coming home from work,
they went for dinner to a lunch/dinner place and returned
home after that. A coordinated text cloud display of state
sequences, as in Fig. 6, confirms these guesses.

Clusters 2 to 4 exhibit variations of the archetypical
behaviour represented by cluster 1. In cluster 2, dining is
substituted for shopping. In cluster 3, there are no transitions
from home to shopping or dining places. 11 behaviours
include visits to a colleague’s home; in the remaining
behaviours, the people simply stayed at home after work.
Cluster 4 consists of 7 behaviours that include visits to
the BFMO places (i.e., places of meetings of security
employees).

Similarly to cluster 4, cluster 6 also contains behaviours
with visits to the BFMO places, but, unlike in cluster 4, there
are no visits to shopping places. Visits to the BFMO places
also appear in cluster 5; the remaining states and transitions
in this cluster are mostly the same as in the archetypical
behaviour (cluster 1). The behaviours in clusters 7 and 8
do not include transitions from work to lunch/dinner and
back. The specifics of cluster 8 is the presence of two-
way transitions between work and hotel. Clusters from 9 to
13, evidently, represent various behaviours during weekends,
when people did not go to work.

This example demonstrates the application of partitioning
to the STG representation of movement behaviour semantics,
which facilitated the discovery and interpretation of typical
behaviour patterns and their variations.

Detecting unusual behaviours of amusement
park visitors
This example is based on the VAST Challenge 2015. Unusual
behaviours in terms of extremely high or low frequencies or
durations of some states and/or transitions can be detected
using suitable displays of the node or link attributes, such as
the bar display in Fig. 7 representing transition frequencies.
We create similar displays showing the relative frequencies
and durations of the states (i.e., attraction categories) in
the VAST Challenge example and perform direct selection
operations by clicking on bars representing unusually high
or low frequencies or durations. Figure 12 demonstrates the
results of several direct selections that have revealed outliers
among the behaviours of the park visitors.

The graph on the top left of Fig. 12 presents the behaviours
with extremely high frequencies of the state ’Entry’ (64.3%).
These behaviours have also extremely high frequencies of
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Figure 12. Summary STGs of interactively selected outlying
behaviours of park visitors.

the state ’Grionosaurus Stage’ (35.7%). The summary STG
tells us that our selection consists of behaviours of 8 people
who were only at the entry and at Grionosaurus Stage
and did not visit any other attractions. Obviously, these
were people who, according to the VAST Challenge 2015
story, accompanied a special guest to dedicated shows at
Grionosaurus Stage.

On the top right, we have selected the behaviours with
unusually much relative time spent in restrooms (57.78%).
The graph shows us that the only transition leading to the
state ’Restroom’ originates from ’Thrill Ride’. We can guess
that the people (6 persons) whose behaviours are selected
might feel sick while attending Thrill Rides. We also observe
that these people did not return to Thrill Rides after visiting
restrooms. Moreover, there was only one transition from the
state ’Restroom’, and it was a single person who moved to
’Shopping’. The remaining 5 persons did not go to any other
attraction after visiting restrooms.

On the lower left of Fig. 12, there is a summary STG
of the behaviours of 25 people who spent 50% or more of
their time for attractions of the category ’Ride for Everyone’.
The STG shows us that these people did not attend Thrill
Rides, which was the most popular attraction category. On
the lower right, we have selected all behaviours with no
visits to Thrill Rides. There were only 59 people (out of
11,374) who did not go to Thrill Rides. This includes the
earlier discussed group of 8 people who went from ’Entry’
directly to ’Grionosaurus Stage’ and then returned back.
The remaining people were mostly interested in Rides for
Everyone. There were also many visits to Creighton Pavilion,
and much time was dedicated to the attraction category
’Food’.

This example demonstrates detection of behavioural out-
liers by applying direct selection to the STG representation
of behaviours.

Visually comparing behaviours of football
players

As we noted in introducing the football data example, the
relative positions of players in their teams are indicative
of their roles and responsibilities and, hence, semantically
meaningful. In this section, we first investigate whether the
two teams had similar formations and distributions of roles
among the field players. We set the STG display so that each
of the two panels shows the STGs of the players of one team
(Fig.13). The left panel corresponds to the home team and
the right panel to the away team.

We apply the arrangement of the graphs in the two panels
by pairwise similarity and observe that there are both pairs
of very similar and pairs of dissimilar players in terms of the
relative positions and movements within their teams (Fig.13).
More specifically, there were 6 pairs of players with very
similar behaviours. The similarity-based arrangement has put
the STGs of these players in the upper three rows of the left
and right panels. We can clearly see the similarity of the
behaviours of players 10 and 21, 1 and 12, 7 and 19, and
so on. In particular, the strikers of the home team (10 and
8) behaved quite similarly to the strikers of the away team
(21 and 20, respectively) . The pairs of STGs located closer
to the bottom of the display are less similar. In the bottom
row, we see that the home team had a central player who
also frequently appeared on the left (number 5), whereas the
away team had instead a central player with a tendency to the
right (18). For the home team player who mostly played in
the front-left position and less frequently in the middle-left
(9), the counterpart in the away team ( 17) was more focused
on the middle-left position and more frequently moved to the
centre and back.

Next, we want to investigate whether any players changed
their behaviours after the guest team had scored a goal on
the 13th minute of the game. We apply the transformation
to STGs separately to the parts of the player’s trajectories
recorded before and after the goal and set the STG display
so that the behaviours of the players of both teams after
and before the goal are shown in the left and right panel,
respectively. We arrange the multiple STG by similarity in
order to reveal possible dramatic changes, such as some
players having swapped their relative positions. We see that
this did not happen: for each player, the graph position in
the left and in the right panel is the same. However, the
graphs of the players who changed their positions most
significantly have moved to the bottoms of the left and right
panels. Among these, there are three players of the home
team (numbers 7, 8, and 10) and one player of the guest team
(number 15) .

To clearly see the changes of the behaviours, we apply
a special comparison mode N:N, in which the left panel
portrays the differences of its multiple graphs from the
corresponding graphs of the right panel, which keep their
original appearance. A fragment of the display (the bottom
part of it) is shown in Fig.14. The largest change happened
to a striker of the home team (number 10; the STG is in
the lower right corner), who shifted his position from the
front and front-left to the front right. The player number 8
(the STG in a bright green frame), who initially tended to
the centre, front, and front right, shifted more to the front
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Figure 14. The left panel shows the changes of the behaviours of 8 players after a goal in comparison to their behaviours before
the goal, which are shown in the right panel.

Figure 13. Behaviours of corresponding field players of two
teams are visually compared by juxtaposition. The left and right
panels represent the players of the home and away teams,
respectively.

left, possibly, to counterbalance the striker’s shift to the front
right. The player number 7 (bright pink frame) shifted from
the front-right more to the right, possibly, to give more space
and support to the striker (10). Evidently, the home team
decided to change its attacking pattern. The defense was
slightly adjusted by the player number 3 (yellow, in the upper
row of Fig. 14) moving more to the back. The largest change
in the guest team was that player number 15 (lower left

corner, in a blue frame) reduced his presence on the right and
in the centre and spent more time in the back-right position.
Instead, player 20 (upper right) took more responsibility for
the right and central positions.

This example demonstrates the use of STGs for
investigation of individual movement behaviours. It also
shows how behaviour changes over time can be explored.

Discussion and conclusion
The examples demonstrate that the representation of
movement data in the form of state transition graphs
may be useful for analysing the semantics of movement
behaviours. This representation is applicable when locations
visited by moving objects or combinations of properties
of their movements can be semantically interpreted and
conceptualised as repeatedly occurring states. A state is a
meaningful generalisation of multiple visited locations or
multiple movements having something in common, such that
the meaning can be expressed by a suitable label. Hence,
the STG representation provides a highly abstracted view of
movement behaviours, which allows the analyst to focus on
general patterns in terms of the frequencies and durations of
the states and transitions between them.

We have demonstrated several kinds of possible applica-
tions for the STG representation. In the example of VAST
Challenge 2014, we studied behaviours of people in terms of
their activities, which were performed in specific semantic
categories of places. For VAST Challenge 2015, we analysed
people’s tendencies to visit particular categories of locations.
The Milan example refers to applications studying the use
of space in terms of general types of spatial locations (e.g.,
land use categories, street types, etc.) by moving objects
depending on the time of movement, trip origin and/or
destination, or other characteristics of the movement or the
moving objects. The football example shows how STGs can
be helpful in exploration of behaviours of moving objects in
a group (team).

In our paper, we have described the way of transforming
movement data available in the form of trajectories into
state transition graphs. Various transformations of movement
data have been described previously in the literature
(Andrienko et al. (2013b)), but this transformation has
not been systematically considered yet. We have explained
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why the STG representation of movement data is not a
replacement but a complement to other representations.
Thus, simultaneous use of representations in the form of
trajectories and in the form of STGs allows combining
spatial, temporal, and semantic analysis of movement. The
STG representation alone is insufficient due to its very
high level of abstraction from the original physical space
where the movement takes place and due to aggregation
of time. Furthermore, the STG representation may need to
be combined with the state sequence representation when it
is important to analyse state sequences and not only direct
transitions between states.

Another major contribution of this paper is definition of
the properties and behaviour of an STG visualisation tool
that are required for the tool to be useful for movement
analysis. Taking into account that such a tool needs to
be used in combination with other tools working on other
representations of movement data, we pay much attention to
defining the behaviour of the STG tool required for linking it
to other tools. We consider three analytical meta-operations,
querying, partitioning, and direct selection, which are, in
essence, different approaches to defining and preparing data
portions for performing comparisons. These meta-operations
are generalisations of many existing and conceivable tools
and techniques commonly used in analysing various types
of data. We make an abstraction from all possible ways
in which these meta-operations can be accomplished and
consider only the structure of the obtained result. On the
highest level of abstraction, the result is two or more subsets
of the data to be examined and compared. When several
analytical tools are complementarily used in data analysis,
the results of operations performed by means of one of
them are propagated to all others. The other tools must
take these results into account, to allow integrated analysis.
In particular, visual displays must be able to represent the
resulting data subsets.

Consequently, we define how an STG visualisation tool
presents data subsets resulting from the meta-operations and
how it supports comparisons between the subsets. We also
define how the tool should deal with results of multiple
meta-operations: it should allow the analyst to store, restore,
and compare results of different operations. These high-level
definitions can be treated as a kind of meta-design, which can
be instantiated in a variety of specific designs by choosing
particular graph drawing techniques, layout algorithms, user
interface elements, modes of user interaction with the
display, etc. The specific realisation of this meta-design
used in writing this paper should be considered as merely
illustrative.

As a final note, it is worth mentioning that the definition
(meta-design) of an STG visualisation tool presented in this
paper is not specific to movement data. It can also be applied
to other kinds of data representable as state sequences, such
as event logs, patient state records, time series of attribute
values (after segmentation and annotation), and others.
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