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In forced-choice detection, incorrect responses are routinely ascribed to internal noise, because experienced
psychophysical observers do not act as if they have a sensory threshold, below which all perceived intensities
would be identical. To determine whether inexperienced observers have sensory thresholds, we examined
psychometric functions (percent correct vs log contrast) for detection and detection in full-screen, dynamic visual
noise. Over 5 days, neither type of psychometric function changed shape, but both shifted leftwards, indicating
increased sensitivity. These results are not consistent with a lowered sensory threshold, which would decrease
psychometric slope. Our results can be understood within the context of Dosher and Lu’s (2000) 'stochastic’
Perceptual Template Model, augmented to allow intrinsic uncertainty. Specifically, our results are consistent with a
combination of reduced internal additive noise and improved filtering of external noise. © 2016 Optical Society of

America
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1. INTRODUCTION

When measuring visual sensitivity, most psychophysicists adopt the
m-alternative, forced-choice (mAFC) paradigm, because each response
of the observer can be classified as either right or wrong. (Appendix A
provides a list of the main symbols used in the text, and their
meanings.) For invisibly faint targets, the probability of a correct choice
is necessarily 1/m. For very intense targets, 1 is theoretically the
maximum probability correct, although most human observers
occasionally lapse. That is, they choose incorrectly, even when the
correct choice is unquestionably obvious [1].

Psychophysical literature offers two explanations for errors with
faint targets. One possibility is that the observer didn’t see anything
that could have been the stimulus, was forced to guess and guessed
wrong. This possibility can be formalized with the notion of a "sensory
threshold,” which is defined as the hypothetically least intense
perceptual experience. Many studies have shown that a sensory
threshold cannot explain all mAFC detection errors. For example, when
m > 2, erroneous 'first-choice' responses can be followed by correct
'second-choice’ responses with a probability greater than 1/(m-1) [2,
3]. Consequently, the alternative explanation is preferred for at least
some mAFC detection errors. Signal-detection theorists [e.g, 4] call it
"noise." Such noise is a stochastic process, which causes observers to
see things that aren't there.

Although observer experience isn't always described in
psychophysical literature, our own observers are typically encouraged
to practice their visual tasks until they feel comfortable performing
them. Only then do we begin to collect data. Validation of this modus

operandi can be inferred from studies of "perceptual learning” [e.g, 5],
which show that sensitivity (in this case, the reciprocal of the detection
threshold) can indeed increase with practice [6].

We wondered why performance improves with practice. One
hypothesis is that unpracticed observers act as if they have a sensory
threshold, and consequently they do not see things that aren't there.
Practice would affect sensitivity because it lowered or abolished the
sensory threshold.

Alternative explanations for the effect of practice on detection
threshold include a reduction in intrinsic uncertainty and an increase
in signal-to-noise ratio. In Section 2 these ideas will be formalized
within the context of a stochastic model, based on signal-detection
theory. In Section 3 we will demonstrate that the effect of a lowered
sensory threshold is very similar to the effect of reduced intrinsic
uncertainty on psychometric functions for detection, making the
psychometric slopes shallower. (The effect of elevated signal-to-noise
ratios is different, improving sensitivity without affecting the
psychometric slopes.)

To tease these alternatives apart, we measured psychometric
functions for detection in the presence (as well as in the absence) of
randomly generated texture. Such "external noise" can reduce intrinsic
uncertainty when it selectively stimulates detection mechanisms. It is
incapable of affecting intrinsic uncertainty when it has a broad spatial
bandwidth, a broad temporal bandwidth, a wide spatial extent, and a
long temporal extent, relative to the target [7-9]. Nonetheless, external
noise can unquestionably elevate detection threshold above the range
where a sensory threshold might operate. In other words, observers
never see nothing; they see the external noise.



2. STOCHASTIC MODEL

2A. Signal-detection theory

Our hypotheses may be made concrete within the context of signal-
detection theory [4]. In this model, the probability correct in any mAFC
task can be described as

¥=(1-8)y+5(1-y)/(m-1), (1)
where ¢ represents the lapse rate and
= j:[FN(x)]""lFS’(x)dx. 2)

InEq.2, F (x) is the cumulative distribution (CDF) for the maximum

signal N, arising from each non-target and Fs’ (x) is the derivative

of the CDF (ie, it is the density) for the maximum signal S, arising
from the target.

2B. Intrinsic uncertainty

In the absence of a sensory threshold, intrinsic uncertainty theory [10]
would specify CDFs for the target (where X =S) and non-targets

(where X = N)as the productof M CDFs, such that

F)=[F )] R )] @

In Eq. 3, K represents the number of "relevant micro-analyzers"
[11] with equal sensitivity to the stimuli M — K represents the
number of "irrelevant” micro-analyzers with no sensitivity to the
stimuli. Micro-analyzers are conveniently assumed to be individual
neurons or pools of neurons with similar receptive fields. The output
from each micro-analyzer contains an independent sample of noise
that can be assumed to be Gaussian. Consequently, micro-analyzer
output can be described in terms of the Gaussian CDF:

(x—p. )
F(x)=G(x;uX,0X)=%1+erfL “XJ- )

: o2

2C. Sensory threshold

Eq. 3 represents the limit for a vanishingly small sensory threshold,
ie,as ¢ — —oo. For a finite sensory threshold ¢, we must constructa
more general expression:

A=) [T [RE] x=c .

0 otherwise

Random variables N, S, and I are described in Section 2D, below.

2D. Power-law transduction
We have adapted Dosher and Lu's [12] parameterization for the
relationships between 4, , O, , and the stimulus. In the absence of

external noise, the expected output of each micro-analyzer is a power
function of stimulus contrast. Specifically, the expected signal is

2

Y
u, = (bCX) Jfor X=35,N,and I,where c isthe contrastof the
target, ¢, is the contrast of the non-targets, ¢, = 0 can be considered

the expected input to the irrelevant micro-analyzers, and b and Y
are arbitrary constants, greater than 0.

When external, Gaussian noise is present with amplitude N ext’
micro-analyzer outputs become doubly stochastic. Let & denote a
sample (of size 1) from a Gaussian random variable with zero mean
and variance N fxt . Expected micro-analyzer output can be written as

a function of this random sample:
Y
,uxzsgn(ch+Af9)|ch+Af9‘ . (6)

2E. Multiplicative noise and additive noise

Output variances can be described as the sum of two independent
sources of internal noise. "Multiplicative noise” grows with the
expected signal [/, ; "additive noise” does not. Since multiplicative

noise and additive noise are assumed to be independent, their

variances sum:

2
)

0% =(4,8, ) [ +(4))

™

where N a is the standard deviation of the internal, additive noise (an
arbitrary constant greater than 0) and N ., Is also an arbitrary

constant, greater than or equal to 0. The exponent ¥, will be
discussed below.
The three coefficients, 4., 4 _,and 4 , can be set equal to 1 with

no loss of generality. In fact, we enforce this constraint when fitting the
model to data from the last day of testing. On days prior to the last day
of testing, best-fitting values for any (or all) of these coefficients thus
might be greater than 1 (Our use of these three coefficients is opposite to
that of Dosher and Lu [13], who constrained them to equal 1 when fitting
the data from the first testing session in unpracticed observers.). If

Af > 1, it would imply an effect of practice on the amount of external
noise passed by each micro-analyzer (e.g, via improved filtering [e.g,
13]);if A >1, it would imply an effect of practice on the amount of

multiplicative internal noise; and if Aa > 1, it would imply an effect of

practice on the amount of additive internal noise.

2F. Contrast gain control

Psychophysical models of detection in the presence of "pattern masks"
(e.g, sinusoidal luminance gratings) typically feature sigmoidal
transduction (e.g, acceleration for low contrasts and compression for
high contrasts) and eschew multiplicative noise. In the absence of
external noise, these "contrast-gain-control" models are formally
equivalent to models like ours, with power-law transduction and
multiplicative noise [14]. For example, Legge and Foley's [15] popular
non-linear-transducer model is equivalent to our model when y = 2.4,
y2=2,M=1,and c<<0.

The exponent ), must be slightly smaller than the exponent  if

our model (like Legge and Foley's) is to successfully fit supra-threshold
contrast-discrimination data (i.e, "dipper" handles, see [16]). However,
such data are not considered either in our study or that by Dosher and



Lu [13]. Consequently, in all our subsequent modelling, we constrain
the two exponentstobe equal: 7, = .

2G. Implementation
In previous research [e.g, 9, 12, 17] Monte Carlo simulations were
required to estimate model performances when y #1and N_ #0.

All simulations reported in this paper, however, were computed
analytically, in the sense that Monte Carlo simulations were not
necessary. Where necessary, we substituted compound CDFs for the
Gaussian CDFs in Eq. 4, i.e.:

Fo(x)=[ au] G'(;u,.0,)G'(6:0.N,,)d6,  (8)

where G’(x; ,u,o-) is the density defined by the derivative of the

Gaussian CDF defined in Eq. 4. Where necessary, these integrals were
computed numerically.

3. ILLUSTRATIVE SIMULATIONS

Fig. 1 illustrates how a sensory threshold is expected to affect
psychometric functions for 4AFC detection. Densities for target S and
non-target /N are shown for low (panel a) and high (panel b) values of
the sensory threshold. By definition, non-targets in a detection task

have zero contrast, ie, ¢, = 0. Panels (c) and (d) show how the
probability correct W varies with target contrast, when the latter is
expressed in decibels, i.e, Strength (dB) = 20 log10 (cs ) .

The psychometric function in Fig. 1(c) was produced by computing
the model's expected performance in 100 trials with each of 23
different target contrasts. The parameter values used for this

simulation are the "baseline” values used for all of the other
simulations described in this section, except where indicated

otherwise. They were: 0=0.01, K=1, M =1, ¢=-0.09,
b=3, y=1, N, =0, N, =0.03, 4. =1,and 4 =1.In this
case, where its value is ¢ =/, — 30, the sensory threshold has

virtually no effect; i.e, the model performs identically when ¢ = —co.

z (a) z (b)
2 2 f(x)
o 53
) a
> >
£ £
B 5
© ©
o o
<] <]
a a
Sensation Intensity Sensation Intensity
1.0 - evvvvUew 1.0 - evvvve
LogWeibullPF 4 LogWeibullPF
09" threshold = -36.3 Vol 09" threshold = -20.4 o
0.8 slope = 1.45 b4 0.8 slope = 3.44
27 guess=025 . Z 7 guess=025
g lapse = 0.01 Py 8 lapse = 0.01 14
506 error=1.44 / £ 06 emor=0179
0 0.5 trials = 2300 ."' 0 0.5 trials = 2300 Py
4
0.4 [ 0.4
o® c » d
03g000® ( ) 0.3 easoe® ( )
-60 -50 -40 -30 -20 -60 -50 - -30 -20
Strength Strength

Fig. 1. Representative densities (with s = uv+ 20n) for 4AFC detection target S
and non-target N (a, b) and corresponding psychometric functions (c, d) with a
high sensory threshold (c = uv+ 30w; b, d) and a low sensory threshold (¢ = uv—
3on; a, c). Arrows in (b) represent delta functions, indicating high probability
density at the sensory threshold c. Insets in panels (c) and (d) describe best-
fitting Weibull distributions (smooth curves) to the model-derived accuracies
(filled circles).
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A comparison between Figs. 1(c) and 1(d) shows what happens
when the sensory threshold c¢ is increased. The psychometric function
for detection shifts rightwards and gets steeper. To quantify these
changes, we (maximum-likelihood) fit a cumulative Weibull
distribution to the data in each panel. Its general form can be described
as

B
\P=l+(1—l—§j l—exp(cN;CS] . )

m m

In Eq. 9, the Weibull parameter ¢ is typically considered to be the
contrast threshold. In this paper threshold is given in decibels, ie,

201og, (a) The Weibull parameter /3 is typically used to specify

the psychometric slope [18]. Best-fitting values for threshold and slope
are shown in Figs. 1(c) and (d). Fixed values were assigned for the

guess rate 1/m=0.25 and lapse rate ¢ =0.01. Finally, note that,

although the maximum-likelihood fit is good, it is not perfect, i.e, the
model produces non-Weibull psychometric functions. The error may
be specified by a goodness-of-fit metric, proportional to the logarithm
of maximum likelihood [19].

Fig. 2 illustrates the outcomes of four alternative models for the
effect of practice on psychometric functions for detection (i.e, when

N_,=0) and detection in noise (N_, =0.2). Each curve in the

figure illustrates the effect of a single parameter, whose value
decreased by a fixed amount, on each of 5 days' simulated practice. As
noted in Section 1, the effect of a lowered sensory threshold is very
similar to the effect of reduced intrinsic uncertainty on psychometric
functions for detection: threshold and slope both drop. This is true
even when intrinsic uncertainty remains high, as can be seen in
Appendix C.
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Fig. 2. (Online version in color). Values for threshold (a, c) and slope (b, d) from
Weibull fits to simulated data from detection (a, b) and detection-in-noise (c, d)
conditions. Note that high levels of uncertainty are required for detection-in-
noise to have steep psychometric functions (i.e, high values of Weibull § or the

approximately equivalent ¢’ power).



External noise can elevate detection thresholds above the range
where a sensory threshold might operate. Consequently, our
simulations show no effect of a lowered sensory threshold on
psychometric functions for detection in noise. On the other hand, a
reduction of intrinsic uncertainty affects the psychometric function for
detection in noise in the same way that it affects the psychometric
function for detection: threshold and slope both drop.

In the absence of any sensory threshold or multiplicative noise, an
increase in gain (parameter b) has the same effect on the model's
psychometric function for detection as a decrease in additive noise (the

product of parameters 4 and N ). Fig 2 illustrates this effect:

threshold falls but slope does not. This differentiates an increase in the
signal-to-noise ratio from a lowering of sensory threshold and a
reduction of intrinsic uncertainty. A more thorough study of model
behavior appears below.

4. METHODS

This experiment was approved by The National Research Ethics
Service. Ten observers were recruited. Those who routinely wore
corrective lenses for computer use wore them during this experiment.
All ten observers claimed to have no previous experience with visual
psychophysics, outside of routine visits to an optometrist or optician.
Each observer provided written consent to participate in a non-
invasive psychophysical experiment.

The methods were very similar to those used by Solomon [3],
whose experienced observers did not produce evidence of a sensory
threshold. A MacBook Pro running the PsychToolbox [20, 21] was used
for stimulus generation and response recording. (Software will be
made available upon request.) Stimuli were displayed on a 19-inch
Sony Trinitron with a refresh rate of 120 Hz. True 14-bit grey-scale
resolution was achieved using Cambridge Research Systems’ Bits++
box. Luminance was linearized within 0.7%. Maximum and minimum
luminances were 157.4 and 2.2 cd/m? respectively. The monitor’s
background luminance was set to the midpoint of these values, and the
rest of the room was dark. Viewing distance was approximately 0.70
m. At this distance, there were 32 pixels per degree of visual angle.
Observers were required to maintain fixation on the fixation point
throughout each run.

Targets and non-targets were horizontal, cosine-phase Gabor

patterns whose wavelength and spatial spread were A =0.25"and

o0 =0.18", respectively. One Gabor appeared in each of four positions,
marked by a black square (see Fig. 3). These black squares were visible
throughout the experiment. Their centers formed a large
(5.6°%5.6°), notional square centered on a black fixation spot.
External dynamic noise, when present, was created by adding an
independently determined, random intensity to each pixel on the 16° x
21° screen (except those depicting the black squares and fixation spot)
on every refresh. Random intensities had zero mean and an r.ms.

contrast of 0.2, giving the noise a spectral density of 3x 107 deg”s.

Four types of trial were randomly interleaved: detection,
discrimination, detection in noise, and discrimination in noise. Each
trial was initiated with a key press. Observers were allowed to respond
(with another key press) after 1.0 s. On noise trials, dynamic noise was
presented continuously throughout the trial. In the middle of each trial
(ie, between 0.41 and 0.59 s after the key press) the four Gabors
(three non-targets and one target) were presented and the fixation
spot removed for 0.18 s. On detection trials, the non-targets had zero
contrast (¢, = 0). On discrimination trials, their Michelson contrast

4

was c, =0.04. Target contrast was always higher (see below).

Feedback in the form of a brief tone followed each incorrect response.

The discrimination trials did not promise any additional power for
differentiating between candidate mechanisms of perceptual learning.
Their inclusion was designed to encourage observers to compare all
four alternatives (in "sensory trace mode" [22]), as our modeling
assumes. Without a "roving" pedestal like this, some observers have a
tendency to operate in "context-coding mode,” in which each (or
possibly only some) of the four alternatives is compared to an internal
template. Thus, if one alternative provided a sufficiently close match to
the internal template, the observer wouldn't need to examine any of
the other alternatives when making a decision.

Fig. 3. Stimulus geometry used in the experiment. Gabor and noise contrasts
have been adjusted for illustrative purposes.

To quickly and efficiently obtain estimates of threshold and slope
while observers practiced detection, we used the adaptive
psychometric staircase QUEST [23]. Prior to each trial, QUEST produced a
(mean a posteriori) estimate for the observer's threshold [A priori
distributions were Gaussian, with a mean of -27 dB and a standard
deviation of 60 dB.]. This estimate was based on the conventional
assumption of a Weibull psychometric function (Eq. 9), with the
following parameters fixed: Weibull =2, m=4,and 6 = 0.01. of
course, we did not expect these parameter values to represent all of
our empirical psychometric functions. In particular, the slope (Weibull
= 2) was selected as a compromise, given the various simulations
illustrated in Fig. 2.

As a means of accurately estimating the frequency of finger errors
O , the target was presented with a Michelson contrast of ¢ = 0.14
(i.e, -17 dB) on one-ninth of the trials without noise. The precisions of

our estimates for psychometric threshold and slope depend upon the
extent to which our target contrasts elicit response accuracies that

straddle the mid-point between psychometric floor (ie, l/ m) and

psychometric ceiling (1 — ). Consequently, on the half the remaining
trials, the target was presented 3.8 dB below QUEST's estimated
threshold; on the other half, the target was presented 0.5 dB above
QUEST's estimated threshold. These values were selected because they



correspond to response accuracies of ¥ =0.5 and ¥ =0.75,
respectively, given the fixed parameter values described above.

Each observer performed four blocks of 88 trials each, on each of 5
consecutive days. The QUEST staircases were initialized at the beginning
of each day.

5. RESULTS AND DISCUSSION

One observer was excused from the study after 2 days, because he was
unable to attain a response accuracy greater than 50% correct with
-17-dB targets in either of the "no-noise” conditions. From the
psychometric data generated by each of the nine remaining observers,
we obtained 20 (five days x four types of trial: detection,
discrimination, detection in noise, and discrimination in noise)
maximume-likelihood estimates of threshold and slope. Examples from
arepresentative observer appear in Appendix D.

5A. Detection (in the absence of noise)

For each observer in each condition, we regressed maximum-
likelihood estimates of threshold (in dB) and slope (Weibull /)

against the day of testing. For each observer and each day, lapse rates
(&) were fixed at the values determined from the high-contrast/no-
noise trials (or 0.01; whichever was larger). Without exception, the line
best fit to every observer's detection thresholds in the absence of noise
had a negative gradient (see Fig. 4a). Across the group, the mean and
standard error of the fitted slopes were -0.72 and 0.15 dB/day,
respectively. Thus, there can be no question that our methods were
sufficient to elicit a significant facilitatory effect of practice on contrast
sensitivity, t(8) =-4.93, p < 0.001.
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Fig. 4 (Online version in color). Values for threshold (a, c) and slope (b, d) from
Weibull fits to empirical data from detection (a, b) and detection-in-noise (c, d)
conditions. Each symbol represents the performance of a single observer on a
single day. A regression line (color-coded online) has been fit to the data from
each observer within each panel. The arrow in panel (a) indicates the (peri-
threshold) pedestal amplitude that was used in all discrimination trials.

Psychometric slopes for detection, on the other hand, showed no
systematic variation with day of testing, ¢(8) = -0.77, p = 0.46 (see Fig.
4b). The mean gradient was —0.07, with a standard error of 0.09. Recall
that our main hypothesis was that practice would lower or abolish a
sensory threshold. Section 3 demonstrated that a lowered sensory
threshold [24] would manifest not only as a decrease in the detection
threshold, but also as a decrease in psychometric slope. If this
hypothesis were correct, then we would expect a (positive) correlation
(across days of testing) between detection threshold and psychometric
slope. For only three observers was there any hint (i.e., with Pearson's r
> (.1) of this correlation. It is perhaps noteworthy that these were also

5

the only three observers for whom, on day 1, estimated lapse rates
were too high (more than 25%) for adequate constraint of parameter
values. In only one other instance (MP, day 2) did lapse rate exceed this
value (ie, 0 >0.25). On the basis of these results, the data contain
little evidence in support of our main hypothesis. Instead, our
regression analysis of the psychometric parameters for detection
seems more consistent with an effect of practice on internal, additive
noise (see Fig. 2): thresholds dropped consistently over days, but
slopes remained high.

5B. Detection in noise

As with the detection data, without exception, the line best fit to
every observer's detection-in-noise thresholds had a negative gradient
(see Fig. 4c). The mean and standard error were -0.79 and 0.08
dB/day, respectively. Thus, there can be no question that detection-in-
noise improved significantly with practice, ¢(8) = -10.48, p < 105, just
as it did in the absence of noise.

Also similar to the detection data, the detection-in-noise data
contained no evidence for a systematic effect of practice on
psychometric slope, t(8) = -0.35, p = 0.37 (see Fig. 4d). Regression
analysis indicated a mean gradient of -0.06, with a standard error of
0.18. Although these results are qualitatively similar to our detection
results (ie, thresholds dropped, but slopes did not) they cannot
similarly be explained by a reduction in additive noise (see Fig. 2),
which must be negligible in comparison to our massively
suprathreshold external noise. Instead, they are consistent only with a
reduction in the effect of this external noise on detection. In other
words, practice seems to reduce the amount of external noise that is
passed by the theoretical micro-analyzers.

Day-by-day averages appear, along with a fit of the model, in Fig. 5.
These averages illustrate the aforementioned effects of practice on
threshold, as well as the lack of a systematic effect of practice on
psychometric slope. Visual comparison reveals two notable differences
between Figs. 2 and 5. For one thing, the effect of external noise on our
observers' contrast thresholds (an elevation of ~7 dB, on average) is
much smaller than that predicted by our model (an elevation of ~16
dB), given the "baseline” parameter values used for Fig. 2. The other
thing is that the psychometric slopes are much steeper than those
produced by the model with these baseline parameter values.
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illustrates the median value, across 9 observers, +1 quartile. Dashed curves

illustrate a model fit. Parameter values were: 0 = 0.01, K =1, M =870



,c=—, b=14, 7=1, Nm =0, Na =0.110. Afdecreasedfrom

158101 (ie, between day 1 and day 5) and Aa decreased from 1.28to 1.

The one parameter in our model that governs the relationship
between external noise contrast and threshold elevationis N .- When

this (additive) component of internal noise is large, then a
correspondingly large amount of external noise is necessary for
threshold elevation. Clearly, the baseline value of 0.03 was not
sufficiently large. The model's threshold elevations were more
consistent with those we obtained empirically when this parameter

value wasincreasedto N, = 0.110.

The other discrepancy between our initial simulations and empirical
results is perhaps more noteworthy. On the basis of previous research
[7] with a slightly different paradigm (two temporally offset stimulus
intervals in foveal view, rather than four spatially offset stimulus
intervals in parafoveal view) we expected to record shallower
psychometric functions for detection in our dynamic noise, which was
both spatially and temporally extended, relative to the target and non-
target Gabor patterns. Indeed, that finding has been recognized [e.g. 9,
16] as one of the chief indictments against attributions of steep
psychometric slopes (in the absence of noise) to intrinsic uncertainty.
Consequently, we attempted to replicate those historical methods as
closely as possible in a supplementary experiment. Nonetheless, we
were unable to reproduce the finding. Psychometric slopes for author
J.A.S. remained high, even in high levels of full-screen, dynamic noise.

5C. High psychometric slopes for detection in noise

The model described in Section 2 contains three parameters that
affect psychometric slopes for detection in noise. Slope increases with
uncertainty M (as is illustrated in Fig. 2). It also increases with the
exponent of the power-law transducer ¥ and decreases with the

product 4 N . According to Birdsall's Theorem [25], when } > 1,

psychometric slope must decrease as the contrast of external noise
increases. Our data contain no hint of this decrease, and consequently
do not support a model containing non-linear transduction.

Without non-linear transduction, the only property that can account
for the steep psychometric functions in noise is intrinsic uncertainty,
which must be in the range of )/ = 1,000 to best fit (i.e, with minimum

squared errors) the data. That number may seem to be implausibly
high. However, Fig. 6 shows how poorly the model fits our
psychometric slopes for detection in noise, when allowing non-linear
transduction but constraining M to smaller values [26]. Without
uncertainty (ie, when M =1) the model's best fit is very poor
indeed. For a reasonable fit, with Weibull /5 close to the median value

obtained in our detection-in-noise experiment, approximately micro-
analyzers are required at each stimulus position,i.e. M = 1000.

5D. Contrast discrimination

As previously noted, the discrimination trials did not promise any
additional power for diagnosing between candidate mechanisms of
perceptual learning. Consequently, we did not analyze the data from
our discrimination trials, other than to confirm what many previous
authors (e.g, [27, 28]) have reported: when non-target contrasts are
near the detection threshold (as in our experiment), discrimination
thresholds are lower than detection thresholds and psychometric
slopes for discrimination are lower than those for detection.

Signal-detection theory explains these results in one (or possibly a
combination) of three ways. A sigmoidal transducer function (e.g, 27,
28) may suffice. If the transducer is merely a power-function (as in Eq.

6), then multiplicative noise must be non-negligible (ie, N > 0;

otherwise psychometric functions will be too steep [3]). The final
alternative is to have an appreciable amount of intrinsic uncertainty
(ie, M >>1 [10]). Since an appreciable amount of intrinsic
uncertainty was required to fit our detection-in-noise results, we had
litle reason to explore model performance with non-zero
multiplicative noise.
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Fig. 6. Model performances with best-fitting values of y (indicated on the figure),
b, and N,, for various fixed values of uncertainty M. All other model parameters
were fixed at the baseline values, described in Section 3. The solid horizontal line
shows the median values for Weibull  obtained in detection experiments. (In
noise, the median was 4.2; in the absence of noise, it was 3.9. Geometric means
were greater: 5.3 and 5.0, respectively. Arithmetic means were even greater.)

On the other hand, when non-target contrasts are above threshold,
discrimination thresholds tend to be much greater than detection
thresholds. There are only two ways of achieving this result within the
context of signal-detection theory: either compressive transduction (or
a sigmoidal combination of expansion and compression) or non-
negligible multiplicative noise. Such options are beyond the scope of
this project, but they are discussed at length elsewhere (e.g,, [16]).

5E. Comparison with previous work

Yu, Klein, and Levi [5] found no effect of practice on contrast
discrimination when non-target contrast was randomized. Low-
contrast (and zero-contrast) non-targets were excluded from that
experiment. However, they did report an effect of practice on contrast
detection (i.e, when non-targets had zero contrast) in a situation
amenable to context-coding mode, as discussed in Section 4. In this
case, thresholds dropped at a rate of 1.4 dB/day, on average. Since this
effect is almost twice as large as that reported in Section 54, we cannot
be confident that our results stem from the same sources of perceptual
learning.

Dosher and Lu [12, 29] examined the effect of practice on contrast
threshold for discriminating between two orientations of Gabor
pattern, +12° with respect to vertical. This task is fundamentally
different from detection, however. For one thing, decisions are not
governed by the activity in mechanisms best tuned to the candidate
targets [30]. Consequently, it seems likely that contrast thresholds for
discriminating between these orientations exceed contrast thresholds
for mere detection, and thus could not reflect any possible role of a
sensory threshold.

Nonetheless, our results are qualitatively similar to those reported
by Dosher and Lu [12, 29]: contrast thresholds dropped with practice,
in both the presence and absence of external noise, and psychometric
slopes (inferred from Dosher and Lu's "threshold ratios") were
unaffected by practice. The changes in signal processing that underlie
the effects that we report are consequently comparable to those that



Dosher and Lu reported: a reduction in internal, additive noise and
more effective filtering of external noise.

Our results are also consistent with Lu and Dosher's [31] study of
contrast detection in experienced observers. Specifically, both our
study and theirs indicate that psychometric slopes ("threshold ratios")
are invariant with external noise contrast and are inconsistent with
any model (eg, a simple amplifier without a sensory threshold,
intrinsic uncertainty, or non-linear transduction) in which detectability
(specifically, the d"metric of signal-detection theory [4]) is proportional
to signal contrast. Lu and Dosher fit their results with an
approximation to the model described in Section 2, which they called
"analytic PTM." Subsequently, Klein and Levi [9] noted that analytic
PTM cannot produce the decrease in psychometric slope that Birdsall
proved must accompany the introduction of external noise when

¥ > 1. Since neither Lu and Dosher's data nor ours contain any hint of

this decrease, both sets of data support a model with linear
transduction (ie, ¥ =1), and intrinsic uncertainty (ie, M >1).

Within the context of our stochastic model, this uncertainty is the only
feature capable of producing similarly steep psychometric functions
for detection both in the presence and absence of external noise.

6. CONCLUSIONS AND CAVEATS

6A. Summary of findings

We sought evidence in favor of a lowering of sensory threshold with
practice in a detection task, but found no such evidence. Instead, within
the framework of signal-detection theory, accounting for the effects of
practice required decreases in both additive internal noise and the
external noise that passes through each micro-analyzer. For this model
to best fit our data, intrinsic uncertainty had to be high and
undiminished with practice.

6B. Physiological instantiation

Our results do not directly address the question of how practice
reduces additive noise or how it improves micro-analyzer tuning, but
these changes could be instantiated physiologically. If each micro-
analyzer can be considered a pool of noisy neurons with similar (but
not identical) receptive fields, then practice may effectively prune away
some neurons from each micro-analyzer. Consequently, the micro-
analyzer would have less intrinsic noise (ie, the product of Ax and Na
would decrease) and it would process less external noise (ie., the
product of Arand Next would decrease).

Of course, if ours were a physiological model, we would specify how
Aa and Ar depend on the number of neurons in each micro-analyzer,
and we might be able to explain all the effects of practice with one
parameter. However, Lu and Dosher [32] reported that the effect of
practice on orientation identification (in the absence of external noise)
for foveal stimuli was negligible compared to its effect on orientation
identification in noise. Thus, a different mechanism seems to be
responsible for practice effects in the absence of noise, when they are
found (e.g, outside the fovea).

6C. Conceptual issues with signal-detection theory

1. Attention

It seems unlikely that spatially focused attention is necessary for
practice to facilitate detection. We know this because observers were
required to compare the contents in multiple regions of the display, all
at the same time. Perhaps micro-analyzer tuning and output variance
ordinarily (ie, in unpracticed observers) fluctuate with something
more diffuse than spatial attention. Maybe "arousal” would be a better
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term. With practice, observers could converge on the appropriate level
of this arousal for optimum task performance.

Another piece of evidence against an attentional explanation for
these practice effects is their incompatibility with uncertainty
reduction. Although it isn't strictly necessary to invoke attention in
models of intrinsic uncertainty, it does seem implausible that observer
performances would be affected by Gabor patterns that appeared at
wildly inappropriate times (e.g, at the end, rather than in the middle of
a trial) or positions (e.g, anywhere in the field other than in one of the
four boxes shown in Fig. 3). Consequently, we believe it is safe to
assume that attention can be involved in limiting the number of micro-
analyzers used for a specific task. Nonetheless, it seems clear from our
results that this number was unaffected by practice.

2. Multiplicative noise
In Section 5D we argued that it was reasonable to exclude
multiplicative noise from our modeling (by setting N m = 0) because

we did not examine supra-threshold contrast discrimination (cf.
Appendix D). However, multiplicative noise has been implicated in
some detection experiments too. Swets, Tanner, and Birdsall [2] used it
to explain the relationship between first and second responses in a
4AFC detection experiment. Solomon [Solomon], on the other hand,
noted that the same results could be explained with intrinsic
uncertainty (ie, M >1).

Burgess and Colbourne [33] invoked multiplicative noise to explain
"observer inconsistency," over several trials in which 2AFC detections
were limited by identical samples of external noise. Lu and Dosher [17]
subsequently rejected an uncertainty-based model of detection in
noise on the basis of "opposite demands" on M: large amounts of
uncertainty were necessary to explain steep psychometric functions,
but small amounts were necessary to explain the largely invariant ratio
between percent correct and the probability of agreement on trials
with identical samples of external noise.

As we did not employ Burgess and Colbourne's "double-pass”
methodology, we have no comparable data to test this notion, but we
suspect that the requisite relationship between probability correct and
probability of agreement can indeed be obtained with large M, when
the number of relevant micro-analyzers K is allowed to exceed 1, a
possibility that was not explored by Lu and Dosher. Indeed, the
practice of fixing the number of micro-analyzers relevant for each of
the m forced-choice alternatives at K =1 has become so standard
that some authors seem to have forgotten it can have other values [e.g,
3, 17; cf. 34]. Nonetheless, inconsistency seems guaranteed to rise with
K [35], and we can be confident that this parameter will have an

essentially negligible effect on Weibull ,B aslongas K< M / 100
[10].

3. Contrast gain control

In section 2F we noted that our stochastic model is formally
equivalent to a model of contrast-gain-control, when external noise is
absent. It is unclear how such a model of contrast-gain-control would
behave when external noise is present. Dao, Lu, and Dosher [14]
examined the behavior of an approximation called "cgcPTM." It
replaces random variables with their expected values or standard
deviations, just like analytic PTM (discussed in section 5E), to which
cgcPTM is formally equivalent. However, the formal equivalence
between cgcPTM and analytic PTM does not imply a formal
equivalence between the models they approximate. It remains possible
that there are some models of contrast-gain-control that are not
formally equivalent to our stochastic model.



Given any accelerating transducer function (ie. ¥ >1) the

psychometric function for detection necessarily gets shallower as the
contrast of external noise increases [25]. However, that reduction in
slope may be negligible when performance is limited by additive,
internal noise. Baker and Meese [36] implicitly assumed this
negligibility when they claimed that, "a pure gain control account of
masking predicts no change in the psychometric slope because divisive
suppression does not affect the form of contrast transduction.”
However, no one has yet described how a gain-control circuit would

behave without substituting statistics (such as N o) for individual

samples of external noise. This is a critical point, because Klein and Levi
[9] demonstrated that the average output of a model with
stochastically defined input might deviate qualitatively from the
average output of an approximation based on the statistics of that
input. Consequently, we are reluctant to form any conclusions on the
basis of models that substitute statistics for individual samples of
external noise [37].

Watson, Borthwick, & Taylor [38] considered a pure gain-control
account of noise masking, but they rejected this idea on the basis of a
comparison between "random” conditions, in which a unique sample
of band-passed noise was used in each interval, and "fixed" conditions,
in which the same sample was used in each interval and each trial.
After practice, thresholds in the fixed conditions were considerably
lower, suggesting that observers could re-tune their detection
mechanisms to exploit the idiosyncrasies of some noise samples.

6D. Other model frameworks

Our data are clearly inconsistent with a model in which practice
lowers (or eliminates) a sensory threshold for contrast, thereby
imposing a new sensitivity limit based on one or more sources of
Gaussian noise. However, it remains conceivable, though unlikely, that
practice could lower a sensory threshold for contrast, if it also changed
the nature of visual noise (ie. the shape of its density). A
comprehensive examination of models incorporating non-Gaussian
visual noise is beyond the scope of this paper.

With sensory thresholds, intrinsic uncertainty, non-linear
transduction, and multiplicative noise, our signal-detection model is
fairly general. However, its homogenous population of micro-analyzers
is not biologically plausible. Real neurons have a variety of response
characteristics, particularly with respect to contrast. Indeed, it seems
plausible that some neurons will reach their maximum firing rate
before others have even begun to fire, even when both sets of neurons
share the same receptive field. These two hypothetical sets of neurons
can be said to form parallel "contrast channels,” and psychophysical
data have been fit with models containing an heterogeneity of
mechanisms like this [39, 40] The behavior of these models in mAFC
tasks of discrimination between supra-threshold contrast is quite
similar to that of single-channel signal-detection models with
compressive (or sigmoidal) transduction (see Fig. 16 of [41]). It is
much harder to predict how these models would behave in tasks that
are limited by external noise. For now, we must consider this to be an
open question.
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Appendix A. TABLE OF SYMBOLS

Symbols appear in the first column and definitions in the second.
The final column indicates the section in which the symbol is
introduced.

c Contrast of each non-target §2D
N
c Target contrast §2D
N
N Amplitude of external noise §2D
ext
m Number of alternatives in an mAFC | §1 %1
paradigm
) Lapse rate §1 91
o Scale parameter in the Weibull | §3 3
distribution
Weibull | Shape parameter in the Weibull | §3 03
distribution
d’ Signal-detection  theory's  sensitivity | §3 ¥3
metric
q Gradient of In d'vs In (¢~ ¢, ) §3 93
v Probability correct in an mAFC paradigm §2A
Ya (x) Cumulative distribution function for | §2A
X .
random variable X
N Random variable representing the | §2A
maximum signal arising from the M
micro-analyzers associated with each of
the (m-1) non-targets
S Random variable representing the | §2A

maximum signal arising from the M
micro-analyzers associated with the
target




N Random variable representing the signal | §2D
arising from each relevant micro-analyzer
associated with a non-target

S Random variable representing the signal | §2D
arising from each relevant micro-analyzer
associated with the target

i Random variable representing the signal | §2D
arising from each irrelevant micro-
analyzer

M Number of micro-analyzers associated | §2B
with each of the m alternatives (a model
parameter)

K Number of relevant micro-analyzers | §2B
sensitive to the target (a model
parameter)

c Sensory threshold (a model parameter) §2C

b Gain (a model parameter) §2D

4 Exponent in the power-law transducer (a | §2D

model parameter)

N Model parameter governing the | 8§2E
relationship between mean and variance
in micro-analyzer output, after practice

N Model  parameter  specifying the | §2E
minimum standard deviation of micro-
analyzer output, after practice

A Model parameter governing the effect of | §2D
practice on micro-analyzer tuning

A Model parameter governing the effect of | §2E
practice on multiplicative noise

A Model parameter governing the effect of | §2E
practice on additive noise

Appendix B. Comparing Weibull 8 with d’ power

Fig. 7 illustrates the similarity between Weibull fits to the
relationship between log contrast and percent correct and
linear fits to the relationship between log contrast and log d".
The relationship described in panel f was used to calculate the
right-hand axes in Figs. 2, 4, 5, and 6.

10

Weibull B=1.3, d’power =0.86 Weibull 8 =2, d’power =1.35 Weibull 8= 3, d’power =2.14

1.5 2
1.0 1.0
k ©0.5 °
209 0.0 £
0.0 0.5 -1
1.0 Py
05 @ 15 ® ° ©
35 3.0 25 20 A5

-3 - - - - i f - - - -
35 -3.0 %ﬁ-’co%'tgas1'5 In contrast S0 I%'?:ont%a%t 5

-

Weibull B =4, d’power =2.93  Weibull B =5, d’power = 3.56 d’'power =
1.5 _ 0.74(Weibull 8) - 0.1
! 1.0 gt
- - 3
2o 205 2
- 0.5 °
-1.0 2
2 @) 45 (e) g
So2e2TaRRpOe T 28 25 R g0 I
®)
®

23 4
Weibull B

Fig. 7. Relationship between Weibull # and d' power. Each curve in panels a-e is
a Weibull function of log contrast (Eqn. 9). It was generated with parameter
values m = 4, o= 0,and & = 0.1. The value for Bis indicated at the top of
the panel. Over the range of values illustrated in each panel, the curve is well fit by

a straight line (ie. a constant d’ power). Panel f summarizes the relationship
between d'power and f5.

Appendix C. Further illustrative simulations

Fig. 8 illustrates the outcome of various alternative models for
the effect of practice. The layout is identical to that of Fig. 2.
Whereas Fig. 2 illustrated reductions in sensory threshold,
additive noise, and filter bandwidth in the absence of
uncertainty (i.e. M = 1) and nonlinear transduction (i.e. y = 1),
Fig. 8 illustrates their reduction with uncertainty (M = 100;
panels a-d), nonlinear transduction (y = 2.4; panels e-h), and
both (M = 100, y = 2.4; panels i-1). In all cases, reducing the
sensory threshold causes a reduction in the slope of
psychometric functions for detection in the absence of noise.

Appendix D. Psychometric functions from a
representative observer, with a maximum-likelihood
model fit

RHDS was the first of nine observers to complete five days of
testing. Fig. 9 contains all the raw data he generated on Days 1
(top row) and 5 (bottom row). Fig. 10 contains maximum-
likelihood estimates of RHDS's threshold and slope from all
days, along with a fit of the model.

Although RHDS was a typical observer in most
respects (indeed, his detection thresholds were very close to
the median values depicted in Fig. 5), he did produce the lowest
lapse rates (0 ) in our data set. His data were also noteworthy
because maximum-likelihood estimates of Weibull S were

consistently higher in the noise conditions than they were in
the no-noise conditions. Although no combination of our model
parameters is capable of reproducing this feature, it was not
apparent in the data from any of the other observers.
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Fig. 9. Psychometric functions for 4AFC detection (a, €), contrast discrimination (b, f), detection-in-noise (c, g), and discrimination-in-noise (d, h) from
a representative observer (RHDS) on Day 1 (a-d) and Day 5 (e-h). Insets specify the parameters of the best-fitting Weibull functions (smooth curves).
Error bars contain 95% confidence intervals, derived from the binomial distribution.
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Fig. 10. Maximum-likelihood estimates of representative observer RHDS's threshold (a, ¢, e, and g) and slope (b, d, f, and h) from Weibull fits to empirical data from
detection (a, b), discrimination (c, d), detection-in-noise (e, f), and discrimination-in-noise (g, h) conditions. Error bars contain two standard deviations of a parametric

bootstrap distribution. Dashed curves illustrate a model fit. Parameter values were: 0 =0.01, K =1, M =1.7X 106, c=-, b=22, Y= 1,

N_=0.26, N, =0.098. 4_was held constantat 1, while A, decreased from 146 to 1 (ie, between day 1 and day 5) and A decreased from 130 to 1.



