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Abstract 

Since Tversky’s (1977) seminal investigation, the triangle inequality, along with 

symmetry and minimality, have had a central role in investigations of the 

fundamental constraints on human similarity judgments. The meaning of 

minimality and symmetry in similarity judgments has been straightforward, but 

this is not the case for the triangle inequality. Expressed in terms of 

dissimilarities, and assuming a simple, linear function between dissimilarities 

and distances, the triangle inequality constraint implies that human behaviour 

should be consistent with Dissimilarity(A,B) + Dissimilarity(B,C) ≥ 

Dissimilarity(A,C), where A, B, and C are any three stimuli. We show how we can 

translate this constraint into one for similarities, using Shepard’s (1987) 

generalization law, and so derive the multiplicative triangle inequality for 

similarities,    (   )     (   )     (   ) where      (   )   . Can 

humans violate the multiplicative triangle inequality? An empirical 

demonstration shows that they can.  
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1. Introduction  

Tversky’s (1977) famous work is widely interpreted as showing that similarity 

judgments are not consistent with the metric axioms, thus casting a critical eye on the 

widespread approach to representation and similarity based on psychological spaces 

(for earlier examination see Attneave, 1950, Rosch, 1975). Specifically, all distances 

must obey the metric axioms:  

 Minimality: Distance(A,A) = 0 

Symmetry: Distance(A,B) = Distance(B,A) 

Triangle Inequality: Distance(A,B) + Distance(B,C)  ≥ Distance(A,C) 

If we employ distances in psychological spaces to model similarities, should it not be the 

case that similarities need be consistent with the metric axioms? Then, the common 

interpretation of Tversky’s work is that models of similarity based on distances cannot 

be adequate.  

 This interpretation is correct for symmetry and minimality (that the similarity 

between an item and itself should be maximal and that similarities should be 

symmetric). However, in fact, Tversky (1977) provided only a much weaker argument 

regarding the triangle inequality and similarities. He discussed the triangle inequality in 

relation to a famous example, based on William James. Tversky noted (p.329) “the 

perceived distance of Jamaica to Russia exceeds the perceived distance of Jamaica to 

Cuba, plus that of Cuba to Russia – contrary to the triangle inequality.” If we equate 

distances with (some simple function of) dissimilarities, the triangle inequality 

constraint for these countries can be written as 

             (              )

              (            )              (           ) 
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Jamaica and Russia are highly dissimilar to each other, while Jamaica and Cuba 

have a very low dissimilarity (because of geographical location) and likewise for Cuba 

and Russia (because of political affiliation), so violating the triangle inequality – for 

dissimilarities. In both the original paper and a subsequent one (Tversky & Gati, 1982) 

Tversky is extremely careful to limit the scope of this conclusion. For example, he said  

(Tversky, 1977, p.329)  “…the triangle inequality implies that if a is quite similar to b, 

and b is quite similar to c, then a and c cannot be very dissimilar from each other. Thus, 

it sets a lower limit to the similarity between a and c in terms of the similarities between 

a and b and between b and c.” But, this expression is not a quantitative constraint.  

 Thus, despite the fact that Tversky’s work was nearly 40 years ago, there is 

currently no precise notion of how the triangle inequality translates into a constraint for 

similarities, as opposed to dissimilarities. Resolving this problem is important both for 

studies into the foundations of human similarity judgments and, more practically, since 

the majority of psychological research has focused on similarity, not dissimilarity (e.g., 

Medin et al., 1990; Minda & Smith, 2001; Nosofsky, 1984; Pothos, 2005).  

 Why is it not possible to just assume a violation of triangle inequalities and re-

express it in terms of similarities? One might be inclined to write a triangle inequality 

with similarities as  

          (   )            (   )            (   ) 

However, such an expression is valid only if we set                          , which 

is problematic. Dissimilarities are straightforwardly equated with distances, which have 

to be positive. But, similarities are also typically considered positive: our intuition of 

psychological similarity is that of a positive quantity and, operationally, similarity is 

always measured with positive scales. We can imagine other, ‘convenient’ functions 

linking similarity and dissimilarity, but, in the absence of psychological theory, such 

functions are arbitrary. There is also the complication that in certain cases the two 
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measures may not have a simple inverse relation (Medin, Goldstone & Gentner, 1990), 

but this possibility is beyond this study. 

The most widely adopted function linking distances and similarities is Shepard’s 

(1987) law of generalization, according to which                      . Shepard’s law 

is still very much at the heart of influential cognitive theories, such as Nosofsky’s (1984) 

Generalized Context Model or the Minda-Smith version of prototype theory (Minda & 

Smith, 2001). Shepard’s law assumes that similarity is a ratio scale between 0, 1. While 

this seems like a strong assumption (e.g., Tversky & Gati, 1982, focused on ordinal 

relations), note that most empirical similarity measures are based on Likert scales. 

When using a Likert scale, a common (if not sometimes tacit) assumption is that such 

scales are linear and so correspond to interval, possibly ratio, scales. For example, naïve 

observers are able to make fine discriminations of similarity. Moreover, accepting that 

there are pairs of stimuli that have zero psychological similarity indicates a ratio scale 

for psychological similarity. It is possible to question this assumption of linearity, which 

would undermine the present discussion. However, the present authors are not aware 

of any evidence against linearity and hypothetical arguments to the contrary appear 

contrived.  

We can use Shepard’s (1987) law to derive a constraint for similarities, from the 

triangle inequality:  

        (   )          (   )          (   )  

          (   )    (        (   )         (   ))  

          (   )             (   )            (   ) 

which gives:   

   (   )     (   )     (   ) 

 We call this latter inequality the multiplicative triangle inequality (MTI) and it 

indicates that, if we consider the similarity of two stimuli (A,C) to a third one (B), then 
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the product of the similarities to the third one provides a lower bound for the similarity 

of the two initial stimuli. For example, for three objects, table, chair and bed, the lower 

bound for the similarity between a table and a chair is the product of the similarities 

between table and bed and chair and bed. As far as we know, the MTI is a unique 

proposal for how human similarity judgments are constrained, it is the most 

straightforward way to derive a constraint on similarities from the triangle inequality, 

and it has not been empirically investigated before (we further justify this last comment 

shortly below) 

Note, the literature has also considered similarity functions using a Gaussian, 

rather than exponential form. However, according to Nosofsky (1992), the Gaussian 

similarity function applies with “protracted identification training involving asymptotic 

performance with highly confusable stimuli” (p.29). With a Gaussian similarity function, 

we have: 

           (   )
 
   (        (   )         (   ))

 

  

          (   )
 

           (   )
 
          (   )

 
           (   )         (   ) 

which gives: 

   (   )     (   )     (   )    

where      . Thus, with a Gaussian similarity function, we do not reproduce the 

MTI, but a weaker form, since stimuli which violate the exponential MTI may be 

consistent with its Gaussian form. In this work, we employ distinguishable stimuli, 

which are presented only once, and for which only one response is made. Thus, the 

(limited) literature only allows to motivate the exponential form of the MTI and we will 

only consider this henceforth.  

 The MTI clearly has a distinct form compared to the triangle inequality. Note, 

that a violation of the MTI implies a violation the triangle inequality and vice versa. This 
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is easily seen by noting that if          (  )          (  )          (  ) (a 

violation of the triangle inequality) then           (  )         (  )            (  ) 

   (  )     (  )     (  ) (a violation of the MTI). Is there empirical evidence that 

the MTI is violated and is it established how violations of the MTI can arise from 

similarity models? We suggest that the answer is no for both questions. First, Tversky’s 

(1977) anecdotal example for how dissimilarities violate the triangle inequality perhaps 

suggests that the MTI would be violated as well. However, this is not a direct empirical 

demonstration and in fact we are not aware of empirical reports focusing on violations 

of the MTI (that is, violations of the triangle inequality, as translated for similarities; cf. 

Tversky & Gati, 1982). There are some reports in the literature which may look like 

relevant evidence, but this is not the case. For example, Voorspoels et al. (2011), as part 

of a similarity study, reported on violations of the triangle inequality. But, they derived a 

similarity matrix based on feature vectors and it is possible that the situation regarding 

the triangle inequality/ MTI would be different with direct similarity ratings. Also, the 

highest rate of triangle inequality violations was 0.13%, which indicates, if anything, no 

violations.  

 Second, regarding theoretical accounts,  there have been several influential 

similarity proposals, notably from Krumhansl (1978) and Ashby and Perrin (1988), 

which all purport to cover Tversky’s (1977) key findings, including violations of the 

triangle inequality. So, exactly how theoretically pertinent is it to still research the 

triangle inequality (or the MTI)? Is it not the case that, across a research tradition 

spanning several decades, we now have several satisfactory similarity theories?  

Both Krumhansl’s (1978) and Ashby and Perrin’s (1988) theories, for all their 

significant overall contributions to our understanding of similarity, actually provide a 

poor account of violations of the triangle inequality. Krumhansl’s (1978) explanation for 

the triangle inequality is based on the idea that similarity judgments emphasize 

dimensions and features that objects have in common. As a result, stimuli which are far 
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apart in an overall psychological space may be close to each other in a low 

dimensionality subspace, corresponding to the common dimensions between the 

stimuli. For example, Russia and Cuba are similar in the subspace of Communism, which 

corresponds to their common dimension. Krumhansl (1978, p.12) notes “Subspaces 

defined by obvious stimulus dimensions would seem to be likelier projections than 

subspaces not corresponding to such dimensions” and goes on to observe that such a 

scheme may be able to account for similarity relations inconsistent with the triangle 

inequality. But, why should similarity be assessed in a subspace for the triangle 

inequality comparisons and not in other cases? Krumhansl’s model does not provide any 

guidance as to when similarity should be assessed in subspaces or the way to determine 

the relevant subspaces.  

Regarding Ashby and Perrin (1988), they showed how one can manipulate the 

perceptual effects distributions, so that two stimuli can be both dissimilar to each other 

and both similar to a third stimulus, hence violating the triangle inequality. Such a 

situation can be mapped to Tversky’s (1977) Russia-Cuba-Jamaica example. However, 

this argument assumes (see their Figure 4, p.133) asymmetric and inequivalent 

perceptual effects distributions for the three stimuli. This is an unlikely assumption in 

the case of, for example, comparisons between Russia, Cuba, and Jamaica. Why would 

the distributions for such countries have a different shape?  

Note, finally, that Nosofsky’s (1984) influential Generalized Context Model can 

produce violations of the triangle inequality, through manipulations of its attentional 

parameters. But, without an independent way to predict the setting of the attentional 

weights, this is a post hoc explanation. An analogous argument applies to Tversky’s 

(1977) own contrast model, which relies on parameter setting to accommodate 

violations of the metric axioms (though note again that, regarding the triangle inequality 

on similarities, no direct demonstration or model fit was offered by Tversky, 1977). 

There other less well-known accounts, that are potentially relevant. For example, Jaekel 
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et al.’s (2008) proposal of similarity metrics, based on a Hilbert space (a kind of vector 

space) and Shepard’s (1987) generalization law, can produce violations of the triangle 

inequality, though the concurrent coverage of violations of symmetry and minimality is 

unclear (all the other similarity accounts considered here aim for a comprehensive 

coverage of Tversky’s, 1977, key results). Overall, it is a misleading impression that 

violations of the triangle inequality can be straightforwardly explained by dominant 

similarity approaches, which makes it unlikely that they can produce violations of the 

MTI in a satisfactory way too.  

Recently, we proposed a similarity model based on the mathematics of quantum 

theory (QT), specifically so as to account for Tversky’s (1977) key findings as naturally 

as possibly (Pothos et al., 2013). In fact, this similarity approach can naturally cover 

putative violations of the MTI (and the triangle inequality, if one considers 

dissimilarities). That this is the case can be explained fairly directly, without detailed 

modelling. We note that this does not preclude that other similarity approaches may be 

extended to cover putative violations of the MTI in a natural way, though, the 

corresponding detailed argument is beyond this paper.  

QT provides rules for assigning probabilities to events, from quantum 

mechanics, without the physics. Some researchers have been pursuing QT cognitive 

models, especially for behaviors at odds with the more established classical probability 

theory (Aerts & Aerts, 1995; Busemeyer & Bruza, 2011; Pothos & Busemeyer, 2013; 

Haven & Khrennikov, 2013). Regarding similarity, in the QT model, representations are 

subspaces in a multidimensional vector space. A subspace can have a higher or lower 

dimensionality, depending on the extent of knowledge we have for the corresponding 

stimulus or concept. The mental state is modeled by a state vector,   〉. Each subspace is 

associated with a projection operator, which computes the overlap between a vector 

(e.g., the mental state vector) and a subspace. Following from Tversky’s (1977) triangle 

inequality example, if the projection operator for Russia is        , then the overlap 
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between the Russia subspace and the mental state is the vector           〉, whose 

length squared,            〉 
  is the probability that the mental state is about Russia. 

Similarity is defined as           (              )                      〉 
 . 

Regarding the MTI, we have    (   )     (   )     (   )           〉 
  

         〉 
           〉 

 . But, e.g. with one dimensional subspaces (and 

appropriate state vectors, cf. Pothos et al., 2013), this implies            
     

       , where the angles are between the corresponding rays, as indicated. It is clearly 

possible to violate the MTI with the QT similarity model, e.g., with     
 

 
     and 

    
 

 
, which gives       .  

The more important point is that a prediction of MTI violation for Tversky’s 

(1977) triangle inequality example emerges from the QT similarity model, in the sense 

that it follows from the corresponding representations and no further assumptions are 

needed. The representation in Figure 1 was put together on the basis of three, intuitive/ 

reasonable assumptions: the property of Communism should be as unrelated as possible 

to the property of being in the Caribbean; Russia should have as much overlap as 

possible with the Communism property and as little as possible with the in the 

Caribbean one and vice versa for Jamaica; Cuba should have overlap with both the 

Communism and the in the Caribbean properties. These assumptions are indeed the 

ones Tversky (1977) made in arguing for violations of the triangle inequality. Note, this 

is toy representation, since no psychologically plausible representation would involve 

simple rays. Nevertheless it is useful for illustration. Given Figure 1, a violation of the 

MTI is readily predicted, since                                           , which 

implies             
        

        (  )     (  )     (  ). violating the 

MTI (Pothos et al., 2013).  

Our argument that violations of the MTI are natural in the QT model has been 

that, given the Figure 1 (reasonable) representation, then a violation of the MTI just 
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follows. However, it needs be pointed out that perhaps, ideally, empirical similarity data 

would be used to derive a representation (along the lines of that in Figure 1). and then 

examine directly (without further fits) whether the MTI is violated or not. 

Unfortunately, the QT similarity program is not at this point yet. The problem is that we 

do not know how to determine the optimal dimensionality for the subspace 

corresponding to each concept (in the above example they are all rays); this is an 

important objective for future work. 
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Figure 1. A plausible toy representation for Russian, Cuba, Jamaica, relative to the 

properties of Communism and in the Caribbean. Given this representation, a violation of 

the MTI from the QT similarity model readily emerges.  
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Overall, Tversky’s (1977) Jamaica, Cuba, Russia example makes it fairly plausible 

that violations of the MTI will be observed in similarity judgments. However, it is 

impossible to establish this without detailed measurements. If similarity judgments are 

mostly consistent with the MTI, then this would make suspect the QT similarity 

approach and force us to rethink the motivation for the model. To anticipate our results, 

this is not the case.   

2. Participants, materials, and methods  

We tested 431 experimentally naïve participants, recruited through CrowdFlower, for a 

small payment ($1; due to a computer error, the payment was not administered 

correctly and we could only manually pay participants who got in touch with us. The 

payment error manifested itself after the experimental tasks). The sample size was a 

priori set to 400 participants, but the recruitment process (automated through 

CrowdFlower) overshot. Participants were randomly divided between two conditions, 

which employed different stimuli.  

 We constructed two lists of stimulus triplets, one consisting of 19 country 

triplets and another consisting of 21 general stimulus triplets (Appendix 1). The triplets 

were constructed so that two pairs of stimuli were expected to lead to a high similarity 

while the third pair would have low similarity, e.g., for countries, Mexico, USA, Canada 

and for general stimuli Razor, Knife, Fork, but no piloting was carried out, since we were 

not intending detailed modelling. Participants were randomly assigned either to the 

countries or the general stimuli.  

 To assess putative MTI violations for each triplet, we required three similarity 

ratings, so that for the countries stimuli there were overall 57 similarity ratings and for 

the general stimuli 63; in both cases, participants performed the ratings in a random 

order. Each trial involved showing the two stimuli concurrently on a screen, with the 
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prompt to rate their similarity on a 1-9 scale. The stimuli remained on the screen until a 

response was provided. 

 

3. Results  

For each participant we computed the variance of all their similarity judgments and 

removed participants with either very high (e.g., participants using only 1 or 9) or very 

low (participants not using the full scale) variances. Cutoffs for high, low variance were 

10, 0.7 respectively. This procedure retained 191 out of 212 participants for the 

countries stimuli, and 197 out of 219 for the general stimuli. Similarity ratings for the 

remaining participants were then converted via a linear rescaling to a 0 to 1 scale, since, 

recall, similarities in the MTI were derived using Shepard’s (1987) generalization law 

and so bounded by 0,1. 

There are two subtle issues which affect the analysis of results. First, a violation 

of the MTI occurs when    (   )     (   )     (   ). Recall, the empirical 

procedure involved triplets of items, A, B, C, for which we collected empirical data for all 

pairwise similarities. For each triplet, we could identify the lowest similarity and so seek 

putative MTI violations. However, this procedure is inappropriate and would simply 

increase Type I errors, since for each triplet the stimuli A, B, C were specifically selected 

so that one similarity would be low and the other two similarities higher. So, we tested 

for violations of the MTI just in terms of which pairwise similarity was expected to be 

lower than the other two (note, the relationships between the A, B, C stimuli are 

obvious; see Appendix 1). Second, the MTI as a constraint on similarity judgments 

makes most sense when a consistent/ fixed order is employed throughout all relevant 

pairwise comparisons and this is the approach we adopted (with future work we will 

explore the implications from possible violations of symmetry).  
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We first considered the reliability of the data, using a measure of MTI violation 

(since the MTI states that    (   )     (   )     (   ) we computed    (   )  

   (   )     (   ), which will be negative if the MTI is violated). This reliability 

analysis indicates whether participants consistently produce a greater level of violations 

of the MTI for some triplets of stimuli than for others. For the countries and general 

stimuli Cronbach’s alpha was .70 (N=191) and .84 (N=197), respectively. The materials, 

therefore, differed in the degree to which they consistently showed possible violations 

of the MTI (see also Figure 2).  

The null hypothesis is that the MTI is a psychological constraint, so that 

similarity judgments will always be consistent with the MTI, excluding the possibility of 

random variation in ratings. Thus, for each triplet, there is a possibility that a violation 

of the MTI will be observed by chance. To compute this chance probability, we 

considered all possible combinations of 1-9 similarity ratings, for each triplet (converted 

to a 0,1 scale), and counted the percentage of triplets in which an MTI violation was 

observed: this was 25%. This is a conservative estimate of random error, since, given a 

null hypothesis that similarity judgments are always consistent with the MTI, we still 

assume a rate of by chance MTI violation for any triplet of ¼. Note also that in 

considering a triplet,    (   )    (   )    (   ), the three similarities are not 

completely independent. However, when considering correlations between triplet 

similarities, the random error rate is reduced. We can see this by noting that the MTI is 

not violated when the three similarities are equal or when    (   ) is equal to one of 

the other two similarities. Instead, MTI violations occur when there is a mismatch 

between the similarities, with    (   ) small but the other two large. Thus, if anything, 

the effect of taking into account correlations would be to make it easier to reject the null 

hypothesis. 

 We conducted an item-based analysis, testing that the proportion of MTI 

violations for a given triplet was higher than the 25% error rate expected by chance 
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(participants were treated as a random effect). Note, there are no expectations as to 

whether the MTI is consistently violated in a set of items. Instead, the null hypothesis is 

that the MTI is a psychological constraint and rejecting the null hypothesis involves 

existence proof that there are some items for which the MTI is violated. The MTI 

violation count for each triplet was based on when    (   )     (   )     (   )  

 , where A,C was the pair of stimuli assumed a priori to be most similar. Using a 

dependent variable based on binary counts (for each triplet, for each participant, 

checking whether the MTI was violated or not) is justified because the distribution of 

   (   )     (   )     (   ) values was not normal (this is because when it is in 

principle possible to violate the MTI; most violations are observed for small positive 

values of this quantity).  

 

A 
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B 

  

Figure 2. Diagrams (A: countries stimuli; B general stimuli) indicating the distribution of 

violations of the MTI, across participant responses. Each data point means that the 

corresponding combination of Sim(A,B), Sim(B,C), Sim(A,C), for which an MTI violation 

occurs, was observed at least twice (we suppressed points indicating a single violation, 

to unclutter the diagrams). Larger circles and color from blue to red both indicate 

greater frequencies. 

 

Using chi-squared tests with alpha set at .05, we observed 4/19 significant 

violations for the countries and 10/21 for the general stimuli (highest p-value amongst 

the significant violations .035, see Appendix 1). The significance level for rejecting the 

null hypothesis for each triplet was set to .05, so by chance we still expect 1/20 MTI 

violations for each stimulus category. The proportion 1/20 was significantly different 

from 4/19 (p=.013), and even more so from 10/21 (p<.0005; in both cases using 

Fisher’s Exact Probability Test on one degree of freedom).  

One possible issue with the analysis above is that some ratings of the similarity 

between stimuli make an MTI violation impossible. For example, if a participant rates 
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the similarity between A and B as 1 out of 9, this implies    (   )   , and a violation 

of the MTI is now impossible whatever the other two similarities. To investigate this we 

reanalyzed the data, ignoring, for a given triplet of stimuli, responses of 1 for the A,B or 

B,C similarities (which would lead to a converted similarity of 0, making an MTI 

violation impossible). This approach changes the frequency of observed MTI violations, 

reduces the sample size for each triplet of  stimuli (because of the eliminated responses; 

the range of responses for each triplet is now 64-179), and increases the expected rate 

of obtaining MTI violations by chance from 25% to 33%, for a given triplet. For the 

general stimuli, the rate of violations (14/21) was still significantly higher than the 

chance 1/20 rate (p<.0005) but for the countries stimuli (3/19) it was now not 

significantly different from the chance rate ( p=.067). This gives us confidence that an 

overall conclusion of MTI violations, in some cases, is independent of the precise way we 

analyze the data. 

 

4. Discussion and conclusions 

Tversky’s (1977) seminal influence was that he started a research programme into the 

algebraic foundations of similarity judgments and, indeed, most major subsequent 

similarity proposals are often tested against his key empirical conclusions regarding 

violations of the metric axioms. However, we showed that implications for similarity 

from the triangle inequality have not been worked out and require a commitment to a 

function linking distance and similarity. Another seminal influence in psychology, 

Shepard’s (1987) generalization law, was used for this purpose. We thus derived the 

MTI and, in one experiment, provided an existence proof that the MTI is sometimes 

violated in similarity judgments. Note, our results offer no guidance as to what might be 

the proportion of MTI violations, if one were to select a triplet of items randomly, that is, 

we currently cannot provide guidance into the manipulations which may make 
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violations of the MTI more or less likely (contrast with e.g. Aguilar and Medin, 1999, in 

relation to symmetry)  All the stimuli were selected with an expectation that violations 

of the MTI may be ‘likely’ and so, if one were to cast a critical eye on our results, one 

could say that the evidence for the preponderance of MTI violations in human similarity 

judgments is not strong. However, as Tversky (1977) intended in his original discussion, 

our results do provide clear existence proof that the MTI can be violated sometimes.  

 A researcher insisting on conceptualizing similarity as a function of distance may 

explore alternative functions linking similarity and distance, such as a Gaussian 

function. However, violations of the exponential MTI version, for stimuli as the ones 

employed in this study will still need to be explained or, alternatively, a Gaussian 

similarity function will need to be motivated more strongly for all kinds of stimuli. This 

latter possibility is inconsistent with the available evidence (Nosofsky, 1992), though 

note the issue of exponential vs. Gaussian similarity functions has not attracted much 

attention recently (indeed some researchers use a free parameter corresponding to the 

exact form of the similarity function). An alternative approach might be to adopt 

Nosofsky’s (1984, 1992) formalization, which offers parametric flexibility to 

accommodate both MTI violations and violations of the other metric axioms (such as 

symmetry, using a directionality parameter). While there is no doubt that his theory is 

one of the most influential categorization theories, it is arguable as to whether similarity 

researchers will be satisfied with this approach, unless parametric changes can be 

motivated independently; currently this is not possible.  

Our motivation for pursuing this research was exactly because of its potential to 

provide results which are particularly easy to accommodate within the QT similarity 

model (Pothos et al., 2013). We interpret violations of the MTI inequality as additional 

support for the QT similarity model, while of course acknowledging that this is a vast 

research topic that cannot be settled by any single study. In brief, the psychological 

explanation for how violations of the MTI arise from the QT similarity model relates 
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generally to the contextual way in which probabilities are assessed in QT. Different 

regions of psychological space imply different properties or contexts for assessing 

similarity. For example, regarding the Figure 1 representation, the Communism region 

is the part of psychological space where countries consistent with this property cluster. 

So, two countries which are close to each other in the Communism region of 

psychological space can be said to be similar to each because they are both consistent 

with the property of Communism, and analogously with the property in the Caribbean 

etc. Regarding the problem at hand, because of the geometry of how such different 

regions are arranged, one can easily construct patterns that violate the MTI inequality. It 

is exactly this contextuality that is characteristic of the QT similarity model (and QT 

models in general) that provides a natural interpretation of this and related similarity 

findings (such as the diagnosticity effect, which Tversky, 1977, also reported). Note, as 

the number of possible stimuli increases, it is likely that a pattern of similarity relations 

of a certain complexity will constraint the minimum dimensionality of the 

corresponding QT space; this is an interesting topic for future work.  

 In closing, understanding the formal properties of similarity judgments is a key 

objective not only in cognitive science (since similarity is often the building block of 

cognitive models; Goldstone & Son, 2005; Pothos, 2005; Sloman & Rips, 1998; see also 

Gärdenfors, 2000), but beyond too. For example, in information retrieval, most models 

are based on vector spaces (e.g., Salton et al., 1975), and the corresponding ranking 

algorithms are either obviously consistent with the metric axioms or a detailed 

assessment is not made (e.g., Manning et al., 2009; Robertson & Spärck Jones, 1976). 

Similar considerations apply to e.g. latent semantic analysis (e.g., Dumais, 2004). In 

presenting these results, we hope to provide an important technical modification in our 

understanding of violations of the triangle inequality and, in addition, a further source of 

evidence concerning the QT similarity model.  
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Appendix 1. The materials used in the two conditions of the experiment. After each 

triplet, we show the number of participants violating the MTI (in the countries case 191 

participants overall and in the general stimuli case 197 participants).  We also give the p 

value computed from a   test on one degree of freedom, assuming a chance violation 

rate per participant of 25%. 

 

Country triplets:  

Country A Country B Country C 
% of Ps violating MTI p Value (one-

tailed) 

Mexico USA Canada 39.3 <.001 

Jamaica Cuba Russia 41.4 <.001 

India Pakistan Iran 49.7 <.001 

Albania Greece Italy 28.3 .29 

The 

Netherlands 
Germany Poland 

22.5 - 

Norway Latvia Slovenia 12.6 - 

Portugal Brazil Uruguay 27.2 .48 

Australia UK Zimbabwe 7.9 - 

Spain France Switzerland 27.2 .48 

North Korea China Japan 32.5 .017 

Saudi Arabia Nigeria Ghana 20.4 - 

Turkey Cyprus Malta 24.1 - 

Luxemburg 
Cayman 

Islands 

Dominican 

Republic 

15.7 - 

Malaysia Singapore Gibraltar 16.8 - 
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Austria Hungary Romania 17.3 - 

Ireland Madagascar Mozambique 16.8 - 

Nepal Mongolia Greenland 10.5 - 

Dubai Panama Colombia 16.2 - 

Croatia Serbia Bulgaria 13.6 - 

 

Triplets of general stimuli:  

Item A Item B Item C % of Ps violating MTI p Value (one-tailed) 

Butcher               Surgeon GP 31.5 .035 

Razor              Knife     Fork   59.4 <.001 

Cheetah             Bullet  Dart    24.9 - 

Skyscraper         Giraffe    Zebra 44.2 <.001 

Fossil                 Skeleton    Muscle 48.7 <.001 

Sheet              Plain     Mountain    18.8 - 

Fox                  Lawyer    Teacher 17.8 - 

Snail                       Tortoise Hamster 16.8 - 

Mouse           Cockroach  Locust    19.8 - 

Feather              Fur   Bear 54.3 <.001 

Oven Tropics   Ocean 46.2 <.001 

Pig  Dirt Stain   33.5 .006 

Porcupine  Cactus Palm-Tree 45.7 <.001 

Book  Magazine TV-show 17.8 - 

Ice  Alaska  Hawaii   46.7 <.001 

Mule  Negotiator Counsellor 7.6 - 

Butterfly  Blue-Bird  Crow   24.9 - 
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Ant  
Poppy-

seed 
Mustard 

21.3 - 

Doughnut  
Wedding-

ring   
Necklace 

32.5 .015 

Skunk  Pig-sty Chicken-shed 28.9 .21 

Zebra  Wasp Fly 13.7 - 

 

 


