

City, University of London Institutional Repository

Citation: Idrees, F., Rajarajan, M., Conti, M., Chen, T. & Rahulamathavan, Y. (2017).

PIndroid: A novel Android malware detection system using ensemble learning methods.
Computers and Security, 68, pp. 36-46. doi: 10.1016/j.cose.2017.03.011

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17316/

Link to published version: https://doi.org/10.1016/j.cose.2017.03.011

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

PIndroid: A novel Android malware detection

system using ensemble learning methods

Fauzia Idreesa,∗, Muttukrishnan Rajarajana, Mauro Contib, Thomas M.
Chena, Yogachandran Rahulamathavanc

aSchool of Mathematics & Engineering, City University London, EC1V 0HB, UK
bDepartment of Mathematics, University of Padua, 35122 Padova, Italy
cInstitute for Digital Technologies, Loughborough University London, UK

Abstract

The extensive use of smartphones has been a major driving force be-
hind a drastic increase of malware attacks. Covert techniques used by the
malware make them hard to detect with signature based methods. In this pa-
per, we present PIndroid—a novel Permissions and Intents based framework
for identifying Android malware apps. To the best of our knowledge, PIn-
droid is the first solution that uses a combination of permissions and intents
supplemented with Ensemble methods for accurate malware detection. The
proposed approach, when applied to 1,745 real world applications, provides
99.8% accuracy (which is best reported to date). Empirical results suggest
that the proposed framework is effective in detection of malware apps.

Keywords: Malware classification, Permissions, Intents, Ensemble
methods, Colluding applications

1. Introduction

In past few years, smartphones have transformed from simple mobile
phones into mobile computers, making them suitable for personal and busi-
ness activities. Smartphones have become the major target for mobile mal-
ware due to increased reliance on them for daily activities such as storing
private data, financial transactions, emailing, socializing and online shop-
ping.

∗Corresponding Author
Email address: Fauzia.Idrees.1@city.ac.uk (Fauzia Idrees)

Preprint submitted to Elsevier March 21, 2017

Android being the most widely used platform for smartphones is under
constant attacks. Existing anti-virus solutions are not capable of eliminat-
ing the exponentially increasing malware threats due to their reliance on
signature-based detection. Moreover, resource constrained smartphones are
unsuited for continuous malware scanning. There is a need to have an efficient
method capable of overcoming the current challenges of outdated signatures,
code obfuscation and resource constraints.

Permissions are used to guard against misuse of system resources and
user data, however, some of Android's features like intents can break this
shield. A lot of research has been done on permissions; however, intent is
an under investigated area (in malware detection), providing opportunity for
the evolving malware threats.

We propose a malware detection approach which classifies apps against
certain combinations of permissions and intents which are unique to malware
apps. These combinations form an efficient detection pattern to differenti-
ate between malware and benign apps with a granularity to classify malware
families. We evaluate the efficacy of proposed approach by applying machine
learning algorithms. A comparative study of classifiers is carried out against
different performance measures to select the most accurate and efficient clas-
sifier. We apply the ensemble methods to optimize the results.

Contributions. The main contributions presented in this paper are:

1. To the best of our knowledge, this is the first work that combines in-
tents and permissions for collaborative malware detection. This work
combines permissions and intents of applications to generate a dis-
tinguishing matrix that is used for efficient and accurate detection of
malware and its associated families. Our method is capable of achieving
99% detection accuracy by combining permissions and intents.

2. We propose a new approach using ensemble methods to optimize the
classification results. Our results show a detection accuracy of 99.8%
by connecting multiple classifiers laterally with a meta-classifier.

3. We apply statistical significance test to investigate the correlation be-
tween permissions and intents. We found statistical evidence of a strong
correlation between permissions and intents which could be exploited
to detect malware applications.

Organization. Section 2 discusses the related work; Section 3 provides an
overview of Android permissions and intents and Section 4 discusses about

2

the analysis carried out on permissions and intents. Section 5 presents the
proposed framework; Section 6 describes the model evaluation, experimental
settings, and results. Section 7 concludes the paper.

2. Related Work

There is a plethora of research work on Android security covering vul-
nerability assessments, malware analysis and detection. Faruki et al (2015)
present an overview on the current malware trends. Malware analysis lever-
age static, dynamic and hybrid methods. In static malware analysis, prop-
erties of apps are extracted by analysing different static features without
running the code. In dynamic analysis, the runtime profiles of apps are gen-
erated by monitoring and collecting the memory consumption, CPU usage,
battery usage and network traffic statistics (Shabtai et al., 2012) and (Crow-
droid, 2011). Here, we provide an overview of related works in this area.

2.1. Static malware analysis on Android platform

Different static features such as permissions, API calls, Inter-process com-
munication (IPC), code semantics, intents, hardware, components and devel-
oper ID have been used for malware detection. However, permissions, API
calls, and IPC have attracted more attention from the researchers. There
are a few works in which different features have been combined for mal-
ware detection. Here, we discuss the relevant works which use permissions,
ICC/intents or hybrid features.

2.1.1. Permission analysis

Permission is the most investigated feature in malware detection. Bar-
rera et al. (2010) examined 1,100 apps for permission usage and found the
high frequency of certain permissions. Peng et al. (2012) calculated the risk
scores of apps by analysing the requested permissions. Kirin (2009) identified
dangerous combinations of permissions and developed the security rules to
identify malicious apps. Vidas and Christin (2014) identified the unnecessary
permission requests by the apps. VetDroid (2013) examined mapping be-
tween API calls and permissions for behaviour profiling. Sarma et al. (2012)
calculated risks and benefits of requested permissions to discern the adverse
affects of app. Stowaway (2011) is a tool to check the over-privilege of apps
by mapping requested permissions with APIs. PScout (2012) is another tool
which extracts permissions from the source code and maps them with URIs.

3

Most of these methods aim to provide help to app developers and security
analysts. These methods may be used as add-ons with malware detection
solutions.

2.1.2. Inter-Component Communication / Intents analysis

ICC and intents have not been explored the way permissions have been
investigated. Most of the existing ICC based studies focus on finding the
ICC related vulnerabilities. Enck et al. (2009) investigated the IPC frame-
work and interaction of system components. ComDroid (2011) detects the
ICC related vulnerabilities. Kantola et al. (2012) suggested improvement in
ComDroid by segregating the communication messages into inter and intra-
applications groups so that the risk of inter-application attacks may be re-
duced. Maji et al. (2012) characterized Android components and their inter-
action. They investigated risks associated with misconfigured intents. CHEX
(2012) examined vulnerable public component interfaces of apps. Avancini
et al. (2013) generated test scenarios to demonstrate the ICC vulnerabili-
ties. DroidSafe (2015) performs information flow analysis to investigate the
communication exploits. Gallingani et al. (2015) investigated intents related
vulnerabilities and demonstrated how they may be exploited to insert the
malicious data. Their experiments found 29 out of a total of 64 investigated
apps as vulnerable to intent related attacks. All of these works focus on find-
ing communication vulnerabilities, and none of them used ICC and intents
for malware detection.

2.1.3. Malware analysis with hybrid features

In this category, different features are combined for effective malware
detection. Most relevant works are: Drebin (2014), DroidMat (2012) and
Marvin (2015) as they use permissions and intents in addition to other fea-
tures for malware classification. Drebin (2014) examines the manifest file
and code of apps to check the permissions, API calls, hardware resources,
app components, filtered intents and network addresses. It uses Support Vec-
tor Machines (SVM) for malware classification. DroidMat (2012) analyses
features extracted from the manifest and smali files of disassembled codes.
These features include permissions, components, intent messages and API
calls. It applies K-means algorithm and Singular Value Decomposition (SVD)
method for clustering and low-rank approximations respectively. They anal-
ysed a total of 1738 apps comprising of 1500 benign and 238 malware samples.
Marvin (2015) uses both the off-device static and dynamic analyses meth-

4

ods for malware detection. It uses around 490,000 features extracted from
the manifest files and disassembled codes. Its high-dimensional feature set
includes permissions, intents, API calls, network statistics, components, file
operations, phone events, app developer IDs, package serial numbers and
bundles of other features. It uses linear classifier to detect malware apps and
assigns malicious score on a scale of 0 to 10, with 0 being benign and 10
being malicious.

3. Background on Permissions and Intents

Android uses permissions and intents to protect user data and device
resources. Android has 117 permissions and 227 intents in version 4.4, API
level 19 - an API level is an integer value which identifies the application's
compatibility with the Android versions. The earliest Android version: API
level 1, contains only 76 permissions and 124 intents. Google adds new
permissions and intents into every upcoming versions. This trend is depicted
in Table 1, where monotonic increment in permission and intents against the
API levels is obvious. The increased number of permissions and intents has
not only added new features but also opened the doors for malware. In this
section, we present a high-level overview of Android permissions and intents.

3.1. Permissions

Permissions play a pivotal role in Android security. It controls access to
the sensitive system resources, user data, and device functionalities. Permis-
sions invoke API calls related to different functionalities. A complete set of
permissions is declared in app’s manifest file and at the onset of installation.
User is prompted to approve the complete set of requested permissions as
a pre-requisite of app installation. There is no option to choose among the
requested set of permissions. Once the access is granted, the permissions
remain valid till the time the app is either un-installed or updated. User
can only check the permissions of apps but cannot delete or change them.
A feature to change the permissions was added in Android 4.2 but was later
removed through an update to avoid app crash if user disables the required
permission(s).

Android permissions are categorized into four protection levels: Normal,
Dangerous, Signature and Signature or System. Android has an access mech-
anism to check the permissions of apps and determine if they are authorized
to access the protected resources. Normal permissions are automatically

5

granted to apps without user's intervention as these are not considered harm-
ful. Dangerous permissions need user's approval due to associated risk of
privacy leaks and access to sensitive API calls. Signature permissions are
granted only to the apps, signed with the same certificate which defines the
permission. Signature or system permissions are granted to either the pre-
installed apps or those signed with the device manufacturer certificate. These
permissions are unobtainable by third party apps.

3.2. Intents

Intent is the basic communication mechanism used to exchange the inter-
and intra-app messages. An intent conveys the intention of the app to per-
form some action. It specifies the label for a component, its category and
action to be performed.

Intents are of two types: Explicit and Implicit. Explicit intent specifies
the component exclusively by the class name. These are generally used by
apps to start their own components. Implicit intent does not specify the
component by name. It states the required action only; system selects the
app that has the component to handle the stated action. With explicit
intent, the system launches the specified component immediately while with
implicit intents, system looks for the appropriate component by comparing
the intent filters. If there is any match between the intent and intent filter,
the component of that app is launched. In case of multiple matching intent
filters, users are sent with a dialogue box to select the app Yang et al. (2014).

Intents facilitate apps with same user ID to use each other’s functionalities
without separately declaring the permissions for them. This helps apps to
gain extra privileges by augmenting the permissions.

4. Analysis of Permissions and Intents

A total of 1300 malware and 445 benign apps are analysed which are col-
lected from well known sources such as Google Playstore1, Contagiodump2,

1Google Play, Web: https://play.google.com/store?hl=en
2Contagio Mobile: mobile malware mini dump, Web:

http://contagiominidump.blogspot.co.uk/

6

Genome3, Virus Total4, theZoo5, MalShare6, and VirusShare7. Table 2 de-
picts the details of malware samples collected from each source. These sources
contain the datasets of already known malware samples. Maliciousness of
these samples is also confirmed with VirusTotal service integrated with ten
detection engines. We labelled the app as malware, if it was detected as
malicious at least by two of the engines. Cryptographic hashes (SHA-1) of
files were also checked with a tool: HashTab8 to ascertain the uniqueness of
samples. Details of known malware families, their malicious activities and
number of analysed apps from each families are shown in Table 3.

To validate our method, we also downloaded 445 benign apps from known
app stores such as Google Play, AppBrain9, F-Droid10, Getjar11, Aptoid12,
and Mobango13. The benign apps are selected from different categories such
as social, news, entertainment, finance, education, games, sports, music, and
audio, telephony, messaging, shopping, banking, and weather to learn the
normal behaviour of benign apps. Table 4 depicts the details of categories
of benign apps, number of analysed apps from each category and the corre-
sponding app stores.

Our investigation of Android security framework and analysis of benign
and malware samples resulted in interesting finding: identification of key
permissions and intents used for malware attacks and propagation. We also
establish that certain permissions and intents which are frequently used by
malware apps are seldom used by benign apps. Malware families use a par-
ticular set of permissions and intents targeting specific capabilities and re-
sources. Almost all the malware samples belonging to that particular family
use a unique set of permissions and intents.

3Android Malware Genome Project, Web: http://www.malgenomeproject.org/
4VirusTotal for Android, Web: https://www.virustotal.com/en/documentation/mobile-

applications/
5theZoo aka Malware DB, Web: http://ytisf.github.io/theZoo/
6MalShare project, Web: http://malshare.com/about.php
7Web: https://virusshare.com/
8HashTab, Web: http://implbits.com/products/hashtab/
9Web: http://www.appbrain.com/

10Web: https://f-droid.org/
11Web: http://www.getjar.com/
12Web: https://www.aptoide.com/
13Web: http://www.mobango.com/

7

4.1. Permission usage by Applications

In this section, we present our findings on how the malware applications
use permissions differently from benign apps. We also discuss how this dis-
tinct usage pattern may be exploited to detect malware apps. There are
58 permissions out of 145 were frequently used by the malware and benign
apps, whereas remaining 87 are rarely used. In order to visualize the usage
pattern of permissions in malware and benign apps, we chose the top 24 per-
missions and plotted there usage percentages among the malware and benign
applications in Fig. 1. Although, some of the permissions are used by both
the malware and benign apps, there remain a noticeable distinguishing usage
pattern as shown in Fig. 1. Based on the usage pattern of permissions, we
split the permissions into two groups: Normal permissions and Dangerous
permissions.

The dangerous permissions are those permissions that are frequently used
by malware apps and have more risk to access and exploit different sensitive
resources and private data. Examples of frequently used permissions by
benign apps are: Full Network access, Create/Add/remove/user accounts,
Delete/Modify USB contents and Read/write/modify contacts. Malware
apps usually use permissions: Read phone status/ID, Access Network state,
Send SMS/MMS, Receive boot complete, Receive SMS, Delete/Modify USB
contents, and your location. There are a few malware-friendly permissions,
which are seldom used by the benign ones, e.g., Access Network state, Re-
ceive boot complete, Restart packages, Mount/Unmount File system, Set
wallpapers, Read/write history bookmarks of browser and Write APN set-
tings.

The most popular benign apps such as YouTube, Skype and Viber tend
to use on average 8 to 16 permissions while this number goes down to 3 to
6 for the least popular apps. The same trend can be observed in malware
apps. We categorize malware apps into the most harmful and the least
harmful apps depending on the ease of access to sensitive resources and data
regarding used permissions and intents. The most harmful malicious apps are
those who are accessing more sensitive resources and data and may provide
monetary damages to the users like sending premium rate SMSs, making
calls, and accessing bank accounts details. The least dangerous malicious
apps are those who can access some useful data and resources, but they
may not cause financial or serious damage to the user or device. The most
harmful malware apps use more than 16 permissions and least harmful use 3

8

to 6 permissions. Some permissions used by the most and least popular apps
as well as the most and least harmful apps are shown in Fig. 2.

4.2. Intent usage by Applications

There are 35 intents out of 227 in Android version 4.4, which are fre-
quently used by apps. The most popular benign apps usually use on average
1 to 4 intents and the least popular use 1 to 2. Similarly, the most harmful
apps use a minimum of 5 and maximum of 8. Least harmful malware apps use
at least 2 or 3 intents. Fig. 3 shows the overall trend of intents usage popular
and harmful apps. Benign apps use only ACTION MAIN, CATEGORY LAUNCHER

and CATEGORY DEFAULT intents whereas malware apps usually use more in-
tents to gain extra capabilities. Mostly malware apps use BOOT COMPLETED,
ACTION CALL, ACTION BATTERY LOW, SMS RECEIVE and NEW OUTGOING CALL.

Malware apps are seen to use a few of the normal permissions and intents
while they use a significant number of dangerous permissions and intents.
Benign apps show a similar trend of using only normal permissions and in-
tents. These findings suggest that permissions and intents play a central role
in accessing, controlling and sharing of sensitive data and resources. These
features may be exploited to detect and mitigate the malicious attacks.

4.3. Correlation between permissions and intents

Correlation is a technique to measure the strength of association between
two variables. Different correlation coefficient methods are used to measure
degree of correlation. The most common is the Pearson correlation coefficient
(r). It is calculated by dividing the covariance of two variables with product
of their standard deviations. Pearson’s correlation coefficient has a value
between -1 (perfect negative correlation) and 1 (perfect positive correlation).

Suppose we have n malware applications, each application is using X
dangerous permissions written as xi = {x1, x2,..., xn} and Y dangerous in-
tents such that yi = {y1, y2,..., yn}, then the Pearson correlation coefficient
(r) can be calculated using equation (1).

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

xi
2 − (

∑
xi)2

√
n
∑

yi2 − (
∑

yi)2
. (1)

Two sets of malware apps are used to measure the strength of correlation
between dangerous permissions and dangerous intents. One set consists of
200 malware apps which are randomly selected from different malware fam-
ilies and the other consists of 20 malware apps from same malware family.

9

For the first set, the correlation coefficient (r) equals 0.74, indicating a
strong relationship between dangerous permissions and dangerous intents for
the significance level: p < 0.001. For the other set, the correlation coefficient
(r) equals to 0.94, indicating a very strong correlation between dangerous
permissions and intents in the case of samples belonging to the same mal-
ware family. The strong correlation between the dangerous permissions and
intents supports our conjecture about the association between permissions
and intents to carry out the malicious activity.

The Pearson correlation coefficients of 0.74 for different malware families
and 0.94 for same malware family confirm the positive correlation between
permissions and intents. However, we need to perform a significance test to
decide whether or not there is any evidence which supports or contradicts
the presence of a linear correlation in the whole population of malware apps.
We use the hypothesis testing, for which we test the null hypothesis, H0, and
alternate hypothesis, H1 as

H0 : malware and benign applications use

the same set of permissions and intents,

H1 : malware and benign applications don′t use

the same set of permissions and intents.

For hypothesis testing, we use the Mann-Whitney U−test with the p-
value of 0.05. We calculate U1 and U2 values for both the permissions and
intents respectively using equations 2 and 3, respectively. In following equa-
tions, R1 and R2 are the sums of ranks for permissions and intents, respec-
tively, and n1 and n2 are the sample sizes for both the variables.

U1 = R1 −
n1(n1 + 1)

2
; (2)

U2 = R2 −
n2(n2 + 1)

2
. (3)

We take the smallest of U and compare it with the critical value obtained
from the Mann-Whitney critical values table Mann et al. (1947). We use
Mann-Whitney critical values table for a small number of malware samples
and Z-test for large samples of malware apps due to limitations of the number
of entries in the Mann-Whitney critical value table. With samples from same

10

malware family (n1= 20, n2 = 19, p=0.05, critical value = 119), the smallest
U value obtained is 87 which is less than the critical value of 119, we would
reject the null hypothesis for the malware apps belonging to same family. For
a large sample of apps belonging to different malware families (n1 = n2 = 200,
p=0.05, Z-critical value = 1.64), we calculate z-score with Z test. We obtain
z-score of 13.0594 which is greater than Z-critical value hence suggesting the
rejection of null hypothesis H0. We have very strong statistical evidence to
accept the alternate hypothesis H1, which suggests that the malware and
benign apps use a different set of permissions and intents. This conjecture
is further verified with normal distribution testing and classification analysis
using different machine learning algorithms.

The normal distribution is important for statistical inference point of view
Cohen et al. (1992). We use box plots to test whether the sample distribution
is normal. The box plots of permissions and intents related to benign and
malware apps are shown in Figures 4 and 5, respectively. The distribution
appears to be approximately normal, with the upper whiskers longer than
the Q1 to median distance and the box containing middle 50% of the data
almost tightly grouped in the center of distribution.

5. Malware Classification

We describe how the data is represented and then present a detailed
description of our proposed system.

5.1. Data Representation

Our dataset consists of n applications from K classes with m features.
Let C = {1, 2,..., K} are the set of indices of the classes, A = {1, 2,..., n}
the set of indices of the applications and F = {1, 2,.., m} the set of indices
of the features. Also, let ak, k ∈ C and ak ⊆ A be the set of indices of
applications belonging to class k. Additionally, let fj, j ∈ F be the domain
of the jth feature. Let ith application, such that i ∈ A is represented as
(ci, fi) = (ci, fi,1, fi,2,..., fi,m) ∈ C x F1 x...x Fm, where ci is the class of
application i such that C ∈ {malware , normal} and (fi,1, fi,2,..., fi,m) is
the number of permissions and intents used by ith applications, and fi,m ∈
{0,1} which indicates if the ith application uses mth feature. We compute
the Information Gain (IG) of each feature xm against the class variable as

11

follows:

IG(Fi, C) =
∑

f∈(0,1)
∑

c∈(mal,nor) P (Fi = f ;C = c).log2

(
P (Fi=f ;C=c

P (Fi=f)P (C=c)

)
; (4)

Given that

P (Fi = f ;C = c) = P (Fi = f).P (C = c|Fi = f), (5)

Equation (4) can be simplified as

IG(Fi, C) =
∑

f∈(0,1)
∑

c∈(mal,nor) P (Fi = f).P (C = c|Fi = f).log2

(
P (C=c|Fi=f)

P (C=c)

)
. (6)

Using equation (6), the features with highest IG are selected to train the
model.

5.2. Probability Estimation

The probability of an application belonging to a particular class is calcu-
lated using Bayesian theorem:

P (C = c|F = f) =
P (C = c)

∏m
i=1 P (Fi = fi|C = c)∑

j∈(0,1) P (C = cj)
∏m

i=1 P (Fi = fi|C = cj)
; (7)

An app is classified as malware if

P (C = malware|F = f) > P (C = normal|F = f). (8)

5.3. System Description

The proposed system is shown in Fig. 6. It consists of three main stages:
Feature extraction, Pre-processing, and Classification. The feature extrac-
tion stage analyses the manifest file and extracts the permissions and intents.
This stage comprises of two monitors which are used to measure: (i) type
of permissions (normal or dangerous) and their numbers and, (ii) type of
intents (normal or dangerous) and their number. Permissions and intents
are labelled into four groups: normal permissions, normal intents, danger-
ous permissions and dangerous intents. Dangerous permissions and intents
are frequently used by malware apps whilst normal permissions and intents
are frequently used by benign apps.

12

The pre-processor stage processes the extracted data to generate the vec-
tor dataset in an ARFF file format. The generated dataset is randomized
using unsupervised instance randomization filter for better accuracy and sent
to the classifier stage. The classifier stage takes each monitored vector as in-
put and classifies the data set using trained classifier. Six machine learning
classifiers: Nave Bayesian, Decision Tree, Decision Table, Random Forest,
Sequential Minimal Optimization and Multi Lateral Perceptron (MLP) are
used for classification. Their performances are also compared in terms of
different performance metrics. Finally, the reporter stage generates notifica-
tions for the user based on the classifier results.

6. Evaluation

6.1. Experimental Setting

The experiments are carried out on an Intel Core i7-3520 M CPU @
2.90 GHz, 2901 MHz machine with 8GB RAM. Each of the classifiers are
evaluated with two methods: 10-fold cross-validation and 80% split. In 10-
fold cross-validation, the data set is divided into ten subsets, and the holdout
method is repeated ten times. In each round, one subset is taken as test set
and the remaining nine subsets are combined to form the training set. Errors
of all the ten rounds are averaged out to obtain a final output. This method
ensures that each instance is included at least once in the test set and nine
times in the training set. The final model is the average of all ten iterations.
The second method we use is 80% split, which uses 80:20 ratio (80% of a
dataset for training and 20% for testing). This method is efficient but less
accurate than the 10-fold method. In this section, we only report the results
from 10-fold method.

6.2. Performance Comparison of different Classifiers

Performance of six classifiers is compared in terms of True Positive Rate
(TPR), False Positive Rate (FPR), accuracy, F1-score and Area Under Curve
(AUC). These metrics are calculated using the confusion matrix as shown in
Table 5. Table 5 is generated from the four measures: True Positive (TP)
—the number of correctly classified instances that belong to the class, True
Negative (TN) —the number of correctly classified class instances that do not
belong to the class, False Positive (FP) —instances which were incorrectly
classified as belonging to the class and False Negative (FN) —instances which
were not classified as class instances.

13

TPR =
TP

TP + FN
; (9)

FPR =
TP + TN

TP + FN + FP + TN
; (10)

Accuracy =
TP + TN

TP + FN + FP + TN
; (11)

F1− Score = 2.
P recision . Recall

Precision + Recall
; (12)

AUC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (13)

Table 6 lists the TPR, FPR, Precision, F1-score, recall, AUC and model
build-up time. All the analysed classifiers perform well with an accuracy of
0.90 or more. However, MLP and Decision table dominate with an accuracy
of 0.99. In terms of time, Nave Bayesian, Decision Tree and Decision Table
are more efficient than MLP and Random forest. Overall, Decision Table
gives the best results.

6.3. Optimization with Ensemble methods

Ensemble methods combine results from multiple machine learning algo-
rithms to improve the predictive performance Dietterich et al. (2000). It is
not necessary that the performance of ensemble learning be better than the
individual classifiers. The stacked performance depends on the selection of
classifiers and methods used to combine the output predictions Saso et al.
(2004).

We apply three ensemble methods: Boosting, bagging, and stacking to
further improve the detection accuracy. Stacking gives the better results
as compared to boosting and bagging. In stacking, multiple algorithms are
trained individually with the training dataset and the outputs from the clas-
sifiers are sent to a meta-classifier which is trained to combine the results to
makes a final prediction. Decision Table, MLP, and Decision Tree classifiers
are applied in first stage and their results are combined using three schemes:
an average of probabilities, a product of probabilities and majority voting.

Average of probabilities. It takes an average of the probabilities of each class
from the individual classifiers (k=3 for three classifiers) and compares which

14

class has greater probability such that,

Malware, ifPavg

3∑
k=1

Classmalware < Pavg

3∑
k=1

Classbenign; (14)

Benign, ifPavg

3∑
k=1

Classmalware > Pavg

3∑
k=1

Classbenign. (15)

Product of probabilities. Product of probabilities is taken from each of the
classifiers and highest probability of class is assigned as:

Malware, ifPavg

3∏
k=1

Classmalware < Pavg

3∏
k=1

Classbenign; (16)

Benign, ifPavg

3∏
k=1

Classmalware > Pavg

3∏
k=1

Classbenign. (17)

Majority vote. The final result is decided based on the results obtained from
the majority of the results.

Results of ensemble classification are depicted in Table 7. The product
of probabilities method yields the best results.

6.4. Comparison with related approaches

We compare the performance of PIndroid against related approaches
which use some of the similar features and analyzing the samples acquired
from same sources: Google Playstore, Genome and Contagiodump. These
are known repositories of malware and benign apps and the performance of
most of the state of the art malware detection approaches are tested on these
samples with a difference of number of samples tested. The most relevant
approaches are Drebin (2014), DroidMat (2012) and Marvin (2015). Drebin
(2014) examines the manifest file and decomposed code of app to check the
permissions, API calls, hardware resources, app components, filtered intents
and network addresses. It uses support vector machines (SVM) for malware

15

classification. Although, they used the largest dataset of 129013 apps, it con-
sists only 4.5% of malware samples thereby may not be able to learn malware
patterns. It used many features opposed to our work which uses only two
most effective features. It achieved 94% malware detection rate with 1% false
positive rate whereas our approach achieved 99.8% detection accuracy with
0.06 false positive rate. Drebin requires extensive processing for extraction
and execution of a large number of features from the manifest file and app
code, it takes more time to analyse the app and therefore is less efficient
than our method. It takes on average 10 seconds to analyse an app, whereas
our approach takes less than 1 second. Its use of a large number of features
may also result in more false alarms as the efficiency and accuracy of feature
based detection approaches highly depend on the selection of more relevant
and less number of features.

DroidMat (2012) analyses some features from the manifest file and smali
files of disassembled codes. The extracted features include permissions, com-
ponents deployments, intent messages and API calls. It applies K-means
algorithm for clustering and Singular Value Decomposition (SVD) method
for low-rank approximation. The minimized clusters are processed with a
kNN algorithm for classification into malware or benign apps. It achieves an
accuracy of 97.6% with no reported false positive rate. They analysed 1738
apps consisting of 1500 benign and only 238 malware samples. Malware sam-
ples are only 13% of total dataset, which is a non-representative data set for
capturing the malware usage patterns. The accuracy is less than our method
and the processing time is higher as it needs to perform the execution of
smali files and manifest files. Since Smali files are much larger than manifest
files, the overall cost of methods which analyse smali files forgoes higher.
This holds true for both of above solutions: Drebin and DroidMAT.

Marvin (2015) uses off-device static and dynamic analysis for malware
detection. It uses around 490,000 features extracted from the manifest files
and disassembled codes. Its high-dimensional feature set includes permis-
sions, intents, API calls, network statistics, components, file operations,
phone events, app developer IDs, package serial numbers and bundles of
other features. It uses a linear classifier to detect malware app and assign a
malicious score to the app on a scale from 0 to 10, with 0 being benign and 10
being malicious. They used the largest dataset of 150,000 apps in which only
10% are malware samples. It classifies with an accuracy of 98.24% and false
positive rate of 0.04%. Although this approach classifies with the malicious
score, this is not an efficient approach considering the high dimensionality

16

of features and regular updating requirement of the database to maintain
the detection performance. Since, both the analyses are done off-device; the
mobile app is just to provide an interface to upload the apk to the analy-
sis server. The static and dynamic analyses of an app take several minutes
depending on the size of smali files. This approach is less efficient and less
accurate than our approach.

We further compare the detection rate of PIndroid on the unlabelled set
of 100 apps against these approaches. The results are shown in Table 8.
PInDroid significantly outperforms the other approaches with TPR of 0.98
and FPR of 0.1. The other approaches provide a detection rate between
0.90 to 0.93 with FPR between 0.7 to 1. Detection performance of compared
approaches as Roc curve is shown in Fig. 7. These approaches are less
efficient than our approach in analysing the apps due to their dual processing
time. PIndroid gives good results due to the use of most relevant feature set
to model the malicious behaviour.

7. Conclusion

Android security framework relies on permissions and intents to control
the access to vital hardware and software resources. These two features have
never been used in tandem for malware detection. This work proposes a
novel malware detection method based on these two vital security features.
We use statistical and machine learning methods to validate the conjecture.
Our results demonstrate the potential of this approach, where PinDroid out-
performs related approaches and detects malware apps accurately with very
low false positive rate.

The work also compares the performance of different classifiers for their
effectiveness in malware detection. Different ensemble methods are also in-
vestigated and applied on the proposed model to improve the detection ac-
curacy. Some malware apps are also developed for Proof of Concept (PoC)
and to get an insight into the modalities and complexities of malware apps
development. We also investigated Android methods and found that permis-
sions and intents are the basic features used for app collusion. Hence, our
proposed malware detection model is particularly suitable for detection of
colluding apps in addition to the other types of malware apps.

17

References

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song and David Wag-
ner. Android permissions demystified. Computer and communications
security, International Conference, pp 627–638, ACM, 2011.

Amiya K Maji, Fahad Arshad, Saurabh Bagchi, Jan S Rellermeyer. An
empirical study of the robustness of inter-component communication in
Android. In Dependable Systems and Networks (DSN), International Con-
ference, pp 1–12, IEEE, 2012.

Andrea Avancini and Mariano Ceccato. Security testing of the communica-
tion among Android applications. In Proceedings of the 8th International
Workshop on Automation of Software Test, pp 57–63, IEEE, 2013.

Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.
andromaly: a behavioral malware detection framework for Android de-
vices. Journal of Intelligent Information Systems, 38(1): pp 161–190, 2012.

Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina
Nita-Rotaru, and Ian Molloy. Android permissions: a perspective combin-
ing risks and benefits. In 17th ACM symposium on Access Control Models
and Technologies, pp 13–22, ACM, 2012.

Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras.
Droidminer: Automated mining and characterization of fine-grained mali-
cious behaviors in Android applications. In Computer Security-ESORICS,
pp 163–182, Springer, 2014.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon and Kon-
rad Rieck. DREBIN: Effective and Explainable Detection of Android Mal-
ware in Your Pocket. NDSS, 2014.

Daniele Gallingani, Rigel Gjomemo, VN Venkatakrishnan and Stefano
Zanero. Practical Exploit Generation for Intent Message Vulnerabilities
in Android. Proceedings of the 5th ACM Conference on Data and Appli-
cation Security and Privacy, pp 155–157, ACM, 2015.

David Barrera, H Güneş Kayacik, Paul C van Oorschot and Anil Somayaji.
A methodology for empirical analysis of permission-based security models

18

and its application to Android. Computer and communications security,
17th ACM Conference on, pp 73–84, ACM, 2010.

David Kantola, Erika Chin, Warren He, and David Wagner. Reducing attack
surfaces for intra-application communication in Android. In Proceedings
of the second ACM workshop on Security and privacy in smartphones and
mobile devices, pp 69–80, ACM, 2012.

Dimitris Geneiatakis, Igor Nai Fovino, Ioannis Kounelis, and Paquale Stir-
paro. A permission verification approach for Android mobile applications.
Computers & Security, 49: pp 192–205, 2015.

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping
Wu. Droidmat: Android malware detection through manifest and api calls
tracing. In Information Security, Seventh Asia Joint Conference on, pp
62–69, IEEE, 2012.

Dragos Sb̂ırlea, Michael G Burke, Salvatore Guarnieri, Marco Pistoia, and
Vivek Sarkar. Automatic detection of inter-application permission leaks in
Android applications. IBM Journal of Research and Development, 57(6):
pp 10–1, 2013.

Dzeroski Saso and Zenko Bernard. Is combining Classifiers with Stacking
better than selecting the best one. Machine Learning, 9:(54), pp 255–273,
2004.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. An-
alyzing inter-application communication in Android. In Proceedings of the
9th international conference on Mobile systems, applications, and services,
pp 239–252, ACM, 2011.

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul
Potharaju, Cristina Nita-Rotaru and Ian Molloy. Using probabilistic gen-
erative models for ranking risks of Android apps. Computer and commu-
nications security, Conference proceedings on, pp 241–252, ACM, 2012.

Henry B Mann and Donald R Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals of
mathematical statistics, pp 50–60, 1947.

19

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:
behavior-based malware detection system for Android. In Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile
devices, pp 15–26. ACM, 2011.

Hyunjae Kang, Jae-wook Jang, Aziz Mohaisen, and Huy Kang Kim. De-
tecting and classifying Android malware using static analysis along with
creator information. International Journal of Distributed Sensor Networks,
pp 1–9, 2015.

Jacob Cohen. A power primer. Psychological bulletin, 112(1): pp 155, 1992.

Kabakus Abdullah Talha, Dogru Ibrahim Alper and Cetin Aydin. APK
Auditor: Permission-based Android malware detection system. Digital
Investigations, Elsevier Journal on, PP(13): pp 1–14, Elsevier, 2015.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang and David Lie. Pscout:
analyzing the Android permission specification. Proceedings of conference
on Computer and communications security, pp 217–228, ACM, 2012.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee and Guofei Jiang. Chex:
statically vetting Android apps for component hijacking vulnerabilities.
Proceedings of conference on Computer and communications security, pp
229–240, ACM, 2012.

Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel
Winandy. Privilege escalation attacks on Android. In Information Se-
curity, pp 346–360, Springer, 2011.

Martina Lindorfer, Matthias Neugschwandtner and Christian Platzer. MAR-
VIN: Efficient and Comprehensive Mobile App Classification Through
Static and Dynamic Analysis. Computer Software and Applications, 39th
Annual Conference, pp 422–433, IEEE, 2015.

Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen
Nguyen and Martin C Rinard. Information Flow Analysis of Android
Applications in DroidSafe. pp 1–16, NDSS, 2015.

Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Gaur,
Mauro Conti and Raj Muttukrishnan. Android security: A survey of issues,

20

malware penetration and defenses. Communications Surveys & Tutorials,
17(2): pp 998–1022, IEEE, 2014.

Thomas G Dietterich. Ensemble methods in machine learning. In Multiple
classifier systems, pp 1–15, Springer, 2000.

Timothy Vidas and Nicolas Christin. Evading Android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM symposium on
Information, computer and communications security, pp 447–458, ACM,
2014.

William Enck, Machigar Ongtang and Patrick McDaniel. On lightweight
mobile phone application certification. Computer and communications se-
curity, pp 235–245, ACM, 2009.

William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding
Android security. IEEE security & privacy, (1): pp 50–57, IEEE, 2009.

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,
X Sean Wang and Binyu Zang. Vetting undesirable behaviors in Android
apps with permission use analysis. Computer & communications security,
pp 611–622, ACM, 2013.

21

Figure 1: Frequently used permissions by malware applications

22

Figure 2: Number of permissions used by malware and benign applications

Figure 3: Number of intents used by malware and benign applications

23

Figure 4: Box-plots for dangerous permissions

Figure 5: Box-plots for dangerous intents

24

Figure 6: Diagram of proposed system

Figure 7: Detection performance of related approaches as ROC curve

25

Table 1: Number of permissions and intents in API levels

API Level No of Permissions No of Intents
23 135 252
22 124 243
21 123 238
20 118 227
19 117 227
18 106 221
17 103 214
16 103 203
15 99 201
14 99 191
13 97 180
12 96 180
11 96 176
10 96 167
9 95 167
8 92 167
7 88 161
6 88 158
5 88 158
4 87 146
3 83 136
2 78 124
1 76 124

26

Table 2: Sources of Malware samples

Source No of Malware samples used
Contagio 60
Drebin 100
Genome 1000
VirusTotal 70
theZoo 20
MalShare 25
VirusShare 25

Table 3: Number of malware samples collected from different sources
Malware family No of samples analyzed Malware type
Basebridge 11 Botnet, Information stealing
DroidKungFu 11 Botnet, Information stealing
DroidKungFu 10 Botnet, Information stealing, Backdoor
FakeDolphin 4 Adware
Locker 2 Ransomware
VDLoader 3 Backdoor, Information stealing
FakeBank 5 Trojan Banker, Money stealing, Information stealing
GinMaster 7 Information stealing, Backdoor
Boxer 2 Sends SMS
JIFake 3 Sends SMS
SNDApps 1 Information stealing
OpFake 4 Sends SMS
FakeInst 3 Installer
FakePlayer 3 Sends SMS
BgServ 7 Botnet, Information stealing, Botnet, Trojan Installer, backdoor
Plankton 7 Money stealing, Botnet, Information stealing, Backdoor, Trojan installer
Geinimi 9 Botnet, Information stealing, Root access
AnserverBot 13 Information stealing
PjApps 9 Botnet, backdoor
GoldDream 10 Trojan, Information stealing
DroidSheep 7 Session hijacker
CopyCat 4 Adware
DroidDream 10 Information stealing, Adware
DroidKungFu 11 Botnet, Information stealing, Root access
Keji 4 Information stealing, Trojan Installer
HolyBible 5 Adware, Backdoor
Obad 2 Botnet, Information stealing, Botnet, Trojan Installer, backdoor, SMS sending, Location
Nickispbby 5 Spying, Information stealing
RuFraud 3 SMS sending
Jsmshider 3 Information stealing
Zitmo 3 Money, Information stealing, Backdoor
AngryBird 13 Botnet, Information stealing
KMin 10 Exploit, Information stealing

27

Table 4: Categories of benign apps

Category No of samples used Apps Market

Social Media 11 Google Play store
Mail 4 Google Play store
Education 10 Google Play store
Banking 4 Google Play store
Entertainment 15 Google Play store
Sports 8 Google Play store
Shopping 6 Google Play store
Finance 6 Google Play store
News 8 Google Play store
Weather 8 Google Play store
Games 15 Google Play store
Medical 10 Google Play store
Fitness 11 Google Play store
Media 11 Google Play store
Casual 15 Google Play store
Music 15 Google Play store
Books 5 Google Play store
Travel 5 Google Play store
Lifestyle 15 Google Play store
Simulation 7 Google Play store
Transportation 4 Google Play store
Misc 15 AppBrain
Misc 10 F-Droid
Misc 10 Getjar
Misc 15 Aptoid
Misc 15 Mobango

28

Table 5: Confusion Matrix
Actual Class Classified as Malware Classified as Benign
Malware TP FN
Benign FP TN

Table 6: Comparison of Classification Algorithms

Algorithm TPR FPR Precision F1Score Recall AUC Time
MLP 0.993 0.006 0.995 0.995 0.995 0.996 1.18
Decision Table 0.993 0.006 0.995 0.996 0.996 0.996 0.23
Decision Tree 0.992 0.011 0.993 0.992 0.993 0.992 0.01
Nave Bayesian 0.982 0.012 0.989 0.988 0.989 0.997 0.01
Random Forest 0.982 0.007 0.985 0.985 0.985 0.989 0.43
SMO 0.952 0.033 0.956 0.956 0.956 0.978 0.24

Table 7: Comparison of Ensemble results

Method TPR FPR Precision F1Score Recall AUC
Average Probability 0.972 0.012 0.975 0.975 0.975 0.982
Product Probability 0.998 0.011 0.998 0.997 0.997 0.998
Majority Vote 0.982 0.021 0.986 0.986 0.986 0.989

Table 8: Comparison with related approaches

Method TPR FPR Average Time (sec)
PIndroid 0.984 0.1 1
Drebin 0.932 0.9 10
Marvin 0.918 0.7 9
Droidmat 0.903 1.0 9

29

	Introduction
	Related Work
	Static malware analysis on Android platform
	Permission analysis
	Inter-Component Communication / Intents analysis
	Malware analysis with hybrid features

	Background on Permissions and Intents
	Permissions
	Intents

	Analysis of Permissions and Intents
	Permission usage by Applications
	Intent usage by Applications
	Correlation between permissions and intents

	Malware Classification
	Data Representation
	Probability Estimation
	System Description

	Evaluation
	Experimental Setting
	Performance Comparison of different Classifiers
	Optimization with Ensemble methods
	Comparison with related approaches

	Conclusion

