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Abstract 

Building cooling load prediction is one of the key elements in the energy conservation 

achievements. Most of the mathematical models using in the industry nowadays include 

forward and inverse modeling approaches. However, these models consume much 

computer resources and require a longer computational time.  

Multi-layer perceptron (MLP) model of artificial neural network (ANN) is adopted in 

this thesis. The model is widely used in engineering approaches that render good 

performance in adaptability, nonlinearity and mapping. It also has good ability in 

predicting the cooling energy consumption of buildings. It is reported that the occupants’ 

activities inside the buildings can have significant impact on the accuracy of the model. 

The existing input parameters used for the ANN models could not represent the 

complexity of the activities inside the buildings well. Most of the traditional ANN 

models adopted fixed profile or historic load data to represent building occupancy in 

simulating building cooling energy consumption. However, building occupancy is never 

still. The dynamic changes occurred in the occupancy of the buildings therefore make 

the forecasting of building cooling load difficult and less accurate. This thesis aims at (i) 

introducing a novel model to represent occupants’ presence and activities; and (ii) 

investigating the effect of using the novel model on improving the predictive accuracy 

of building cooling energy consumption.  

The simulation results demonstrate that building occupancy data play a significant role 

in building cooling energy consumption prediction and the use of the novel approach 

significantly improves the predictive accuracy of building cooling energy consumption 

model. 
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Chapter 1 

Introduction 
 

1.1 Motivation 

Rising global temperatures and sea levels are evidence of climate change. Greenhouse 

gas emissions are believed to be major contributors to climate change, as greenhouse 

gases such as water vapour, carbon dioxide, methane and ozone have a warming effect 

on the atmosphere.  

Since the beginning of the industrial revolution in 1750, humans have, through 

extensive fossil fuel combustion, released an enormous amount of carbon dioxide into 

the atmosphere. According to Blasing (2015), the concentration of atmospheric carbon 

dioxide increased from 280 ppm in 1750 to 400 ppm in 2015 [1].  

Modernisation brings costs. Electricity is an essential requirement for a high standard of 

living. The main consumption of electricity comes from buildings in modern cities. 

However, electrical power plants rely mainly on coal and other fossil fuels; as a result, 

the process of generating electricity leads to a continuously increasing volume of carbon 

dioxide emissions.      

To improve this situation, carbon emission reduction organisations have been 

established in many countries. They encourage gas and electricity suppliers to adopt 

greenhouse gases emission protocols and to reduce greenhouse gases emission by a 

certain amount. They also promote energy conservation and efficiency. 
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Due to the increasing demand for energy and rising tariffs on electricity, energy 

efficiency has become a global concern. People in many fields are examining ways to 

reduce the energy loss in power transmission to improve energy efficiency and reduce 

carbon emissions. According to the Census and Statistics Department of the Hong Kong 

SAR Government, the domestic and commercial sectors in Hong Kong accounted for 

90% of the total electricity consumption in 2011 [2]. As one of the most densely 

populated metropolises in the world, there are thousands of skyscrapers in Hong Kong. 

Energy efficiency in these buildings has been a concern since the 90s. 

In Hong Kong, 60% of carbon emissions are produced by electricity generation, and 

buildings consume 89% of the electricity produced. Improving the electrical energy 

efficiency of existing buildings may therefore be the fastest route to carbon emission 

reduction. Thus, the recently established Smart Grid technology can be used to combat 

climate change. Specifically, demand side management and dynamic demand response 

functions enable a more efficient use of electrical energy. Smart Grid technology has 

important implications for building cooling systems, as building cooling loads account 

for approximately 45% of buildings’ electrical energy consumption. To implement these 

developments efficiently, it is necessary to accurately predict building cooling load 

demand. This is particularly important in Hong Kong, where most commercial buildings 

are fully air-conditioned and mechanically ventilated. As heating, ventilation, air 

conditioning and lighting account for the majority of a building’s energy use, there has 

been considerable research on how to effectively manage building energy demand, 

especially the demand of air-conditioning systems, in sub-tropical regions like Hong 

Kong. 

The four main factors contributing to building cooling load demand are as follows:  
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i. building characteristics (location, orientation and type of building); 

ii. building service systems installed for sustaining human activities (heating, 

ventilating and air-conditioning (HVAC), lighting and electricity); 

iii. outdoor environment and meteorological factors (temperature, humidity, solar 

radiation and etc.); and 

iv. occupants’ activities (planned operations and human behaviour). 

1.2 Building cooling energy consumption prediction 

Building designers have gained access to high-end computer hardware and software 

programs and computer simulation models that can evaluate building energy 

consumption levels [3]. These models also provide building managers with energy 

demand profiles and information on energy consumption levels, which can be used to 

estimate buildings’ energy use conditions and running costs. With this piece of 

information, building managers can take steps to ensure the energy consumption and 

operating costs of a building are maintained at an acceptable level [4]. Energy 

simulation programs are essential tools in building energy audits. Energy auditing 

experts use building energy simulation programs to precisely predict the energy 

consumption conditions of actual buildings. In sub-tropical regions, energy audits focus 

on reducing the space cooling loads and the energy used in air-conditioning systems, as 

air conditioning systems account for at least 45% of the total building energy 

consumption in these regions [5]. It has been suggested that the building industry should 

pay more attention to the energy requirements of air-conditioning systems in existing 

buildings and in building design. Comparing the energy use and operating costs of 

alternative systems enables industry experts to choose the optimal design for a 

building’s air-conditioning system. This thesis will focus on the simulations of a 
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building’s cooling load under various internal loads. With the improved building energy 

simulations made possible with current software, building designers can identify poor 

building envelopes or oversized HVAC equipment and chiller plants, thus reducing 

maintenance and running costs. Building cooling load demand prediction has many 

applications [6], which are listed as follows: 

i) comparing the predicted operational cooling load demand to the actual 

load and exploring the building operational problems in the early stage of 

building occupation; and 

ii) comparing the predicted energy use after a building retrofit project to the 

actual load of the existing building, in order to estimate the energy 

savings that could be achieved.  

1.3 From state-of-art approach to intelligent approach of building cooling 

energy consumption prediction modelling 

Many state-of-art building energy simulation models can accurately simulate building 

energy performance, as long as the building operation is well planned. Building energy 

simulation and analysis has been practiced for decades. However, traditional analytical 

approaches adopt a mathematical model, which requires advanced analytical skills to 

implement. Building designers and management teams may have difficulty applying 

such complicated models and achieving accurate simulation results. Furthermore, the 

computer simulation processes require a large amount of time. The limited use of 

analytical approaches in building energy studies also discourages the development of 

this expertise. To address these problems, artificial intelligence (AI) techniques have 

been widely adopted in recent analytical approaches. A model with AI techniques can 

be used to manipulate historical, incomplete or noisy data and to perform non-linear 
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data analysis. It can also be used to make predictions and generalisations at high speed 

[7]. A model with AI techniques can also be used for pattern recognition, system 

optimisation, system identification, system mapping or signal processing. Building 

energy prediction programs nowadays are usually constructed using artificial neural 

networks (ANN), genetic algorithms (GA), fuzzy logic (FL) or support vector machines 

(SVM). The input parameters of an ANN model include difference variables, historical 

data and external variables that are usually non-linear. The output of an ANN model is 

the best values for building energy consumption, and ANN models have recently been 

adopted for load prediction [8,9,10,11]. Some of the input data are used to train the 

model and the rest are used to validate the ANN model by comparing the actual output 

values with the predicted output values. ANN models also use an approximate function 

to evaluate the output values [12]. GA is a robust approach to developing heuristics for 

large-scale combinational optimisation problems [13]. Studies of short-term load 

forecasting have reported good results from GA models. However, GA models usually 

require a long period of computational time [13]. The FL simulates human decision-

making, which is characterised by uncertainty and imprecision. As FL can only provide 

simple outputs of either true or false in its final stage [14], the model is seldom to be 

used in building energy load prediction. The SVM approach is commonly used with a 

regression, which makes it possible to retain all of the main features that characterise 

the maximal margin algorithm in the output: a non-linear function is trained by a linear 

training machine in a kernel-induced feature space, and the capacity of the system is 

controlled by a parameter that does not depend on the dimensionality of the feature 

space [15]. In the classification problem approach, there is motivation to seek and 

optimise the generalisation bounds for a given regression. The approach defines the loss 
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function that ignores errors, which is situated a certain distance from the true value. This 

type of function is often called the epsilon-intensive loss function.  

1.4 ANN models for building cooling energy consumption prediction 

ANN, GA, FL and SVM models with AI techniques have been adopted by a large 

number of researchers to simulate building energy use [26,28,29,30,32]. ANN models 

are capable of modelling highly nonlinear systems. They are also black boxes and work 

well for large datasets. ANN is a powerful data-driven, self-adaptive and flexible 

computational tool, which is capable of capturing a high degree of accuracy of the 

nonlinear and complex underlying characteristics of any physical process. ANN models 

accurately predict building cooling loads and give forecasts for different times of the 

year. They are universal function estimators that can evaluate a continuous function and 

achieve an acceptable level of accuracy [16,17,18]. Traditional prediction models 

assume a certain relationship between input and output parameters and thus are not 

suitable for determine complex relationships in real situations. ANN models have 

produced better results than traditional models in the analysis of complex and nonlinear 

relationships [18]. The data-driven technique of ANN models can perform nonlinear 

modelling without prior knowledge of the relationships between the input and output 

parameters. ANN models have been widely used in energy analysis and predictions as 

they are formulated by dynamic-inverse models, whereas the traditional models are 

formulated by programmed rules. In other words, ANN models are capable of learning 

from historical data rather than simply following programmed rules. 

1.5 Applications of building cooling energy consumption prediction using 

ANN models 



 

 P. 7 

Building energy simulations can be used to estimate the energy use and operating costs 

of buildings, especially those related to air-conditioning systems. A simulation 

compares alternative HVAC system designs, and selects the optimal design for a 

particular building. ANN models, which are an inverse type of model, are suitable for 

such building energy simulations for two reasons. 

i. The ANN simulation models provide building management teams with 

information about the past operating strategies, thus enabling them to rearrange 

and operate the system in the most conservative way. The models can also 

diagnose the actual energy use of a building and compare it with a 

benchmarking system, so as to find out the optimal operating strategy. 

ii. ANN models are trained using the existing energy use data of a building. This 

can be used to compare the energy use data after the building is retrofitted. The 

difference between the existing and the retrofitted energy use profile is a 

measure of the energy conservation achievements of the newly installed 

equipment. ANN dynamic models also include weather data and occupancy 

profiles as input parameters. Thus making the models a useful tool for the 

building designers and the building management teams. 

In conclusion, ANN models are capable of handling complex systems and nonlinear 

parameters. As a result, users do not need to obtain the details of the buildings’ physical 

systems or even a comprehensive understanding of ANN models. The energy 

performance of buildings can thus be easily obtained by a wide variety of users. 

1.6 A novel approach to determine building occupancy in ANN model 

Modern buildings have complex building service systems, and control strategies and 

building energy prediction techniques are becoming an important part of building 
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systems design [19]. Citizens seeking high quality living standards desire fresh indoor 

air and a pleasant living environment. As a result, building energy simulation is an 

important part of building design and operation [20]. Traditional ANN building energy 

simulations use fixed operational schedules as occupancy input data. However, flexible 

working hours and interactive control systems nowadays may affect the accuracy of 

energy use simulations if the models are based on simple assumptions on the behaviour 

of occupants. The study has reported that as users’ behaviour affected building energy 

load, it needed to be included in simulation models as an input parameter [19]. 

The accuracy of the simulation results is determined by the model’s algorithms and the 

robustness; and also relevance of the input parameters, such as the external weather and 

building occupancy conditions. The building occupancy condition reflects the fixed 

schedule and type of human activities inside the building [21]. In buildings with the 

same physical characteristics, such as the same building envelope and building service 

systems, the interactions of the buildings’ occupants with the building systems may 

result in very different energy demand profiles for similar buildings [22]. Traditional 

ANN simulation models adopt a fixed schedule for occupancy rate, resulting in poor 

simulation performance. Modern building management teams recognise that due to 

flexible working hours and interactive control of building service systems, models must 

include more sophisticated estimates of occupancy rate to achieve higher accuracy [23]. 

Managers perform energy audits and analyses of buildings to determine the optimal 

operational strategy and to identify energy conservation measures (Energy Efficiency 

Advisory Committee, 1995). To achieve this aim, managers require data on the precise 

energy consumption of each building service system; however, metering devices for 

monitoring such systems have seldom been installed in Hong Kong in the past decade. 

Only monthly electricity bills are available [24]. In addition, only air-conditioning plant 
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equipment log sheets can be obtained in Hong Kong. The low-end metering devices 

provide insufficiently accurate data for the model. 

However, energy audits are becoming mandatory in Hong Kong. Building regulations 

require alternations to existing buildings and require new buildings to install metering 

devices. The university building targeted in this thesis needed to be upgraded with an 

enhanced metering system, to meet the new building regulations. A sophisticated 

metering system was built in 2010. A datum is collected every 15 minutes and is stored 

on a high quality server.  

Therefore, total space electrical consumption of each floor, data for the primary air 

handling unit (PAU) operation schedule in a building and day/hour type, which are a 

novel approach to determine the building occupancy, can be retrieved and becomes one 

of the input parameters used in building occupancy for ANN model. 

1.7 Objectives 

Both the indoor microclimate and the energy demand of a large building complex are 

affected by occupants’ activities, which are stochastic in nature [25]. A number of 

studies have assessed people’s interactions with building environmental systems, 

through user-controlled actions or user-controlled devices that switch on or off. 

Although there are practical difficulties in predicting individual human behaviours, 

trends in user-controlled related behaviours and group patterns of building occupants 

can be obtained from long-term observational data. This thesis uses a novel approach to 

establish dynamic occupants’ presence and behaviour models. An ANN model is used 

to simulate the total cooling load demand of a university building in Hong Kong based 

on the building’s occupancy space electrical power demand profile. Real-time power 

data from the building power monitoring system (BPMS), hourly weather data from the 
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Hong Kong Observatory and time factors are used as input parameters for the ANN 

model. The total electrical demand of the building cooling system is selected as the 

model output. The occupancy space electrical power demand from the BPMS is used to 

determine the human behaviours inside the university building, and is formed as an 

input parameter of ANN model – this is a novel approach to determine building 

occupancy. The proposed ANN model has been validated with actual data retrieved 

from the university building. The simulation results show that the input parameters, 

including the proposed building occupancy, significantly improve the accuracy of ANN 

models in predicting building cooling load. The proposed model, which uses an 

occupancy space electrical power demand profile, is found to be capable of improving 

the accuracy of the cooling energy simulation.   

Therefore, this thesis aims at i) developing a novel model to represent occupancy’ 

presence and behaviours; and ii) investigating the effect of using the developed model 

on improving the predictive accuracy of building cooling energy consumption.  

The novel model includes three areas that are usually overlooked in previous studies in 

determining occupancy’s presence and behaviours. They are i) total space electrical 

consumption of each floor; ii) data for the primary air handling unit (PAU) operation 

schedule in a building; and iii) day/hour type.  

The proposed model is verified and validated by real building data. 

1.8 Organisation of the thesis 

This thesis consists of seven chapters. The first chapter provide a general description of 

building cooling simulation. 
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Chapter 1 explains the need for building cooling load predictions and reviews the 

energy prediction and modelling methods currently used by the building industry and 

researchers. The constraints of the traditional approaches are discussed in Chapter 2 and 

an intelligent approach based on ANN methodology is proposed and will be discussed 

in Chapter 3. The need for building occupancy data – internal parameter – is recognised 

in the new ANN model. 

Chapter 2 introduces the theoretical foundations of load forecasting. Different load 

forecasting techniques was discussed and the applications of short-term load forecasting 

are presented. Traditional approaches are used to compare with the ANN approach – 

one of the most popular new applied techniques. 

Chapter 3 describes the development of the ANN model for building cooling load 

prediction. The background ANN models is introduced before the architecture of the 

specific model is described. The development of the model’s three major components – 

the input layer, the hidden layer and the output layer – is then explained. Each 

component is introduced; and the critical external and internal load factors are 

determined. The methods used to determine the numbers of hidden layers are presented. 

Then, the chapter give an overview of the multi-layer perceptron algorithm used in this 

thesis and presented the early stop validation approach for network training. The last 

section of the chapter discusses the details of network validation by means of a 

performance measure and training schedule. 

Chapter 4 shows how building occupancy is modelled to simulate energy use. A 

discussion of how building occupancy interacts with building energy consumption is 

presented before the current methodologies for modelling building occupancy are 

reviewed. The most widely used approaches – the standard profile and diversity 
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approach – are discussed before the details of more empirically based models of 

people’s presence and actions are given. The final two sections discuss how current 

ANN models handle building occupancy data and the limitations encountered if the 

building occupancy data are not correctly incorporated into simulations of building 

energy use. 

Chapter 5 explores a novel approach to the acquisition of building occupancy data. The 

concepts underlying stochastic models of people’s presence and activities are elaborated 

in detail. The details of such stochastic models are then presented, including the 

modelling of the presence of occupants using the fresh air supply rate; modelling of 

occupants’ presence and behaviour via the conditioned air supply rate and the energy 

consumption rate due to tenant demand; and modelling of occupants’ presence and 

activity via the lift and escalator traffic rate. The chapter concludes by proposing three 

approaches to measuring building occupancy: i) the data for PAU operation schedule; ii) 

day/hour type; and iii) occupancy space power demand. 

Chapter 6 verifies the ANN model developed and incorporates building occupancy into 

the model by using real building data from university buildings in Hong Kong. The 

application of the crucial factor – space electrical load profile – is introduced and 

discussed. 

Chapter 7 concludes this thesis by summarising the findings and suggesting 

recommendations for the use of novel occupancy models, in which the building 

occupancy factors that affect building cooling load are used as inputs for an ANN model. 
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Chapter 2 

Review of existing load forecasting 

technologies 
 

2.1 General 

Facilities managers need to estimate and predict the energy demand according to the use 

of buildings, especially the energy demand for the air conditioning systems. Both 

external climatic conditions and occupancy rate vary the heat load inside buildings [26]. 

Traditional methods of predicting the energy demands of buildings treat buildings 

characteristics, such as building materials, air-conditioning systems, heating systems 

and building functions, as more or less ideal physical sub-processes [27]. These 

methods consider a large number of physical parameters with varying degrees of 

idealisation and simplification. Time series analytical and statistical methods are 

adopted in these modelling techniques. These methods ignore the influence of climatic 

factors such as atmospheric temperature and relative humidity. Moreover, extensive 

computation time and resources are required for the energy demand prediction, 

especially when the data are collected on a daily or hourly basis [28].  

Existing methods also make a large number of assumptions about occupancy rates. A 

forward and inverse approach is usually adopted in current energy demand estimations 

and analyses since then. 

Forward approach models are used in building designing, in order to optimise the 

heating, ventilating and air-conditioning (HVAC) systems by comparing the energy use 

of different building system designs. The most common software programs for energy 
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analysis are DOE-2.2 (J. J. Hirsch & Associates, 2005), TRNSYS (Solar Energy 

Laboratory, 2006), BLAST (BLAST Support Office, 1992) and ENERGYplus (US 

Department of Energy, 2007). They all adopt the forward dynamic approach, in which 

energy predictions are based on the physical parameters of building systems, such as 

their geometry, location, construction details and the HVAC type and operation [28]. 

The forward dynamic approach uses numerical or analytical processes to determine 

energy flow between buildings. It requires complicated software programs and lengthy 

computing times. Forward models could not accurately predict the energy demand of 

each building due to varying factors, such as external weather, construction materials, 

internal load of occupants, building control strategies, unconditional responses between 

systems and various modes of heat transfer (ASHRAE, 2005)[6].  

Inverse approach models are used to compare the actual performance data on energy use 

and the energy demand prediction in buildings (ASHRAE, 2009). The inverse approach 

derives representative building parameters, such as the building load coefficient, 

building time constant from data on energy use, weather and relevant performance data 

[28]. Dynamic inverse models, such as artificial neural networks (ANNs) are used for 

energy analysis and have the ability to learn from the data. The models provide output 

based on generalised input data. They do not require knowledge of an explicit 

relationship between the input and output parameters. The models do not need to be set 

up or operate by a skilful programmer. ANN models can be trained on a dataset with or 

without a designated solution for each case. The models are able to identify the output 

solutions after training and provide solutions for new datasets. The ANN models are 

suitable for energy analysis because they can model the behaviour of complex building 

systems with several independent input parameters. Therefore, a building professional 

can make an energy demand prediction effortlessly and evaluate the performance of the 
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buildings. Furthermore, ANN models are suitable for load forecasting 

[26,28,29,30,31,32]. 

The advantages of the ANN approach have been demonstrated in previous studies 

[26,28,29,30,31,32]. Current load forecasting types and techniques are summarised in 

the next section. 

2.2 Types of models  

Two major types of models, which are named as Forward Approach and Inverse 

Approach, are mainly used to estimate and analyse building energy. The 

forward approach is used by building designers to estimate the energy use of buildings 

and the HVAC systems, in order to optimise energy savings. The inverse approach is 

used to estimate the actual energy use of buildings and HVAC systems [6]. 

2.2.1 Forward approach models 

Forward approach models use the physical design of building energy systems to 

estimate the energy demand of end users and to predict the energy saved through 

conservation. Steady state forward models and dynamic forward models are commonly 

used in building energy prediction and there are several software programs based on 

these approaches [28], such as DOE-2, building loads analysis and systems 

thermodynamics (BLAST) [36], ENERGYplus (US Department, 2007) and the 

TRNSYS simulation tool [35]. 
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Figure 2-1 Typical forward approach model 

 

2.2.2 Inverse approach models 

Inverse approach models are used to estimate building energy efficiency after the 

adoption of energy conservation measures and energy saving measures, such as energy 

retrofits and building energy efficiency improvements. Steady state inverse models 

combine different models such as the similar-day approach, regression and time series, 

but they have limitations in the analysis of transient effects such as thermal mass effects 

and seasonal changes in the efficiency of HVAC systems. Dynamic inverse models are 

capable of simulating the thermal mass dynamic effects of buildings and complex 

systems with several independent parameters; however, the models require large 
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amount of resources for user interaction and realising the prediction building model or 

system [28,33,37]. 

 

Figure 2-2 Typical inverse approach model 

 

2.3 Types of load forecasting 

Load forecasting is very important for the building and utilities industries. In building 

management, the optimisation of control strategies and the energy conservation of 

HVAC systems are essential applications. In the utilities industry, load forecasting has 

important applications in power generation, grid development and load shedding [33]. 

The different types of load forecasting are shown in table 2-1.  
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Table 2-1 Type of models for load forecasting 

2.3.1 Short-term load forecasting (STLF) 

STLF predicts the future hourly load for periods of up to one week [12]. It is an 

essential part of the daily operation of utilities systems [34]. 

2.3.2 Medium-term load forecasting (MTLF) 

MTLF predicts future hourly loads for periods ranging from one week to one year; such 

forecasts allow utilities companies to estimate energy demands over longer periods and 

assist them in contract negotiations with other companies [34].  

2.3.3 Long-term load forecasting (LTLF) 

LTLF predicts the load for periods of over a year. The duration can be even more than 

twenty years [12]. 

2.4 Intelligent approaches to load forecasting 

Genetic algorithm (GA), fuzzy logic, artificial neural network (ANN) and support 

vector machine (SVM) approaches have been widely adopted in building energy 

prediction. 

The GA approach is a powerful and robust tool for developing heuristics for large-scale 

combinational optimisation problems [13], [38]. Originally inspired by biological 

evolution, a genetic algorithm, which is a type of evolutionary computation, is a method 

for solving optimisation problems. The GA approach encodes a potential solution to a 

Short-term load 

Forecasting (STLF) 

Medium-term load 

 Forecasting (MTLF) 

Long-term load 

Forecasting (LTLF) 

Hourly to weekly Monthly to yearly Yearly basis 
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specific problem to a chromosome-like structure and applies recombination operators to 

these structures to preserve critical information [14]. This method has been used to 

forecast power system load demand. The advantages of GA over traditional techniques 

are as follows [13].  

i) GA only needs simple information about the objective function and does not 

impose restrictions such as differentiability and convexity on the objective function. 

ii) It is a method with a set of solutions from one generation to the next, rather than 

a single solution. Therefore, it is less likely to converge into local minima.  

iii) Solutions are developed randomly based on the probability rate of the genetic 

operators such as mutation and cross-over. Thus, the initial solutions do not dictate the 

searching direction of GA. 

However, the main disadvantage of GA is that it requires a tremendous amount of 

computation time. 

Fuzzy logic makes decisions by simulating human reasoning. It is characterised by 

uncertainty and imprecision, and is a superset of conventional (Boolean) logic that has 

been extended to handle the concept of partial truth – i.e., truth values between 

‘absolutely true’ and ‘absolutely false’ [13], [39]. A FL methodology for combining 

information has been developed for spatial load predictions of the magnitudes and 

locations of future electric loads. These methods recognise that the load growth in 

different locations depends on factors such as distance to highway, electric poles and 

costs [40]. A fuzzy inference model for STLF in power systems, which uses a tabu 

search with supervised learning to optimise the inference structure (i.e. number and 

location of fuzzy membership functions) and minimise forecast errors, has been 
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proposed. Srinivasan & et al (1999) [41] has combined three techniques – FL, neural 

networks and expert systems – in a highly automated hybrid STLF approach with 

unsupervised learning. However, as FL can only provide simple outputs of either true or 

false in its final stage [14], the model is seldom to be used in building energy load 

prediction. 

Support vector machines (SVMs) methods, introduced by Vapnik in the 1960s, are 

based on statistical learning theory [42]. SVMs, which contain a set of related 

supervised machine learning methods used for classification, have recently become an 

active area of intense research; and have been extended to regression and density 

estimation [43]. SVMs use the structural risk minimisation (SRM) principle to 

overcome the intrinsic limitations of ANNs. Support vector regression (SVR) in SVMs 

can be used for time series prediction, which is useful for problems characterised by 

non-linearity, high dimension and local minima. SVRs have been successfully used to 

solve regression problems such as time series modelling [44,45], financial forecasting 

[46], electricity load forecasting [47-54] and non-linear control systems [55]. 

Nevertheless, SVM models are complicated in operation, making the models less user-

friendly [18]. 

2.5 ANN models for cooling load forecasting  

The elements of an ANN model are similar to brain neurons, which can process massive 

amounts of information in parallel. An input and a weight value are connected to the 

model and the output of the model is a function of the summed value. The model is 

trained with respective datasets and learns its patterns as inputs. The model can be used 

for unknown and non-linear functions [12]. To predict building energy, the ANN 

models use historical data and external climate data in the training stage and then 
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deliver an output value that corresponds to the input data. ANN models are fast, robust 

and appropriate for nonlinear functions with sound learning ability [13].  

A number of researchers and engineers have used ANNs for modelling and predicting in 

the field of building services engineering [56]. Some of the recent studies that have 

applied ANN models to building cooling load prediction are reviewed [56]. A multi-

layer perceptron model (MLP) is a type of ANN model that was used to determine the 

total chiller plant power of a 42-storey commercial building in downtown Honolulu, 

Hawaii. The independent input variables consisted of climate data, and the model output 

was the chiller plant’s power consumption. The input parameters used in the MLP 

model included dry bulb temperature, wet bulb temperature, dew point temperature, 

relative humidity percentage, wind speed and wind direction. It should be noted that 

none of the input variables were building-related. The hour of the day, when the data 

were collected, was also recorded to account for variations in occupancy throughout the 

day. However, data for the hourly power consumption in the chiller plant were not 

available. The total number of matching data items was only 121 out of 312 for the 13 

days in the study period. A further study used [57] an ANN model to predict the energy 

savings of building equipment retrofits. The Levenberg-Marquardt back-propagation 

algorithm was used and the input layer included the weather variables at particular 

hours of the day. The weather data consisted of dry bulb temperature, dew point 

temperature, wind speed, wind direction, air pressure and visibility. The output was the 

hourly electricity measurements from the retrofitted equipment. Again, the input 

parameters used were not building-related parameters [58]. An ANN model was used to 

predict the pre-retrofit energy consumption of a building and this was then compared to 

the measured energy consumption of the retrofitted building. The input layer consisted 

of eight types of input data including weather factors such as ambient dry-bulb 
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temperature, humidity ratio, horizontal insulation and wind speed, and occupancy-

related factors such as hour (00:00 to 23:00), a weekday/weekend binary flag (i.e. 0 and 

1), chilled water consumption in the past hour and chilled water consumption in the 

previous hour [26]. An ANN model that used the Levenberg-Marquardt training 

algorithm was introduced to predict the heating/cooling load consumption. The input 

parameters for the ANN model included hourly weather data such as the outdoor 

temperature, relative humidity and set-point temperatures. The occupancy schedule, 

which was the key parameter in energy consumption, was used as one of the model’s 

input parameters. 

2.6 Conclusion 

All the existing energy demand prediction models adopted in previous studies were 

either forward or inverse approach models. Load forecasting software programs of 

forward approach model, such as TRNSYS, BLAST and ENERGYplus, were 

introduced. They were performed based on the physical arrangement and assumptions in 

steady-state condition. The disadvantage of the forward models is the low accuracy on 

the energy demand prediction with the changes of external weather and the internal load 

of occupants in various situations.  

This thesis focuses on the inverse approach models, which is data-driven. ANN models 

have been adopted in previous studies [28] and are found to be able to handle more 

complicated situations. ANN models are also more user-friendly comparing with other 

intelligent approach models like GA, SVM and FL. The application of ANN models on 

load forecasting will be introduced in the next chapter. 
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Chapter 3 

Load forecasting using artificial 

neural networks 
 

3.1 General 

ANN models are created with data-driven and self-adaptive methods, which can be used 

to perform non-linear modelling without prior knowledge of the relationship between 

the input and output parameters. The models had been proven with universal function 

approximators [59] and could be used to predict nonlinear system behaviour by 

constructing the behaviour on the basis of historical system data. An MLP model 

supervises a neural network consisting of a number of neurons arranged in layers. Each 

neuron is a multi-input-single-output computational unit in the model. Neurons in one 

layer are interconnected with neurons in adjacent layers. The model is designed to 

determine the learning processes of the human brain and to simulate the relationships 

between input and output parameters based on historical system data. The MLP model 

has been widely adopted for a variety of energy forecasting problems due to its inherent 

and superior input-output mapping capability. 

3.2 Model architecture 

Backpropagation is a common learning algorithm in building services engineering. 

Backpropagation networks have been adopted to solve problems in many areas, such as 

load forecasting, fault detection and pattern recognition. The model training of 

backpropagation consists of three stages: the feedforward stage of the input training 
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pattern; the calculation; and the backpropagation of associated error and weight 

adjustment. A multilayer can only learn input patterns to an arbitrary accuracy and the 

weight adjustment is based on the generalised delta rule. Weight in a neural network is a 

stored segment of the information about the input signal. The neural network used in 

this thesis consists of three layers of interconnected neurons, as shown in Figure 3-1. 

Figure 3-1 indicates a typical configuration consisting of three layers and one output 

parameter. 

 

Figure 3-1 Typical artificial neural network computational structure 

The backpropagation neural network consists of a multilayer, feedforward neural 

network with an input layer, an output layer and a hidden layer. The neurons in the 

hidden and output layers tend to connect with units whose output is always 1. The 

inputs are fed to the backpropagation net and the output obtained is either binary (0,1) 
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or bipolar (-1,+1). The activation functions are any function that increases 

monotonically and is also differentiable. The generalised delta rule is implemented in 

backpropagation networks. The gradient descendent method is adopted to minimise the 

total squared error of the output of the network. The layers are classified as input, 

hidden and output layers. The nodes in the input layer collect information from external 

sources, and the neurons in the hidden layers that act as the computational nodes in the 

neural network, transmit and transform the information from the input layer to the 

output layer. The output layer neurons transmit information out of the network. An 

MLP model with one hidden layer and a sufficient number of hidden neurons has been 

proven to be a universal function approximator [59]. This type of model is adopted in 

this thesis. 

3.3 Input parameters 

A number of input neurons corresponding to the number of parameters in the input 

vector are adopted to forecast future values. Although there is no systematic way to 

determine this number, the selection of this parameter should include all of the critical 

components that can significantly affect the future value. 

3.3.1 Sources of building cooling load 

Heat is generated from occupants, equipment, artificial lighting, IT devices and other 

sources inside buildings. Heat is then transferred from elements of the building 

envelope, such as the walls, windows, roofs and doors. They are the common sources of 

building heat load, as illustrated in Figure 3-2. Heat load can be classified into two 

categories: i) external heat load, which is a result of heat transfer from outdoor climatic 

conditions through the building envelope into the conditioned area; and ii) internal heat 

load, which is the heat released from the heat sources inside the indoor environment. 
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The relative proportion of internal and external heat load depends on the types of 

buildings, climatic conditions, building orientation, building design and so on. The total 

heat load of a building consists of sensible and latent heat load. The sensible heat load 

affects dry bulb temperature, whereas the latent heat load affects the moisture content of 

the air-conditioned area. Internal, latent and solar heat loads are considered in common 

design practice [60]. 

 

Figure 3-2 Sources of building cooling load 

i) External factors 

The heat transferred from external sources through the building envelope and partition 

walls is called the external heat load. The major sources of external heat loads [61] are 

listed as follows: 
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a. sensible heat gain through an exterior wall or roof; 

b. sensible heat gain (solar or conductive heat gain) through fenestrations such 

as window glass; 

c. heat gain through partitions, ceilings and interior doors; and 

d. infiltration of outdoor air into the conditioned space. 

Infiltration is the uncontrolled inward flow of outdoor air through cracks and openings 

in the building envelope due to the pressure difference across the envelope [61]. It is 

very difficult to estimate the exact amount of infiltration as it depends on several factors, 

such as the type of the building, the age of the building, indoor and outdoor conditions. 

Indoor and outdoor conditions include wind velocity and direction, outdoor temperature, 

humidity etc. 

ii) Internal factors 

Heat released from the heat sources inside the conditioned space consists of sensible 

and latent heat sources, which collectively make up the internal heat load. Heat is 

generated by occupants, equipment, lighting, appliances and IT devices. The sensible 

heat load is only generated by lighting. However, the conversion of sensible heat gain 

from the three factors discussed below to space cooling load is influenced by the 

thermal storage characteristics of the space. 

a) Electric lights 

The heat load generated from lighting includes light-emitting elements and ballasts. 

It is part of the sensible heat load and is depended on the types of installations 

inside the conditioned area and the devices used [61]. 

b) People 
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Occupants inside a building produce different levels of heat and moisture content 

when they engaged in different activities. The sensible and latent heat loads from 

occupants significantly affect the total heat load in a building. The sensible heat 

rate increases slightly with activities. Moreover, the latent heat rate increases 

significantly with a greater perspiration rate, which is used to maintain the body 

temperature. In such cases, additional heat and moisture are generated by 

occupants and this would significantly affect the short-term predictions. 

c) Equipment and appliances 

Common office equipment and appliances, such as microcomputers, display panels, 

printers, copy machines and communication tools convert electrical energy to heat 

energy. The heat released by these machines has increased remarkably in recent 

years [61]. The head generated by the office equipment and other electric 

appliances contributes to the space surrounding as a by-product of their operation. 

All of the electric energy used for heat generation in office equipment would 

become a waste eventually [62]. The energy consumption of information 

technology (IT) equipment has increased remarkably in recent years. Electrical 

equipment has not only become one of the most important energy consuming 

sectors in office buildings (ranging between 20% and 40% of energy use), but also 

one of the main heat sources loading the cooling system. 

3.3.2 Components that influence building cooling energy 

There are 4 factors that play vital parts in the cooling load consumption of a building:  

i. the buildings’ physical properties; 
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ii. the equipment installed to maintain the desired internal environment, such as 

the ventilation and air conditioning system;  

iii. the building occupants’ schedules, activities and behaviour; and  

iv. the outdoor climatic conditions [63].  

The cooling load energy requirement of a building is governed by the complex 

interactions between the space cooling load, air handling system and the cooling plant. 

These interactions are influenced by time-varying parameters such as internal loads, 

heat gains through the building envelope, occupancy patterns, operating schedules and 

external weather conditions. The interactions are illustrated in Figure 3-3. 

 

Figure 3-3 Components for estimating building cooling load  

The building’s physical properties (building envelope) are critical factors in the cooling 

load. They are assumed to be constant at a particular time and are not considered as 
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inputs in this simulation. The second set of critical factors (the equipment installed to 

maintain the desired internal environment) varies according to the changes in the 

occupant’s presence and behaviour. The outdoor climatic conditions are represented by 

a number of external climate parameters, such as outdoor temperature and relative 

humidity. Therefore, representing building occupancy precisely is the most critical task 

in the development of building cooling load forecasting models. The input parameters 

for ANN models of cooling load prediction are shown in Figure 3-4. 

 

Figure 3-4 Input parameters for building cooling load prediction 

Compared with the external climate parameters, it is relatively difficult to obtain data of 

time-varying parameters, such as internal loading, operating schedule and occupancy 

behaviour, since it is almost impossible to count the number of occupants and to 

determine their behaviour inside a building at a given time. As a result, the randomness 
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linked to occupants, i.e. the differences in behaviour between occupants and the time 

variation of behaviour, is a major contributor to the discrepancy between the simulated 

and actual energy demand of buildings [63]. This might be the reason that building 

occupancy has seldom been adopted as one of the input load parameters in ANN 

cooling load simulation models [26,35,56,57]. The situation becomes even complicated 

if the simulated building is a university building with a number of multi-use facilities, 

which operate 24 hours a day on working days and sometimes on weekends. 

Laboratories inside the university building may require a 24-hour air-conditioning load 

supply. The available timed input parameters are far from adequate for evaluating the 

dynamic changes in cooling loads in such buildings. Chapter 4 will discuss current 

approaches to determine building occupancy and accessing building occupancy using a 

stochastic occupancy model. 

3.4 Hidden and output layers 

i. Rule of thumb 

The number of hidden neurons for a three-layer network is estimated by the rule-of-

thumb as suggested in [64], which adopted the equation (3-1). Nh and 𝑁𝑝  are the 

number of hidden neurons, and Ni  and No  are the number of input and output 

parameters, respectively. 

ii. 𝑁ℎ =
Ni+No

2
+ √𝑁𝑝     (3-1) 

ii) Sensitivity test 

A sensitivity test is also carried out to test the validity of the number of hidden neurons. 

It is determined by observing the change in the prediction error when the number of 
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hidden neurons is varied by ± 5 from the number of hidden neurons determined by 

equation (3-1). 

3.5 Output parameter 

The number of neurons in the output layer of an MLP model is equal to the number of 

system outputs. As the aim of this thesis aim is to predict the building cooling load 

under different internal and external load factors, the output of the MLP model is the 

building cooling load. Therefore, the output layer of the MLP model has only one 

neuron, representing the output of the prediction (i.e. building cooling load). 

3.6 Network Training 

3.6.1 Backpropagation algorithm 

The backpropagation algorithm is one of the most powerful learning algorithms in ANN 

models. The training of all the patterns in a training datum is called the Epoch. The 

training set has to be a representative collection of input-output examples. 

Backpropagation training is a gradient descent algorithm. It tries to improve the 

performance of the neural networks by reducing the total error by changing the weight 

along its gradient. The error is expressed by the root-mean-square value (RMS), which 

can be calculated as follows: 

𝐸 =
1

2
[∑ ∑ |𝑡𝑖𝑝 − 𝑜𝑖𝑝|

2
𝑖𝑝 ]

1

2
 .  (3-2) 

E is the RMS error, t is the network output (target) and o is the desired output vectors in 

the entire pattern (𝑝) computed backward through the network. This error term is the 

product of the error function 𝐸, and the derivative of the activation function, and hence 

is a measure of the change in the network output produced by an incremental change in 
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the node weight values. Therefore, for the output layer nodes and the case of the 

logistic-sigmoid activation, the error term is computed as follows: 

δ𝑝𝑖 = (𝑡𝑝𝑖 − 𝛼𝑝𝑖)𝛼𝑝𝑖(1 − 𝛼𝑝𝑖).  (3-3) 

For a mode in a hidden layer, 

δ𝑝𝑖 = 𝛿𝑝𝑖(1 − 𝛼𝑝𝑖) ∑ 𝛿𝑝𝑘𝑤𝑘𝑗𝑘 ,  (3-4) 

where the 𝑘 subscript indicates a summation over all nodes in the downstream layer and 

the  𝑗 subscript indicates the weight position in each node. 

Finally, the 𝛿 and 𝛼 terms for each node are used to compute an incremental change to 

each weight term via 

∆𝑤𝑖𝑗 = 𝜀(𝛼𝑝𝑖𝛿𝑝𝑖) + 𝑚𝑤𝑖𝑗 (𝑜𝑙𝑑),  (3-5) 

where 𝜀 refers to the learning rate and determines the size of the weight adjustments 

during each training iteration. 𝑚 is the momentum factor, which is applied to the weight 

change used in the previous training iteration, 𝑤𝑖𝑗 (old). 

Both of these constant terms are specified at the start of the training cycle and determine 

the speed and stability of the network. 

3.6.2 Early stop validation approach 

Backpropagation [65] (BP) is a traditional training algorithm used in MLP models. It 

feeds back the prediction errors from the output layer to the input layer and the weights 

of the links between the neurons are adjusted according to the BP algorithm. Upon the 

completion of weight adjustments, a new prediction is carried out to evaluate a new 

prediction error for the next epoch of weight adjustments. These procedures are 
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repeated until a satisfactory prediction result is achieved. In this thesis, the early-stop 

validation approach is adopted to monitor and stop the BP training. Figure 3-6 

illustrates the concept of the early-stop training approach. For model training and 

evaluation, the first 80% of the samples are used for network training, while the 

remaining 20% are hidden during the network-training phase and kept in the reserve as 

a testing set to evaluate the performance of the trained network. 80% of the samples 

used for network training are then further divided randomly into proportions of 75% and 

25% as the training samples and validation samples, respectively. The training set is 

used to train the model with the BP algorithm, whereas the validation set is used to 

monitor and stop the BP training using the early-stop validation approach. The testing 

set does not play a role in the training of the MLP model. Upon completion of the model 

training, the testing set is used to evaluate the performance of the trained model. To 

prevent an ‘over-fitted training’, the intermediate-state trained model in every training 

epoch is applied to the validation set to evaluate the prediction error (i.e. the validation 

error). The network training process stops when the validation error reaches the 

minimum value. With no prior knowledge of the trend of the validation error, ‘early-

stop’ training is adopted. This records the status of the model continuously during the 

training. When there is no reduction in validation error over a predefined number of 

epochs (in this thesis, the number of epochs selected is 1000), the model state with the 

minimum validation error is taken to be the trained model. Figure 3-5 illustrates the 

process. 
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Figure 3-5 Early-stop validation approach of the backpropagation training process 

In Figure 3-5, the early-stop validation approach stops the backpropagation training 

when there is no further improvement in the validation error over a pre-defined number 

of epochs after it has reached its minimum level. The intermediate state of the model 

with the minimum validation error is selected as the trained model. 

3.7 Validation of results 

3.7.1 Performance measures criteria 

Upon completion of the network training, the trained MLP is applied to the testing 

dataset and the performance indices are evaluated by comparing the target values of the 

testing set and the values predicted by the trained model. The performance indices used 

in this thesis are the coefficient of variation (CV), mean absolute percentage error 
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(MAPE) and the coefficient-of-correlation (𝑟), as defined, respectively, in equations (3-

6), (3-7) and (3-8), where N is the total number of samples and {𝑡𝑖𝑝𝑖}𝑖=1
𝑁  are the target 

values and the predicted values, respectively.  �̅�  and 𝑡̅  are the mean value of the 

predicted values and the mean value of the target values, respectively. 

CV =

1

𝑁
√∑ (𝑝𝑖−𝑡𝑖)2𝑁

𝑖=1

�̅�
× 100%  (3-6) 

MAPE =
1

𝑁
∑ |𝑝𝑖−𝑡𝑖|𝑁

𝑖=1

�̅�
× 100%  (3-7) 

𝑟 =
∑ (𝑡𝑖−�̅�)(𝑝𝑖−�̅�)𝑁

𝑖=1

√∑ (𝑡𝑖−�̅�)2𝑁
𝑖=1 ∑ (𝑝𝑖−�̅�)2𝑁

𝑖=1

  (3-8) 

3.7.2 Training schedule 

It should be noted that a random process is normally involved in the network training of 

an MLP model, especially when the available samples are divided into training and 

validation sets. It is thus possible for the random process to result in ‘fortuitous’ 

samples showing that the evaluated performance indices are good. Instead of reporting 

only the best simulation result, a less-prejudiced statistical approach is adopted to 

minimise the effect of randomisation. The network training and performance evaluation 

process are carried out 100 times. The 100 results are statistically analysed by 

evaluating the mean of the results and the limits of the 95% confidence intervals. This 

approach, which differs from those in previous studies [56,57], assesses the 

performance of the ANN model when this less-prejudiced approach is taken, as 

illustrated in Figure 3-6. 
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Figure 3-6 Training scheme designed to minimise the effect of the random data 

extraction process.  

3.8 Conclusion 

The application of ANN models on load forecasting is introduced in this chapter. The 

model architecture includes an input layer, a hidden layer and an output layer. The input 

parameters can be divided into two major categories: internal and external cooling load. 

External cooling load is affected by outdoor climatic change, whereas internal cooling 

load is affected by the occupants’ presence and behaviour. The hidden layer is 

determined by the rule of thumb and the sensitivity test suggested by the study [64]. The 

output layer represents the prediction output, which is the building cooling load. The 

backpropagation algorithm and early stop validation approach are adopted in this ANN 

model and also in the study mentioned [65]. The evaluation is based on the performance 
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indices: the coefficient of variation (CV), mean absolute percentage error (MAPE) and 

coefficient of variation (𝑟). The training schedule and evaluation algorithm with the 

limits of 95% confidence intervals are introduced and discussed [56,57]. The 

importance of internal cooling load and the approach used in this thesis – building 

occupancy modelling will be described in the next chapter. 
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Chapter 4 

Current building occupancy 

modelling 
 

4.1 General 

The building cooling load is affected by four external load factors and the internal load. 

The external load factors include solar radiation, temperature, transmission load and 

ventilation/infiltration load [66]. The reliability of the building cooling load prediction 

depends on the accuracy of the input data. In fact, significant improvements have been 

made in techniques for estimating building geometry, building material properties and 

external weather conditions. However, the improvement in techniques for collecting 

accurate building occupancy information (i.e. people’s presence and behaviour in 

buildings) is relatively slow [21]. 

The presence of occupants and their activities have significant effects on the 

performance of buildings, including its energy efficiency and indoor environment [21]. 

The indoor environment is affected by the occupants’ body temperature and the 

pollutants they emit, such as water vapour, odours and carbon dioxide. These factors 

vary according to the activities occupants are engaged in. As a result, the heat load adds 

to the internal load and this is reported to influence the human comfort level [63]. The 

accumulated heat and pollutants generated by occupants have adverse effects on the 

indoor environment. To ensure their personal comfort level, occupants interact with the 

building systems by adjusting the warming, cooling or ventilation settings and the 

lighting systems. The occupants in an office building may use diverse electrical 
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appliances, which tend to increase the internal heat gains and the electricity 

consumption [68]. Recent studies have been focused on investigating the relationship 

between occupants and their adjustments to the building systems. 

4.2 Interactions between building occupancy and energy consumption  

The most complex processes in buildings energy demand prediction are related to 

human behaviour because people’s behaviour are intrinsically unpredictable. As a result, 

it affects the indoor environment and energy demands in ways that have important 

implications for building energy consumption [68]. 

People enter and leave a building in different entrances and at different timing. They 

can work from 9am to 5pm on weekdays, or they can have flexible working hours or 

even work on weekends. They can also work overtime, take vacations and even sick 

leaves in stochastic rhythms [68]. The influence of occupants on buildings energy 

consumption can be classified into six types of interaction, as illustrated in Figure 4-1 

[63]. 

People produce heat and pollutants such as carbon dioxide, water vapour, odours, etc. 

that affect the indoor environment. Windows, window blinds, luminaries, radiators, fans 

and other appliances can be adopted by building occupants, in order to maintain the 

level of comfort and the quality of indoor conditions [69].  For example, an occupant 

may switch the lighting systems on or off, or adjust window blinds and the thermostat to 

create a visual- and thermal- comfortable environment. All of these interactions in turn 

affect the building’s HVAC system and the thus building energy consumption. If such 

changes do not produce a satisfactory outcome, people will take further actions to 

restore their expected level of comfort [70].  
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Figure 4-1 Interactions between occupants’ presence and behaviour and the internal 

load 

 

4.3 Modelling building occupancy 

Current approaches do not have the level of sophistication required to reflect the 

complicated relations between people’s passive and active actions and building 

performance. Only rough approximations are available according to the general building 

type (residential or commercial), the environmental system (open area or air conditioned 

area) and even the organisational information (working hours) [21]. In fact, previous 

studies have shown that occupants’ behaviour and interactions have a great effect on the 

energy consumption of lighting, electrical appliances, space heating, cooling, ventilation 

and building controls [63]. Over the past 40 years, the simulation of thermal processes 
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in building energy performance has become matured [71]. Simulations have shown that 

occupants’ behaviour is more influential on building energy performance than the 

thermal processes within the building façade. Therefore, accurate simulation results can 

only be obtained if occupants’ behaviour is predictable and follows a routine pattern. 

Current simulation approaches adopt ‘standard profile and diversity factors’ to represent 

these internal load factors. Alternately, some researchers have developed ‘empirically-

based models of people’s presence and actions in buildings’ to simulate building 

occupancy. 

4.3.1 Standard profile and diversity factors 

The building simulation models assume that there are a number of fixed metabolic heat 

generators, which passively experience the indoor environment [72]. Such models 

ignore the fact that office users are not passive and static. In fact, occupants influence 

their immediate working environment by operating the artificial lighting systems, the 

window blinds and glare protection devices and/or the air-conditioning systems. 

Diversity factors are adopted in some simulation models to account for the presence and 

behaviour of occupants [73]. Such models represent the internal heat gains generated by 

occupants, office appliances, artificial lighting and consider the resulting cooling load in 

the simulation results. These models may also categorise buildings into residential or 

commercial types of building. The size and composition of a household can also be 

represented. 

Weekdays and weekends generate two different profiles of energy consumption, due to 

the variations in metabolic heat gain, receptacle load and light load in different hours. 

These differences may be identified in historical data collected from monitored 

buildings or simply by common sense or national guidelines [67]. 
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A standard profile or diversity factors approach can be used to assess the effect of 

occupants’ behaviour on building performance independent of climatic conditions and 

operational schedule. However, one of the significant disadvantages of using diversity 

factors or other similar profiles is that they are derived independent of meteorological 

data [73]. Therefore, energy modelling simulations using standard profiles provide 

results of varying accuracy. In [74], the researchers found that in various US locations, 

the use of average profiles overestimated the electrical energy savings, and that demand 

reduction through occupancy-sensing controls underestimated the heating loads. 

4.3.2 Empirical models of occupants’ presence and actions in buildings 

i) Background 

The presence and actions of building occupants affects the energy efficiency and indoor 

environment. Researchers have investigated how building occupants interact with 

buildings’ environment control systems. They have attempted to determine the 

relationship between occupants’ actions and monitored indoor or outdoor environmental 

conditions such as dry and wet bulb temperature or solar radiation [21]. The following 

studies have offered valuable insights into the circumstances and potential triggers of 

occupancy control actions in buildings. 

ii) Lighting  

Occupants switch on the lights when they are in the office [76]. Moreover, they rarely 

switch off them until the last person has left. Generally, the lightings are switched on at 

the beginning of the workday and off at the end of the workday. In most cases, the lights 

are either all switched on or all switched off. Similar functions were subsequently 

suggested by [76] [77]. 
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The first version of the LIGHTSWITCH stochastic occupancy model was developed in 

[79]; it used field data to predict the arrival, departure and temporary absence 

probabilities of individual occupants in office environments at five-minute intervals. 

The relationship between the propensity toward turning off the lights and the length of 

absence from the room was established [80]; in general, people are more likely to 

switch off the lights when they leave the room for prolonged periods. As suggested in 

[76], there are two important factors, which influence this tendency. They are i) 

occupants switch on the lighting during working hours and seldom switching it off 

when they leave the room temporarily; and ii) occupants switch on the artificial lighting 

only when the luminance level in the room is low. 

The stochastic model of occupant presence in the LIGHTSWITCH model [77,79] 

considers the arrival and departure times of occupants and fine-tunes the standard 

profiles accordingly. Poisson distributions were adopted in [81] to formulate daily 

occupancy profiles for single-occupied offices and lighting patterns were used to 

represent the typical periods of presence and absence in a room. In [82], a sub-hourly 

occupancy model based on Reinhart’s algorithm [78] was integrated into ESP-r to 

investigate the lighting use. Also, Bourgeois developed a method for integrating sub-

hourly stochastic processes into Reinhart’s building simulation. The technique is quite 

applicable in estimating routine occupancy patterns, i.e. a single occupancy office or a 

classroom, but it may not be suitable for the complicated occupancy patterns found in 

many environments. 

iii) Blind operation 

Past studies have shown a strong correlation between the operation of venetian blinds 

and solar radiation intensity [83]. A strong correlation between blind operation rates and 
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building orientation was found [84,85]. Blinds were operated more frequently on 

southern facades. In [85], a specific pattern was observed between blind operation and 

the incident illumination on the façade. The researchers concluded that occupants 

largely ignore short-term irradiance dynamics. Beyond a certain threshold of vertical 

solar irradiance on a façade (50 W.m-2), the deployment level of shades was 

proportional to the depth of solar penetration into a room. This conjecture was 

corroborated in [77]. Once closed, shades seem to remain deployed until the end of the 

working day or when visual conditions become intolerable. Other researchers [84] 

observed that there was a rather low rate of blinds operation throughout the day, 

implying that occupants’ perception of solar irradiance was in long term. Study also 

suggested that occupants manipulate shades mainly to avoid direct sunlight and 

overheating [86]. 

iv) Window opening 

A model based on Markov chains has been established to model the random opening of 

windows by occupants [87]. Records and observations were made of the operation of 21 

south-facing single offices in Freiburg, Germany. The data were used to correlate with 

parameters such as indoor and outdoor temperatures, occupancy rate, solar radiation and 

window status [88]. The results were as follows.  

i) In summer, 60% to 80% of smaller windows were opened, whereas only 

10% were opened in the winter.  

ii) A high window operation rate was found in swing seasons, i.e. spring and 

autumn. 

iii) A strong correlation between window opening rate and outdoor temperature 

was found.  
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iv) 80% of small windows were opened and 60% of large windows were tilted 

when the temperature was above 20°C.  

v) The window operation rate was found to be high in the morning (09:00) and 

afternoon (15:00). 

vi) The window operation rate was found to be high at the time of occupants’ 

arrival and departure. 

vii) Windows were closed at the end of the working day. 

viii) There was a strong correlation between the percentage of open windows and 

the time of a year, outdoor temperature and building occupancy patterns. 

v) Lights and blinds 

A model for predicting occupants’ personal control of electric lighting systems and 

window blinds was established in [72] and [77]. The prediction model was based on 

stochastic functionality and dynamic response to short-term changes in luminance levels 

and occupancy patterns. The presence of occupants was represented by a simple term 

such as arrival and departure. Different models were introduced to predict whether 

lights were switched on upon arrival and switched off upon departure. A stochastic 

simulation model was established in [89] to predict the behaviour of occupants in 

buildings. It also determined the correlation between outdoor temperature and the 

windows open/close rate, heating and window blinds. The correlation between solar 

radiation intensity and window blind operation rate has also been studied.  In [78], a 

stochastic model of arrival and departure was adopted to formulate the interaction of 

occupants with window blinds and lighting systems. The user control actions pertaining 

to lighting and shading systems under different indoor and outdoor conditions occurred 

at the same time [21]. Individuals’ interactions are difficult to predict, but control-
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related actions, trends and general patterns of building occupants can be determined 

from long-term observational data [21]. 

4.4 Current ANN load forecasting model for measuring building 

occupancy 

4.4.1 Factors affecting the internal load 

Time and historical parameters are common features of internal loading models. 

Researchers have tried to identify the best internal loading parameters for modelling 

short-term load prediction. However, loading data for model load estimation and 

forecasting cannot be retrieved directly. Rather, load modelling and prediction require 

basic knowledge of the factors that influence the building load [90]. Both external and 

internal factors are used in load forecasting. The three main types of parameters, which 

have been adopted for prediction models [91], are listed as follows: 

i) Time factors  

Time factors are described in units ranging from time of day, day of week and time 

of year. A building load varies over time according to occupants’ activities. There is 

usually a high building load during the daytime, and a low building load at night. 

Building loads on weekends are lower than on weekdays. There are two peaks of 

building loads during the daytime in an office building: one in the morning and one 

in the afternoon. This piece of information is important for short-term load 

forecasting. Therefore, hourly indicators are important in building load prediction. 

The varying load profiles between weekdays and weekends has also made day 

indicators important. In [92], an ANN model was used to predict short-term load. 

The internal factors used were a day-of-week indicator and the current hour. In [93], 
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an ANN model was applied for sub-station load forecasting. Two different day types, 

representing weekdays and Sundays, were adopted in the load prediction model, and 

each day was divided into 24 data files as an hour indicator. In [94], an ANN model 

was used to model and predict building energy. The internal factors were derived 

from an office located in Athens, Greece. The hourly energy was predicted by an 

ANN model with different inputs parameters including hour type and previous six 

numbers of hourly energy output. In order to investigate the strong effect of building 

occupancy on the building load, the date data were divided into weekday, weekends 

and holiday datasets. In [95], the abovementioned factors were used in an ANN 

model to predict energy consumption. In [96], hour and day indicators and weather-

related factors were used to efficiently predict short-term load forecasting of a local 

load, in Mascouche, Canada. In [97], the month of the year and the day of the week 

were used as input parameters to develop an ANN model for evaluating the Hellenic 

daily electricity demand load. 

ii) Historical load factors  

Historical load factors include previous load consumption and curve patterns. 

Building loads have periodic patterns that vary from hour to hour and from day to 

day; these load can be predicted by models with good accuracy. [98] conducted 

short-term loading predictions for building loads. The temperature and historical 

temperatures and loadings were used as input parameters in the model used to 

predict power consumption. The model also considered the load patterns from 

previous days and weeks. Researchers used an ANN model to predict the power 

distribution over the short term and the medium term [99]. The input parameters for 

critierrthe ANN model included the daily consumption of the previous five days and 
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the climatic data. To predict the consumption at a particular hour, the model used 

the load consumption of the previous 3 hours on the same day [100]. 

iii) Hybrid factors 

An ANN network is a black-box model that does not require the user to know the 

relationships between the inputs and output. It can also map nonlinear inputs to an 

output. Time factors and historical load data are commonly used in ANN models to 

predict short-term loads. An ANN model can predict the next 24-hour load profile by 

adopting the load profiles of the two previous days and the day of the week as input 

parameters [101]. To obtain the average hourly load consumption, a model averages the 

previous three weeks’ load consumption for the same day type, and predicts one day 

ahead hourly load consumption. The model uses the average load consumption for the 

previous hour obtained by averaging the data for three weeks. [41] predicted one day 

ahead hourly loads using average hourly load values obtained by averaging the previous 

three weeks’ load data for the same day type and the average load value for the previous 

hour obtained by averaging the data for three weeks. The multi-layer ANN model 

developed for power systems load forecasting in [102] adopted a 24-hour load profile of 

two days and the day prior to the forecast day, day of the week and holiday as input 

parameters. The load consumption for the previous 24 hours and the day of the week 

were used as the input parameters of an ANN model for predicting the short-term 

electricity load in [103]. In [104], an ANN model was developed to predict hourly 

building energy consumption based on feedback that measured time factors (the hour of 

the day and the day of the week) and the current load. Date, time, weather data and six 

indices representing special events, such as examinations, public holidays etc., and 

historical hourly load consumption data were used as the input parameters, in order to 

predict the next 24 hours load consumption by the ANN model [105]. Past electric load 
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consumption and day type were adopted as the input parameters in the ANN model for 

forecasting electricity load consumption in [90]. 

4.4.2 Limitations of the current ANN approach to determine building 

occupancy 

In previous studies, the building operation conditions have been treated as fixed 

conditions. The presence and interactions of occupants are assumed to be deterministic 

in current simulation programs, which use predefined schedules and day types that 

assume that occupants’ arrive and depart according to a fixed schedule. Great 

differences are found in actual conditions due to the variety in occupants’ behaviour. In 

[106], the occupants were away from their offices for 25% to 30% of the nominally 

occupied hours of the day. Adopting time and historical data as internal load factors is 

sometimes acceptable and may produce reasonable results. However, such an approach 

is likely to have low accuracy in some conditions, for example, the dynamic short-term 

load prediction of a university building with different types of use on each floor. 

4.5 Conclusion 

Current building occupancy modelling is illustrated and discussed. The interactions 

between building occupancy and the cooling energy consumption in the building have 

been investigated. Standard profile and diversity factors are considered to exert an effect 

on occupants’ behaviour and building performance, independent of climate conditions 

and operational schedule. Low accuracy was found when the standard profiles are 

applied in various locations [74]. Empirical models using lighting, blind operation and 

window openings are described. Studies have showed that there is a correlation between 

the ANN models adopted and energy consumption. Current ANN load forecasting 

model for measuring building occupancy is discussed. The model includes time factors, 
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historical load factors and hybrid factors. Studies using the standard profile, diversity 

factors and empirical model are discussed and the limitations of the models are 

suggested. Therefore, a novel approach to determine building occupancy for cooling 

energy consumption prediction is developed in order to improve the accuracy of current 

models. The approach will be discussed in the next chapter. 
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Chapter 5 

A novel approach to determine 

building occupancy 
 

5.1 General 

Building simulation has become an essential part of building design due to today’s 

higher performance requirements and increasing design complexity. Building energy 

simulation models have been used for over 40 years and there are many well-developed 

models of thermal processes [71]. However, building operational characteristics, which 

consist of occupants’ presence and behaviour, have a stronger effect on buildings’ 

energy loads than the thermal processes of building envelopes. Thus, building energy 

simulation models are straightforward if a building’s operational characteristics are 

routine and predictable. Four types of factors, which play a vital part in building energy 

consumption [21], are listed as follows: 

i) physical properties, including type of building, location, orientation, envelope 

materials, etc.; 

ii) electrical appliances, and the heating and cooling systems installed and equipped 

to achieve a desired indoor environment and condition; 

iii) outdoor climatic conditions such as dry and wet bulb temperatures, solar 

radiation, wind speed, etc.; and 

iv) building operational characteristics, including occupants’ presence and 

interactions with the building systems. 
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In [67], it was found that the effects of physical properties and systems could be 

accurately measured and calculated, and where accurate climatic data could be retrieved 

when simulation results were accurate. However, current approaches used to measure 

occupancy rate are far from accurate [21]. Operational information (e.g. working hours 

or holidays), building type (e.g. commercial or university) and HVAC equipment (e.g. 

air conditioning or heating system) have been used to provide general information about 

the effects of human presence and interactions in buildings [21]. It is suggested that the 

interactions between occupants and buildings can exert unpredictable effects on 

building energy performance and the energy demands of the buildings [68]. However, 

occupants’ arrivals, departures and movements between floors are highly variable. 

People may work overtime or be absent from work due to illness or vacations. 

Occupants may not spend all of their working hours in their offices due to lunch and 

breaks, and they may leave theirs seats anytime in a day [63]. As a result, a simple 

model is inadequate to represent occupants’ presence and interactions in a building.  

Traditional ANN energy simulation models are suitable for predicting performance in 

buildings with routine operational characteristics [71]. However, in complicated cases, 

low accuracy might be resulted. Therefore, researchers have recently started to examine 

occupants’ presence and interactions; and investigate their relationship with building 

energy performance. Studies have established a correlation between control actions, 

such as switching lights on/off, opening/closing windows and operating window blinds, 

and measureable indoor or outdoor environmental parameters such as temperature or 

solar radiation [21]. These studies showed that although the interactions of individual 

occupants are difficult to predict, trends and patterns in the control-related behaviour of 

groups could be mined from large datasets [21]. Based on this observation, a novel 
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approach to determine dynamic occupant’s presence and behaviour models was 

developed in this thesis. 

5.2 Current approaches 

Current simulations adopt the ‘diversity profiles’ to represent occupant presence [73]. 

These are based on assumptions about the building energy and the cooling load of the 

internal gains generated by people, equipment and lighting in general categories of 

buildings. Residential, commercial and industrial buildings have their own specific 

diversity profile. Different profiles are created for weekdays and weekends in 

commercial building models. A number between zero and one is estimated as a 

multiplier of some user-defined maximum load for lighting and equipment. Many 

energy standards and codes provide typical diversity profiles for performance-based 

compliance demonstrations [113]. An overview of existing methods for deriving 

diversity profiles was provided in [73]. Current approaches using the diversity profiles 

were also discussed in the ASHRAE Research Project 1093 [114]. One project 

compiled a library of schedules and diversity factors based on measured electricity use 

data that could be used in energy simulations and peak cooling load estimations of 

office buildings [115]. Another project derived multiple sets of diversity factors from 

measured lighting and receptacle loads in 32 office buildings [116]. These studies 

reported that when the use of lighting and office equipment was regular and predictable, 

the building energy use was regular. These parameters were considered to be 

independent of external weather conditions, which was typical of diversity profile 

approaches [115]. They only considered the pattern of occupancy and daylight 

illumination in the core and perimeter zone of a building; hence leading to less accurate 

results. Applying this simulation approach to a complex university building was likely 
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to obtain even more inaccurate results. In a study of identical residential units, 

researchers found that the energy use by different occupants can vary from 200 to 300% 

[117]. A study of various US locations revealed that the use of average profiles 

overestimated energy saving, whereas demand reduction through occupancy sensing 

controls underestimated heating loads [118]. Researchers found that occupants respond 

differently to various sudden environmental stimuli, which trigger abrupt manual 

changes in window-blind settings and artificial light use, and these in turn affect 

electrical energy use and demand [72]. Similarly, many studies have reported that the 

use of diversity profiles can lead to significant errors when they are applied to control 

strategies that are sensitive to short-term variations in occupancy [82]. 

5.3 Occupants’ presence and activity 

5.3.1 Background 

Buildings are becoming more complex in structure, control and operation; at the same 

time, users’ requirements are increasing. Occupants’ presence and interactions are 

important factors in a building’s energy balance and they affect the indoor conditions 

and energy demand [22]. Building energy use is highly correlated with a building’s 

operational and space utilisation characteristics and the behaviour of its occupants. As 

occupants always want to improve or maintain the indoor environmental conditions 

such as thermal comfort level, indoor air quality, luminance level and noise levels, they 

use control devices frequently [19]. Traditional ANN building simulation models use an 

average or fixed profile to represent the metabolic heat generated in an indoor 

environment [72] and do not consider the effects of occupants’ changes to artificial 

lighting systems, window blinds and thermal control systems. The internal heat load of 

a typical office building is an important and inevitable parameter in building energy 
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performance simulation, and it is correlated with occupants’ presence and interactions. 

However, this parameter is not fully considered in many approaches, although thermal 

process estimation for building energy performance has greatly improved in recent 

years [71]. It is believed that current simulation models can obtain accurate estimations 

if the use of a building is predictable and routine. In these cases, occupants’ presence 

and interactions can be assumed to be static, as in current building simulation models 

[19]. Both the occupants’ presence and interactions tend to be handled in entirely 

deterministic ways [22]. The occupants are assumed to arrive and depart at the same 

time and under regular time schedules or patterns. For example, the use of artificial 

lighting is usually 09:00 to 18:00 for normal office working hours. However, occupants’ 

arrivals, departures and movements inside the building are stochastic. They may need to 

work overtime, take sick leaves or vacation leaves [22]. 

5.3.2 User interactions with environmental control systems 

Windows, window blinds, artificial lighting, fans and other similar devices are typical 

control devices in buildings; they can be operated by building occupants to maintain the 

desired indoor environment [69]. It has been observed that occupants seldom switch off 

the lights if they only leave the office for a short time. Moreover, users’ changes to the 

lighting and shading systems reflect the indoor and outdoor environmental conditions 

under which those actions occurred [21]. Previous studies have shown that the actions 

of individual occupants are difficult to predict. However, control-related trends and 

patterns of groups of building occupants can be extracted from long-term historical data 

[21]. As human well-being and productivity are strongly affected by the as-built 

environment, providing comfortable room conditions is a vital part of office building 

design [88]. Thermal comfort can be achieved by adjusting the ventilation or air 
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conditioning settings in the building. Occupants interact dynamically with the building 

systems at various times and in various numbers. Occupants produce metabolic heat 

gains and pollutants, which cause uncomfortable indoor conditions and prompt them to 

adjust the set points of the HVAC systems. Similarly, occupants take action to remove 

excess heat loads and pollutants. Altering the window blind position maintains comfort 

by reducing solar heat gain and this reduces the extra cooling load. Internal heat gain is 

increased by switching on the artificial lighting to maintain visual comfort. Occupants 

also switch on electrical appliances such as desktop computers, copying machines, 

office equipment, etc., which increases the internal heat load in the building. Finally, 

occupants’ arrivals, departures and movements change all of these the energy demand 

over time. The above dynamic interaction of sub-systems in an air-conditioned 

university building is illustrated in Figure 5-1. 

 

Figure 5-1 Dynamic interaction of systems in an air-conditioned university building 
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5.3.3 Stochastic processes of occupants’ presence and activity 

Various types of building systems consume energy in a building, including the 

equipment that provides building services, such as heating, ventilation, air conditioning 

and auxiliary production of electricity or hot water. The climatic conditions and 

occupants’ presence and interactions are also major factors in energy consumption [63]. 

The aggregated presence of occupants is, as discussed above, an essential factor in this 

process. The presence of occupants is therefore an important input parameter of energy 

prediction models. The model for occupants’ presence is central to the family of 

stochastic models [67,68]. The presence of occupants and interactions between the 

occupants and a building are difficult to predict. Improved software tools provide 

sophisticated simulations of physical properties and equipment installed in the building, 

yet the estimation of building occupancy relies on simple fixed profiles of typical 

building occupancy. These have not considered the fact that occupants would emit 

metabolic heat, water vapour, carbon dioxide and odour, etc., they will adjust the 

control devices to maintain a comfortable indoor environment. 

5.4 Measuring building occupancy via stochastic processes 

To maintain the comfort level, occupants operate windows, fans, window blinds, 

artificial lighting, air conditioning and associated installations. Several studies that 

investigated building occupants’ interactions with building control systems and devices 

have provided a comprehensive picture on control-oriented user behaviour in buildings 

[72,75,69,108]. The studies have identified the following features of occupants’ 

presence and interactions in buildings. 
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5.4.1 Pollutants emission and dilution 

Each occupant directly affects the indoor environment by emitting metabolic heat and 

pollutants such as water vapour, carbon dioxide, odours, etc. Occupants exhale carbon 

dioxide (CO2) and a high concentration of carbon dioxide may negatively affect human 

health. Inside the buildings, ventilation fans are used to intake fresh air into the building 

to reduce CO2 concentrations. However, CO2 can also be diluted by air leakage and 

windows opening. Traditional HVAC systems provide a fixed amount of fresh air 

through primary air handling units (PAU). In modern buildings, a variable volume of 

fresh air can be provided by variable speed primary air handling units, which are 

controlled by CO2 sensors. This saves energy. High occupancy rates can lead to a high 

level of CO2 and in these conditions, the PAU adjusts the fan speed using a variable 

speed drive and supplies the required amount of fresh air into the building. Such 

systems vary the volume of fresh air supplied to the air-conditioning system according 

to building occupancy. Thus, the fresh air supply rate can be used to represent the 

building occupancy rate of the building. 

5.4.2 Metabolic heat gain and removal 

Occupants influence and modify indoor environments. They open windows, switch on 

cooling, heating and ventilation equipment, and adjust window blinds and artificial 

lighting. They can also improve their thermal comfort level by adjusting the variable air 

volume (VAV) in an air conditioning system. VAV systems are becoming more popular 

as they can save energy better than the traditional constant volume systems. Low noise 

levels and no condensation are also the advantages of VAV systems. The basic principle 

of a VAV system is that it dynamically supplies adequate air volume to each room 

under different load conditions, and controls the total air volume supplied to each VAV 
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box through two main components: air handling units (AHU) and VAV boxes. It is 

difficult to measure the power of each VAV box in a building, as the number of VAV 

box is enormous in a single building. It is not practical to install so many electricity 

meters. However, the total power consumption of AHUs can be recorded and used to 

illustrate the load profile of the air supply required by different cooling load conditions. 

The presence and departure of occupants influences the supply air volume and this in 

turn affects the total supply air volume of the AHUs. Hence, the total power 

consumption of the AHUs varies with different air supply volume conditions and can 

reflect the occupants’ presence, departures and activity intensity in the building. 

5.4.3 Comfort and demand 

Occupants switch lights on or off to maintain their visual comfort level. The power 

consumption of lights and appliances reflects their activities [63]. When occupants 

arrive in the office, they switch on the lights and associated equipment such as 

computers, copying machines, printers, etc. Thus power consumption correlates with 

occupants’ presence and departure. Artificial lighting provides adequate lux levels and 

visual comfort to the occupants and this affects a building’s energy requirement. For 

instance, it was observed that people were more likely to switch off the lights when they 

left the office for longer periods of time [80]. In [76], it was concluded that people 

switched on the lights during the working hours and kept them on during temporary 

absences. The frequency with which lights are switched on and off depends on each 

occupant’s behaviour, habits and attitudes towards energy conservation. These factors 

play an essential role in energy consumption. The electrical energy is converted into 

light and heat energy at the same time. The heat energy is evacuated by the air 

conditioning, affecting the indoor environment and building energy consumption. The 
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energy consumed inside buildings is related to human activities. Energy resources can 

be split into those used by the HVAC and lighting systems to ensure a comfortable 

indoor environment [63]. As a result, the occupants’ presence determines the power 

consumption of lighting and appliances. 

5.4.4 Arrivals, departures and inter-floor movements 

Studies have found that commercial buildings are not fully occupied for a large 

percentage of working hours [81]. It has been reported that workers spend 25% to 30% 

of business hours away from the office [106]. Three common events were identified in 

studies of building use: arrivals, departures and inter-floor movements in the building. 

During arrivals, occupants arrive at the main entrance floor or lobby, and then travel to 

the desired floors. During departures, occupants leave the office and then travel to the 

lobby or main entrance and exit the building. Occupants may also travel from floor to 

floor within the building. Figure 5-2 demonstrated the characteristics of these three 

types of movement. The three temporal patterns of travel correlate with the occupants’ 

presence and activities in the building. Occupants travel within a building by a vertical 

transportation system – lifts and escalators. Occupants’ traffic reflects the stochastic 

movement of building occupancy. Each lift shows the traffic pattern and the unique 

characteristics of building occupancy, which varies even between buildings with 

identical specifications such as load capacity. As the power consumption of lifts and 

escalators reflects the frequency of occupants’ traffic, a higher power consumption of 

lifts and escalators represents more occupants inside a building. 
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Figure 5-2 Occupants’ arrival pattern in a multi-tenant office building in Paris: (a) up-

peak, (b) down-peak, (c) inter-floor traffic, and (d) stacked total traffic [107].  

5.5 Novel approach to determine building occupancy data 

Although the above four approaches would give approximate building occupancy rates, 

it is still difficult to collect quantitative data to represent building occupancy. The 

following sub-sections propose a novel approach to collecting data on building 

occupancy that can be used as input parameters for building energy predictions. 

5.5.1 Total space electrical consumption of each floor 

Lighting and appliances are switched on and off by each occupant, indicating their 

arrival and departure. The power consumption of each interaction can be measured by 

the electrical energy meter of each floor, which can be installed at the cut-out switch of 

each floor. Electrical energy consumption is measured by the building power 

monitoring system through the energy meters installed for each zone of floors. The 
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system is able to record energy data in 15 minutes intervals. The electrical consumption 

of a floor could be used to represent occupancy.  

5.5.2 Data for the PAU operation schedule in a building 

The PAU operation is an indicator of the fresh air supply rate and CO2 concentration 

inside the building. In this thesis, an alternative approach to this measure is to count the 

central control and monitoring (CCMS) schedule for the PAUs inside a building. 

5.5.3 Day/hour data 

Day/hour data can be used to improve the model prediction accuracy. These parameters 

have been reported to make significant improvements to prediction accuracy. The 

details are discussed in the next chapter. 

5.6 Stochastic model of occupancy and activity inside an air-conditioned 

university building 

Two important parameters, which are the outdoor climatic condition and the indoor 

occupancy rate, are significantly influential on cooling energy consumption. Stochastic 

processes are introduced in the above sessions. Stochastic model to determine the 

building occupants’ presence and activities is established as Figure 5-3. This thesis 

makes use of the parameters stated to perform energy consumption prediction. Figure 5-

3 shows the relationship between occupants’ presence and activity and the building 

cooling load. 
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Figure 5-3 Stochastic model of occupants’ presence and activity inside an air-

conditioned university building 

 

5.7 Conclusion 

Two major input parameters for the building energy simulation are introduced: the 

external and the internal cooling load. External load can be represented by climatic 

weather data, whereas internal cooling load can be indicated by the building occupancy 

data. Current approaches to determine building occupancy adopted diversity profiles 

based on the assumptions of performance-based compliance demonstrations, including 

types of buildings, lighting operation and window blind operation. The results showed 

that the standard profile could not accurately predict the actual energy consumption. 

The dynamic changes of occupants’ activities and the environmental condition were not 
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comprehensively considered.  As a result, improvement on building occupancy model 

needs to be achieved. Researchers have adopted various stochastics processes of 

occupants’ presence and activity, including measuring pollutants emission and dilution, 

heat gain and loss, demand for comfort level, occupants’ arrivals and departures, and 

also their inter-floor movements. However, only four approaches reported 

approximation of building occupancy rates and it was also challenging to collect 

quantitative data in actual situation. A novel approach to collect building occupancy 

data for stochastic model is developed. Three major parameters of the model are listed 

as follows: 

i) total space electrical consumption of each floor;  

ii) data for the PAU operation schedule in a building; and  

iii) day/hour data. 

The parameters are able to represent the internal building occupancy in the simulation 

model. The simulations with different input parameters based on this novel approach 

will be described in the next chapter. 
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Chapter 6 

Application of the novel approach in 

ANN model 
 

6.1 General 

Currently, the ANN approach is the most widely used approach for simulating the 

energy consumption of buildings’ electrical and HVAC systems. It is a sophisticated 

and useful tool for evaluating the performances of different systems. In this thesis, the 

ANN model discussed in previous chapters would be applied to a university building. 

This chapter introduces a novel model for cooling energy prediction that uses a space 

electrical power consumption profile, operation schedule of fresh air units and the day 

or hour type. 

6.2 Characteristics of the sample university building  

The cooling load in a building is affected by several parameters. The two main 

components identified in the previous chapters are outdoor climatic condition and the 

presence and activity of building occupants. However, the degree of influence of these 

factors varies with forecasting type (e.g. short term/medium term), climatic zone, 

building orientation, building type (e.g. commercial/residential building), building 

occupancy (e.g. presence and behaviour), operational schedule (e.g. fixed / dynamic 

schedule) and etc. 

In this thesis, a university building in Hong Kong is studied and analysed. The thesis 

introduces a neural networks technique that uses dynamic operation area and occupancy 
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rate as internal load parameters. The approach adopts the multi-layer perceptron (MLP) 

model, which is one of the ANN models that widely adopted in engineering approaches 

for cooling energy consumption estimation of buildings. The training samples includes 

climatic data obtained from the Hong Kong Observatory and building operational data 

retrieved from the existing university building. 

The university building had a gross floor area of 70000 m2. There are two blocks, each 

with seven floors. Both blocks are northwest oriented. The building accommodates 570 

employees and 10,800 students. The building envelope is mainly reinforced concrete 

and it has fixed windows with absorptive glazing. The window area occupies 

approximately 50% of the building facade. Manually controlled blinds are provided for 

all of the windows. The university building operates from 07:00 to 23:00 on weekdays, 

and 07:00 to 18:00 on Saturdays. The building cooling system needs to operate in 

winter to cater to the cooling requirements of critical laboratory areas and computer 

centres, and to maintain occupants’ expected comfort level. The building cooling 

system is a central air-cooled chiller system. Air-cooled screw-type chillers are adopted 

with a total installed plant capacity of 1800 tonnes. Each chiller consists of two 

refrigeration circuits with four screw compressors. The refrigerant used is R134a. The 

shell-and-tube flooded type evaporator is designed to produce chilled water at a constant 

flow rate, with supply and return temperatures of 7oC and 12.5oC, respectively. The 

cooling output is by stepwise control from 25% to 100%; the system adjusts the number 

of compressors while controlling the chilled water temperature supplies at 7oC. There is 

a two-level pumping design, defined as primary and secondary pumps, to distribute 

chilled water to various areas. Fan coil units are individually controlled by the 

occupants. The design criteria are summarised in Table 6-1. The central chiller plant is 

controlled by a CCMS equipped with an auto-sequencing program. As fume extraction 
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systems are installed in some laboratory areas, fresh air is supplied by PAUs to 

compensate the large amount of indoor air discharged by the exhaust fans. The lighting 

systems, fume extraction systems and the HVAC system are all controlled by the 

CCMS. Their operation schedules can be readily obtained. 

Total floor area : 70000 m2 No. of occupants : 11370  

Ambient 

condition : 

Summer 
33oC dry bulb 

66% saturation Indoor design 

condition : 

Summer 
25.5oC dry bulb 

54% saturation 

Winter 
10odry bulb 

40% saturation 
Winter 

20oC dry bulb 

50% saturation 

Chilled water 

temperature : 

Supply temp. 7oC 
Normal operation 

schedule : 

07:00 to 23:00 (Weekdays) 

07:00 to 18:00 (Saturdays) 

Return temp. 12.5oC Total cooling capacity : 1800 tonnes 

Table 6-1 Design criteria of the cooling system 

 

6.3 Development and training of the ANN model 

The well-known feedforward backpropagation (BP) function is used as the primary test. 

The function can be used to perform nonlinear modelling without prior knowledge of 

the relationship between the input and output parameters. The Levenberg-Marquardt 

algorithm significantly outperforms the basic backpropagation and BP’s variations with 

variable learning rate in terms of training accuracy, convergence properties and overall 

training time. The Levenberg-Marquardt algorithm can be considered a trust-region 

modification to the Gauss-Newton algorithm [109]. The convergence rate of the 

Levenberg-Marquardt algorithm is known to be super-linear. The only disadvantage of 

the algorithm is that the computation solution and memory requirement are 

comparatively higher per iteration. 

The training process uses the gradient descent method. This is a network training 

function that updates the weight and bias values according to Levenberg-Marquardt 
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optimisation. It minimises a given combination of squared errors and weights, and then 

determines the correct combination to produce a network that can be generalised. 

A three-layer feedforward model, which consists of an input layer, a hidden layer and an 

output layer, is adopted.  As discussed in Chapter 4, the external and internal load 

factors are the model inputs, and the output is the electrical power consumption of the 

chiller plant, as depicted in Figure 6-1. MATLAB’s neural network function model is 

used in the simulation. The activation function adopted in the ANN model is a sigmoid 

function. To avoid over-fitting and to provide the best generalisation, an automated 

regularisation feature is built into the MATLAB Levenberg-Marquardt algorithm. 

 

Figure 6-1 Architecture of the prediction model 
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6.4 Model training and prediction results 

6.4.1 Input parameters and algorithm development 

The ANN model adopted in this thesis is based on the Levenberg-Marquardt back-

propagation algorithm. A three-layer feedforward configuration is adopted that includes 

an input layer, a hidden layer and an output layer. The external and internal load factors 

are the model inputs. The output of the model is the electricity energy consumption of 

the central chiller plant. Seven climatic variables, dry bulb temperature, wet bulb 

temperature, rainfall, mean wind speed, cloud condition, solar radiation and visibility, 

are adopted as the external load factors. Hourly weather data are obtained from the 

Hong Kong Observatory for the 1 January 2010 to 31 December 2011 period. The PAU 

operation schedule, hour-type/day-type and the occupancy space electrical power 

demand are adopted as the internal load factors. The actual building cooling load 

demand (kWh) is obtained from the BPMS for ANN model training and validation. The 

electrical power consumption data are retrieved from the BPMS at 15-minute intervals 

and are aggregated into hourly data and daily data for the hourly and daily estimations, 

respectively. For the 1 January 2010 to 31 December 2011 period, 17520 samples of 

hourly data are collected from the BPMS. 

The data for the PAU operation schedule is estimated as 

 

hourly value =  ∑ (
flow rate of PAUn𝑥 operating hours of PAUn

total flow rate x 24 hours
  )N

n=1 ; (4) 

daily value = sum of hourly value,     (5) 

where N is the total number of PAUs and n represents the nth PAU. 

The daily value is equal to 1 when all of the PAUs is switched on for 24 hours, and is 

equal to 0 when all of the PAUs are switched off. 
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Hour-type is indicated as a value between 1 and 24 to represent the hours in a day. The 

representation of day-type is as shown in Table 6-2. 

 

Day-type Day of the week 

0 Public holiday 

1 Monday 

2 Tuesday 

3 Wednesday 

4 Thursday 

5 Friday 

6 Saturday 

7 Sunday 

Table 6-2 Representation of day-type 

This thesis focuses on hourly and daily cooling load predictions for a whole year. 

Therefore, the 2010 and 2011 yearly data are adopted. In each study, simulations with 

different input parameters are conducted for comparison purposes, as described in Table 

6-3. Moreover, a simulation study for evaluating variability is also performed. 

 

Load factor Input parameter 
Simulation 

A B C D 

External Weather data1     

Internal Operation schedule of PAU     

Hour-type/day-type2     

Occupancy space power 

demand 
    

Note: 
(1) Weather data includes dry bulb temperature, wet bulb temperature, global radiation, 

wind speed, rainfall, visibility and cloud condition 

(2) Hour-type is used for hourly predictions and day-type is used for daily predictions 
 

Table 6-3 Four simulations with different input parameters 

The total computation number conducted is 2 x 2 x 4 x 6 x 100 = 9600, as estimated as 

follows: 

 hourly and daily predictions are conducted for 2010 and 2011; 

 four simulations with different input parameters are performed; 

 there are six estimations in each simulation; and 

 100 trials are performed for each estimation. 
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6.5 Hourly and daily cooling load prediction 

The simulations are performed separately on the 2010 and 2011 datasets. For each year, 

the yearly data are divided into 12 months. The data from each month are further 

divided into six sessions. For each estimation, five sessions in each month are adopted 

for training the ANN model and the remaining session is reserved for verifying the 

model output. Six estimations are conducted in each simulation, which is useful for 

assessing the variability in the predictions. The overall accuracy of the overall cooling 

load prediction is assessed by averaging the six estimations. Tables 6-4 and 6-5 

summarises the performance indices of the simulation results for 2010 and 2011, 

respectively. The variability reflected in the six estimations is discussed in Section 6.6.2. 

The performance index is statistically analysed by evaluating the upper and lower limits 

of 95% confidence intervals. 

 

Performance index 

Hourly simulations Daily simulations 

A B C D A B C D 

R (95% upper limit) 0.769 0.861 0.890 0.927 0.819 0.910 0.919 0.935 

R (95% lower limit) 0.615 0.744 0.790 0.841 0.540 0.687 0.684 0.726 

Mean R 0.692 0.803 0.840 0.884 0.680 0.799 0.802 0.831 

MAPE (95% upper limit) 18.128 14.005 12.662 10.431 8.886 7.307 7.269 6.208 

MAPE (95% lower limit) 13.691 10.286 9.296 7.435 5.293 3.764 3.883 2.965 

Mean MAPE 15.910 12.146 10.979 8.933 7.090 5.536 5.576 4.587 

CV (95% upper limit) 21.438 17.579 16.191 12.961 9.875 8.088 8.200 6.919 

CV (95% lower limit) 16.407 12.951 11.727 9.298 6.201 4.655 4.587 3.617 

Mean CV 18.923 15.265 13.959 11.13 8.038 6.372 6.394 5.268 

Table 6-4 2010 hourly and daily simulation results 

 

Performance index 

Hourly simulations Daily simulations 

A B C D A B C D 

R (95% upper limit) 0.746 0.820 0.860 0.911 0.810 0.925 0.924 0.978 

R (95% lower limit) 0.594 0.696 0.750 0.821 0.462 0.736 0.717 0.776 

Mean R 0.67 0.758 0.805 0.866 0.636 0.831 0.821 0.877 

MAPE (95% upper limit) 16.856 12.547 11.293 9.874 7.741 6.167 6.289 6.819 

MAPE (95% lower limit) 12.915 9.767 8.418 6.916 4.355 3.007 3.167 2.782 

Mean MAPE 14.886 11.157 9.856 8.395 6.048 4.587 4.728 4.801 

CV (95% upper limit) 20.195 16.278 14.872 13.080 8.823 6.986 7.140 7.701 

CV (95% lower limit) 15.751 12.709 11.098 8.957 5.106 3.705 3.721 3.326 

Mean CV 17.973 14.494 12.985 11.019 6.965 5.346 5.431 5.514 

Table 6-5 2011 hourly and daily simulation results 
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Figures 6-2 and 6-3 shows graphically the actual and predicted load profiles for the 

hourly simulations in a typical week from 2010 and 2011, respectively. Figures 6-4 and 

6-5 shows graphically the actual and predicted load profiles for daily simulations in a 

typical month from 2010 and 2011, respectively. 

 

Figure 6-2 2010 hourly simulation results 

 

 

Figure 6-3 2011 hourly simulation results 
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Figure 6-4 2010 daily simulation results 

 

 

Figure 6-5 2011 daily simulation results 

 

6.6 Discussion 

6.6.1 Overall prediction performance 

Figure 6-6 presents a comparison of the performance indices of the four simulations for 

hourly and daily cooling load predictions in 2010 and 2011. 
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Figure 6-6 Comparison of the performance indices for the four simulations 

 

The performance of Simulation A is far from satisfactory. This is as expected since 

external weather variables are the only input parameter. The prediction performance 

improves when the PAU operation schedule (Simulation B) and hour-type/day-type 

(Simulation C) are introduced. For the hourly prediction, Simulation C has a better R 

value than Simulation B. For the daily prediction, the R values for Simulations B and C 

are similar. The same pattern is observed in the MAPE and CV values for Simulations B 

and C. As a result, it can be concluded that the use of hour-type as an input parameter 

improves the hourly prediction performance, but the use of day-type as an input 

parameter do not improve the daily prediction performance, as the variation in cooling 

loads between weekdays is small. It was evident that Simulation D has best performance 

in both hourly and daily predictions. The improvement is significantly obvious for 

hourly predictions. As the daily variation of energy consumption is less rapid than the 

hourly variation, the daily prediction is expected to be more accurate. The simulation 

results, which are presented in Tables 6-4 and 6-5, and Figure 6-6 confirms this 

conclusion.  

The prediction results for the 2011 data are selected for detailed study. The prediction 

results for 2010 show similar patterns and therefore are not discussed further. Tables 6-6 
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and 6-7 show the performance indices for the hourly and daily simulation results for 

Simulation D in each month of 2011. The graphical representations are shown in 

Figures 6-7 and 6-8, respectively. The performance index is statistically analysed by 

evaluating the upper and lower limits of 95% confidence intervals. 

 

Table 6-6 Monthly performance indices of the 2011 hourly prediction results (Simulation D) 

 

Table 6-7 Monthly performance indices of the 2011 daily prediction results (Simulation D) 

  

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

R 
upper limit 0.754 0.670 0.884 0.936 0.965 0.972 0.970 0.977 0.974 0.971 0.955 0.908 0.911 

lower limit 0.538 0.313 0.764 0.892 0.904 0.950 0.942 0.956 0.945 0.927 0.909 0.816 0.821 

MAPE 
upper limit 10.244 16.021 13.378 9.393 8.030 8.333 7.525 6.207 8.489 7.990 10.054 12.822 9.874 

lower limit 7.105 10.020 10.046 7.165 5.303 5.847 5.634 4.494 5.871 5.338 6.892 9.276 6.916 

CV 
upper limit 12.628 24.222 17.498 12.515 12.511 10.356 10.162 7.902 10.563 10.082 12.201 16.324 13.080 

lower limit 9.034 13.391 12.697 9.328 7.758 7.576 7.385 5.808 7.536 6.674 8.495 11.797 8.957 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

R 
upper limit 0.956 0.967 0.984 0.988 0.966 0.985 0.979 0.986 0.967 0.984 0.995 0.980 0.978 

lower limit 0.419 0.302 0.854 0.885 0.882 0.812 0.862 0.845 0.817 0.837 0.946 0.858 0.776 

MAPE 
upper limit 9.656 12.666 9.283 5.586 5.122 4.548 4.418 4.727 4.107 5.002 5.942 10.776 6.819 

lower limit 3.211 5.601 4.126 1.965 2.389 1.875 1.935 2.174 1.977 2.137 2.130 3.860 2.782 

CV 
upper limit 11.417 14.452 10.258 6.423 5.828 5.275 4.842 5.217 4.949 5.787 6.546 11.414 7.701 

lower limit 3.938 6.748 4.822 2.449 2.880 2.283 2.345 2.454 2.394 2.571 2.480 4.543 3.326 
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Figure 6-7 Monthly performance indices of the 2011 hourly prediction results 

(Simulation D) R (upper) and MAPE and CV (lower) 
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Figure 6-8 Monthly performance indices of 2011 daily prediction results 

(Simulation D) R (upper) and MAPE and CV (lower) 

 

As observed, both the hourly and daily prediction performances are less accurate in 

December, January, February and March. The spread of performance indices in these 

months is also large. These months are in winter season in sub-tropical Hong Kong, 

when the monthly average outdoor temperature is below 20oC. The winter indoor design 

condition of the building cooling system is set at 20oC (Table 6-1). However, the 

building cooling system still needs to operate in winter to cater the cooling requirements 
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of critical laboratory areas and computer centres, and to maintain the occupants’ 

comfort level. As in winter, heat generated by human activities is removed by the 

cooling system and absorbed by the building, the correlation between the building 

cooling load and occupancy space power demand is not strong in these months. 

In contrast, both the hourly and daily prediction performances from April to November 

are better than the yearly mean. The spread of the performance indices in these months 

is also small. The summer in sub-tropical Hong Kong includes June, July, August and 

September. The monthly average outdoor temperature is around 29oC. The summer 

indoor design condition of the building cooling system is set at 25.5oC (Table 6-1). The 

prediction performance in the summer is very satisfactory. The best 95% lower limits of 

MAPE and CV in the hourly predictions are 4.494% and 5.808%, respectively, and in 

the daily predictions they are 1.935% and 2.345%, respectively. An inspection of the 

actual electricity consumption reveals that the prediction performance is satisfactory 

when the building cooling load demand is higher than the occupancy space power 

demand.  

A similar study conducted for an office building in Hong Kong is selected for 

comparison [110]. That study used CO2 concentration as a proxy for human behaviour. 

The study adopted an ANN approach to perform short-term (one week) hourly building 

cooling load predictions. A direct comparison may not be fully appropriate as the 

building used and the prediction periods are very different in the two studies. 

Nevertheless, a comparison of the prediction accuracy is shown in Table 6-8. It shows 

that the ANN model proposed in this study performs better in terms of the best result 

and variations in various trials. 
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ANN model in [26] Proposed ANN model 

One-week hourly prediction 

(RMSPE) 

Hourly prediction in 2011 (CV) 

Yearly average Best month 

95% lower limit 12.12 8.957 5.808 

95% upper limit 16.36 13.080 7.902 

Table 6-8  Comparison with previous study 

 

6.6.2 Variability in prediction performance 

As mentioned in Section 6.4, six estimations are conducted in each simulation. Figure 6-

9 shows the prediction results of the six estimations in Simulation D for hourly and 

daily predictions in 2011. Only the R and CV values are shown. Tables 6-9 and 6-10 

present the mean performance indices of the six estimations for hourly predictions and 

daily predictions, respectively. 
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Figure 6-9 2011 prediction results with six estimations (Simulation D) hourly (upper) 

and daily (lower) 
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Month 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Estimation 

R 

1 0.305 0.244 0.827 0.810 0.935 0.967 0.975 0.977 0.962 0.928 0.969 0.751 

2 0.483 0.563 0.802 0.920 0.959 0.961 0.970 0.953 0.981 0.962 0.917 0.856 

3 0.738 0.726 0.904 0.944 0.974 0.961 0.931 0.969 0.965 0.822 0.949 0.907 

4 0.818 0.101 0.678 0.920 0.961 0.959 0.920 0.971 0.961 0.982 0.939 0.772 

5 0.655 0.617 0.883 0.922 0.667 0.961 0.948 0.979 0.933 0.976 0.888 0.889 

6 0.748 0.723 0.751 0.927 0.909 0.950 0.965 0.933 0.951 0.962 0.921 0.848 

 mean 0.625 0.496 0.808 0.907 0.901 0.960 0.951 0.963 0.959 0.939 0.931 0.837 

 S.D. 0.177 0.239 0.077 0.044 0.107 0.005 0.020 0.016 0.015 0.055 0.026 0.057 

CV 

1 13.265 9.995 14.076 13.775 8.900 9.887 8.559 6.452 9.450 8.395 7.703 13.764 

2 10.835 19.148 13.343 11.780 7.265 9.889 9.398 7.289 5.790 7.483 11.526 18.674 

3 8.878 21.730 14.376 10.331 10.406 6.988 8.101 5.753 7.842 12.658 10.856 9.689 

4 7.915 16.507 13.645 10.015 9.655 6.604 7.079 6.289 6.873 5.431 9.167 10.212 

5 10.494 11.373 19.731 8.950 6.838 8.739 8.693 5.136 10.579 6.229 10.370 13.411 

6 10.198 17.346 11.971 8.408 11.393 8.048 7.953 10.404 11.229 8.161 11.011 16.244 

 mean 10.264 16.017 14.524 10.543 9.076 8.359 8.297 6.887 8.627 8.060 10.105 13.666 

 S.D. 1.675 4.129 2.450 1.798 1.622 1.283 0.716 1.704 1.958 2.304 1.299 3.150 

Table 6-9 2011 hourly prediction - mean performance indices of the six estimations 

(Simulation D) 

 

Month 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Estimation 

R 

1 0.045 0.255 0.926 0.871 0.873 0.653 0.955 0.939 0.856 0.863 0.962 0.972 

2 0.541 0.936 0.851 0.907 0.869 0.913 0.846 0.988 0.898 0.975 0.981 0.987 

3 0.782 0.928 0.756 0.974 0.988 0.952 0.965 0.888 0.888 0.955 0.976 0.241 

4 0.859 0.312 0.905 0.967 0.980 0.936 0.630 0.868 0.930 0.826 0.971 0.765 

5 0.328 0.932 0.970 0.880 0.113 0.899 0.738 0.907 0.959 0.940 0.974 0.934 

6 0.869 0.952 0.964 0.961 0.827 0.939 0.944 0.981 0.925 0.951 0.982 0.623 

 mean 0.571 0.719 0.895 0.927 0.775 0.882 0.846 0.928 0.909 0.918 0.974 0.754 

 S.D. 0.304 0.309 0.074 0.042 0.302 0.104 0.125 0.045 0.033 0.054 0.007 0.263 

CV 

1 10.290 5.421 7.692 2.664 5.345 2.849 4.994 1.649 5.797 4.963 2.702 10.748 

2 7.567 21.911 6.923 4.836 4.547 3.846 4.162 5.967 2.485 2.239 5.826 6.123 

3 7.152 7.503 7.621 2.551 2.969 3.698 2.395 4.188 3.139 3.029 3.218 7.655 

4 4.594 4.681 3.720 2.739 2.639 4.752 2.936 2.179 3.231 3.900 3.352 7.433 

5 5.257 5.870 12.036 4.224 4.479 2.956 3.441 3.248 2.036 3.825 5.107 7.375 

6 5.707 8.147 5.061 4.953 5.011 3.284 3.319 4.146 2.653 6.208 3.370 7.304 

 mean 6.761 8.922 7.176 3.661 4.165 3.564 3.541 3.563 3.224 4.027 3.929 7.773 

 S.D. 1.885 5.929 2.600 1.036 1.009 0.641 0.840 1.425 1.219 1.283 1.129 1.419 

Table 6-10 2011 daily prediction - mean performance indices of the six estimations 

(Simulation D) 

 

In winter (December, January, February and March), there are large variations in the 

performance indices between the six estimations. Extreme results are noted in the daily 

predictions. The prediction performance in this season is less accurate for the reasons 

discussed in Section 6.6.1. For other months, the variation in the prediction performance 

is modest. In particular, the prediction variation in summer (June, July, August and 

September) is very modest.    
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The observed prediction variation in this study is different from that in the simulation 

results reported in [111], where the cooling demand varied by a factor of two between 

extreme cases. That large variation was mainly due to variations in individual behaviour, 

which was reflected in the individual variation in the use of shading devices and the 

window opening ratio of a small artificial office unit. This thesis is conducted at the 

building level rather than the office level. The occupants do not individually control 

window opening and the window blind positions are rarely altered. However, the 

prediction variation in summer in this thesis matches the simulation results for cooling 

demand presented in [112]. 

6.6.3 Daily peak cooling demand prediction performance 

The prediction performance of the daily peak cooling load demand during the hot 

season is of particular interest, as this is a piece of useful information for system 

dimensioning. Tables 6-11 and 6-12 summarises the prediction performance indices for 

daily peak load demand in 2010 and 2011, respectively. 

 The results reveal that the prediction performance in summer (June, July, August and 

September) is comparable to the overall prediction performance presented in Tables 6-4 

and 6-5. Although the variation in prediction performance in other months is moderate, 

the prediction performance in winter season shows a large variation. The performance 

index is statistically analysed by evaluating the upper and lower limits of 95% 

confidence intervals. 
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Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

R 
upper limit 0.881 0.965 0.971 0.983 0.962 0.944 0.813 0.931 0.990 0.958 0.934 0.963 

lower limit 0.453 0.484 0.894 0.871 0.864 0.747 0.527 0.596 0.052 0.832 0.825 0.782 

MAPE 
upper limit 13.921 15.359 9.657 9.796 6.287 6.248 4.639 5.612 8.430 7.980 7.634 13.808 

lower limit 6.278 5.750 3.949 4.122 3.156 2.997 2.313 2.786 3.312 3.649 3.193 5.799 

CV 
upper limit 15.463 16.574 10.583 10.426 7.402 7.018 5.660 6.575 9.366 9.064 8.619 15.577 

lower limit 7.564 6.736 4.787 5.146 3.961 3.618 2.862 3.423 4.064 4.506 4.096 6.961 

Table 6-11 Monthly performance indices of 2010 daily peak prediction results 

(Simulation D) 

 

 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

R 
upper limit 0.881 0.757 0.952 0.979 0.964 0.906 0.938 0.766 0.912 0.937 0.929 0.929 

lower limit 0.378 0.201 0.786 0.841 0.838 0.598 0.790 0.402 0.677 0.663 0.757 0.663 

MAPE 
upper limit 15.381 19.680 11.657 8.303 7.764 6.237 5.533 5.101 5.958 6.364 7.802 13.622 

lower limit 6.062 9.459 5.712 3.592 4.100 3.320 2.867 2.737 2.958 3.136 3.778 5.930 

CV 
upper limit 17.795 23.095 13.851 9.232 8.848 7.257 6.539 6.433 6.914 8.092 9.368 15.962 

lower limit 7.718 12.410 7.503 4.254 4.753 3.854 3.538 3.595 3.654 4.144 4.699 7.548 

Table 6-12 Monthly performance indices of 2011 daily peak prediction results 

(Simulation D) 
 

6.7 Conclusion 

This chapter describes the application of the novel approach, which includes the 

building occupants’ presence and activities as an input parameter, on cooling load 

prediction. Occupants’ activities are determined by i) the occupancy space power 

demand, ii) operation schedule of fresh air units and iii) the day/hour type. The 

simulation results reveal that the novel approach can significantly improve the accuracy 

of the cooling load prediction. The prediction performance is found to be enhanced 

compared with the previous similar studies [26]. 
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Chapter 7 

Conclusions and Recommendations 
 

7.1 Conclusions 

The presence and activities of occupants in the building can exert a significant impact 

on the cooling energy consumption depending on their energy efficiency measures 

taken and their expected indoor comfort level. Also, current building control systems 

have been adopted the principles of engineering and assumed preference averages. As a 

result, the uncertainties of the presence and interactions of building occupants may lead 

to questionable performance outcome accuracy in energy prediction models. However, 

the uncertainties related to the presence and interactions of building occupants have not 

been investigated intensively.  

Many researchers employed the ANN models for energy prediction in the past decade 

and revealed a high accuracy. As a result, ANN prediction models, which use historic 

data to determine the energy demand prediction in dynamic short-term loads, are 

adopted in this thesis. 

This thesis reviews different approaches or models for building cooling load prediction, 

from the state-of-art approaches to the recently intelligent approaches. It also introduces 

a novel approach that takes the behaviour of building occupants into account. 

Occupancy space power demand is used as a proxy for occupants’ activities. Power data 

recorded by an intelligent networked building power monitoring system (BPMS) is used 

to test the new approach. The electrical power consumption of a fully air-conditioned 

university building in Hong Kong in 2010 and 2011 is used to conduct the simulation 

study.  
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The simulation results reveal that the use of occupancy space power demand 

significantly improves the accuracy of the cooling load prediction. The prediction 

performance is found to be greater than that in the similar study [26]. Table 6-8 

demonstrates the prediction performance improvement as below: 

i) Yearly average prediction (CV) is 8.957% at 95% lower limit of confidence 

intervals and 13.080% at 95% upper limit of confidence intervals; 

ii) Best month prediction (CV) is 5.808% at 95% lower limit of confidence 

intervals and 7.902% at 95% upper limit of confidence intervals. 

In conclusion, the results of cooling load prediction simulations can be significantly 

improved by adopting the novel approach suggested in this thesis, which determine the 

building occupancy by the following areas: 

i) total space electrical consumption of each floor; 

ii) data for the PAU operation schedule in a building; and 

iii) day/hour type. 

7.2 Recommendations for future research 

A novel approach to determine occupancy activity is developed and validated. The 

simulation results reveal improved accuracy in cooling load prediction in a university 

building. However, further validation and verification are required. The proposed ANN 

model can be applied to other types of buildings that have similar building systems 

configurations, such as office buildings; commercial complexes and shopping arcades, 

to further investigate the effect of the approach on improving the cooling load 

prediction. In the future, ANN models can be implemented in researches that aim at the 

following goals: 

i) to optimise the chiller operational sequence and mode; 
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ii) to improve the model’s accuracy in winter; 

iii) to use the model in a smart-grid demand response study; 

iv) to apply the novel model on heating plant of the buildings; and 

v) to verify the novel model by apply in different types of buildings. 
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Appendix I 

A brief introduction to ANNs 
 

Introduction 

An ANN model consists of a number of neurons that are interconnected within a neural 

network. The arrangement of an ANN is as follows: 

 

𝑌 = 𝐹 ∑(𝑝1𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 + 𝑝4𝑤4), 

where Y is the sum of p1w1, p2w2, p3w3, and p4w4. F is a transfer function and the 

sigmoid function is determined by the following equation: 

𝐹(𝑥) =
1

1 + e−ax
. 

Most of the neurons within the network are simple processing units that each take one or 

more inputs and produce an output. At each neuron, every input has an associated 

weight that modifies the strength of the input. The neuron simply adds together all of 

the inputs and calculates an output that it then passes on. 

Backpropagation model 

The typical neural network shown in Figure 3-1 is a feedforward type of network, in 

which computations proceed in the forward direction only. There are three layers of 

neurons: input, hidden, and output. The number of input neurons corresponds to the 

number of variables in the input vector used to forecast future values. The hidden layer 
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and neurons play very important roles in the network. The hidden neurons in the hidden 

layer allow neural networks to perform complicated nonlinear mapping between input 

and output variables. The output obtained from the output neurons constitutes the 

network output. 

Backpropagration is the most popular and powerful learning algorithm for neural 

networks. Each step of training on the dataset is called an epoch. The training set has to 

be a representative of the actual dataset. Backpropagation training is an error-driven 

algorithm that tries to improve the performance of the neural network by using the 

weights along its gradient to reduce the total error. 

The input data enter into the network via the input layer. Each neuron in the network 

processes the input data and the resultant values steadily “percolate” through the 

network, layer by layer, until a result is generated by the output layer. The actual output 

of the network is then compared to expected output for the given input. This results in 

an error value. The connection weights in the network are gradually adjusted, working 

backwards from the output layer, through the hidden layer, to the input layer. This 

iterative process continues until a reasonable accuracy is achieved. Fine tuning the 

weights in this way teaches the network how to produce a reasonable prediction for a 

particular input through network learning. 
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Appendix II 

Configuration of the computational 

machine 
 

Hardware 

 

Chipset  Intel 965 chipset 

CPU   Pentium Core 2, 1.86 GHz, 533 MHz FSB 

RAM   2 x 1 GB, DDR 333 MHz 

Disk   250 GB, SATA-100, 7200 rpm 

DVRW  Read 16x, Write 12x, Rewrite 6x 

 

Software 

 

Operating system Microsoft Windows 7 (English) Professional 

Compiler  MATLAB version R2001a 

Documentation Microsoft Office 2010 Professional 

   Adobe Acrobat Reader DC 
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Appendix III 

The use of occupancy space electrical 

power demand in building cooling 

load prediction 
 

(Please read following pages) 
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Appendix IV 

Application program scripts for the 

ANN model 
 

This appendix consists of the program scripts for the ANN model adopted in the study. 

The listed program scripts are in MATLAB syntax and are executed in the MATLAB 

version R2011a environment using its internal libraries and ANN toolbox. The program 

scripts are illustrated in two MATLAB script files. 

 

The script to simulate the hourly cooling energy consumption is as follows: 

%% Hourly Simulation 2010 
% Using feedforward backpropogation function - trainlm 
% Script generated by MCL 
%  
% Few weather data + hr + duct only 
% ------------------------------------------------------ 
%  configurable parameter 
%       data_year = Year of the collected data  
%       max_partition = Number of partition in each month 
%       max_test = Number of test in each partition 
% ------------------------------------------------------ 
%  Output results are stored in: 
%       MR = Mean of R (array) 
%       MMAPE = Mean of MAPE (array) 
%       MRMSPE = Mean of RMSPE (array) 
%       sim_min = Min of RMSPE, MAPE, R (array) 
%       sim_max = Max of RMSPE, MAPE, R (array) 
% ------------------------------------------------------ 
clear all 

  
% year of the data (configurable, default = 2010) 
data_year = 2010; 
% number of partition in each month (configurable, default = 6) 
max_partition = 6; 
% number of trial for each set of data (configurable, default = 100) 
max_test = 100; 

  
% display to screen 
fprintf('\n BACKPRO Neural Network - Cooling Load Prediction \n'); 
fprintf('\n   - Input Parameters: Few weather + hr + duct only \n'); 



 

 P. 120 

fprintf('\n   - Output Parameters: kwh \n'); 
fprintf('\n Please wait for a while... creating, training and 

simulating Neural Network \n\n'); 
% display to screen 

  
% load data from file 
load wpd2010_2.mat 

  
% input data and target - 365 days x 24 hours =  8760 hours 
idata = 

[temp;wet_bulb;rad_g;vis;cld;mean_wind;rf;day;occ_duct;occ_pau]; 
itarget = kwh_lowl ; 

  
% Day Missing in 2010: Day 242 (5785) to  251 (6024) 
idata = [idata(:,1:5784), idata(:,6025:end)]; 
itarget = itarget([1:5784,6025:end]) ; 
% Day Missing in 2011: Day 160 (3817) to  161 (3864) 
%idata = [idata(:,1:5784), idata(:,6025:end)]; 
%itarget = itarget([1:5784,6025:end]) ; 

  
% pre-allocation 
MR = zeros(max_partition * 12, 1); 
MMAPE = zeros(max_partition * 12, 1); 
MCV = zeros(max_partition * 12, 1); 
sim_min = zeros(max_partition * 12, 3); 
sim_max = zeros(max_partition * 12, 3); 

  
% pre-allocation 
DayInMonth = zeros(1,12); 
% find the number of day in each months (Jan to Nov) 
for i = [1 : 11] ;    
   DayInMonth(i) = daysact(sprintf('%d/1/%d', i, data_year), 

sprintf('%d/1/%d', i + 1, data_year)); 
end 
% find the number of day in December 
DayInMonth(12) = daysact(sprintf('12/1/%d', data_year), 

sprintf('1/1/%d', data_year + 1)); 

  
% two days of Aug and eight days of Sept are missing in 2010 
DayInMonth(8) = DayInMonth(8) - 2; 
DayInMonth(9) = DayInMonth(9) - 8; 
% two days of June are missing in 2011 
%DayInMonth(6) = DayInMonth(6) - 2; 

  
%initial for result index and simulation result 
rt_index = 1; 
sim_Y1 = []; 

  
% initial for loop - 1  
m_start_index = 1; 
% Loop - 1 - Month 
for i = [1 : 12] ;   
    % calculate end index 
    m_end_index = m_start_index + (DayInMonth(i) * 24) - 1;  
    % retrieve monthly data 
    mdata = idata(:, m_start_index : m_end_index); 
    mtarget = itarget(m_start_index : m_end_index); 
    % update month index 
    m_start_index = m_end_index + 1; 
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    % calculate number of day in each partition  
    max_pday = floor(DayInMonth(i) / max_partition); 
    % inital number of day in partition (e.g. if number of day is 31 

and partition is 6, the result = [5, 5, 5, 5, 5, 6]) 
    DayInPartition(1:max_partition) = max_pday; 
    DayInPartition(max_partition) = DayInMonth(i) - 

sum(DayInPartition(1:(max_partition - 1)));      
    % initial for loop - 2  
    p_start_index = 1; 
    mdata_index = 1 : length(mtarget); 
    % Loop - 2 - Partition Required 
    for j = 1 : max_partition 
        % calculate end index 
        p_end_index = (p_start_index + (DayInPartition(j) * 24) - 1);  
        % retrieve simulation data 
        P1 = mdata(:, p_start_index : p_end_index); 
        T1 = mtarget(p_start_index : p_end_index);       
        % retrieve training data 
        P = mdata(:, (mdata_index < p_start_index) | (mdata_index > 

p_end_index)); 
        T = mtarget((mdata_index < p_start_index) | (mdata_index > 

p_end_index)); 
        % update Partition index 
        p_start_index = p_end_index + 1;         
        % loop - 3 - Test Needed 
        for k = 1 : max_test 
            % create & configure neural network 
            %newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, 

BTF,BLF,PF,IPF,OPF,DDF) takes several arguments                   
            net = newff(P,T,4,{'tansig','purelin'}); 
            net.inputs{1}.processFcns = 

{'mapminmax','mapstd','processpca'} ; 
            net.outputs{2}.processFcns = {'mapminmax','mapstd'} ; 
            net.divideFcn = 'dividerand'; 
            net.divideParam.trainRatio = 60/100; 
            net.divideParam.valRatio = 20/100; 
            net.divideParam.testRatio = 20/100; 
            net.trainFcn = 'trainlm'; 
            net.performFcn = 'mse'; 
           %net.trainParam.lr = 0.02 ; 
            %net.trainParam.mc = 0.95  ; 
            net.trainParam.mu = 0.001; 
            net.trainParam.mu_dec = 0.1; 
            net.trainParam.mu_inc = 10; 
            net.trainParam.mu_max = 1e10; 
            net.trainParam.max_fail = 5; 
            net.trainParam.min_grad = 1e-10; 
            net.trainParam.showWindow = 1; 
            net.trainParam.time = inf; 
            net.trainParam.goal = 0; 
            net.trainParam.epochs = 100; 
            net = init(net); 
            % training network 
            [net,tr] = train(net,P,T); 
            % simulate network         
            Y = sim(net,P1); 

             
            % display result  
           SSE = sse(T1 -Y); 
            %RMSE = sqrt(sum((Y-T1).^2)/length(T1)); 
            CV = (sqrt(sum((Y-T1).^2)/length(T1)))/mean(T1) * 100; 
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            %R = 1 - (sum((Y-T1).^2) / sum(T1.^2)) ; 
            MAPE = sum(abs((T1-Y)./T1))/length(T1) * 100; 
            %RMSPE = ((sqrt(sum((Y-T1).^2)/length(T1)))/mean(Y)) * 100; 
            R = sum((-mean(T1) + T1).*(-mean(Y) + Y )) / sqrt( sum((-

mean(T1) + T1).^2) * sum((-mean(Y) + Y ).^2) ) ; 

            

  
             % display to screen 
            fprintf(' Month: %d-%d, SSE : %0.2f%%, CV : %0.2f%%, MAPE : 

%0.2f%%, R : %0.2f, Nos. of Sim : %d \n', i, j, SSE,CV,MAPE ,R, k); 

  
            % save result  
            if k == 1 
                AR = R ; 
                AMAPE = MAPE ; 
                ACV = CV ; 
                sim_Y1 = [sim_Y1, Y]; 
            else 
                AR = cat(2,R,AR) ; 
                AMAPE = cat(2,MAPE,AMAPE) ; 
                ACV = cat(2,CV,ACV) ;                 
            end 
        end 
        % calculate and store average result 
        MR(rt_index) = mean(AR) ; 
        MMAPE(rt_index) = mean(AMAPE) ; 
        MCV(rt_index) = mean (ACV) ; 
        % sort simulation result to find max. and min. 
        total = [ACV; AMAPE; AR] ; 
        total = total(:,1:max_test) ; 
        total = total' ; 
        totala = sort(total,1) ; 
        % store min and max result 
        sim_min(rt_index,:) = totala(ceil(0.06 * max_test),:) ; 
        sim_max(rt_index,:) = totala(floor(0.95 * max_test),:) ;         
        % display result 
        fprintf(' Month: %d-%d, mean CV : %0.2f%%, mean MAPE : 

%0.2f%% , mean R : %0.2f , nos. of simulation : %d \n', i, j, 

MCV(rt_index),MMAPE(rt_index), MR(rt_index), k) ; 
        % increment result index by 1 
        rt_index = rt_index + 1; 
    end 
end 

  
% plot yearly result using the first simulation of each partition 
figure; 
plot(itarget,'DisplayName','Actual kwh - 2011','YDataSource','T1'); 

hold all; 
plot(sim_Y1,'DisplayName','Predict kwh - 2011','YDataSource','Y1'); 

hold all; figure(gcf); 
title(' Simulation Result for 2011 '); 
xlabel('Day'); 
ylabel('kWh'); 

  
% display to screen 
fprintf('\n ~~ Completed ~~ \n\n'); 
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The script to simulate the daily cooling energy consumption is as follows: 

%% Daily Simualtion 2010 
% Using feedforward backpropogation function - trainlm 
% Script generated by MCL 
%  
% Few weather data + hr + duct only 
% ------------------------------------------------------ 
%  configurable parameter 
%       data_year = Year of the collected data  
%       max_partition = Number of partition in each month 
%       max_test = Number of test in each partition 
% ------------------------------------------------------ 
%  Output results are stored in: 
%       MR = Mean of R (array) 
%       MMAPE = Mean of MAPE (array) 
%       MRMSPE = Mean of RMSPE (array) 
%       sim_min = Min of RMSPE, MAPE, R (array) 
%       sim_max = Max of RMSPE, MAPE, R (array) 
% ------------------------------------------------------ 
clear all 

  
% year of the data (configurable, default = 2010) 
data_year = 2010; 
% number of partition in each month (configurable, default = 6) 
max_partition = 6; 
% number of trial for each set of data (configurable, default = 100) 
max_test = 100; 

  
% display to screen 
fprintf('\n BACKPRO Neural Network - Cooling Load Prediction \n'); 
fprintf('\n   - Input Parameters: Few weather + hr + duct only \n'); 
fprintf('\n   - Output Parameters: kwh \n'); 
fprintf('\n Please wait for a while... creating, training and 

simulating Neural Network \n\n'); 
% display to screen 

  
% load data from file 
load wpd2010_2.mat 
% input data and target - 365 days x 24 hours =  8760 hours 
temp = mean(reshape(temp,24,[])); 
wet_bulb = mean(reshape(wet_bulb,24,[])); 
rad_g = mean(reshape(rad_g,24,[])); 
vis = mean(reshape(vis,24,[])); 
cld = mean(reshape(cld,24,[])); 
mean_wind = mean(reshape(mean_wind,24,[])); 
rf = mean(reshape(rf,24,[])); 
day = mean(reshape(day,24,[])); 
occ_duct = mean(reshape(occ_duct,24,[])); 
occ_pau = mean(reshape(occ_pau,24,[])); 
kwh_lowl = sum(reshape(kwh_lowl,24,[])); 

  
% input data and target - 365 days x 24 hours =  8760 hours 
idata = 

[temp;wet_bulb;rad_g;vis;cld;mean_wind;rf;day;occ_duct;occ_pau]; 
itarget = kwh_lowl ; 

  
% Day Missing in 2010: Day 242 (5785) to  251 (6024) 
idata = [idata(:,1:241), idata(:,252:end)]; 
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itarget = itarget([1:241,252:end]) ; 

  
% pre-allocation 
MR = zeros(max_partition * 12, 1); 
MMAPE = zeros(max_partition * 12, 1); 
MCV = zeros(max_partition * 12, 1); 
sim_min = zeros(max_partition * 12, 3); 
sim_max = zeros(max_partition * 12, 3); 

  
% pre-allocation 
DayInMonth = zeros(1,12); 
% find the number of day in each months (Jan to Nov) 
for i = [1 : 11] ;    
   DayInMonth(i) = daysact(sprintf('%d/1/%d', i, data_year), 

sprintf('%d/1/%d', i + 1, data_year)); 
end 
% find the number of day in December 
DayInMonth(12) = daysact(sprintf('12/1/%d', data_year), 

sprintf('1/1/%d', data_year + 1)); 

  
% two days of Aug and eight days of Sept are missing in 2010 
DayInMonth(8) = DayInMonth(8) - 2; 
DayInMonth(9) = DayInMonth(9) - 8; 

  
%initial for result index and simulation result 
rt_index = 1; 
sim_Y1 = []; 

  
% initial for loop - 1  
m_start_index = 1; 
% Loop - 1 - Month 
for i = [1 : 12] ;   
    % calculate end index 
    m_end_index = m_start_index + (DayInMonth(i) ) - 1;  
    % retrieve monthly data 
    mdata = idata(:, m_start_index : m_end_index); 
    mtarget = itarget(m_start_index : m_end_index); 
    % update month index 
    m_start_index = m_end_index + 1; 
    % calculate number of day in each partition  
    max_pday = floor(DayInMonth(i) / max_partition); 
    % inital number of day in partition (e.g. if number of day is 31 

and partition is 6, the result = [5, 5, 5, 5, 5, 6]) 
    DayInPartition(1:max_partition) = max_pday; 
    DayInPartition(max_partition) = DayInMonth(i) - 

sum(DayInPartition(1:(max_partition - 1)));      
    % initial for loop - 2  
    p_start_index = 1; 
    idata_index = 1 : length(itarget); 
    % Loop - 2 - Partition Required 
    for j = 1 : max_partition 
        % calculate end index 
        p_end_index = (p_start_index + (DayInPartition(j)) - 1);  
        % retrieve simulation data 
        P1 = mdata(:, p_start_index : p_end_index); 
        T1 = mtarget(p_start_index : p_end_index);       
        % retrieve training data 
        P = idata(:, (idata_index < p_start_index) | (idata_index > 

p_end_index )); 
        T = itarget((idata_index < p_start_index) | (idata_index > 
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p_end_index )); 
        % update Partition index 
        p_start_index = p_end_index + 1;         
        % loop - 3 - Test Needed 
        for k = 1 : max_test 
            % create & configure neural network 
            %newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, 

BTF,BLF,PF,IPF,OPF,DDF) takes several arguments                   
            net = newff(P,T,4,{'tansig','purelin'}); 
            net.inputs{1}.processFcns = 

{'mapminmax','mapstd','processpca'} ; 
            net.outputs{2}.processFcns = {'mapminmax','mapstd'} ; 
            net.divideFcn = 'dividerand'; 
            net.divideParam.trainRatio = 60/100; 
            net.divideParam.valRatio = 20/100; 
            net.divideParam.testRatio = 20/100; 
            net.trainFcn = 'trainlm'; 
            net.performFcn = 'mse'; 
           %net.trainParam.lr = 0.02 ; 
            %net.trainParam.mc = 0.95  ; 
            net.trainParam.mu = 0.001; 
            net.trainParam.mu_dec = 0.1; 
            net.trainParam.mu_inc = 10; 
            net.trainParam.mu_max = 1e10; 
            net.trainParam.max_fail = 5; 
            net.trainParam.min_grad = 1e-10; 
            net.trainParam.showWindow = 1; 
            net.trainParam.time = inf; 
            net.trainParam.goal = 0; 
            net.trainParam.epochs = 100; 
            net = init(net); 
            % training network 
            [net,tr] = train(net,P,T); 
            % simulate network         
            Y = sim(net,P1); 

             
            % display result  
            SSE = sse(T1 -Y); 
            %RMSE = sqrt(sum((Y-T1).^2)/length(T1)); 
            CV = (sqrt(sum((Y-T1).^2)/length(T1)))/mean(T1) * 100; 
            %R = 1 - (sum((Y-T1).^2) / sum(T1.^2)) ; 
            MAPE = sum(abs((T1-Y)./T1))/length(T1) * 100; 
            %RMSPE = ((sqrt(sum((Y-T1).^2)/length(T1)))/mean(Y)) * 100; 
            R = sum((-mean(T1) + T1).*(-mean(Y) + Y )) / sqrt( sum((-

mean(T1) + T1).^2) * sum((-mean(Y) + Y ).^2) ) ; 

            

  
             % display to screen 
            fprintf(' Month: %d-%d, SSE : %0.2f%%, CV : %0.2f%%, MAPE : 

%0.2f%%, R : %0.2f, Nos. of Sim : %d \n', i, j, SSE,CV,MAPE ,R, k); 

  
            % save result  
            if k == 1 
                AR = R ; 
                AMAPE = MAPE ; 
                ACV = CV ; 
                sim_Y1 = [sim_Y1, Y]; 
            else 
                AR = cat(2,R,AR) ; 
                AMAPE = cat(2,MAPE,AMAPE) ; 
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                ACV = cat(2,CV,ACV) ;                 
            end 
        end 
        % calculate and store average result 
        MR(rt_index) = mean(AR) ; 
        MMAPE(rt_index) = mean(AMAPE) ; 
        MCV(rt_index) = mean (ACV) ; 
        % sort simulation result to find max. and min. 
        total = [ACV; AMAPE; AR] ; 
        total = total(:,1:max_test) ; 
        total = total' ; 
        totala = sort(total,1) ; 
        % store min and max result 
        sim_min(rt_index,:) = totala(ceil(0.06 * max_test),:) ; 
        sim_max(rt_index,:) = totala(floor(0.95 * max_test),:) ;         
        % display result 
        fprintf(' Month: %d-%d, mean CV : %0.2f%%, mean MAPE : 

%0.2f%% , mean R : %0.2f , nos. of simulation : %d \n', i, j, 

MCV(rt_index),MMAPE(rt_index), MR(rt_index), k) ; 
        % increment result index by 1 
        rt_index = rt_index + 1; 
    end 
end 

  
% plot yearly result using the first simulation of each partition 
figure; 
plot(itarget,'DisplayName','Actual kwh - 2010','YDataSource','T1'); 

hold all; 
plot(sim_Y1,'DisplayName','Predict kwh - 2010','YDataSource','Y1'); 

hold all; figure(gcf); 
title(' Simulation Result for 2010 '); 
xlabel('Day'); 
ylabel('kWh'); 

  
% display to screen 
fprintf('\n ~~ Completed ~~ \n\n');
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Appendix V 

Building data for simulation model 
 

Hyperlink of the building data 2010 & 2011 is as below: 

https://drive.google.com/open?id=0B_4yDKtEJPzJRGVjZkZvUDRSVlU 
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