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Abstract 

Robust Engineering Design has evolved as an important methodology for the integration 
of quality with the process of design. The methodology encompasses the disciplines of 
experimental design, model building and optimization. First an experiment is conducted 
on a system (or a simulation of the system), second a model is built to emulate the 
system and finally the emulation model is used to optimize the system design. Applying 
these methods to large problems can be difficult and time-consuming because of the 
complexity of most design problems. It is the goal of this thesis to introduce methods 
which reduce problem complexity and so make the application of Robust Engineering 
Design (RED) methodology easier for large design problems. 
By drawing from methods used in systems theory and circuit optimization several 
techniques are presented with the aim of reducing the complexity of performing 
experiments for Robust Engineering Design. A common framework for experimentation 
is created by combining a commercial circuit simulator with established methods for 
experimental design and model building. This provides the basis for experimentation in 
subsequent chapters. A method of design optimization with respect to quality is 
presented to complete the model-based Robust Engineering Design cycle. 
Three approaches to reducing problem complexity are adopted. First a method of 
system decomposition is applied directly to an electronic circuit to reduce the size of 
experiment required for RED. Second a method of modelling system response functions 
is described which integrates the action of the circuit simulator with the model building 
process. Third information about system topology is used in the design of experiments 
to enhance the model-building process. 
Conclusions are drawn about the effectiveness of the approaches described with respect 
to the impact on problem complexity. 
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Preface 

The format of this thesis is as follows : 

Introduction. This is Chapter 1. The Introduction provides a grounding for the 
work contained in the thesis and includes a critique of circuit optimization and 
Robust Engineering Design. 

Tools and techniques. This is Chapter 2. The section reviews the tools and 
techniques used throughout the thesis, including a review of circuit simulation, 
specific methods for Robust Engineering Design, system decomposition and 
algorithms for the decomposition of graphs. 

Technical chapters. Comprising Chapters 3 to 7. The technical chapters are 
split into two parts. The first part deals with the application of Robust 
Engineering Design within a commercial environment including the development of 
an integrated system for Robust Circuit Design and a method of design 
optimization. The second part contains descriptions of techniques developed in an 
attempt to reduce the complexity of performing Robust Engineering Design with 
electronic circuit simulators. This covers techniques for modelling circuit response 
functions and two decomposition methods. 

Conclusions. This is Chapter 8. The conclusion sums up the work described and 
outlines future possible work. 

Appendices. The appendices contain the computer code developed and used in 
the thesis. 

Where appropriate a section at the end of each chapter contains relevant bibliographic 
material to preserve the flow of the main text. 
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Chapter 1 

Introduction 

1.1 General Introduction 

This thesis discusses techniques for analysing systems in order to make them robust 

against variation in manufacture and use. This is commonly referred to as Robust 

Engineering Design or RED. Particular attention is drawn to the problems of applying 

RED methodologies to electronic circuit design and to developing new ways of tackling 

large or complex RED problems. 

1.1.1 Quality and Robust Engineering Design 

Awareness of the need for quality in an increasingly competitive industrial environment 

has led to the development and use of new techniques for product design. Methodologies 

such as concurrent engineering highlight the need to consider all aspects of design, 

manufacture, production and use at the design stage of developing a product or process. 

Implementing such methods is a formidable task especially for large and complex 

products. 

13 



Robust Engineering Design (RED) encompasses part of this drive for high quality 

products. RED can be considered as a philosophy for designing products that are 

insensitive to variations in manufacture and use. Intrinsically linked is the definition of 

quality in terms of "fitness for purpose". The central idea is that by understanding and 

quantifying the environment in which a product is manufactured and used it can be 

designed to a certain quality (defined later in this section) . The objectives are to 

maximise quality and minimise cost. 

Methods employed for RED draw heavily from the statistical community where 

definitions of variance, noise, error etc. are used to define variability in terms of a 

product or process and provide the basis for the formulation of a solution. The 

application of basic statistical methods to engineering problems is generally credited to 

Genichi Taguchi. Taguchi's main contribution was not in the invention of any particular 

statistical technique but rather in popularising a few techniques in the engineering 

community for use in solving engineering design problems. By using basic experimental 

design techniques and Analysis of Variance (ANOVA) tables a basic form of Robust 

Design can be easily applied by engineers to design problems. Taguchi is often criticised 

for over-simplifying RED and the techniques adopted by him are generally not 

considered good practice. However the definition of quality as "the loss to society once a 

product is shipped" remains a significant contribution along with measuring loss 

continuously as deviation from some target value. 

14 
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Figure 1.1: Generalised system 

Definition of a system 

Oldplil 
responses 

For the purposes of this thesis a system is defined in a general sense as a function with 

inputs (factors), representing function parameters and signal inputs, and outputs 

(responses). This is summarised in Figure 1.1. It should be noted that this definition is 

in contrast to the state-space notation used in Engineering to mathematically model 

systems. Throughout the thesis we deal with empirical models and treat model 

parameters and signals equally as factors which affect system response. 

Definition of quality 

The goal of RED is to minimise the variability of design performance which we divide 

into two sources, variability in the parameters of the design, internal noise and variability 

due to outside influences, external noise. We define a system as a function f with 

Y = f(X,Z) (1.1) 
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Y being a vector of system responses or outputs, X being the vector of system 

parameters or factors under the control of the designer, called control factors, and Z is 

the vector of noise factors which are not under the control of the designer e.g 

temperature and humidity. We mimic product variability by defining the control and 

noise factors as independent random variables with probability density functions gl(X) 

and g2( Z). Letting L(Y) be a loss function dependent on the response we define the risk 

as expected response 

R = J J L(Y(X,Z))gl(X)g2(Z)dxdz = E(L(Y)) (1.2) 

A useful loss function is quadratic. Letting 7 be a target response vector the quadratic 

loss function is 

(1.3) 

If the control factors do not have any noise associated with them, for example if we want 

to determine the control factors for a particular design, an approximation of the risk 

becomes the mean squared error risk, 

R = E(Y - 7)2 = Varnoise(Y) + (Enoise(Y) - 7)2 (1.4) 

where Varnoise and Enoise mean with respect to the variation in Z. Thus the quality of a 

design in this thesis is defined in terms of the expected (Le mean) performance and the 

variability about the mean. 

Q = f(Enoise(Y), Varnoise(Y)) (1.5) 

16 
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Figure 1.2: Schematic of RED process 

Opti1niza;:ion 

In Chapter 4 this idea is extended to optimize systems using the criteria of attaining 

target while minimising variability, the approximate solution being 

min (Varnoise(Y)) (1.6) 

subject to 

Enoise(Y) = T (1. 7) 

This is referred to as the unbiased solution. 

1.1.2 RED scheme 

The fundamental scheme of RED applied in this thesis is summarised in Figure 1.2. The 

RED process is iterative, stopping when the optimization process produces a solution of 

the required accuracy. Increased accuracy is obtained by reducing the number of input 

17 



factors in the experiment and building the model over a smaller space i.e reducing the 

range of the input variables. The basic steps are: 

i. Design of Experiments. Experimental Design is described in Section 1.3.2. The idea 

is to choose an experimental design plan which defines the parameter values for the 

system of interest in a series of trials where the system response is measured. 

11. Model building. Mathematical models are fitted to data collected from the 

experimental designs. 

Ill. Optimization. The models are used to predict system response as part of a 

numerical optimization procedure. 

iv. Redesign. Once optimized the system is verified. If unsatisfactory the system is 

redesigned and the RED process repeated. 

1.1.3 System complexity 

System theory is a vast and variously defined subject. One definition is that every real 

physical process is a system. Examples include linear systems in control, non-linear 

dynamic systems, biological and chemical systems and 'soft system' methodologies in 

management science [24]. 

Intimately related to the idea of a system is that of complexity, again defined in many 

different ways. 

Definition 

The definition we use in this thesis is that a system is complex if it contains many 

interacting elements or subsystems which can exist in different states. 

18 



Very importantly, complexity can also be taken as a measure not so much of the system 

itself as of our ability to learn about it. This provides a conceptual link with Chapter 7 

where knowledge about the system is used to shape the way we observe it Le the way the 

experimental design plan is structured. 

The main difficulty in applying RED to complex problems is that the size of experiment 

increases rapidly with problem size. For a complex system with lots of input factors the 

experimental design plan can be prohibitively large in its attempt to effectively fill the 

input space. However there exists a wide body of material on dealing with large systems 

which is discussed in Section 2.7. 

Large systems require new methods of experimental designs suitable for the highly 

adaptive models which are employed to cope with complex non-linear responses and high 

dimensionality of input spaces. The area of computer experiments has started to provide 

such designs especially Latin Hypercube and Lattice designs. System decomposition, 

prevalent in several branches of engineering, can be employed to decrease complexity. 

The high dimensionality of input and output spaces of many systems presents special 

problems in experimental design. Traditional methods, notably factorial design . 

(Section 1.3), have gone some way towards meeting the challenge. For example complex 

industrial quality control has stimulated renewed interest in highly fractional designs at 

least as an initial screening for significant factors. 

When a physical process is modelled by a large simulator, such as for an electronic 

circuit or a finite element analysis of stress on a mechanical product, experiments can be 

conducted directly on the computer code. This leads to the subject of the design and 
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analysis of computer experiments, DACE, which is a rapidly growing area of 

experimental design [35, 31, 34, 15,50]. The complexity and nonlinearity of the code has 

meant that factorial and response surface method have given way to two new 

methodologies (i) fitting highly adaptive models (ii) the use of 'space-filling' 

experimental designs. This thesis draws heavily on this area of research in trying to 

make suggestions about how to experiment on large systems. 

We relate the notion of complexity to systems theory. In a general sense we think of 

something as being complex if we do not understand it or we cannot deal with it at that 

time. In systems theory complexity can be used to measure the size of a system or 

problem, where its complexity depends not only on size but also on our ability to deal 

with it. For example a problem may be complicated in terms of the number of variables 

and interactions but be handled easily by a specialised software routine; in this case the 

problem would not have a high degree of complexity. The development of f-complexity, 

defined as the time taken for the fastest algorithm to solve a given problem to within a 

certain error bound f, shifts the emphasis from the problem to the algorithm used to 

solve it. See [49] for an example. 

1.1.4 System decomposition 

A common theme for reducing complexity is the idea of system decomposition, namely 

that the system can be considered as a collection of interacting subsystems. 

Decomposition methods are used in the design, analysis, control and optimization of 

systems to allow complex problems to be handled efficiently. An important distinction in 

this thesis is between decomposition in a physical sense referred to as partitioning and 

20 



decomposition for mathematical analysis referred to as tearing. 

Definition 

Partitioning involves breaking up of a graph or network of the system, physically 

decomposing a network. This implies that no system equations have yet been formed 

and that separate equations will result from the decomposition process. 

Definition 

Tearing requires that the system equations be stated in full before decomposition, such 

as the formulation of a sparse matrix in block form, can take place i.e for purposes such 

as sparse matrix methods. Through working with electronic circuits we have been drawn 

to using methods from this area. 

Section 2.7 reviews different decomposition techniques. 

1.1.5 RED for complex systems 

In this thesis methods are presented to make RED for large systems easier to perform. 

The approach is first to integrate existing RED methods in a single package and second 

to adapt ideas from systems theory to reduce the complexity of applying RED to large 

systems. The methods are applied exclusively to electronic circuits but are readily 

generalised to other engineering systems. 

The principal lesson which emerges is the following: 

in conducting an experiment on a subsystem of a complex system it is essential to 

21 
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Figure 1.3: Circuit representation 

emulate the environment in which that subsystem lives. 

1.2 Critique of circuit optimization 

1.2.1 Problem definition 

This section is devoted to a review of current state-of-the-art circuit optimization 

techniques to provide the foundations for using electronic circuits in the RED case 

studies throughout this thesis. The methods used should be contrasted with the review 

of Robust Engineering Design methods which follows. 

A necessary step in all optimization strategies is the evaluation of an objective function, 

the cost of evaluation being a vital factor for successful optimization. In circuit 

optimization this means measuring circuit response for varying values of input factors 

(signal input, temperature, component parameter values etc.). It is impractical to 

physically build and test an electronic circuit for each optimization step, so the circuit is 

approximated with a mathematical model. Electronic circuits can also be modelled with 

computer simulation packages such as SPICE [32]. 
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An electronic circuit is represented with a 'black box' style arrangement (Figure 1.3). 

For Robust Engineering Design we wish to include the parameter values and the input 

signal values together as inputs parameters to an empirical model of the system. This is 

in contrast to mathematical models (e.g. state-space representation) which separate the 

signal input from the model parameters. The rationale for this is that we wish to model 

the system by observing its behaviour in its operational environment to see how 

variation in inputs translate to variation in system response. The inputs 

X = (Xl. ..• , Xd) are component values and signal inputs and the outputs Y = (Yl. .•. , Yn) 

are measurable circuit responses, consistent with the definition of quality in Section 1.1.1 

we describe the action of a circuit as some function f where 

Y = f(X) (1.8) 

We define input and output spaces as parameter space Rp and performance space Rq 

respectively. The function f can be thought of as the mapping function from one space 

to another. Figure 1.4 shows this for a system with two inputs and two outputs. 

The aim of modelling is to translate points from Rp to Rq and the following discussion 

of circuit optimisation is based on these terms. This generalisation into parameter and 

performance spaces will be used in the sense of empirical modelling of circuits, thus the 

parameter space includes model parameters and signal inputs. 

1.2.2 Outline 

We describe several approaches to the circuit optimization problem including basic 

nominal circuit optimization, Monte Carlo and Taguchi methods. The Section ends with 
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Figure 1.4: Mapping of parameter and performance spaces 

a description of the more recent approach of Robust Engineering Design and its 

application to circuit design. 

1.2.3 Classical Circuit Optimization 

The basic goal in circuit optimization is to design circuits to meet some target set of 

output specifications yt, where yt = (Yl, ... , Yn). Depending on the problem l't may be a 

single vector of values or may specify a range of acceptable values for each of n target 

specifications, defining an acceptable region ny. 

N oITlinal design 

The process of nominal circuit design uses numerical optimization to find a single set of 

circuit parameters Xo which give a design with responses Yo = yt (or more generally 

Yo E Ry). To achieve this the circuit, represented by the function J, can be modelled 

(e.g. with a simulator) by j. This model is used in conjunction with an optimizer to find 
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a suitable set X* for which YE 'R y • Nominal design focuses on how to obtain j and the 

selection of the most suitable optimization algorithm. There are many powerful 

gradient-based optimization algorithms, however deriving gradient information requires 

the use of special techniques [47] often involving matrix manipulations. Requirements for 

the exact gradients of all elements of Y with respect to all elements of X can therefore 

preclude their use in circuit optimization. Indeed the main problem in nominal design is 

approximating the gradients so the chosen optimization algorithm can adjust the X 

values to bring the Y values within 'R y • 

U se of a circuit simulator 

Circuit simulators may be used to translate points from parameter space to performance 

space. We represent a circuit with n responses Y = (Yt, ... , Yn) and d input factors 

X = (Xl, ... ,Xd) as 

Y = g(X), (1.9) 

the simulator acts as an approximation to the function g(X) which is represented by 

Y = f(X). (1.10) 

The quality of the model depends on the type of simulator, the type of circuit and the 

type of analysis required to obtain the responses Y. All these factors influence the 

optimization process. The use of simulators is discussed fully in Chapter 2. 
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Definition of an emulator 

A central idea of the Robust Design methods used in this thesis is the use of an emulator 

which models the circuit simulator (also described as a 'surrogate' in recent work by 

Ye§ilyurt and Patera [51, 52]). Given the definition of a simulator in Equation 1.10 an 

emulator of the simulator is defined as 

y = j(X). (1.11) 

Optimizing nominal circuit designs 

Local numerical optimization of circuits can be achieved by finding the gradients of the 

variables 

Vf(X) = (1.12) 

within the system function. To compute these exactly can be costly so they are usually 

approximated. To improve the optimization process there has been work on improving 

these gradient estimations through the use of mathematical techniques [9] and further 

work has improved the efficiency of these methods [10]. 

Antreich et al. [6] describe the use of the SPICE circuit simulator as a basis for 

modelling a circuit, reducing the dimensionality of the resulting optimization problem by 

considering only those parameters for the circuit model which most affect the response. 
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In this case complexity is reduced by screening for important factors and eliminating 

others from the analysis by considering their sensitivities (Equation 1.12). This 

compares with principle component analysis (PCA) where most of the variability of a 

model is explained by linear combinations of components. Other work has concentrated 

on improving the optimization of the system model. Agnew [4] uses the minimax method 

of optimization on circuits following on from work by Charalambous and EI-Turky [20]. 

Design for manufacture 

In the nominal design approach circuit components are assigned particular parameter 

values. In reality circuit components are not manufactured at an exact value but are 

made to within a certain accuracy expressed as a nominal value with an associated 

tolerance which can be relative (e.g some percentage deviation e.g a resistor may be 

10Kn ± 10%) or absolute (e.g 10Kn ± lOOn) see Section 4.3 for a discussion of tolerances 

in optimization. Other effects outside the designer's control such as model uncertainties 

(especially for non-linear components such as transistors) and noise factors 

(temperature, humidity) will also affect the performance of the design. A circuit may 

therefore be optimized with respect to its nominal design but this represents only one of 

the many designs possible when considering mass production of the circuit. It may be 

the case that, after nominal optimization, when one examines one of a batch of circuits 

on a production line it will have a response Y lying outside R y • 

The variability in X values and noise factors need to be taken into account in any 

assessment of design quality. This is because quality, as perceived by the customer, is 

related to how the design performs under manufacturing conditions and in the use 
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environment. 

The problem of how to deal with unwanted variations in X can be addressed by 

considering the sensitivity of Y with respect to X. The goal is still the adjustment of X 

values to get Y within 'R y , as is the case for nominal design, the difference being that we 

want to do this while minimising the sensitivity of Y. This relates directly to the 

definition of quality in Section 1.1.1. 

SchoefHer [36] deals with this problem by constructing differential equations using a 

sequence of equivalent networks which relate the circuit output to changes in each of its 

components. These equations enable the sensitivity of the circuit as a whole to be 

reduced with a suitable optimization algorithm. Director and Rohrer [22] derive 

sensitivity expressions for both linear and non-linear components by using Tellegens 

Theorem [46], also referred to in [17], to arrive at an equivalent circuit known as the 

Adjoint Network, this reduces the number of equivalent networks required to 1. The 

network is analysed and compared with the analysis of its 'adjoint' to arrive at 

sensitivity expressions for each variable with respect to the output parameters. Branin 

[16] derives sensitivity expressions for networks without reference to an equivalent 

network but using only matrix manipulation techniques, improving on the 'adjoint' 

approach by exploiting the fact that only one network simulation is required to produce 

sensitivity expressions. The use of Tellegen's theorem is also documented in [17]. It 

states that, for two different circuits having only circuit topology in common, the sum of 

the product of all voltages in one circuit with all currents in the equivalent branches of 
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the other circuit is zero. This can be expressed as 

( 1.13) 
all branches 

where ib is the the branch current of one circuit and vr is the corresponding branch 

voltage of the other circuit. We shall return to the exploitation of circuit topology for 

efficient analysis in Chapter 2. 

Another approach to the design of component tolerances is to consider the effect that 

tolerancing has on the parameter and performance spaces of Figure 1.4. 

The Performance Region 

Expanding the concepts of parameter and performance space to include variation can 

provide information on the quality of the design. If we quantify variation by assigning 

lower and upper bounds on the vector X = Xl, ••• , Xm of the m input factors to give 

X ± oX then, instead of describing a point in parameter space, we describe an 

m-dimensional region Rx containing all possible combinations of parameter values for 

that design. The function f can then translate Rx to performance space Rq where the 

'performance region', R'x describes the variability of the circuit in the light of the 

variability described by X ± oX. Figure 1.5 represents this action. 

The problem is to locate the performance region R' x and move it preferably inside R y , 

the region of acceptability. Once located, comparison of R' x with Ry shows the design 

performance in the light of variation as in Figure 1.5. 

Location of the performance region is attempted in several ways. Tahin and Spence [45] 

describe a method called the 'radial exploration' approach. This method approximates 

29 



x 

.D(l"Y'am€~(r 

s.uace Rp 

Region. 
ZHi9h

j 

T()~el'QT:C€ 

X

ZL0

1J..

1 

L ____ F_'I _____ -7 

) XI 
X x, 

'Low fhyh 

1, 
~ ZHigh 

y 
? 
~LoU' 

p' . 

~ 
Pe~fo'Tlw.nce ncgion 

J 11 
~, ~I 

Low l-hgh 

Figure 1.5: The general design scenario. 
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R' x (feasible region) by searching radially from a point inside R' x (e.g the nominal 

design) for its boundary. Points on the boundary are built up and the performance 

region is approximated from this. The technique uses mathematical programming to 

adjust the design parameters to do this. 

Abdel-Malek [1] describes a geometrical method for approximating the performance 

region with an ellipsoid which decreases in volume to converge at the design centre. This 

is then applied to the technique of design centering. These techniques can be considered 

collectively as Inverse Engineering problems where one seeks to find a design solution 

given the performance specifications of a product. Set inversion falls into this category. 

1.2.4 Set inversion 

The basic idea of set inversion is to estimate the parameters of a function using interval 

arithmetic to translate between parameter and performance spaces. The process can be 

thought of as finding the inverse of the function f and is thus related to the concept of 

inverse engineering. 
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Definitions. The process of parameter design through set inversion can also be visualised 

using the parameter space Rp and performance space R q • The parameter design 

problem is, given an acceptable region Ry in R q , to find the corresponding set of 

acceptable design parameters Rx in Rp, to do this we need to find /- 1 • 

First steps. The basic concept involved in this approach is to use interval analysis to 

divide Rp into sub-spaces or boxes (n-dimensional intervals) and translate them one at a 

time to Rq as described in [27, 26]. Figure 1.6 shows this process for the set 

Xo = (Xl, X2). These boxes can then be divided into three categories shown in Figure 1.7: 

Infeasible box Where the set Xo produces a response completely outside the 

acceptable region R y , case 1. 

Undetermined box \Vhere Xo produces a response overlapping Ry, case 2. 

Feasible box 'Vhere Xo produces a response inside R y, case 3. 
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Parameter estimation. Given the function f the tolerance region can thus be estimated. 

The size of interval used determines the accuracy of estimation of this area and an 

iterative procedure is used to improve estimation to within a given accuracy, this is 

termed bounded-error estimation. Figure 1.8 demonstrates the location of the tolerance 

region, the indeterminate set being unshaded. 

Other approaches to the location of the tolerance region have been adopted using a 

mixture of geometrical techniques and circuit simulations. These are presented in the 

section on Monte Carlo methods. 

1.2.5 Design Centering, Tolerancing and Yield Optimization 

Design centering, tolerancing and yield optimization can be defined in terms of regions in 

performance space. The process of moving R' x to within Ry is known as design 

centering. Adjusting the size of R' x to fit inside Ry is called tolerancing. Yield 
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Figure 1.8: Estimation of tolerance region. 

optimization is design centering, the difference being that it concentrates on how much 

the performance and acceptability regions overlap as a measure of manufacturing yield 

(see Figure 1.5). 

Butler [19] defines the region of acceptability in terms of one dimensional sub-spaces. 

Each component is taken in turn (the others being held fixed) and its 'large change 

sensitivity' is calculated. This sensitivity is defined as how much from nominal the 

component can deviate before the circuit performance exceeds the specification. This 

concept is then expanded to produce 'performance contours' which are in effect second 

order sensitivities explaining how component sensitivities change with changing 

parameter values. These definitions are then used to desensitise and correctly tolerance 

an existing nominal design. Agnew [3] adopts a similar approach by defining a 'margin 

sensitivity' to allow algorithms to centre a design. 

By combining the processes of nominal design and centering one can move the nominal 
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point inside the region of acceptability in such a way as to allow the largest set of 

component tolerances. This approach is presented by Bandler and Liu [11] and 

continued by Bandler, Liu and Tromp [13] and Bandler and Abdel-Malek [8]. In addition 

Bandler, Liu and Chen [12] have produced a computer package, TOLOPT, to implement 

this method. 

In tackling the problem of yield optimization, Styblinski [41] along with Abdel-Malek 

and Bandler [2] begins by consideration of the probability density functions of the 

component distributions. That is how the probability of component values will vary 

across their defined ranges. The optimization, essentially a design centering process, 

involves a cost function to take into account the cost of circuits that do not meet the 

design specification. 

1.2.6 Traditional Monte Carlo analysis 

As an aid to the development of circuits that are insensitive to component tolerances, 

Monte Carlo analysis can provide information on how tolerances propagate through a 

circuit to affect the response Y. The basic idea is to vary randomly the parameter values 

within the tolerance range X ± 8X and then to observe the effect on Y. The circuit is 

analysed many times varying X randomly and recording the Y's. This strategy is an 

attempt to translate not just a point in parameter space to performance space but the 

entire region defined by X ± 8X. Eventually, if enough simulations are performed, a 

cluster of points in the performance region will be obtained. Comparing the performance 

region with the region of acceptability allows the manufacturing yield of the circuit to be 

calculated by subtracting the designs lying outside the region of acceptability. This 
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information can be incorporated with optimization techniques to improve the design. 

Balaban and Golembeski [7] describe Monte Carlo methods applied to the design of 

practical circuits. Karafin [29] shows how Monte Carlo methods can be used to assign 

tolerances intelligently to a design. Butler [19] describes another method of design using 

Monte Carlo analysis. This uses 'large change sensitivity' as a measure of circuit 

performance where the 'large change sensitivity' of a component is how much its value 

can deviate from nominal before the design specification is exceeded. This allows the 

designer to desensitise a nominal design. 

One problem is the mapping of X's to Y's. Computers can be used to simulate circuits 

to provide this mapping, however the simulation of large circuits can take many hours to 

complete depending on circuit complexity. We need to translate not just one set of 

inputs (i.e parameter values) from parameter to performance space but enough in order 

to estimate the performance region of the design well. 

Improvements in Monte Carlo analysis 

To obtain a good estimate of the performance region (necessary for optimization) 

requires many simulations. Because of this methods have been developed to reduce the 

number of analyses required for optimization using Monte Carlo methods. 

Performance Region. 

One of the main problems with Monte Carlo analysis is the time taken to get an 

estimate of the performance region. To improve on this several techniques have been 

employed which approximate the region using geometrical techniques along with fewer 
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solutions of the design equations. The 'simplicial approximation' method [21] 

approximates the performance region by finding points inside the region and using linear 

programming to interpolate the boundary thus allowing fewer analyses to give an 

approximation of the region. Tahin and Spence [45] compare the 'radial exploration 

approach' described earlier with a basic Monte Carlo method and show that the radial 

method is more efficient. Eckstein and Liider [23] also reduce the number of simulations 

required within a Monte Carlo analysis by only sampling in areas which are most likely 

to contain acceptable circuits. 

Monte Carlo iterations. 

When employing certain optimization techniques it is necessary to perform repeated 

Monte Carlo analyses. Each time a design is improved a new Monte Carlo analysis is 

required for the circuit since it now has new parameter values. This is very costly in cpu 

time. 

Research has been conducted on reducing the number of simulations required in such an 

iterative scheme. Parametric Sampling [38] uses a large pool of initial simulation results 

to home in on the acceptable region thus avoiding re-simulation of a particular design 

which could occur if two performance regions overlap. Stein [40] also reduces the number 

of simulations required by re-using old simulation results and only doing further 

sampling where the original sample distribution is undersampled. Soin and Spence [39] 

employ two methods (common points scheme and correlated sampling) to reduce the 

number of analyses required. These methods take advantage of any overlap that 

successive iterations may incur. 
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1.2.7 Conclusions 

Despite the improvements in Monte Carlo analysis an accurate analysis of a large circuit 

can still take hours or even days to complete and this is a major drawback to the 

method. Because of the use of random designs the Monte Carlo method appears rather 

crude. A more efficient approach to the problem of optimizing a circuit is required to 

provide a more useful design tool. 

1.3 Critique of Robust Engineering Design 

1.3.1 Introduction 

The aim of Robust Engineering Design (RED) is to produce systems robust against 

downstream variations in manufacture and use through a systematic design 

methodology. Systems are optimized using experimental results rather than the gradient 

calculations used in the methods outlined in Section 1.2.3. There are two general 

categories of RED strategy [37]; (i) the loss model (LM) approach, (ii) the response 

model (RM) approach. The difference between these two approaches lies in how the 

results of experimentation are used to optimize the design. In the LM approach the 

observed responses from the experiment are used directly to estimate the performance of 

the design whereas in the RM approach they are used to fit a model of the system which 

is used to predict the performance of the design as part of an optimization procedure. 

The general strategy is first to select a set of appropriate performance measures, 

Y = (Yl, ... ,Yt) and the set of input factors X = (Xt, ... ,Xd) possibly affecting Y. The 

system under observation can then be represented by Y = f(X) and analysed at a 
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special set of test inputs, an experimental design plan, X = Sl, . .. , Sn to produce values 

ofYi at each Si, (i = 1, ... ,n). Variability (including component tolerances) is 

introduced through careful selection of the experimental design plan. The type of plan 

used within RED is tailored according to the required method of estimating product 

performance. Section 1.3.2 and Section 2.3.1 describe different types of plan. 

For the Response Model approach, the set (Sj, Yi), (i = 1, ... , n) is used to fit an 

empirical model to the system which is easier to compute than determining Yi from the 

original system. This is termed an emulator, defined in Section 1.11. The emulator is 

then used to find an optimal setting X* for the system parameters. 

1.3.2 Loss Model - The Taguchi Method 

The Loss Model approach estimates the 'loss' or 'risk' of a system (a criterion of the 

goodness of the system) directly from experimental observations. The most famous 

example of the Loss Model approach is the strategy introduced by Genichi Taguchi 

[44, 42] to improve the quality of products initially in Japan in the 60's and whose name 

subsequently became ubiquitous in international industry in the 80's. Taguchi describes 

an easily implement able strategy for improving product quality using this approach. 

Experimental Design 

To analyse a system the input factors X = (Xl' ••. , Xd) need separating into design 

factors C = (Cl, ... , Cd) and noise factors U = (U1' ... , Ud). Design factors are parameters 

under control of the designer affecting Y. Noise factors are themselves split into two 

categories, internal noise Uin and external noise Uex. Internal noise describes controllable 

variations such as component tolerances and manufacturing process variations. External 
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noise is uncontrollable e.g humidity, temperature etc. Setting Ci = 0 if the ith parameter 

is not a design factor and Ui = 0 if it is not a noise factor, allows us to write 

(1.14) 

Once defined the parameters form the basis for experimentation on the design to 

determine the performance characteristics of the circuit. The experimental design will 

provide the values of the system parameters to be used for a number of trials 

X = Si, (i = 1, . .. ,n) (either computer simulations or real hardware trials) of the given 

design. The results of this experiment are used to estimate the performance (or loss) of 

the circuit considering both internal and external noise. 

The experimental design used for a Taguchi-style experiment is a product array formed 

from an inner array and an outer array. The outer array consists of rows 

Sf, (i = 1, .. . ,n) where 

(1.15) 

where ® is the cartesian (set) product. This represents the design factors C and the 

internal noise Uin Le nominal values plus high and low settings. The external noise is 

represented by the inner array, Uex = (UeXl!"" Uexk ) where k is the number of external 

noise factors. Each row of the outer array is modified by the inner array to mimic noise 

around the input parameters. The design is evaluated at the product of each row of the 

outer array with the inner array Le 

Sf ® U ex, (i = 1, ... , n) (1.16) 
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where again 18) is the cartesian product. 

The number of input parameters increases with design size, this rapidly increases the 

number of trials needed in a product array experiment. To counter this effect fractional 

factorial arrays are used as design plans, this reduces the number of trials required by 

not taking all interactions between the Xi'S. Taguchi typically uses Plackett-Burman 

type designs [33] which only estimate main effects: main effect orthogonal fractions. 

Analysis 

Central to the process of design is the definition of the quality of a product in terms of a 

'loss function'. Taguchi defines quality as the characteristic that avoids loss to society 

once the product is shipped. This loss is measured in monetary terms. The loss function 

is then a way of uniting financial loss with deviation from functional specification. If we 

compare this idea with the definition of the acceptable region in parameter space, in 

which all designs are seen as good, a single point in that space represents the ideal 

design and any deviation from this point incurs a loss dictated by a loss function. The 

design method should seek to reduce this loss as much as possible given other constraints 

such as manufacturing cost. 

A typical loss function for a Taguchi style approach is a quadratic, shown in figure 1.9, 

this defines the loss as increasing with the square of the distance of the real value 

obtained from the target value required. This is exactly the loss used in the definition of 

quality in Section 1.1.1 although Taguchi's use is more philosophical than mathematical. 

The concept of a region of acceptability is still valid, what has changed in effect is the 

importance of the response location within the region. One interpretation would be to 
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require the distribution of responses within the region to be normal about the optimum 

response rather than uniform within the region of acceptability. The boundary of the 

region is still a useful concept when considering this, ideally it defines where the 

distribution of points falls to zero, this can be approximated by 30" from the mean for a 

normal distribution, giving 100% yield. 

In line with the loss function design performance is expressed in terms of signal-to-noise 

(SN) ratios, that is the ratio of the mean of the response (signal) to the variance (noise) 

for each Yi. With the SN ratios calculated for each trial of the experiment the dispersion 

and location factors can be identified and adjusted to bring the design to within T. The 

dispersion factors are those Xi'S which influence performance variability whereas location 

factors affect only the mean. The SN ratios defined by Taguchi (numbering over 60) 

need to be used carefully if they are to accurately represent the loss and have been 

criticised by Vining and Meyers [48] who present a more rigorous treatment of responses. 

Kackar [28] and Barker [14] both describe the methods employed by Taguchi. In addition 

Taguchi [43] describes the application of his methods to the analysis of an electrical 

circuit to demonstrate the capabilities of the approach. 

An important contribution by Taguchi in the field of RED has been the dissemination of 

techniques in industry. Being an engineer by discipline Taguchi is able to present the 

statistical concepts of RED in a way accessible to engineers. There has recently been a 

lot of interest in Taguchi's approach to robust design and one of the main criticisms is 

that the techniques used are doubtful from a statistical inference point of view and 

moreover do not yield optimal solutions to the design problem. 
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1.3.3 The Response Model approach 

There are two basic steps to optimization using the RM approach. First Y is estimated 

with a suitable model built from the results of a designed experiment. This model is 

then used as the objective function in a suitable optimizer to predict the performance of 

the design. The type of model used to estimate Y and the general approach in reducing 

variability in the design define different categories within the RM approach. 

Response Surface Methodology (RSM) is one such category that uses regression models 

to estimate Y and generally attempts to minimise variance and adjust X to bring Y 

within T. This is similar to the 'Dual Response approach' [48] also used in LM methods 

where the mean and variance of a response are used for optimization and is essentially 

equivalent to the 'unbiased' approximation of Equation 1.7. 

In this thesis we adopt the RM method of DACE (Section 2.3.2) which uses a Gaussian 

stochastic process to estimate Y. The highly adaptive nature of this type of model 

makes it more suitable for use in modelling high-dimensional systems than the more 

basic polynomial modeL The general RED procedure is outlined in Section 3.2.6. 

Modelling Y directly eliminates the need for the Taguchi inner array used in the LM 

approach as it is less important to replicate experimental trials at the same design factor 

settings (i.e use the inner array to vary Ci'S about their outer array values). In RM 

methods design and noise factors are varied together using a combined array as the 

experimental plan. This saves in the number of trials needed to conduct an experiment -

an important consideration where time and resources are limited. 

The major benefit of RM methods over LM methods and other techniques such as Monte 

Carlo is the fact that a model of the design is generated. This model, compared with 
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analysis of the original design, is fast to compute and can be used directly in a design 

optimization process. Low and Director [30] describe the process of modelling the 

response of an integrated circuit for design centering, Alvarez et al. [5] also demonstrate 

how RSM can aid in the design of VLSI devices. Ye§ilyurt and Patera [52] also describe 

a method of modelling for optimization. 

The use of DACE in optimizing more complex design situations is detailed in [15]. The 

more complex modelling strategy of DACE improves on the use of standard regression 

models in fitting a model to the design. The experimental design plan used for modelling 

with DACE is Latin Hypercube Sampling (LHS) which is shown to have good 

space-filling properties (i.e the values chosen for X using the LHS plan are well spread in 

parameter space). For a rigorous treatment of the statistical theory of experimental 

design and model building the reader is referred to [18). 

1.4 Conclusions 

Designing a product for both the manufacture and use environments needs the 

consideration of many factors. These factors include manufacturing processes and 

component cost and variability. 

Mathematical (geometrical) techniques can reduce design variability in combination with 

numerical optimizers and the Monte Carlo method performs a similar function but both 

methods are costly in computer time. 

The technique highlighted by Taguchi is an improvement, providing the design engineer 

with a framework to approach the problem of variability in design. The use of orthogonal 

arrays to reduce the time required for an analysis of the product design together with the 
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introduction of a noise array into the experimental design provides a more efficient design 

method than local sensitivity-based optimization or one-at-a-time experimentation. 

The interest generated in Robust Design by Taguchi has prompted renewed application 

of Response Modelling and statistical methods in general in the field of computer 

experimentation. An example of the recent efforts to improve the techniques of Robust 

Design is the Design and Analysis of Computer Experiments (DACE) [35] which 

describes the use of statistical methods in Robust Design to provide a more efficient 

design process . 

• 
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Chapter 2 

Tools and techniques 

2.1 Introduction 

In this Chapter the methods used in the technical chapters of the thesis are described 

including 

i. circuit simulation, 

ii. experimental design and system modelling, 

lll. heuristic decomposition algorithms and 

iv. reviews of simulation and decomposition methods. 

The thesis is concerned with the application of Robust Engineering Design methods to 

engineering systems. Each of the following Chapters describes different applications of 

RED, each application being highlighted by example studies in electronic circuit analysis. 

The topics of circuit simulation, experimental design, model-building and optimization 

are covered as stages in the RED process. Methods of combining system knowledge with 
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these stages lead to the use of decomposition algorithms and applications of sparse 

matrix techniques which are also discussed. There are also reviews of the simulation 

methods and decomposition techniques which are integrated with RED technology. 

2.1.1 Computer simulation 

The execution of real experiments for RED is sometimes impractical due to physical or 

economic constraints. Because of this RED may need to rely on computer simulation of 

the system under analysis using software such as SPICE [28] for electronic circuits or 

other Computer Aided Engineering packages such as solid body modellers. Performing 

computer experiments on systems for RED involves simulating the same system many 

times and this makes the time taken for each individual analysis important when 

considering the efficiency of the whole experiment. 

Computer simulation of systems can bring benefits to RED in the following ways: 

i. Computer simulation is generally faster than real experimentation. 

ii. Repeated simulations with varying input conditions can be easily catered for. 

iii. The RED process can be conducted 'off-line' without any intrusion into 

manufacturing. 

iv. Simulation avoids building test prototypes for experimentation. 

The RED process is dependent on the efficiency and accuracy of simulation method used 

because models are built from the results of computer simulations. Simulators therefore 

need to be fast, efficient and accurate to enhance the RED process. In this thesis the 

examples given use the well proven SPICE circuit simulator, described in Section 2.2.2. 
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2.1.2 System decomposition 

As a system increases in size the number of possible combinations of parameters that 

significantly affect system response will increase combinatorially. To counter this effect a 

method of partitioning systems into sub-systems for analysis is needed. The effect of 

partitioning is to reduce the problem to a set of sub-problems which can then be 

analysed more efficiently. 

2.1.3 Application to RED 

The main hypotheses of the thesis is that RED can be improved by including techniques 

for reducing problem complexity. This Chapter describes tools and techniques from 

different disciplines which are employed throughout the thesis to reduce complexity. 

2.2 Simulating circuits 

For the work contained in this thesis the SPICE simulator is used to perform RED 

experiments. Section 2.6 comprises a thorough review of current research in simulation 

methods. The following sections are devoted to a basic description of SPICE in the 

context of performing RED experiments. Because RED involves the fitting of a 

mathematical model of the simulator, defined as an emulator in Section 1.11, the quality 

of the simulator plays a direct part in the accuracy of the emulation model. There is a 

strong move towards integrating analogue and digital simulation methods making 

simulation problems larger and thereby increasing the usefulness of fast, efficient 

simulators and methods of problem reduction through decomposition (see Chapter 5). 

Pederson [33] provides a good background to the development of simulation methods on 
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Figure 2.1: Three basic component types 

which current development is based. This includes a discussion of the fundamental 

mathematical techniques used to simulate circuits such as nodal analysis and modified 

nodal analysis (SPICE2), large-scale techniques and timing and relaxation-based 

simulation (Section 2.6). 

2.2.1 Mathematical modelling of circuits 

Component modelling 

The modelling of electronic circuits begins with the modelling of individual components 

which is central to the success of any simulation method. For two-terminal linear devices 

this is a straightforward process yielding up to second order differential equations relating 

current and voltage. The three basic component types are represented in Figure 2.1. 

Other ideal components such as switches, voltage and current sources etc. can also be 

defined. The equations in Figure 2.1 define the characteristics of these devices which are 

referred to as 'ideal' because of their simplified nature. Models more accurate than these 

ideal representations can be created by accounting for the non-linearities associated with 
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real components through the addition of more ideal components. An example of this is 

in the use of equivalent circuit models for non-linear device modelling (see below). 

Device modelling 

For more complicated non-linear components, such as transistors, physics-based 

mathematical equations which model the behaviour of the device are generally too 

complicated for analytical solution. These models need to be solved numerically at great 

computational cost. This has led to the use of 'equivalent' circuit models, based on 

combinations of ideal linear components, to approximate the behaviour of these 

non-linear devices. The parameters of 'equivalent' circuit models do not relate to 

physical device parameters. This effectively cuts the link between device manufacture 

and use for individual circuit designs because varying these parameters does not vary 

device performance in a realistic way. Including 'equivalent' circuit model parameters as 

part of an RED experiment will not then provide a direct link between circuit 

performance and device characteristics without understanding the relationship between 

the two sets of parameters. Establishing the link between device fabrication and use is 

critical if RED is to be applied to Integrated Circuits, Bandler, Biernacki, Cai, Chen, Ye 

and Zhang [2] describe the integration of physics-based models to circuit simulators for 

the purposes of design optimization, however the use of physics-based models is beyond 

the scope of this thesis (see Chapter 8). 

Other methods of modelling devices for circuit simulation include 

i. behavioural modelling j where the device behaviour (usually a digital device) is 

encapsulated in computer code used by the simulator, 
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ii. hardware modelling j where the device is physically connected to the simulator and 

incorporated directly in the simulation, 

iii. macromodelling j where the device characteristics are modelled mathematically, 

iv. VHDL j this is a standard language for representing digital circuits with computer 

code (see Section 2.6.3), and 

v. HDL-A j yet to be agreed on, this should provide a standard language for 

representing analogue circuits along the lines of (iv.) and help integrate analogue 

and digital circuit representation for mixed-mode simulation [14]. These modelling 

methods are commonly found in commercial packages. 

Circuit modelling 

The mathematical description of a circuit is achieved through the use of Kirchoff's 

current law (KCL), Kirchoff's voltage law (KVL) and the device (or branch) 

characteristics defined in the previous sections. These three laws combine to produce a 

set of equations to model the operation of the whole circuit. The KVL states that the 

sum of volt ages in a closed loop around a circuit is zero, yielding a set of equations which 

can be represented as 

AV=O (2.1) 

where A represents a 1 X b matrix of connections between b components (or branches) 

and lloops and V is a column vector of voltage drops VI, ••• , Vb across the b branches. 
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Similarly the KCL yields the equation 

BI= 0 (2.2) 

where B is a n X b matrix of connections between n nodes and b branches and I is a 

column vector of currents it, ... , ib flowing through each branch. The KVL and KCL 

equations provide topological information about the circuit and the addition of the 

branch characteristics connects these to fully describe the circuit. 

This information will be exploited in Chapter 7 to reduce the complexity of RED 

experiments. 

The use of impedance matrices derived from this approach for sensitivity analysis is 

referred to in Chapter 1. Chapter 5 exploits this representation of system equations to 

partition circuits. This approach is conceptually similar to that described in [6] where 

parts of a circuit's impedance matrix are suppressed during analysis to improve efficiency. 

A detailed account of the formulation of network equations can be found in [11]. 

These three sets of equations form the basis for uniquely defining the solution to the 

network. In the case of linear networks they can be solved using Gaussian elimination, 

for the non-linear case a numerical technique such as the Newton-Raphson algorithm 

must be used. 

Given a mathematical circuit model the task of a circuit simulator is to evaluate the 

model, given a specific input or stimulus, at given time or frequency points depending on 

the type of analysis required. 
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2.2.2 SPICE 

SPICE (Simulation Programme with Integrated Circuit Emphasis), introduced to the 

public domain in 1975, is the most common circuit simulation package today. It uses the 

Newton-Raphson matrix solution method with Gaussian elimination solving the system 

equations to determine the DC operating point (the quiescent point) of the circuit and 

repeats this for specified frequencies during a frequency domain analysis or uses 

numerical integration techniques for a time domain analysis. The basic steps in the 

simulator, for a time-domain analysis and given an initial DC solution, are summarised 

as follows: 

i. Formulate coupled set of non-linear first order differential algebraic equations 

representing the circuit. 

11. Replace the time derivatives in step (i) with finite difference approximations. 

iii. Solve the non-linear equations with Newton-Raphson. 

iv. Increment the time point and repeat step (iii). 

An up-to-date review of SPICE is given in [30]. 

2.3 Modelling circuits and systems 

This section covers the methods used to conduct RED experiments. They include 

strategies for creating experimental design plans and statistical models of systems as well 

as a sequential plan for experimentation. The general methodology is commonly referred 

to as DACE (Design and Analysis of Computer Experiments) and is described in [8] 

and [5]. The sequential strategy is 
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i. Choose a suitable model to estimate the performance Y of the system. 

ii. Design an experiment and select input factor nominal values and tolerances, collect 

the data from the simulation runs. 

iii. "Use the data to estimate the parameters of the statistical model chosen in (i), call 

this the emulator of the simulator. 

iv. Analyse the model response Y via main effects, i.e effects from individual factors, 

and interactions between factors. 

v. If the emulator is not accurate enough select a smaller region (i.e reduce the range 

of the nominal values of input factors) where the optimal response is likely to 

occur. Repeat steps (ii) to (v). 

vi. When the emulator is accurate enough optimize Y. Do a confirmatory simulation 

at the optimized input factor settings. Return to step (iv) if necessary. 

The two key choices in this process are the experimental design plan and the emulator. 

For complex non-linear problems the traditional methods of using factorial designs and 

polynomial response surface methods (see section 1.3) have been replaced by better 

'space-filling' codes (used in computer experiments) and more adaptive models. The 

latter approach is adopted here. 

2.3.1 Experimental designs 

There are two types of design used in the thesis, Latin Hypercube Sampling designs and 

Integer Lattices. 
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Latin Hypercube Sampling designs 

Latin Hypercube Sampling (LHS) designs are good for filling space in high dimensions. 

They are also fast to compute because of their pseudo-random nature. These facts make 

them highly suited for use as experimental design plans for RED experiments in high 

dimensions, that is involving a lot of input factors. Normalising the input factors so that 

they all lie in the range [0,1], all possible combinations of d input factors will occur in 

the space [O,l]d. For an experiment with n runs an LHS design is constructed by 

dividing the interval [0,1] into n equally spaced values for each of the d factors and 

randomising them. Let z = [0,1, ... , n - 1], where n is the number of runs in the 

experimental plan. Then 

1I"j(Z) + 1/2 
Sj= , j=l, ... ,d 

n 
(2.3) 

is the ph column of the experimental design S, where 11"1, •• • ,11" d are independent random 

permutations of z. This algorithm places the design points in the centre of the randomly 

selected sections of a grid. An exam pIe design plan in the range [-1, 1]4 with d = 4 and 

n = 18 is shown in Figure 2.2. The points in the graphs show the four factors, Xl, ••• , X4 

plotted against each other to give an idea of the space-filling properties of the design. 

Improved LHS designs 

A Latin hypercube design with the design points more uniformly spaced can be chosen 

by measuring the variability of the number of design points in a randomly located 

subregion of the experimental design space. To give an example, suppose we have a 
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Figure 2.2: Plots of input factors for a LHS design plan 

Latin hypercube design D. Then suppose a large number of rectangular sub regions are 

placed in the design space and the number of design points in each subregion is counted. 

If the number of points in each region is the same or close to the same, then the points 

must be fairly evenly .distributed in the design space. So if X;j is the number of points in 

sub region j for the ith design, then Var(x;) is the variance for design i and we select the 

design which minimizes Var(x;). To get an estimate of Var(x;) ne randomly placed 

cubes are placed in the design space and X;j,j = 1, ... , nr are used to estimate Var(x;). 

This is repeated for nd designs and the design with the smallest value of Var(x;) is 

chosen to be the design. The number and size of the cubes and the number of designs to 

look at are chosen when the design is created. 

60 



Lattice designs 

Lattice designs are another example of good space-filling designs which are easy to 

generate. The basic idea is to lay down points which are equally spaced along a 

trajectory given by a generator which 'wraps' around the input space, shown in 

Figure 2.3. A principal text is Niederreiter [31], and Fang and Wang ( [38], and earlier 

work) make a considerable contribution in applications to statistics, including design. In 

a forthcoming book Zhigliavsky and Wynn [42] discuss applications to search and 

optimization. The one generator case is used here. Thus first select a sample size nand 

a single generator (ht. ... , hd), where typically the hi are integers. Points are generated 

in [0, l]d by taking successive multiples of the rescaled generator: 

( knh1
, ••• , knhd ) mod(n)j (k = 1, ... , n) 

where mod(n) means that the numerators khj are reduced mod(n). There are various 

good ways of choosing the hj: (i) they should be primes or mutually prime to themselves 

and n (ii) they can be powers of a prime: hj = pi where the powers are not equivalent 

mod( n) and n is prime (primitive roots). Designs can alternatively be chosen by pure 

optimization using an optimality criterion, see [4]. In the case study which follows we 

first choose n as a prime and then select the hi generators according to (ii.) above. An 

example lattice in the range [-1,1]4 with d = 4 and n = 18, as for the LHS design 

example, is shown in Figure 2.3. 
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Figure 2.3: Plots of input factors for a lattice design plan 

2.3.2 Statistical emulation 

The response of a system with inputs and responses, or outputs, is emulated using a 

model with the independent variables being the input factors (circuit parameter values, 

signal inputs etc.) and the dependent variables being the system responses (frequency 

response, amplitude etc. for a circuit). 

For the example cases in this thesis a statistical model is used to emulate a circuit 

simulator, this process is fully described in [34] and used in [5] to optimize the design of 

two le circuits. The emulator is computed from data obtained by conducting a 

computer experiment according to an experimental design plan as described earlier in 

this section. In our case the model chosen includes only one regression term, /3, which is 
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a constant. A brief description of the model follows. Consider the model 

g(x) = f3 + Z(x) (2.4) 

where Z(x) is a random function and f3 is an unknown constant. At two sets of inputs, x 

and x', the covariance between Z(x) and Z(x') is 

Cov(Z(x),Z(x'» = a 2 R(x,x'). (2.5) 

The computer simulation of an electronic circuit design is conveniently represented by a 

realization of a random process. The philosophy is that although in reality there is no 

random error the stochastic process is a good way of summarising our ignorance of the 

behaviour of the output at unsampled inputs. The model can be used to predict the 

response of the same circuit under varying input conditions. 

Let g = (gl, • .. , gn) denote the observed performances at an experimental design of n 

input vectors, SI, ••• , Sm and write 

(2.6) 

which are an n X 1 vector and an n x n matrix, respectively. It can be shown (e.g. [34]) 

that the best linear unbiased predictor of g(x) at untried inputs of x when R is known is 

(2.7) 
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where 

(2.8) 

and I is a vector of 1 'so For the examples we assume that R( x, x') is the family 

R(x, x') = IT exp(-OdWi - wil Pi ) (2.9) 

In applications the parameters 0i and Pi are unknown and are estimated by maximum 

likelihood, but we omit the details, [8, 34, 5, 41], the emulator being constructed using a 

dedicated software package developed by R J Buck [7]. With this correlation structure 

two points, wand w', that are close together will have highly correlated g's. The 

predictor also has the exact interpolation property in that 

g(Si) = g(s;) i = 1, .. . ,n. 

This property is typically not shared by traditional polynomial response surfaces. 

2.4 Decomposition algorithms 

A review of system decomposition is given in Section 2.7. In this thesis we use two 

distinct decomposition algorithms: 

i. partitioning 

ii. tearing. 

(2.10) 

These terms are defined in Section 1.1.4. The partitioning method uses an heuristic 

algorithm to physically decompose a system in two for analysis. The tearing method 
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uses an implementation of an algorithm to decompose a system by first representing its 

topology with an incidence matrix (see Section 2.4.2) and then using sparse matrix 

techniques to define sub-systems. The following two sections describe the algorithms 

used in this thesis to decompose circuits for analysis while Section 2.7 reviews system 

decomposition in general. Improvements to the algorithms are detailed in the chapters 

where they are used in order to preserve the general thesis format of separating other's 

work (here) from the technical chapters (Chapters 3 to 7). Both algorithms have been 

implemented in the C programming language and can be found in Appendix A. 

2.4.1 Network partitioning algorithm 

For network partitioning an improved implementation of the Fiduccia & Mattheyses [15] 

algorithm is used to partition a circuit, represented by a network graph, into separate 

sub-circuits. For the purposes of this algorithm a network is defined as a set of p cells 

C = Cl, ••. , cp connected by a set of q nets N = nl, •.. , nq • Given an initial partition 

(A, B) of the cells the algorithm moves a cell at a time from one block of the partition to 

the other in an attempt to minimize the the cutset of the final partition, the cutset being 

the set of nets connected to cells in both (A and B) blocks; hence min-cut. After all 

moves have been made the best partition encountered during the pass is taken as the 

output. The algorithm can be repeated for a number of passes until no further 

improvement is made. Once a cell is moved it is locked in place for the remainder of that 

pass. A cell is selected for movement using two criteria: 

Balance ratio. The balance ratio is defined as r = IAI/(IAI + IBI), 0 < r < 1. 

Setting lower and upper bounds for this limits the number of cells in anyone 
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partition to prevent the algorithm from the trivial solution of placing all cells in 

one partition (achieving a zero cutset). 

Cell gain. For any partition (.A., B) the gain 9i of cell Ci is the number of nets by 

which the cutset would decrease were Ci to be moved. 

The main feature of the Fiduccia & Mattheyses (FM) algorithm is that it finds a good 

solution in linear time with respect to network size. This is achieved through the use of 

tailored data structures enabling cell selection and cell gain adjustment to be handled 

efficiently. The cells from each partition are placed in separate bucket arrays in order of 

their present cell gain. A free cell list contains the list of cells not yet moved for the 

current pass. The algorithm due to FM is thus: 

i. Consider the first cell (if any) of highest gain from each block's bucket array, 

rejecting it if moving it would violate the condition on the. balance ratio. If neither 

block has a qualifying cell, no more moves will be made. 

ii. Among those cells returned in step (i), choose a cell of highest gain, breaking ties 

by choosing the one which gives the most even balance. Break remaining ties as 

desired. 

iii. Return this as the base cell, cb, remove it from its bucket array and place it on the 

free cell list. 

The chosen cell is then moved, locked, and the effects on both net distribution and gains 

of neighbouring cells calculated to update the data structures. Achieving this in linear 

time requires care and uses the notion of a critical net defined as a net on which exists a 

cell that, if moved, would change the nets' cutstate. Given a partition (A, B), the 
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distribution of the cells on a net ni is defined as the integer pair (A( ni), B( ni)) 

representing the number of cells on net ni in blocks A and B respectively. A net ni is 

defined as critical only if either (A( ni) or B( ni)) equals 0 or 1. From this it can be shown 

that the gain of a cell depends only on its critical nets and that if a net is not critical 

before or after a move then it does not influence the gain of any of its cells. These 

observations allow the algorithm to compute passes in linear time as shown in [15]. 

2.4.2 Network tearing algorithm 

Representing an electronic circuit as a graph g(X; E) with a set of nodes X = Xl, ••• , Xm 

and edges E == el, ... , ep we can relate the edges E with circuit components and the 

nodes X with circuit nodes. The graph g produces an incidence matrix of size m x m 

with 2p entries (note: the number of entries is 2p because the matrix is symmetric about 

the main diagonal). This matrix is analogous to the incidence matrix formed during the 

initial stages of a nodal analysis for circuit simulation [11]. The algorithm decomposes 

the graph g to produce an incidence matrix in a bordered-block diagonal (BBD) form 

with balanced block sizes and a minimally sized border. Figure 2.4 and Table 2.1 show 

an example graph with the resulting BBD incidence matrix produced using the 

algorithm described. 

The following section describes a recently published algorithm [44] to decompose a sparse 

matrix into a bordered-block diagonal form for the purpose of tearing a system into 

sub-systems with a connecting network between them (see Section 2.7.3). The algorithm 

forms the starting point for modelling the system using a decomposition technique. 
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Figure 2.4: Example graph 

* 0 e1 e3 e17 e18 0 0 0 0 0 0 0 
0 * 0 e4 0 0 0 0 0 0 0 0 e5 
e1 0 * e2 0 0 0 0 0 0 0 0 0 
e3 e4 e2 * 0 0 0 0 0 0 0 0 0 

e17 0 0 0 * 0 0 0 0 0 0 0 e15 
e18 0 0 0 0 * 0 0 0 0 0 0 e16 

0 0 0 0 0 0 * e9 e8 0 elO e13 0 
0 0 0 0 0 0 e9 * e7 0 0 0 0 
0 0 0 0 0 0 e8 e7 * 0 0 0 e6 
0 0 0 0 0 0 0 0 0 * ell e12 e14 
0 0 0 0 0 0 e10 0 0 ell * 0 0 
0 0 0 0 0 0 e13 0 0 e12 0 * 0 
0 e5 0 0 e15 e16 0 0 e6 e14 0 0 * 

Table 2.1: Matrix of example graph after decomposition 
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Figure 2.5: Part of graph showing a cut edge during group formation 

The algorithm 

The problem of finding a solution to the network partitioning problem is NP-complete 

(see Section 2.7.2) which means that no polynomial-time algorithm exists to find the 

exact solution to the problem. We therefore need to use a heuristic algorithm to obtain a 

solution to the problem in linear time. 

Initialising the algorithm needs two variables to be defined, these are dmin and nmax . In 

its original form the algorithm seeks to partition the vertices X of a graph into a border 

group Band n other groups G l .•• Gn with the requirement that no group Gi is larger 

than the border group B. This gives a well balanced decomposition with similar sizes for 

B and all Gi's. For our purposes we require the border to be as small as possible 

requiring an enhancement to the algorithm adding the variable 9max. This extra variable 

defines the maximum size allowed for the G; 's and helps the algorithm minimise the size 

of B whilst fulfilling the requirement of maintaining balance among the G; 'so There are 
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two phases to the algorithm: 

i. Initialization 

a. Construct an initial border set B from the set of graph vertices X where 

B = Xi EX: deg Xi ~ dmin (2.11) 

b. Given B form groups Gi with the remaining vertices ensuring the size of 

G i ~ n max ' If this condition is violated label the associated edge as cut. See 

Figure 2.5 for an example. 

c. Remove any cut edges formed in 2 by adding the necessary vertices to B 

forming B*. 

ii. Border reduction Vertices are chosen one at a time to be moved from B* to a 

connected group Gi choosing the vertex Xi connected to 

a. the least number of groups, or in the event of a tie 

b. the least number of other vertices in B*. 

This process is repeated until the size of the largest group Gi > gmax' 

2.5 Optimization 

Throughout the thesis we use an in-house optimizer based on the global branch and 

probability bound method from the work of Professor A. Zhigljavsky [45] and written 

under his direction. The global optimization routine used is one of a family of global 

random search algorithms. This algorithm is based on alternating between a global step 
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which selects random test points globally and steps which randomly select local points. 

The full details are described in [45]. Design optimization is discussed in Chapter 4. 

2.6 Review of circuit simulation 

The SPICE package is a good all-round simulator which has a large library of non-linear 

device models available and can simulate a large class of circuits without convergence 

problems. The price of this flexibility is computational efficiency, with the growing size 

of circuit designs comes the need to simulate larger circuits which can take an 

unacceptably long time to do using SPICE. This has led to the development of faster 

and more efficient methods through improvements in 

i. sparse matrix techniques 

ii. latency exploitation 

Hi. numerical integration techniques 

iv. mathematical modelling 

to reduce the complexity of simulation. A discussion of these developments, detailed in a 

review by Hachtel and Sangiovanni-Vincetelli [19], along with the latest developments in 

state-of-the-art simulation follows. 

The ability to simulate large systems has a direct bearing on the measurement of the 

complexity of a design problem and the ability to design robustly. This section reviews 

the development of analogue simulation methods and their relationship with the 

requirements of Robust Engineering Design (RED). The review forms the majority of 

the section, with the last part devoted to looking at the special requirements of RED 
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and how these can be exploited to further improve simulator efficiency. Figure 2.6 shows 

how the different simulator types are connected and acts as a guide to the review in this 

section. 

2.6.1 Third generation methods 

This section is a review of simulation after the development of SPICE collectively 

referred to as 'Third generation methods' by Hachtel and Sangiovanni-Vincetelli [19]. 

Tearing 

A way of reducing the complexity of simulation is by decomposing the problem of solving 

the matrix equations. First introduced as Diakoptics by Kron [25] the basic idea is to 

partition the system into sub-systems with an outer 'connecting' network linking the 
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two. The system equations can then be formulated for each sub-network and then linked 

together by the equations of the connecting network. The act of partitioning creates 

smaller sub-system matrices which can be equated more efficiently than the full system 

matrix. 

It should be noted that Diakoptics involves the inversion of matrices which precludes the 

use of sparse matrix techniques; Tearing on the other hand uses a different mathematical 

approach allowing their use. By re-ordering the matrix equations so that the matrix is in 

a blocked form the system of equations can be partitioned in a different way. A 

classification due to [19] puts the different tearing methods into categories according to 

how the matrix is blocked for example: Bordered Block Diagonal (BBD), Bordered Block 

Triangular (BBT), Bordered Lower Triangular (BLT) etc. 

The method of tearing does not separate the system variables or feedback paths 

associated with a system, however the overall effect of tearing is to reduce the 

computational complexity of the problem. The sparsity inherent in the system matrix is 

considered in [20], methods of finding suitable partitions are considered in [22] using 

numerical optimization and [35] using a heuristic approach. 

Relaxation based methods and latency 

Another way of simulating a circuit is to use relaxation techniques which replace 

numerical integration as the means of solving the system equations using an iterative 

process converging to a solution. Waveform relaxation is concerned with solving systems 

of differential equations while time-point relaxation is used to solve non-linear systems 

for specific points in time. The use of relaxation is described in [29] their advantages lie 
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in the reduced computation required for solution and their ability to exploit 'latency' in 

the system to improve efficiency when simulating. Latency occurs when, for a given time 

step, if a part of the design is not active (i.e does not move from its quiescent state) then 

its effect on the rest of the design is considered to be minimal and it is therefore not 

simulated for that step, this tends to happen more in digital circuits. The convergence of 

block (i.e using Tearing) relaxation methods related to circuit topology is discussed 

in [13] which describes sufficient conditions of the circuit topology required for the 

relaxation algorithm to converge to solution. 

Harmonic balance 

Harmonic balance (HB) is a mathematical technique used in simulation to find the 

steady-state solution to circuits with a periodic signal input (expressed by a Fourier 

series expansion), it is therefore used to simulate circuits in the frequency domain. The 

HB method converts the differential equations describing the system into a set of 

algebraic equations which can be solved using methods including numerical optimization, 

relaxation and Newton's method [26]. 

Compared with SPICE-style time domain analysis the HB method is a very efficient 

method for finding the steady-state solution for circuits, especially those which take a 

long time to settle (e.g high-Q circuits) because the transient response does not need to 

be calculated to obtain the solution. 

2.6.2 Symbolic Analysis and simulation 

Symbolic Analysis is concerned with finding the transfer function of a given electrical 

circuit, primarily in the frequency domain, in terms of variables instead of numerical 
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values. Thus instead of calculating the numerical solution of a large number of 

differential equations at every timestep the method formulates the equations (usually 

with the Laplacian operator S in the frequency domain) with symbols to produce a 

'transfer function'. This 'transfer function' relates the output to the input and so gives 

the designer information on how individual components affect the system. The 

production of the symbolic transfer function takes more time than a numerical analysis 

but needs to be performed only once, simulation is then a matter of solving this one 

equation the required number of times. Compared with the numerical technique of 

solving the whole system of equations over and over the symbolic method is much faster. 

Lin [27] presents a survey of the techniques, which involve a topological analysis of the 

circuit, used in formulating symbolic functions. These can be summarized as: 

i. tree enumeration 

ii. signal flow graph 

iii. state-variable analysis 

IV. iterative method 

v. nodal and eigenvalue method 

Lin also gives example applications. A computer implementation of Symbolic Analysis 

for both analogue and digital circuits is presented by Singhal & Vlach [36]. The 

equations are formed with the Laplacian operator s, they therefore relate directly to the 

frequency response (where s = jw, w = natural frequency, j = A). For time domain 

calculations these equations need to be inverted. 
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A major problem with the symbolic approach is that the size of the transfer function 

increases rapidly with the number of components in the circuit. The transfer function 

therefore takes a lot of computer time to produce and quickly becomes very large with a 

lot of terms. A full Symbolic Analysis circuit simulator is given by Gielgen, Walscharts 

and Sansen [17] which utilizes two techniques above those presented in [36] to improve 

efficiency. Firstly information about the characteristics of the circuit devices is exploited 

to produce simpler formulae: knowledge such as which are the largest/most important 

factors is given to the simulator, this allows the reduction of terms at the expense of 

model accuracy. Secondly the form of the calculated terms allows the calculation of 

second order effects in the circuit: this can aid the designer or an optimization routine in 

the formulation of a more robust design. Comparing the efficiency of the method to 

SPICE shows similar accuracy of results for an improvement in CPU time. The inclusion 

of an optimizer in a symbolic analysis package is discussed in [18], the symbolic functions 

are passed to an optimization routine (simulated annealing) and the best values for them 

are obtained given some quality criteria (see Section 1.1.1 for a definition of quality). 

The use of symbolic functions lends itself to optimization that is much faster than 

computing a full numerical analysis at every step and also has the advantage of being 

related to the topology of the design allowing more insight into the relationship between 

design and performance than numerical analysis. 

2.6.3 Hardware description languages 

Mainly used in digital simulation the VHDL language describes the functionality of a 

digital circuit in a format similar to high-level computer code. This avoids explicit 
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mathematical definition of the functionality of the circuit and is therefore more user 

friendly. The simulation is then a case of running the compiled code on computer. 

HDL's are currently being extended to analogue simulation in a similar way which paves 

the way for mixed-mode simulation (analogue and digital) in tandem with the integration 

of traditional style analogue and digital simulators which are currently being used. 

2.7 Review of decomposition methods 

This section outlines the general methods used for the decomposition and analysis of 

complex systems. Decomposition methods of partitioning are used to divide a system 

ready for analysis, these strategies include heuristics, clustering and optimization. 

Methods for the analysis of decomposed systems include diakoptics, direct decomposition 

and hierarchical decomposition. The decomposition techniques described are compared 

and evaluated with respect to the analysis techniques available. Decomposition and 

analysis are also related to the problem of the robust design of complex systems and 

criteria are given for the use of decomposition within a robust engineering design 

framework. 

2.7.1 Introduction 

When faced with a problem too large to be dealt with quickly or too complicated to have 

an obvious solution a natural approach is to break it up into several smaller tasks. 

Decomposition is concerned with the formulation of these tasks and, once defined, 

analysis of the resulting hierarchy in an attempt to reduce problem complexity. This has 

a particular use in RED where the combinatorial explosion encountered when dealing 
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with multiple inputs and outputs increases the complexity of the design and analysis of 

RED experiments. 

\Vhen a large problem is solved through decomposition into sub-problems, there are 

several issues involved in finding a good solution: 

i. quantifying the degree of difficulty of the problem 

ii. method of decomposing the problem 

iii. solving the sub-problems 

iv. recombining the sub-problems 

v. dealing with interactions between sub-problems 

vi. testing whether solution of sub-problems guarantees solution of the overall problem. 

These issues are inter-dependent to some extent, for example the method of 

decomposition usually defines how the sub-problems are solved and recombined. 

The goal of system decomposition techniques is to enable the analysis of systems too 

complex to be tackled as a whole given the available tools and time. It is therefore useful 

to define complexity in terms of the resources, e.g computer speed or memory capacity, 

available to tackle the problem (see Section 1.1.3). For large systems "the curse of 

dimensionality", where complexity rises exponentially with problem size, means that any 

practical analysis involves the use of heuristics and/or decomposition methods to reduce 

complexity by taking care of the combinatorial explosion associated with handling a 

large number of variables and all possible interactions between them. 

As noted in Section 1.1.4 there is a distinction between decomposition in a physical sense 

or partitioning, that is breaking up of a graph or network representing a system, and 
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decomposition at the mathematical level, tearing, where features such as matrix sparsity 

are used to decompose system equations into blocks for analysis. The key difference is in 

the formulation of system equations. Partitioning a network implies that no system 

equations have yet been formed and that separate sets of equations will result from the 

process (this is potentially useful for complex systems where formulating system 

equations could prove costly). On the other hand tearing requires the system equations 

to be stated for the full system before any partitioning, such as formulation of a sparse 

matrix in block form, can take place. 

2.7.2 Partitioning 

Methods exist for the partitioning of graphs used to represent systems. These methods 

can be adapted to produce partitions in a useful form in an attempt to reduce 

complexity. In this section several methods of partitioning are discussed including 

1. The use of heuristics to minimize the number of connections between partitions. 

This finds locally optimal partitions in a practical time frame and divides the 

network into parts according to a given criterion such as finding a partition to 

minimise the number of connections between sub-graphs, usually improving on an 

initial, possibly random, partition. 

ii. Clustering, concerned with grouping like objects to form partitions from scratch. 

iii. Numerical optimization methods which can be employed directly in decomposition 

by defining the problem in terms of an objective function whose argument is the 

graph decomposition and whose value is some measure of the goodness of the 

partition. The optimizer then searches for a decomposition which optimizes that 
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function, either by improving on an initial partition, or starting from scratch. 

It should be stressed again that, in terms of the analysis of large systems, these methods 

are applied directly to the physical system via a graph rather than the system equations. 

Heuristic algorithms 

Network Partitioning seeks to split a network, or graph, representing a system into 

distinct parts according to some specified metric. A major use of this technique is in 

VLSI chip layout where components need to be grouped so as to minimize the number of 

interconnections between them[24]. This metric, called 'min-cut' because we want to 

minimize the 'cut-set' of the graph partition, forms the basis for much work in this 

area[24, 43, 15, 10]. 

Mathematically the problem of finding the (globally) optimal min-cut for a network 

belongs to a class of problems which are NP-Complete [35, 16]. This means that no 

polynomial time solution exists and the time taken to find the global optimum will rise 

exponentially with circuit size. To deal with this problem an heuristic algorithm is 

usually employed to find at least a locally optimum solution to the min-cut problem. A 

notable contribution in this area came from Fiduccia and Mattheyses[15] who developed 

an algorithm for network partitions whose computation time grows, in the worst case, 

linearly with network size. 

The partitioning of networks using heuristics generally concentrates on improving a 

given partition (refinement algorithms) rather than creating a partition from a network 

description. Heuristics are used to choose a cell to move from one block to another or 

exchange cells between blocks to improve the partition. In [15] the concept of cell gain is 
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used to select the 'base' cell (cell to move), this algorithm is described in Section 2.4.1. 

The defining heuristic of the algorithm is how the base cell is chosen. For large networks 

there may be more than one cell with the same gain competing for the position of base 

cell. Kernighan and Lin [24] expand the cell gain concept to improve base cell choice by 

looking one step ahead in the algorithm. This is referred to as 'second order gain'. 

Another improvement suggested by Kernighan & Lin takes the best solution from the 

algorithm, rearranges it and feeds it back in for another pass. Instead of starting the 

search from a random or arbitrary partition, the algorithm uses information gained from 

the most recent pass to select a new starting point. This provides a wider search of the 

solution space and increases the chances of finding a 'good' local optimum close to the 

global optimum. 

Tao and Zhao [39] describe a partitioning algorithm based on a combination of local 

heuristic searches and more global random search methods called 'Stochastic Probe'. 

They categorise heuristic algorithms in the following way: 

i. Kernighan-Lin heuristics: improving on an initial partition through repeated 

sequences of moves, a local, aggressive search method. 

ii. Simulated annealing: see Section 2.7.2. A stochastic optimization approach which 

can theoretically find the global optimum but practically is too slow for most 

problems. 

iii. Tabu search: aggressive local search algorithms which keep a history of the solution 

space already searched to avoid that sub-space in future moves. 

iv. Genetic-based algorithms: Genetic search finds starting points for aggressive local 
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searching and this local search biases the choice of subsequent starting points using 

genetic search. 

Clustering And Classification 

The technique of dividing a set of data into groups is widely practised and is the subject 

of an entire discipline within statistics. The methods outlined above for partitioning 

graphs come entirely from engineering disciplines and in the light of the popularisation 

of other statistical methods in engineering by Taguchi and others(see Section 1.3.2) an 

attempt should be made to integrate the subject of clustering with methods developed in 

engineering. Cormack [12] provides an extensive review of the use (and misuse) of 

classification techniques within the scientific community. 

For the case of system decomposition the requirements of a clustering package are more 

precise than for the case of classification in general. Here the goal is to improve the 

efficacy of analysis of a system through decomposition. We are thus looking for 

subsystems which are easy to analyse in isolation and easy to recombine to produce a 

model of the full system. In the limit the most desirable scenario is to be able to 

decompose a system into subsystems which can be analysed independently of all other 

subsystems with the individual results providing the analysis of the whole. However this 

is seldom, if ever, likely to be the case since we are, by definition, dealing with a set of 

connected items. As the lack of interactions between subsystems makes analysis much 

simpler, any clustering routine should attempt to minimize these. An advantage in using 

clustering techniques is that the problems of NP-completeness are avoided if we consider 

a clustering technique which builds clusters systematically. This makes clustering 
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attractive for problems such as VLSI layout [1]. 

A Metric For Clustering 

In order to cluster a system into a set of subsystems a metric needs to be found. The 

metric is a measure of how similar individual components are and tells the cluster routine 

which components belong to which groups and how many groups there are. Without 

precise information on how each component interacts with every other it is difficult to 

cluster a system to minimize interactions. If a system is represented graphically as a set 

of connected components a basic relationship between components can be stated, in 

terms of how connected each component is to every other, using a suitable metric. 

Establishment of a more accurate relationship would require more information on the 

nature of the system components and is potentially costly to compute. Using the idea of 

connectivity a distance matrix associated with a system graph can be generated. This 

can the be used in a clustering algorithm to partition a system. Representing a system 

as a graph 9(Xj E) with a set of nodes X = Xl, ... , xm and edges E = el, ... , ep we can 

construct an m X m distance matrix D with elements d( i,j) where i,j = 1, ... , m 

represent the graph nodes. There are 2p entries because the matrix is symmetric about 

the main diagonal (as in Section 2.4.2). The matrix elements are assigned as follows: 

o for i = j 

d(i,j) = 1 for i,j connected (2.12) 

9 for i,j not connected 

Unconnected nodes are assigned a relatively high number (9 in this case) representing 
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their disconnection with a large distance. The initial distance matrix D can then be 

extended to represent higher level connections showing the shortest distance of every 

node from every other in the graph by recursively using the following algorithm for every 

higher level required: 

i. Select row i for i = 1 to n 

ii. Select element d( i, j) for j = 1 to n 

Hi. For all d(i,j) = Igo to row j ,find all elements d(j,k) = 1 for k = 1 to n (k:f:. i). 

iv. For all d(j, k) = 1 found in iii. if dei, k) > d(j, k) + 1 then dei, k) = dU, k) + 1. 

v. Repeat for all rows in matrix. 

Thus one can cluster a system by grouping together highly connected components using 

readily available graphical information and use this concept of connectivity as a method 

for minimising interactions between groups, the connectivity of the system components 

being used as an estimate of the interaction between them. As a first approximation this 

estimate is valid since if there are two components of a system that are not connected 

then there is no interaction between them. However for a system such as an electronic 

circuit all components are connected to all others and interact with each other to varying 

degrees. The metric in this case would still minimize interactions if the distance between 

components is related to the strength of interaction. Bandler and Zhang [3] attempt to 

measure the interaction between system variables for problem decomposition from a 

system defined with parameters <I> = <Pi, ... , <Pn and outputs Y = Yl, ... , Ym with a 

corresponding target response T = tt, ... , t m • From an initial Monte Carlo 

(Section 1.2.6) sensitivity analysis, construct a sensitivity matrix S where Sij is the 
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sensitivity of variable 4>i to the function /j where /j = Yj - tj and use this to group 

system parameters for optimization. Further work on clustering could utilise this scheme 

for automatic system decomposition without referring to system topology. 

Algorithms 

Once a distance matrix has been generated for a given system graph an algorithm is 

used to cluster it. Hartigan [21] describes four joining algorithms which seek to pair up 

'close' points making a single new point from them until only one point exists. This can 

be represented in the form of a tree showing the path from the full set of points to a 

single point. The four algorithms are: 

i. Single Linkage: d(ij,k) = min d(i,k),d(j,k) 

ii. Complete Linkage: d(ij,k) = maxd(i,k),d(j,k) 

iii. Average Linkage (unweighted): d(ij, k) = ![d(i, k) + d(j, k)] 

iv. Weighted Average Linkage: d( ij, k) = nid(i,k)tnjd(j,k) 
n, n) 

where d( ij, k) is the distance between the newly joined i, j and k , ni is the number of 

original objects in cluster i. 

Optimization Methods 

The decomposition of a system is an optimization problem where the quality of the 

partition is encapsulated in an objective function. In the case of min-cut partitioning the 

objective function calculates the size of the cut-set of the network given a partition. As 

previously stated the partitioning problem is NP-complete, however optimization 
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methods, in particular simulated annealing, can still be used to find solutions [22]. 

Simulated Annealing 

Simulated Annealing (SA) [23] provides a method optimization which attempts to escape 

from locally optimal solutions by allowing moves which are 'bad' in an attempt to find 

the global optimum in solution space. As the algorithm progresses this feature is 

gradually reduced (cooling) so that an optimal solution is found. 

SA can be used in conjunction with a heuristic style approach (section 5.3) where cells 

are moved in an attempt to improve the partition. The result is an algorithm which can 

move cells which (hopefully) only temporarily worsen the quality of partition in the 

search for an ultimately better solution [22]. 

The efficacy of this method depends on the rate of 'cooling' of the algorithm but in 

general it is time consuming and cannot find the global solution in a practical time 

frame [9]. 

2.7.3 Tearing and Diakoptics 

The idea of dividing, or tearing, a network into smaller parts to ease numerical 

calculation was explored by Kron [25] in a series of articles published in the 'Electrical 

Journal' collectively known as Diakoptics (literally meaning 'system tearing'). Other 

work related to the exploitation of sparse matrices [20, 32] also promotes the idea of 

decomposing systems (particularly electronic circuits) through an exactly analogous 

decomposition of the incidence matrix representing the graph of the system or network. 

Decomposition through tearing follows the method of Diakoptics in defining sub-systems 
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with an interconnecting network of components. By formulating the incidence matrix of 

a circuit and translating it to BBD form one is dividing the circuit network in the same 

way as for Diakoptic analysis. The purpose of Diakoptics is to formulate the equations of 

the system under investigation in an efficient, piecewise manner. 

Considering the system as being formulated in terms of an electrical network, the system 

equations take the form: 

I=Y.E (2.13) 

where I is the current vector, Y the nodal admittance matrix and E the voltage vector 

(see Chapter 2 for formulation of Kirchoff equations in matrix form). The problem is 

then, given Y and I, to find E. This involves inversion of Y and can be costly in 

computer time for large matrices. The effect of decomposing the network is to produce 

several smaller admittance matrices, rather than one big one, making the inversion 

process easier. An outline of the method follows: 

i. Tear the system into n sub-networks. 

ii. Formulate the system equations for each sub-network obtaining Y1 ••• Yn • 

iii. Solve the equations obtaining the inverses of Y1 ••• Yn, call them Zl ... Zn. 

iv. Establish and solve the (n + 1 )th network, the connecting network, obtaining the 

connecting matrix C and the inverse matrix Zn+l. 

v. \Vith these inverses Zl ... Zn+l computed and the connection matrix C the system 

is considered solved. 

The DDD form of the incidence matrix generated by the algorithm in Section 2.4.2 
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represents this decomposition technique exactly. The blocks of the incidence matrix, 

when viewed on the system graph represent the groups of (L) and the connection matrix 

in (iiL) is given by the border of the incidence matrix. The strategy is to use the BBD 

decomposition to form sub-systems and to represent interactions between them through 

the connecting network. 

Diakoptics begins by partitioning a network representing the system of interest. 

Research into this area focuses on how to tear the network to maximize efficiency and 

has led to the use of heuristics [35] and optimization methods [22] in the partitioning 

(tearing) procedure. Emphasis has been placed on the numerical techniques used to 

solve the equations and has led to the application of sparse matrix techniques [20] to 

improve efficiency of analysis. 

Diakoptics has also been employed in circuit optimization to improve the efficiency of 

obtaining first and second order sensitivity information for non-linear networks [40]. 

2.7.4 Optimization of decomposed systems 

Direct Decomposition Methods (DDM) and Hierarchical Decomposition Methods (HDM) 

manipulate the system equations into blocks of equations related algebraically or by an 

overall control block. An example of this is Diakoptics[25] discussed in Section 2.7.3. 

Direct decomposition methods 

Direct decomposition is where a graph 9(X j E) with a set of nodes X = Xl, ••• , Xm and 

edges E = e}, . .. , ep representing a system is taken and split into subgraphs. This can 

occur in three ways [37]: 
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i. Node Decomposition - where a graph is split through the nodes forming n separate 

subsets of edges Et, . .. , En representing subgraphs. Nodes shared between 

subgraphs are called block nodes represented by the set Xb. 

ii. Edge Decomposition - where a graph is split through the edges forming n separate 

subsets of nodes Xl,"" Xn representing subgraphs. Edges shared between 

subgraphs are called cutting edges represented by the set Ec. 

iii. Hybrid Decomposition - a mixture of the two categories above. 

After division into blocks another graph, the decomposition substitute graph, containing 

the sets Xb and Ec is formed to preserve information on how the partitions are 

connected to reconstruct the full system. As system size increases there is a conflict 

between subgraph size and substitute graph complexity. In the limit direct 

decomposition methods do not work well enough to efficiently partition systems as their 

size increases [37]. To deal with these more complex systems Hierarchical Decomposition 

Methods are used. 

Hierarchical decomposition methods 

Hierarchical Decomposition is the multiple decomposition of a decomposed network. It is 

used where direct decomposition methods are unable to tackle problems efficiently and 

so tends to be used for large or complex systems. 

Hierarchical Decomposition involves applying simple decomposition recursively to 

subgraphs to keep the decomposition substitute graphs simple while allowing the system 

subgraphs to be reduced to a manageable size. Once a hierarchical structure of 

subgraphs and decomposition substitute graphs is obtained it is analysed to produce a 

89 



description of the system. Analysis can be achieved by either working from the lowest 

subsystem up the tree hierarchy to the top, 'bottom up', or from the top of the structure 

downwards, 'top down'. Starzyk [37] compares these two approaches and provides an 

algorithm for the 'bottom up' method. Note that, for analysis of the whole system, the 

subsystems are recombined for solution. 

To coordinate the solution of the subproblems there are two basic approaches: 

i. Goal Co-ordination - where the objectives of each subproblem are controlled. 

ii. Model Co-ordination - where the interactions between subsystems are identified 

and assigned co-ordination variables handled by the controller of the interacting 

subsystems. 

Overall system stability is considered in [9] for a hierarchically decomposed system. For 

a system sub-divided into 'strongly connected subsystems' by a partitioning algorithm it 

is shown that the overall system is stable when the individual subsystems and the 

interconnection subsystems are stable. 

2.8 Conclusions 

The development of simulation techniques has been covered and the use of circuit 

simulators for RED discussed. The area is characterized by the application of 

mathematical techniques both for the development of new simulation methodologies and 

the enhancement of existing ones with the common goal of simulating circuits more 

efficiently allowing the size of solvable problems to increase. The specific requirements of 

RED allow further savings in the cost of simulation when used to conduct experiments 
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and this points the way to the development of simulation software in tandem with design 

systems to achieve an optimal1y efficient package for the design of robust systems. 

Several approaches to the problem of reducing large, complex systems into subsystems 

for analysis have been outlined. The separate areas of decomposition and analysis and 

their inter-relationship have been identified. The quality of any decomposition depends 

on the type of analysis to be employed afterwards and the ability of the algorithm to find 

a good local optimum close to the globally optimal solution. Heuristic algorithms, 

clustering and general optimization methods can all be used to partition systems with 

different methods suited to different applications all, however, produce locally optimal 

solutions. The production of a global optimum requires an impractical amount of time 

but is nevertheless possible with optimization methods such as simulated annealing. 

Heuristic solutions are more practical with respect to time. 

Once partitioned a system can be analysed according to the methods outlined, the 

sub-systems being solved simultaneously to converge to a solution taking interactions 

between partitions into account. The use of decomposition within Robust Engineering 

Design requires the sub-systems to be analysed independently for any gain in efficiency. 

The solution of sub-systems independently fails to deal with interactions, the assumption 

being that the main effects of parameters in the sub-systems are more influential on 

system response than interactions between parameters of different partitions. Thus the 

quality of partitioning of a system plays a direct role in the accuracy of analysis in this 

case. 
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Chapter 3 

Robust circuit design I: 

A commercial environment 

3.1 Introduction 

The use of computers is widespread in engineering design with a multitude of CAE/CAD 

tools available. There are several commercially available software packages providing 

tools for the design and analysis of both analogue and digital electronics products. 

Typically analogue packages include features such as schematic capture, simulation and 

auto-routing for the input, testing and layout of a design. A designer will use the circuit 

simulator to check that the design performs as intended and there are also tools, such as 

Monte Carlo analysis, which give information about the sensitivity of the design to 

manufacturing tolerances. In this chapter a system for using Robust Engineering Design 

with an analogue circuit simulator is described which provides the circuit designer with a 

powerful Robust Circuit Design (RCD) tool for circuit optimization. This is 
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demonstrated with an example. 

The RCD package described in this chapter is the result of a collaborative project 

between Mentor Graphics UK Ltd. and the Engineering Design and Quality Centre at 

City University which acted as an initial project into the application of RED to the 

commercial environment. The well-proven modules for experimental design and 

model-building are intended as as introduction to RED, the more sophisticated 

techniques being applied throughout the rest of the thesis. The main contribution of this 

Chapter thus lies in providing a unified framework for the execution and analysis of RED 

experiments. 

3.2 Overview 

3.2.1 The simulator 

The Mentor Graphics software is comprised of several tools for the design, analysis and 

manufacture of circuits under a common framework. The module of interest here is the 

analogue circuit simulator AccuSim, based on the well known SPICE circuit analysis 

package developed by N agel [8]. In order to facilitate communication between different 

modules and the development of functions to control the software and perform general 

tasks the framework provides a formal language called Ample in which all high-level 

functions are written. The user is also free to develop specialist functions within the 

framework in Ample to control the software. 

The facilities of AccuSim, the analogue circuit simulator, include all the main analysis 

options of SPICE (DCOP, DC, AC and transient analyses) integrating this with 

schematic capture of circuit diagrams, a library of equivalent circuit models for 
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non-linear components and other features such as Monte Carlo analysis in an integrated 

windows environment. 

3.2.2 Robust design modules 

With the facilities of Ample in mind a suite of functions were developed in C to design 

experiments for RED and analyse results from them. Because of the high-level nature of 

Ample a more efficient computational solution for the RED calculations is to use C. This 

also has the advantage of a wider range of mathematical functions and debugging 

facilities for development. These functions are integrated into the Ample language and 

provide the technical content of the RED software. The three modules are: 

i. 3k fractional factorial experimental design plan generator. 

11. Latin Hypercube Sampling experimental design plan generator. 

iii. Analysis package to provide factor plots and regression models. 

These modules will be fully described in section 3.3. 

3.2.3 Interface 

The AMPLE language is similar to the computer language C++ in structure and 

provides access to the commercial simulation software. As well as providing specialist 

commands to control this software, AMPLE contains all the basic commands associated 

with a language such as C. An important additional feature is the ability to 'build-in' C 

functions into the Ample code, this allows the RED software to be developed in C and 

then linked to the interface. Paramount in the conception of the package was the idea of 

creating a modular framework so that different RED functions could be used with the 
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Figure 3.1: Schematic of ReD module 

commercial software once the interface was complete. This allows the latest 

developments in RED to be used in an efficient way by simply changing the e modules 

developed. The interface therefore performs the task of controlling both the simulator 

and RED software and translating all the data required between them. Figure 3.1 shows 

a schematic of the project structure. 

3.2.4 Output 

The results of the RED experiment will be in two forms. First a set of plots will be 

displayed describing the effect of component variation on the chosen output. Second a 
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regression model will be fitted to the data for optimization. 

3.2.5 Optimization 

A numerical optimizer is not included in the RCD package but, given a suitable 

optimizer, it is possible to use the models built during the analysis phase to optimize the 

design. Chapter 4 describes a novel method of tolerance design (tolerance design is 

reviewed in Section 1.2.5) developed as a follow-on package to the RCD module. 

3.2.6 RED process 

The overall robust design process described in Section 1.3 is adopted as: 

i. Given a circuit with parameters at an initial nominal setting and tolerance, use the 

simulator to obtain the required output Y = f(X) for inputs X = Xl, • •• , Xn set 

according to an experimental design plan. 

ii. Fit a regression model Y = j(X), this is the emulator of the simulator (as defined 

in Section 1.2.3). 

iii. Use the emulator to find inputs X t which bring Y to within some target value ¥t. 

A numerical optimizer is used in the last step to search X -space for a solution (see 

Chapter 4). 

iv. Confirm the solution with the simulator. If greater accuracy is required reduce the 

input space (tolerances) and repeat the above steps at the optimized nominal 

settings. 
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3.3 The ReD modules 

This section describes the technical content of the package and concludes with a brief 

users guide. Using the software can be summarised in the following steps 

i. select circuit parameters for inclusion in the experiment 

ii. create a design plan 

lll. execute the experiment and collect relevant results 

IV. build an emulator of the circuit simulator 

v. display factor plots 

3.3.1 Circuit parameters 

The simulator contains two libraries of components. The generic library contains linear 

components (resistors, capacitors etc.) and equivalent-circuit models of non-linear 

devices built from combinations of components (transistor models etc.). The second 

library contains proprietary models of non-linear devices representing commercially 

available components. 

Changing the value of linear components in the generic library is directly related to the 

component values for a real circuit design. This is not the case for devices from the 

model library where parameters of device models do not represent physical 

characteristics of the devices they represent. Because the models are often not available 

for inspection, it is difficult to attach any meaning to changing model parameter values 

as part of a Robust Design experiment. Varying model parameters does not necessarily 

mimic the manufacturing variation of device parameters. To counter this the simulator 
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library provides variations on particular device models but this can only deal with 

particular device characteristics and this may only be useful in certain situations. 

The RCD package allows the variation of device parameters as part of an RED 

experiment, providing some insight into how sensitive the overall design is to changes in 

the device model, however it should be stressed that they do not represent manufacturing 

parameters or tolerances. Relating device models to manufacturing data and process 

models is a problem for the whole electronics design community and a suggested area for 

further research. 

3.3.2 Experimental design 

The RCD package provides a choice of two types of design plan. Written in 'C' they take 

information from the simulator and return an appropriate design plan for the experiment. 

3k designs 

The 3k designs used are three-level Plackett-Burman designs which are specially designed 

orthogonal arrays. For a parameter, or factor, p taking values x ± t% the three levels 

represent x - t%, x, x + t%. A design plan where each factor is tested at each of these 

three levels can produce a prohibitively large design plan even for small problems. One 

way to reduce design plan size is to use orthogonal arrays where some combinations of 

factor levels will be missed out leading to a reduced design. 3k designs are useful for 

estimating the average effect of each factor on the output, called the main effects, when 

one does not expect interactions between factors. An example 3k Plackett Burman 

design for four factors Xl to X4 at levels -1,0, + 1 is displayed in Table 3.1. The code for 

choosing the designs is written in 'C' while the designs themselves are stored in an 

102 



Run Xl X2 X3 X4 

1 -1 -1 -1 -1 
2 -1 0 0 0 
3 -1 1 1 1 
4 0 -1 0 1 
5 0 0 1 -1 
6 0 1 -1 0 
7 1 -1 1 0 
8 1 0 -1 1 
9 1 1 0 -1 

Table 3.1: 3k design 

ASCII file. The interface language Ample provides access to the simulator. 

Latin Hypercube Sampling (LHS) designs 

A description of LHS designs is given in Section 2.3.1, here we describe the 

implementation of an LHS generator within the RCD framework. The LHS design is 

created from a combination of randomised vectors of factor values. The size of the design 

can be changed in the program but is initialised at the suggested value of 2d + 10 for d 

factors. This allows estimation of main effects and a small number of interactions 

between factors. 

The factor values are expressed as a nominal value with a relative tolerance attached (see 

Section 4.3 for a discussion of tolerances). For a factor p taking values X ± t% the vector 

is created by first forming a vector of length 2d + 10, filling it with evenly spaced 

numbers in the range x - t% to x + t% and randomising it. 

An example LHS design for four factors Xl to X4 in the space [-1,1]4 is shown in 

Table 3.2 

The code for creating the LHS designs is written in 'C' and accessed by the interface 
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Run Xl X2 X3 X4 

1 -0.278 0.056 -0.278 -0.056 
2 0.500 -0.389 0.611 0.167 
3 -0.167 -0.167 0.389 0.944 
4 0.611 -0.944 -0.167 -0.389 
5 0.278 -0.500 -0.833 0.500 
6 -0.500 -0.722 -0.056 0.722 
7 -0.389 0.167 -0.500 -0.833 
8 -0.833 -0.056 -0.611 0.389 
9 -0.944 0.833 0.278 0.611 
10 -0.722 -0.833 -0.944 0.056 
11 0.389 0.389 0.056 0.833 
12 0.722 0.500 0.944 -0.278 
13 -0.611 0.722 0.500 -0.611 
14 0.167 0.944 0.722 -0.722 
15 0.833 -0.278 -0.389 -0.500 
16 -0.056 -0.611 -0.722 -0.944 
17 0.056 0.278 0.833 0.278 
18 0.944 0.611 0.167 -0.167 

Table 3.2: LHS design 

language Ample. 

3.3.3 Circuit outputs 

The simulator software provides functions for measuring several standard circuit 

responses. These differ depending on the type of simulator analysis chosen, the available 

responses include 

AC analysis Bandpass highpass, lowpass, peak frequency, peak magnitude, stopband, 

trough frequency, trough magnitude, maximum, minimum, signal to noise ratio, 

point voltage. 

Transient analysis Baseline, crosspoint, delay time, distal, duty, fall time, frequency, 

mesial, overshoot, period, proximal, rise time, settle time, slewrate, topline, 

undershoot, maximum, minimum. 
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Several responses can be chosen for a single experiment. The values of each response are 

calculated and stored for every trial. 

3.3.4 The emulator 

A model is built for each response chosen in the experiment. The model is an emulator 

of the simulator for that particular response over the ranges of input values chosen. It is 

much less expensive to evaluate than the simulator and can be used effectively in the 

objective function of an optimization routine (see section 3.3.5). The emulator is used to 

create factor plots describing the effect of component variation on circuit response, see 

Figure 3.4 for an example. 

3.3.5 Optimization 

The emulator can be used to build an objective function for inclusion in a global 

optimizer, see Section 2.5. The case study (Section 3.4) shows how the factor plots 

generated by the RCD package can be used as an initial guide to improving the design 

while Chapter 4 provides a framework for global design optimization. 

3.3.6 Using the ReD module 

The RCD package is started by selecting the 'RCD' (Robust Circuit Design) option from 

within the AccuSim simulator. Once selected the software prompts the user for 

information about the circuit design needed before an experiment can begin. This is 

collected and then used to execute the experiment and analyse the results in the 

following order. 
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Initialization of the simulator 

The user is prompted to apply forces to the circuit where necessary appropriate for the 

analysis to be performed and then choose the type of simulation from the standard 

SPICE-style list of DCOP, DC, AC or transient analyses. The range of time or frequency 

values is also required along with the number of points per interval to simulate at. This 

is important in accounting for the accuracy of simulation results. 

Input parameters 

Circuit components (parameters) that are to be included in the experiment are chosen 

here. The software accepts parameters from both linear and non-linear components 

which are selected by highlighting them on the circuit schematic. In the case of 

non-linear components, because they are represented by equivalent circuit models, the 

user is asked how many parameters within the associated model-file they wish to vary, 

the nominal value is then required for each parameter. The % tolerance values are then 

required for each component with a default option of 10%, this will be the amount that 

the nominal value of each parameter will vary by during the course of the experiment. 

Design plan 

The design plan gives, for each trial of the experiment, the values for each input 

parameter. There are two types of design plan to choose from. 

i. 3k designs. 3k designs are chosen from a lookup table using a 'built-in' C function 

"pick_design". The lookup table contains a set of design plans which can handle 

experiments with up to 40 input parameters. 3k designs are used in cases where a 
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basic estimation of main-effects is needed for sensitivity analysis using as few trials 

as possible. 

ii. Latin hypercube sampling designs. Latin hypercube sampling (LHS) designs are 

generated from the 'built-in' C function "make_design". LHS design plans can be 

generated for experiments with any number of input parameters and, because of 

their good space-filling properties and ability to estimate more than just 

main-effects (see Section 1.3.2), are the preferred choice of plan for 

experimentation. 

Outputs 

After each trial of the experiment the RED software stores the circuit responses of 

interest to the designer. These responses (outputs) are selected from a standard set 

supplied by the simulator software. 

Analysis 

On completion of the experiment another 'built-in' C function "analysis" is used to build 

a polynomial regression model emulator of the circuit. This provides a less adaptive 

emulator than the DACE model emulator described in Section 2.3.2 but is more 

attractive for this application because of its easy implementation. Model building is 

achieved through the use of a mixture of forward and backward variable selection 

methods. In the case of 3k designs, due to the orthogonal nature of the design (see 

Chapter 1) a model of main and second order effects is built (no interactions) and for 

LHS designs a full quadratic model is built. The model is then used to produce factor 
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Figure 3.2: Voltage amplifier circuit 

plots showing the influence each input parameter has on each output chosen. This 

provides a quick visual indicator of the sensitivity of the design to parameter variation 

and how to change the values of sensitive parameters to reduce this. 

More comprehensive optimization can be achieved by using the regression model 

combined with a numerical global optimizer. Because the regression model or 'emulator' 

is easy to compute this makes for more efficient circuit optimization than using the 

simulator directly. 

3.4 A case st udy 

3.4.1 Introduction 

To illustrate the ReD procedure the circuit of Figure 3.2 was input to the simulator for 

analysis. The circuit is a voltage amplifier designed as part of an electric wheelchair 

controller unit. By measuring the voltage across the tracks of a printed circuit board and 

inputting the amplified voltage to a microprocessor the controller estimates the supply 
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Monte Carlo Initial design Tolerances adjusted 
Mean 3.863 3.862 

Variance 2.822e-4 2.924e-4 

Table 3.3: Summary of Monte Carlo confirmatory experiments 

current to the wheelchair motor. Being part of an existing design the circuit components 

already have a set of nominal values and as the whole wheelchair design is in a 

safety-critical environment all component tolerances are set to ±1%. 

The aim of the RCD study is twofold: 

Nominal design To check the operation of the circuit under manufacturing conditions 

and see if this can be improved by changing the nominal values of the design. 

Tolerancing To establish which are the most important components so that tolerances 

can be assigned according to the sensitivity of the circuit response to each 

component. 

For this part of the case study the results will be used to identify which components 

affect response the most and to adjust their tolerances accordingly. The issue of 

changing the nominal values of the design is discussed in Chapter 4 where the emulator 

built as part of the RCD process is used for design optimization. 

3.4.2 Experimentation 

As a first step a 200 run DC Monte Carlo analysis is carried out on the original nominal 

design with 12 component tolerances set to a Gaussian distribution of ±1 %. The 

histogram of Figure 3.3 shows the performance of the circuit, the mean output voltage, 

Jlv = 3.863 with associated variance estimate a~ = 2.822 X 10-4 • 
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Figure 3.3: Histogram of voltage output from the Mentor Graphics software 

Component Initial design Toleranced design 
name Nom. Tol. Nom. Tol. 

RI 270K ±I% 270K ±I% 
R2 20K ±I% 20K ±I% 
R3 20K ±I% 20K ±l% 
R4 270K ±l% 270K ±l% 
R5 20K ±l% 20K ±l% 
R6 20K ±I% 20K ±I% 
R7 2.2K ±I% 2.2K ±20% 
R8 IK ±I% lK ±20% 
Cl lOOn ±1% lOOn ±20% 
C2 lOOn ±1% lOOn ±20% 
C3 47p ±1% 47p ±20% 
C4 lOOn ±1% lOOn ±20% 

Table 3.4: Summary of tolerancing process 
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Figure 3.4: Factor plots for regression model 

Next a Robust Design study was carried out using the simulator combined with the ReD 

software module. The 12 components were selected at the given nominal values with 

tolerances of ±40%. Using a Latin Hypercube design with 50 runs the ReD experiment 

produced the following regression model: 

Y 4.03 + 2.87 X R215 - 1.81 X R209 - 1.44 X R213 

- 1.46 X R214 + 0.85 X R210 + 0.82 X R211 

- 1.48 X R215 X R209 + 0.92 X R213 X R214 (3.1) 

Where Y represents the output voltage of the circuit at Vout (Figure 3.2), all factor 

values being scaled to the range [-0.5,0.5]. The model has been truncated to the most 

important factors and their interactions and accounts for 97.4% of the variation. The full 

regression model was used to construct the factor plots in Figure 3.4 showing the 
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Figure 3.5: Monte Carlo histogram of results for toleranced design 

importance of the six resistors. Following [1] the components are assigned tolerances 

which reflect their importance to the response. The tolerance of each component was 

adjusted according to the regression results with the six resistors in the factor plot 

receiving a tolerance of ±1 % and the rest ±20%. Table 3.3 shows the effect of adjusting 

the tolerances with a second 200 run Monte Carlo experiment the results of which are 

shown in Figure 3.5. Relaxing the tolerances of the six factors which do not affect the 

output response reduces the cost of manufacturing the circuit for a 3.6% increase in the 

variability of the response. 

3.5 Discussion 

The software described allows the designer to plan, execute and analyse results from an 

RED experiment. The separation of statistical modules, written in C, from the software 
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controlling the ECAD tools means that existing modules can be updated with more 

sophisticated software for modelling and optimization as it becomes available. The 

developed system eases the task of designing, executing and analysing RED experiments 

by providing a unified framework for circuit design. Production of Factor plots allows a 

quick assessment of the design acting as a guide to the first step in tolerancing the design 

and highlighting any possible problems with design robustness. The linearity of the 

factor plots for the case study show the linear effects of the component parameters on 

circuit response. For the case study described the factor plots were used to identify 

important components and allowed the tolerances of unimportant components to be 

relaxed from ±1% to ±20% with only a 3.6% reduction in variance for a 200 run Monte 

Carlo confirmation experiment on the simulator. 

3.6 RED within a CAD framework 

The evolution of CAD tools has benefited by the integration of different techniques 

through use of a unifying framework. This drive has led to the development of several 

systems to aid designers which share some of the features of the RCD package described 

in this chapter. CAD frameworks are reviewed in [4] where the development of different 

types of interface for handling engineering information is considered. 

The combination of design optimization techniques in a single package removes a lot of 

the difficulty in performing experiments and numerical optimization for RED simply by 

unifying data handling. Packages have been developed [13, 7] which include features such 

as: 

i. group search - locating important factors [10]. 
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ii. design of experiments - LHS, Plackett-Burman [6], Box-Behnken [3]. 

iii. model building - regression, stochastic processes [11] 

iv. optimization - simulated annealing [5]. 

The problem of device modelling referred to in Chapter 2 and in this Chapter is being 

tackled with systems to ease the use of device simulators [12] and frameworks for moving 

from process simulators such as FABRICS [9] to SPICE [8] easily [14]. The problem of 

integrating Physics-based device models (as opposed to the equivalent circuit models in 

SPICE) with circuit simulation is referred to in [2]. 
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Chapter 4 

Design optimization 

4.1 Introduction 

In this Chapter a novel approach to design optimization is described and demonstrated 

by continuing the case study of Chapter 3. The optimization process is directly related 

to quality and robustness as defined in Chapter 1. Emulator models of systems are 

formed as part of the RED process discussed in the previous Chapter. These models are 

used in a global optimization strategy to improve design quality. 

We shall favour this approach from the following rationale: the emulators run hundreds 

or thousands of times faster than many simulators and are therefore useful for 

performing fast, approximate optimization and sensitivity analysis. 

We concentrate on using the emulator to carry out robust optimization along the lines of 

the recent work in Robust Engineering Design (RED) reviewed in Section 1.3. 
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4.2 Performance region methods 

Sensitivity analysis and optimization have been conducted with computer simulators 

using a variety of methods. Circuit optimization is reviewed in Section 1.2. For clarity 

the various approaches are summarised in this section as 'performance region' methods 

as an introduction to the optimization method developed in this chapter. From 

Section 1.1.1 for a given system the relation of input X = (Xl! ••• , Xd) to output 

Y = (Yl, ... , Ym) can be expressed as 

Y = f(X) ( 4.1) 

Referring to Figure 1.5, the requirement is to find the set 'Rx in the input space 'Rp 

which places Y = f(X) into the required performance or tolerance region 'Ry in output 

space: 'Rq. This is essentially an inversion problem and is sometimes referred to as 

inverse (or reverse) engineering : find 

(4.2) 

The methods consist of approximating 'Rx with say Rx using observations Yi = f(Si) at 

selected inputs. Thus these are also computer experiments but typically go directly to 

'Rx rather than via an emulator. The methods often proceed sequentially by updating 

the 'estimated' region nx with the new inputs: nx(st, ... , Sn) = n~n), say. 

Published work can be classified by the nature of n~n) and the updating rules 

n~n) -+ k~n+1). Also different conditions are required such as 'Rx ~ n~n) or k~n) ~ 'Rx 

or when n~n) is a single point in 'Rx. 
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Figure 4.1: Estimation of Rx with a convex hull. 

The type of information recorded and used which is similar to the specification of the 

updating rule nJn) -+ R1n+l
) may also vary. At its simplest a method may only use a 

binary indicator 

{

I Y; = f(Si) E Ry,(i = 1, ... ,n) 
Ii = 

o otherwise. 

The good Si, (Ii = 1) can then be used to form n1n
). For example one can form 

(4.3) 

n1n) = convex hull of all good Si so that if Rx is itself convex then n1n) ~ Rx. This is 

demonstrated in Figure 4.1 (compare with Figure 1.5) which shows Rr, Rx estimated 

with a convex hull and an ellipse bounding the region Rx for an example system 

Y = f(X) with X = (Xl, X2) and Y = (YlI Y2)' This relates directly to methods which 

estimate Rr with ellipsoids [3] and methods which extend this to the design centering 

problem by estimating the centre of Rx, [2, 1]. 

We can use a more sensitivity based function as follows. Let B(Si) be some region 

(rectangle, hull) centred at Si. Then it may be possible to find (or estimate) whether (i) 
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I (B(Si)) ~ Ry or (ii) I (B(Si)) ~ Ry or (iii) I (B(Si)) overlaps the boundary of Ry. 

Figure 4.2 shows these three situations as 1, 2 and 3 respectively. Methods of estimating 

1-1 are described in [5,4] which use interval arithmetic to approximate Rx by 

translating sets between parameter and performance spaces described in Section 1.2.3. 

4.3 Optimization for robustness 

Following the notation of Section 1.2 we consider for ease of presentation a system with 

two inputs X = (Xl. X2) and one output Y. Suppose following the performance region 

approach we require Y to lie in a region, defined as an interval, Ry. In addition assume 

that Xl and X2 are independent random variables with probability density functions 

120 



Pl(XlIJld and P2(X2IJl2) where Jll and Jl2 are the means of Xl and X2 to be interpreted as 

nominal values. Following the "parameter design" ideas within RED we assume that Jll 

and Jl2 are controllable. The RED criteria, stated roughly is to keep Y E 'Ry while 

minimising the variation in Y and to do this through control of (Jll,Jl2). 

We deal first with the simple case when 'Ry is a single target t. Then the mean squared 

error is given by 

MSE = E(Y - t)2 = Var(Y) + (E(Y) _ t)2 ( 4.4) 

where variances and expectations are with respect to the variation in Xl and X2. It is 

interesting to see what a classical sensitivity analysis gives. Thus expand Y in a Taylor 

expansion at (Jll> Jl2) to obtain 

(4.5) 

where :;: and * are assumed to be evaluated at (Jlt, Jl2). This gives 

(4.6) 

and 

( ') 2 ( ay ) 2 2 ( ay ) 2 
Var} :::::: 0'1 aXI + 0'2 aX2 ( 4.7) 

where (1~ and O'~ are the variances of Xl and X2 respectively. Then 

2 ( ay ) 2 2 ( ay ) 2 2 
MSE :::::: 0'1 OXl + 0'2 aX2 + (Y(JlbJl2) - t) ( 4.8) 
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The approximate "unbiased" solution is to set 

(4.9) 

subject to 

( 4.10) 

We consider two ways of defining tolerances for system inputs: 

(i) O'~, O'~ do not depend on Jib J-l2, termed the absolute tolerance case. 

(ii) u~, u~ depend on J-ll! J-l2, termed the relative tolerance case. 

In some branches of engineering it is common to specify a component value as JL ± 8% 

corresponding to case (ii), whereas in areas such as mechanical engineering or 

manufacturing the specified tolerances could be absolute (see [6] for an example) Le Ji ± € 

(case (i) ). In the absolute tolerance case (i) we obtain a weighted measure of the 

flatness of the function Y(Xl' X2) 

(OY)2 (OY)2 
O'~ ox} + O'~ OX2 (4.11) 

and for the relative tolerance case (ii) we have ut cc Xl and O'~ cc X2. 

In the situation where the output sensitivity is only affected by one input we can then 

minimise the sensitivity and use the second input to adjust to target, that is if neither 

g~ nor g~ depend on Ji2 then for any (O'~, un we can solve the problem by moving J-ll 

to where (4.11) is a minimum and correct to target by moving Ji2' It is worth exploring 
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the consequences of this latter condition. Thus suppose 

aY 
-a = h(xd 

X2 
( 4.12) 

The second equation here gives 

( 4.13) 

and substitution in the first yields h( xt} = a constant. Thus the general form is 

Y = U(XI) + aX2 that is linear in X2 and additive across Xl and X2. This solution is 

independent of the (fixed for case (i)) values of 0'1 and 0'2. 

In general, for a complex system, we will not have enough analytic information to 

perform optimization directly on the simulator. Even when the "sensitivities" g;: and 

~ are available as output (see Section 1.2.3) these are still observables only and 

essentially add to the list of output factors. 

The full unbiased solution which relates directly to the definition of quality in 

Section 1.1.1 is 

min Var(Y) subject to E(Y) = t. (4.14) 

The alternative to analytic or approximate analytic solution is to estimate Var(Y) and 

E(Y) directly from output values for Y generated by a sample of input values. If 

O'~ = Var(Y) and p,y = E(Y), we can call these estimates o~ and {ly respectively. Then 

the solution is 

mm iT~ subject to {ly = t. ( 4.15) 
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Clearly as the control (I-ll'/J,Z) changes we need to recompute new u~ and [;,y. 

The solution we propose here is a compromise between the inverse approach of (4.2) and 

the unbiased approach just described. Thus we assume rather than a simple target that 

Ry is a target region for Y. Then we take as the problem 

min O'~ subject to I-lY in Ry. ( 4.16) 

We can express this using a penalty 

( 4.17) 

where 

I-ly in Ry 
( 4.18) 

I-lY not in Ry 

Now suppose as above we have estimates u} and [;,y we shall simply use 

min (u} + 1>(fly ) ) ( 4.19) 

where again 1>(.) is the penalty function for Ry. Of course by making Ry = t we reduce 

to the simple target approach. A key point of the optimization is that all these 

operations are easily performed using a fast emulator of the simulator rather than the 

simulator directly. 
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4.4 The procedure 

The estimates of a'} and /Ly are given by generating sample points (Xi}, Xi2), 

(i = 1, ... , n) and estimating by 

( 4.20) 

(4.21) 

We use two methods of generating (Xib Xi2) : (i) simple Monte Carlo sampling for Xl and 

X2 and (ii) a method based on low-discrepancy integer lattices described in Section 2.3.1. 

If Fj(xj) is the cumulative distribution function of xj, (j = 1,2) and Uij (i = 1, ... , n) is 

an independent Monte Carlo sample from a uniform distribution in [0,1] (j = 1,2), then 

Xij = Fj-l(Uij) (i = 1, ... ,n, j = 1,2) ( 4.22) 

We generate an integer lattice [7, 8] on the square 0 2 [0,1] based on a single integer 

generator (gl, g2) as in Section 2.3.1 and use the same transform in (4.22) to mimic the 

distribution of Xl and X2. 

The distributions Fj are changed as the control (/1b /12) is changed. Thus in the Gaussian 

case Xj '" N(/1j, O'j) we simply take the Xij as a standard N(O, 1) sample and transform 

( 4.23) 

Clearly this is possible for any shift-scale family. This means that we need only generate 
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a single Monte Carlo sample or lattice. 

Having found the estimates (4.20),(4.21) using either the Monte Carlo or the Lattice 

methods these are then used in (4.19) together with the global optimizer described in 

Section 2.5. All the above material can be extended in a straightforward way to to 

higher dimensional input spaces and, indeed, we shall use a six-dimensional example as a 

case in the next section. 

4.5 Case study 

4.5.1 Introduction 

We continue the analysis of the voltage amplifier circuit described in Chapter 3, 

Section 3.4 and illustrated in Figure 3.2. For an analytical study of the circuit we 

assume the operational amplifier to be ideal and, assuming DC conditions, the circuit 

can be further simplified by (i) setting all capacitors to open circuit, (ii) assuming no 

load on the output (pin 'Vout' in Figure 3.2) and (iii) setting Vcen = O. An analysis of 

the circuit yields the equation 

(4.24) 

where Vcen is the offset voltage. Other design constraints can be introduced to further 

simplify the analysis as follows. If we set Ra = Ri = R2 = R4 = Rs and Rb = R3 = R6 

as in the nominal design (4.24) can be re-written as 

( 4.25) 

126 



This constraint is used for the initial design where the nominal setting of circuit 

parameters Ra = 20kn, Rb = 270kn yields Vout = 3.864. 

The performance of the circuit is summarised in Table 3.3. The goal of the optimization 

process which follows is to minimize the variance of the circuit for the tolerance levels set 

in Section 3.4, given a target interval 'Ry for the response. 

4.5.2 Experimentation 

Continuing from Section 3.4 a Robust Design experiment is carried out using the RCD 

software module. Instead of using the regression analysis in the ReD package a DACE 

model is fitted to the experimental results. For experimentation the circuit parameters 

need to be varied over a suitable range which defines the region over which they will be 

optimized, 'Rp. The 12 components are thus selected at the given nominal values with an 

input space of ±40% of their nominal values. Using a Latin Hypercube design with 50 

runs an experiment is conducted to produce the DACE model of Figure 4.3. This is then 

used to construct the main effects plots of Figure 4.4 which show that the variation in 

response is due to the six resistors RI"'" R6 which correspond to the six resistors in 

equation 4.24. The plots show how changes in circuit parameters affect response and can 

act as a guide to optimization by hand as well as displaying the main causes of response 

variation. 

The DACE model is used as an emulator of the simulator to predict circuit response as 

part of a global optimization procedure. 
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MLE RESULTS 

The Response Variable is ~voltage 

N= 50 NX= 12 THE COVARIANCE INDEX= 1 
SIGMAZ= 5.2472e+01 -2*LN LIKELIHOOD= -1.9808e+02 

NUMBER OF LINEAR MODEL PARAMETERS IS: 1 
Variable Beta Std. Err. t-val 

Constant 6.6790e+00 O.OOOOe+OO Inf 

GAMMA= 0.0000 
THETA= 5.0117e-06 1.0435e-05 1.8244e-14 1.0142e-07 5.7943e-02 
THETA= 5.8526e-02 6.6602e-02 1.396ge-01 8.6565e-03 3.6964e-03 
THETA= 2.2541e-06 1.010ge-08 
POWER= 1.0054e+00 1.6535e+00 1.6820e+00 1.9253e+00 2.0000e+00 
POWER= 2.0000e+00 1.9990e+00 1.9965e+00 2.0000e+00 2.0000e+00 
POWER= 1.0101e+00 1. 7581e+00 

TIME (MIN.) FOR LIKELIHOOD CALCULATIONS IS: 7.13 
THE DATA FOR THIS RUN IS IN THE FILE dace.x AND dace.y 
THE DATA WERE TRANSLATED TO [-0.5,0.5] FOR THIS ANALYSIS 

Figure 4.3: DACE model for voltage amplifier circuit 
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Figure 4.4: Main Effects plots for DACE model 

4.5.3 Analytical optimization 

To provide insight into the optimization procedure we use the simplified system equation 

(4.24) to carry out the analytic method in (4.9) and (4.10) using two factors Ra and Rb. 

2 I'm b 2 I'in (
_"IT. R )2 ("IT.)2 

Var(Vout ) = aa 2R~ + ab 2Ra ( 4.26) 

Setting (V;n = 0.2, Vcen = 2.5, Vout = 3.86) we obtain a target constraint of Rb = 13.6Ra. 

We relate aa = SD(Ra) and ab = SD(Rb) in two ways corresponding to absolute and 

relative tolerances respectively (Section 4.3): 
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Figure 4.5: Histogram of voltage output for analytically optimized design 

Case (i) : absolute tolerances. 

In this case: 

(4.27) 

Combining (4.27) with the target constraint Rb = 13.6Ra the standard deviation of Vout 

is represented by 

SD(Vout ) = 1.923 ~:. ( 4.28) 

Thus the simple solution is to maximize Ra within the defined space yielding the 

solution (Ra, Rb) = (28,380) Ht This gives a decrease in SD(Vout ) from 1.665 X 1O-40'a 

to 1.189 X 1O-40'a a reduction of 28.5%. The confirmation of this design with a 200 run 

Monte Carlo simulation is given in Table 4.1 with a histogram in Figure 4.5. 
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Case (ii) : relative tolerances. 

(4.29) 

where c is a constant. In this case the standard deviation of Vout is represented by 

(4.30) 

which, when combined with the target constraint Rb = 13.6Ra, shows that the variation 

of the target is, at least approximately, independent of the nominal values. This implies 

that in the relative tolerance case the circuit is already stable and we shall not perform 

optimization in this case. 

4.5.4 Global circuit optimization 

Because the DACE model emulator can be evaluated many times faster than the circuit 

simulator it can be used in conjunction with the global optimization algorithm to 

improve the circuit design according to the criterion in (4.16), that is 

min of. subject to fly in Ry. We choose Ry = [3.80,3.92] and adopt the penalty 

function strategy (4.17) where: 

{ 

-2 Oy 
of. = 

5 X 10-4 fly not in Ry 

flY in Ry 
(4.31) 

The value 5 X 10-4 is chosen as an average value for O"f. during the optimization. The 

final circuit design is to set the six resistors RI, ... , R6 to an absolute tolerance of ±1 % 
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Figure 4.6: Gaussian lattice for estimating fL and (j 

of the original nominal values giving (R3 • R6 ) ± 2.7kn and (R l • R2. R4• Rs) ± 0.2kn. the 

rest ±20% of the original nominal values. Because of their lack of significance we 

maintain the values of parameters Cl •...• C4 • R7 • Rs at their nominal values and only 

vary the others when predicting with the emulator. Both lattice and Monte Carlo 

methods of calculating the estimates G-f and fJ,y are compared in different optimizations 

of the design. At each design point selected by the optimizer the circuit is emulated at 

n = 100 points according to either lattice or Monte Carlo distributions centered at the 

selected nominals with the appropriate scaling. The lattice and Monte Carlo points 

chosen for this example in six dimensions can be seen as pairwise plots in Figures 4.6 

and 4.7. Once optimized the circuit designs are confirmed on the simulator by a 200 run 

Monte Carlo analysis which give the histograms of Figures 4.8 and 4.9. The results are 

summarised in Table 4.1 and show that the optimizer has found solutions (confirmed by 

a 200 run Monte Carlo simulation using the simulator) which show improvements for 
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Figure 4.8: Histogram of voltage output for lattice-optimized design 

Initial design Analytic Simulator Confirmation 
using simulator optimization Lattice Monte Carlo 

Mean, {L 3.86 3.87 3.84 3.82 
Var, iJ2 2.85e-4 1.36e-4 1.46e-4 1.60e-4 

Table 4.1: Original design, optimized designs and Monte Carlo confirmatory experiments, 
absolute tolerance case. 
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Figure 4.9: Histogram of voltage output for Monte Carlo-optimized design 

Var(Vout ) of the initial design by 48.7% for the Lattice approach and 43.8% for Monte 

Carlo. It is interesting to note that the simple analytic method actually yields the best 

results with an improvement of 52.2%. The point here is that in a larger and more 

complex circuit such an approach is impractical. The optimizer parameters were set to 

observe 500 points in np (each point involving estimating J.ly and O'? with 100 

evaluations of the DACE model) with 50 iterations taking 6~ hours to find a solution 

using a Sun SparcStation2. An equivalent number of evaluations using the simulator 

directly would take approximately 1600 hours. The discrepancy in values between the 

optimizer (using the DACE model) and the simulator may be explained by (i) the 

emulator accuracy of around 2% when calculating fJ,y and (ii) the optimizer estimates 

being based on a sample size of 100 points compared with 200 points for the Monte 

Carlo confirmations using the simulator. 

The results given by the emulator from the optimization using the lattice estimator are 
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Component Initial design Lattice optimization Monte Carlo optimization 
Nominal Tolerance Nominal Tolerance Nominal Tolerance 

RI 20kn ±200n 27.4kn ±200n 26.6kn ±200n 
R2 20kn ±200n 14.8kn ±200n 17.3kn ±200n 
R3 270kn ±2.7kn 370kn ±2.7kn 313kn ±2.7kn 
R4 20kn ±200n 27.7kn ±200n 27.8kn ±200n 
R5 20kn ±200n 24.2kn ±200n 26.5kn ±200n 
R6 270kn ±2.7kn 314kn ±2.7kn 375kn ±2.7kn 

Table 4.2: Parameter values before and after optimization 

JL = 3.80, fT2 = lo71e - 4 and using the Monte Carlo estimator JL = 3.80, (,2 = lo2ge - 4. 

The parameter values chosen for components Rb •.• , R6 are given in Table 4.2. Note 

that the optimized design values of p, are at the lower bound of the target interval 

ny = [3.80,3.92]. Returning to the much simplified circuit analysis resulting in 

equation 4.25 we display the surface of this function as Vout = f(Ra., Rb) over the 

optimization region np in Figure 4.10. This shows that, although the surface is derived 

from a much simplified version of the real function, decreasing the target response value 

places the circuit response in a flatter area which results in less variation in response for 

a given absolute parameter variation. In the relative variation case this is counteracted 

by the increase of O'a. with Ra.. 

In modelling the whole function, rather than a simplified version, the emulator is a truer 

representation of the system and has more freedom in finding an optimal solution. From 

looking at Table 4.2 one can see the results using the emulator give parameter values 

different to those obtained by the analytic optimization indicating the difference between 

the simplified mathematical model (4.25) and the DACE model emulator. 

135 



n -

0.00 

.-, n '" 
0. v! 

Figure 4.10: Surface of simplified response function over region Rp. 

4.6 Conclusions 

This chapter describes a method of design optimization with respect to quality as 

defined in Section 1.1.1. The method presented is defined in terms of parameter and 

performance space following closely work on design centering and tolerancing but takes 

advantage of the concept of emulation to improve the efficiency of optimization allowing 

the use of a numerical optimizer. The case study, which follows directly from the study 

in Chapter 3, describes the approach and shows an improvement over the initial design 

by reducing response variability by 48.7%. This is achieved in under 7 hours using the 

emulator, an equivalent number of calculations on the simulator being estimated at 1600 

hours. Although the example system has only 12 input factors the method presented 
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represents a vast improvement over traditional Monte Carlo methods and provides the 

opportunity for global rather than local design optimization. The optimization method 

is directly applicable to problems in higher dimensions and the following Chapters 

describe techniques for reducing the complexity of building emulators for such 

higher-dimensional systems for optimization. An important distinction is between 

relative and absolute tolerance settings for system parameters and the differences are 

explored in the case study. The global optimization solution does well compared with 

the solution obtained analytically showing the validity of the approach. 
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Chapter 5 

Robust circuit design 11: 

Decomposition of complex 

systems 

5.1 Introduction 

Part of the difficulty of performing Robust Engineering Design on large systems is the 

execution of the experiment. When using computer simulators large system models can 

be costly to compute. The rationale for this chapter is that partitioning a system into 

individual subsystems for analysis will increase the ability to build emulators of complex 

systems for optimization. Decomposition is achieved using the partitioning algorithm 

detailed in Section 2.4.1. Emulator models of each sub-system are derived according to 

the method of Section 2.3.2 and are combined to emulate the full system as part of the 

RED strategy described in Chapter 3. 
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The main issue is one of preserving the environment in which the sub-systems exist, this 

is achieved using small circuit blocks to mimic the effect of connecting the sub-circuits 

together, hereby referred to as load blocks. Sub-sections of complex designs can be 

analysed independently with the aim of making simulation and emulator model building 

more efficient and accurate. The approach presented here relates to a design being 

decomposed in a linear fashion for piecewise analysis with feedback between sub-sections 

expressed via the load blocks. The outline of the proposed method is 

i. Form a graph representing the circuit. 

ii. Use a partitioning algorithm to decompose the graph. 

lll. Formulate sub-circuits according to the decomposed graph. 

iv. At the sub-circuit boundaries add a load block to mimic the missing connections. 

v. Build sub-emulators of each sub-circuit. 

vi. Combine the sub-emulators to emulate the whole circuit. 

vii. Use the emulator to optimize the design. 

The generalisation of the methods to multi-way partitions possibly including feedback is 

an area for possible future research. 

5.1.1 Simulation 

There are two basic options for the analysis of electronic circuits using SPICE-based 

simulators: 

i. AC analysis, for simulation in the frequency domain, and, 
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11. Transient analysis, for simulation in the time domain. 

Each method is used to measure different aspects of circuit response. From this point of 

view, the choice of AC or Transient Analysis affects only the setup of the simulator and 

the set of responses which can be measured as the same type of empirical model is fitted. 

However when decomposing a circuit the type of analysis selected defines the way in 

which the load blocks are modelled and how the sub-emulators are combined to form an 

emulator of the whole circuit. The method outlined above is applied to both AC and 

Transient analysis. 

In this way it is proposed to extend basic RED methodology to the analysis of complex 

circuits and systems. 

5.2 Circuit description 

The circuit of Figure 5.3, an audio pre-amplifier circuit, is used in this chapter to 

demonstrate the ideas presented. The main function of the circuit is to convert several 

different transducer signals to a signal appropriate for input to an audio amplifier. The 

circuit therefore needs to cope with a wide range of inputs and provide suitable biasing 

of the signal to account for non-linearities present in the transducers. The study 

concentrates on measuring the response at the pin Vout due to a signal input to the 

magnetic pickup ('MagJ>U' in Figure 6.1). 
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5.3 Partitioning 

Circuit partitioning algorithms are used in VLSI design where circuits too large to be 

placed on one chip are split between several chips [7]. The requirement is to partition the 

circuit to minimize the number of connections between blocks. We adopt a similar 

approach using the circuit topology in a simple graph-theoretic way. The partitioning 

algorithm described in Section 2.4.1 is used as the basis for an improved algorithm which 

is then used to decompose a circuit graph into three separate sections. Following the 

description of the basic partitioning algorithm described in Section 2.4.1, the improved 

algorithm is now described and tested. 

5.3.1 An improved partitioning algorithm 

Using notation from Section 2.4.1 we note that in point (ii.) of Section 2.4.1 it is possible 

to be in a tie situation when choosing a cell to move Le having more than one candidate 

for the base cell, cb. The algorithm has been improved to deal with this situation. 

Instead of arbitrarily choosing cb we choose the cell with the least number of connections 

to other cells in its current block and if there is still a tie the most number of 

connections to cells in the complementary block. We define two counters F and T for a 

given base cell cb such that 

i. F( cb) is the number of edges that cell (cb) is connected to in the block it is moving 

from. 

iL T( cb) is the number of edges that cell (cb) is connected to in the block it is moving 

to. 
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Graph Basic FM Improved FM 
mean passes mean cut nets mean passes mean cut nets 

Random 6.08 10.0 4.16 9.48 
Geometric 5.32 2.4 4.48 1.36 

Table 5.1: Random graph results table 

This is in place of choosing the cell with the best balance ratio. Considering a set of n 

possible base cells, c~, ... , c~, we choose the cell having 

min (.1'( c~») , i = 1, .. . ,n (5.1) 

breaking further ties by choosing 

i = 1, .. . ,n. (5.2) 

The improvement can be incorporated as a natural extension of the algorithm as .1'(ni) 

and T(ni) are computed in order to establish critical nets (see above for a definition of a 

critical net). The modification leads to better grouping of cells in a tie situation choosing 

Cb with the least number of connections in block .1' and the most in block T. The results 

of this modification can be seen in Table 5.1 where the improved FM algorithm is tested 

against the original algorithm. The Table shows the results of generating 100 graphs and 

decomposing each one using both the original and improved algorithms. The algorithm 

starts with an initial random partition and stops when no further improvement is made 

on minimising the size of the cut-set. The mean number of passes is the number of 

passes the algorithm made before finding an optimal partition for each graph divided by 

the number of graphs tested. The mean number of cut nets is the size of the best cut set 
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Figure 5.1: Example random graph: n = 100, d = 4 

found by the algorithm for each graph divided by the number of graphs tested. The 

modified FM algorithm gives better solutions to the min-cut problem for almost no extra 

computational effort. Two types of graph are used as benchmarks, random graphs and 

geometric graphs both are described below. 

Random graphs 

For a graph of n nodes the probability Pr that any pair of nodes are connected is given as 

d 
Pr=-

n-1 
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Figure 5.2: Example geometric graph: n = 100, d = 4 

where d is the required degree of each node. Nodes unconnected after this procedure are 

assigned a single edge with another node chosen randomly to ensure that all nodes are 

connected to at least one other node, Le dmin = 1, otherwise they do not form part of 

the network. To test the algorithms the values n = 100, d = 4 were chosen, see 

Figure 5.1 for an example. The graphs are constructed using the 'C' program 'listgen.c' 

in Appendix A.3. 

Geometric graphs 

For n nodes randomly placed in the space [0,1]2 the number of edges e of the graph is 

determined by 

(5.4) 
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and 

(5.5) 

to give 

nd 
e=-

2 
(5.6) 

where d is the required average degree as before. Unconnected nodes are then connected 

via a single edge to the nearest node to ensure dmin = 1 as for Random Graphs. To test 

the algorithms the values n = 100, d = 4 were chosen, see Figure 5.2 for an example 

graph. The graphs are constructed using the function 'mkgraph' defined in 

Appendix B.1 using the statistical package 'S-plus'. 

5.3.2 Partitioning the circuit 

The circuit and resultant partitions are shown in Figure 5.3. By relaxing the balance 

tolerance the algorithm was able to choose an initial partition of one small section and 

one larger section, the results of which are shown in Table 5.2 The balance tolerance was 
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Balance ratio (0 - 50) = 25 
Pass Best move No. of cut nets 

1 #31 6 
2 #25 5 
3 #1 3 
4 #69 3 

Table 5.2: Output of MinCut algorithm for first partition 

Balance ratio (0 - 50) = 10 
Pass Best move No. of cut nets 

1 #23 8 
2 #26 4 
3 #2 3 
4 #49 3 

Table 5.3: Output of MinCut algorithm for second partition 

then tightened and the larger section bisected, see Table 5.3. 

5.4 The load blocks 

Decomposition into sub-circuits affects overall circuit response. The response of the 

whole circuit is not equivalent to the sum of responses of individual sub-circuits because 

the interaction between sub-circuits is lost when considered individually. To overcome 

this difficulty the interaction between sub-circuits is accounted for by considering the 

effect of connecting one sub-circuit to another. The Substitution Theorem [4] is used to 

preserve the original network, it states that 

If any part of a network is replaced by any other combination of elements 

such that the terminal conditions remain unaltered, the conditions within the 

remainder of the network will remain unchanged. 
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Sub-circuits connected to the part of the circuit of interest can be considered as load 

impedances at the connection point. Considering the system of Figure 5.10 the load 

placed on the output of Block 1 is the input impedance of Block 2. Once this is found 

the 'loading effect' (Ld of connecting Block 2 to Block 1 can be accounted for and Block 

2 can be replaced by a much-simplified load block. The process of finding the correct 

loading factor for both transient analysis and AC Analysis is described for this particular 

form of decomposition. 

The first step in defining a load block is to calculate the input impedance (Zin) of the 

sub-circuit to be modelled. The simulator can be used for this purpose to calculate Zin 

as a function of frequency. By performing an AC analysis over a suitable frequency 

range, with an additional current-sensing resistor at the input to the circuit, the input 

voltage and current can be measured. From this Zin can be deduced for the stated 

frequency range as a complex function of frequency. This can then be interpreted 

according to the type of analysis to be performed. Figure 5.4 shows the process. 

5.4.1 AC load blocks 

For AC Analysis the input impedance Z is a function of frequency and is therefore 

represented by the function Z(w). Z(w) is approximated by System Modelling Blocks 

(SMB's) which are available in the Mentor Graphics version of SPICE used here and also 

in SPICE 3E2. The function is of the form: 

Z(w) = k(jw + zt)(jw + Z2) 
(jw + pt)(jw + P2) 
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Figure 5.4: Finding Z(w) of a sub-circuit using AC analysis. 

where w is the frequency in radians. A global optimization algorithm (see Section 2.5) is 

used to find the parameters Zl, Z2,PbP2 which give the best fit of the model to Z(w). A 

second-order model is assumed. If the results of the optimization process are poor a 

higher order model can be fitted. These parameters are used in the 5MB's to represent 

the loading effect of the missing circuit, the circuit diagram for block 1 of the PA20 

circuit, including the 5MB, is shown in Figure 5.5. 

The input impedance Z(w) is modelled with the 5MB's in the following way. 

i. Measure fin, the input current of the sub-circuit to be modelled. For an AC 

analysis with an input voltage of Iv this is equivalent to -! from Ohm's law. 

ii. Starting with a 2nd order function for the 5MB find the parameters which fit the 

function -!. If no model can be fitted use a higher order function. 

Hi. Use the 5MB to sense the voltage at the output pin of the sub-circuit to which the 
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Figure 5.5: Block 1 of pa20 circuit 

load block is to be attached. 

iv. From the voltage output of the 5MB create the relevant current at the sub-circuit 

output with a voltage-controlled voltage source (VCVS). 

The load block can be seen in place in Figure 5.5. Note that, for the example, only the 

magnitude part of the complex current fin was fitted with the optimizer. For 

phase-sensitive applications the optimizer may be required to fit both magnitude and 

phase. 

5.4.2 Transient load blocks 

For Transient Analysis the circuit is simulated with an input signal of a particular 

frequency. The input impedance of a sub-circuit can be represented as a complex 

number x + jy for that frequency. This complex impedance can be represented by the 
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Figure 5.6: RC load 

simulator as a resistor, RL, and capacitor, CL, in series (Figure 5.6), where: 

x 

-1 
wy 

(5.8) 

(5.9) 

Following the steps at the beginning of this section gives graphs of how the phase and 

magnitude of the complex Zin varies with frequency. Given this graph Zin can be 

deduced for the frequency of interest. 

5.5 Robust Circuit Design experiments 

5.5.1 AC analysis 

The graph of Figure 5.7 shows the function Z(w) as measured by the simulator with the 

results of fitting equation 5.7 with the optimizer. Table 5.4 shows the parameter values 

for 5MB1 and 5MB2 of the circuit, Figure 5.10. 

AC analysis is carried out in the following way: 
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Figure 5.7: Fitting 8MB model parameters to Z(W) 

PI P2 ZI Z2 K 
8MB 1 59.84 40.85 69.68 1.1ge-2 2.24e-4 
8MB 2 158.6 714.9 95.55 353.6 3.47e-4 

Table 5.4: Parameters for 8MB load blocks 
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1. Perform an experiment with input factors set to nominal for each block required to 

be modelled with a 5MB. 

2. Find parameters for the 5MB's for each block in 1. 

3. Experiment on each block measuring the relevant response(s). 

The 5MB parameters are not included in the RCD experiment as they will not influence 

the emulator model unless interactions between sub-circuits are expected. This is seen in 

the results of the RCD experiment on the PA20 circuit where the 5MB parameters are 

included in the analysis. Only the parameter J( shows up in the main effects plots 

(characterised by the letter 'T') of Figure 5.8 for the response at 200Hz (response number 

6), its effect being very small compared with the effects of the other factors (note: each 

factor plot is scaled individually). Main effects plots are described in Chapter 3. 

Section 5.5.3 describes how to include 5MB parameters in the RCD experiment. 

The experiments and DACE modelling were carried out using AC Analysis on the full 

PA20 circuit as well as for the three blocks resulting from its decomposition. The AC 

response of the circuit can be seen in Figure 5.9 which also shows the 12 points on the 

curve at which the circuit response is measured. 

The general scheme for analysis can be seen in Figure 5.10. The results of the analysis of 

the full PA20 circuit are compared with those obtained from partitioning the system. 

Table 5.5 shows the number of input variables and simulations for the partitioned circuit 

experiment and the whole circuit experiment. 

Three of the 12 points along the response curve of Figure 5.9 were chosen for analysis. A 

more comprehensive approach is to model the whole curve as a single response. Such a 
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Figure 5.9: PA20 circuit - voltage output and measuring points 

Block 1 Block2 Block3 Total Full Circuit 
24+5 35+5 19 88 78 

60 82 48 190 166 

Table 5.5: Experiment statistics 
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Figure 5.10: Partitioning of PA20 for analysis 

methodology is described in Chapter 6, however to demonstrate the partitioning and 

modelling aspects of the analysis three responses corresponding to frequencies of 20Hz, 

200Hz and 10KHz were chosen. 

5.5.2 Transient analysis 

To analyse a system partitioned into blocks in this way, simulation needs to proceed 

from the first block in the scheme, as follows. 

i. Perform an AC analysis on each sub-circuit whose load is to be modelled to 

determine Zinnom (input factors set to nominal). 

11. Determine values for RL and CL, the nominal load parameters, at the frequency of 

simulation. 

iii. Add RL and CL to the end of the block under experimentation (Figure 5.6). 

iv. Perform an experiment on the first block keeping RL and CL at their calculated 

nominal values. 
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v. Measure Yb the output of the first block, for each trial and from the range of 

values obtained calculate the mean value and associated tolerance for this range. 

Use this information as the input signal to the next block. 

vi. Repeat from Step 2 until all blocks have been analysed. 

vii. Build models (Section 5.6.1). 

5.5.3 Variable load blocks 

Taking the value of Z in at the nominal circuit level assumes that variations in the load 

block do not influence circuit response. There is a difference in approach for the two 

types of experiment. Because the Transient Analysis needs the input signal to be 

explicitly defined and fed in to each block the experiments need to be done working 

through the blocks starting from the first block. The Zin for the next block thus needs 

to be worked out first using one extra simulation. The nominal value of Zin is therefore 

taken to minimize the cost of performing extra simulations. 

For the AC analysis the input signal is kept constant since we are dealing with transfer 

functions of the circuit. This allows a 'last block first' approach to collect data on Zin 

for the block behind while doing the experiment on the block infront. A spread of 5MB 

parameters can therefore be used during the experiment to follow more closely the 

changes in Zin encountered with different parameter settings for the block infront. This 

spread of parameters is used to build the block model and then replaced by a 'typical' 

set of parameters for prediction. 
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5.6 Model building and verification 

The objective of analysing a circuit is the optimization of the circuit design in some 

sense. By modelling the behaviour of the circuit and constructing an emulator of the 

circuit simulator which is less expensive to evaluate the design becomes easier to 

optimize. The response of a simulated circuit is described using a model with the 

independent variables being the circuit inputs (parameter values, signal inputs etc.) and 

the dependent variables being the circuit outputs (frequency response, amplitude etc.). 

The statistical model used to emulate the circuit simulator is fully described in [10] and 

used in [1] to optimize the design of two lC circuits. It is computed from data obtained 

by conducting a computer experiment. That is the circuit is simulated according to an 

experimental design plan and the circuit responses measured. A description of the model 

can be found in Chapter 2. 

5.6.1 Analysis of decomposed circuits 

The circuit is partitioned into sub-circuits and a suitable sub-emulator is found in turn 

for each sub-circuit. The sub-emulators are combined to create an emulator of the 

behaviour of the whole circuit. Construction of the emulator depends on which type of 

simulation is used and on the treatment of the load block parameters Lp. The order of 

simulation of sub-circuits and hence construction of the sub-emulators becomes 

important when considering the load blocks since Lp for one sub-circuit is obtained from 

the neighbouring sub-circuit. A schematic of the combination of separate block models is 

described for the generalised two block system in Figure 5.11. 
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BLOCK 1 BLOCK 2 

Figure 5.11: Model Schematic 

Model building with transient analysis 

Following the procedure outlined in Section 5.5.2 we obtain models for each block of the 

system. For the case of a system divided in two (see Figure 5.11) these are of the 

following form: 

(5.10) 

where SI. S2 are signal inputs and XI. X 2 are parameter settings for blocks 1 and 2 

respectively. Note that the load term Ll does not appear in the model if it is fixed at a 

nominal level for the experiments (see Section 5.4.2). The output from block 1 is the 

input to block 2 (step v. Section 5.5.2) thus 

(5.11) 

which gives 

(5.12) 
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Model building with AC analysis 

Building a full system model from block models using AC analysis is different from 

transient analysis case because for simulation in the frequency domain the output of one 

block is not fed to the next. In AC analysis we are interested in the transfer function of 

the circuit, that is the magnitude and phase of the output signal relative to the input 

signal. By measuring the magnitude response in decibels we can add transfer functions 

of sub-circuits to obtain full circuit transfer functions (Equation 5.15). For the example 

circuit the p load block parameters, represented by the vector Lp, are included in the 

sub-emulators to test their importance. Examination of the sub-emulators determines 

the importance of Lp to the response. As Lp is shown not to be significant in the 

sub-emulators it is substituted with a vector of nominal parameter values Lnom. From 

the procedure in Section 5.4.1 the system of Figure 5.11 yields models of the form: 

( 5.13) 

Note that the load term Ll is contained in the model for Yl . It should also be noted that 

it is a function of (S2,X2). To fit a full system model therefore requires the elimination 

of this term. One approach is to fit a separate model for Ll of the form 

(5.14) 

and use this in conjunction with the first two models to build the full model. However 

for the example, simply fixing Ll at its nominal level produces good results. The full 
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system model then becomes 

(5.15) 

5.6.2 AC results 

The methodology was applied to the preamplifier circuit (PA20) shown in Figure 5.3. An 

emulator of the circuit was built from three separate sub-emulators of sub-circuits 

formed according to the partitioning results of Section 5.3.2. The emulator was then 

tested against simulations of the full circuit and compared with an emulator of the full 

circuit built directly from simulations of the full circuit. Table 5.6 shows the results of 

prediction at 50 new points (the simulator Y = J(X) evaluated at different parameter 

settings, Xl, ... , XsO) for the three responses chosen. The Root Mean Squared Error 

(RMSE) is defined as 

(5.16) 

where Y is the vector of n simulator results and Y is the vector of n predictions using 

the model in question (in this case n = 50). 

Range = max( response) - min( response) (5.17) 

~Z:nSg~ is therefore a measure of fractional error due to model inaccuracy as it shows the 

absolute error of prediction scaled by the range of prediction. 

The results (Table 5.6) show the effectiveness of the partitioning technique in emulating 

a large circuit. The emulator built from sub-emulators is at least as accurate as the full 
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11 Response 1 Block 1 Block2 Block3 1 Total Block 1 Full Circuit 11 

RMSE 3.42 4.21 1.76e-1 5.32 6.11 
20Hz Range 15.5 15.2 25.9 55.65 55.65 

ft~ an e 2.20e-1 2.77e-l 6.8e-3 1.46e-1 1.68e-l 

RMSE 4.23e-1 5.25e-2 2.67e-l 4.15e-1 4.05e-l 
200Hz Range 7.24 5.1 10.3 15.76 15.76 

ft~ an e 5.84e-2 1.03e-2 2.5ge-2 2.63e-2 2.57e-2 

RMSE 2.78e-1 2.50e-2 2.84e-1 4.75e-1 4.83e-l 
2000Hz Range 7.59 4.9 22.87 24.8 24.8 
~ 
Railire 3.66e-2 5.1e-3 1.24e-2 1.8e-2 1.95e-2 

Table 5.6: Model results 

circuit emulator and more accurate in the first and third cases. The general ability to 

model the first point accurately is hampered by the steepness of the response curve at 

that point (point 2 in Figure 5.9). 

5.7 Discussion 

The methods described partition circuits in a linear fashion for more efficient analysis. 

Decomposition of more complex systems may produce blocks which are connected to 

each other in more complex ways. In these cases the method of experimentation may 

need to be more sophisticated and further work is needed in this area to provide a more 

generalised methodology of experimentation. 

In the case study models were built to predict circuit response at three specific points 

along the response curve. Table 5.6 shows that the models for the circuit response at 

200Hz and 2000Hz are very acc1!rate and that the models constructed from blocks for 

the points examined are at least as accurate as the models built for the full system. Both 

full and block models built for the response at 20Hz however are not as accurate due to 
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the difficulty of modelling the response at such a steep point along the response curve 

(Figure 5.9). A more comprehensive model of the system could be obtained by modelling 

the whole response curve as described in Chapter 6. 

The results show the technique of decomposing a circuit into sub-circuits for analysis 

compares favourably with analysis of the whole circuit, producing slightly better results. 

The ability to analyse large systems in blocks means that systems previously too large 

for analysis can be tackled using the methodology outlined here. 

5.8 Related work 

Dividing complex circuits into sub-circuits for analysis has its foundations in graph 

decomposition techniques. Analysis of decomposed circuits tends to be more efficient 

because it takes advantage of the latency inherent in analysing large circuits [3]. It may 

also be the case that in a given system, a sub-circuit is repeated a number of times 

allowing the same emulator model to be used thereby increasing the utility of the 

approach. Representing circuits with graphs highlights the topological relationship 

between components [2]. Graphs of systems can be decomposed both directly [12] and 

ierarchically [13] to increase efficiency and are also used to solve the VLSI min-cut 

problem [9, 14], see Section 2.7. Topological analysis of circuits is also being used in 

transistor circuit analysis [11]. 

5.9 Conclusion 

In this chapter a method has been presented to decompose electronic circuit designs, 

experiment on the resultant blocks and produce emulator models of the blocks to 
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emulate the full circuit. The resulting model can be used to optimize the circuit in the 

manner described in Chapter 4. Methods for dealing with transient as well as AC circuit 

analysis are presented and an example of a circuit split into three blocks for AC analysis 

is given. Model building results show that considerable computation time is saved using 

the partitioning procedure for a minimal loss in model accuracy. The model produced for 

the circuit can be used in an optimization procedure to complete the RED process. The 

method is particularly suited to modelling systems where clear boundaries can be 

established between sub-systems. Further work should allow the generalisation of these 

methods to a wider range of circuits for different forms of circuit partition. 
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Chapter 6 

Circuit response modelling for 

robust design 

6.1 Introduction 

The use of circuit simulators such as SPICE [3] is essential to the development of 

complex electronic circuits where they are often used as a fundamental part of an 

analysis scheme such as Monte Carlo or Robust Circuit Design as in Chapter 3. In 

circuit simulation one seeks to measure the response of a circuit to a given input. This is 

generally represented as voltage or current plotted against time or frequency. We are 

interested in the frequency analysis of circuits where the designer specifies the range and 

resolution of frequency values for simulation and the circuit response is measured at 

these particular values. The frequency response of the circuit is typically displayed by 

plotting these values and connecting them with straight lines using simple piecewise 

linear interpolation. To obtain particular response values, such as peak frequency, from 
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the curve the computer will return the value of the nearest frequency point. As there is 

only linear interpolation between these values the accuracy of the result is dependent on 

the density of frequency points. The output of the circuit is a function of frequency 

Yew). As highlighted in Chapter 5 when faced with a response curve a typical solution is 

to model individual points on the curve to obtain responses which are scalar. In this 

Chapter the problem of modelling a response function is addressed. 

Section 2.3.2 provides a short description of the DACE model, Section 6.2 explores the 

problem of modelling a response function while Section 6.3 describes a strategy for 

modelling responses and improving the computational efficiency of the simulator during 

RED experiments. Section 6.4 follows with an example. 

6.2 Modelling a response function 

One way of modelling a response function Y (w) is to include w in the vector 

x = Xl,"" Xn of n input factors for an RED experiment. Instead of the usual 

arrangement where we model 

Yew) = f(x) (6.1) 

with 

Yew) = F(x) (6.2) 

at discrete values of w, we can use the model 

Yew) = F(x,w) (6.3) 
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Vout 

Figure 6.1: PA20 circuit 

to model the entire response function in the range of w used by the simulator for the 

experiment. 

6.2.1 Simulation 

The circuit described in Chapter 5 is also used in this chapter to explore the ideas 

presented. the study concentrates on the magnetic pick up transducer input ('Mag.J>U' in 

I 
Figure 6.1) for simplicity. Overall there are 79 input factors for the experiment, n = 78 

for the vector x of circuit parameters plus one for the frequency factor. The circuit is 

simulated in the frequency domain in the log scale over the range 15Hz to 25KHz with 
t 

100 points/decade, this gives a response curve with m = 324 simulation points, that is m i 
evaluations of equation 6.1 at different w values. The curve is given in Figure 6.7. The 

n = 78 usual input factors gives an RED experiment of 166 simulations using a Latin 

hypercube sampling design of size 2n + 10 (see Section 3.3.2). 
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6.2.2 Model building 

In order to construct a model the factor w needs to be included as a factor with the 

input vector x. Following the procedure above gives 2n + 10 = 166 frequency response 

curves each at m different frequency values which correspond to 166 different 

configurations of x according to the design plan. This data needs to be rearranged prior 

to model building so that the response is a single number and w is included with x. 

For each trial in the experimental design plan s = xl. ... , X2n+lO there are m response 

values corresponding to the m values of w. That is to say the effective number of trials 

for the experiment becomes m X (2n + 10) = 53784 for our example. To include all the 

data generated by the experiment yields an input matrix of (n + 1) x (m X (2n + 10» 

which for our example generates a 79 X 53784 matrix. The model building exercise for 

such an experiment is extremely large requiring roughly 30Mb of storage space for the 

experiment data, this prohibits model building which requires even more memory. For 

the purposes of demonstration the factor w is treated as an ordinary factor of the Latin 

hypercube sampling design plan and is divided into (2n + 10) evenly spaced values over 

the range 15Hz to 25Khz (log scale) and included with the n input factors, preserving 

the number of trials at (2n + 10). 

In practice the original LHS design plan is used with a single column added for w with 

the values of this column set at (2n + 10) evenly spaced values. The corresponding 

response values are then single points from each of the (2n + 10) curves generated in the 

RED experiment. 

6.2.3 Results 
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MLE RESULTS 

NUMBER OF LINEAR MODEL PARAMETERS IS: 1 
Variable Beta Std. Err. t-val 

Constant 6.3213e+00 O.OOOOe+OO Inf 

GAMMA= 0.0000 
THETA= 2.6753e-02 2.2063e-ll 1.4597e-07 1.6416e-03 4.7643e-09 
THETA: 1.866ge-08 9.0892e-07 3.6376e-ll 1.3547e-Ol 3.3688e-02 
THETA: 4.7643e-09 6.7353e-03 1.3382e-ll 3.1131e-08 5.1425e-05 
THETA= 4.7643e-09 4.9230e-12 1.3532e-02 5.472ge-09 5.7643e-09 
THETA= 5.7643e-09 1.0008e-Ol 5.7296e-03 1.666ge-08 9.452ge-07 
THETA= 4.7643e-09 4.7643e-09 1.2608e-Ol 8.0791e-03 9.5453e-02 
THETA= 3.860ge-05 4.7643e-09 1.2066e-Ol 1.0882e-Ol 6.7353e-03 
THETA: 4.7643e-09 1.7676e-02 5.296ge-03 9.6694e-08 4.9230e-12 
THETA= 4.7643e-09 1.666ge-08 4.7643e-09 4.7643e-09 5.7643e-09 
THETA= 4.7643e-09 5.7643e-09 4.7643e-09 3.6500e-07 7.7643e-09 
THETA: 4.7643e-09 1.4517e-02 5.3585e-03 9.6694e-08 4.7643e-09 
THETA= 7.6321e-03 1.0101e-ll 4.7643e-09 4.7643e-09 5.9526e-05 
THETA= 3.171ge-06 4.7643e-09 1.666ge-08 3.3500e-07 4.7643e-09 
THETA= 
THETA= 
THETA= 
POWER= 
POWER= 
POWER: 
POWER= 
POWER: 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 
POWER= 

5.7643e-09 1.4202e-05 2.0723e-07 2.3824e-08 1.9241e-06 
2.1623e-02 7.080ge-07 1.2387e-07 6.441ge-03 1. 18.10e-11 
5.7643e-09 2.1964e-02 2.8077e-03 2.1417e+Ol 
1.7797e+00 1.649ge+00 1.9994e+00 1.999ge+00 1.7898e+00 
1.9984e+00 1.9994e+00 1.0946e+00 2.0000e+00 1.0095e+00 
1.7898e+00 1.4950e+00 1.6635e+00 1.8995e+00 1.5590e+00 
1.7898e+00 1.6635e+00 1.0018e+00 1.9860e+00 1.9994e+00 
1.9994e+00 1.9842e+00 1.9890e+00 1.9994e+00 1.9994e+00 
1.7898e+00 1.7898e+00 1.999ge+00 1.9890e+00 1.9997e+00 
1.9626e+00 1.7898e+00 1.9977e+00 1.9991e+00 1.0038e+00 
1.7898e+00 1.9991e+00 1.9626e+00 1.9560e+00 1.7633e+00 
1.7898e+00 1.9994e+00 1.7898e+00 1.7898e+00 1.9994e+00 
1.7898e+00 1.9994e+00 1.000ge+00 1.9994e+00 1.9984e+00 
1.7898e+00 1.9954e+00 1.9780e+00 1.9560e+00 1.7898e+00 
1.7898e+00 1.7818e+00 1.7898e+00 1.7898e+00 1.9994e+00 
1.9862e+00 1.7898e+00 1.9994e+00 1.9925e+00 1.7898e+00 
1.9994e+00 1.7220e+00 1.9984e+00 1.9984e+00 1.9985e+00 
1.9968e+00 1.9925e+00 1.9925e+00 1.9455e+00 1.9175e+00 
1.9994e+00 1.4105e+00 1.7498e+00 1.7780e+00 

Figure 6.2: DACE model parameters for response function 
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Figure 6.3: Y vs. Y for the DACE model including w 

The DACE model built from these data was used to predict the response curves 

generated by the original RED experiment. The ERMSE of prediction (see Chapter 3) 

for the model is 10.27 showing the model is not predicting accurately enough compared 

with models constructed without w as an input factor (see next section). Analysing the 

DACE model parameters of Table 6.2 shows that the 79th factor, w, has a value for 0 

170 times larger than the next largest value. This implies that w completely dominates 

the model and overshadows any effect other factors might have. This can be seen clearly 

in Figure 6.3, a graph of true versus predicted response values. Figure 6.4 exposes this 

by plotting Y and Y against w which shows the poor prediction property of the model 

and both responses dependence on w. 
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Figure 6.4: Y and Y vs. w 

6.2.4 Conclusion 

The results of the model-building exercise show that the importance of w to the function 

cannot be easily represented with this naive use of the DACE model. The loss of 

information due to the need to reduce the data set generated by the RED experiment 

makes the prediction model inaccurate and the dominating effect w as an input factor 

tends to swamp the effects of the other input factors. 

6.3 Modelling a family of functions 

An alternative way of modelling the response curve to that given in the previous section 

is to build what will be termed a meta-model emulator describing the response as a 

function of w from an initial simulation. This model can then be used as a controller of 
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the more usual response emulators at carefully selected values of W to predict the 

response at any frequency point. 

A necessary part of the circuit design process is the ability to simulate the circuit under 

different conditions (signal input, parameter values, temperature etc.) to observe changes 

in response either manually or as part of a design strategy. These strategies necessarily 

require many simulations of the same circuit at different input values producing what will 

be called in this Chapter a 'family' of response curves which, although unique in terms of 

the input values applied, display similar characteristics over a range of input values. 

Once a meta-model is defined for the response of a particular circuit it can be used in 

conjunction with further simulations of the circuit to reproduce the response curve. The 

benefits of this method are twofold. First, the simulation of the circuit will be faster and 

computationally more efficient due to the reduced number of frequency points needed to 

be calculated by the computer to estimate the response. Second, the model can be used 

as an interpolator to estimate the value of the response between frequency points. 

The novelty of this technique is that the frequency points are chosen adaptively from the 

first nominal or 'base' simulation. In statistical terminology the method is a two-stage 

adaptive sampling strategy. At the first stage the choice of the special frequency points 

for later use is made using a proven statistical technique, namely cross-validation 

(CV) [1]. Each frequency point is assessed according to the change in the accuracy of the 

fit as measured by the increase in root mean squared error (RMSE). 

The base frequency vector for the first-stage simulation is written Wo the subsequent 

simulations are carried out for siblings with frequencies Wl' The first stage simulation 

has sample size (that is the number of frequency points) equal to no. The siblings each 
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have sample size nl giving a total sample size of 

N = no + knl (6.4) 

where k is the number of siblings. 

Typically nl ~ no and hence N ~ (k + l)no which might pertain when each curve is 

treated equally. Here nl is selected at different sample sizes (see the example) to 

investigate the relationship between sample size and model accuracy. The key point is 

that the nl points for the siblings simulations are a fixed subset of the base sample of no 

points for the base simulation. The procedure is summarised as follows: 

Stage 1 Simulate at no points then reduce sample size to nl using CV. This ranks each 

frequency point in the set Wo according to its importance to the model through the 

equation 

i = 1, ... ,no (6.5) 

where RM SEj is the root mean square of the model fit when the ith point is left 

out of set Wo. 

By taking a subset of the most important points for the model g(wo), that is points 

with 6i greater than a predetermined cut-off value, the sample size can be reduced 

to nl and the data fitted by a new model g(Wl)' In practice, because of the high 

density of points for a large no, 6j will not vary much from point to point making 

the choice of cut-off value difficult. A heuristic procedure to reduce the sample set 

by taking a combination of the most important points (highest 6i 's) and every 

second point from the remainder (or every fourth if there is evidence of 
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over-sampling) is used to compile nl points for re-modelling of the curve. The 

cycle is then repeated with nl being reduced further until a suitable trade-off 

between the sample size, nt, and the model accuracy (RMSE) is achieved. 

Stage 2 Perform all future simulations at the selected points, Wl, and use the estimates 

of the model parameters «(}i,Pi) from the first stage simulation to predict the 

frequency response at all intermediate points. 

The predictor (see Section 2.3.2) is of the form: 

where gs(WI) is the set of nl responses from the current simulation at the 

frequencies in Wl and r~ and Ra are taken from the modelling of the 'base' 

simulation curve using the subset of nl frequency points. 

6.4 Example 

(6.6) 

Data is collected from an experiment in which an electronic circuit is repeatedly 

simulated at various input settings as part of a Robust Engineering Design (RED) 

experiment and the curve modelling procedure applied. The circuit used is an audio 

preamplifier with a frequency response of interest in the range of 15Hz to 20KHz. The 

circuit contains 78 parameters which, using a Latin Hypercube Sampling (LUS) design 

plan [2], were varied over 166 trials for the RED experiment. This produces a family of 

166 frequency response curves showing the variation in response with respect to circuit 

parameter values. 
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Pass Start Top points from Points 'thinned out' Total Mean 
points CV ranking from remainder points ERMSE 

1 324 52 68 from 272 120 6.0e-04 
2 120 40 40 from 80 80 1.5e-03 
3 SO 20 30 from 60 50 3.Se-02 
4 50 20 15 from 30 35 1.4e-01 
5 35 15 10 from 20 25 2.2e-01 
6 25 15 5 from 10 20 4.3e-01 
7 20 10 5 from 10 15 7.2e-01 
S 15 5 5 from 10 10 1.7e+00 

Table 6.1: Stages in sample point reduction 

The circuit is simulated in the frequency domain in the log scale over the range 15Hz to 

25KHz with 100 points/decade, this gives a response curve with 324 simulation points 

for the 'base' simulation. Inspection of the CV results show 52 points with 6; > 0, these 

points plus 1/4 of the remaining points (choosing every fourth point to thin out the set 

speeds up thereduction process) gives nl = 120 as an initial reduction of no. The model 

of the curve is recalculated with nl and CV used again to reduce nl further. Table 6.1 

shows the effect of gradually reducing nl. The remaining 165 'sibling' curves can then be 

estimated using a model comprising the parameters p and iJ from the model of the base 

simulation at Wt and the nl frequency responses from simulating the circuit at Wt. 

To explore the relationship between estimated RMSE (ERMSE) and the sample size, nI, 

the modelling procedure is repeated for all sizes of nl summarised in Table 6.1. The 

effect of reducing the sample size can be seen in Figure 6.5 where the average ERMSE of 

prediction for the 165 sibling curves is plotted against sample size nl. For example the 

best 25 from 324 start points account for most of the root mean squared error. This plot, 

and that of Figure 6.6, is achieved by comparing the predicted responses with the actual 

simulations at the full 324 simulation points carried out for the purpose of validating the 
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Figure 6.5: Mean ERMSE of prediction for 165 sibling curves vs. sample size nl 

method. 

Figure 6.7 shows a sample distribution of the ERMSE of prediction for sibling curves at 

the favoured size of nl = 25. 

The sample size can be reduced from 324 to 25 points without loss of accuracy (mean 

ERMSE for prediction of sibling curves = 0.22). This improves the efficiency of the 

simulation process by reducing the number of simulation points for every new circuit 

simulation. The chosen 25 points are shown along the circuit output curve in Figure 6.7. 

Referring to the prediction model, equation 2.9 in Section 2.3.2, the model fitted to the 

base simulation at 25 points has the parameters 

e = 13.473 p = 1.4023 (6.7) 

for prediction (note that i = 1 for this case). 
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Figure 6.6: Prediction of sibling curves with model nl = 25. 
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Figure 6.7: Subset of nl = 25 points taken from the base simulation. 
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From Figure 6.6 the sample distribution shows two curves for which the modelling 

process yields a relatively high ERMSE of over 2. On inspection of these curves (Figure 

6.8) it can be seen that the error stems from an inaccurate initial tracking of the curve 

and, for the most part, the model is accurate over the remaining frequencies. If this part 

of the response were deemed to be critical then more points could be added here to 

improve the modelling. 

Finally the nl = 25 point meta-model is used to predict the response curves generated 

by the simulator of the circuit for a new set of input observations. This involves the 

following procedure 

i. Perform an experiment to generate a DACE model for each frequency response Yi 

where i = 1, ... , nI, generated from the selected frequency vector Wl. 

ii. For a new set of observations, predict the responses, Yi at the nl frequency values. 

iii. Use the predictions in the meta-model to predict the response at the other 

frequency values, call these Y i. 

IV. Compare the meta-model predictions with the simulator to verify the technique 

using the equation 

m 
L::no (y' .. y'.)2 

i 1 IJ- IJ 

mean ERMSE =.E ...:...-___ n..;.o __ _ 

j=1 m 
(6.8) 

The mean ERMSE of prediction at the full no = 324 frequency points for m = 50 curves 

is 0.230 showing the technique to be accurate. Figure 6.9 shows the 324 true (simulator) 

response values vs. those predicted using the meta-model for the worst case. Note the 
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Figure 6.8: Worst two curve predictions with 25 point model. 
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Figure 6.9: Worst predictions (ERMSE= 1.81) using meta-model. 

outlier corresponding to a badly predicted point very similar to the one in the top graph 

of Figure 6.8. 

6.5 Discussion 

The principle established is that both the model parameters and the choice of frequency 

points can be based on a single initial simulation with substantial gain in computational 

time and without significant loss of accuracy. This is particularly useful in RED 

experiments and in circuit optimization, when large numbers of frequency curves are to 

be evaluated. The benefits of fast emulation of the simulator using statistical models are 

preserved by careful selection of a limited number of sample points. 
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Chapter 7 

Design of experiments for 

complex systems 

7.1 Introduction 

In this Chapter we explore the relationship between RED and system topology 

developing a method for reducing the complexity of RED for large problems. This is 

achieved by adding knowledge about a system to the experimental design plan of the 

RED experiment. Instead of partitioning a system as in Chapter 5 we experiment on the 

whole system and reduce the complexity of the experimental design plan by exploiting 

topological information to tear the system. The tearing procedure described in 

Section 2.4.2 is used and a method of constructing a blocked experimental design is 

presented. The methods are illustrated with a case study of the decomposition and 

analysis of an electronic circuit and we shall also make comparisons with experiments in 

which all the factors are varied at the same time. 
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7.2 Complexity and experimental design 

In Section 1.1.3 we defined complex systems as having a large number of interacting 

elements and we repeat from Section 3.2.6 that the goal of RED is to model the 

behaviour of a system with an emulator to estimate how system input factors affect 

system response for optimization. Thus for a system Y = f(X) with n input factors 

X = Xl, • •• , Xn and m responses Y = Yh . .. , Ym we fit the emulator of Section 1.11, 

y = j(X). Experimental designs provide an efficient plan for testing a system at 

different combinations of X values to determine their importance on system response Y. 

Describing each input as a dimension, as in Section 1.2, for a range of values of X 

normalised to [0,1], an input space can be defined which contains all possible 

combinations of input factor values as [0, It. A point in this space corresponds with a 

particular vector of input factor values over the defined range. Good experimental 

designs minimise the number of points, or observations, required to fill the input space 

by spreading themselves out effectively. For complex systems the dimension of input 

space is large requiring a large number of points to effectively cover the input space, each 

point representing an evaluation of the system f. This can be prohibitively expensive. 

Chapter 5 was concerned with quantifying interactions between the input factors of an 

electronic circuit by partitioning it into sub-circuits to reduce the task of modelling. This 

has the effect of eliminating interactions between factors of different sub-circuits except 

via the load blocks, effectively reducing the input space for the RED experiment. With 

this method it is important to preserve the environment in which the sub-circuits 

operate through the use of load blocks emulating the surrounding sub-circuits which are 

assumed to be operating at nominal input factor levels. Here ~e avoid the use of load 
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blocks by considering the whole system for analysis but restricting the nature of the 

experimental design plan. If the whole system is simulated this process is equivalent to 

performing a single RED experiment as follows. 

1. Define the sub-circuits but do not physically decompose the circuit. 

ii. Perform an RED experiment on each sub-circuit keeping all other circuit factors at 

their nominal level. 

Hi. Build a single emulator of the simulator from the experiment. 

U sing circuit topology to define sub-circuits provides the opportunity to streamline the 

interactions between input factors which has the effect of restricting the input space. 

The experimental design plan can take advantage of this by concentrating on areas 

where interactions are more likely to occur. The circuit is decomposed only in the sense 

that the input factors are grouped together for analysis, this compares directly with the 

process of tearing a network for analysis. An important feature of the decomposition 

applied in this Chapter is the creation of a border group of variables which acts as a 

communication pathway between sub-circuits allowing a certain degree of interaction. 

This replaces and improves on the limited amount of interaction allowed via the load 

block parameters in Chapter 5. 

7.3 Decomposition: tearing 

The goal of decomposition here is to group together factors likely to share strong 

interactions in an attempt to reduce the input space of the experiment. The method 

used is related to Diakoptics [4] (ses Section 2.7.3) in that we look to decompose a 
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network into blocks joined by a connecting network. In Diakoptics the fact that it is 

much easier to invert several small matrices rather than one large one is exploited to 

reduce the computational effort required to solve the system equations. The connecting 

network serves to link the smaller matrices together. The decomposition method 

combines this idea with sparse matrix techniques where a matrix can be arranged in a 

Bordered Block Diagonal (BBD) form to tear a circuit. We use the topology of the 

circuit represented through the incidence matrix of its graph in the algorithm of 

Section 2.4.2 (an implementation of an algorithm by Zecevic and Siljak [10]) to 

decompose the incidence matrix into the BBD form. 

7.3.1 The incidence matrix 

The first stage in decomposing a circuit involves representing the circuit with an 

undirected graph and using this to create an incidence matrix which is typically sparse. 

We repeat the process described in Section 2.4.2 to highlight the similarity between the 

formulation of the incidence matrix for circuit analysis and formulation for 

decomposition. Given a circuit represented by a graph G, where the edges are circuit 

components and the nodes are circuit nodes, the analysis problem can be formulated as 

I=YxE (7.1) 

where I is the current vector, Y the nodal admittance matrix and E the voltage vector. 

This corresponds directly with circuit topology. For a circuit with n nodes and q 

components the nodal admittance matrix, Y, is size n x n with 2 x q elements as Y is 

symmetric about the main diagonal. 
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A circuit is represented as a graph 9(X,E) with a set of nodes X = {xt, ... ,xm } and 

edges E = {el, ... , eq } representing respectively the circuit nodes and components. This 

representation can be understood by comparing Figures 7.4 and 7.5. The unweighted 

graph is mapped into an incidence matrix in symmetric form with 2q elements 1 the rest 

O. The first step in forming the groups of factors is to create the incidence matrix from 

the circuit. This is the same size as the nodal admittance matrix Y in equation 7.1, the 

elements of the matrix I being defined as 

Iij = ., for nodes i,j not connected, i,j = 1, ... , n. 

Iij = X, for nodes i, j connected, i '# j, i,j = 1, ... ,n. (7.2) 

This incidence matrix is analogous to the incidence matrix formed during the initial 

stages of a nodal analysis for computer-aided circuit simulation, see Chua and Lin [2]. 

7.3.2 Forming the blocks 

The main idea is to use the block structure given by the system decomposition to aid the 

construction of the experimental design. Experience with this and other problems has 

shown that with large systems the concept of a nominal or centre value is important. 

Each individual block may affect the behaviour of other blocks, that is affect the causal 

link to the output. It is a mistake to wholly isolate a particular block for purposes of 

experimentation. An effective method is to allow an ordinary block only to 'see' the 

nominal levels for the other blocks. The border is treated differently. It is connected to 

every ordinary block and conceptually can be thought of as a communication pathway 

between blocks. It is allowed to have a more varied relationship in the design with each 
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Figure 7.1: Schematic of system decomposition. 

block and itself. There are two important analogies of the border in related fields which 

provide additional motivation: 

i. in hierarchical control theory subsystems may only communicate via a 

'coordinator' or 'controller' (Mesarovic, Macko and Takahara [6]), see Section 2.7. 

ii. in Robust Engineering Design (specifically Taguchi methods, Section 1.3.2) the 

'noise factors' may interact with any control (design) factor and the experiment is 

designed to allow this by crossing noise and control factors. We can think of the 

noise as an all-pervading medium which may potentially influence any control 

factor. 

The schematic of Figure 7.1 shows a system decomposed, using the method described, 

into three blocks Gb"', G3 connected by a border B. 
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7.4 Experimental designs 

To perform computer experiments on systems with a large number of interacting factors 

(Le complex systems as defined in Section 1.1.3) requires the use of design plans capable 

of efficiently filling the input space. Here three types of design are used in the case study 

which follows to model the example circuit both with and without the decomposition 

technique described. The designs are 

L Basic LHS designs [5]. 

H. LHS due to Buck and Wynn [1]. 

iii. Lattice designs [8]. 

These design types were selected because of the size of the problem (Le number of input 

factors) and the lack of knowledge about which factors and factor interactions are 

important for the emulator. They are preferred to the more popular Taguchi-style 

Orthogonal Array's (OA) for building prediction models. The benefit of orthogonality in 

the design plan is that it is easier to attribute response variance to input factors in 

studies such as ANOVA (analysis of variance). The use of full factorial design plans 

(OA's) is limited because the size of design plan increases rapidly with the number of 

factors. Fractional factorial designs preserve orthogonality and reduce the size of design 

plan by not searching the input space fully for interactions, preferring to concentrate on 

main effects. This can lead to poor prediction models if there are significant interactions 

between input factors. Knowledge about interactions allows full factorial designs to be 

reduced intelligently and can act as alternatives to the more usual space-filling designs. 
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The construction of basic and improved LHS designs and integer lattices is discussed in 

Section 2.3.1. 

7.5 Building the experimental design plan 

The experimental design plan reflect~ the final graph produced by the partitioning 

algorithm as follows. Each factor is represented by an edge. 

i. For each block j all its edges Ej are grouped together with the set of edges in the 

border, Ejb with which it has a common node in the final graph. 
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Figure 7.3: Schematic of full experimental design plan. 
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ii. For block j of the experiment the factors, given by Ej U Ejb are varied while all 

other factors are set at the nominal value, which is here taken to be the central 

value of the range of the factor. This is repeated for j = 1, ... ,m. This part of the 

experiment can be considered as a one-block-at-a-time experiment. 

iii. The border factors, Eb, are varied in their own experiment in which all other 

factors are set to nominal. 

This is illustrated in Figures 7.2 and 7.3 which show how the experimental design plan is 

derived from the decomposed incidence matrix. Figure 7.3 should be compared with a 

basic experimental design plan (see Figure 3.2 for an example) to highlight the new 

structure. Again, it is important not to consider the separate blocks as independent 

experiments. While runs are conducted varying the levels of the factors within a block 

the other blocks are still 'active' it is only that the complexity of the experiment is 

reduced using the nominal settings. In effect we are operating in a restricted region of 

input space closer to the overall nominal levels, or centre point of the whole experiment. 

7.6 Case study 

7.6.1 The system 

An example circuit is used to develop the methods and is modelled using three different 

design plans. Emulators of the circuit simulator are constructed and verified over both 

full and restricted input spaces. The circuit is shown in Figure 7.4. It is the preamplifier 

circuit used in Chapter 6 and is designed to provide input to an audio amplifier and 

accept a wide variety of signal types. The output studied here is the frequency response 
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Figure 7.4: Example circuit. 

presented as characteristic curves of relative amplitude in decibels (dB) against the log 

of frequency (log(w)). Five points Y}, ... , Ys on the response curve are chosen as 

responses to be modelled, corresponding to frequencies log(w) = 2.07,2.33,3.15,4.40,5.19 

respectively. In the experiments the factors represent the levels of resistance and 

capacitance for 60 different circuit components. The simulator AccuSim, supplied by 

Mentor Graphics (UK) Ltd., was used with the full integrated module for performing 

robust design on electronic circuits described in Chapter 3. 

7.6.2 Results 

For the example circuit the incidence matrix I is given in Table 7.1, note the sparsity of 

the matrix. This property is exploited to decompose the matrix into the BBD form of 

Table 7.2. The algorithm used to form the BBD matrix from the incidence matrix is 

fully described in Chapter 2. Figure 7.5 gives the final graph for the torn circuit. 

Table 7.2 shows the results of decomposition. The elements of the BBD matrix 

correspond with circuit components. Each block represents a group of connected 

components, the groups themselves connected with each other via the components in the 

border group. The BBD matrix is used to decompose the graph of the circuit to give the 
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Figure 7.5: Graph of circuit. 

groups highlighted in Figure 7.5. The border components are not grouped but act as the 

connecting network through which groups can interact, similar to the connecting 

network of Kron's Diakoptics. 

Although the new block structure affects the experiment we have not, in this study, 

allowed it to affect the initial model. Thus we fit the DACE model of Section 2.3.2, 

fitting the parameters by maximum likelihood in the normal way. A more sophisticated 

approach would take into account the sparse matrix methodology in the internal 

numerical analysis of the statistical package itself. For example the estimation of the 

parameters of the covariance function may be facilitated. 

The final block sizes selected by the algorithm were 25, 19 and 17 factors (edges) for 

ordinary blocks and 27 for the border. Table 7.3 presents the results of the experiment 

using the block structure and using an experiment ignoring the block structure and for 

three designs: D1 : simple Latin Hypercube, D2 : Improved Latin hypercube and D3: a 
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Full model predictions Block model predictions 
Design type Response Full space I Restricted space Full space I Restricted space 

Y1 3.740 2.361 5.029 2.381 
Y2 0.432 0.316 0.610 0.324 

Dl Y3 0.195 0.139 0.283 0.148 
Y4 0.179 0.116 0.270 0.128 
Ys 0.150 0.091 0.281 0.141 
Yl 3.774 2.664 4.501 4.501 
Y2 0.422 0.273 0.416 0.416 

D2 Y3 0.246 0.173 0.264 0.264 
Y4 0.246 0.142 0.229 0.229 
Ys 0.153 0.089 0.211 0.211 
Y1 4.378 2.467 6.397 3.563 
Y2 0.467 0.254 0.698 0.353 

D3 Y3 0.202 0.106 0.433 0.223 
Y4 0.187 0.108 0.335 0.168 
Ys 0.170 0.089 0.349 0.171 

Table 7.3: Mean ERMSE for prediction at 500 points - 60 variable model 

lattice design. For the latter the primitive root method ( (ii.) in Section 2.3.1) was used 

with prime power block sizes as close as possible to the values used in the first two 

experiments. Thus, the sample sizes for Dl and D2 for the blocks and border were 

respectively 60,48,44 and 64 and for the lattice, D3, the primes 61,47,47 and 61; in 

both cases the total sample size is 216. 

The entries of Table 7.3 are the mean squared error (MSE) of prediction at 500 test 

points (trials) selected independently by a simple Latin Hypercube design. For each trial 

there are five outputs Y1 , • •• , Ys which are the values of the frequency response at the 

five selected frequency values stated in Section 7.6.1. Each frequency value was allowed 

its own DACE model. Initial trials in which frequency was treated as an additional 

factor incorporated into the experiment were not successful (see Section 6.2). (A 

heuristic method for selecting frequency values for simulation using cross validation is 

described in Chapter 6). Results are presented for each of three designs and for the four 
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Figure 7.6: Factor plots of the 5 most important variables for the 5 responses Yt ,· .. , Ys. 

combinations of restricted/unrestricted experiment and restricted/unrestricted 

prediction region. Factor plots (see Section 3.3.4 for an explanation of factor plots) of 

the 5 most important factors for each of the five models are shown in Figure 7.6 for the 

restricted Lattice design experiment. 

Figure 7.7 shows a typical frequency response curve with the five selected values 

highlighted. The graphs are of fitted versus actual response for each frequency value and 

for the restricted Lattice design experiment. There is one frequency value, response Yt in 

Table 7.3, corresponding to the peak amplitude where the predictions are worse. 

Table 7.4 shows the results of prediction selecting the 20 'most significant' factors based 
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Full model predictions Block model predictions 
Design type Response Full space I Restricted space Full space Restricted space 

LIIS Mk1 3 0.262 0.169 0.256 0.099 
LES Mk2 3 0.308 0.202 0.273 0.098 

Lattice 3 0.383 0.198 0.483 0.224 

Table 7.4: Mean ERMSE for prediction at 500 points - 20 variable model 
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simply on the size of the estimates of OJ, and only for the central frequency value. 
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/ 

Figure 7.8 shows the subgraph containing only the significant factors (edges). It is of 

some interest that the significant factors for the selected response tend to form 'cliques' 

and that the border plays a strong connecting role. We should like to encourage the 

development of diagrams such as Figure 7.8 which weave together system structure and 

the statistical significance of components. 

7.7 Conclusions 

The following conclusions can be drawn. 

i. Despite the high dimensionality of the problem and except perhaps for the peak 

frequency the emulator model is effective. For example it may be used for fast 

optimization and sensitivity analysis. 

ii. There is an advantage in blocking, particularly if predictions are only needed over 

the restricted space. 
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iii. The single generator lattice designs work effectively for smaller dimensions and are 

strongly recommended as an alternative to Latin Hypercube designs. For larger 

dimensions it may be necessary to use more than one generator because some low 

dimensional projections of the design are not satisfactory when the dimension is 

too high relative to the sample size. 

The need to experiment on large systems should lead to newer styles of experimental 

design and analysis in which the structure of the experiment broadly reflects the system 

structure. It is essential to emulate the environment in which each subsystems lives. 

Lattice and other easy-to-generate codes are effective on examples but there is 

considerable theoretical and computational work needed to establish optimality for 

response surface models. 

By adapting a recently published algorithm to produce a BBD matrix from a sparse 

matrix the circuit factors, corresponding to elements in the matrix Y, can be grouped 

together with groups being connected with each other via factors in the matrix border. 

The groups of factors share the factors in the border and communicate with each other 

through them, Hence the analogy with Diakoptics where separate sets of equations are 

joined by a connecting network. Further development in the integration of sparse matrix 

techniques with RED should improve the efficiency of modelling systems for 

optimization, particularly in the area of emulator construction. 
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Chapter 8 

Conclusions 

There is a clear need for Robust Engineering Design methods to improve the design, 

manufacture and use of products and the analysis and optimization of systems in 

general. The application of state-of-the-art RED methods to real design problems is 

often hampered by the complexity of specific problems and the computer and time 

resources available. In this sense complexity can be defined as our ability to deal with 

the problem. The framework which has evolved for RED is summarised loosely as: 

i. define system inputs and responses of interest 

ii. design the experiment 

iii. do the experiment (real or simulated) 

iv. emulate the system with a simplified model 

v. optimize the system emulator 

vi. confirm results - repeat with reduced input space if more accuracy required 

203 



The work contained in this thesis is aimed at reducing the complexity of performing 

RED experiments for design optimization. This has been approached through the 

development of 

i. a common framework for RED 

11. global optimization of designs with respect to quality. 

lll. methods for modelling response functions 

iv. methods for the physical decomposition of systems for RED 

v. methods for reducing the input space of RED experiments 

The application of these methods to electronic circuit design problems has involved the 

use of partitioning algorithms, system decomposition methods, simulation theory, circuit 

optimization, experimental design and model building to electronic circuit design 

problems. 

The application of RED to circuit design problems is to some extent dependent on the 

problem itself. Different types of analysis require different approaches, in particular 

when systems are physically decomposed and this has been considered. The provision of 

software to perform RED on circuits within a commercial circuit simulation 

environment, using SPICE, has allowed experiments to be conducted quickly and 

efficiently and the collaborative project with Mentor Graphics (UK) Ltd. detailed in 

Chapter 3 provides a platform for this with some basic RED tools. 

A novel approach to system optimization is presented in Chapter 4. The notion of quality 

as discussed in Chapter 1 is encapsulated in a method of global system optimization 

where system emulators are combined with a global numerical optimizer. The issue of 
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system parameter tolerances is raised and incorporated into the optimization problem. 

Intelligent techniques are used for the analysis of complex systems represented by 

electronic circuits. Often in circuit analysis the response to be modelled is a function of 

time or frequency and this leads to the idea of including these as parameters in the 

emulator models of the system. This however proved to be impractical due to limitations 

in computer power and the overwhelming effect the importance of these parameters has 

on the emulator model obscuring the effects of the system parameters. A different 

approach to the integration of RED and simulation is needed. The rationale which 

emerged is to form a tiered arrangement of emulators to model a large system drawing 

from systems theory where a controller is used to direct sub-systems. 

In tackling the issue of complexity in RED two decomposition strategies have been 

employed to simplify the problem and are categorised as partitioning and tearing, the 

distinction being that partitioning involves a physical decomposition of the system 

whereas tearing decomposes system parameters into a set of connected groups without 

affecting the physical structure of the system. Another useful di~tinction between the two 

methods is that in partitioning the system equations are formulated after decomposition 

and in tearing they are formulated before decomposition. Both methods use the topology 

of the system represented by an undirected graph as the metric for decomposition. 

Partitioning follows the lines of direct decomposition where sub-systems are formed and 

modelled independently, the emulation models being combined for optimization of the 

whole system at the final stage. This is particularly useful where a system is too large to 

be analysed whole or where different types of analysis are required for the subsystems. 
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Tearing provides a way of incorporating system information into the experimental design 

plan for more efficient experimentation and modelling for RED. The exploitation of the 

special design plans for more efficient emulator building is a logical next step for this 

work. 

The examples given show that adopting the techniques presented provides a significant 

reduction in the complexity of performing RED on large problems. 

8.1 Future work 

The case studies detailed in this thesis relate to the analysis of electronic circuits. There 

are several issues raised in the analysis of circuits which constitute areas of future work. 

These include: 

i. Linking non-linear device model parameters with manufacturing parameters. 

ii. Dealing with feedback loops and other non-linearities in the decomposition of 

circuits. 

Ill, Mixed-mode simulation and circuit decomposition. 

iv, Use of different techniques for system decomposition such as clustering algorithms 

and the integration of decomposition with analysis. 

It should be noted however that the issues raised in (ii) and (iii) are only applicable if 

the circuit is physically partitioned as in Chapter 5. 

On a more general level the direction of research in this thesis highlights several issues in 

the design of complex systems: 
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i. The efficient use of RED requires the integration of experimental design and model 

building with knowledge of the system under observation. System parameters may 

be difficult to change and this may have a bearing on the order of experimentation. 

Including engineering knowledge such as system topology or known relationships 

between subsystems/parameters is desirable and a framework for doing this easily 

would make the RED process more efficient. 

ii. Expansion of the scope of RED experiments to other engineering fields, notably 

mechanical engineering, is required especially for the effective use of RED in 

product development which typically incorporates several types of engineering. 

The definition of system parameters in areas such as mechanical engineering is 

critical as this restricts the solution space of the problem. Of particular importance 

is the choice of geometric parameters. 

Hi. Intelligent techniques for dealing with complex systems need to be incorporated 

into real software tools which close the loop of design synthesis and analysis. The 

use of such tools speeds up the analysis of new design solutions and acts as a , 
catalyst for creative design and innovation. 

It is hoped that the techniques and ideas presented in this thesis prove useful in the 

continuing development of tools for design analysis and necessary integration of analysis 

and synthesis in design. 
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Appendix A 

C routines 

A.I Improved min-cut algorithm 

1*************************************************************** 
Algorithm copied from the Fiduccia & Mettheyeses paper. 
File mc.list contains the network information. 
File blockA.in gives the initial partition of the network. 

***************************************************************1 
#include <string.h> 
#include <malloc.h> 
#include <stdio.h> 
#define EOL '\n' 
#define NODEMAX 2000 
#define CELLNAMEMAX 5 
#define TRUE 1 
#define FALSE 0 

typedef int boolean; 

typedef struct { char name[CELLNAMEMAX]; } NAME; 

1* define structure for BUCKET which will be 2 doubly-linked lists.*1 

typedef struct dlist { 
int dcell; 
struct dlist *leftp; 
struct dlist *rightp; 
} 

DLIST; 

1* by using a lookup table to keep the cell names 
we can use the same data structures for both lists *1 

typedef struct list { 
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int graph_ref; 
DLIST *cell_ptr; 
int block~location; 
struct list *next; 
} 

LIST; 

1* set up pointers for each element in cell_array & net_array *1 
LIST *ca_start[NODEMAX]. *ca_point[NODEMAX]; 
LIST *na_start[NODEMAX]. *na_point[NODEMAX]; 
NAME lookup[NODEMAX]; 
DLIST *bucket_a.*bucket_b; 
int *FREE_CELL_LIST.pmax.ncells.nnets; 
int A_MAXGAIN.B-MAXGAIN.bal_tol; 

1*-----------------------------------------------*1 
1* function rb_abs computes absolute value of x. use this *1 
1* because couldn't get Sun library abs function to work *1 
1*-----------------------------------------------*1 
int rb_abs(int x) 
{ 

} 

if(x<O) x=(-1)*x; 
return(x); 

1*----------------------------------------------*1 
int *AllocInt(int n) 
{ 

} 

int *B; 
B = ( int *) calloc(n,sizeof(int»; 
return B; 

1*-----------------------------------------------*1 

1***************************************************************1 
LIST* insert(int thing. LIST *old_pointer) 
{ 

LIST *pointer; 

pointer = (LIST *)malloc(sizeof(LIST»; 
if (pointer == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit (1) ; 
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} 

pointer->graph_ref = thing; 
pointer->next = old_pointer; 
return(pointer); 

1***************************************************************1 
void printout(int total, int total2) 
{ 

} 

int i=O; 

for (i=O;i<total;i++) 
{ 

printf ("Yes 11 ,&:lookup [i]) ; 
for (ca_point[i]=ca_start[i]; 

ca_point[i] != NULL; 
ca_point [i]=ca_point [i]->next) 

{ 

printf(I%5d", ca_point[i]->graph_ref); 
} 

printf("\n"); 
} 

for (i=O;i<totaI2;i++) 
{ 

printf("%3d ",i); 
for (na_point[i]=na_start[i]; 

na_point[i] != NULL; 
na_point[i]=na_point[i]->next) 

{ 

printf("%s ", lookup[na_point[i]->graph_ref]); 
} 

printf("\n"); 
} 

1***************************************************************1 
I*input file syntax: # of cells &: # of nets, followed by lines of 

cell names with nets they are connected to. 
NOTE : nets must be named zero to # of nets *1 

int input_dataO 
{ 

NAME cell_name; 
char c; 
int i,net_value,pincount; 
int pmax=O; 
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} 

FILE* in; 
in = fopen("mc.list","r"); 

fscanf(in,"%d",&ncells); 
for (i=O;i<ncells;i++) ca_start[i] = NULL; 

fscanf(in,"%d",&nnets); 
for (i=O;i<nnets;i++) na_start[i] = NULL; 

for (i=O;(c=fgetc(in)!=EOF;i++) 
{ 

} 

ungetc(c,in); 
fscanf(in,"%s",&cell_name); 

1* set up lookup table for cell names*1 
lookup[i] = cell_name; 
pincount=O; 

while «c=fgetc(in»)!=EOL) 
{ 

} 

pincount++; 
ungetc(c,in); 
fscanf(in,"'l.d",&net_value); 

ca_point[i] = ca_start[i]; 
ca_start[i] = insert(net_value,ca_point[i]); 

na_point[net_value] = na_start[net_value]; 
na_start[net_value] = insert(i,na_point[net_value]); 

if (pincount>pmax) pmax=pincount; 

fclose(in); 
l*printout(ncells,nnets);*1 
return(pmax); 

1***************************************************************1 
I*use location info in cell array to count # of cells in a 
specified block on a specified net *1 
1***************************************************************1 
int count_cells(int block, int net) 
{ 

int count=O; 
LIST *net_ptr, *cell_ptr; 
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} 

net_ptr = na_start[net]; 
while (net_ptr != NULL) 
{ 

} 

cell_ptr = ca_start[net_ptr->graph_ref]; 
if (cell_ptr->block_location == block) count++; 
net_ptr = net_ptr->next; 

return(count); 

/***************************************************************/ 
boolean balance(int movecell) 
{ 

} 

int i,asum=O; 
int rtn_vec; 

if (movecell!=-1) 
{ 

} 

/*************************** 
find the # of cells in block A. 

***************************/ 
for (i=O;i<ncells;i++) 

if (ca_start[i]->block_location==O) 
asum++; 

/*************************************** 
adjust for movement of test cell 'movecell'. 

***************************************/ 
if (ca_start[movecell]->block_location==O) 

asum--; 
else asum++; 

/************************************* 
find 1. difference in integer form from zero 
*************************************/ 
rtn_vec=(int )«(asum*100)/ncells)-50); 
rtn_vec=rb_abs(rtn_vec); 

else rtn_vec=50; 
return(rtn_vec): 

/***************************************************************/ 
int *select_cell(int block,int maxgain) 
{ 

int F,T,cell,net,fblk,tblk; 
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} 

int best_cell=(-l),best~f=(-l),best_t=(-l)j 
DLIST *dpointer; 
LIST *pointer; 
int rtn_vec[3]; 

if (maxgainl=(-pmax-l» 
{ 

} 

if (block==O) dpointer=&bucket_a[maxgain+pmax]j 
else dpointer=&bucket_b[maxgain+pmax]; 

while (dpointer->rightpl=NULL) 
{ 

} 

F=Oj 
T=O; 
dpointer=dpointer->rightpj 
cell=dpointer->dcell; 
fblk=ca_start[cell]->block_location; 
if (fblk==O) tblk=lj else tblk=O; 
pointer=ca_start[cell]j 
while (pointerl=NULL) 
{ 

} 

net=pointer->graph_ref; 
F=F+count_cells(fblk,net); 
T=T+count_cells(tblk,net)j 
pointer=pointer->next; 

if «best_f==(-l» 11 (F<best_f) 
11 «F==best_f)&&(T>best_t») 

{ 

} 

best_f=F; 
best_t=T; 
best_cell=cell; 

rtn_vec[O]=best_celljrtn_vec[1]=best_f;rtn_vec[2]=best_tj 
return(rtn_vec)j 

1*****************************************************************1 
I*Select cell to move from one block to another. Use select_cell 
to get best cell from each group then use balance to pick to base cell. 
In the event of a tie the cell with the best balance coeff is chosen. 

*****************************************************************1 
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{ 

} 

best_a=select_cell(O,A_MAXGAIN)[O]; 
if (best_a!=-l) gain_a=A_MAXGAIN; 
else gain_a=(-pmax-l)j 

best_b=select_cell(l,B_MAXGAIN)[O]j 
if (best_b!=-l) gain_b=B_MAXGAIN; 
else gain_b=(-pmax-l); 

if «best_a!=-l)&&(best_b!=-l» 
{ 

} 

if (gain_a>gain_b) 
{ 

} 

if (balance(best_a)<=bal_tol) base_cell=best_a; 
else base_cell=best_b; 

if (gain_a<gain_b) 
{ 

} 

if (balance(best_b)<=bal_tol) base_cell=best_bj 
else base_cell=best_aj 

if (gain_a==gain_b) 
{ 

} 

if (balance(best_a)<=balance(best_b» base_cell=best_aj 
else base_cell=best_bj 

else if «best_a!=-l)&&(best_b==-l)&&(balance(best_a)<=bal_tol» 
base_cell=best_aj • 

else if «best_a==-l)&&(best_b!=-l)&&(balance(best_b)<=bal_tol» 
base_cell=best_bj 

else base_cell=(-l)j 

return(base_cell); 

/************************************~*****************************/ 
/*Select cell to move from one block to another. Use select_cell 
to get best cell from each group then use balance to pick to base cell. 
In case of a tie use extra info from select_cell to get '2nd order gain' 
and choose cell which is more likely to give an improvement next move. 

******************************************************************/ 
int select_base_cell() 
{ 
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int best_a,best_b,gain_a,gain_b,base_cell; 
int Fa, Ta, Fb, Tb; 

best_a=select_cell(O,A_MAXGAIN)[O]; 
Fa=select_cell(0,A_MAXGAIN)[1]; 
Ta=select_cell(0,A_MAXGAIN)[2]; 
if (best_a!=-1) gain_a=A_MAXGAIN; 
else gain_a=(-pmax-1); 

best_b=select_cell(1,B_MAXGAIN) [0]; 
Fb=select_cell(1,B_MAXGAIN)[1]; 
Tb=select_cell(1,B_MAXGAIN)[2]; 
if (best_b!=-1) gain_b=B_MAXGAIN; 
else gain_b=(-pmax-1); 

if «best_a!=-1)&&(best_b!=-1)) 
{ 

} 

if (gain_a>gain_b) 
{ 

if (balance(best_a)<=bal_tol) base_cell=best_a; 
else if (balance(best_b)<=bal_tol) base_cell=best_b; 

} 
if (gain_a<gain_b) 

.{ 

if (balance(best_b)<=bal_tol) base_cell=best_b; 
else if (balance(best_a)<=bal_tol) base_cell=best_a; 

} 
if (gain_a==gain_b) 
{ 

} 

if «balance(best_a)<=bal_tol)&&(balance(best_b)<=bal_tol)) 
{ 

} 

if «Fa<Fb) I I «Fa==Fb)&&(Ta>=Tb))) 
base_cell=best_a; 

else base_cell=best_b; 

else if (balance(best_a)<=bal_tol) base_cell=best_a; 
else if (balance(best_b)<=bal_tol) base_cell=best_b; 
else base_cell=(-1)j 

else if «best_a!=-1)&&(best_b==-1)&&(balance(best_a)<=bal_tol)) 
base_cell=best_aj. 

else if «best_a==-1)&&(best_bl=-1)&&(balance(best_b)<=bal_tol)) 
base_cell=best_bj 

else base_cell=(-1)j 
return(base_cell)j 
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} 

1***************************************************************1 
void dremove(int cell) 
{ 

DLISH dptr; 

dptr = ca_start[cell]->cell_ptr; 
dptr->leftp->rightp = dptr->rightp; 
if (dptr->rightp != NULL) dptr->rightp->leftp = dptr->leftp; 
I*free((char *)dptr);*1 I*pointer addr. is char in C++ *1 
ca_start [cell]->cell_ptr = NULL; 

} 

1***************************************************************1 
I*place cell in dlist at new gain position*1 
void move_dcell(int cell. int gain_change) 
{ 

dptr = old_ptr = ca_start[cell]->cell_ptr; 

I*point to head of new gain dlist*1 
while (dptr->leftp != NULL) dptr = dptr->leftp; 
if (gain_change==l) dptr++; 
else if (gain_change==-l) dptr--; 

if (dptr->dcell != -1) 
{ 

printf("\nERROR : gain out of range."); 
printf(" Tried to change gain of %s by %d\n". 

lookup[cell].gain_change); 
} 

else 
{ 

I*printf("%s(%d). ".lookup[cell].gain_change);*1 
I*remove cell from old position*1 
old_ptr->leftp->rightp = old_ptr->rightp; 

if (old_ptr->rightp != NULL) 
old_ptr->rightp->leftp = old_ptr->leftp; 

,. 

I*put cell at head of new position*1 
old_ptr->rightp=dptr->rightp; 
if (dptr->rightp != NULL) dptr->rightp->leftp=old_ptr; 
old_ptr->leftp=dptr; 
dptr->rightp=old_ptr; 
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I*free«char *)old_ptr);*1 I*screws things up*1 
} 

} 

1***************************************************************1 
int max_gain_calc(int block) 
{ 

} 

int count; 
DLIST *dpointer; 

count=2*pmax; 
if (block==O) dpointer=&bucket_a[count]; 
else dpointer=&bucket_b[count]; 

while «dpointer->rightp==NULL)&&(count>-l» 
{ 

count--; 
if (block==O) dpointer=&bucket_a[count]; 
else dpointer=&bucket_b[count]; 
} 

count=count-pmax; 
return(count); 

1**************************************************************1 
void printbucket() 
{ 

int i; 
DLIST *dpointer; 

for (i=O;i«2*pmax+l);i++) 
{ 

dpointer=&bucket_a[i]; 
while (dpointer->rightp!=NULL) 
{ 

dpointer=dpointer->rightp; 
printf("A[Yod],dcell=Yos ",(i-pmax),lookup[dpointer->dcell]); 
if (dpointer->rightp==NULL) printf("\n"); 

} 

dpointer=&bucket_b[i]; 
while (dpointer->rightp!=NULL) 
{ 

} 

dpointer=dpointer->rightp; 
printf("B[Yod],dcell=Yos ",(i-pmax),lookup[dpointer->dcell]); 
if (dpointer->rightp==NULL) printf("\n"); 
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} 

} 

1***************************************************************1 
1* count the # of cut nets for the partition. 'sum' is used to 
break ties between moves to find the best move for the pass.*1 
int *count_cut_nets() 
{ 

LIST *pointer; 
int i,cut=O,cell_id,a_count,b_count; 
int sum=O,rtn_vec[2J; 

for (i=O;i<nnets;i++) 
{ 

a_count=b_count=O; 
pointer=na_start[iJ; 
do 
{ 

cell_id=pointer->graph_ref; 
if (ca_start[cell_idJ->block_location==O) a_count++; 
else b_count++; 
pointer=pointer->next; 

} while (pointer!=NULL); 
if «a_count!=O)&&(b_count!=O)) 
{ 

cut++; 
l*printf(IINet Y.d : A=Y.d, B=Y.d.\nll,i,a_count,b_count);*1 
sum=sum+(rb_abs«a_count-b_count))); 

} 

} 

} 
l*printf(IITOTAL=y'd.\nll ,sum);*1 
rtn_vec[O]=cut;rtn_vec[l]=sum; 
return(rtn_vec); 

.. 

1***************************************************************1 
1***************************************** 
initialize partition for blocks A and B. 

*****************************************1 
void partition() 
{ 

int i; 
int c; 
NAME tmp_cell_name; 
FILE* in; 
in = fopen(lIblockA.in ll ,lI r ll); 
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} 

1* read file and update cell array locations *1 
l*printf("Entering cells in Block A.\n ");*1 
while. «c=fgetc(in))! =EOL) 
{ 

ungetc(c,in); 
fscanf(in,"%s",&:tmp_cell_name); 
for (i=O;i<ncells;i++) 

if (strcmp«char *)&:lookup[i],(char *)&:tmp_cell_name)==O) 
ca_start[i]->block_location = 0; 

} 

fclose(in); 

1***************************************************************1 
void change_gainl(LIST *ptr, int change) 
{ 

} 

int cell; 
while (ptr != NULL) 
{ 

} 

cell=ptr->graph_ref; 
if (FREE_CELL_LIST[cell]==O) 

move_dcell(cell,change); 
ptr=ptr->next; 

1***************************************************************1 
void change_gain2(LIST *ptr. int change, int block) 
{ 

} 

int cell; 

} 

while (ptr != NULL) 
{ 

cell=ptr->graph_ref; 
if «FREE_CELL_LIST[cell]==O)&:&: 

(ca_start [ptr->graph_ref]->block_location==block)) 
move_dcell(cell.change); 

ptr=ptr->next; 

.. 

1***************************************************************1 
1***************************************************************1 
inU mincut 0 
{ 

int 
int 
int 

,. 

*rvec; 
i.gain.selected_net; 
gain_index; 
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int from_count,to_count,base_cell,nmoves=O; 
int bestpass=O,ncutnets,best_cut; 
int F,T,cutbal,bestcutbal; 
int block; 
LIST *ref_ptr; 
DLIST *dref_ptr,*new_dptr; 
FILE* out; 

rvec=AllocInt(2); 

best_cut=nnets; I*set best_cut to a high number*1 
bestcutbal=nnets; 
block=O; 
A_MAXGAIN = -pmax; 
B_MAXGAIN = -pmax; 

for (i=O;i<ncells;i++) FREE_CELL_LIST[i] =0; 

{ 

} 

for (i=0;i«2*pmax+1);i++) 

bucket_a[i].rightp = bucket_a[i].leftp = NULL; 
bucket_b[i].rightp = bucket_b[i].leftp = NULL; 
bucket_a[i].dcell = bucket_b[i].dcell = -1; 

1***************************************** 
need to define an (A,B) cell distribution, 
i.e an initial split. 

*****************************************1 
1* initialize all cells to block B *1 
for (i=O;i<ncells;i++) ca_start[i]->block_location = 1; 

partitionO; 

1***************************************** 
compute initial gains for each cell given 
block_location info. 

******************************************1 
for (i=O;i<ncells;i++) 
{ 

gain = 0; 
ref_ptr = ca_start[i]; 
F = ref_ptr->block_location; 
if (F==O) T=1; else T=O; 
while (ref_ptr != NULL) 
{ 
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} 

selected_net = ref_ptr->graph_ref; 
if (count_cells(F,selected_net)==l) gain++; 
if (count_cells(T,selected_net)==O) gain--; 

.ref_ptr = ref_ptr->next; 

I*compute MAXGAIN for both block A & B*I 
switch(F) 
{ 

case 0 : if (gain>A_MAXGAIN) A_MAXGAIN=gain; 
break; 

case 1 : if (gain>B_MAXGAIN) 
B_MAXGAIN=gain; 

break; 
} 

I*printf (It gain='l.d ,Lookup [i] ='l.s \nlt ,gain,lookup [i]) ; *1 
1************************************ 

add cell i to bucket A(O) or B(l) 
(corresponding to its location) 

at position [gain] 

**************************************1 
gain_index = gain + pmax; 1* alters index from +-gain*1 
if (F==O) dref_ptr = &bucket_a[gain_index]; 
else dref_ptr = &bucket_b[gain_index]; 

new_dptr = (DLIST *)malloc(sizeof(DLIST)); 
if (new_dptr == NULL) 
{ 

printf(ltNot enough memorylt); 
exit(l); 

} 

new_dptr->dcell = i; 
if (dref_ptr->rightp != NULL) 

dref_ptr->rightp->leftp = new_dptr; 
new_dptr->rightp = dref_ptr->rightp; 
dref_ptr->rightp = new_dptr; 
new_dptr->leftp = dref_ptr: 

1******************************************** 
for each cell in bucket need to point to it 

from cell array!! 
*********************************************1 
ca_start[i]->cell_ptr = new_dptr; 

} 

l*printf(It'l.d'l.d\nlt,A_MAXGAIN,B_MAXGAIN);*1 
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1*********************************** 
select cell to move from one block 
to another. Use balance() to 
find best cell in group then 
select block A or B. Then move cell 
with highest gain. 

************************************1 
base_cell=select_base_cell(): 
while (base_cell!=-l) 
{ 

nmoves++; 
I*printf("****************move y'd****************\n".nmoves); 
printbucket 0 ; 
printf("New MAXGAIN for A=Y.d. New MAXGAIN for B=Y.d\n". 

A_MAXGAIN.B_MAXGAIN): 

printf("base cell=Y.d\n".base_cell); 
printf("lookup[base cell]=y's\n".lookup[base_cell]):*1 

1********************************************** 
define 'from' and 'to' blocks here but do not 
change base cell location until after gain 
adjustment. 

**********************************************1 
F=ca_start[base_cell]->block_location; 

if (F==O) T=l; else T=O; 

1********************************** 
remove base_cell from bucket list 
and place it on free cell list. 

**********************************1 
dremove(base_cell); 
FREE_CELL_LIST[base_cell]=l; 

1********************************* 
recompute cell gains with the move 
of base_cell taken into account. 
- first work on nets which are 
critical before the move ...• 

***********************************1 
ref_ptr = ca_start[base_cell]: 
while (ref_ptr != NULL) 
{ 

selected_net = ref_ptr->graph_ref; 
l*printf("Cell Gain Changed On Net y'd For 
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from_count=count_cells(F.selected_net); 
to_count=count_cells(T.selected_net); 
l*prihtf(IIF(%d) = %d. T(%d) = %d.\n ll

• 

selected_net.from_count.selected_net.to_count);*1 

if (to_count==O) change_gain1(na_start[selected_net].1); 
else if (to_count==1) change_gain2(na_start[selected_net].-1.T); 

1************************************* 
... Now simulate move and work on nets 
critical now. 

***************************************1 
from_count--; 
to_count++; 

if (from_count==O) change_gain1(na_start[selected_net].-1); 
else if (from_count==1) 

change_gain2(na_start[selected_net].1.F); 

ref_ptr = ref_ptr->next; 
} 

1********************************************* 
Now change block location marker of 
base cell in cell array. 

***********************************************1 
ca_start [base_cell]->block_location=T; 

1********************************************* 
recompute MAXGAIN for each block. 

*********************************************1 
A_MAXGAIN=max_gain_calc(O); 
B_MAXGAIN=max_gain_calc(1); 

1********************************************* 
find.the # of nets that are cut with the new 
partition. 

*********************************************1 
ncutnets=count_cut_nets()[OJ; 
cutbal=count_cut_nets()[lJ; 

I*used to find best split in pass if gains tie*1 
if «ncutnets<best_cut)I I 

«ncutnets==best_cut)&&(cutbal<=bestcutbal))) 
{ 

best_cut=ncutnets; 
bestpass=nmoves; 
bestcutbal=cutbal; 
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} 

} 

out = fopen(lIblockA.in ll ,lIwll): 

for (i=O:i<ncells:i++) 
if- (ca_start [i] ->block_location -- 0) 

fprintf (out, 11 %s 11 ,lookup [i] ) : 
fprintf(out,lI\n ll ): 

fc1ose(out): 

1********************************************* 
print out results of this move. 

*********************************************1 
I*printout in group order*1 
l*printf(lI\nll

): 

printf(lI# of moves: %d. Moved cell = Y.s. # of cut nets = Y.d\n ll , 

nmoves,lookup[base_cell],ncutnets): 
printf(II--------------------------------\nll ): 

printf(IIGROUP A : 11): 

for (i=O:i<ncells:i++) 
if (ca_start [i]->block_location -- 0) 

printf (lIy'S 11 ,lookup [i]) : 
printf(lI\nll ): 

printf(IIGROUP B : 11): 

for (i=O:i<ncells:i++) 
if (ca_start [i]->block_location == 1) 

printf (II%S 11 ,lookup [1] ) : 
printf(lI\nll ):*1 

1*********************************************** 
find best cells to move next from each block 

***********************************************1 
base_cell=select_base_cell(): 

printf(IIThe best move was #Y.d, with Y.d net(s) cut.\nll , 

bestpass,best_cut): 
rvec[O]=bestpass: 
rvec[1]=best_cut: 
return(rvec); 

} 

I***********************************~**********************************1 
1**********************************************************************1 
main() 
{ 

int *best,*nextbest; 
int npass=l; 
FILE *out: 
best=AllocInt(2): 
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nextbest=AllocInt(2); 

printf(IIBalance ratio (0-50): 11); 

I*between 0 and 50. (+-y. tolerance allowed)*1 
scanf(lIy'dll ,&baLtol); 
printf(lI\nll); 
pmax=input_data(); 

bucket_a = (DLIST *)malloc«(2*pmax)+1)*sizeof(DLIST)); 
bucket_b = (DLIST *)malloc«(2*pmax)+1)*sizeof(DLIST)); 

FREE_CELL_LIST = (int *)malloc(ncells*sizeof(int)); 

printf(II#PASS Y.d #\nll,npass); 
nextbest[OJ=O;nextbest[lJ=O; 
best=mincut 0 ; 
while «best[OJ!=ncells)&& 

«best[OJ !=nextbest[OJ) I I (best[lJ !=nextbest[lJ))) 
{ 

npass++; 
printf(II#PASS Y.d #\nll,npass); 
nextbest=best; 
best=mincut 0 ; 

} 

out=fopen(lInew2. out 11 ,lIall ) ; 
fprintf (out, lIY.d Y.d Y.d\n ll ,npass, best [oJ , best [lJ) ; 
fclose(out); 

} 

A.2 Sparse matrix decomposition algorithm 

1*--------------------------------------*1 
Construct incidence matrix from SPICE circuit description 
Data structures copied from the min-cut program. 
File mc.list contains the network information. 

1*--------------------------------------*1 
#include <stdio.h> 
#include<malloc.h> 
#define bal_ratio 0.35 
#define EOL '\n' 
#define NODEMAX 70 
#define CELLNAMEMAX 5 
#define BORDER -1 

typedef int boolean; 
typedef struct { 

I*between 0 and 0.5 *1 

char name[CELLNAMEMAXJ; 
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} Name; 

typedef struct-list { 
int label; 
struct list *next; 
} List; 

typedef struct block { 
int name; 
int size; 
struct block *nextb; 
List *nets; 
} Block; 

typedef struct vertex { 
int name; 
int blksum; 
int netsum; 
Block *blocks; 
List *nets; 
struct vertex *nextv; 
} Vertex; 

1* set up pointers for each element in cell_array &; net_array *1 
Block *CA_START,*NA_START,*SC_START; 
Block *TC_START,*GP_START,*CUT_START; 

Vertex *V_START; 
Block *B_START; 

1* use LOOKUP table to keep the cell names*1 
Name *LOOKUP; 

int NCELLS,NNETS; 

I*Bob's Memory Routines---------------------*I 
int *AllocInt(int n) 
{ 

} 

int *B; 
B = ( int *) calloc(n,sizeof(int)); 
return B; 

1*--------------------------------------*1 
int **AllocInt2(int n, int p) 
{ 

int i; 
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} 

int **A; 
A = (int **) calloc(n , sizeof(int *)); 
for(i=O;i<n;i++) A[i]=Alloclnt(p); 
return A; 

�*----------------------~---------------*I 
char *AllocChar(int n) 
{ 

} 

char *B; 
B = ( char *) calloc(n,sizeof(char)); 
return B; 

1*--------------------------------------*1 
Name *AllocName(int n) 
{ 

} 

Name *B; 
B = ( Name *) calloc(n,sizeof(Name)); 
return B; 

1*--------------------------------------*1 
List* n_point_to(int name, List *start) 
{ 

} 

while (start!=NULL) 
{ 

if (start->label==name) return(start); 
start=start->next; 

} 
return(start); 

1*--------------------------------------*1 
Block* b_point_to(int name, Block *start) 
{ 

} 

while (start!=NULL) 
{ 

} 

'if (start->name==name) return(start); 
start=start->nextb; 

return(start); 

1*--------------------------------------*1' 
Vertex* v_point_to(int name, Vertex *start) 
{ 

while (start!=NULL) 
{ 

if (start->name==name) return(start); 
start=start->nextv; 
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} 

} 

return(start); 

�*------~-------------------------------*I 
List* insert(int thing, List *old_pointer) 
{ 

} 

List *pointer; 

pointer = (List *)malloc(sizeof(List»; 
if (pointer == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit(l); 

pointer->label = thing; 
pointer->next = old_pointer; 
return(pointer); 

1*--------------------------------------*1 
Vertex* vinsert(int thing, Vertex *old_vptr) 
{ 

} 

Vertex *vptr; 

vptr = (Vertex *)malloc(sizeof(Vertex»; 
if (vptr == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit(!); 

vptr->name = thing; 
vptr->nextv = old_vptr; 
vptr->nets = NULL; 
vptr->blocks = NULL; 
return(vptr); 

1*--------------------------------------*1 
Block* binsert(int name,int size, Block *old_bptr) 
{ 

Block *bptr; 

bptr = (Block *)malloc(sizeof(Block»; 
if (bptr == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit(!) ; 
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} 

bptr->name = name; 
bptr->size = size; 
bptr->nextb = old_bptr; 
bptr->nets = NULL; 
return(bptr); 

1*--------------------------------------*1 
void nvremove(Vertex *start,int net) 
{ 

} 

List *ptr,*prevptr; 

ptr=start->nets; 
while «ptr->label!=net)&&(ptr!=NULL)) 
{ 

} 

prevptr=ptr; 
ptr=ptr->next; 

if (ptr==start->nets) start->nets=ptr->next; 
else prevptr->next=ptr->next; 
free«char *)ptr); 

1*--------------------------------------*1 
void remove(Block *bptr,int net) 
{ 

} 

List *start,*prevptr,*ptr; 

start=bptr->nets; 
prevptr=NULL: 
ptr=start: 
while «ptr->label!=net)&&(ptr!=NULL)) 
{ 

} 

prevptr=ptr: 
ptr=ptr->next; 

if" (prevptr!=NULL) prevptr->next=ptr->next; 
else bptr->nets=ptr->next; 
free«char *)ptr): 

1*--------------------------------------*1 
Block* bremove(Block *bstart,int name) 
{ 

Block *prevbptr,*bptr; 

prevbptr=NULL; 
bptr=bstart: 
while «bptr->name!=name)&&(bptr->nextb!=NULL)) 
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} 

{ 

} 

prevbptr=bptr; 
bptr=bptr->nextb; 

if (bptr->nets!=NULL) free«char *)bptr->nets); 
if (prevbptr!=NULL) prevbptr->nextb=bptr->nextb; 
else 
{ 

} 

bptr=bstart; 
bstart=bstart->nextb; 

free«char *)bptr); 
return(bstart); 

1*--------------------------------------*1 
Vertex* vremove(Vertex *vstart.int net) 
{ 

} 

Vertex *prevptr.*vptr; 

prevptr=NULL; 
vptr=vstart; 
while «vptr->name!=net)&&(vptr!=NULL)) 
{ 

prevptr=vptr; 
. vptr=vptr->nextv; 

} 

if (vptr->nets!=NULL) free«char *)vptr->nets); 
if (vptr->blocks!=NULL) free«char *)vptr->blocks); 
if (prevptr!=NULL) prevptr->nextv=vptr->nextv; 
else 
{ 

} 

vptr=vstart; 
vstart=vstart->nextv; 

free«char *)vptr); 
return(vstart); 

1*--------------------------------------*1 
Block* copy(Block *start) 
{ 

Block *bptr.*newstart; 
List *ptr.*newptr; 

newstart=NULL; 
while(start!=NULL) 
{ 
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} 

} 

bptr=newstart; 
newstart~binsert(start->name,start->size,bptr); 

for(ptr=start->nets;ptr!=NULL;ptr=ptr->next) 
{ . 

} 

newptr=newstart->nets; 
newstart->nets=insert(ptr->label,newptr); 

start=start->nextb; 

return(newstart); 

1*--------------------------------------*1 
void sc_ini to 
{ 

} 

int i=1; 
I*need to do a -1 to get range of nets O->NNETS-1*1 
int size=O; 
Block *hptr,*nstart; 

SC_START=NULL; 
for (nstart=NA_START;nstart!=NULL;nstart=nstart->nextb) 
{ 

} 

hptr=SC_START; 
SC_START=binsert«NNETS-i),size,hptr); 
i++; 

1*--------------------------------------*1 
void printout(int total, int tota12) 
{ 

'It 

Block *start; 
List *cptr,*nptr; 
int i=O; 

start=CLSTART; 
for (i=O;i(total;i++) 
{ 

printf("y's ",&:LOOKUP[i]); 
for (cptr=start->nets; 

cptr != NULL; 
cptr=cptr->next) 

{ 

printf(IY.5d", cptr->label); 
} 

printf("\n"); 
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} 

start=start->nextb; 
} 

start=NA_START; 
for (i=O;i<tota12;i++) 
{ 

printf(lIy'3d lI.i); 
for (nptr=start->nets; 

nptr l= NULL; 
nptr=nptr->next) 

{ 

printf (lIy'S 11. LOOKUP [nptr->label] ) ; 
} 

printf(lI\nll); 
start=start->nextb; 
} 

1*--------------------------------------*1 
void printlist(List *ptr) 
{ 

} 

while (ptrl=NULL) 
{ 

printf(lIy'4d ll ,(ptr->label»; 
ptr=ptr->next; 

} 

printf(lI\nll); 

1*--------------------------------------*1 
void printblock(Block *start,char *lab) 
{ 

} 

Block *bptr; 

for(bptr=start;bptrl=NULL;bptr=bptr->nextb) 
{ 

} 

printf(lIy's Y.4d Y.4dn: II .1ab. (bptr->name). (bptr->size»; 
printlist(bptr->nets); 

1*--------------------------------------*1 
void printvertex(Vertex *start,char *lab) 
{ 

Vertex *vptr; 

printf(lI\nll); 
for(vptr=start;vptrl=NULL;vptr=vptr->nextv) 
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{ 

printfC"Y,s Y.4d Y.4d Y.4d :". 
lab. (vptr->name).vptr->blksum.vptr->netsum); 

printlist(vptr->nets); 
printblock(vptr->blocks."block 11); 

} 

} 

1*--------------------------------------*1 
I*input file syntax: # of cells. # of nets. then lines of cell 

names with nets they are connected to. 
NOTE : nets named zero to # of nets*1 

void input_data() 
{ 

Block *cstart.*nstart.*bptr; 
List *cptr.*nptr; 
Name cell_name; 
char c; 
int i.net_value; 

FILE* in; 
in = fopen("mc.list"."r"); 

fscanf(in. l y'd".&NCELLS); 
CA_START = NULL: 
for (i=O;i<NCELLS;i++) 
{ 

bptr=CA_START: 
CA_START=binsert«NCELLS-i-1).0.bptr); 
1*(-1) for range O-NCELLS*I 

} 

fscanf(in. l y'd".&NNETS); 
NA_START = NULL; 
for (i=O;i<NNETS;i++) 
{ 

bptr=NA_START; 
NA_START=binsert«NNETS-i-1).0.bptr); 
1*(-1) for range O-NNETS*I 

} 

LOOKUP=AllocName(NCELLS); 

i=O: 
while «c=fgetc(in»!=EOF) 
for (cstart=CA_START;cstart!=NULL;cstart=cstart->nextb) 
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{ 

} 

ungetc(c,in) ; 
fscanf(in,lIy'sll,&cell_name); 
1* set up LOOKUP table for cell names*1 
LOOKUP[i] = cell_name; 

while «c=fgetc(in»!=EOL) 
{ 

} 

i++; 
} 

ungetc(c,in); 
fscanf(in,lIy'dll,&net_value): 
I*adjust range [1 to NNETS] to [0 to (NNETS-l)] *1 
Ilnet_value--; 

cptr = cstart->nets; 
cstart->nets = insert(net_value,cptr); 

nstart=b_point_to(net_value,NA_START); 
nptr = nstart->nets; 

nstart->nets = insert(i,nptr); 

1*--------------------------------------*1 
void fprintmat(int **mat) 
{ 

int x,y; 
FILE* out; 

out=fopen(lIlookupll,lIwll); 
for (x=O;x<NCELLS;x++) fprintf(out,lIy's II,LOOKUP[x]); .. 
fprintf(out,lI\n ll ); 
fclose(out); 

out=fopen(lIviewmatll,lIwll); 
for (x=O;x<NNETS;x++) 
{ 

fprintf(out,lI\n ll ); 
for (y=O;y<NNETS:y++) 
{ 

if (mat [x] [y] ==0) fprintf(out, 1IY.3d 11 ,mat [x] [y]); 
else fprintf (out, IIy'S 11 ,LOOKUP [mat [x] [y] -1]); 

} 

} 
fprintf(out,lI\n ll ); 
fclose(out); 
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} 

out=fopen('~smatll ,IIW II ); 
for (x=O;x<NNETS;x++) 
{ 

fprintf(out,lI\n ll ); 
for (y=O;y<NNETS;y++) fprintf(out,IIy'2d 11 ,mat [x] [y]); 

} 

fprintf(out,lI\n ll ); 
fclose(out)j 

1*--------------------------------------*1 
int listlength(int group, Block *start) 
{ 

} 

int size=O; 
List *ptr; 
Block *bptr; 

bptr=b_point_to(group,start); 
for (ptr=bptr->nets;ptrl=NULL;ptr=ptr->next) size++; 
return(size); 

1*--------------------------------------*1 
I*count cells on each net and form group of 

border nets (group=-1)*1 
int *getord(int drnin) 
{ 

} 

int *dvec,size=O; 
List *gptr; 
Block *nstart; 

GP_START=NULL; 
GP_START=binsert(-1,size,NULL); 
dvec=Alloclnt(NNETS)j 
for (nstart=NA_START;nstart!=NULL;nstart=nstart->nextb) 
{ . 

dvec[nstart->narne]=listlength(nstart->narne,NA_START); 
if (dvec[nstart->narne]>=drnin) 
{ 

gptr=GP_START->nets; , 
GP_START->nets=insert(nstart->narne,gptr); 
GP_START->size++j 

} 
} 
return(dvec); 
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} 

1*--------------------------------------*1 
1* use cell & net lists to get dmat and SC_LIST *1 
void makesc(int **dmat) 
{ 

int x,y; 
List *cptr,*nptr,*scptr; 
Block *nstart,*cstart,*scstart; 

for (x=O;x<NNETS;x++) 
for (y=O;y<NNETS;y++) 
{ 

} 

if (x==y) dmat[x] [y]=O; 
else dmat[x] [y]=9; 

sc_init(); I*get list SC ready to fill in*1 
for (nstart=NA_START;nstart!=NULL;nstart=nstart->nextb) 
{ 

} 
} 

for (nptr=nstart->nets;nptr!=NULL;nptr=nptr->next) 
{ 

cstart=b_point_to(nptr->label,CA_START); 

} 

for (cptr=cstart->nets;cptr!=NULL;cptr=cptr->next) 
{ 

x=nstart->name; 
y=cptr->label; 

if (x!=y) 
{ 

} 

dmat[x] [y]=l; 
scstart=b_point_to(x,SC_START); 
scptr=scstart->nets; 
if (n_point_to(y,scptr)==NULL) 

scstart->nets=insert(y,scptr); 

1*--------------------------------------*1 
void maketc(int dmin,int *dvec) I*make TC from SC*I 
{ 

Block *tcptr; 
List *ptr; 

236 



} 

for (tcptr=TC_START;tcptr!=NULL;tcptr=tcptr->nextb) 
{ 

} 

if (dvec[tcptr->name]>=dmin) 
TC_START=bremove(TC_START,tcptr->name); 

else 
{ 

} 

for(ptr=tcptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 

} 

if (dvec[ptr->label]>=dmin) 
remove(tcptr,ptr->label); 

1*--------------------------------------*1 
Block* locate(int net,Block *start) 
{ 

} 

while (start!=NULL) 
{ 

} 

if (n_point_to(net,start->nets)!=NULL) return(start); 
start=start->nextb; 

return(start); 

1*--------------------------------------*1 
Block *incutlist(int a,int b) 
{ 

} 

Block *cutptr; 
cutptr=CUT_START; 
while (cutptr!=NULL) 
{ 

} 

if (cutptr->name==a) if (cutptr->nets->label==b) break; 
if (cutptr->name==b) if (cutptr->nets->label==a) break; 
cutptr=cutptr->nextb; 

return(cutptr); 

1*--------------------------------------*1 
void makegroups(int size) 
{ 

Block *tcptr,*gptr,*gptr2,*gstart,*cutptr; 
List *ptr,*ptr2; 
int netl,net2,gpsize,group,gpcount=O; 

CUT_START=NULL; 
for(tcptr=TC_START;tcptr!=NULL;tcptr=tcptr->nextb) 
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{ 

netl=tcptr->name; 
gstart=locate(netl,GP_START); 
if {gstart==NULL) 
{ 

} 

for(ptr=tcptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 

} 

net2=ptr->label; 
gptr=locate(net2,GP_START); 
if (gptr!=NULL) 
{ 

{ 

} 

if «gptr->size<size)&& 
(locate(netl,GP_START)==NULL)) 

{ 

} 

gstart=gptr; 
ptr2=gstart->nets; 
gstart->nets=insert(netl,ptr2); 
gstart->size++; 

else 

} 

printf("Y.d+--Y.d cut\n",(netl),(net2)); 
gptr=CUT_START; 
CUT_START=binsert(netl,O,gptr); 
ptr2=CUT_START->nets; 
CUT_START->nets=insert(net2,ptr2); 

if (gstart==NULL) 
{ ... 

} 

gptr=GP_START; 
gpsize=l ; 
GP_START=binsert(gpcount,gpsize,gptr); 
gpcount++; 
ptr=GP_START->nets; 
GP_START->nets=insert(netl,ptr); 
gstart=GP_START; 

for(ptr=tcptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 

net2=ptr->label; 
gptr=locate(net2,GP_START); 
if (gptr==NULL) 
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} 

} 

{ 

} 

if (gstart->size<size) 
{ 

} 

ptr2=gstart->nets; 
gstart->nets=insert(net2,ptr2); 
gstart->size++; 

else if (incutlist(net1,net2)==NULL) 
{ 

} 

printf("%d-+-%d cut\n",(net1),(net2)); 
gptr=CUT_START; 
CUT_START=binsert(net1,O,gptr); 
ptr2=CUT_START->nets; 
CUT_START->nets=insert(net2,ptr2); 

else if «gptr->name!=gstart->name)&& 
(incutlist(net1,net2)==NULL)) 

{ 

} 

printf("%d--+%d cut\n",(net1),(net2)); 
gptr=CUT_START; 
CUT_START=binsert(net1,O,gptr); 
ptr2=CUT_START->nets; 
CUT_START->nets=insert(net2,ptr2); 

printblock(GP_START,"Pre-Cut 11); 

/*now adjust groups for cuts*/ 
for(cutptr=CUT_START;cutptr!=NULL;cutptr=cutptr->nextb) 
{ 

net1=cutptr->name; 
gptr=locate(net1,GP_START); 
if (gptr!=NULL) 
{ 

group=gptr->name; 
/*remove net1 from group*/ 
remove(gptr,net1); 
gptr->size--; 

.' 

/*if group now empty, remove group and update names*/ 
if (gptr->nets==NULL) 
{ 

GP_START= bremove(GP_START,group); 
for(gptr2=GP_START;gptr2->name>group;gptr2=gptr2->nextb) 
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} 

} 

gptr2->name--; 
} -

} 

I*put netl into BORDER group*1 
gptr=b_point_to(BORDER,GP_START); 
ptr2=gptr->nets; 
gptr->nets=insert(netl,ptr2); 
gptr->size++; 

1*--------------------------------------*1 
void buildvertex() 
{ 

int net,net2,group; 
Vertex *vptr; 
Block *bptr; 
Block *gptr,*scptr; 
List *ptr,*ptr2,*ptr3; 

V_START=NULL; 
B_START=NULL; 
I*for each group (excl.-border group) create a block structure*1 
for(gptr=GP_START;gptrl=NULL;gptr=gptr->nextb) 
if(gptr->namel=BORDER) 
{ 

} 

bptr=B_START; 
B_START=binsert(gptr->name,gptr->size,bptr); 

gptr=b_point_to(BORDER,GP_START); 
I*for each net in border .... *1 
for(ptr=gptr->nets;ptrl=NULL;ptr=ptr->next) 
{ 

net=ptr->label; 
vptr=V_START; 
V_START=vinsert(net,vptr); 
V_START->netsum=O; 
scptr=b_point_ to(net ,SC_START);' 
I*for each net2 connected to net in border .... *1 
for(ptr2=scptr->nets;ptr2l=NULL;ptr2=ptr2->next) 
{ 

net2=ptr2->label; 
gptr=locate(net2,GP_START); 
group=gptr->name; 
if (group==BORDER) I*enter net in vertex list (if not there)*1 
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}r 

} 
} 

{ 

} 

else 

ptr3=V_START->nets; 
if (n_point_to(net2.ptr3)==NULL) 
{ 

} 

V_START->nets=insert(net2.ptr3); 
V_START->netsum++; 

{ /*enter net in block list (if not in already)*/ 

} 

bptr=b_point_to(group.B_START); 
ptr3=bptr->nets; 
if (n_point_to(net.ptr3)==NULL) 

bptr->nets=insert(net.ptr3); 
/*enter block in vertex list (if not in already)*/ 
bptr=V_START->blocks; 
if (b_point_to(group.bptr)==NULL) 
{ 

} 

V_START->blocks=binsert(group.gptr->size.bptr); 
V_START->blksum+=gptr->size; 

/*--------------------------------------*/ 
void borderbalance() 
{ 

int s=O.net.bordernet.basenarne.blksize.oldblock.newblksize; 
List *ptr.*ptr2.*nptr; 
Block *gptr.*gmerge; 
Block *bbase.*bmerge.*bptr.*bptr2; 
Vertex *vptr.*vptr2.*mvptr; 

/*select vertex (net) to move from border & point to it with mvptr */ 
mvptr=NULL; 
for(vptr=V_START;vptr!=NULL;vptr=vptr->nextv) 
{ . . 

} 

if(vptr->blocks!=NULL) 
if «mvptr==NULL)I I (vptr->blksum<mvptr->blksum) I I 

«vptr->blksum==mvptr->blksum)&& 
(vptr->netsum<mvptr->netsum») 

mvptr=vptr; 

/*merge blocks if neccessary ........ */ 
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bordernet=mvptr->name; 
bbase=mvptr~>blocks; 

if (mvptr!=NULL) 
{ 

basename=bbase->name; 
if (bbase->nextb!=NULL) 
{ 
1* merge other blocks 'bmerge' in vertex list with 'bbase' .... *1 
bmerge=bbase->nextb; 
while (bmerge!=NULL) 
{ 

I*merge B_LIST's *1 
oldblock=bmerge->name; 
bptr=b_point_to(basename,B_START); 
bptr2=b_point_to(oldblock,B_START); 
bptr->size+=bptr2->size; 
newblksize=bptr->size; 
for(nptr=bptr2->nets;nptr!=NULL;nptr=nptr->next) 

if (n_point_to(nptr->label,bptr->nets)==NULL) 
{ 

} 

ptr=bptr->nets; 
bptr->nets=insert(nptr->label,ptr); 

1* for every net in unified block update vertex block list *1 
bptr=b_point_to(oldblock,B_START); 
for(nptr=bptr->nets;nptr!=NULL;nptr=nptr->next) 
{ 

} 

net=nptr->label; 
vptr=v_point_to(net,V_START); 
bptr2=b_point_to(basename,vptr->blocks); 
if (bptr2!=NULL) 
{ 

} 

vptr->blocks=bremove(vptr->blocks,oldblock); 
I*if changing vertex block list of basename 

then change bmerge to stop 'for' loop if needed*1 
if «net==basename)&& 

(vptr->blocks->nextb==NULL)) bmerge=NULL; 

else 
{ 

} 

bptr2=b_point_to(oldblock,vptr->blocks); 
bptr2->name=basename; 

I*update GP_LIST structure*1 
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gptr=b_point_to(basename.GP_START); 
gmerge=b_point_to(oldblock.GP_START); 
for(ptr=gmerge->nets;ptr!=NULL;ptr=ptr->next) 
{ 

if (n_point_to(ptr->label.gptr->nets)==NULL) 
{ 

} 

} 
} 

ptr2=gptr->nets; 
gptr->nets=insert(ptr->label.ptr2); 

B_START=bremove(B_START.oldblock); 
GP_START=bremove(GP_START.gmerge->name); 
if (bmerge!=NULL) bmerge=bmerge->nextb; 

blksize=newblksize+1; 
} 
else blksize=bbase->size+1; 
1*(+1) for the border net moving to the block*1 

1* update B_LIST *1 
bptr=b_point_to(basename.B_START); 
for(nptr=mvptr->nets;nptr!=NULL;nptr=nptr->next) 
if (n_point_to(nptr->label.bptr->nets)==NULL) 

bptr->nets=insert(nptr->label.bptr->nets); 
nptr=n_point_to(bordernet.bptr->nets); 
if (nptr!=NULL) remove(bptr.bordernet); 
bptr->size++; 

1* update border net lists of V_LIST - del. moving net 
for(vptr=V_START;vptr!=NULL;vptr=vptr->nextv) 
if (n_point_to(bordernet.vptr->nets)!=NULL) 
{ 

} 

nvremove(vptr.bordernet); 
I*update Qi*1 
vptr->netsum--; 

I*update block lists of V_LIST *1 
bptr=b_point_to(basename.B_START); 
for(ptr=bptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 
vptr2=v_point_to(ptr->label.V_START); 
bptr2=b_point_to(basename.vptr2->blocks); 
if (bptr2==NULL) 

from lists*1 
~. 

vptr2->blocks=binsert(basename.blksize.vptr2->blocks); 
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} 

} 

else bptr2->size=blksize; 
vptr2->blksum=O; 
I*update Si*1 
for(bptr2=vptr2->blocks;bptr2!=NULL;bptr2=bptr2->nextb) 

vptr2->blksum+=bptr2->size; 
} 

I*add border net to block in G_LIST*I 
gptr=b_point_to(basename,GP_START); 
ptr=gptr->nets; 
gptr->nets=insert(bordernet,ptr); 
gptr->size=blksize; 

I*remove net from border group (BORDER) in G_LIST*I 
gptr=b_point_to(BORDER,GP_START); 
remove(gptr,bordernet); 
gptr->size--; 

V_START=vremove(V_START.bordernet); 

else 
{ 

} 

printf("ERROR - can't select a border net to move,"); 
printf(" printing groups so far ... \n"); 
printblock(GP_START,"Group"); 
exit(1); 

1*--------------------------------------*1 
void writematrix(Block *start) 
{ 

int *order,*inverseorder.i,cell.net1.net2,**smat; 
Block *bptr,*cptr; 
List *ptr.*ptr2; 

order=Alloclnt(NNETS); 
inverseorder=Alloclnt(NNETS); 
smat=Alloclnt2(NNETS,NNETS); 
i=NNETS; 
for(bptr=start;bptr!=NULL;bptr=bptr->nextb) 
{ 

ptr=bptr->nets; 
while (ptr!=NULL) 
{ 

order[--i]=ptr->label; 
ptr=ptr->next; 
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} 

} 

for(i=O:i<NNETS:i++) inverseorder[order[i]]=i: 
for(i=O; i<NNETS; i++) printf("y'd 11 ,order [i]); 
printf("\n") ; 
for(i=O;i<NNETS;i++) printf("y'd ",inverseorder[i]); 
printf("\n"); 
for(cptr=CA_START;cptr!=NULL;cptr=cptr->nextb) 
{ 

cell=(cptr->name+l); 
ptr=cptr->nets: 
while (ptr!=NULL) 

{ 

netl=ptr->label; 
ptr2=ptr->next; 
while (ptr2!=NULL) 
{ 

net2=ptr2->label: 
smat[inverseorder[netl]] [inverseorder[net2]]=cell; 
smat[inverseorder[net2]] [inverseorder[netl]]=cell; 
ptr2=ptr2->next; 

} 

} 

ptr=ptr->next; 
} 

} 
fprintmat(smat); 

1*--------------------------------------*1 
main() 
{ 

int **dmat; 
int *ordvec; 
int dmin,bsize,bmax,bcount,nmax,pass=O; 
Block *bestgroup,*bptr; 

I*construct cell_list and net_list from spice input file *1 
input_dataO; 
Ilprintout(NCELLS,NNETS); 

1* initialize dmat matrix *1 
dmat = Alloclnt2(NNETS,NNETS); 
makesc(dmat): 
Ilprintblock(SC_START,"I); 

do 
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{ 

printf("Enter dmin :"); 
seanf("y'd" ,&dmin) j 
ordvee=getord(dmin); 
makete(dmin,ordvee); 
makese(dmat) ; 
I*te made from se so need to re-do se*1 
bsize=b_point_to(BORDER,GP_START)->size; 
if (bsize<=l) printf("dmin too large - try again.\n")j 
if (bsize==NNETS) printf("dmin too small - try again.\n")j 

} while «bsize<=l)I I (bsize==NNETS))j 

Ilprintblock(GP_START,"Group"); 
Ilprintblock(TC_START,"II); 

printf("Enter nmax for initial grouping :"); 
seanf("y'd" ,&nmax); 
makegroups(nmax); 
printf("Enter maximum block size required (>0) :"); 
scanf("y'd",&bmax)j 

Ilprintblock(TC_START,"TC"); 
Ilprintblock(GP_START,IGroup"); 
Ilprintblock(CULSTART,"Cut lI)j 

buildvertex 0 ; 

Ilprintbloek(B_START,"Bloek 11); 
Ilprintvertex(V_START,"Vertex 11); 

do 
{ 

printf("Pass Y.d\n" ,pass++); 
bestgroup=copy(GP_START)j 
borderbalance(); 
bsize=b_point_to(BORDER,GP_START)->size; 
nmax=O; 
bcount=O; 
for(bptr=B_START;bptr!=NULL;bptr=bptr->nextb) 
{ 

} 

bcount++; 
if (bptr->size>nmax) nmax=bptr->size; 

Ilprintbloek(B_START,"Bloek "); 
Ilprintvertex(V_START,"Vertex 11); 
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} 

} while (nmax<=bmax); 
printblock(bestgroup,IGroup"); 

writematrix(bestgroup); 

A.3 Random graph generator 

#include <stdio.h> 
#include <math.h> 
#include <malloc.h> 
#define RAND_MAX (pow(2,31)-1) 
#define TRUE 1 
#define FALSE 0 
#define CELLMAX 1000 

. typedef struct list { 
int node_id; 
struct list *next; 
} 

LIST; 

LIST *CA_start[CELLMAX], *CA_point[CELLMAX]; 

int D,N=500; 

1*-------------------------------------------*1 
LIST* insert(int thing, LIST *old_pointer) 

} 

{ 

LIST *pointer; 

pointer = (LIST *)malloc(sizeof(LIST)); 
if (pointer == NULL) 
{. 

} 

printf("Not enough memory"); 
exit(l); 

pointer->node_id = thing; 
pointer->next = old_pointer; 
return(pointer); 

1*-------------------------------------------*1 
void printlist(int total) 
{ 

int i=O; 
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} 

FILE *out; 

out=fopen("mc.list","w"); 
fprintf (out, "Yed Yed\n" , total+l ,N) ; 
for (i=O;i<=total;i++) 
{ 

fprintf(out,"CYed If, i); 

for (CA_point[i] = CA_start[i]; CA_point[i] != NULL; 
CA_point[i] = CA_point[i]->next) 

fprintf(out, 11 Ye5d" , CA_point[i]->node_id); 

fprintf(out,"\n"); 
} 

fclose(out); 

out=fopen(lblockA.in",lw"); 
for (i=O;i<total;i=i+3) 
{ 

fprintf(out,ICYed", i); 
if «i+3) >= total) fprintf (out, "\n") ; 
else fprintf(out," 11); 

I*if (i Ye 20 == 0) fprintf(out,"\n");*1 
} 

fclose(out); 

1*-------------------------------------------*1 
int edge(double pr) 
{ 

} 

int make_edge=FALSE; 
double temp_ran, nrand; 

temp_ran=random(); 
nrand=temp_ran; 
nrand=(nrand/RAND_MAX); 
if (nrand<pr) make_edge=TRUE; 

return(make_edge); 

1*-------------------------------------------*1 

main() 
{ 

int i,j,seed; 
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int edgecount=-l, in_list; 
double pr; 
double temp_ran, nrand; 

printf("\nInput seed: 11); 

scanf("%d",&seed); 
srandom(seed); 
I*printf("\nlnput # nodes in graph: 11); 

scanf(l%d",&N);*1 
printf("Input # edges required at each node (degree < %d) 
scanf(l%d",&D); 

pr = (double)D I «double)N-1); 

printf("\nProbability of making an edge = %If\n", pr); 

for (i=O;i<N;i++) 
{ 

} 

for (j=(i+l);j<N;j++) 
{ 

} 

if (edge(pr)==TRUE) 
{ 

} 

edgecount++; 
CA_start[edgecount]=insert(i,CA_start[edgecount]); 
CA_start[edgecount]=insert(j,CA_start[edgecount]); 

", N); 

I*check that all nodes are in the list. If not then add them*1 
for (i=O;i<N;i++) ~ 

{ 

in_list=O; 
for (j=O;j<edgecount;j++) 
{ 

for (CA_point[j] = CA_start[j]; 
CA_point[j] != NULL; 
CA_point[j] = CA_point[j]->next) 

if (CA_point[j]->node_id==i) in_Iist=l; 
} 

if (in_list==O) 
{ 

do{ 
ternp_ran=randorn(); 
nrand=ternp_ran; 
nrand=(nrand/RAND_MAX)*N; 
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} 

} 
} 

j=(int)floor(nrand); 
} while (j==i); 
edgecount++; 
CA_start[edgecount]=insert(i,CA_start[edgecount]); 
CA_start[edgecount]=insert(j,CA_start[edgecount]); 

printlist(edgecount); 
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Appendix B 

S functions 

B.1 Geometric graph generator 

mkgraph_function(n,d) 
{ 

coords <- cbind(runif(n), runif(n» 
distvec <- dist(coords)[l:sum(l:(n - 1»] 
nedges <- as.integer(d*n/2) 
evec_sort(order(distvec) [l:nedges]) 
edgelist <- NULL 
x_l 
weight_O 
for(i in l:nedges) { 

nxy _evec [i] 
while (nxy > (n-l» { 

if (nxy < (n+w~ight» nxy_nxy-weight 
else { 

x_x+l 
weight_weight+(n-x) 

} 
} 

edgelist <- rbind(edgelist, c(x,(nxy+l») 
} 

tmp_sort(c(edgelist[,l],edgelist[,2]» 
nnodes_ tmp [1] 
for(i in 2:1en(tmp) ) { 
if(tmp[i]!=tmp[i-l]) nnodes_c(nnodes,tmp[i]) } 
singles_NULL 
if (nnodes[l]!=l) { 

nnodes_c(NA,nnodes) 
singles_c(singles,l) 

} 

for(i in 2:n ) { 
if (nnodes[i]=="NA") { 

... 
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} 

} 

nnodes_c(nnodes[1:(i-1)],NA) 
singles_c(singles,i) 

} else if (nnodes[i]!=i) { 
nnodes_c(nnodes[1:(i-1)],NA,nnodes[i:len(nnodes)]) 
singles_c(singles,i) 

} 

for(i in l:len(singles» { 
cat(singles[i] ,",") 
tdist_NULL 
if (singles[i]>l) { 

tdist_c(tdist,distvec[singles[i]-l]) 
} 

if (singles[i]>2) { 

} 

for (j in 2: (singles[i]-l» { 
tdist_c(tdist,distvec[sum((n-1):(n-(j-1»)+(singles[i]-j)]) 

} 

if (singles[i]!=l) index_sum((n-1):(n-(singles[i]-1») 
else index_O 
marker_len(tdist) 
tdist_c(tdist,distvec[(index+1):(index+(n-singles[i]»]) 
j_order(tdist) [1] 
if (j>=marker) j_j+1 
edgelist (- rbind(edgelist, c(singles[i], j» 

} 

nedge_len(edgelist[,l]) 
sink("mc .list") 
cat(nedge,1I l,n,l\nll,sep="II) 
for(i in l:nedge) { 

cat ("C II , i," ", (edgelist [i ,1] -1),11 ", (edgelist [i;2] -1), lI\nlll ,sep=I"I) 
} 

sinkO 
return(list(edges=edgelist,coords=coords») 

setup_function(nedge) 
{ 

sink("blockA.inll ) 
L1 
while(i ( nedge) { 

if (i==l) cat(ICI,i,sep="I) 
else cat(1I CII,i,sep="II) 
Li+3 

.. 
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sinkO 
} 
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Appendix C 

Mathematical models 

C.l Regression model 

LINEAR MODEL BUILDING RESULTS 

The Response Variable is 1 

N= 50 NX= 12 
SIGMAZ= 9.5611e-04 R2= 0.9997 

NUMBER OF LINEAR MODEL PARAMETERS IS: 27 
Variable Beta Std. Err. t-val R2-i 
--------------------------------------------------------------
Constant 4.0965e+00 6.7102e-03 610.48 0.0000 
/R215 2.7970e+00 2.1035e-02 132.97 0.5952 

/R209 -1.7277e+00 2.2370e-02 -77.23 0.7239 

/R213 -1.4267e+00 2.1940e-02 -65.03 0.7945 

/R214 -1.3964e+00 2.0362e-02 -68.58 0.8693 
/R210 8.9753e-Ol 2.0993e-02 42.75 0.9213 

/R211 7.8512e-Ol 2.0970e-02 37.44 0.9695 
/R215*/R214 -9.3690e-Ol 8.9731e-02 -10.44 0.9735 
/R215*/R210 7.4863e-Ol 8.9638e-02 8.35 0.9777 
/R209*/R209 -1. 2634e-Ol 8.9498e-03 -14.12 0.9831 
/R209*/R213 8.1913e-Ol 7.8751e-02 10.40 0.9870 
/R215*/R209 -1.2868e+00 8.4072e-02 -15.31 0.9894 
/R213*/R214 1.391ge+00 9.7335e-02 14.30 0.9917 
/R215*/R213 -1. 1625e+00 9.0873e-02 -12.79 0.9935 
/R213*/R213 -4.5126e-02 6.9696e-03 -6.47 0.9947 
/R215*/R211 3.7826e-Ol 9.9524e-02 3.80 0.9959 
/R209*/R210 -5.3060e-Ol 7.525ge-02 -7.05 0.9975 
/R214*/R214 -4. 1297e-02 6.7094e-03 -6.16 0.9977 
/R213*/C204 -2.7096e-Ol 8.4914e-02 -3.19 0.9979 
/R209*/R211 -9.4715e-Ol 1.1232e-Ol -8.43 0.9981 
/R209*/R214 1. 148ge+00 1.1366e-Ol 10.11 0.9988 

~ 
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/R209*/C204 -3.2996e-01 8.2138e-02 -4.02 0.9991 
/R213*/R211 -4.6253e-01 9.7492e-02 -4.74 0.9991 
/R213*/R210 -4.1318e-01 7.4361e-02 -5.56 0.9992 
/R214*/R211 -6.5285e-01 1.2695e-01 -5.14 0.9994 
/R214*/R210 -3.9022e-01 8.0440e-02 -4.85 0.9996 
/R210*/R211 1. 7634e-01 7.6862e-02 2.29 0.9997 
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