

City, University of London Institutional Repository

Citation: Bates, Ronald Anthony (1995). The robust design of complex systems.
(Unpublished Doctoral thesis, City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17421/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The Robust Design of Complex
Systems

Ronald Anthony Dates

Submitted as fulfillment for the degree of Ph.D.
City University

Engineering Design Centre

April 1995

1

IMAGING SERVICES NORTH
Boston Spa, Wetherby .

West Yorkshire, lS23 7BQ

www.bl,uk

BEST COpy AVAILABLE.

VARIABLE PRI NT QUALITY

Contents

1 Introduction
1.1 General Introduction

1.1.1 Quality and Robust Engineering Design
1.1.2 RED scheme
1.1.3 System complexity
1.1.4 System decomposition ..
1.1.5 RED for complex systems

1.2 Critique of circuit optimization
1.2.1 Problem definition
1.2.2 Outline
1.2.3 Classical Circuit Optimization
1.2.4 Set inversion
1.2.5 Design Centering, Tolerancing and Yield Optimization
1.2.6 Traditional Monte Carlo analysis
1.2.7 Conclusions

1.3 Critique of Robust Engineering Design .
1.3.1 Introduction
1.3.2 Loss Model - The Taguchi Method
1.3.3 The Response Model approach

1.4 Conclusions

2 Tools and techniques
2.1 Introduction

2.1.1 Computer simulation.
2.1.2 System decomposition
2.1.3 Application to RED .

2.2 Simulating circuits
2.2.1 Mathematical modelling of circuits
2.2.2 SPICE

2.3 Modelling circuits and systems
2.3.1 Experimental designs
2.3.2 Statistical emulation ..

2.4 Decomposition algorithms ...
2.4.1 Network partitioning algorithm
2.4.2 Network tearing algorithm ...

2

13
13
13
17
18
20
21
22
22
23
24
30
32
34
37
37
37
38
43
44

50
50
51
52
52
52
53
57
57
58
62
64
65
67

2.5 Optimization
2.6 Review of circuit simulation .. .

2.6.1 Third generation methods
2.6.2 Symbolic Analysis and simulation
2.6.3 Hardware description languages.

2.7 Review of decomposition methods
2.7.1 Introduction
2.7.2 Partitioning
2.7.3 Tearing and Diakoptics ..
2.7.4 Optimization of decomposed systems.

2.8 Conclusions

3 Robust circuit design I: A commercial environment
3.1 Introduction
3.2 Overview

3.2.1 The simulator
3.2.2 Robust design modules
3.2.3 Interface .. .
3.2.4 Output .. .
3.2.5 Optimization
3.2.6 RED process

3.3 The RCD modules
3.3.1 Circuit parameters
3.3.2 Experimental design
3.3.3 Circuit outputs
3.3.4 The emulator
3.3.5 Optimization
3.3.6 U sing the RCD module

3.4 A case study
3.4.1 Introduction
3.4.2 Experimentation

3.5 Discussion........
3.6 RED within a CAD framework

4 Design optimization
4.1 Introduction
4.2 Performance region methods.
4.3 Optimization for robustness
4.4 The procedure
4.5 Case study

4.5.1 Introduction
4.5.2 Experimentation
4.5.3 Analytical optimization
4.5.4 Global circuit optimization

4.6 Conclusions

3

70
71
72
74
76
77
77
79
86
88
90

96
96
97
97
98
98
99

· 100
· 100
· 101
· 101
· 102
· 104
· 105
· 105
· 105
· 108
· 108
· 109
.112
.113

117
.117
.118
· 120
· 125
· 126
· 126
· 127
· 129
· 131
· 136

5 Robust circuit design 11: Decomposition of complex systems
5.1 Introduction

5.1.1 Simulation
5.2 Circuit description
5.3 Partitioning

5.3.1 An improved partitioning algorithm
5.3.2 Partitioning the circuit.

5.4 The load blocks
5.4.1 AC load blocks
5.4.2 Transient load blocks ..

5.5 Robust Circuit Design experiments
5.5.1 AC analysis
5.5.2 Transient analysis .. ,
5.5.3 Variable load blocks .,

5.6 Model building and verification
5.6.1 Analysis of decomposed circuits.
5.6.2 AC results.

5.7 Discussion ..
5.8 Related work
5.9 Conclusion

6 Circuit response modelling for robust design
6.1 Introduction
6.2 Modelling a response function .

6.2.1 Simulation
6.2.2 Model building
6.2.3 Results
6.2.4 Conclusion ..

6.3 Modelling a family of functions
6.4 Example ..
6.5 Discussion

7 Design of experiments for complex systems
7.1 Introduction
7.2 Complexity and experimental design
7.3 Decomposition: tearing '"

7.3.1 The incidence matrix.
7.3.2 Forming the blocks ..

7.4 Experimental designs
7.5 Building the experimental design plan
7.6 Case study

7.6.1 The system
7.6.2 Results

7.7 Conclusions

8 Conclusions

4

139

· 139
· 140
· 141
· 142
· 142
· 146
· 147
· 148
· 150
· 151
· 151
· 155
· 156
· 157
· 157
· 160
· 161
· 162
· 162

166
· 166
· 167
· 168
· 169
· 169
· 172
.172
· 175
· 181

183
· 183
· 184
· 185
· 186
· 187
· 189
· 190
· 192
· 192
· 193
.200

203

8.1 Future work.

A C routines
A.1 Improved min-cut algorithm
A.2 Sparse matrix decomposition algorithm
A.3 Random graph generator.

B S functions
B.1 Geometric graph generator

C Mathematical models
C.1 Regression model

Bibliography

5

.206

208
.208
.225
.247

251
.251

254
.254

256

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1

4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1

7.1
7.2
7.3
7.4

Matrix of example graph after decomposition

3k design
LHS design
Summary of Monte Carlo confirmatory experiments
Summary of tolerancing process

Original design, optimized designs and Monte Carlo confirmatory experi-
ments, absolute tolerance case.
Parameter values before and after optimization

Random graph results table
Output of MinCut algorithm for first partition
Output of MinCut algorithm for second partition
Parameters for 5MB load blocks
Experiment statistics .
Model results

Stages in sample point reduction

Sparse incidence matrix from PA20 circuit
Bordered block matrix from sparse matrix
Mean ERMSE for prediction at 500 points - 60 variable model
Mean ERMSE for prediction at 500 points - 20 variable model

6

· 68

· 103
· 104
· 109
· 110

· 133
· 135

· 143
· 147
· 147
· 152
· 154
· 161

· 176

· 194
· 195
· 197
· 199

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3

Generalised system
Schematic of RED process
Circuit representation ..
Mapping of parameter and performance spaces
The general design scenario.
Translating intervals from Rp to R q.
The three types of box.
Estimation of tolerance region.
A typical loss model

Three basic component types
Plots of input factors for a LHS design plan
Plots of input factors for a lattice design plan
Example graph
Part of graph showing a cut edge during group formation
Overview of simulation types

Schematic of RCD module ..
Voltage amplifier circuit ...
Histogram of voltage output from the Mentor Graphics software
Factor plots for regression model
Monte Carlo histogram of results for toleranced design

Estimation of Rx with a convex hull
Three possible positions of the region B ..
DACE model for voltage amplifier circuit
Main Effects plots for DACE model
Histogram of voltage output for analytically optimized design
Gaussian lattice for estimating fl and a
Gaussian Monte Carlo sample for estimating fl and a
Histogram of voltage output for lattice-optimized design .. .
Histogram of voltage output for Monte Carlo-optimized design
Surface of simplified response function over region Rp.

Example random graph: n = 100, d = 4
Example geometric graph: n = 100, d = 4
PA20 circuit - partition points

7

15
17
22
24
30
31
32
33
41

53
60
62
68
69
72

99
· 108
.110

· 111
.112

· 119
· 120
· 128
· 129
· 130
· 132
· 133
· 133
· 134
· 136

· 144
· 145
· 146

5.4 Finding Z(w) of a sub-circuit using AC analysis. . 149
5.5 Block 1 of pa20 circuit 150
5.6 RC load . 151
5.7 Fitting 5MB model parameters to Z(w) 152
5.8 Main effects plot for block 1 with response at 200Hz . 154
5.9 PA20 circuit - voltage output and measuring points. 154
5.10 Partitioning of PA20 for analysis 155
5.11 Model Schematic 158

6.1 PA20 circuit. . . 168
6.2 DACE model parameters for response function 170
6.3 Y vs. Y for the DACE model including w 171
6.4 Y and Y vs. w 172
6.5 Mean ERMSE of prediction for 165 sibling curves vs. sample size nl . 177
6.6 Prediction of sibling curves with model nl = 25. 178
6.7 Subset of nl = 25 points taken from the base simulation. . . 178
6.8 Worst two curve predictions with 25 point model. 180
6.9 Worst predictions (ERMSE= 1.81) using meta-model. . 181

7.1 Schematic of system decomposition. . 188
7.2 Schematic of BBD matrix. 190
7.3 Schematic of full experimental design plan. . 191
7.4 Example circuit. 193
7.5 Graph of circuit. 196
7.6 Factor plots of the 5 most important variables for the 5 responses Y1 , • •• , Y5 .198
7.7 Sample points and measured vs. predicted points for the 5 responses. . . 199
7.8 Graph showing 20 most important factors 200

8

Acknowledgement

I would like to thank my Ph.D advisor Henry Wynn and Bob Buck my unofficial mentor
for all their help and encouragement during the course of studies embodied by this
thesis. I must also acknowledge the support of the Engineering Design Centre at City
University, particularly Henry Wynn and Alan Jebb, for providing a stimulating working
environment and the financial support given by Mentor Graphics (UK) Ltd. and the
Science and Engineering Research Council.
On a personal level I would like to thank my family, especially my parents, for their
constant support and Natasha Robertson for bearing with me during the more stressful
moments of writing-up.
I would also like to thank a number of people for their friendship and good advice:
Henry Wynn for being a great boss, Bob Buck for letting me win so many games of pool,
Tom Parsons for keeping things in perspective, Rick of Rye Wholefoods for many superb
lunches and Eva Riccomagno for trying to teach me some maths.

9

I grant powers of discretion to the University Librarian to allow this thesis to be copied
whole or in part without further reference to me. This permission covers only single
copies made for study purposes, subject to normal conditions of acknowledgement.

10

Abstract

Robust Engineering Design has evolved as an important methodology for the integration
of quality with the process of design. The methodology encompasses the disciplines of
experimental design, model building and optimization. First an experiment is conducted
on a system (or a simulation of the system), second a model is built to emulate the
system and finally the emulation model is used to optimize the system design. Applying
these methods to large problems can be difficult and time-consuming because of the
complexity of most design problems. It is the goal of this thesis to introduce methods
which reduce problem complexity and so make the application of Robust Engineering
Design (RED) methodology easier for large design problems.
By drawing from methods used in systems theory and circuit optimization several
techniques are presented with the aim of reducing the complexity of performing
experiments for Robust Engineering Design. A common framework for experimentation
is created by combining a commercial circuit simulator with established methods for
experimental design and model building. This provides the basis for experimentation in
subsequent chapters. A method of design optimization with respect to quality is
presented to complete the model-based Robust Engineering Design cycle.
Three approaches to reducing problem complexity are adopted. First a method of
system decomposition is applied directly to an electronic circuit to reduce the size of
experiment required for RED. Second a method of modelling system response functions
is described which integrates the action of the circuit simulator with the model building
process. Third information about system topology is used in the design of experiments
to enhance the model-building process.
Conclusions are drawn about the effectiveness of the approaches described with respect
to the impact on problem complexity.

11

Preface

The format of this thesis is as follows :

Introduction. This is Chapter 1. The Introduction provides a grounding for the
work contained in the thesis and includes a critique of circuit optimization and
Robust Engineering Design.

Tools and techniques. This is Chapter 2. The section reviews the tools and
techniques used throughout the thesis, including a review of circuit simulation,
specific methods for Robust Engineering Design, system decomposition and
algorithms for the decomposition of graphs.

Technical chapters. Comprising Chapters 3 to 7. The technical chapters are
split into two parts. The first part deals with the application of Robust
Engineering Design within a commercial environment including the development of
an integrated system for Robust Circuit Design and a method of design
optimization. The second part contains descriptions of techniques developed in an
attempt to reduce the complexity of performing Robust Engineering Design with
electronic circuit simulators. This covers techniques for modelling circuit response
functions and two decomposition methods.

Conclusions. This is Chapter 8. The conclusion sums up the work described and
outlines future possible work.

Appendices. The appendices contain the computer code developed and used in
the thesis.

Where appropriate a section at the end of each chapter contains relevant bibliographic
material to preserve the flow of the main text.

12

Chapter 1

Introduction

1.1 General Introduction

This thesis discusses techniques for analysing systems in order to make them robust

against variation in manufacture and use. This is commonly referred to as Robust

Engineering Design or RED. Particular attention is drawn to the problems of applying

RED methodologies to electronic circuit design and to developing new ways of tackling

large or complex RED problems.

1.1.1 Quality and Robust Engineering Design

Awareness of the need for quality in an increasingly competitive industrial environment

has led to the development and use of new techniques for product design. Methodologies

such as concurrent engineering highlight the need to consider all aspects of design,

manufacture, production and use at the design stage of developing a product or process.

Implementing such methods is a formidable task especially for large and complex

products.

13

Robust Engineering Design (RED) encompasses part of this drive for high quality

products. RED can be considered as a philosophy for designing products that are

insensitive to variations in manufacture and use. Intrinsically linked is the definition of

quality in terms of "fitness for purpose". The central idea is that by understanding and

quantifying the environment in which a product is manufactured and used it can be

designed to a certain quality (defined later in this section) . The objectives are to

maximise quality and minimise cost.

Methods employed for RED draw heavily from the statistical community where

definitions of variance, noise, error etc. are used to define variability in terms of a

product or process and provide the basis for the formulation of a solution. The

application of basic statistical methods to engineering problems is generally credited to

Genichi Taguchi. Taguchi's main contribution was not in the invention of any particular

statistical technique but rather in popularising a few techniques in the engineering

community for use in solving engineering design problems. By using basic experimental

design techniques and Analysis of Variance (ANOVA) tables a basic form of Robust

Design can be easily applied by engineers to design problems. Taguchi is often criticised

for over-simplifying RED and the techniques adopted by him are generally not

considered good practice. However the definition of quality as "the loss to society once a

product is shipped" remains a significant contribution along with measuring loss

continuously as deviation from some target value.

14

\~.

Figure 1.1: Generalised system

Definition of a system

Oldplil
responses

For the purposes of this thesis a system is defined in a general sense as a function with

inputs (factors), representing function parameters and signal inputs, and outputs

(responses). This is summarised in Figure 1.1. It should be noted that this definition is

in contrast to the state-space notation used in Engineering to mathematically model

systems. Throughout the thesis we deal with empirical models and treat model

parameters and signals equally as factors which affect system response.

Definition of quality

The goal of RED is to minimise the variability of design performance which we divide

into two sources, variability in the parameters of the design, internal noise and variability

due to outside influences, external noise. We define a system as a function f with

Y = f(X,Z) (1.1)

15

Y being a vector of system responses or outputs, X being the vector of system

parameters or factors under the control of the designer, called control factors, and Z is

the vector of noise factors which are not under the control of the designer e.g

temperature and humidity. We mimic product variability by defining the control and

noise factors as independent random variables with probability density functions gl(X)

and g2(Z). Letting L(Y) be a loss function dependent on the response we define the risk

as expected response

R = J J L(Y(X,Z))gl(X)g2(Z)dxdz = E(L(Y)) (1.2)

A useful loss function is quadratic. Letting 7 be a target response vector the quadratic

loss function is

(1.3)

If the control factors do not have any noise associated with them, for example if we want

to determine the control factors for a particular design, an approximation of the risk

becomes the mean squared error risk,

R = E(Y - 7)2 = Varnoise(Y) + (Enoise(Y) - 7)2 (1.4)

where Varnoise and Enoise mean with respect to the variation in Z. Thus the quality of a

design in this thesis is defined in terms of the expected (Le mean) performance and the

variability about the mean.

Q = f(Enoise(Y), Varnoise(Y)) (1.5)

16

!'1itial
!)esign

~ .. ~/~.
D<'sign of

experi.ments

"~~~~.

."ie-experiment

-'!ociel

building

Figure 1.2: Schematic of RED process

Opti1niza;:ion

In Chapter 4 this idea is extended to optimize systems using the criteria of attaining

target while minimising variability, the approximate solution being

min (Varnoise(Y)) (1.6)

subject to

Enoise(Y) = T (1. 7)

This is referred to as the unbiased solution.

1.1.2 RED scheme

The fundamental scheme of RED applied in this thesis is summarised in Figure 1.2. The

RED process is iterative, stopping when the optimization process produces a solution of

the required accuracy. Increased accuracy is obtained by reducing the number of input

17

factors in the experiment and building the model over a smaller space i.e reducing the

range of the input variables. The basic steps are:

i. Design of Experiments. Experimental Design is described in Section 1.3.2. The idea

is to choose an experimental design plan which defines the parameter values for the

system of interest in a series of trials where the system response is measured.

11. Model building. Mathematical models are fitted to data collected from the

experimental designs.

Ill. Optimization. The models are used to predict system response as part of a

numerical optimization procedure.

iv. Redesign. Once optimized the system is verified. If unsatisfactory the system is

redesigned and the RED process repeated.

1.1.3 System complexity

System theory is a vast and variously defined subject. One definition is that every real

physical process is a system. Examples include linear systems in control, non-linear

dynamic systems, biological and chemical systems and 'soft system' methodologies in

management science [24].

Intimately related to the idea of a system is that of complexity, again defined in many

different ways.

Definition

The definition we use in this thesis is that a system is complex if it contains many

interacting elements or subsystems which can exist in different states.

18

Very importantly, complexity can also be taken as a measure not so much of the system

itself as of our ability to learn about it. This provides a conceptual link with Chapter 7

where knowledge about the system is used to shape the way we observe it Le the way the

experimental design plan is structured.

The main difficulty in applying RED to complex problems is that the size of experiment

increases rapidly with problem size. For a complex system with lots of input factors the

experimental design plan can be prohibitively large in its attempt to effectively fill the

input space. However there exists a wide body of material on dealing with large systems

which is discussed in Section 2.7.

Large systems require new methods of experimental designs suitable for the highly

adaptive models which are employed to cope with complex non-linear responses and high

dimensionality of input spaces. The area of computer experiments has started to provide

such designs especially Latin Hypercube and Lattice designs. System decomposition,

prevalent in several branches of engineering, can be employed to decrease complexity.

The high dimensionality of input and output spaces of many systems presents special

problems in experimental design. Traditional methods, notably factorial design .

(Section 1.3), have gone some way towards meeting the challenge. For example complex

industrial quality control has stimulated renewed interest in highly fractional designs at

least as an initial screening for significant factors.

When a physical process is modelled by a large simulator, such as for an electronic

circuit or a finite element analysis of stress on a mechanical product, experiments can be

conducted directly on the computer code. This leads to the subject of the design and

19

analysis of computer experiments, DACE, which is a rapidly growing area of

experimental design [35, 31, 34, 15,50]. The complexity and nonlinearity of the code has

meant that factorial and response surface method have given way to two new

methodologies (i) fitting highly adaptive models (ii) the use of 'space-filling'

experimental designs. This thesis draws heavily on this area of research in trying to

make suggestions about how to experiment on large systems.

We relate the notion of complexity to systems theory. In a general sense we think of

something as being complex if we do not understand it or we cannot deal with it at that

time. In systems theory complexity can be used to measure the size of a system or

problem, where its complexity depends not only on size but also on our ability to deal

with it. For example a problem may be complicated in terms of the number of variables

and interactions but be handled easily by a specialised software routine; in this case the

problem would not have a high degree of complexity. The development of f-complexity,

defined as the time taken for the fastest algorithm to solve a given problem to within a

certain error bound f, shifts the emphasis from the problem to the algorithm used to

solve it. See [49] for an example.

1.1.4 System decomposition

A common theme for reducing complexity is the idea of system decomposition, namely

that the system can be considered as a collection of interacting subsystems.

Decomposition methods are used in the design, analysis, control and optimization of

systems to allow complex problems to be handled efficiently. An important distinction in

this thesis is between decomposition in a physical sense referred to as partitioning and

20

decomposition for mathematical analysis referred to as tearing.

Definition

Partitioning involves breaking up of a graph or network of the system, physically

decomposing a network. This implies that no system equations have yet been formed

and that separate equations will result from the decomposition process.

Definition

Tearing requires that the system equations be stated in full before decomposition, such

as the formulation of a sparse matrix in block form, can take place i.e for purposes such

as sparse matrix methods. Through working with electronic circuits we have been drawn

to using methods from this area.

Section 2.7 reviews different decomposition techniques.

1.1.5 RED for complex systems

In this thesis methods are presented to make RED for large systems easier to perform.

The approach is first to integrate existing RED methods in a single package and second

to adapt ideas from systems theory to reduce the complexity of applying RED to large

systems. The methods are applied exclusively to electronic circuits but are readily

generalised to other engineering systems.

The principal lesson which emerges is the following:

in conducting an experiment on a subsystem of a complex system it is essential to

21

Sigrl.CL!
lnp'clt

PQ"~C1rr..£t[r

L'CLl~lf?S

r'j • . .., ~~. --, -, ,,-
I~ Il-. IL 'L-~ l..-IL...-

Figure 1.3: Circuit representation

emulate the environment in which that subsystem lives.

1.2 Critique of circuit optimization

1.2.1 Problem definition

This section is devoted to a review of current state-of-the-art circuit optimization

techniques to provide the foundations for using electronic circuits in the RED case

studies throughout this thesis. The methods used should be contrasted with the review

of Robust Engineering Design methods which follows.

A necessary step in all optimization strategies is the evaluation of an objective function,

the cost of evaluation being a vital factor for successful optimization. In circuit

optimization this means measuring circuit response for varying values of input factors

(signal input, temperature, component parameter values etc.). It is impractical to

physically build and test an electronic circuit for each optimization step, so the circuit is

approximated with a mathematical model. Electronic circuits can also be modelled with

computer simulation packages such as SPICE [32].

22

An electronic circuit is represented with a 'black box' style arrangement (Figure 1.3).

For Robust Engineering Design we wish to include the parameter values and the input

signal values together as inputs parameters to an empirical model of the system. This is

in contrast to mathematical models (e.g. state-space representation) which separate the

signal input from the model parameters. The rationale for this is that we wish to model

the system by observing its behaviour in its operational environment to see how

variation in inputs translate to variation in system response. The inputs

X = (Xl. ..• , Xd) are component values and signal inputs and the outputs Y = (Yl. .•. , Yn)

are measurable circuit responses, consistent with the definition of quality in Section 1.1.1

we describe the action of a circuit as some function f where

Y = f(X) (1.8)

We define input and output spaces as parameter space Rp and performance space Rq

respectively. The function f can be thought of as the mapping function from one space

to another. Figure 1.4 shows this for a system with two inputs and two outputs.

The aim of modelling is to translate points from Rp to Rq and the following discussion

of circuit optimisation is based on these terms. This generalisation into parameter and

performance spaces will be used in the sense of empirical modelling of circuits, thus the

parameter space includes model parameters and signal inputs.

1.2.2 Outline

We describe several approaches to the circuit optimization problem including basic

nominal circuit optimization, Monte Carlo and Taguchi methods. The Section ends with

23

o· /
-<'2

?Cll-·Ctr'f1t?~er

space ~p

•

J

X;

P02 r
J
-"Or?1:Cl":ce

spac(' ~ q

•

Figure 1.4: Mapping of parameter and performance spaces

a description of the more recent approach of Robust Engineering Design and its

application to circuit design.

1.2.3 Classical Circuit Optimization

The basic goal in circuit optimization is to design circuits to meet some target set of

output specifications yt, where yt = (Yl, ... , Yn). Depending on the problem l't may be a

single vector of values or may specify a range of acceptable values for each of n target

specifications, defining an acceptable region ny.

N oITlinal design

The process of nominal circuit design uses numerical optimization to find a single set of

circuit parameters Xo which give a design with responses Yo = yt (or more generally

Yo E Ry). To achieve this the circuit, represented by the function J, can be modelled

(e.g. with a simulator) by j. This model is used in conjunction with an optimizer to find

24

'/
~ 1

a suitable set X* for which YE 'R y • Nominal design focuses on how to obtain j and the

selection of the most suitable optimization algorithm. There are many powerful

gradient-based optimization algorithms, however deriving gradient information requires

the use of special techniques [47] often involving matrix manipulations. Requirements for

the exact gradients of all elements of Y with respect to all elements of X can therefore

preclude their use in circuit optimization. Indeed the main problem in nominal design is

approximating the gradients so the chosen optimization algorithm can adjust the X

values to bring the Y values within 'R y •

U se of a circuit simulator

Circuit simulators may be used to translate points from parameter space to performance

space. We represent a circuit with n responses Y = (Yt, ... , Yn) and d input factors

X = (Xl, ... ,Xd) as

Y = g(X), (1.9)

the simulator acts as an approximation to the function g(X) which is represented by

Y = f(X). (1.10)

The quality of the model depends on the type of simulator, the type of circuit and the

type of analysis required to obtain the responses Y. All these factors influence the

optimization process. The use of simulators is discussed fully in Chapter 2.

25

Definition of an emulator

A central idea of the Robust Design methods used in this thesis is the use of an emulator

which models the circuit simulator (also described as a 'surrogate' in recent work by

Ye§ilyurt and Patera [51, 52]). Given the definition of a simulator in Equation 1.10 an

emulator of the simulator is defined as

y = j(X). (1.11)

Optimizing nominal circuit designs

Local numerical optimization of circuits can be achieved by finding the gradients of the

variables

Vf(X) = (1.12)

within the system function. To compute these exactly can be costly so they are usually

approximated. To improve the optimization process there has been work on improving

these gradient estimations through the use of mathematical techniques [9] and further

work has improved the efficiency of these methods [10].

Antreich et al. [6] describe the use of the SPICE circuit simulator as a basis for

modelling a circuit, reducing the dimensionality of the resulting optimization problem by

considering only those parameters for the circuit model which most affect the response.

26

In this case complexity is reduced by screening for important factors and eliminating

others from the analysis by considering their sensitivities (Equation 1.12). This

compares with principle component analysis (PCA) where most of the variability of a

model is explained by linear combinations of components. Other work has concentrated

on improving the optimization of the system model. Agnew [4] uses the minimax method

of optimization on circuits following on from work by Charalambous and EI-Turky [20].

Design for manufacture

In the nominal design approach circuit components are assigned particular parameter

values. In reality circuit components are not manufactured at an exact value but are

made to within a certain accuracy expressed as a nominal value with an associated

tolerance which can be relative (e.g some percentage deviation e.g a resistor may be

10Kn ± 10%) or absolute (e.g 10Kn ± lOOn) see Section 4.3 for a discussion of tolerances

in optimization. Other effects outside the designer's control such as model uncertainties

(especially for non-linear components such as transistors) and noise factors

(temperature, humidity) will also affect the performance of the design. A circuit may

therefore be optimized with respect to its nominal design but this represents only one of

the many designs possible when considering mass production of the circuit. It may be

the case that, after nominal optimization, when one examines one of a batch of circuits

on a production line it will have a response Y lying outside R y •

The variability in X values and noise factors need to be taken into account in any

assessment of design quality. This is because quality, as perceived by the customer, is

related to how the design performs under manufacturing conditions and in the use

27

environment.

The problem of how to deal with unwanted variations in X can be addressed by

considering the sensitivity of Y with respect to X. The goal is still the adjustment of X

values to get Y within 'R y , as is the case for nominal design, the difference being that we

want to do this while minimising the sensitivity of Y. This relates directly to the

definition of quality in Section 1.1.1.

SchoefHer [36] deals with this problem by constructing differential equations using a

sequence of equivalent networks which relate the circuit output to changes in each of its

components. These equations enable the sensitivity of the circuit as a whole to be

reduced with a suitable optimization algorithm. Director and Rohrer [22] derive

sensitivity expressions for both linear and non-linear components by using Tellegens

Theorem [46], also referred to in [17], to arrive at an equivalent circuit known as the

Adjoint Network, this reduces the number of equivalent networks required to 1. The

network is analysed and compared with the analysis of its 'adjoint' to arrive at

sensitivity expressions for each variable with respect to the output parameters. Branin

[16] derives sensitivity expressions for networks without reference to an equivalent

network but using only matrix manipulation techniques, improving on the 'adjoint'

approach by exploiting the fact that only one network simulation is required to produce

sensitivity expressions. The use of Tellegen's theorem is also documented in [17]. It

states that, for two different circuits having only circuit topology in common, the sum of

the product of all voltages in one circuit with all currents in the equivalent branches of

28

the other circuit is zero. This can be expressed as

(1.13)
all branches

where ib is the the branch current of one circuit and vr is the corresponding branch

voltage of the other circuit. We shall return to the exploitation of circuit topology for

efficient analysis in Chapter 2.

Another approach to the design of component tolerances is to consider the effect that

tolerancing has on the parameter and performance spaces of Figure 1.4.

The Performance Region

Expanding the concepts of parameter and performance space to include variation can

provide information on the quality of the design. If we quantify variation by assigning

lower and upper bounds on the vector X = Xl, ••• , Xm of the m input factors to give

X ± oX then, instead of describing a point in parameter space, we describe an

m-dimensional region Rx containing all possible combinations of parameter values for

that design. The function f can then translate Rx to performance space Rq where the

'performance region', R'x describes the variability of the circuit in the light of the

variability described by X ± oX. Figure 1.5 represents this action.

The problem is to locate the performance region R' x and move it preferably inside R y ,

the region of acceptability. Once located, comparison of R' x with Ry shows the design

performance in the light of variation as in Figure 1.5.

Location of the performance region is attempted in several ways. Tahin and Spence [45]

describe a method called the 'radial exploration' approach. This method approximates

29

x

.D(l"Y'am€~(r

s.uace Rp

Region.
ZHi9h

j

T()~el'QT:C€

X

ZL0

1J..

1

L ____ F_'I _____ -7

) XI
X x,

'Low fhyh

1,
~ ZHigh

y
?
~LoU'

p' .

~
Pe~fo'Tlw.nce ncgion

J 11
~, ~I

Low l-hgh

Figure 1.5: The general design scenario.

11 I

R' x (feasible region) by searching radially from a point inside R' x (e.g the nominal

design) for its boundary. Points on the boundary are built up and the performance

region is approximated from this. The technique uses mathematical programming to

adjust the design parameters to do this.

Abdel-Malek [1] describes a geometrical method for approximating the performance

region with an ellipsoid which decreases in volume to converge at the design centre. This

is then applied to the technique of design centering. These techniques can be considered

collectively as Inverse Engineering problems where one seeks to find a design solution

given the performance specifications of a product. Set inversion falls into this category.

1.2.4 Set inversion

The basic idea of set inversion is to estimate the parameters of a function using interval

arithmetic to translate between parameter and performance spaces. The process can be

thought of as finding the inverse of the function f and is thus related to the concept of

inverse engineering.

30

'" "'-2

~",

lJ·
2

Figure 1.6: Translating intervals from Rp to R q.

Definitions. The process of parameter design through set inversion can also be visualised

using the parameter space Rp and performance space R q • The parameter design

problem is, given an acceptable region Ry in R q , to find the corresponding set of

acceptable design parameters Rx in Rp, to do this we need to find /- 1 •

First steps. The basic concept involved in this approach is to use interval analysis to

divide Rp into sub-spaces or boxes (n-dimensional intervals) and translate them one at a

time to Rq as described in [27, 26]. Figure 1.6 shows this process for the set

Xo = (Xl, X2). These boxes can then be divided into three categories shown in Figure 1.7:

Infeasible box Where the set Xo produces a response completely outside the

acceptable region R y , case 1.

Undetermined box \Vhere Xo produces a response overlapping Ry, case 2.

Feasible box 'Vhere Xo produces a response inside R y, case 3.

31

'" LI

Rq ~2 -f ,

~

LL..-"-"-'-~-"--LL-L-.L.L~'-"'-' rc' ") I

::J

v
~." I

Figure 1.7: The three types of box.

Parameter estimation. Given the function f the tolerance region can thus be estimated.

The size of interval used determines the accuracy of estimation of this area and an

iterative procedure is used to improve estimation to within a given accuracy, this is

termed bounded-error estimation. Figure 1.8 demonstrates the location of the tolerance

region, the indeterminate set being unshaded.

Other approaches to the location of the tolerance region have been adopted using a

mixture of geometrical techniques and circuit simulations. These are presented in the

section on Monte Carlo methods.

1.2.5 Design Centering, Tolerancing and Yield Optimization

Design centering, tolerancing and yield optimization can be defined in terms of regions in

performance space. The process of moving R' x to within Ry is known as design

centering. Adjusting the size of R' x to fit inside Ry is called tolerancing. Yield

32

Figure 1.8: Estimation of tolerance region.

optimization is design centering, the difference being that it concentrates on how much

the performance and acceptability regions overlap as a measure of manufacturing yield

(see Figure 1.5).

Butler [19] defines the region of acceptability in terms of one dimensional sub-spaces.

Each component is taken in turn (the others being held fixed) and its 'large change

sensitivity' is calculated. This sensitivity is defined as how much from nominal the

component can deviate before the circuit performance exceeds the specification. This

concept is then expanded to produce 'performance contours' which are in effect second

order sensitivities explaining how component sensitivities change with changing

parameter values. These definitions are then used to desensitise and correctly tolerance

an existing nominal design. Agnew [3] adopts a similar approach by defining a 'margin

sensitivity' to allow algorithms to centre a design.

By combining the processes of nominal design and centering one can move the nominal

33

point inside the region of acceptability in such a way as to allow the largest set of

component tolerances. This approach is presented by Bandler and Liu [11] and

continued by Bandler, Liu and Tromp [13] and Bandler and Abdel-Malek [8]. In addition

Bandler, Liu and Chen [12] have produced a computer package, TOLOPT, to implement

this method.

In tackling the problem of yield optimization, Styblinski [41] along with Abdel-Malek

and Bandler [2] begins by consideration of the probability density functions of the

component distributions. That is how the probability of component values will vary

across their defined ranges. The optimization, essentially a design centering process,

involves a cost function to take into account the cost of circuits that do not meet the

design specification.

1.2.6 Traditional Monte Carlo analysis

As an aid to the development of circuits that are insensitive to component tolerances,

Monte Carlo analysis can provide information on how tolerances propagate through a

circuit to affect the response Y. The basic idea is to vary randomly the parameter values

within the tolerance range X ± 8X and then to observe the effect on Y. The circuit is

analysed many times varying X randomly and recording the Y's. This strategy is an

attempt to translate not just a point in parameter space to performance space but the

entire region defined by X ± 8X. Eventually, if enough simulations are performed, a

cluster of points in the performance region will be obtained. Comparing the performance

region with the region of acceptability allows the manufacturing yield of the circuit to be

calculated by subtracting the designs lying outside the region of acceptability. This

34

information can be incorporated with optimization techniques to improve the design.

Balaban and Golembeski [7] describe Monte Carlo methods applied to the design of

practical circuits. Karafin [29] shows how Monte Carlo methods can be used to assign

tolerances intelligently to a design. Butler [19] describes another method of design using

Monte Carlo analysis. This uses 'large change sensitivity' as a measure of circuit

performance where the 'large change sensitivity' of a component is how much its value

can deviate from nominal before the design specification is exceeded. This allows the

designer to desensitise a nominal design.

One problem is the mapping of X's to Y's. Computers can be used to simulate circuits

to provide this mapping, however the simulation of large circuits can take many hours to

complete depending on circuit complexity. We need to translate not just one set of

inputs (i.e parameter values) from parameter to performance space but enough in order

to estimate the performance region of the design well.

Improvements in Monte Carlo analysis

To obtain a good estimate of the performance region (necessary for optimization)

requires many simulations. Because of this methods have been developed to reduce the

number of analyses required for optimization using Monte Carlo methods.

Performance Region.

One of the main problems with Monte Carlo analysis is the time taken to get an

estimate of the performance region. To improve on this several techniques have been

employed which approximate the region using geometrical techniques along with fewer

35

solutions of the design equations. The 'simplicial approximation' method [21]

approximates the performance region by finding points inside the region and using linear

programming to interpolate the boundary thus allowing fewer analyses to give an

approximation of the region. Tahin and Spence [45] compare the 'radial exploration

approach' described earlier with a basic Monte Carlo method and show that the radial

method is more efficient. Eckstein and Liider [23] also reduce the number of simulations

required within a Monte Carlo analysis by only sampling in areas which are most likely

to contain acceptable circuits.

Monte Carlo iterations.

When employing certain optimization techniques it is necessary to perform repeated

Monte Carlo analyses. Each time a design is improved a new Monte Carlo analysis is

required for the circuit since it now has new parameter values. This is very costly in cpu

time.

Research has been conducted on reducing the number of simulations required in such an

iterative scheme. Parametric Sampling [38] uses a large pool of initial simulation results

to home in on the acceptable region thus avoiding re-simulation of a particular design

which could occur if two performance regions overlap. Stein [40] also reduces the number

of simulations required by re-using old simulation results and only doing further

sampling where the original sample distribution is undersampled. Soin and Spence [39]

employ two methods (common points scheme and correlated sampling) to reduce the

number of analyses required. These methods take advantage of any overlap that

successive iterations may incur.

36

1.2.7 Conclusions

Despite the improvements in Monte Carlo analysis an accurate analysis of a large circuit

can still take hours or even days to complete and this is a major drawback to the

method. Because of the use of random designs the Monte Carlo method appears rather

crude. A more efficient approach to the problem of optimizing a circuit is required to

provide a more useful design tool.

1.3 Critique of Robust Engineering Design

1.3.1 Introduction

The aim of Robust Engineering Design (RED) is to produce systems robust against

downstream variations in manufacture and use through a systematic design

methodology. Systems are optimized using experimental results rather than the gradient

calculations used in the methods outlined in Section 1.2.3. There are two general

categories of RED strategy [37]; (i) the loss model (LM) approach, (ii) the response

model (RM) approach. The difference between these two approaches lies in how the

results of experimentation are used to optimize the design. In the LM approach the

observed responses from the experiment are used directly to estimate the performance of

the design whereas in the RM approach they are used to fit a model of the system which

is used to predict the performance of the design as part of an optimization procedure.

The general strategy is first to select a set of appropriate performance measures,

Y = (Yl, ... ,Yt) and the set of input factors X = (Xt, ... ,Xd) possibly affecting Y. The

system under observation can then be represented by Y = f(X) and analysed at a

37

special set of test inputs, an experimental design plan, X = Sl, . .. , Sn to produce values

ofYi at each Si, (i = 1, ... ,n). Variability (including component tolerances) is

introduced through careful selection of the experimental design plan. The type of plan

used within RED is tailored according to the required method of estimating product

performance. Section 1.3.2 and Section 2.3.1 describe different types of plan.

For the Response Model approach, the set (Sj, Yi), (i = 1, ... , n) is used to fit an

empirical model to the system which is easier to compute than determining Yi from the

original system. This is termed an emulator, defined in Section 1.11. The emulator is

then used to find an optimal setting X* for the system parameters.

1.3.2 Loss Model - The Taguchi Method

The Loss Model approach estimates the 'loss' or 'risk' of a system (a criterion of the

goodness of the system) directly from experimental observations. The most famous

example of the Loss Model approach is the strategy introduced by Genichi Taguchi

[44, 42] to improve the quality of products initially in Japan in the 60's and whose name

subsequently became ubiquitous in international industry in the 80's. Taguchi describes

an easily implement able strategy for improving product quality using this approach.

Experimental Design

To analyse a system the input factors X = (Xl' ••. , Xd) need separating into design

factors C = (Cl, ... , Cd) and noise factors U = (U1' ... , Ud). Design factors are parameters

under control of the designer affecting Y. Noise factors are themselves split into two

categories, internal noise Uin and external noise Uex. Internal noise describes controllable

variations such as component tolerances and manufacturing process variations. External

38

noise is uncontrollable e.g humidity, temperature etc. Setting Ci = 0 if the ith parameter

is not a design factor and Ui = 0 if it is not a noise factor, allows us to write

(1.14)

Once defined the parameters form the basis for experimentation on the design to

determine the performance characteristics of the circuit. The experimental design will

provide the values of the system parameters to be used for a number of trials

X = Si, (i = 1, . .. ,n) (either computer simulations or real hardware trials) of the given

design. The results of this experiment are used to estimate the performance (or loss) of

the circuit considering both internal and external noise.

The experimental design used for a Taguchi-style experiment is a product array formed

from an inner array and an outer array. The outer array consists of rows

Sf, (i = 1, .. . ,n) where

(1.15)

where ® is the cartesian (set) product. This represents the design factors C and the

internal noise Uin Le nominal values plus high and low settings. The external noise is

represented by the inner array, Uex = (UeXl!"" Uexk) where k is the number of external

noise factors. Each row of the outer array is modified by the inner array to mimic noise

around the input parameters. The design is evaluated at the product of each row of the

outer array with the inner array Le

Sf ® U ex, (i = 1, ... , n) (1.16)

39

where again 18) is the cartesian product.

The number of input parameters increases with design size, this rapidly increases the

number of trials needed in a product array experiment. To counter this effect fractional

factorial arrays are used as design plans, this reduces the number of trials required by

not taking all interactions between the Xi'S. Taguchi typically uses Plackett-Burman

type designs [33] which only estimate main effects: main effect orthogonal fractions.

Analysis

Central to the process of design is the definition of the quality of a product in terms of a

'loss function'. Taguchi defines quality as the characteristic that avoids loss to society

once the product is shipped. This loss is measured in monetary terms. The loss function

is then a way of uniting financial loss with deviation from functional specification. If we

compare this idea with the definition of the acceptable region in parameter space, in

which all designs are seen as good, a single point in that space represents the ideal

design and any deviation from this point incurs a loss dictated by a loss function. The

design method should seek to reduce this loss as much as possible given other constraints

such as manufacturing cost.

A typical loss function for a Taguchi style approach is a quadratic, shown in figure 1.9,

this defines the loss as increasing with the square of the distance of the real value

obtained from the target value required. This is exactly the loss used in the definition of

quality in Section 1.1.1 although Taguchi's use is more philosophical than mathematical.

The concept of a region of acceptability is still valid, what has changed in effect is the

importance of the response location within the region. One interpretation would be to

40

~ $8
Q)
::>
C

~

$A

<- Customer Tolerance ->

T·dC T·dM

< •••••••• Manufacturing· ••••••• >
Tolerance

T

Performance Characteristic Y

Figure 1.9: A typical loss model

41

T+dM T+dC

require the distribution of responses within the region to be normal about the optimum

response rather than uniform within the region of acceptability. The boundary of the

region is still a useful concept when considering this, ideally it defines where the

distribution of points falls to zero, this can be approximated by 30" from the mean for a

normal distribution, giving 100% yield.

In line with the loss function design performance is expressed in terms of signal-to-noise

(SN) ratios, that is the ratio of the mean of the response (signal) to the variance (noise)

for each Yi. With the SN ratios calculated for each trial of the experiment the dispersion

and location factors can be identified and adjusted to bring the design to within T. The

dispersion factors are those Xi'S which influence performance variability whereas location

factors affect only the mean. The SN ratios defined by Taguchi (numbering over 60)

need to be used carefully if they are to accurately represent the loss and have been

criticised by Vining and Meyers [48] who present a more rigorous treatment of responses.

Kackar [28] and Barker [14] both describe the methods employed by Taguchi. In addition

Taguchi [43] describes the application of his methods to the analysis of an electrical

circuit to demonstrate the capabilities of the approach.

An important contribution by Taguchi in the field of RED has been the dissemination of

techniques in industry. Being an engineer by discipline Taguchi is able to present the

statistical concepts of RED in a way accessible to engineers. There has recently been a

lot of interest in Taguchi's approach to robust design and one of the main criticisms is

that the techniques used are doubtful from a statistical inference point of view and

moreover do not yield optimal solutions to the design problem.

42

1.3.3 The Response Model approach

There are two basic steps to optimization using the RM approach. First Y is estimated

with a suitable model built from the results of a designed experiment. This model is

then used as the objective function in a suitable optimizer to predict the performance of

the design. The type of model used to estimate Y and the general approach in reducing

variability in the design define different categories within the RM approach.

Response Surface Methodology (RSM) is one such category that uses regression models

to estimate Y and generally attempts to minimise variance and adjust X to bring Y

within T. This is similar to the 'Dual Response approach' [48] also used in LM methods

where the mean and variance of a response are used for optimization and is essentially

equivalent to the 'unbiased' approximation of Equation 1.7.

In this thesis we adopt the RM method of DACE (Section 2.3.2) which uses a Gaussian

stochastic process to estimate Y. The highly adaptive nature of this type of model

makes it more suitable for use in modelling high-dimensional systems than the more

basic polynomial modeL The general RED procedure is outlined in Section 3.2.6.

Modelling Y directly eliminates the need for the Taguchi inner array used in the LM

approach as it is less important to replicate experimental trials at the same design factor

settings (i.e use the inner array to vary Ci'S about their outer array values). In RM

methods design and noise factors are varied together using a combined array as the

experimental plan. This saves in the number of trials needed to conduct an experiment -

an important consideration where time and resources are limited.

The major benefit of RM methods over LM methods and other techniques such as Monte

Carlo is the fact that a model of the design is generated. This model, compared with

43

analysis of the original design, is fast to compute and can be used directly in a design

optimization process. Low and Director [30] describe the process of modelling the

response of an integrated circuit for design centering, Alvarez et al. [5] also demonstrate

how RSM can aid in the design of VLSI devices. Ye§ilyurt and Patera [52] also describe

a method of modelling for optimization.

The use of DACE in optimizing more complex design situations is detailed in [15]. The

more complex modelling strategy of DACE improves on the use of standard regression

models in fitting a model to the design. The experimental design plan used for modelling

with DACE is Latin Hypercube Sampling (LHS) which is shown to have good

space-filling properties (i.e the values chosen for X using the LHS plan are well spread in

parameter space). For a rigorous treatment of the statistical theory of experimental

design and model building the reader is referred to [18).

1.4 Conclusions

Designing a product for both the manufacture and use environments needs the

consideration of many factors. These factors include manufacturing processes and

component cost and variability.

Mathematical (geometrical) techniques can reduce design variability in combination with

numerical optimizers and the Monte Carlo method performs a similar function but both

methods are costly in computer time.

The technique highlighted by Taguchi is an improvement, providing the design engineer

with a framework to approach the problem of variability in design. The use of orthogonal

arrays to reduce the time required for an analysis of the product design together with the

44

introduction of a noise array into the experimental design provides a more efficient design

method than local sensitivity-based optimization or one-at-a-time experimentation.

The interest generated in Robust Design by Taguchi has prompted renewed application

of Response Modelling and statistical methods in general in the field of computer

experimentation. An example of the recent efforts to improve the techniques of Robust

Design is the Design and Analysis of Computer Experiments (DACE) [35] which

describes the use of statistical methods in Robust Design to provide a more efficient

design process .

•

45

References

[1] H L Abdel-Malek. The ellipsoidal technique for design centering and region
approximation. IEEE Trans. Computer Aided Design., 10:1006-1013, Aug 1991.

[2] H L Abdel-Malek and J W Bandler. Yield optimizations for arbitrary statistical
distributions: Parts i & ii. IEEE Trans. Circuits Syst., CAS-27:245-262, Apr 1980.

[3] D Agnew. Design centering and tolerancing via margin sensitivity minimization.
lEE Proc - G, 127:270-277, Dec 1980.

[4] D Agnew. Improved minimax optimization for circuit design. IEEE Trans. Circuits
(3 Systs., CAS-28:791-803, Aug 1981.

[5] Antonio R Alvarez, Behrooz L Abdi, Dennis L Young, Harrison D Weed, Jim
Teplik, and Eric R Herald. Application of statistical design and response surface
methods to computer-aided VLSI device design. IEEE Trans. Computer Aided
Design, 7:272-288, Feb 1988.

[6] K J Antreich, P Leibner, and F pornbacher. Nominal design of integrated circuits
on circuit level by an interactive improvement method. IEEE Trans. Circuits fj
Systs., 35:1501-1511, Dec 1988.

[7] P Balaban and J J Golembeski. Statistical analysis for practical circuit design.
IEEE Trans. Circuits fj Systs., CAS-22:101-109, Feb 1975.

[8] J W Bandler and H L Abdel-Malek. Optimal centering tolerancing and yield
determination via updated approximations and cuts. IEEE Trans. Circuits (3

Systs., CAS-25:853-871, Oct 1978.

[9] J W Bandler, S H Chen, S Daijavad, and K Madsen. Efficient gradient
approximations for non-linear optimization of circuits and systems. Proc. IEEE Int.
Symp. Circuits Syst., pages 964-966, 1986.

[10] J W Bandler, S 11 Chen, S Daijavad, and K Madsen. Efficient optimization with
integrated gradient approximations. IEEE Trans. Microwave Theory Tech.,
MTT-36:444-455, Feb 1988.

[11] J W Bandler and P C Liu. Automated network design with optimal tolerances.
IEEE Trans. Circuits (3 Systs., CAS-21:219-222, March 1974.

[12] J W Bandler, PC Liu, and J H K Chen. \Vorst case network tolerance optimization.
IEEE Trans. Microwave Theory (3 Tech., MTT-20:630-641, Aug 1975.

46

[13] J W Bandler, P C Liu, and H Tromp. A nonlinear programming approach to
optimal design centering tolerancing and tuning. IEEE Trans. Circuits (3 Systs.,
CAS-23:155-165, March 1976.

[14] T B Barker. Quality engineering by design: Taguchi's philosophy. Quality
Assurance, 13:72-80, Sept 1987.

[15] Maria C. Bernardo, Robert Buck, Lishin Liu, William A Nazaret, Jerome Sacks,
and William J Welch. Integrated circuit design optimization using a sequential
strategy. IEEE Trans. Computer Aided Design., CAD-11:361-372, 1992.

[16] Franklin H Branin. Computer methods of network analysis. Proceedings of the
IEEE, 55:1787-1801, Nov 1967.

[17] R K Bray ton and R Spence. Sensitivity and optimization. Elsevier, Amsterdam,
1980.

[18] R J Buck. The design and analysis of computer experiments. PhD thesis, City
University, London, UK, 1994.

[19] E M Butler. Realistic design using large change sensitivities and performance
contours. IEEE Trans. Circuit Theory, CT-18:58-66, Jan 1971.

[20] C Charalambous and M EI-Turky. Circuit design using a recent minimax approach.
Computer Aided Design, 11(1):27-31, Jan 1979.

[21] S W Director and G D Hachtel. The simplicial approximation approach to design
centering. IEEE Trans. Circuits f3 Systs., CAS-24:363-372, July 1977.

[22] S W Director and R A Rohrer. The generalized adjoint network and network
sensitivities. IEEE Trans. Circuit Theory, CT-16:318-323, Aug 1969.

[23] T Eckstein and E Luder. Design centering by improved monte carlo analysis of the
region of acceptability. Proc. IEEE Int. Symposium Circ. Syst., pages 951-954,1986.

[24] N. Fenton and G. Hill. Systems, construction and analysis. McGraw-Hill, London,
1993.

[25] C M Fiduccia and R M Mattheyses. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference, pages 175-181,1982.

[26] L Jaulin and E WaIter. Guaranteed nonlinear parameter-estimation from
bounded-error data via interval-analysis. Mathematics and Computers in
Simulation, 35(2):123-137, 1993.

[27] L Jaulin and E Walter. Set inversion via interval-analysis for nonlinear
bounded-error estimation. A utomatica, 29(4):1053-1064, 1993.

[28] RN Kackar. Off-line quality control parameter design and the taguchi method.
Journal Of Quality Technology, 17:176-188, Oct 1985.

47

[29] B J Karafin. The optimum assignment of component tolerances for electrical
networks. Bell Syst. Tech. J, 50:1225-1243, Apr 1971.

[30] K K Low and Stephen W Director. An efficient methodology for building
macromodels of ic fabrication processes. IEEE Trans. Computer Aided Design.,
CAD-8:1299-1313, Dec 1989.

[31] M. D. Morris, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of
computer experiments: use of derivatives in surface prediction. Technometrics,
35(3):243-255, Aug 1993.

[32] L W Nagel. SPICE 2. A computer program to simulate semiconductor circuits. ERL
Memo ERL-M520. Univ. California, Berkley, 1975.

[33] R. 1. Plackett and J. P. Burman. The design of optimum multifactorial
experiments. Biometrika, 33:305-325, 1946.

[34] J. Sacks, S. B. Schiller, and W. J. Welch. Designs for computer experiments.
Technometrics, 31:41-47, 1989.

[35] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and
analysis of computer experiments. Statistical Science, 4:409-435, Nov 1989.

[36] J D SchoefHer. The synthesis of minimum sensitivity networks. IEEE Trans. Circuit
Theory, CT-ll:271-276, June 1964.

[37] Anne C. Shoemaker, Kwok-Leung Tsui, and C. F. Jeff Wu. Economical
experimentation methods for robust design. Technometrics, 33:415-428, 1991.

[38] K Singhal and J F Pinel. Statistical design centering and tolerancing using
parametric sampling. IEEE Trans. Circuits Syst., CAS-28:692-701, July 1981.

[39] R S Soin and R Spence. Statistical exploration approach to design centering. IEEE
Proc-G, 127:260-269, Dec 1980.

[40] M L Stein. An efficient method of sampling for statistical circuit design. IEEE
Trans. Computer Aided Design, CAD-5:23-29, Jan 1986.

[41] M A Styblinski. Problems of yield gradient estimation for truncated probability
density functions. IEEE Trans. Computer Aided Design., CAD-5:30-38, Jan 1986.

[42] G Taguchi. Off-line and on-line quality control systems. In ICQC, pages B4.1-B4.5.,
Tokyo, 1978.

[43] G Taguchi. System Of Experimental Design: engineering methods to optimize
quality and minimize costs, volume 1. Unipub / Kraus International Publications,
White Plains, New York, 1987.

[44] G Taguchi and M S Phadke. Quality engineering through design optimization. In
IEEE Globe 1984 Conference Atlanta GA, volume 3, pages 1106-1113, Nov 1984.

48

[45] K S Tahin and R Spence. A radial exploration approach to manufacturing yield
estimation and design centering. IEEE Trans. Circuits fj Systs., CAS-26:768-774,
Sept 1979.

[46] B D H Tellegen. A general network theorem with applications. Proc. Inst. Radio
Engineers, Australia, 14:265-270, 1953.

[47] Gabor C Temes and Donald A Calahan. Computer-aided network optimization the
state of the art. IEEE Proceedings, 55:1832-1863, Nov 1967.

[48] G Geoffrey Vining and Raymond H Myers. Combining taguchi and response surface
philosophies: A dual response approach. Journal of Quality Technology, 22:38-44,
Jan 1990.

[49] G W Wasilkowski and H Wozniakowski. There exists a linear problem with infinite
combinatory complexity. Journal of Complexity, 9:326-337, 1993.

[50] W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris.
Screening, predicting, and computer experiments. Technometrics, 34(1):15-25, 1992.

[51] S Ye§ilyurt, C K Ghaddar, M E Cruz, and A T Patera. Bayesian-validated
surrogates for noisey computer simulations; application to random media. SIAM
journal on scientific computing, To appear.

[52] S Ye§ilyurt and A T Patera. Surrogates for numerical simulations; optimization of
eddy-promoter heat exchangers. Computer methods in applied mechanics and
engineering, 1994.

49

Chapter 2

Tools and techniques

2.1 Introduction

In this Chapter the methods used in the technical chapters of the thesis are described

including

i. circuit simulation,

ii. experimental design and system modelling,

lll. heuristic decomposition algorithms and

iv. reviews of simulation and decomposition methods.

The thesis is concerned with the application of Robust Engineering Design methods to

engineering systems. Each of the following Chapters describes different applications of

RED, each application being highlighted by example studies in electronic circuit analysis.

The topics of circuit simulation, experimental design, model-building and optimization

are covered as stages in the RED process. Methods of combining system knowledge with

50

these stages lead to the use of decomposition algorithms and applications of sparse

matrix techniques which are also discussed. There are also reviews of the simulation

methods and decomposition techniques which are integrated with RED technology.

2.1.1 Computer simulation

The execution of real experiments for RED is sometimes impractical due to physical or

economic constraints. Because of this RED may need to rely on computer simulation of

the system under analysis using software such as SPICE [28] for electronic circuits or

other Computer Aided Engineering packages such as solid body modellers. Performing

computer experiments on systems for RED involves simulating the same system many

times and this makes the time taken for each individual analysis important when

considering the efficiency of the whole experiment.

Computer simulation of systems can bring benefits to RED in the following ways:

i. Computer simulation is generally faster than real experimentation.

ii. Repeated simulations with varying input conditions can be easily catered for.

iii. The RED process can be conducted 'off-line' without any intrusion into

manufacturing.

iv. Simulation avoids building test prototypes for experimentation.

The RED process is dependent on the efficiency and accuracy of simulation method used

because models are built from the results of computer simulations. Simulators therefore

need to be fast, efficient and accurate to enhance the RED process. In this thesis the

examples given use the well proven SPICE circuit simulator, described in Section 2.2.2.

51

2.1.2 System decomposition

As a system increases in size the number of possible combinations of parameters that

significantly affect system response will increase combinatorially. To counter this effect a

method of partitioning systems into sub-systems for analysis is needed. The effect of

partitioning is to reduce the problem to a set of sub-problems which can then be

analysed more efficiently.

2.1.3 Application to RED

The main hypotheses of the thesis is that RED can be improved by including techniques

for reducing problem complexity. This Chapter describes tools and techniques from

different disciplines which are employed throughout the thesis to reduce complexity.

2.2 Simulating circuits

For the work contained in this thesis the SPICE simulator is used to perform RED

experiments. Section 2.6 comprises a thorough review of current research in simulation

methods. The following sections are devoted to a basic description of SPICE in the

context of performing RED experiments. Because RED involves the fitting of a

mathematical model of the simulator, defined as an emulator in Section 1.11, the quality

of the simulator plays a direct part in the accuracy of the emulation model. There is a

strong move towards integrating analogue and digital simulation methods making

simulation problems larger and thereby increasing the usefulness of fast, efficient

simulators and methods of problem reduction through decomposition (see Chapter 5).

Pederson [33] provides a good background to the development of simulation methods on

52

CCLpacitoT

J"1auctoT

1.' 1

! ~ ~\
'-VV\V

i -----j

c

v ,~~ 'l'?
~illlllll!~-

\ \', ,,\,' ,

'-\..Iv'v"J>.<',/>,//

1

i.R

I" a7(",-", \
'-'. \ '" Z "1/

at

T ' • - .LJ.Ql

elt

Figure 2.1: Three basic component types

which current development is based. This includes a discussion of the fundamental

mathematical techniques used to simulate circuits such as nodal analysis and modified

nodal analysis (SPICE2), large-scale techniques and timing and relaxation-based

simulation (Section 2.6).

2.2.1 Mathematical modelling of circuits

Component modelling

The modelling of electronic circuits begins with the modelling of individual components

which is central to the success of any simulation method. For two-terminal linear devices

this is a straightforward process yielding up to second order differential equations relating

current and voltage. The three basic component types are represented in Figure 2.1.

Other ideal components such as switches, voltage and current sources etc. can also be

defined. The equations in Figure 2.1 define the characteristics of these devices which are

referred to as 'ideal' because of their simplified nature. Models more accurate than these

ideal representations can be created by accounting for the non-linearities associated with

53

real components through the addition of more ideal components. An example of this is

in the use of equivalent circuit models for non-linear device modelling (see below).

Device modelling

For more complicated non-linear components, such as transistors, physics-based

mathematical equations which model the behaviour of the device are generally too

complicated for analytical solution. These models need to be solved numerically at great

computational cost. This has led to the use of 'equivalent' circuit models, based on

combinations of ideal linear components, to approximate the behaviour of these

non-linear devices. The parameters of 'equivalent' circuit models do not relate to

physical device parameters. This effectively cuts the link between device manufacture

and use for individual circuit designs because varying these parameters does not vary

device performance in a realistic way. Including 'equivalent' circuit model parameters as

part of an RED experiment will not then provide a direct link between circuit

performance and device characteristics without understanding the relationship between

the two sets of parameters. Establishing the link between device fabrication and use is

critical if RED is to be applied to Integrated Circuits, Bandler, Biernacki, Cai, Chen, Ye

and Zhang [2] describe the integration of physics-based models to circuit simulators for

the purposes of design optimization, however the use of physics-based models is beyond

the scope of this thesis (see Chapter 8).

Other methods of modelling devices for circuit simulation include

i. behavioural modelling j where the device behaviour (usually a digital device) is

encapsulated in computer code used by the simulator,

54

ii. hardware modelling j where the device is physically connected to the simulator and

incorporated directly in the simulation,

iii. macromodelling j where the device characteristics are modelled mathematically,

iv. VHDL j this is a standard language for representing digital circuits with computer

code (see Section 2.6.3), and

v. HDL-A j yet to be agreed on, this should provide a standard language for

representing analogue circuits along the lines of (iv.) and help integrate analogue

and digital circuit representation for mixed-mode simulation [14]. These modelling

methods are commonly found in commercial packages.

Circuit modelling

The mathematical description of a circuit is achieved through the use of Kirchoff's

current law (KCL), Kirchoff's voltage law (KVL) and the device (or branch)

characteristics defined in the previous sections. These three laws combine to produce a

set of equations to model the operation of the whole circuit. The KVL states that the

sum of volt ages in a closed loop around a circuit is zero, yielding a set of equations which

can be represented as

AV=O (2.1)

where A represents a 1 X b matrix of connections between b components (or branches)

and lloops and V is a column vector of voltage drops VI, ••• , Vb across the b branches.

55

Similarly the KCL yields the equation

BI= 0 (2.2)

where B is a n X b matrix of connections between n nodes and b branches and I is a

column vector of currents it, ... , ib flowing through each branch. The KVL and KCL

equations provide topological information about the circuit and the addition of the

branch characteristics connects these to fully describe the circuit.

This information will be exploited in Chapter 7 to reduce the complexity of RED

experiments.

The use of impedance matrices derived from this approach for sensitivity analysis is

referred to in Chapter 1. Chapter 5 exploits this representation of system equations to

partition circuits. This approach is conceptually similar to that described in [6] where

parts of a circuit's impedance matrix are suppressed during analysis to improve efficiency.

A detailed account of the formulation of network equations can be found in [11].

These three sets of equations form the basis for uniquely defining the solution to the

network. In the case of linear networks they can be solved using Gaussian elimination,

for the non-linear case a numerical technique such as the Newton-Raphson algorithm

must be used.

Given a mathematical circuit model the task of a circuit simulator is to evaluate the

model, given a specific input or stimulus, at given time or frequency points depending on

the type of analysis required.

56

2.2.2 SPICE

SPICE (Simulation Programme with Integrated Circuit Emphasis), introduced to the

public domain in 1975, is the most common circuit simulation package today. It uses the

Newton-Raphson matrix solution method with Gaussian elimination solving the system

equations to determine the DC operating point (the quiescent point) of the circuit and

repeats this for specified frequencies during a frequency domain analysis or uses

numerical integration techniques for a time domain analysis. The basic steps in the

simulator, for a time-domain analysis and given an initial DC solution, are summarised

as follows:

i. Formulate coupled set of non-linear first order differential algebraic equations

representing the circuit.

11. Replace the time derivatives in step (i) with finite difference approximations.

iii. Solve the non-linear equations with Newton-Raphson.

iv. Increment the time point and repeat step (iii).

An up-to-date review of SPICE is given in [30].

2.3 Modelling circuits and systems

This section covers the methods used to conduct RED experiments. They include

strategies for creating experimental design plans and statistical models of systems as well

as a sequential plan for experimentation. The general methodology is commonly referred

to as DACE (Design and Analysis of Computer Experiments) and is described in [8]

and [5]. The sequential strategy is

57

i. Choose a suitable model to estimate the performance Y of the system.

ii. Design an experiment and select input factor nominal values and tolerances, collect

the data from the simulation runs.

iii. "Use the data to estimate the parameters of the statistical model chosen in (i), call

this the emulator of the simulator.

iv. Analyse the model response Y via main effects, i.e effects from individual factors,

and interactions between factors.

v. If the emulator is not accurate enough select a smaller region (i.e reduce the range

of the nominal values of input factors) where the optimal response is likely to

occur. Repeat steps (ii) to (v).

vi. When the emulator is accurate enough optimize Y. Do a confirmatory simulation

at the optimized input factor settings. Return to step (iv) if necessary.

The two key choices in this process are the experimental design plan and the emulator.

For complex non-linear problems the traditional methods of using factorial designs and

polynomial response surface methods (see section 1.3) have been replaced by better

'space-filling' codes (used in computer experiments) and more adaptive models. The

latter approach is adopted here.

2.3.1 Experimental designs

There are two types of design used in the thesis, Latin Hypercube Sampling designs and

Integer Lattices.

58

Latin Hypercube Sampling designs

Latin Hypercube Sampling (LHS) designs are good for filling space in high dimensions.

They are also fast to compute because of their pseudo-random nature. These facts make

them highly suited for use as experimental design plans for RED experiments in high

dimensions, that is involving a lot of input factors. Normalising the input factors so that

they all lie in the range [0,1], all possible combinations of d input factors will occur in

the space [O,l]d. For an experiment with n runs an LHS design is constructed by

dividing the interval [0,1] into n equally spaced values for each of the d factors and

randomising them. Let z = [0,1, ... , n - 1], where n is the number of runs in the

experimental plan. Then

1I"j(Z) + 1/2
Sj= , j=l, ... ,d

n
(2.3)

is the ph column of the experimental design S, where 11"1, •• • ,11" d are independent random

permutations of z. This algorithm places the design points in the centre of the randomly

selected sections of a grid. An exam pIe design plan in the range [-1, 1]4 with d = 4 and

n = 18 is shown in Figure 2.2. The points in the graphs show the four factors, Xl, ••• , X4

plotted against each other to give an idea of the space-filling properties of the design.

Improved LHS designs

A Latin hypercube design with the design points more uniformly spaced can be chosen

by measuring the variability of the number of design points in a randomly located

subregion of the experimental design space. To give an example, suppose we have a

59

: : : :

Figure 2.2: Plots of input factors for a LHS design plan

Latin hypercube design D. Then suppose a large number of rectangular sub regions are

placed in the design space and the number of design points in each subregion is counted.

If the number of points in each region is the same or close to the same, then the points

must be fairly evenly .distributed in the design space. So if X;j is the number of points in

sub region j for the ith design, then Var(x;) is the variance for design i and we select the

design which minimizes Var(x;). To get an estimate of Var(x;) ne randomly placed

cubes are placed in the design space and X;j,j = 1, ... , nr are used to estimate Var(x;).

This is repeated for nd designs and the design with the smallest value of Var(x;) is

chosen to be the design. The number and size of the cubes and the number of designs to

look at are chosen when the design is created.

60

Lattice designs

Lattice designs are another example of good space-filling designs which are easy to

generate. The basic idea is to lay down points which are equally spaced along a

trajectory given by a generator which 'wraps' around the input space, shown in

Figure 2.3. A principal text is Niederreiter [31], and Fang and Wang ([38], and earlier

work) make a considerable contribution in applications to statistics, including design. In

a forthcoming book Zhigliavsky and Wynn [42] discuss applications to search and

optimization. The one generator case is used here. Thus first select a sample size nand

a single generator (ht. ... , hd), where typically the hi are integers. Points are generated

in [0, l]d by taking successive multiples of the rescaled generator:

(knh1
, ••• , knhd) mod(n)j (k = 1, ... , n)

where mod(n) means that the numerators khj are reduced mod(n). There are various

good ways of choosing the hj: (i) they should be primes or mutually prime to themselves

and n (ii) they can be powers of a prime: hj = pi where the powers are not equivalent

mod(n) and n is prime (primitive roots). Designs can alternatively be chosen by pure

optimization using an optimality criterion, see [4]. In the case study which follows we

first choose n as a prime and then select the hi generators according to (ii.) above. An

example lattice in the range [-1,1]4 with d = 4 and n = 18, as for the LHS design

example, is shown in Figure 2.3.

61

_. _.

Figure 2.3: Plots of input factors for a lattice design plan

2.3.2 Statistical emulation

The response of a system with inputs and responses, or outputs, is emulated using a

model with the independent variables being the input factors (circuit parameter values,

signal inputs etc.) and the dependent variables being the system responses (frequency

response, amplitude etc. for a circuit).

For the example cases in this thesis a statistical model is used to emulate a circuit

simulator, this process is fully described in [34] and used in [5] to optimize the design of

two le circuits. The emulator is computed from data obtained by conducting a

computer experiment according to an experimental design plan as described earlier in

this section. In our case the model chosen includes only one regression term, /3, which is

62

a constant. A brief description of the model follows. Consider the model

g(x) = f3 + Z(x) (2.4)

where Z(x) is a random function and f3 is an unknown constant. At two sets of inputs, x

and x', the covariance between Z(x) and Z(x') is

Cov(Z(x),Z(x'» = a 2 R(x,x'). (2.5)

The computer simulation of an electronic circuit design is conveniently represented by a

realization of a random process. The philosophy is that although in reality there is no

random error the stochastic process is a good way of summarising our ignorance of the

behaviour of the output at unsampled inputs. The model can be used to predict the

response of the same circuit under varying input conditions.

Let g = (gl, • .. , gn) denote the observed performances at an experimental design of n

input vectors, SI, ••• , Sm and write

(2.6)

which are an n X 1 vector and an n x n matrix, respectively. It can be shown (e.g. [34])

that the best linear unbiased predictor of g(x) at untried inputs of x when R is known is

(2.7)

63

where

(2.8)

and I is a vector of 1 'so For the examples we assume that R(x, x') is the family

R(x, x') = IT exp(-OdWi - wil Pi) (2.9)

In applications the parameters 0i and Pi are unknown and are estimated by maximum

likelihood, but we omit the details, [8, 34, 5, 41], the emulator being constructed using a

dedicated software package developed by R J Buck [7]. With this correlation structure

two points, wand w', that are close together will have highly correlated g's. The

predictor also has the exact interpolation property in that

g(Si) = g(s;) i = 1, .. . ,n.

This property is typically not shared by traditional polynomial response surfaces.

2.4 Decomposition algorithms

A review of system decomposition is given in Section 2.7. In this thesis we use two

distinct decomposition algorithms:

i. partitioning

ii. tearing.

(2.10)

These terms are defined in Section 1.1.4. The partitioning method uses an heuristic

algorithm to physically decompose a system in two for analysis. The tearing method

64

uses an implementation of an algorithm to decompose a system by first representing its

topology with an incidence matrix (see Section 2.4.2) and then using sparse matrix

techniques to define sub-systems. The following two sections describe the algorithms

used in this thesis to decompose circuits for analysis while Section 2.7 reviews system

decomposition in general. Improvements to the algorithms are detailed in the chapters

where they are used in order to preserve the general thesis format of separating other's

work (here) from the technical chapters (Chapters 3 to 7). Both algorithms have been

implemented in the C programming language and can be found in Appendix A.

2.4.1 Network partitioning algorithm

For network partitioning an improved implementation of the Fiduccia & Mattheyses [15]

algorithm is used to partition a circuit, represented by a network graph, into separate

sub-circuits. For the purposes of this algorithm a network is defined as a set of p cells

C = Cl, ••. , cp connected by a set of q nets N = nl, •.. , nq • Given an initial partition

(A, B) of the cells the algorithm moves a cell at a time from one block of the partition to

the other in an attempt to minimize the the cutset of the final partition, the cutset being

the set of nets connected to cells in both (A and B) blocks; hence min-cut. After all

moves have been made the best partition encountered during the pass is taken as the

output. The algorithm can be repeated for a number of passes until no further

improvement is made. Once a cell is moved it is locked in place for the remainder of that

pass. A cell is selected for movement using two criteria:

Balance ratio. The balance ratio is defined as r = IAI/(IAI + IBI), 0 < r < 1.

Setting lower and upper bounds for this limits the number of cells in anyone

65

partition to prevent the algorithm from the trivial solution of placing all cells in

one partition (achieving a zero cutset).

Cell gain. For any partition (.A., B) the gain 9i of cell Ci is the number of nets by

which the cutset would decrease were Ci to be moved.

The main feature of the Fiduccia & Mattheyses (FM) algorithm is that it finds a good

solution in linear time with respect to network size. This is achieved through the use of

tailored data structures enabling cell selection and cell gain adjustment to be handled

efficiently. The cells from each partition are placed in separate bucket arrays in order of

their present cell gain. A free cell list contains the list of cells not yet moved for the

current pass. The algorithm due to FM is thus:

i. Consider the first cell (if any) of highest gain from each block's bucket array,

rejecting it if moving it would violate the condition on the. balance ratio. If neither

block has a qualifying cell, no more moves will be made.

ii. Among those cells returned in step (i), choose a cell of highest gain, breaking ties

by choosing the one which gives the most even balance. Break remaining ties as

desired.

iii. Return this as the base cell, cb, remove it from its bucket array and place it on the

free cell list.

The chosen cell is then moved, locked, and the effects on both net distribution and gains

of neighbouring cells calculated to update the data structures. Achieving this in linear

time requires care and uses the notion of a critical net defined as a net on which exists a

cell that, if moved, would change the nets' cutstate. Given a partition (A, B), the

66

distribution of the cells on a net ni is defined as the integer pair (A(ni), B(ni))

representing the number of cells on net ni in blocks A and B respectively. A net ni is

defined as critical only if either (A(ni) or B(ni)) equals 0 or 1. From this it can be shown

that the gain of a cell depends only on its critical nets and that if a net is not critical

before or after a move then it does not influence the gain of any of its cells. These

observations allow the algorithm to compute passes in linear time as shown in [15].

2.4.2 Network tearing algorithm

Representing an electronic circuit as a graph g(X; E) with a set of nodes X = Xl, ••• , Xm

and edges E == el, ... , ep we can relate the edges E with circuit components and the

nodes X with circuit nodes. The graph g produces an incidence matrix of size m x m

with 2p entries (note: the number of entries is 2p because the matrix is symmetric about

the main diagonal). This matrix is analogous to the incidence matrix formed during the

initial stages of a nodal analysis for circuit simulation [11]. The algorithm decomposes

the graph g to produce an incidence matrix in a bordered-block diagonal (BBD) form

with balanced block sizes and a minimally sized border. Figure 2.4 and Table 2.1 show

an example graph with the resulting BBD incidence matrix produced using the

algorithm described.

The following section describes a recently published algorithm [44] to decompose a sparse

matrix into a bordered-block diagonal form for the purpose of tearing a system into

sub-systems with a connecting network between them (see Section 2.7.3). The algorithm

forms the starting point for modelling the system using a decomposition technique.

67

!""\') .A Q ;/l=/u,. T)= --: .~'
...-- 1-......

..l.

Figure 2.4: Example graph

* 0 e1 e3 e17 e18 0 0 0 0 0 0 0
0 * 0 e4 0 0 0 0 0 0 0 0 e5
e1 0 * e2 0 0 0 0 0 0 0 0 0
e3 e4 e2 * 0 0 0 0 0 0 0 0 0

e17 0 0 0 * 0 0 0 0 0 0 0 e15
e18 0 0 0 0 * 0 0 0 0 0 0 e16

0 0 0 0 0 0 * e9 e8 0 elO e13 0
0 0 0 0 0 0 e9 * e7 0 0 0 0
0 0 0 0 0 0 e8 e7 * 0 0 0 e6
0 0 0 0 0 0 0 0 0 * ell e12 e14
0 0 0 0 0 0 e10 0 0 ell * 0 0
0 0 0 0 0 0 e13 0 0 e12 0 * 0
0 e5 0 0 e15 e16 0 0 e6 e14 0 0 *

Table 2.1: Matrix of example graph after decomposition

68

'1'1 ~3
mar

" I
'h/' \1--1 ---------<I 1 ;i

\ .
., r'I

\ i -\. (),
\. ~ 1

c-ut
" OT

'"

I I- - - -
'-.../

Figure 2.5: Part of graph showing a cut edge during group formation

The algorithm

The problem of finding a solution to the network partitioning problem is NP-complete

(see Section 2.7.2) which means that no polynomial-time algorithm exists to find the

exact solution to the problem. We therefore need to use a heuristic algorithm to obtain a

solution to the problem in linear time.

Initialising the algorithm needs two variables to be defined, these are dmin and nmax . In

its original form the algorithm seeks to partition the vertices X of a graph into a border

group Band n other groups G l .•• Gn with the requirement that no group Gi is larger

than the border group B. This gives a well balanced decomposition with similar sizes for

B and all Gi's. For our purposes we require the border to be as small as possible

requiring an enhancement to the algorithm adding the variable 9max. This extra variable

defines the maximum size allowed for the G; 's and helps the algorithm minimise the size

of B whilst fulfilling the requirement of maintaining balance among the G; 'so There are

69

two phases to the algorithm:

i. Initialization

a. Construct an initial border set B from the set of graph vertices X where

B = Xi EX: deg Xi ~ dmin (2.11)

b. Given B form groups Gi with the remaining vertices ensuring the size of

G i ~ n max ' If this condition is violated label the associated edge as cut. See

Figure 2.5 for an example.

c. Remove any cut edges formed in 2 by adding the necessary vertices to B

forming B*.

ii. Border reduction Vertices are chosen one at a time to be moved from B* to a

connected group Gi choosing the vertex Xi connected to

a. the least number of groups, or in the event of a tie

b. the least number of other vertices in B*.

This process is repeated until the size of the largest group Gi > gmax'

2.5 Optimization

Throughout the thesis we use an in-house optimizer based on the global branch and

probability bound method from the work of Professor A. Zhigljavsky [45] and written

under his direction. The global optimization routine used is one of a family of global

random search algorithms. This algorithm is based on alternating between a global step

70

which selects random test points globally and steps which randomly select local points.

The full details are described in [45]. Design optimization is discussed in Chapter 4.

2.6 Review of circuit simulation

The SPICE package is a good all-round simulator which has a large library of non-linear

device models available and can simulate a large class of circuits without convergence

problems. The price of this flexibility is computational efficiency, with the growing size

of circuit designs comes the need to simulate larger circuits which can take an

unacceptably long time to do using SPICE. This has led to the development of faster

and more efficient methods through improvements in

i. sparse matrix techniques

ii. latency exploitation

Hi. numerical integration techniques

iv. mathematical modelling

to reduce the complexity of simulation. A discussion of these developments, detailed in a

review by Hachtel and Sangiovanni-Vincetelli [19], along with the latest developments in

state-of-the-art simulation follows.

The ability to simulate large systems has a direct bearing on the measurement of the

complexity of a design problem and the ability to design robustly. This section reviews

the development of analogue simulation methods and their relationship with the

requirements of Robust Engineering Design (RED). The review forms the majority of

the section, with the last part devoted to looking at the special requirements of RED

71

SoZ1A.tioYL

Ji
I RED I

Figure 2.6: Overview of simulation types

and how these can be exploited to further improve simulator efficiency. Figure 2.6 shows

how the different simulator types are connected and acts as a guide to the review in this

section.

2.6.1 Third generation methods

This section is a review of simulation after the development of SPICE collectively

referred to as 'Third generation methods' by Hachtel and Sangiovanni-Vincetelli [19].

Tearing

A way of reducing the complexity of simulation is by decomposing the problem of solving

the matrix equations. First introduced as Diakoptics by Kron [25] the basic idea is to

partition the system into sub-systems with an outer 'connecting' network linking the

72

two. The system equations can then be formulated for each sub-network and then linked

together by the equations of the connecting network. The act of partitioning creates

smaller sub-system matrices which can be equated more efficiently than the full system

matrix.

It should be noted that Diakoptics involves the inversion of matrices which precludes the

use of sparse matrix techniques; Tearing on the other hand uses a different mathematical

approach allowing their use. By re-ordering the matrix equations so that the matrix is in

a blocked form the system of equations can be partitioned in a different way. A

classification due to [19] puts the different tearing methods into categories according to

how the matrix is blocked for example: Bordered Block Diagonal (BBD), Bordered Block

Triangular (BBT), Bordered Lower Triangular (BLT) etc.

The method of tearing does not separate the system variables or feedback paths

associated with a system, however the overall effect of tearing is to reduce the

computational complexity of the problem. The sparsity inherent in the system matrix is

considered in [20], methods of finding suitable partitions are considered in [22] using

numerical optimization and [35] using a heuristic approach.

Relaxation based methods and latency

Another way of simulating a circuit is to use relaxation techniques which replace

numerical integration as the means of solving the system equations using an iterative

process converging to a solution. Waveform relaxation is concerned with solving systems

of differential equations while time-point relaxation is used to solve non-linear systems

for specific points in time. The use of relaxation is described in [29] their advantages lie

73

in the reduced computation required for solution and their ability to exploit 'latency' in

the system to improve efficiency when simulating. Latency occurs when, for a given time

step, if a part of the design is not active (i.e does not move from its quiescent state) then

its effect on the rest of the design is considered to be minimal and it is therefore not

simulated for that step, this tends to happen more in digital circuits. The convergence of

block (i.e using Tearing) relaxation methods related to circuit topology is discussed

in [13] which describes sufficient conditions of the circuit topology required for the

relaxation algorithm to converge to solution.

Harmonic balance

Harmonic balance (HB) is a mathematical technique used in simulation to find the

steady-state solution to circuits with a periodic signal input (expressed by a Fourier

series expansion), it is therefore used to simulate circuits in the frequency domain. The

HB method converts the differential equations describing the system into a set of

algebraic equations which can be solved using methods including numerical optimization,

relaxation and Newton's method [26].

Compared with SPICE-style time domain analysis the HB method is a very efficient

method for finding the steady-state solution for circuits, especially those which take a

long time to settle (e.g high-Q circuits) because the transient response does not need to

be calculated to obtain the solution.

2.6.2 Symbolic Analysis and simulation

Symbolic Analysis is concerned with finding the transfer function of a given electrical

circuit, primarily in the frequency domain, in terms of variables instead of numerical

74

values. Thus instead of calculating the numerical solution of a large number of

differential equations at every timestep the method formulates the equations (usually

with the Laplacian operator S in the frequency domain) with symbols to produce a

'transfer function'. This 'transfer function' relates the output to the input and so gives

the designer information on how individual components affect the system. The

production of the symbolic transfer function takes more time than a numerical analysis

but needs to be performed only once, simulation is then a matter of solving this one

equation the required number of times. Compared with the numerical technique of

solving the whole system of equations over and over the symbolic method is much faster.

Lin [27] presents a survey of the techniques, which involve a topological analysis of the

circuit, used in formulating symbolic functions. These can be summarized as:

i. tree enumeration

ii. signal flow graph

iii. state-variable analysis

IV. iterative method

v. nodal and eigenvalue method

Lin also gives example applications. A computer implementation of Symbolic Analysis

for both analogue and digital circuits is presented by Singhal & Vlach [36]. The

equations are formed with the Laplacian operator s, they therefore relate directly to the

frequency response (where s = jw, w = natural frequency, j = A). For time domain

calculations these equations need to be inverted.

75

A major problem with the symbolic approach is that the size of the transfer function

increases rapidly with the number of components in the circuit. The transfer function

therefore takes a lot of computer time to produce and quickly becomes very large with a

lot of terms. A full Symbolic Analysis circuit simulator is given by Gielgen, Walscharts

and Sansen [17] which utilizes two techniques above those presented in [36] to improve

efficiency. Firstly information about the characteristics of the circuit devices is exploited

to produce simpler formulae: knowledge such as which are the largest/most important

factors is given to the simulator, this allows the reduction of terms at the expense of

model accuracy. Secondly the form of the calculated terms allows the calculation of

second order effects in the circuit: this can aid the designer or an optimization routine in

the formulation of a more robust design. Comparing the efficiency of the method to

SPICE shows similar accuracy of results for an improvement in CPU time. The inclusion

of an optimizer in a symbolic analysis package is discussed in [18], the symbolic functions

are passed to an optimization routine (simulated annealing) and the best values for them

are obtained given some quality criteria (see Section 1.1.1 for a definition of quality).

The use of symbolic functions lends itself to optimization that is much faster than

computing a full numerical analysis at every step and also has the advantage of being

related to the topology of the design allowing more insight into the relationship between

design and performance than numerical analysis.

2.6.3 Hardware description languages

Mainly used in digital simulation the VHDL language describes the functionality of a

digital circuit in a format similar to high-level computer code. This avoids explicit

76

mathematical definition of the functionality of the circuit and is therefore more user

friendly. The simulation is then a case of running the compiled code on computer.

HDL's are currently being extended to analogue simulation in a similar way which paves

the way for mixed-mode simulation (analogue and digital) in tandem with the integration

of traditional style analogue and digital simulators which are currently being used.

2.7 Review of decomposition methods

This section outlines the general methods used for the decomposition and analysis of

complex systems. Decomposition methods of partitioning are used to divide a system

ready for analysis, these strategies include heuristics, clustering and optimization.

Methods for the analysis of decomposed systems include diakoptics, direct decomposition

and hierarchical decomposition. The decomposition techniques described are compared

and evaluated with respect to the analysis techniques available. Decomposition and

analysis are also related to the problem of the robust design of complex systems and

criteria are given for the use of decomposition within a robust engineering design

framework.

2.7.1 Introduction

When faced with a problem too large to be dealt with quickly or too complicated to have

an obvious solution a natural approach is to break it up into several smaller tasks.

Decomposition is concerned with the formulation of these tasks and, once defined,

analysis of the resulting hierarchy in an attempt to reduce problem complexity. This has

a particular use in RED where the combinatorial explosion encountered when dealing

77

with multiple inputs and outputs increases the complexity of the design and analysis of

RED experiments.

\Vhen a large problem is solved through decomposition into sub-problems, there are

several issues involved in finding a good solution:

i. quantifying the degree of difficulty of the problem

ii. method of decomposing the problem

iii. solving the sub-problems

iv. recombining the sub-problems

v. dealing with interactions between sub-problems

vi. testing whether solution of sub-problems guarantees solution of the overall problem.

These issues are inter-dependent to some extent, for example the method of

decomposition usually defines how the sub-problems are solved and recombined.

The goal of system decomposition techniques is to enable the analysis of systems too

complex to be tackled as a whole given the available tools and time. It is therefore useful

to define complexity in terms of the resources, e.g computer speed or memory capacity,

available to tackle the problem (see Section 1.1.3). For large systems "the curse of

dimensionality", where complexity rises exponentially with problem size, means that any

practical analysis involves the use of heuristics and/or decomposition methods to reduce

complexity by taking care of the combinatorial explosion associated with handling a

large number of variables and all possible interactions between them.

As noted in Section 1.1.4 there is a distinction between decomposition in a physical sense

or partitioning, that is breaking up of a graph or network representing a system, and

78

decomposition at the mathematical level, tearing, where features such as matrix sparsity

are used to decompose system equations into blocks for analysis. The key difference is in

the formulation of system equations. Partitioning a network implies that no system

equations have yet been formed and that separate sets of equations will result from the

process (this is potentially useful for complex systems where formulating system

equations could prove costly). On the other hand tearing requires the system equations

to be stated for the full system before any partitioning, such as formulation of a sparse

matrix in block form, can take place.

2.7.2 Partitioning

Methods exist for the partitioning of graphs used to represent systems. These methods

can be adapted to produce partitions in a useful form in an attempt to reduce

complexity. In this section several methods of partitioning are discussed including

1. The use of heuristics to minimize the number of connections between partitions.

This finds locally optimal partitions in a practical time frame and divides the

network into parts according to a given criterion such as finding a partition to

minimise the number of connections between sub-graphs, usually improving on an

initial, possibly random, partition.

ii. Clustering, concerned with grouping like objects to form partitions from scratch.

iii. Numerical optimization methods which can be employed directly in decomposition

by defining the problem in terms of an objective function whose argument is the

graph decomposition and whose value is some measure of the goodness of the

partition. The optimizer then searches for a decomposition which optimizes that

79

function, either by improving on an initial partition, or starting from scratch.

It should be stressed again that, in terms of the analysis of large systems, these methods

are applied directly to the physical system via a graph rather than the system equations.

Heuristic algorithms

Network Partitioning seeks to split a network, or graph, representing a system into

distinct parts according to some specified metric. A major use of this technique is in

VLSI chip layout where components need to be grouped so as to minimize the number of

interconnections between them[24]. This metric, called 'min-cut' because we want to

minimize the 'cut-set' of the graph partition, forms the basis for much work in this

area[24, 43, 15, 10].

Mathematically the problem of finding the (globally) optimal min-cut for a network

belongs to a class of problems which are NP-Complete [35, 16]. This means that no

polynomial time solution exists and the time taken to find the global optimum will rise

exponentially with circuit size. To deal with this problem an heuristic algorithm is

usually employed to find at least a locally optimum solution to the min-cut problem. A

notable contribution in this area came from Fiduccia and Mattheyses[15] who developed

an algorithm for network partitions whose computation time grows, in the worst case,

linearly with network size.

The partitioning of networks using heuristics generally concentrates on improving a

given partition (refinement algorithms) rather than creating a partition from a network

description. Heuristics are used to choose a cell to move from one block to another or

exchange cells between blocks to improve the partition. In [15] the concept of cell gain is

80

used to select the 'base' cell (cell to move), this algorithm is described in Section 2.4.1.

The defining heuristic of the algorithm is how the base cell is chosen. For large networks

there may be more than one cell with the same gain competing for the position of base

cell. Kernighan and Lin [24] expand the cell gain concept to improve base cell choice by

looking one step ahead in the algorithm. This is referred to as 'second order gain'.

Another improvement suggested by Kernighan & Lin takes the best solution from the

algorithm, rearranges it and feeds it back in for another pass. Instead of starting the

search from a random or arbitrary partition, the algorithm uses information gained from

the most recent pass to select a new starting point. This provides a wider search of the

solution space and increases the chances of finding a 'good' local optimum close to the

global optimum.

Tao and Zhao [39] describe a partitioning algorithm based on a combination of local

heuristic searches and more global random search methods called 'Stochastic Probe'.

They categorise heuristic algorithms in the following way:

i. Kernighan-Lin heuristics: improving on an initial partition through repeated

sequences of moves, a local, aggressive search method.

ii. Simulated annealing: see Section 2.7.2. A stochastic optimization approach which

can theoretically find the global optimum but practically is too slow for most

problems.

iii. Tabu search: aggressive local search algorithms which keep a history of the solution

space already searched to avoid that sub-space in future moves.

iv. Genetic-based algorithms: Genetic search finds starting points for aggressive local

81

searching and this local search biases the choice of subsequent starting points using

genetic search.

Clustering And Classification

The technique of dividing a set of data into groups is widely practised and is the subject

of an entire discipline within statistics. The methods outlined above for partitioning

graphs come entirely from engineering disciplines and in the light of the popularisation

of other statistical methods in engineering by Taguchi and others(see Section 1.3.2) an

attempt should be made to integrate the subject of clustering with methods developed in

engineering. Cormack [12] provides an extensive review of the use (and misuse) of

classification techniques within the scientific community.

For the case of system decomposition the requirements of a clustering package are more

precise than for the case of classification in general. Here the goal is to improve the

efficacy of analysis of a system through decomposition. We are thus looking for

subsystems which are easy to analyse in isolation and easy to recombine to produce a

model of the full system. In the limit the most desirable scenario is to be able to

decompose a system into subsystems which can be analysed independently of all other

subsystems with the individual results providing the analysis of the whole. However this

is seldom, if ever, likely to be the case since we are, by definition, dealing with a set of

connected items. As the lack of interactions between subsystems makes analysis much

simpler, any clustering routine should attempt to minimize these. An advantage in using

clustering techniques is that the problems of NP-completeness are avoided if we consider

a clustering technique which builds clusters systematically. This makes clustering

82

attractive for problems such as VLSI layout [1].

A Metric For Clustering

In order to cluster a system into a set of subsystems a metric needs to be found. The

metric is a measure of how similar individual components are and tells the cluster routine

which components belong to which groups and how many groups there are. Without

precise information on how each component interacts with every other it is difficult to

cluster a system to minimize interactions. If a system is represented graphically as a set

of connected components a basic relationship between components can be stated, in

terms of how connected each component is to every other, using a suitable metric.

Establishment of a more accurate relationship would require more information on the

nature of the system components and is potentially costly to compute. Using the idea of

connectivity a distance matrix associated with a system graph can be generated. This

can the be used in a clustering algorithm to partition a system. Representing a system

as a graph 9(Xj E) with a set of nodes X = Xl, ... , xm and edges E = el, ... , ep we can

construct an m X m distance matrix D with elements d(i,j) where i,j = 1, ... , m

represent the graph nodes. There are 2p entries because the matrix is symmetric about

the main diagonal (as in Section 2.4.2). The matrix elements are assigned as follows:

o for i = j

d(i,j) = 1 for i,j connected (2.12)

9 for i,j not connected

Unconnected nodes are assigned a relatively high number (9 in this case) representing

83

their disconnection with a large distance. The initial distance matrix D can then be

extended to represent higher level connections showing the shortest distance of every

node from every other in the graph by recursively using the following algorithm for every

higher level required:

i. Select row i for i = 1 to n

ii. Select element d(i, j) for j = 1 to n

Hi. For all d(i,j) = Igo to row j ,find all elements d(j,k) = 1 for k = 1 to n (k:f:. i).

iv. For all d(j, k) = 1 found in iii. if dei, k) > d(j, k) + 1 then dei, k) = dU, k) + 1.

v. Repeat for all rows in matrix.

Thus one can cluster a system by grouping together highly connected components using

readily available graphical information and use this concept of connectivity as a method

for minimising interactions between groups, the connectivity of the system components

being used as an estimate of the interaction between them. As a first approximation this

estimate is valid since if there are two components of a system that are not connected

then there is no interaction between them. However for a system such as an electronic

circuit all components are connected to all others and interact with each other to varying

degrees. The metric in this case would still minimize interactions if the distance between

components is related to the strength of interaction. Bandler and Zhang [3] attempt to

measure the interaction between system variables for problem decomposition from a

system defined with parameters <I> = <Pi, ... , <Pn and outputs Y = Yl, ... , Ym with a

corresponding target response T = tt, ... , t m • From an initial Monte Carlo

(Section 1.2.6) sensitivity analysis, construct a sensitivity matrix S where Sij is the

84

sensitivity of variable 4>i to the function /j where /j = Yj - tj and use this to group

system parameters for optimization. Further work on clustering could utilise this scheme

for automatic system decomposition without referring to system topology.

Algorithms

Once a distance matrix has been generated for a given system graph an algorithm is

used to cluster it. Hartigan [21] describes four joining algorithms which seek to pair up

'close' points making a single new point from them until only one point exists. This can

be represented in the form of a tree showing the path from the full set of points to a

single point. The four algorithms are:

i. Single Linkage: d(ij,k) = min d(i,k),d(j,k)

ii. Complete Linkage: d(ij,k) = maxd(i,k),d(j,k)

iii. Average Linkage (unweighted): d(ij, k) = ![d(i, k) + d(j, k)]

iv. Weighted Average Linkage: d(ij, k) = nid(i,k)tnjd(j,k)
n, n)

where d(ij, k) is the distance between the newly joined i, j and k , ni is the number of

original objects in cluster i.

Optimization Methods

The decomposition of a system is an optimization problem where the quality of the

partition is encapsulated in an objective function. In the case of min-cut partitioning the

objective function calculates the size of the cut-set of the network given a partition. As

previously stated the partitioning problem is NP-complete, however optimization

85

methods, in particular simulated annealing, can still be used to find solutions [22].

Simulated Annealing

Simulated Annealing (SA) [23] provides a method optimization which attempts to escape

from locally optimal solutions by allowing moves which are 'bad' in an attempt to find

the global optimum in solution space. As the algorithm progresses this feature is

gradually reduced (cooling) so that an optimal solution is found.

SA can be used in conjunction with a heuristic style approach (section 5.3) where cells

are moved in an attempt to improve the partition. The result is an algorithm which can

move cells which (hopefully) only temporarily worsen the quality of partition in the

search for an ultimately better solution [22].

The efficacy of this method depends on the rate of 'cooling' of the algorithm but in

general it is time consuming and cannot find the global solution in a practical time

frame [9].

2.7.3 Tearing and Diakoptics

The idea of dividing, or tearing, a network into smaller parts to ease numerical

calculation was explored by Kron [25] in a series of articles published in the 'Electrical

Journal' collectively known as Diakoptics (literally meaning 'system tearing'). Other

work related to the exploitation of sparse matrices [20, 32] also promotes the idea of

decomposing systems (particularly electronic circuits) through an exactly analogous

decomposition of the incidence matrix representing the graph of the system or network.

Decomposition through tearing follows the method of Diakoptics in defining sub-systems

86

with an interconnecting network of components. By formulating the incidence matrix of

a circuit and translating it to BBD form one is dividing the circuit network in the same

way as for Diakoptic analysis. The purpose of Diakoptics is to formulate the equations of

the system under investigation in an efficient, piecewise manner.

Considering the system as being formulated in terms of an electrical network, the system

equations take the form:

I=Y.E (2.13)

where I is the current vector, Y the nodal admittance matrix and E the voltage vector

(see Chapter 2 for formulation of Kirchoff equations in matrix form). The problem is

then, given Y and I, to find E. This involves inversion of Y and can be costly in

computer time for large matrices. The effect of decomposing the network is to produce

several smaller admittance matrices, rather than one big one, making the inversion

process easier. An outline of the method follows:

i. Tear the system into n sub-networks.

ii. Formulate the system equations for each sub-network obtaining Y1 ••• Yn •

iii. Solve the equations obtaining the inverses of Y1 ••• Yn, call them Zl ... Zn.

iv. Establish and solve the (n + 1)th network, the connecting network, obtaining the

connecting matrix C and the inverse matrix Zn+l.

v. \Vith these inverses Zl ... Zn+l computed and the connection matrix C the system

is considered solved.

The DDD form of the incidence matrix generated by the algorithm in Section 2.4.2

87

represents this decomposition technique exactly. The blocks of the incidence matrix,

when viewed on the system graph represent the groups of (L) and the connection matrix

in (iiL) is given by the border of the incidence matrix. The strategy is to use the BBD

decomposition to form sub-systems and to represent interactions between them through

the connecting network.

Diakoptics begins by partitioning a network representing the system of interest.

Research into this area focuses on how to tear the network to maximize efficiency and

has led to the use of heuristics [35] and optimization methods [22] in the partitioning

(tearing) procedure. Emphasis has been placed on the numerical techniques used to

solve the equations and has led to the application of sparse matrix techniques [20] to

improve efficiency of analysis.

Diakoptics has also been employed in circuit optimization to improve the efficiency of

obtaining first and second order sensitivity information for non-linear networks [40].

2.7.4 Optimization of decomposed systems

Direct Decomposition Methods (DDM) and Hierarchical Decomposition Methods (HDM)

manipulate the system equations into blocks of equations related algebraically or by an

overall control block. An example of this is Diakoptics[25] discussed in Section 2.7.3.

Direct decomposition methods

Direct decomposition is where a graph 9(X j E) with a set of nodes X = Xl, ••• , Xm and

edges E = e}, . .. , ep representing a system is taken and split into subgraphs. This can

occur in three ways [37]:

88

i. Node Decomposition - where a graph is split through the nodes forming n separate

subsets of edges Et, . .. , En representing subgraphs. Nodes shared between

subgraphs are called block nodes represented by the set Xb.

ii. Edge Decomposition - where a graph is split through the edges forming n separate

subsets of nodes Xl,"" Xn representing subgraphs. Edges shared between

subgraphs are called cutting edges represented by the set Ec.

iii. Hybrid Decomposition - a mixture of the two categories above.

After division into blocks another graph, the decomposition substitute graph, containing

the sets Xb and Ec is formed to preserve information on how the partitions are

connected to reconstruct the full system. As system size increases there is a conflict

between subgraph size and substitute graph complexity. In the limit direct

decomposition methods do not work well enough to efficiently partition systems as their

size increases [37]. To deal with these more complex systems Hierarchical Decomposition

Methods are used.

Hierarchical decomposition methods

Hierarchical Decomposition is the multiple decomposition of a decomposed network. It is

used where direct decomposition methods are unable to tackle problems efficiently and

so tends to be used for large or complex systems.

Hierarchical Decomposition involves applying simple decomposition recursively to

subgraphs to keep the decomposition substitute graphs simple while allowing the system

subgraphs to be reduced to a manageable size. Once a hierarchical structure of

subgraphs and decomposition substitute graphs is obtained it is analysed to produce a

89

description of the system. Analysis can be achieved by either working from the lowest

subsystem up the tree hierarchy to the top, 'bottom up', or from the top of the structure

downwards, 'top down'. Starzyk [37] compares these two approaches and provides an

algorithm for the 'bottom up' method. Note that, for analysis of the whole system, the

subsystems are recombined for solution.

To coordinate the solution of the subproblems there are two basic approaches:

i. Goal Co-ordination - where the objectives of each subproblem are controlled.

ii. Model Co-ordination - where the interactions between subsystems are identified

and assigned co-ordination variables handled by the controller of the interacting

subsystems.

Overall system stability is considered in [9] for a hierarchically decomposed system. For

a system sub-divided into 'strongly connected subsystems' by a partitioning algorithm it

is shown that the overall system is stable when the individual subsystems and the

interconnection subsystems are stable.

2.8 Conclusions

The development of simulation techniques has been covered and the use of circuit

simulators for RED discussed. The area is characterized by the application of

mathematical techniques both for the development of new simulation methodologies and

the enhancement of existing ones with the common goal of simulating circuits more

efficiently allowing the size of solvable problems to increase. The specific requirements of

RED allow further savings in the cost of simulation when used to conduct experiments

90

and this points the way to the development of simulation software in tandem with design

systems to achieve an optimal1y efficient package for the design of robust systems.

Several approaches to the problem of reducing large, complex systems into subsystems

for analysis have been outlined. The separate areas of decomposition and analysis and

their inter-relationship have been identified. The quality of any decomposition depends

on the type of analysis to be employed afterwards and the ability of the algorithm to find

a good local optimum close to the globally optimal solution. Heuristic algorithms,

clustering and general optimization methods can all be used to partition systems with

different methods suited to different applications all, however, produce locally optimal

solutions. The production of a global optimum requires an impractical amount of time

but is nevertheless possible with optimization methods such as simulated annealing.

Heuristic solutions are more practical with respect to time.

Once partitioned a system can be analysed according to the methods outlined, the

sub-systems being solved simultaneously to converge to a solution taking interactions

between partitions into account. The use of decomposition within Robust Engineering

Design requires the sub-systems to be analysed independently for any gain in efficiency.

The solution of sub-systems independently fails to deal with interactions, the assumption

being that the main effects of parameters in the sub-systems are more influential on

system response than interactions between parameters of different partitions. Thus the

quality of partitioning of a system plays a direct role in the accuracy of analysis in this

case.

91

References

[1] S BAkers. Clustering techniques for VLSI. IEEE Trans. Computers, 33(5):472-476,
1982.

[2] J W Bandler, R M Biernacki, Qian Cai, S H Chen, Shen Ye, and Qi-Jun Zhang.
Integrated physics-oriented statistical modelling, simulation and optimization. IEEE
Trans. Microwave Theory and Techniques, 40(7):1374-1399,1992.

[3] John W Bandler and Qi-Jun Zhang. An automatic decomposition approach to
optimization of large microwave systems. IEEE Trans. Microwave Theory & Tech.,
35:1231-1239, Dec 1987.

[4] R A Bates, R J Buck, E Riccomagno, and H P Wynn. Experimental design and
observation for large systems. Journal of the Royal Statistical Society B, to appear.

[5] Maria C. Bernardo, Robert Buck, Lishin Liu, William A Nazaret, Jerome Sacks,
and William J Welch. Integrated circuit design optimization using a sequential
strategy. IEEE Trans. Computer Aided Design., CAD-ll:361-372, 1992.

[6] R K Bray ton and R Spence. Sensitivity and optimization, chapter 6, page 134.
Elsevier, Amsterdam, 1980.

[7] R J Buck. Robust Engineering Design Users Guide. Technical report, City
University Engineering Design And Quality Centre, Northampton Square, London,
1993.

[8] R J Buck. The design and analysis of computer experiments. PhD thesis, City
University, London, UK, 1994.

[9] Frank M Callier, Wan S Chan, and Charles S Desoer. Input-output stability theory
of interconnected syatems using decomposition techniques. IEEE Trans. Circuits &
Systems, CAS-23(12):714-729, Dec 1976.

[10] Chung-Kuan Cheng. The optimal partitioning of networks. NETWORKS,
22:297-315, 1992.

[11] Leon O. Chua and Pen-Min Lin. Computer Aided Analysis of Electronic Circuits:
algorithms and computational techniques. Prentice Hall Inc., Englewood Cliffs, New
Jersey, 1975.

[12] R M Cormack. A review of classification. Journal Royal Stat. Soc. B, pages
321-353, Mar 1971.

92

[13] Madhav P Desai and Ibrahim N Hajj. On the convergence of block relaxation
methods for circuit simulation. IEEE Trans. Circuits & Systs., 36:948-958, July
1989.

[14] H Eltahawy, S Garciasabiro, D Rodriguez, and J J Mayol. Towards an analog
hardware description language - based on VHDL. In Proceedings of the 1994
Western Multiconference, pages 48-53. International Conference on Simulation and
Hardware Description Languages (ICSHDL), 1994.

[15] C M Fiduccia and R M Mattheyses. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference, pages 175-181, 1982.

[16] M R Garey and D S Johnson. Computers and Interactability : a guide to the theory
of NP-completeness. W H Freeman and Co., 1979.

[17] Georges E Gielen and Herman C C Walscharts. Isacc : A symbolic simulator for
analog integrated circuits. IEEE Journal of Solid State Circuits, 24:1587-1597, Dec
1989.

[18] Georges E Gielen, Herman C C Walscharts, and Willy C Sansen. Analog circuit
design optimization based on symbolic simulation and simulated annealing. IEEE
Journal of Solid State Circuits, 25:707-713, June 1990.

[19] Gary D Hachtel and Alberto L Sangiovanni-Vincentelli. A survey of third-generation
simulation techniques. Proceedings of the IEEE, 69:1264-1280, Oct 1981.

[20] Ibrahim N Hajj. Sparsity considerations in network solution by tearing. IEEE
Trans. Circuits & Systs., CAS-27:357-366, May 1980.

[21] J A Hartigan. Distribution problems in clustering. In J Van Ryzin, editor,
Classification and Clustering, pages 45-71. Academic Press, Inc., London, 1977.

[22] M R Irving and M J H Stirling. Optimal network tearing using simulated annealing.
lEE Proceedings Pt-C, 137:69-72, Jan 1990.

[23] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by simulated annealing.
Science, 220:671-679, May 1983.

[24] Balakrishnan Krishnamurthy. An improved min-cut algorithm for partitioning VLSI
networks. IEEE Trans. Computers, C-33:438-446, May 1984.

[25] G Kron. Diakoptics: The Piece wise Solution of Large Scale Systems. MacDonald,
London, 1963.

[26] Kenneth S Kundert and Alberto Sangiovanni-Vincentelli. Simulation of nonlinear
circuits in the frequency domain. IEEE Trans. Computer Aided Design,
CAD-5:521-535,Oct 1986.

[27] P M Lin. A survey of applications of symbolic network functions. IEEE Trans.
Circuit Theory, CT-20:732-737, Nov 1973.

93

[28] L W Nagel. SPICE 2. A computer program to simulate semiconductor circuits. ERL
Memo ERL-M520. Univ. California, Berkley, 1975.

[29] Arthur Richard Newton and Alberto L Sangiovanni-Vincentelli. Relaxation based
electrical simulation. IEEE Trans. Electron Devices, ED-30:1184-1207, Sep 1983.

[30] K G Nichols, T J Kazmierski, M Zwolinski, and A D Brown. Overview of
SPICE-like circuit simulation algorithms. lEE Proc.-Circuits Devices Syst.,
141(4):242-250,1994.

[31] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
CBMS-NFS, SIAM, Philadelphia, 1992.

[32] E C Ogbuobiri, W F Tinney, and J W Walker. Sparsity-directed decomposition for
gaussian elimination on matrices. IEEE Trans. Power Apparatus & Systems.,
PAS-89:141-150, Jan 1970.

[33] Donald 0 Pederson. A historical review of circuit simulation. IEEE Trans. Circuits
& Sysis., CAS-31:103-111, Jan 1984.

[34] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and
analysis of computer experiments. Statistical Science, 4:409-435, Nov 1989.

[35] Alberto Sangiovanni-Vincentelli, Li-Kua Chen, and Leon 0 Chua. An efficient
heuristic cluster algorithm for tearing large-scale networks. IEEE Trans. Circuits (3

Systs., CAS-24:709-717, Dec 1977.

[36] Kishore Singhal and Jiri Vlach. Symbolic analysis of analog and digital circuits.
IEEE Trans. Circuits & Systs., CAS-24:598-609, Nov 1977.

[37] Janusz A Starzyk and A Konczykowska. Flowgraph analysis of large electronic
networks. IEEE Trans. Circuits & Systs., CAS-33:302-315, Mar 1986.

[38] Fang K T and Wang Y. Number-theoretic Methods in Statistics. Chapman & Hall,
London, 1994.

[39] L Tao and Y C Zhao. Effective heuristic algorithms for VLSI circuit partition. lEE
Proceedings-G, 140(2):127-134, April 1993.

[40] Paul K U Wang, Chin Fu Chen, and Yuang-Sheng Kao. Sensitivity calculation and
network optimization through decomposition. Proc. IEEE Int. Symp. Circuits fj
Systems, 3:1034-7, 1983.

[41] W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris.
Screening, predicting, and computer experiments. Technometrics, 34(1):15-25, 1992.

[42] H. P. Wynn and A. A. Zhigljavsky. Fundamentals of Search. Springer-Verlag, New
York, to appear.

[43] Jih-Shyr Yih and Pinaki Mazumder. A neural network design for circuit
partitioning. IEEE Trans. Computer Aided Design., CAD-9:1265-1271, Dec 1990.

94

[44] A I Zecevic and D D Siljak. Balanced decompositions of sparse systems for
multilevel parallel processing. IEEE Trans. Circuits (3 Systems-I: Fundamental
Theory {3 Applications., 41(3):220-233, March 1994.

[45] Anatoly A. Zhigljavsky. Theory of Global Random Search, chapter 4. Kluwer
Academic Publishers, 1991.

95

Chapter 3

Robust circuit design I:

A commercial environment

3.1 Introduction

The use of computers is widespread in engineering design with a multitude of CAE/CAD

tools available. There are several commercially available software packages providing

tools for the design and analysis of both analogue and digital electronics products.

Typically analogue packages include features such as schematic capture, simulation and

auto-routing for the input, testing and layout of a design. A designer will use the circuit

simulator to check that the design performs as intended and there are also tools, such as

Monte Carlo analysis, which give information about the sensitivity of the design to

manufacturing tolerances. In this chapter a system for using Robust Engineering Design

with an analogue circuit simulator is described which provides the circuit designer with a

powerful Robust Circuit Design (RCD) tool for circuit optimization. This is

96

demonstrated with an example.

The RCD package described in this chapter is the result of a collaborative project

between Mentor Graphics UK Ltd. and the Engineering Design and Quality Centre at

City University which acted as an initial project into the application of RED to the

commercial environment. The well-proven modules for experimental design and

model-building are intended as as introduction to RED, the more sophisticated

techniques being applied throughout the rest of the thesis. The main contribution of this

Chapter thus lies in providing a unified framework for the execution and analysis of RED

experiments.

3.2 Overview

3.2.1 The simulator

The Mentor Graphics software is comprised of several tools for the design, analysis and

manufacture of circuits under a common framework. The module of interest here is the

analogue circuit simulator AccuSim, based on the well known SPICE circuit analysis

package developed by N agel [8]. In order to facilitate communication between different

modules and the development of functions to control the software and perform general

tasks the framework provides a formal language called Ample in which all high-level

functions are written. The user is also free to develop specialist functions within the

framework in Ample to control the software.

The facilities of AccuSim, the analogue circuit simulator, include all the main analysis

options of SPICE (DCOP, DC, AC and transient analyses) integrating this with

schematic capture of circuit diagrams, a library of equivalent circuit models for

97

non-linear components and other features such as Monte Carlo analysis in an integrated

windows environment.

3.2.2 Robust design modules

With the facilities of Ample in mind a suite of functions were developed in C to design

experiments for RED and analyse results from them. Because of the high-level nature of

Ample a more efficient computational solution for the RED calculations is to use C. This

also has the advantage of a wider range of mathematical functions and debugging

facilities for development. These functions are integrated into the Ample language and

provide the technical content of the RED software. The three modules are:

i. 3k fractional factorial experimental design plan generator.

11. Latin Hypercube Sampling experimental design plan generator.

iii. Analysis package to provide factor plots and regression models.

These modules will be fully described in section 3.3.

3.2.3 Interface

The AMPLE language is similar to the computer language C++ in structure and

provides access to the commercial simulation software. As well as providing specialist

commands to control this software, AMPLE contains all the basic commands associated

with a language such as C. An important additional feature is the ability to 'build-in' C

functions into the Ample code, this allows the RED software to be developed in C and

then linked to the interface. Paramount in the conception of the package was the idea of

creating a modular framework so that different RED functions could be used with the

98

... :
!
! ~

DESIGN -, COMPUTER SIMULATOR ,

MACRO DISPLAY

LANGUAGE RESULTS

''''''i''' ., , .. , .. -....... ..

, .. _........~~:.~;.'_ .. I·····'········/c~:~:s
I

RE-EXPERIMENT

Figure 3.1: Schematic of ReD module

commercial software once the interface was complete. This allows the latest

developments in RED to be used in an efficient way by simply changing the e modules

developed. The interface therefore performs the task of controlling both the simulator

and RED software and translating all the data required between them. Figure 3.1 shows

a schematic of the project structure.

3.2.4 Output

The results of the RED experiment will be in two forms. First a set of plots will be

displayed describing the effect of component variation on the chosen output. Second a

99

regression model will be fitted to the data for optimization.

3.2.5 Optimization

A numerical optimizer is not included in the RCD package but, given a suitable

optimizer, it is possible to use the models built during the analysis phase to optimize the

design. Chapter 4 describes a novel method of tolerance design (tolerance design is

reviewed in Section 1.2.5) developed as a follow-on package to the RCD module.

3.2.6 RED process

The overall robust design process described in Section 1.3 is adopted as:

i. Given a circuit with parameters at an initial nominal setting and tolerance, use the

simulator to obtain the required output Y = f(X) for inputs X = Xl, • •• , Xn set

according to an experimental design plan.

ii. Fit a regression model Y = j(X), this is the emulator of the simulator (as defined

in Section 1.2.3).

iii. Use the emulator to find inputs X t which bring Y to within some target value ¥t.

A numerical optimizer is used in the last step to search X -space for a solution (see

Chapter 4).

iv. Confirm the solution with the simulator. If greater accuracy is required reduce the

input space (tolerances) and repeat the above steps at the optimized nominal

settings.

100

3.3 The ReD modules

This section describes the technical content of the package and concludes with a brief

users guide. Using the software can be summarised in the following steps

i. select circuit parameters for inclusion in the experiment

ii. create a design plan

lll. execute the experiment and collect relevant results

IV. build an emulator of the circuit simulator

v. display factor plots

3.3.1 Circuit parameters

The simulator contains two libraries of components. The generic library contains linear

components (resistors, capacitors etc.) and equivalent-circuit models of non-linear

devices built from combinations of components (transistor models etc.). The second

library contains proprietary models of non-linear devices representing commercially

available components.

Changing the value of linear components in the generic library is directly related to the

component values for a real circuit design. This is not the case for devices from the

model library where parameters of device models do not represent physical

characteristics of the devices they represent. Because the models are often not available

for inspection, it is difficult to attach any meaning to changing model parameter values

as part of a Robust Design experiment. Varying model parameters does not necessarily

mimic the manufacturing variation of device parameters. To counter this the simulator

101

library provides variations on particular device models but this can only deal with

particular device characteristics and this may only be useful in certain situations.

The RCD package allows the variation of device parameters as part of an RED

experiment, providing some insight into how sensitive the overall design is to changes in

the device model, however it should be stressed that they do not represent manufacturing

parameters or tolerances. Relating device models to manufacturing data and process

models is a problem for the whole electronics design community and a suggested area for

further research.

3.3.2 Experimental design

The RCD package provides a choice of two types of design plan. Written in 'C' they take

information from the simulator and return an appropriate design plan for the experiment.

3k designs

The 3k designs used are three-level Plackett-Burman designs which are specially designed

orthogonal arrays. For a parameter, or factor, p taking values x ± t% the three levels

represent x - t%, x, x + t%. A design plan where each factor is tested at each of these

three levels can produce a prohibitively large design plan even for small problems. One

way to reduce design plan size is to use orthogonal arrays where some combinations of

factor levels will be missed out leading to a reduced design. 3k designs are useful for

estimating the average effect of each factor on the output, called the main effects, when

one does not expect interactions between factors. An example 3k Plackett Burman

design for four factors Xl to X4 at levels -1,0, + 1 is displayed in Table 3.1. The code for

choosing the designs is written in 'C' while the designs themselves are stored in an

102

Run Xl X2 X3 X4

1 -1 -1 -1 -1
2 -1 0 0 0
3 -1 1 1 1
4 0 -1 0 1
5 0 0 1 -1
6 0 1 -1 0
7 1 -1 1 0
8 1 0 -1 1
9 1 1 0 -1

Table 3.1: 3k design

ASCII file. The interface language Ample provides access to the simulator.

Latin Hypercube Sampling (LHS) designs

A description of LHS designs is given in Section 2.3.1, here we describe the

implementation of an LHS generator within the RCD framework. The LHS design is

created from a combination of randomised vectors of factor values. The size of the design

can be changed in the program but is initialised at the suggested value of 2d + 10 for d

factors. This allows estimation of main effects and a small number of interactions

between factors.

The factor values are expressed as a nominal value with a relative tolerance attached (see

Section 4.3 for a discussion of tolerances). For a factor p taking values X ± t% the vector

is created by first forming a vector of length 2d + 10, filling it with evenly spaced

numbers in the range x - t% to x + t% and randomising it.

An example LHS design for four factors Xl to X4 in the space [-1,1]4 is shown in

Table 3.2

The code for creating the LHS designs is written in 'C' and accessed by the interface

103

Run Xl X2 X3 X4

1 -0.278 0.056 -0.278 -0.056
2 0.500 -0.389 0.611 0.167
3 -0.167 -0.167 0.389 0.944
4 0.611 -0.944 -0.167 -0.389
5 0.278 -0.500 -0.833 0.500
6 -0.500 -0.722 -0.056 0.722
7 -0.389 0.167 -0.500 -0.833
8 -0.833 -0.056 -0.611 0.389
9 -0.944 0.833 0.278 0.611
10 -0.722 -0.833 -0.944 0.056
11 0.389 0.389 0.056 0.833
12 0.722 0.500 0.944 -0.278
13 -0.611 0.722 0.500 -0.611
14 0.167 0.944 0.722 -0.722
15 0.833 -0.278 -0.389 -0.500
16 -0.056 -0.611 -0.722 -0.944
17 0.056 0.278 0.833 0.278
18 0.944 0.611 0.167 -0.167

Table 3.2: LHS design

language Ample.

3.3.3 Circuit outputs

The simulator software provides functions for measuring several standard circuit

responses. These differ depending on the type of simulator analysis chosen, the available

responses include

AC analysis Bandpass highpass, lowpass, peak frequency, peak magnitude, stopband,

trough frequency, trough magnitude, maximum, minimum, signal to noise ratio,

point voltage.

Transient analysis Baseline, crosspoint, delay time, distal, duty, fall time, frequency,

mesial, overshoot, period, proximal, rise time, settle time, slewrate, topline,

undershoot, maximum, minimum.

104

Several responses can be chosen for a single experiment. The values of each response are

calculated and stored for every trial.

3.3.4 The emulator

A model is built for each response chosen in the experiment. The model is an emulator

of the simulator for that particular response over the ranges of input values chosen. It is

much less expensive to evaluate than the simulator and can be used effectively in the

objective function of an optimization routine (see section 3.3.5). The emulator is used to

create factor plots describing the effect of component variation on circuit response, see

Figure 3.4 for an example.

3.3.5 Optimization

The emulator can be used to build an objective function for inclusion in a global

optimizer, see Section 2.5. The case study (Section 3.4) shows how the factor plots

generated by the RCD package can be used as an initial guide to improving the design

while Chapter 4 provides a framework for global design optimization.

3.3.6 Using the ReD module

The RCD package is started by selecting the 'RCD' (Robust Circuit Design) option from

within the AccuSim simulator. Once selected the software prompts the user for

information about the circuit design needed before an experiment can begin. This is

collected and then used to execute the experiment and analyse the results in the

following order.

105

Initialization of the simulator

The user is prompted to apply forces to the circuit where necessary appropriate for the

analysis to be performed and then choose the type of simulation from the standard

SPICE-style list of DCOP, DC, AC or transient analyses. The range of time or frequency

values is also required along with the number of points per interval to simulate at. This

is important in accounting for the accuracy of simulation results.

Input parameters

Circuit components (parameters) that are to be included in the experiment are chosen

here. The software accepts parameters from both linear and non-linear components

which are selected by highlighting them on the circuit schematic. In the case of

non-linear components, because they are represented by equivalent circuit models, the

user is asked how many parameters within the associated model-file they wish to vary,

the nominal value is then required for each parameter. The % tolerance values are then

required for each component with a default option of 10%, this will be the amount that

the nominal value of each parameter will vary by during the course of the experiment.

Design plan

The design plan gives, for each trial of the experiment, the values for each input

parameter. There are two types of design plan to choose from.

i. 3k designs. 3k designs are chosen from a lookup table using a 'built-in' C function

"pick_design". The lookup table contains a set of design plans which can handle

experiments with up to 40 input parameters. 3k designs are used in cases where a

106

basic estimation of main-effects is needed for sensitivity analysis using as few trials

as possible.

ii. Latin hypercube sampling designs. Latin hypercube sampling (LHS) designs are

generated from the 'built-in' C function "make_design". LHS design plans can be

generated for experiments with any number of input parameters and, because of

their good space-filling properties and ability to estimate more than just

main-effects (see Section 1.3.2), are the preferred choice of plan for

experimentation.

Outputs

After each trial of the experiment the RED software stores the circuit responses of

interest to the designer. These responses (outputs) are selected from a standard set

supplied by the simulator software.

Analysis

On completion of the experiment another 'built-in' C function "analysis" is used to build

a polynomial regression model emulator of the circuit. This provides a less adaptive

emulator than the DACE model emulator described in Section 2.3.2 but is more

attractive for this application because of its easy implementation. Model building is

achieved through the use of a mixture of forward and backward variable selection

methods. In the case of 3k designs, due to the orthogonal nature of the design (see

Chapter 1) a model of main and second order effects is built (no interactions) and for

LHS designs a full quadratic model is built. The model is then used to produce factor

107

vlnC>----~~A---~------~~2~~--~------~2Vm'~
~ ~ a

Cl
toO,

>-----,-I-1r----..J\I\"'I'v---~__i....>Vout

Cl
<7,

" "

~I

VcenC>--~--~~A---~------~~2OC~----+-----~2Vl0'Y-~ ~~--------~~
R'I IS R& -=-

Figure 3.2: Voltage amplifier circuit

plots showing the influence each input parameter has on each output chosen. This

provides a quick visual indicator of the sensitivity of the design to parameter variation

and how to change the values of sensitive parameters to reduce this.

More comprehensive optimization can be achieved by using the regression model

combined with a numerical global optimizer. Because the regression model or 'emulator'

is easy to compute this makes for more efficient circuit optimization than using the

simulator directly.

3.4 A case st udy

3.4.1 Introduction

To illustrate the ReD procedure the circuit of Figure 3.2 was input to the simulator for

analysis. The circuit is a voltage amplifier designed as part of an electric wheelchair

controller unit. By measuring the voltage across the tracks of a printed circuit board and

inputting the amplified voltage to a microprocessor the controller estimates the supply

108

Monte Carlo Initial design Tolerances adjusted
Mean 3.863 3.862

Variance 2.822e-4 2.924e-4

Table 3.3: Summary of Monte Carlo confirmatory experiments

current to the wheelchair motor. Being part of an existing design the circuit components

already have a set of nominal values and as the whole wheelchair design is in a

safety-critical environment all component tolerances are set to ±1%.

The aim of the RCD study is twofold:

Nominal design To check the operation of the circuit under manufacturing conditions

and see if this can be improved by changing the nominal values of the design.

Tolerancing To establish which are the most important components so that tolerances

can be assigned according to the sensitivity of the circuit response to each

component.

For this part of the case study the results will be used to identify which components

affect response the most and to adjust their tolerances accordingly. The issue of

changing the nominal values of the design is discussed in Chapter 4 where the emulator

built as part of the RCD process is used for design optimization.

3.4.2 Experimentation

As a first step a 200 run DC Monte Carlo analysis is carried out on the original nominal

design with 12 component tolerances set to a Gaussian distribution of ±1 %. The

histogram of Figure 3.3 shows the performance of the circuit, the mean output voltage,

Jlv = 3.863 with associated variance estimate a~ = 2.822 X 10-4 •

109

f-

:::J
--I
--l

:::J
--I
--l

:::J
..J
--l

3
--I

'15 Q.::j

'10 Q.::j

35 Q.::j

30 Q.::j
3
--l ~ 25 ~

o
u

..,
:::J
--I

3
--I

20 ~

15 Q.::j ..,
:::J

10 ~

5~

--I

3
--I

~ n n
I I I I I I I

3 83JO 3 8'100 3 8500 3 8500 3 8700 3 8800 3 8900 3 9000 3 9100
VOLT AGE (V)

Figure 3.3: Histogram of voltage output from the Mentor Graphics software

Component Initial design Toleranced design
name Nom. Tol. Nom. Tol.

RI 270K ±I% 270K ±I%
R2 20K ±I% 20K ±I%
R3 20K ±I% 20K ±l%
R4 270K ±l% 270K ±l%
R5 20K ±l% 20K ±l%
R6 20K ±I% 20K ±I%
R7 2.2K ±I% 2.2K ±20%
R8 IK ±I% lK ±20%
Cl lOOn ±1% lOOn ±20%
C2 lOOn ±1% lOOn ±20%
C3 47p ±1% 47p ±20%
C4 lOOn ±1% lOOn ±20%

Table 3.4: Summary of tolerancing process

110

~
c
o

~
0< 35

Factor plot for components at pin Noutv R6

R1

-0 80 -0 60 -0 ~ -0 20 -0 00 0 20 0 10 0 60 0 80 1 00
COMponenl Ve lue

Figure 3.4: Factor plots for regression model

Next a Robust Design study was carried out using the simulator combined with the ReD

software module. The 12 components were selected at the given nominal values with

tolerances of ±40%. Using a Latin Hypercube design with 50 runs the ReD experiment

produced the following regression model:

Y 4.03 + 2.87 X R215 - 1.81 X R209 - 1.44 X R213

- 1.46 X R214 + 0.85 X R210 + 0.82 X R211

- 1.48 X R215 X R209 + 0.92 X R213 X R214 (3.1)

Where Y represents the output voltage of the circuit at Vout (Figure 3.2), all factor

values being scaled to the range [-0.5,0.5]. The model has been truncated to the most

important factors and their interactions and accounts for 97.4% of the variation. The full

regression model was used to construct the factor plots in Figure 3.4 showing the

111

"10

35

3D

f- 25
:z:
~

25 20

15

10

5

3 8300 3 8"100 3 8500 3 8600 3 8700 3 8800 3 8900 3 9000
VOLTAGE (V)

Figure 3.5: Monte Carlo histogram of results for toleranced design

importance of the six resistors. Following [1] the components are assigned tolerances

which reflect their importance to the response. The tolerance of each component was

adjusted according to the regression results with the six resistors in the factor plot

receiving a tolerance of ±1 % and the rest ±20%. Table 3.3 shows the effect of adjusting

the tolerances with a second 200 run Monte Carlo experiment the results of which are

shown in Figure 3.5. Relaxing the tolerances of the six factors which do not affect the

output response reduces the cost of manufacturing the circuit for a 3.6% increase in the

variability of the response.

3.5 Discussion

The software described allows the designer to plan, execute and analyse results from an

RED experiment. The separation of statistical modules, written in C, from the software

112

controlling the ECAD tools means that existing modules can be updated with more

sophisticated software for modelling and optimization as it becomes available. The

developed system eases the task of designing, executing and analysing RED experiments

by providing a unified framework for circuit design. Production of Factor plots allows a

quick assessment of the design acting as a guide to the first step in tolerancing the design

and highlighting any possible problems with design robustness. The linearity of the

factor plots for the case study show the linear effects of the component parameters on

circuit response. For the case study described the factor plots were used to identify

important components and allowed the tolerances of unimportant components to be

relaxed from ±1% to ±20% with only a 3.6% reduction in variance for a 200 run Monte

Carlo confirmation experiment on the simulator.

3.6 RED within a CAD framework

The evolution of CAD tools has benefited by the integration of different techniques

through use of a unifying framework. This drive has led to the development of several

systems to aid designers which share some of the features of the RCD package described

in this chapter. CAD frameworks are reviewed in [4] where the development of different

types of interface for handling engineering information is considered.

The combination of design optimization techniques in a single package removes a lot of

the difficulty in performing experiments and numerical optimization for RED simply by

unifying data handling. Packages have been developed [13, 7] which include features such

as:

i. group search - locating important factors [10].

113

ii. design of experiments - LHS, Plackett-Burman [6], Box-Behnken [3].

iii. model building - regression, stochastic processes [11]

iv. optimization - simulated annealing [5].

The problem of device modelling referred to in Chapter 2 and in this Chapter is being

tackled with systems to ease the use of device simulators [12] and frameworks for moving

from process simulators such as FABRICS [9] to SPICE [8] easily [14]. The problem of

integrating Physics-based device models (as opposed to the equivalent circuit models in

SPICE) with circuit simulation is referred to in [2].

114

References

(1] K J Antreich, P Leibner, and F pornbacher. Nominal design of integrated circuits
on circuit level by an interactive improvement method. IEEE Trans. Circuits f:j

Systs., 35:1501-1511, Dec 1988.

[2] J W Bandler, R M Biernacki, Qian Cai, S H Chen, Shen Ye, and Qi-J un Zhang.
Integrated physics-oriented statistical modelling, simulation and optimization. IEEE
Trans. Microwave Theory and Techniques, 40(7):1374-1399,1992.

[3] G E P Box and D W Behnken. Some new three level designs for the study of
quantitative variables. Technometrics, 2:455-475, 1960.

[4] D S Harrison, A R Newton, D L Spickelmier, and T J Barnes. Electronic CAD
frameworks. IEEE Proceedings., 78(2):393-417, 1990.

[5] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by simulated annealing.
Science, 220:671-679, May 1983.

[6] Dennis K J Lin and Norman R Draper. Projection properties of plackett and
burman designs. Technometrics, 34:423-428, 1992.

[7] G J Meidt and K W Bauer Jr. Pcrsm : A decision support system for simulation
metamodel construction. Simulation, 59(3):183-191, 1992.

[8] L W Nagel. SPICE 2. A computer program to simulate semiconductor circuits. ERL
Memo ERL-M520. Univ. California, Berkley, 1975.

[9] S R Nassif, A J Strojwas, and S W Director. FABRICS II : a statistically based IC
fabrication process simulator. IEEE Trans. Computer-Aided Design, 3, 1984.

[10] J 1I O'Geran. Group testing and search. PhD thesis, City University, London, UK,
1994.

[11] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and
analysis of computer experiments. Statistical Science, 4:409-435, Nov 1989.

[12] Mark R Simpson. Pride: An integrated design environment for semiconductor
device simulation. IEEE Trans. Computer Aided Design, 10:1163-1174, Sep 1991.

[13] Kishore Singhal, Colin C McAndrew, Sani R Nassif, and V Visvanathan. The
CENTER design optimization system. AT€3T Technical Journal, pages 77-91, May
1989.

115

[14] James P Spoto, W Terry Coston, and C Paul Hernandez. Statistical integrated
circuit design and characterization. IEEE Trans. Computer Aided Design,
CAD-5:90-103, Jan 1986.

116

Chapter 4

Design optimization

4.1 Introduction

In this Chapter a novel approach to design optimization is described and demonstrated

by continuing the case study of Chapter 3. The optimization process is directly related

to quality and robustness as defined in Chapter 1. Emulator models of systems are

formed as part of the RED process discussed in the previous Chapter. These models are

used in a global optimization strategy to improve design quality.

We shall favour this approach from the following rationale: the emulators run hundreds

or thousands of times faster than many simulators and are therefore useful for

performing fast, approximate optimization and sensitivity analysis.

We concentrate on using the emulator to carry out robust optimization along the lines of

the recent work in Robust Engineering Design (RED) reviewed in Section 1.3.

117

4.2 Performance region methods

Sensitivity analysis and optimization have been conducted with computer simulators

using a variety of methods. Circuit optimization is reviewed in Section 1.2. For clarity

the various approaches are summarised in this section as 'performance region' methods

as an introduction to the optimization method developed in this chapter. From

Section 1.1.1 for a given system the relation of input X = (Xl! ••• , Xd) to output

Y = (Yl, ... , Ym) can be expressed as

Y = f(X) (4.1)

Referring to Figure 1.5, the requirement is to find the set 'Rx in the input space 'Rp

which places Y = f(X) into the required performance or tolerance region 'Ry in output

space: 'Rq. This is essentially an inversion problem and is sometimes referred to as

inverse (or reverse) engineering : find

(4.2)

The methods consist of approximating 'Rx with say Rx using observations Yi = f(Si) at

selected inputs. Thus these are also computer experiments but typically go directly to

'Rx rather than via an emulator. The methods often proceed sequentially by updating

the 'estimated' region nx with the new inputs: nx(st, ... , Sn) = n~n), say.

Published work can be classified by the nature of n~n) and the updating rules

n~n) -+ k~n+1). Also different conditions are required such as 'Rx ~ n~n) or k~n) ~ 'Rx

or when n~n) is a single point in 'Rx.

118

Xz
Parmn;;;ter

v Jlin. I;O:Ume
Sp((Ce ."' / outer ellipse

o -,
yz

00 ~O __ O_L~ ~/J\.X

/,-~LX 1)

o /,...r-- ,, ____ -1, ._\ _-----__ - 2 HIgh

, 11, 1 ,,' 1\ \
o \: I '. q

! : 1 ,,1 '1) I

i 0\: 1 I 1 l' .0'
\ :t 1 I D od' / 1 <C-(---i'l.X
\ ~o

'.((0 a /0

---- --- / x,

PerfornlU nee
space Y

,-------, ~~ y

YI
Low

Figure 4.1: Estimation of Rx with a convex hull.

The type of information recorded and used which is similar to the specification of the

updating rule nJn) -+ R1n+l
) may also vary. At its simplest a method may only use a

binary indicator

{

I Y; = f(Si) E Ry,(i = 1, ... ,n)
Ii =

o otherwise.

The good Si, (Ii = 1) can then be used to form n1n
). For example one can form

(4.3)

n1n) = convex hull of all good Si so that if Rx is itself convex then n1n) ~ Rx. This is

demonstrated in Figure 4.1 (compare with Figure 1.5) which shows Rr, Rx estimated

with a convex hull and an ellipse bounding the region Rx for an example system

Y = f(X) with X = (Xl, X2) and Y = (YlI Y2)' This relates directly to methods which

estimate Rr with ellipsoids [3] and methods which extend this to the design centering

problem by estimating the centre of Rx, [2, 1].

We can use a more sensitivity based function as follows. Let B(Si) be some region

(rectangle, hull) centred at Si. Then it may be possible to find (or estimate) whether (i)

119

f(E(Si))

Per/orn"cance
SDaCe v

Figure 4.2: Three possible positions of the region B.

1 I
L-,
u 1

I (B(Si)) ~ Ry or (ii) I (B(Si)) ~ Ry or (iii) I (B(Si)) overlaps the boundary of Ry.

Figure 4.2 shows these three situations as 1, 2 and 3 respectively. Methods of estimating

1-1 are described in [5,4] which use interval arithmetic to approximate Rx by

translating sets between parameter and performance spaces described in Section 1.2.3.

4.3 Optimization for robustness

Following the notation of Section 1.2 we consider for ease of presentation a system with

two inputs X = (Xl. X2) and one output Y. Suppose following the performance region

approach we require Y to lie in a region, defined as an interval, Ry. In addition assume

that Xl and X2 are independent random variables with probability density functions

120

Pl(XlIJld and P2(X2IJl2) where Jll and Jl2 are the means of Xl and X2 to be interpreted as

nominal values. Following the "parameter design" ideas within RED we assume that Jll

and Jl2 are controllable. The RED criteria, stated roughly is to keep Y E 'Ry while

minimising the variation in Y and to do this through control of (Jll,Jl2).

We deal first with the simple case when 'Ry is a single target t. Then the mean squared

error is given by

MSE = E(Y - t)2 = Var(Y) + (E(Y) _ t)2 (4.4)

where variances and expectations are with respect to the variation in Xl and X2. It is

interesting to see what a classical sensitivity analysis gives. Thus expand Y in a Taylor

expansion at (Jll> Jl2) to obtain

(4.5)

where :;: and * are assumed to be evaluated at (Jlt, Jl2). This gives

(4.6)

and

(') 2 (ay) 2 2 (ay) 2
Var} :::::: 0'1 aXI + 0'2 aX2 (4.7)

where (1~ and O'~ are the variances of Xl and X2 respectively. Then

2 (ay) 2 2 (ay) 2 2
MSE :::::: 0'1 OXl + 0'2 aX2 + (Y(JlbJl2) - t) (4.8)

121

The approximate "unbiased" solution is to set

(4.9)

subject to

(4.10)

We consider two ways of defining tolerances for system inputs:

(i) O'~, O'~ do not depend on Jib J-l2, termed the absolute tolerance case.

(ii) u~, u~ depend on J-ll! J-l2, termed the relative tolerance case.

In some branches of engineering it is common to specify a component value as JL ± 8%

corresponding to case (ii), whereas in areas such as mechanical engineering or

manufacturing the specified tolerances could be absolute (see [6] for an example) Le Ji ± €

(case (i)). In the absolute tolerance case (i) we obtain a weighted measure of the

flatness of the function Y(Xl' X2)

(OY)2 (OY)2
O'~ ox} + O'~ OX2 (4.11)

and for the relative tolerance case (ii) we have ut cc Xl and O'~ cc X2.

In the situation where the output sensitivity is only affected by one input we can then

minimise the sensitivity and use the second input to adjust to target, that is if neither

g~ nor g~ depend on Ji2 then for any (O'~, un we can solve the problem by moving J-ll

to where (4.11) is a minimum and correct to target by moving Ji2' It is worth exploring

122

the consequences of this latter condition. Thus suppose

aY
-a = h(xd

X2
(4.12)

The second equation here gives

(4.13)

and substitution in the first yields h(xt} = a constant. Thus the general form is

Y = U(XI) + aX2 that is linear in X2 and additive across Xl and X2. This solution is

independent of the (fixed for case (i)) values of 0'1 and 0'2.

In general, for a complex system, we will not have enough analytic information to

perform optimization directly on the simulator. Even when the "sensitivities" g;: and

~ are available as output (see Section 1.2.3) these are still observables only and

essentially add to the list of output factors.

The full unbiased solution which relates directly to the definition of quality in

Section 1.1.1 is

min Var(Y) subject to E(Y) = t. (4.14)

The alternative to analytic or approximate analytic solution is to estimate Var(Y) and

E(Y) directly from output values for Y generated by a sample of input values. If

O'~ = Var(Y) and p,y = E(Y), we can call these estimates o~ and {ly respectively. Then

the solution is

mm iT~ subject to {ly = t. (4.15)

123

Clearly as the control (I-ll'/J,Z) changes we need to recompute new u~ and [;,y.

The solution we propose here is a compromise between the inverse approach of (4.2) and

the unbiased approach just described. Thus we assume rather than a simple target that

Ry is a target region for Y. Then we take as the problem

min O'~ subject to I-lY in Ry. (4.16)

We can express this using a penalty

(4.17)

where

I-ly in Ry
(4.18)

I-lY not in Ry

Now suppose as above we have estimates u} and [;,y we shall simply use

min (u} + 1>(fly)) (4.19)

where again 1>(.) is the penalty function for Ry. Of course by making Ry = t we reduce

to the simple target approach. A key point of the optimization is that all these

operations are easily performed using a fast emulator of the simulator rather than the

simulator directly.

124

4.4 The procedure

The estimates of a'} and /Ly are given by generating sample points (Xi}, Xi2),

(i = 1, ... , n) and estimating by

(4.20)

(4.21)

We use two methods of generating (Xib Xi2) : (i) simple Monte Carlo sampling for Xl and

X2 and (ii) a method based on low-discrepancy integer lattices described in Section 2.3.1.

If Fj(xj) is the cumulative distribution function of xj, (j = 1,2) and Uij (i = 1, ... , n) is

an independent Monte Carlo sample from a uniform distribution in [0,1] (j = 1,2), then

Xij = Fj-l(Uij) (i = 1, ... ,n, j = 1,2) (4.22)

We generate an integer lattice [7, 8] on the square 0 2 [0,1] based on a single integer

generator (gl, g2) as in Section 2.3.1 and use the same transform in (4.22) to mimic the

distribution of Xl and X2.

The distributions Fj are changed as the control (/1b /12) is changed. Thus in the Gaussian

case Xj '" N(/1j, O'j) we simply take the Xij as a standard N(O, 1) sample and transform

(4.23)

Clearly this is possible for any shift-scale family. This means that we need only generate

125

a single Monte Carlo sample or lattice.

Having found the estimates (4.20),(4.21) using either the Monte Carlo or the Lattice

methods these are then used in (4.19) together with the global optimizer described in

Section 2.5. All the above material can be extended in a straightforward way to to

higher dimensional input spaces and, indeed, we shall use a six-dimensional example as a

case in the next section.

4.5 Case study

4.5.1 Introduction

We continue the analysis of the voltage amplifier circuit described in Chapter 3,

Section 3.4 and illustrated in Figure 3.2. For an analytical study of the circuit we

assume the operational amplifier to be ideal and, assuming DC conditions, the circuit

can be further simplified by (i) setting all capacitors to open circuit, (ii) assuming no

load on the output (pin 'Vout' in Figure 3.2) and (iii) setting Vcen = O. An analysis of

the circuit yields the equation

(4.24)

where Vcen is the offset voltage. Other design constraints can be introduced to further

simplify the analysis as follows. If we set Ra = Ri = R2 = R4 = Rs and Rb = R3 = R6

as in the nominal design (4.24) can be re-written as

(4.25)

126

This constraint is used for the initial design where the nominal setting of circuit

parameters Ra = 20kn, Rb = 270kn yields Vout = 3.864.

The performance of the circuit is summarised in Table 3.3. The goal of the optimization

process which follows is to minimize the variance of the circuit for the tolerance levels set

in Section 3.4, given a target interval 'Ry for the response.

4.5.2 Experimentation

Continuing from Section 3.4 a Robust Design experiment is carried out using the RCD

software module. Instead of using the regression analysis in the ReD package a DACE

model is fitted to the experimental results. For experimentation the circuit parameters

need to be varied over a suitable range which defines the region over which they will be

optimized, 'Rp. The 12 components are thus selected at the given nominal values with an

input space of ±40% of their nominal values. Using a Latin Hypercube design with 50

runs an experiment is conducted to produce the DACE model of Figure 4.3. This is then

used to construct the main effects plots of Figure 4.4 which show that the variation in

response is due to the six resistors RI"'" R6 which correspond to the six resistors in

equation 4.24. The plots show how changes in circuit parameters affect response and can

act as a guide to optimization by hand as well as displaying the main causes of response

variation.

The DACE model is used as an emulator of the simulator to predict circuit response as

part of a global optimization procedure.

127

MLE RESULTS

The Response Variable is ~voltage

N= 50 NX= 12 THE COVARIANCE INDEX= 1
SIGMAZ= 5.2472e+01 -2*LN LIKELIHOOD= -1.9808e+02

NUMBER OF LINEAR MODEL PARAMETERS IS: 1
Variable Beta Std. Err. t-val

Constant 6.6790e+00 O.OOOOe+OO Inf

GAMMA= 0.0000
THETA= 5.0117e-06 1.0435e-05 1.8244e-14 1.0142e-07 5.7943e-02
THETA= 5.8526e-02 6.6602e-02 1.396ge-01 8.6565e-03 3.6964e-03
THETA= 2.2541e-06 1.010ge-08
POWER= 1.0054e+00 1.6535e+00 1.6820e+00 1.9253e+00 2.0000e+00
POWER= 2.0000e+00 1.9990e+00 1.9965e+00 2.0000e+00 2.0000e+00
POWER= 1.0101e+00 1. 7581e+00

TIME (MIN.) FOR LIKELIHOOD CALCULATIONS IS: 7.13
THE DATA FOR THIS RUN IS IN THE FILE dace.x AND dace.y
THE DATA WERE TRANSLATED TO [-0.5,0.5] FOR THIS ANALYSIS

Figure 4.3: DACE model for voltage amplifier circuit

128

~

RS
RS

R3 RS
C! R3 RS

r:I~ R3 RS
os ~~ R3 RS
~ A~

= "1 RI R3 RS
[0 RG

~ij liIij
RS R! R2

Cl) RS R! R!
RI

I!!
.~ "lS RS R! R!

I!I§ RI

~ ~ ~I ~! R2 RZ
R2 .~ R2 R2 R6 R3 Ra

Ra > R2 R2 RS R3 Ra 0

~~ ~~ ~~
1112 R3 RI

l!! R3

~~ ~~ ~~ ~~ lI! ~ RS R3
'aj'? RS ~~ ~~ .~

'" RS R3 R3
E RS

C! RS
0

RS
RS

~ RS

-0.4 -0.2 0.0 0.2 0.4

Mean .x 4.0445

Figure 4.4: Main Effects plots for DACE model

4.5.3 Analytical optimization

To provide insight into the optimization procedure we use the simplified system equation

(4.24) to carry out the analytic method in (4.9) and (4.10) using two factors Ra and Rb.

2 I'm b 2 I'in (
_"IT. R)2 ("IT.)2

Var(Vout) = aa 2R~ + ab 2Ra (4.26)

Setting (V;n = 0.2, Vcen = 2.5, Vout = 3.86) we obtain a target constraint of Rb = 13.6Ra.

We relate aa = SD(Ra) and ab = SD(Rb) in two ways corresponding to absolute and

relative tolerances respectively (Section 4.3):

129

55

50

"IS

"ID

35

~ 30
:::J

8 25

20

15

10

5

3 8~00 3 8500 3 8600 3 8700 3 8800 3 8900 3 9000
VOLTAGE (V)

Figure 4.5: Histogram of voltage output for analytically optimized design

Case (i) : absolute tolerances.

In this case:

(4.27)

Combining (4.27) with the target constraint Rb = 13.6Ra the standard deviation of Vout

is represented by

SD(Vout) = 1.923 ~:. (4.28)

Thus the simple solution is to maximize Ra within the defined space yielding the

solution (Ra, Rb) = (28,380) Ht This gives a decrease in SD(Vout) from 1.665 X 1O-40'a

to 1.189 X 1O-40'a a reduction of 28.5%. The confirmation of this design with a 200 run

Monte Carlo simulation is given in Table 4.1 with a histogram in Figure 4.5.

130

Case (ii) : relative tolerances.

(4.29)

where c is a constant. In this case the standard deviation of Vout is represented by

(4.30)

which, when combined with the target constraint Rb = 13.6Ra, shows that the variation

of the target is, at least approximately, independent of the nominal values. This implies

that in the relative tolerance case the circuit is already stable and we shall not perform

optimization in this case.

4.5.4 Global circuit optimization

Because the DACE model emulator can be evaluated many times faster than the circuit

simulator it can be used in conjunction with the global optimization algorithm to

improve the circuit design according to the criterion in (4.16), that is

min of. subject to fly in Ry. We choose Ry = [3.80,3.92] and adopt the penalty

function strategy (4.17) where:

{

-2 Oy
of. =

5 X 10-4 fly not in Ry

flY in Ry
(4.31)

The value 5 X 10-4 is chosen as an average value for O"f. during the optimization. The

final circuit design is to set the six resistors RI, ... , R6 to an absolute tolerance of ±1 %

131

../ ..
:~: . .. ~ .. . :.~:
--. . ::--:!~

·,i\5$ii\
~ :::::::: " . :
. .

::.~.:;:
!::~:::l • ::=?:.::
. :i~i: .. ?;, .. . '"
.:~ ..
• l:-;;:::::::;': .. ~ ~:.

X1

.~: ::::::::E::;::: .-.. ~ ..
:. 1"'" •

..--:.-: ..
\\~\\\ . .:

..
;;:~.!; .
:::~::: • :. =?:: •• ,'.,'

-" . ,',' .. . ::~:: ... ?;, .. . ".
X2

..~ .
• .::::::E::;::: • .. ~ .. . :?; ..
" /' . --. . :: :!: • ::is,· \
\:~:\ " .:

..
::'~"";: :::~::: ..

: ::~:::
::':::'::

X3

.~: .. ~ ..
::~:: :. r··

X5

Figure 4.6: Gaussian lattice for estimating fL and (j

of the original nominal values giving (R3 • R6) ± 2.7kn and (R l • R2. R4• Rs) ± 0.2kn. the

rest ±20% of the original nominal values. Because of their lack of significance we

maintain the values of parameters Cl •...• C4 • R7 • Rs at their nominal values and only

vary the others when predicting with the emulator. Both lattice and Monte Carlo

methods of calculating the estimates G-f and fJ,y are compared in different optimizations

of the design. At each design point selected by the optimizer the circuit is emulated at

n = 100 points according to either lattice or Monte Carlo distributions centered at the

selected nominals with the appropriate scaling. The lattice and Monte Carlo points

chosen for this example in six dimensions can be seen as pairwise plots in Figures 4.6

and 4.7. Once optimized the circuit designs are confirmed on the simulator by a 200 run

Monte Carlo analysis which give the histograms of Figures 4.8 and 4.9. The results are

summarised in Table 4.1 and show that the optimizer has found solutions (confirmed by

a 200 run Monte Carlo simulation using the simulator) which show improvements for

132

f-

0

~~:~ ..
'J:t~,'4. 0

: ~. III

. . , .-.. .
.i.~:~ ..
·$t:·
.... •• - .1

...
••• III

l~'~" .. . ~."., . · .:: .
o. 0 <.
~J~-t;.\; ••
:fk,:- .

·0 0

" ..
-~~ • I t:t..

1\0" 0 . ~.
.. .. ~ lot·
.. lCo, . ~.-. ..

o.. • -., ~):
:-~. :~!. \

o. ••
,,'" 0 · ~, .. ~ ..

· .. ' s .. · · . ,-., .. - ..

~ . :ft·-.- .. ,
,.~~., . .. -,

.. " .

.~ ."'.- \. ..
. $::\!.-i

" 0 0 o.tik-~ .. 0.; • ... ~ ...
t ... : :j'-.-I-..

• _.,_. e •

-I: .-.' •

--file •• ': .,~t-,-.... ~
.~, .

.- -;.

..~ ..
-'f. ;.:
.. ····1· .

, ,.#' . ~
,:-;;~.
;\i. •• ,
.~ ..

Xl X2 X3 X4 X5

Figure 4.7: Gaussian Monte Carlo sample for estimating {l and (7

10

35

30

25

5 20
C)

u

10

5

3 8200 3 8300 3 8~00 3 8500 3 8500 3 8700
VOLT AGE (V)

Figure 4.8: Histogram of voltage output for lattice-optimized design

Initial design Analytic Simulator Confirmation
using simulator optimization Lattice Monte Carlo

Mean, {L 3.86 3.87 3.84 3.82
Var, iJ2 2.85e-4 1.36e-4 1.46e-4 1.60e-4

Table 4.1: Original design, optimized designs and Monte Carlo confirmatory experiments,
absolute tolerance case.

133

'10

35

30

;Z 25
:::J
o
u 20

15

10

5

o

0...:

Q.:

CL::

a...:

n--=

CL::

0...:

0...:

0...:

0
I I I I

3 8000 3 8100 3 8200 3 8300 3 8'100 3 8500
VOLTAGE (V)

Figure 4.9: Histogram of voltage output for Monte Carlo-optimized design

Var(Vout) of the initial design by 48.7% for the Lattice approach and 43.8% for Monte

Carlo. It is interesting to note that the simple analytic method actually yields the best

results with an improvement of 52.2%. The point here is that in a larger and more

complex circuit such an approach is impractical. The optimizer parameters were set to

observe 500 points in np (each point involving estimating J.ly and O'? with 100

evaluations of the DACE model) with 50 iterations taking 6~ hours to find a solution

using a Sun SparcStation2. An equivalent number of evaluations using the simulator

directly would take approximately 1600 hours. The discrepancy in values between the

optimizer (using the DACE model) and the simulator may be explained by (i) the

emulator accuracy of around 2% when calculating fJ,y and (ii) the optimizer estimates

being based on a sample size of 100 points compared with 200 points for the Monte

Carlo confirmations using the simulator.

The results given by the emulator from the optimization using the lattice estimator are

134

Component Initial design Lattice optimization Monte Carlo optimization
Nominal Tolerance Nominal Tolerance Nominal Tolerance

RI 20kn ±200n 27.4kn ±200n 26.6kn ±200n
R2 20kn ±200n 14.8kn ±200n 17.3kn ±200n
R3 270kn ±2.7kn 370kn ±2.7kn 313kn ±2.7kn
R4 20kn ±200n 27.7kn ±200n 27.8kn ±200n
R5 20kn ±200n 24.2kn ±200n 26.5kn ±200n
R6 270kn ±2.7kn 314kn ±2.7kn 375kn ±2.7kn

Table 4.2: Parameter values before and after optimization

JL = 3.80, fT2 = lo71e - 4 and using the Monte Carlo estimator JL = 3.80, (,2 = lo2ge - 4.

The parameter values chosen for components Rb •.• , R6 are given in Table 4.2. Note

that the optimized design values of p, are at the lower bound of the target interval

ny = [3.80,3.92]. Returning to the much simplified circuit analysis resulting in

equation 4.25 we display the surface of this function as Vout = f(Ra., Rb) over the

optimization region np in Figure 4.10. This shows that, although the surface is derived

from a much simplified version of the real function, decreasing the target response value

places the circuit response in a flatter area which results in less variation in response for

a given absolute parameter variation. In the relative variation case this is counteracted

by the increase of O'a. with Ra..

In modelling the whole function, rather than a simplified version, the emulator is a truer

representation of the system and has more freedom in finding an optimal solution. From

looking at Table 4.2 one can see the results using the emulator give parameter values

different to those obtained by the analytic optimization indicating the difference between

the simplified mathematical model (4.25) and the DACE model emulator.

135

n -

0.00

.-, n '"
0. v!

Figure 4.10: Surface of simplified response function over region Rp.

4.6 Conclusions

This chapter describes a method of design optimization with respect to quality as

defined in Section 1.1.1. The method presented is defined in terms of parameter and

performance space following closely work on design centering and tolerancing but takes

advantage of the concept of emulation to improve the efficiency of optimization allowing

the use of a numerical optimizer. The case study, which follows directly from the study

in Chapter 3, describes the approach and shows an improvement over the initial design

by reducing response variability by 48.7%. This is achieved in under 7 hours using the

emulator, an equivalent number of calculations on the simulator being estimated at 1600

hours. Although the example system has only 12 input factors the method presented

136

represents a vast improvement over traditional Monte Carlo methods and provides the

opportunity for global rather than local design optimization. The optimization method

is directly applicable to problems in higher dimensions and the following Chapters

describe techniques for reducing the complexity of building emulators for such

higher-dimensional systems for optimization. An important distinction is between

relative and absolute tolerance settings for system parameters and the differences are

explored in the case study. The global optimization solution does well compared with

the solution obtained analytically showing the validity of the approach.

137

References

[1] H L Abdel-Malek. The ellipsoidal technique for design centering and region
approximation. IEEE Trans. Comp. Aided Des., 10:1006-1013, Aug 1991.

[2] R K Bray ton and R Spence. Sensitivity and optimization. Elsevier, Amsterdam, 1980.

[3] S W Director and G D Hachtel. The simplicial approximation approach to design
centering. IEEE Trans. Circuits f3 Systs., CAS-24:363-372, July 1977.

[4] L Jaulin and E Waiter. Guaranteed nonlinear parameter-estimation from
bounded-error data via interval-analysis. Mathematics and Computers in Simulation,
35(2):123-137,1993.

[5] L Jaulin and E Waiter. Set inversion via interval-analysis for nonlinear
bounded-error estimation. A utomatica, 29(4):1053-1064, 1993.

[6] Peter Mucci. Handbook for engineering design using standard materials and
components. PER Mucci Ltd., The Old Bakery, Parsonage Lane, Durley,
Southampton S03 2AD, 1986.

[7] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
CBMS-NFS, SIAM, Philadelphia, 1992.

[8] Fang K T and Wang Y. Number-theoretic Methods in Statistics. Chapman & Hall,
London, 1994.

[9] Anatoly A. Zhigljavsky. Theory of Global Random Search, chapter 4. Kluwer
Academic Publishers, 1991.

138

Chapter 5

Robust circuit design 11:

Decomposition of complex

systems

5.1 Introduction

Part of the difficulty of performing Robust Engineering Design on large systems is the

execution of the experiment. When using computer simulators large system models can

be costly to compute. The rationale for this chapter is that partitioning a system into

individual subsystems for analysis will increase the ability to build emulators of complex

systems for optimization. Decomposition is achieved using the partitioning algorithm

detailed in Section 2.4.1. Emulator models of each sub-system are derived according to

the method of Section 2.3.2 and are combined to emulate the full system as part of the

RED strategy described in Chapter 3.

139

The main issue is one of preserving the environment in which the sub-systems exist, this

is achieved using small circuit blocks to mimic the effect of connecting the sub-circuits

together, hereby referred to as load blocks. Sub-sections of complex designs can be

analysed independently with the aim of making simulation and emulator model building

more efficient and accurate. The approach presented here relates to a design being

decomposed in a linear fashion for piecewise analysis with feedback between sub-sections

expressed via the load blocks. The outline of the proposed method is

i. Form a graph representing the circuit.

ii. Use a partitioning algorithm to decompose the graph.

lll. Formulate sub-circuits according to the decomposed graph.

iv. At the sub-circuit boundaries add a load block to mimic the missing connections.

v. Build sub-emulators of each sub-circuit.

vi. Combine the sub-emulators to emulate the whole circuit.

vii. Use the emulator to optimize the design.

The generalisation of the methods to multi-way partitions possibly including feedback is

an area for possible future research.

5.1.1 Simulation

There are two basic options for the analysis of electronic circuits using SPICE-based

simulators:

i. AC analysis, for simulation in the frequency domain, and,

140

11. Transient analysis, for simulation in the time domain.

Each method is used to measure different aspects of circuit response. From this point of

view, the choice of AC or Transient Analysis affects only the setup of the simulator and

the set of responses which can be measured as the same type of empirical model is fitted.

However when decomposing a circuit the type of analysis selected defines the way in

which the load blocks are modelled and how the sub-emulators are combined to form an

emulator of the whole circuit. The method outlined above is applied to both AC and

Transient analysis.

In this way it is proposed to extend basic RED methodology to the analysis of complex

circuits and systems.

5.2 Circuit description

The circuit of Figure 5.3, an audio pre-amplifier circuit, is used in this chapter to

demonstrate the ideas presented. The main function of the circuit is to convert several

different transducer signals to a signal appropriate for input to an audio amplifier. The

circuit therefore needs to cope with a wide range of inputs and provide suitable biasing

of the signal to account for non-linearities present in the transducers. The study

concentrates on measuring the response at the pin Vout due to a signal input to the

magnetic pickup ('MagJ>U' in Figure 6.1).

141

5.3 Partitioning

Circuit partitioning algorithms are used in VLSI design where circuits too large to be

placed on one chip are split between several chips [7]. The requirement is to partition the

circuit to minimize the number of connections between blocks. We adopt a similar

approach using the circuit topology in a simple graph-theoretic way. The partitioning

algorithm described in Section 2.4.1 is used as the basis for an improved algorithm which

is then used to decompose a circuit graph into three separate sections. Following the

description of the basic partitioning algorithm described in Section 2.4.1, the improved

algorithm is now described and tested.

5.3.1 An improved partitioning algorithm

Using notation from Section 2.4.1 we note that in point (ii.) of Section 2.4.1 it is possible

to be in a tie situation when choosing a cell to move Le having more than one candidate

for the base cell, cb. The algorithm has been improved to deal with this situation.

Instead of arbitrarily choosing cb we choose the cell with the least number of connections

to other cells in its current block and if there is still a tie the most number of

connections to cells in the complementary block. We define two counters F and T for a

given base cell cb such that

i. F(cb) is the number of edges that cell (cb) is connected to in the block it is moving

from.

iL T(cb) is the number of edges that cell (cb) is connected to in the block it is moving

to.

142

Graph Basic FM Improved FM
mean passes mean cut nets mean passes mean cut nets

Random 6.08 10.0 4.16 9.48
Geometric 5.32 2.4 4.48 1.36

Table 5.1: Random graph results table

This is in place of choosing the cell with the best balance ratio. Considering a set of n

possible base cells, c~, ... , c~, we choose the cell having

min (.1'(c~») , i = 1, .. . ,n (5.1)

breaking further ties by choosing

i = 1, .. . ,n. (5.2)

The improvement can be incorporated as a natural extension of the algorithm as .1'(ni)

and T(ni) are computed in order to establish critical nets (see above for a definition of a

critical net). The modification leads to better grouping of cells in a tie situation choosing

Cb with the least number of connections in block .1' and the most in block T. The results

of this modification can be seen in Table 5.1 where the improved FM algorithm is tested

against the original algorithm. The Table shows the results of generating 100 graphs and

decomposing each one using both the original and improved algorithms. The algorithm

starts with an initial random partition and stops when no further improvement is made

on minimising the size of the cut-set. The mean number of passes is the number of

passes the algorithm made before finding an optimal partition for each graph divided by

the number of graphs tested. The mean number of cut nets is the size of the best cut set

143

CD
1i c:
'2
§
,;..

CD
o

CD
0

d

'" o

o o ~ __________ .-________ -. __________ ,-________ -. __________ ~

0.0 0.2 0.4 0.6 0.8 1.0

JC • coordinate

Figure 5.1: Example random graph: n = 100, d = 4

found by the algorithm for each graph divided by the number of graphs tested. The

modified FM algorithm gives better solutions to the min-cut problem for almost no extra

computational effort. Two types of graph are used as benchmarks, random graphs and

geometric graphs both are described below.

Random graphs

For a graph of n nodes the probability Pr that any pair of nodes are connected is given as

d
Pr=-

n-1

144

(5.3)

GO
o

'" o

... o

'" o

0.0

/

0.2 0.4 0.6 0.8 1.0

x -coordinate

Figure 5.2: Example geometric graph: n = 100, d = 4

where d is the required degree of each node. Nodes unconnected after this procedure are

assigned a single edge with another node chosen randomly to ensure that all nodes are

connected to at least one other node, Le dmin = 1, otherwise they do not form part of

the network. To test the algorithms the values n = 100, d = 4 were chosen, see

Figure 5.1 for an example. The graphs are constructed using the 'C' program 'listgen.c'

in Appendix A.3.

Geometric graphs

For n nodes randomly placed in the space [0,1]2 the number of edges e of the graph is

determined by

(5.4)

145

Block

you!

Figure 5.3: PA20 circuit - partition points

and

(5.5)

to give

nd
e=-

2
(5.6)

where d is the required average degree as before. Unconnected nodes are then connected

via a single edge to the nearest node to ensure dmin = 1 as for Random Graphs. To test

the algorithms the values n = 100, d = 4 were chosen, see Figure 5.2 for an example

graph. The graphs are constructed using the function 'mkgraph' defined in

Appendix B.1 using the statistical package 'S-plus'.

5.3.2 Partitioning the circuit

The circuit and resultant partitions are shown in Figure 5.3. By relaxing the balance

tolerance the algorithm was able to choose an initial partition of one small section and

one larger section, the results of which are shown in Table 5.2 The balance tolerance was

146

Balance ratio (0 - 50) = 25
Pass Best move No. of cut nets

1 #31 6
2 #25 5
3 #1 3
4 #69 3

Table 5.2: Output of MinCut algorithm for first partition

Balance ratio (0 - 50) = 10
Pass Best move No. of cut nets

1 #23 8
2 #26 4
3 #2 3
4 #49 3

Table 5.3: Output of MinCut algorithm for second partition

then tightened and the larger section bisected, see Table 5.3.

5.4 The load blocks

Decomposition into sub-circuits affects overall circuit response. The response of the

whole circuit is not equivalent to the sum of responses of individual sub-circuits because

the interaction between sub-circuits is lost when considered individually. To overcome

this difficulty the interaction between sub-circuits is accounted for by considering the

effect of connecting one sub-circuit to another. The Substitution Theorem [4] is used to

preserve the original network, it states that

If any part of a network is replaced by any other combination of elements

such that the terminal conditions remain unaltered, the conditions within the

remainder of the network will remain unchanged.

147

Sub-circuits connected to the part of the circuit of interest can be considered as load

impedances at the connection point. Considering the system of Figure 5.10 the load

placed on the output of Block 1 is the input impedance of Block 2. Once this is found

the 'loading effect' (Ld of connecting Block 2 to Block 1 can be accounted for and Block

2 can be replaced by a much-simplified load block. The process of finding the correct

loading factor for both transient analysis and AC Analysis is described for this particular

form of decomposition.

The first step in defining a load block is to calculate the input impedance (Zin) of the

sub-circuit to be modelled. The simulator can be used for this purpose to calculate Zin

as a function of frequency. By performing an AC analysis over a suitable frequency

range, with an additional current-sensing resistor at the input to the circuit, the input

voltage and current can be measured. From this Zin can be deduced for the stated

frequency range as a complex function of frequency. This can then be interpreted

according to the type of analysis to be performed. Figure 5.4 shows the process.

5.4.1 AC load blocks

For AC Analysis the input impedance Z is a function of frequency and is therefore

represented by the function Z(w). Z(w) is approximated by System Modelling Blocks

(SMB's) which are available in the Mentor Graphics version of SPICE used here and also

in SPICE 3E2. The function is of the form:

Z(w) = k(jw + zt)(jw + Z2)
(jw + pt)(jw + P2)

148

(5.7)

· III

-e-
~ IliI

SUB-CIRCUIT

-,
-Ill - .HI

~

Figure 5.4: Finding Z(w) of a sub-circuit using AC analysis.

where w is the frequency in radians. A global optimization algorithm (see Section 2.5) is

used to find the parameters Zl, Z2,PbP2 which give the best fit of the model to Z(w). A

second-order model is assumed. If the results of the optimization process are poor a

higher order model can be fitted. These parameters are used in the 5MB's to represent

the loading effect of the missing circuit, the circuit diagram for block 1 of the PA20

circuit, including the 5MB, is shown in Figure 5.5.

The input impedance Z(w) is modelled with the 5MB's in the following way.

i. Measure fin, the input current of the sub-circuit to be modelled. For an AC

analysis with an input voltage of Iv this is equivalent to -! from Ohm's law.

ii. Starting with a 2nd order function for the 5MB find the parameters which fit the

function -!. If no model can be fitted use a higher order function.

Hi. Use the 5MB to sense the voltage at the output pin of the sub-circuit to which the

149

R" cur
co

1------..--..------.----c:>Vout

Figure 5.5: Block 1 of pa20 circuit

load block is to be attached.

iv. From the voltage output of the 5MB create the relevant current at the sub-circuit

output with a voltage-controlled voltage source (VCVS).

The load block can be seen in place in Figure 5.5. Note that, for the example, only the

magnitude part of the complex current fin was fitted with the optimizer. For

phase-sensitive applications the optimizer may be required to fit both magnitude and

phase.

5.4.2 Transient load blocks

For Transient Analysis the circuit is simulated with an input signal of a particular

frequency. The input impedance of a sub-circuit can be represented as a complex

number x + jy for that frequency. This complex impedance can be represented by the

150

CIRCUIT

Vout
~Io.d

Figure 5.6: RC load

simulator as a resistor, RL, and capacitor, CL, in series (Figure 5.6), where:

x

-1
wy

(5.8)

(5.9)

Following the steps at the beginning of this section gives graphs of how the phase and

magnitude of the complex Zin varies with frequency. Given this graph Zin can be

deduced for the frequency of interest.

5.5 Robust Circuit Design experiments

5.5.1 AC analysis

The graph of Figure 5.7 shows the function Z(w) as measured by the simulator with the

results of fitting equation 5.7 with the optimizer. Table 5.4 shows the parameter values

for 5MB1 and 5MB2 of the circuit, Figure 5.10.

AC analysis is carried out in the following way:

151

I!

~

~

1 ~
}
.~

!
I!!

Ii!!

~
10 100

Ke
• ; !·l?osu~ed Input current
- I SI·IB f'.Anction

1000

log(trtqUIN'ICY) In Radian,

10000 100000

Figure 5.7: Fitting 8MB model parameters to Z(W)

PI P2 ZI Z2 K
8MB 1 59.84 40.85 69.68 1.1ge-2 2.24e-4
8MB 2 158.6 714.9 95.55 353.6 3.47e-4

Table 5.4: Parameters for 8MB load blocks

152

1. Perform an experiment with input factors set to nominal for each block required to

be modelled with a 5MB.

2. Find parameters for the 5MB's for each block in 1.

3. Experiment on each block measuring the relevant response(s).

The 5MB parameters are not included in the RCD experiment as they will not influence

the emulator model unless interactions between sub-circuits are expected. This is seen in

the results of the RCD experiment on the PA20 circuit where the 5MB parameters are

included in the analysis. Only the parameter J(shows up in the main effects plots

(characterised by the letter 'T') of Figure 5.8 for the response at 200Hz (response number

6), its effect being very small compared with the effects of the other factors (note: each

factor plot is scaled individually). Main effects plots are described in Chapter 3.

Section 5.5.3 describes how to include 5MB parameters in the RCD experiment.

The experiments and DACE modelling were carried out using AC Analysis on the full

PA20 circuit as well as for the three blocks resulting from its decomposition. The AC

response of the circuit can be seen in Figure 5.9 which also shows the 12 points on the

curve at which the circuit response is measured.

The general scheme for analysis can be seen in Figure 5.10. The results of the analysis of

the full PA20 circuit are compared with those obtained from partitioning the system.

Table 5.5 shows the number of input variables and simulations for the partitioned circuit

experiment and the whole circuit experiment.

Three of the 12 points along the response curve of Figure 5.9 were chosen for analysis. A

more comprehensive approach is to model the whole curve as a single response. Such a

153

. ,

pa21.a

Z T4-BF
D RI7
H Cl
J : RZO
L RI6
T : K

P
I

.,.21.&

..

,
... .rI.12.4231

6 RI4
B TI-BF
B R5
C RI
G R3
JJ' R2

..
•

, I

, . , . ,
po21.'

• I . , . , . , . , .

,
...... 12.Q37

5 CB
!. R4

Figure 5.8: Main effects plot for block 1 with response at 200Hz

.~

~1-.----------'-----------r----------.-----------~ I.

Variables
Runs

100 1000

Fr.qUM'ICY.Hz

10000 100000

Figure 5.9: PA20 circuit - voltage output and measuring points

Block 1 Block2 Block3 Total Full Circuit
24+5 35+5 19 88 78

60 82 48 190 166

Table 5.5: Experiment statistics

154

. , .

:::-1 FULL CIRCUIT

BLOCK 1 BLOCK2 12 :::1 BLOCK 3~6'

Figure 5.10: Partitioning of PA20 for analysis

methodology is described in Chapter 6, however to demonstrate the partitioning and

modelling aspects of the analysis three responses corresponding to frequencies of 20Hz,

200Hz and 10KHz were chosen.

5.5.2 Transient analysis

To analyse a system partitioned into blocks in this way, simulation needs to proceed

from the first block in the scheme, as follows.

i. Perform an AC analysis on each sub-circuit whose load is to be modelled to

determine Zinnom (input factors set to nominal).

11. Determine values for RL and CL, the nominal load parameters, at the frequency of

simulation.

iii. Add RL and CL to the end of the block under experimentation (Figure 5.6).

iv. Perform an experiment on the first block keeping RL and CL at their calculated

nominal values.

155

v. Measure Yb the output of the first block, for each trial and from the range of

values obtained calculate the mean value and associated tolerance for this range.

Use this information as the input signal to the next block.

vi. Repeat from Step 2 until all blocks have been analysed.

vii. Build models (Section 5.6.1).

5.5.3 Variable load blocks

Taking the value of Z in at the nominal circuit level assumes that variations in the load

block do not influence circuit response. There is a difference in approach for the two

types of experiment. Because the Transient Analysis needs the input signal to be

explicitly defined and fed in to each block the experiments need to be done working

through the blocks starting from the first block. The Zin for the next block thus needs

to be worked out first using one extra simulation. The nominal value of Zin is therefore

taken to minimize the cost of performing extra simulations.

For the AC analysis the input signal is kept constant since we are dealing with transfer

functions of the circuit. This allows a 'last block first' approach to collect data on Zin

for the block behind while doing the experiment on the block infront. A spread of 5MB

parameters can therefore be used during the experiment to follow more closely the

changes in Zin encountered with different parameter settings for the block infront. This

spread of parameters is used to build the block model and then replaced by a 'typical'

set of parameters for prediction.

156

5.6 Model building and verification

The objective of analysing a circuit is the optimization of the circuit design in some

sense. By modelling the behaviour of the circuit and constructing an emulator of the

circuit simulator which is less expensive to evaluate the design becomes easier to

optimize. The response of a simulated circuit is described using a model with the

independent variables being the circuit inputs (parameter values, signal inputs etc.) and

the dependent variables being the circuit outputs (frequency response, amplitude etc.).

The statistical model used to emulate the circuit simulator is fully described in [10] and

used in [1] to optimize the design of two lC circuits. It is computed from data obtained

by conducting a computer experiment. That is the circuit is simulated according to an

experimental design plan and the circuit responses measured. A description of the model

can be found in Chapter 2.

5.6.1 Analysis of decomposed circuits

The circuit is partitioned into sub-circuits and a suitable sub-emulator is found in turn

for each sub-circuit. The sub-emulators are combined to create an emulator of the

behaviour of the whole circuit. Construction of the emulator depends on which type of

simulation is used and on the treatment of the load block parameters Lp. The order of

simulation of sub-circuits and hence construction of the sub-emulators becomes

important when considering the load blocks since Lp for one sub-circuit is obtained from

the neighbouring sub-circuit. A schematic of the combination of separate block models is

described for the generalised two block system in Figure 5.11.

157

BLOCK 1 BLOCK 2

Figure 5.11: Model Schematic

Model building with transient analysis

Following the procedure outlined in Section 5.5.2 we obtain models for each block of the

system. For the case of a system divided in two (see Figure 5.11) these are of the

following form:

(5.10)

where SI. S2 are signal inputs and XI. X 2 are parameter settings for blocks 1 and 2

respectively. Note that the load term Ll does not appear in the model if it is fixed at a

nominal level for the experiments (see Section 5.4.2). The output from block 1 is the

input to block 2 (step v. Section 5.5.2) thus

(5.11)

which gives

(5.12)

158

Model building with AC analysis

Building a full system model from block models using AC analysis is different from

transient analysis case because for simulation in the frequency domain the output of one

block is not fed to the next. In AC analysis we are interested in the transfer function of

the circuit, that is the magnitude and phase of the output signal relative to the input

signal. By measuring the magnitude response in decibels we can add transfer functions

of sub-circuits to obtain full circuit transfer functions (Equation 5.15). For the example

circuit the p load block parameters, represented by the vector Lp, are included in the

sub-emulators to test their importance. Examination of the sub-emulators determines

the importance of Lp to the response. As Lp is shown not to be significant in the

sub-emulators it is substituted with a vector of nominal parameter values Lnom. From

the procedure in Section 5.4.1 the system of Figure 5.11 yields models of the form:

(5.13)

Note that the load term Ll is contained in the model for Yl . It should also be noted that

it is a function of (S2,X2). To fit a full system model therefore requires the elimination

of this term. One approach is to fit a separate model for Ll of the form

(5.14)

and use this in conjunction with the first two models to build the full model. However

for the example, simply fixing Ll at its nominal level produces good results. The full

159

system model then becomes

(5.15)

5.6.2 AC results

The methodology was applied to the preamplifier circuit (PA20) shown in Figure 5.3. An

emulator of the circuit was built from three separate sub-emulators of sub-circuits

formed according to the partitioning results of Section 5.3.2. The emulator was then

tested against simulations of the full circuit and compared with an emulator of the full

circuit built directly from simulations of the full circuit. Table 5.6 shows the results of

prediction at 50 new points (the simulator Y = J(X) evaluated at different parameter

settings, Xl, ... , XsO) for the three responses chosen. The Root Mean Squared Error

(RMSE) is defined as

(5.16)

where Y is the vector of n simulator results and Y is the vector of n predictions using

the model in question (in this case n = 50).

Range = max(response) - min(response) (5.17)

~Z:nSg~ is therefore a measure of fractional error due to model inaccuracy as it shows the

absolute error of prediction scaled by the range of prediction.

The results (Table 5.6) show the effectiveness of the partitioning technique in emulating

a large circuit. The emulator built from sub-emulators is at least as accurate as the full

160

11 Response 1 Block 1 Block2 Block3 1 Total Block 1 Full Circuit 11

RMSE 3.42 4.21 1.76e-1 5.32 6.11
20Hz Range 15.5 15.2 25.9 55.65 55.65

ft~ an e 2.20e-1 2.77e-l 6.8e-3 1.46e-1 1.68e-l

RMSE 4.23e-1 5.25e-2 2.67e-l 4.15e-1 4.05e-l
200Hz Range 7.24 5.1 10.3 15.76 15.76

ft~ an e 5.84e-2 1.03e-2 2.5ge-2 2.63e-2 2.57e-2

RMSE 2.78e-1 2.50e-2 2.84e-1 4.75e-1 4.83e-l
2000Hz Range 7.59 4.9 22.87 24.8 24.8
~
Railire 3.66e-2 5.1e-3 1.24e-2 1.8e-2 1.95e-2

Table 5.6: Model results

circuit emulator and more accurate in the first and third cases. The general ability to

model the first point accurately is hampered by the steepness of the response curve at

that point (point 2 in Figure 5.9).

5.7 Discussion

The methods described partition circuits in a linear fashion for more efficient analysis.

Decomposition of more complex systems may produce blocks which are connected to

each other in more complex ways. In these cases the method of experimentation may

need to be more sophisticated and further work is needed in this area to provide a more

generalised methodology of experimentation.

In the case study models were built to predict circuit response at three specific points

along the response curve. Table 5.6 shows that the models for the circuit response at

200Hz and 2000Hz are very acc1!rate and that the models constructed from blocks for

the points examined are at least as accurate as the models built for the full system. Both

full and block models built for the response at 20Hz however are not as accurate due to

161

the difficulty of modelling the response at such a steep point along the response curve

(Figure 5.9). A more comprehensive model of the system could be obtained by modelling

the whole response curve as described in Chapter 6.

The results show the technique of decomposing a circuit into sub-circuits for analysis

compares favourably with analysis of the whole circuit, producing slightly better results.

The ability to analyse large systems in blocks means that systems previously too large

for analysis can be tackled using the methodology outlined here.

5.8 Related work

Dividing complex circuits into sub-circuits for analysis has its foundations in graph

decomposition techniques. Analysis of decomposed circuits tends to be more efficient

because it takes advantage of the latency inherent in analysing large circuits [3]. It may

also be the case that in a given system, a sub-circuit is repeated a number of times

allowing the same emulator model to be used thereby increasing the utility of the

approach. Representing circuits with graphs highlights the topological relationship

between components [2]. Graphs of systems can be decomposed both directly [12] and

ierarchically [13] to increase efficiency and are also used to solve the VLSI min-cut

problem [9, 14], see Section 2.7. Topological analysis of circuits is also being used in

transistor circuit analysis [11].

5.9 Conclusion

In this chapter a method has been presented to decompose electronic circuit designs,

experiment on the resultant blocks and produce emulator models of the blocks to

162

emulate the full circuit. The resulting model can be used to optimize the circuit in the

manner described in Chapter 4. Methods for dealing with transient as well as AC circuit

analysis are presented and an example of a circuit split into three blocks for AC analysis

is given. Model building results show that considerable computation time is saved using

the partitioning procedure for a minimal loss in model accuracy. The model produced for

the circuit can be used in an optimization procedure to complete the RED process. The

method is particularly suited to modelling systems where clear boundaries can be

established between sub-systems. Further work should allow the generalisation of these

methods to a wider range of circuits for different forms of circuit partition.

163

References

[1] Maria C. Bernardo, Robert Buck, Lishin Liu, William A Nazaret, Jerome Sacks,
and William J Welch. Integrated circuit design optimization using a sequential
strategy. IEEE Trans. Comp. Aided Des., CAD-ll:361-372, 1992.

[2] L K Chen, B STing, and A Sangiovanni-Vincentelli. An edge-oriented adjacency
list for undirected graphs. Int. J Circ. Theory (3 Appl., 7:55-63, 1979.

[3] An-Cheng Deng. On network partitioning algorithm of large-scale cmos circuits.
IEEE Trans. Circuits (3 Systs., 36:294-299, Feb 1989.

[4] C Desoer and E Kuh. Basic Circuit Theory, page 654. McGraw-Hill, New York,
1969.

[5] C M Fiduccia and R M Mattheyses. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference, pages 175-181, 1982.

[6] Gary D Hachtel and Alberto L Sangiovanni-Vincentelli. A survey of third-generation
simulation techniques. Proceedings of the IEEE, 69:1264-1280, Oct 1981.

[7] Balakrishnan Krishnamurthy. An improved min-cut algorithm for partitioning VLSI
networks. IEEE Trans. Computers, C-33:438-446, May 1984.

[8] G Kron. Diakoptics: The Piece wise Solution of Large Scale Systems. MacDonald,
London, 1963.

[9] F Luccio and M Sami. On the decomposition of networks in minimally
interconnected subnetworks. IEEE Trans. Circuit Theory, 16(2):184-188,1969.

[10] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and
analysis of computer experiments. Statistical Science, 4:409-435, Nov 1989.

[11] A Sarmiento Reyes. Efficient pertitioning-based method to determine the upper
bound on the number of operating points in transistor circuits. lEE Trans. Circuits
and Systems, 141(4):258-264,1994.

[12] J Starzyk. Signal-flow-graph analysis by decomposition method. lEE Proceedings
Pt-G, 127:81-86, Apr 1980.

[13] Janusz Starzyk and Edward SHwa. Hierarchic decomposition method for the
topological analysis of electronic networks. Circuit Theory And Applications,
8:407-417,1980.

164

[14] L Tao and Y C Zhao. Effective heuristic algorithms for VLSI circuit partition. lEE
Proceedings-G, 140(2):127-134, April 1993.

[15] G W Wasilkowski and H Woiniakowski. There exists a linear problem with infinite
combinatory complexity. Journal of Complexity, 9:326-337, 1993.

[16] Anatoly A. Zhigljavsky. Theory of Global Random Search, chapter 4. Kluwer
Academic Publishers, 1991.

165

Chapter 6

Circuit response modelling for

robust design

6.1 Introduction

The use of circuit simulators such as SPICE [3] is essential to the development of

complex electronic circuits where they are often used as a fundamental part of an

analysis scheme such as Monte Carlo or Robust Circuit Design as in Chapter 3. In

circuit simulation one seeks to measure the response of a circuit to a given input. This is

generally represented as voltage or current plotted against time or frequency. We are

interested in the frequency analysis of circuits where the designer specifies the range and

resolution of frequency values for simulation and the circuit response is measured at

these particular values. The frequency response of the circuit is typically displayed by

plotting these values and connecting them with straight lines using simple piecewise

linear interpolation. To obtain particular response values, such as peak frequency, from

166

f

f
t

I
I
t

I

the curve the computer will return the value of the nearest frequency point. As there is

only linear interpolation between these values the accuracy of the result is dependent on

the density of frequency points. The output of the circuit is a function of frequency

Yew). As highlighted in Chapter 5 when faced with a response curve a typical solution is

to model individual points on the curve to obtain responses which are scalar. In this

Chapter the problem of modelling a response function is addressed.

Section 2.3.2 provides a short description of the DACE model, Section 6.2 explores the

problem of modelling a response function while Section 6.3 describes a strategy for

modelling responses and improving the computational efficiency of the simulator during

RED experiments. Section 6.4 follows with an example.

6.2 Modelling a response function

One way of modelling a response function Y (w) is to include w in the vector

x = Xl,"" Xn of n input factors for an RED experiment. Instead of the usual

arrangement where we model

Yew) = f(x) (6.1)

with

Yew) = F(x) (6.2)

at discrete values of w, we can use the model

Yew) = F(x,w) (6.3)

167

Vout

Figure 6.1: PA20 circuit

to model the entire response function in the range of w used by the simulator for the

experiment.

6.2.1 Simulation

The circuit described in Chapter 5 is also used in this chapter to explore the ideas

presented. the study concentrates on the magnetic pick up transducer input ('Mag.J>U' in

I
Figure 6.1) for simplicity. Overall there are 79 input factors for the experiment, n = 78

for the vector x of circuit parameters plus one for the frequency factor. The circuit is

simulated in the frequency domain in the log scale over the range 15Hz to 25KHz with
t

100 points/decade, this gives a response curve with m = 324 simulation points, that is m i
evaluations of equation 6.1 at different w values. The curve is given in Figure 6.7. The

n = 78 usual input factors gives an RED experiment of 166 simulations using a Latin

hypercube sampling design of size 2n + 10 (see Section 3.3.2).

168

6.2.2 Model building

In order to construct a model the factor w needs to be included as a factor with the

input vector x. Following the procedure above gives 2n + 10 = 166 frequency response

curves each at m different frequency values which correspond to 166 different

configurations of x according to the design plan. This data needs to be rearranged prior

to model building so that the response is a single number and w is included with x.

For each trial in the experimental design plan s = xl. ... , X2n+lO there are m response

values corresponding to the m values of w. That is to say the effective number of trials

for the experiment becomes m X (2n + 10) = 53784 for our example. To include all the

data generated by the experiment yields an input matrix of (n + 1) x (m X (2n + 10»

which for our example generates a 79 X 53784 matrix. The model building exercise for

such an experiment is extremely large requiring roughly 30Mb of storage space for the

experiment data, this prohibits model building which requires even more memory. For

the purposes of demonstration the factor w is treated as an ordinary factor of the Latin

hypercube sampling design plan and is divided into (2n + 10) evenly spaced values over

the range 15Hz to 25Khz (log scale) and included with the n input factors, preserving

the number of trials at (2n + 10).

In practice the original LHS design plan is used with a single column added for w with

the values of this column set at (2n + 10) evenly spaced values. The corresponding

response values are then single points from each of the (2n + 10) curves generated in the

RED experiment.

6.2.3 Results

169

r

MLE RESULTS

NUMBER OF LINEAR MODEL PARAMETERS IS: 1
Variable Beta Std. Err. t-val

Constant 6.3213e+00 O.OOOOe+OO Inf

GAMMA= 0.0000
THETA= 2.6753e-02 2.2063e-ll 1.4597e-07 1.6416e-03 4.7643e-09
THETA: 1.866ge-08 9.0892e-07 3.6376e-ll 1.3547e-Ol 3.3688e-02
THETA: 4.7643e-09 6.7353e-03 1.3382e-ll 3.1131e-08 5.1425e-05
THETA= 4.7643e-09 4.9230e-12 1.3532e-02 5.472ge-09 5.7643e-09
THETA= 5.7643e-09 1.0008e-Ol 5.7296e-03 1.666ge-08 9.452ge-07
THETA= 4.7643e-09 4.7643e-09 1.2608e-Ol 8.0791e-03 9.5453e-02
THETA= 3.860ge-05 4.7643e-09 1.2066e-Ol 1.0882e-Ol 6.7353e-03
THETA: 4.7643e-09 1.7676e-02 5.296ge-03 9.6694e-08 4.9230e-12
THETA= 4.7643e-09 1.666ge-08 4.7643e-09 4.7643e-09 5.7643e-09
THETA= 4.7643e-09 5.7643e-09 4.7643e-09 3.6500e-07 7.7643e-09
THETA: 4.7643e-09 1.4517e-02 5.3585e-03 9.6694e-08 4.7643e-09
THETA= 7.6321e-03 1.0101e-ll 4.7643e-09 4.7643e-09 5.9526e-05
THETA= 3.171ge-06 4.7643e-09 1.666ge-08 3.3500e-07 4.7643e-09
THETA=
THETA=
THETA=
POWER=
POWER=
POWER:
POWER=
POWER:
POWER=
POWER=
POWER=
POWER=
POWER=
POWER=
POWER=
POWER=
POWER=
POWER=
POWER=

5.7643e-09 1.4202e-05 2.0723e-07 2.3824e-08 1.9241e-06
2.1623e-02 7.080ge-07 1.2387e-07 6.441ge-03 1. 18.10e-11
5.7643e-09 2.1964e-02 2.8077e-03 2.1417e+Ol
1.7797e+00 1.649ge+00 1.9994e+00 1.999ge+00 1.7898e+00
1.9984e+00 1.9994e+00 1.0946e+00 2.0000e+00 1.0095e+00
1.7898e+00 1.4950e+00 1.6635e+00 1.8995e+00 1.5590e+00
1.7898e+00 1.6635e+00 1.0018e+00 1.9860e+00 1.9994e+00
1.9994e+00 1.9842e+00 1.9890e+00 1.9994e+00 1.9994e+00
1.7898e+00 1.7898e+00 1.999ge+00 1.9890e+00 1.9997e+00
1.9626e+00 1.7898e+00 1.9977e+00 1.9991e+00 1.0038e+00
1.7898e+00 1.9991e+00 1.9626e+00 1.9560e+00 1.7633e+00
1.7898e+00 1.9994e+00 1.7898e+00 1.7898e+00 1.9994e+00
1.7898e+00 1.9994e+00 1.000ge+00 1.9994e+00 1.9984e+00
1.7898e+00 1.9954e+00 1.9780e+00 1.9560e+00 1.7898e+00
1.7898e+00 1.7818e+00 1.7898e+00 1.7898e+00 1.9994e+00
1.9862e+00 1.7898e+00 1.9994e+00 1.9925e+00 1.7898e+00
1.9994e+00 1.7220e+00 1.9984e+00 1.9984e+00 1.9985e+00
1.9968e+00 1.9925e+00 1.9925e+00 1.9455e+00 1.9175e+00
1.9994e+00 1.4105e+00 1.7498e+00 1.7780e+00

Figure 6.2: DACE model parameters for response function

170

---/
·20

r·. ! :

/
//

:.--..",.-.....-~

·10 10
Ac:t __ dB

20

Figure 6.3: Y vs. Y for the DACE model including w

The DACE model built from these data was used to predict the response curves

generated by the original RED experiment. The ERMSE of prediction (see Chapter 3)

for the model is 10.27 showing the model is not predicting accurately enough compared

with models constructed without w as an input factor (see next section). Analysing the

DACE model parameters of Table 6.2 shows that the 79th factor, w, has a value for 0

170 times larger than the next largest value. This implies that w completely dominates

the model and overshadows any effect other factors might have. This can be seen clearly

in Figure 6.3, a graph of true versus predicted response values. Figure 6.4 exposes this

by plotting Y and Y against w which shows the poor prediction property of the model

and both responses dependence on w.

171

!i

!i!

:0

& '0

0

~

I ~
0:

0 0
Key:

o - tru.e 7"esponse, Y

X - pred.icted response, Y
0
':"

l\l
1.5 2.0 2.' 3.0 3.' 4.0 4.5

Frequency,log(w)

Figure 6.4: Y and Y vs. w

6.2.4 Conclusion

The results of the model-building exercise show that the importance of w to the function

cannot be easily represented with this naive use of the DACE model. The loss of

information due to the need to reduce the data set generated by the RED experiment

makes the prediction model inaccurate and the dominating effect w as an input factor

tends to swamp the effects of the other input factors.

6.3 Modelling a family of functions

An alternative way of modelling the response curve to that given in the previous section

is to build what will be termed a meta-model emulator describing the response as a

function of w from an initial simulation. This model can then be used as a controller of

172

the more usual response emulators at carefully selected values of W to predict the

response at any frequency point.

A necessary part of the circuit design process is the ability to simulate the circuit under

different conditions (signal input, parameter values, temperature etc.) to observe changes

in response either manually or as part of a design strategy. These strategies necessarily

require many simulations of the same circuit at different input values producing what will

be called in this Chapter a 'family' of response curves which, although unique in terms of

the input values applied, display similar characteristics over a range of input values.

Once a meta-model is defined for the response of a particular circuit it can be used in

conjunction with further simulations of the circuit to reproduce the response curve. The

benefits of this method are twofold. First, the simulation of the circuit will be faster and

computationally more efficient due to the reduced number of frequency points needed to

be calculated by the computer to estimate the response. Second, the model can be used

as an interpolator to estimate the value of the response between frequency points.

The novelty of this technique is that the frequency points are chosen adaptively from the

first nominal or 'base' simulation. In statistical terminology the method is a two-stage

adaptive sampling strategy. At the first stage the choice of the special frequency points

for later use is made using a proven statistical technique, namely cross-validation

(CV) [1]. Each frequency point is assessed according to the change in the accuracy of the

fit as measured by the increase in root mean squared error (RMSE).

The base frequency vector for the first-stage simulation is written Wo the subsequent

simulations are carried out for siblings with frequencies Wl' The first stage simulation

has sample size (that is the number of frequency points) equal to no. The siblings each

173

have sample size nl giving a total sample size of

N = no + knl (6.4)

where k is the number of siblings.

Typically nl ~ no and hence N ~ (k + l)no which might pertain when each curve is

treated equally. Here nl is selected at different sample sizes (see the example) to

investigate the relationship between sample size and model accuracy. The key point is

that the nl points for the siblings simulations are a fixed subset of the base sample of no

points for the base simulation. The procedure is summarised as follows:

Stage 1 Simulate at no points then reduce sample size to nl using CV. This ranks each

frequency point in the set Wo according to its importance to the model through the

equation

i = 1, ... ,no (6.5)

where RM SEj is the root mean square of the model fit when the ith point is left

out of set Wo.

By taking a subset of the most important points for the model g(wo), that is points

with 6i greater than a predetermined cut-off value, the sample size can be reduced

to nl and the data fitted by a new model g(Wl)' In practice, because of the high

density of points for a large no, 6j will not vary much from point to point making

the choice of cut-off value difficult. A heuristic procedure to reduce the sample set

by taking a combination of the most important points (highest 6i 's) and every

second point from the remainder (or every fourth if there is evidence of

174

over-sampling) is used to compile nl points for re-modelling of the curve. The

cycle is then repeated with nl being reduced further until a suitable trade-off

between the sample size, nt, and the model accuracy (RMSE) is achieved.

Stage 2 Perform all future simulations at the selected points, Wl, and use the estimates

of the model parameters «(}i,Pi) from the first stage simulation to predict the

frequency response at all intermediate points.

The predictor (see Section 2.3.2) is of the form:

where gs(WI) is the set of nl responses from the current simulation at the

frequencies in Wl and r~ and Ra are taken from the modelling of the 'base'

simulation curve using the subset of nl frequency points.

6.4 Example

(6.6)

Data is collected from an experiment in which an electronic circuit is repeatedly

simulated at various input settings as part of a Robust Engineering Design (RED)

experiment and the curve modelling procedure applied. The circuit used is an audio

preamplifier with a frequency response of interest in the range of 15Hz to 20KHz. The

circuit contains 78 parameters which, using a Latin Hypercube Sampling (LUS) design

plan [2], were varied over 166 trials for the RED experiment. This produces a family of

166 frequency response curves showing the variation in response with respect to circuit

parameter values.

175

Pass Start Top points from Points 'thinned out' Total Mean
points CV ranking from remainder points ERMSE

1 324 52 68 from 272 120 6.0e-04
2 120 40 40 from 80 80 1.5e-03
3 SO 20 30 from 60 50 3.Se-02
4 50 20 15 from 30 35 1.4e-01
5 35 15 10 from 20 25 2.2e-01
6 25 15 5 from 10 20 4.3e-01
7 20 10 5 from 10 15 7.2e-01
S 15 5 5 from 10 10 1.7e+00

Table 6.1: Stages in sample point reduction

The circuit is simulated in the frequency domain in the log scale over the range 15Hz to

25KHz with 100 points/decade, this gives a response curve with 324 simulation points

for the 'base' simulation. Inspection of the CV results show 52 points with 6; > 0, these

points plus 1/4 of the remaining points (choosing every fourth point to thin out the set

speeds up thereduction process) gives nl = 120 as an initial reduction of no. The model

of the curve is recalculated with nl and CV used again to reduce nl further. Table 6.1

shows the effect of gradually reducing nl. The remaining 165 'sibling' curves can then be

estimated using a model comprising the parameters p and iJ from the model of the base

simulation at Wt and the nl frequency responses from simulating the circuit at Wt.

To explore the relationship between estimated RMSE (ERMSE) and the sample size, nI,

the modelling procedure is repeated for all sizes of nl summarised in Table 6.1. The

effect of reducing the sample size can be seen in Figure 6.5 where the average ERMSE of

prediction for the 165 sibling curves is plotted against sample size nl. For example the

best 25 from 324 start points account for most of the root mean squared error. This plot,

and that of Figure 6.6, is achieved by comparing the predicted responses with the actual

simulations at the full 324 simulation points carried out for the purpose of validating the

176

.. o

20 40 60

S.mpl.,Iz.

60 lOO 120

Figure 6.5: Mean ERMSE of prediction for 165 sibling curves vs. sample size nl

method.

Figure 6.7 shows a sample distribution of the ERMSE of prediction for sibling curves at

the favoured size of nl = 25.

The sample size can be reduced from 324 to 25 points without loss of accuracy (mean

ERMSE for prediction of sibling curves = 0.22). This improves the efficiency of the

simulation process by reducing the number of simulation points for every new circuit

simulation. The chosen 25 points are shown along the circuit output curve in Figure 6.7.

Referring to the prediction model, equation 2.9 in Section 2.3.2, the model fitted to the

base simulation at 25 points has the parameters

e = 13.473 p = 1.4023 (6.7)

for prediction (note that i = 1 for this case).

177

I
0.0

I
0.5

I
1.0

ERMSE

I
1.5

I
2.0

Figure 6.6: Prediction of sibling curves with model nl = 25.

~~-----r------'------'------'------'------'------T
1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 6.7: Subset of nl = 25 points taken from the base simulation.

178

From Figure 6.6 the sample distribution shows two curves for which the modelling

process yields a relatively high ERMSE of over 2. On inspection of these curves (Figure

6.8) it can be seen that the error stems from an inaccurate initial tracking of the curve

and, for the most part, the model is accurate over the remaining frequencies. If this part

of the response were deemed to be critical then more points could be added here to

improve the modelling.

Finally the nl = 25 point meta-model is used to predict the response curves generated

by the simulator of the circuit for a new set of input observations. This involves the

following procedure

i. Perform an experiment to generate a DACE model for each frequency response Yi

where i = 1, ... , nI, generated from the selected frequency vector Wl.

ii. For a new set of observations, predict the responses, Yi at the nl frequency values.

iii. Use the predictions in the meta-model to predict the response at the other

frequency values, call these Y i.

IV. Compare the meta-model predictions with the simulator to verify the technique

using the equation

m
L::no (y' .. y'.)2

i 1 IJ- IJ

mean ERMSE =.E ...:...-___ n..;.o __ _

j=1 m
(6.8)

The mean ERMSE of prediction at the full no = 324 frequency points for m = 50 curves

is 0.230 showing the technique to be accurate. Figure 6.9 shows the 324 true (simulator)

response values vs. those predicted using the meta-model for the worst case. Note the

179

o

4
Frequency, log(w)

2 3 4
Frequency, log(w)

Figure 6.8: Worst two curve predictions with 25 point model.

180

0

~ '"
:9-
.~
Cl

1 ..
a;
!;. S!

I
!!
i
:;;
~
Q.

0

o

-40 -20 o
True response (Relative Gain (dB))

20

.. ..

Figure 6.9: Worst predictions (ERMSE= 1.81) using meta-model.

outlier corresponding to a badly predicted point very similar to the one in the top graph

of Figure 6.8.

6.5 Discussion

The principle established is that both the model parameters and the choice of frequency

points can be based on a single initial simulation with substantial gain in computational

time and without significant loss of accuracy. This is particularly useful in RED

experiments and in circuit optimization, when large numbers of frequency curves are to

be evaluated. The benefits of fast emulation of the simulator using statistical models are

preserved by careful selection of a limited number of sample points.

181

References

[1] Noel Cressie. Statistics for Spatial Data, chapter 2, page 101. John WHey and Sons,
Inc., 1991.

[2] M. D. McKay, W J Conover, and R J Beckman. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21:239-245, 1979.

[3] L W Nagel. SPICE 2. A computer program to simulate semiconductor circuits. ERL
Memo ERL-M520. Univ. California, Berkley, 1975.

[4] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and
analysis of computer experiments. Statistical Science, 4:409-435, Nov 1989.

[5] D Ylvisaker. Prediction and design. The Annals of Statistics, 15:1-19, 1987.

182

Chapter 7

Design of experiments for

complex systems

7.1 Introduction

In this Chapter we explore the relationship between RED and system topology

developing a method for reducing the complexity of RED for large problems. This is

achieved by adding knowledge about a system to the experimental design plan of the

RED experiment. Instead of partitioning a system as in Chapter 5 we experiment on the

whole system and reduce the complexity of the experimental design plan by exploiting

topological information to tear the system. The tearing procedure described in

Section 2.4.2 is used and a method of constructing a blocked experimental design is

presented. The methods are illustrated with a case study of the decomposition and

analysis of an electronic circuit and we shall also make comparisons with experiments in

which all the factors are varied at the same time.

183

7.2 Complexity and experimental design

In Section 1.1.3 we defined complex systems as having a large number of interacting

elements and we repeat from Section 3.2.6 that the goal of RED is to model the

behaviour of a system with an emulator to estimate how system input factors affect

system response for optimization. Thus for a system Y = f(X) with n input factors

X = Xl, • •• , Xn and m responses Y = Yh . .. , Ym we fit the emulator of Section 1.11,

y = j(X). Experimental designs provide an efficient plan for testing a system at

different combinations of X values to determine their importance on system response Y.

Describing each input as a dimension, as in Section 1.2, for a range of values of X

normalised to [0,1], an input space can be defined which contains all possible

combinations of input factor values as [0, It. A point in this space corresponds with a

particular vector of input factor values over the defined range. Good experimental

designs minimise the number of points, or observations, required to fill the input space

by spreading themselves out effectively. For complex systems the dimension of input

space is large requiring a large number of points to effectively cover the input space, each

point representing an evaluation of the system f. This can be prohibitively expensive.

Chapter 5 was concerned with quantifying interactions between the input factors of an

electronic circuit by partitioning it into sub-circuits to reduce the task of modelling. This

has the effect of eliminating interactions between factors of different sub-circuits except

via the load blocks, effectively reducing the input space for the RED experiment. With

this method it is important to preserve the environment in which the sub-circuits

operate through the use of load blocks emulating the surrounding sub-circuits which are

assumed to be operating at nominal input factor levels. Here ~e avoid the use of load

184

blocks by considering the whole system for analysis but restricting the nature of the

experimental design plan. If the whole system is simulated this process is equivalent to

performing a single RED experiment as follows.

1. Define the sub-circuits but do not physically decompose the circuit.

ii. Perform an RED experiment on each sub-circuit keeping all other circuit factors at

their nominal level.

Hi. Build a single emulator of the simulator from the experiment.

U sing circuit topology to define sub-circuits provides the opportunity to streamline the

interactions between input factors which has the effect of restricting the input space.

The experimental design plan can take advantage of this by concentrating on areas

where interactions are more likely to occur. The circuit is decomposed only in the sense

that the input factors are grouped together for analysis, this compares directly with the

process of tearing a network for analysis. An important feature of the decomposition

applied in this Chapter is the creation of a border group of variables which acts as a

communication pathway between sub-circuits allowing a certain degree of interaction.

This replaces and improves on the limited amount of interaction allowed via the load

block parameters in Chapter 5.

7.3 Decomposition: tearing

The goal of decomposition here is to group together factors likely to share strong

interactions in an attempt to reduce the input space of the experiment. The method

used is related to Diakoptics [4] (ses Section 2.7.3) in that we look to decompose a

185

network into blocks joined by a connecting network. In Diakoptics the fact that it is

much easier to invert several small matrices rather than one large one is exploited to

reduce the computational effort required to solve the system equations. The connecting

network serves to link the smaller matrices together. The decomposition method

combines this idea with sparse matrix techniques where a matrix can be arranged in a

Bordered Block Diagonal (BBD) form to tear a circuit. We use the topology of the

circuit represented through the incidence matrix of its graph in the algorithm of

Section 2.4.2 (an implementation of an algorithm by Zecevic and Siljak [10]) to

decompose the incidence matrix into the BBD form.

7.3.1 The incidence matrix

The first stage in decomposing a circuit involves representing the circuit with an

undirected graph and using this to create an incidence matrix which is typically sparse.

We repeat the process described in Section 2.4.2 to highlight the similarity between the

formulation of the incidence matrix for circuit analysis and formulation for

decomposition. Given a circuit represented by a graph G, where the edges are circuit

components and the nodes are circuit nodes, the analysis problem can be formulated as

I=YxE (7.1)

where I is the current vector, Y the nodal admittance matrix and E the voltage vector.

This corresponds directly with circuit topology. For a circuit with n nodes and q

components the nodal admittance matrix, Y, is size n x n with 2 x q elements as Y is

symmetric about the main diagonal.

186

A circuit is represented as a graph 9(X,E) with a set of nodes X = {xt, ... ,xm } and

edges E = {el, ... , eq } representing respectively the circuit nodes and components. This

representation can be understood by comparing Figures 7.4 and 7.5. The unweighted

graph is mapped into an incidence matrix in symmetric form with 2q elements 1 the rest

O. The first step in forming the groups of factors is to create the incidence matrix from

the circuit. This is the same size as the nodal admittance matrix Y in equation 7.1, the

elements of the matrix I being defined as

Iij = ., for nodes i,j not connected, i,j = 1, ... , n.

Iij = X, for nodes i, j connected, i '# j, i,j = 1, ... ,n. (7.2)

This incidence matrix is analogous to the incidence matrix formed during the initial

stages of a nodal analysis for computer-aided circuit simulation, see Chua and Lin [2].

7.3.2 Forming the blocks

The main idea is to use the block structure given by the system decomposition to aid the

construction of the experimental design. Experience with this and other problems has

shown that with large systems the concept of a nominal or centre value is important.

Each individual block may affect the behaviour of other blocks, that is affect the causal

link to the output. It is a mistake to wholly isolate a particular block for purposes of

experimentation. An effective method is to allow an ordinary block only to 'see' the

nominal levels for the other blocks. The border is treated differently. It is connected to

every ordinary block and conceptually can be thought of as a communication pathway

between blocks. It is allowed to have a more varied relationship in the design with each

187

.~

Figure 7.1: Schematic of system decomposition.

block and itself. There are two important analogies of the border in related fields which

provide additional motivation:

i. in hierarchical control theory subsystems may only communicate via a

'coordinator' or 'controller' (Mesarovic, Macko and Takahara [6]), see Section 2.7.

ii. in Robust Engineering Design (specifically Taguchi methods, Section 1.3.2) the

'noise factors' may interact with any control (design) factor and the experiment is

designed to allow this by crossing noise and control factors. We can think of the

noise as an all-pervading medium which may potentially influence any control

factor.

The schematic of Figure 7.1 shows a system decomposed, using the method described,

into three blocks Gb"', G3 connected by a border B.

188

7.4 Experimental designs

To perform computer experiments on systems with a large number of interacting factors

(Le complex systems as defined in Section 1.1.3) requires the use of design plans capable

of efficiently filling the input space. Here three types of design are used in the case study

which follows to model the example circuit both with and without the decomposition

technique described. The designs are

L Basic LHS designs [5].

H. LHS due to Buck and Wynn [1].

iii. Lattice designs [8].

These design types were selected because of the size of the problem (Le number of input

factors) and the lack of knowledge about which factors and factor interactions are

important for the emulator. They are preferred to the more popular Taguchi-style

Orthogonal Array's (OA) for building prediction models. The benefit of orthogonality in

the design plan is that it is easier to attribute response variance to input factors in

studies such as ANOVA (analysis of variance). The use of full factorial design plans

(OA's) is limited because the size of design plan increases rapidly with the number of

factors. Fractional factorial designs preserve orthogonality and reduce the size of design

plan by not searching the input space fully for interactions, preferring to concentrate on

main effects. This can lead to poor prediction models if there are significant interactions

between input factors. Knowledge about interactions allows full factorial designs to be

reduced intelligently and can act as alternatives to the more usual space-filling designs.

189

l

Sc.he~.atic O]~ in.cide71ce ?natrix

G:OUD BOrCt2T
i -
~,

..., -
~ CLg es

~ -
.d 0 Y' Cl ;;; -;n

.L5 ,

~,b

GrO~1J
.:'"
L,-

2

::-'.~;r,J~
........., \....I..'~ L'-..'

;:0
-'2

.:::;~ 0 '(Ct f3 :~
~

.:.J
2

'" 7 :::,Qges

GrOUTI r .L

L,-
3

.,..., :
~ CLg2S

;:0
-'3

!30 r cZcr
:J

D3
en -
~ Cif/es

I

TO
.t; ,

Edges
r:'

.L"b

Eorlier
TO
.'--(
~2

" 7 ~ Ctges
r:'
~2b

BOTClcr
:J

JJ
4

£CZ,Cfr3S u

Figure 7.2: Schematic of BBD matrix.

Eci'g es g·rO:L ... Ded
i'l~=Q CZQC .. ~S

· > ·
• /

'\
I

>-,
\

/

· {'
,

/

.,

>
" ,
/

-, -,
:... +.:., z zo

-'-'b

.f
\'"{:'
.:........J -'-' jb
j= ,

The construction of basic and improved LHS designs and integer lattices is discussed in

Section 2.3.1.

7.5 Building the experimental design plan

The experimental design plan reflect~ the final graph produced by the partitioning

algorithm as follows. Each factor is represented by an edge.

i. For each block j all its edges Ej are grouped together with the set of edges in the

border, Ejb with which it has a common node in the final graph.

190

F' .LJ 3

.~.----\

Figure 7.3: Schematic of full experimental design plan.

191

ii. For block j of the experiment the factors, given by Ej U Ejb are varied while all

other factors are set at the nominal value, which is here taken to be the central

value of the range of the factor. This is repeated for j = 1, ... ,m. This part of the

experiment can be considered as a one-block-at-a-time experiment.

iii. The border factors, Eb, are varied in their own experiment in which all other

factors are set to nominal.

This is illustrated in Figures 7.2 and 7.3 which show how the experimental design plan is

derived from the decomposed incidence matrix. Figure 7.3 should be compared with a

basic experimental design plan (see Figure 3.2 for an example) to highlight the new

structure. Again, it is important not to consider the separate blocks as independent

experiments. While runs are conducted varying the levels of the factors within a block

the other blocks are still 'active' it is only that the complexity of the experiment is

reduced using the nominal settings. In effect we are operating in a restricted region of

input space closer to the overall nominal levels, or centre point of the whole experiment.

7.6 Case study

7.6.1 The system

An example circuit is used to develop the methods and is modelled using three different

design plans. Emulators of the circuit simulator are constructed and verified over both

full and restricted input spaces. The circuit is shown in Figure 7.4. It is the preamplifier

circuit used in Chapter 6 and is designed to provide input to an audio amplifier and

accept a wide variety of signal types. The output studied here is the frequency response

192

Vou"

Figure 7.4: Example circuit.

presented as characteristic curves of relative amplitude in decibels (dB) against the log

of frequency (log(w)). Five points Y}, ... , Ys on the response curve are chosen as

responses to be modelled, corresponding to frequencies log(w) = 2.07,2.33,3.15,4.40,5.19

respectively. In the experiments the factors represent the levels of resistance and

capacitance for 60 different circuit components. The simulator AccuSim, supplied by

Mentor Graphics (UK) Ltd., was used with the full integrated module for performing

robust design on electronic circuits described in Chapter 3.

7.6.2 Results

For the example circuit the incidence matrix I is given in Table 7.1, note the sparsity of

the matrix. This property is exploited to decompose the matrix into the BBD form of

Table 7.2. The algorithm used to form the BBD matrix from the incidence matrix is

fully described in Chapter 2. Figure 7.5 gives the final graph for the torn circuit.

Table 7.2 shows the results of decomposition. The elements of the BBD matrix

correspond with circuit components. Each block represents a group of connected

components, the groups themselves connected with each other via the components in the

border group. The BBD matrix is used to decompose the graph of the circuit to give the

193

· x . x . x . . x .. x . xx . x . x . xx . x . x .. x . x . x ..
x. x. . xx.
· .. xx. . . x.
x.x.x. .x.
· . xx. . . x.
x. .. xx .

. x. x. . x .

. XX. .XX.
. x . .xx.xx .
. x.xx ... XX.

· xx
x .. x x .. XX.

· .x.x. .x .. x. .x .
. x. x ...

x ... x. xx.
· . x. . .. x.
x. . .. x.
x. . x. . x .

x.

x.

. x. . x. . x.
. x.

. x.

. x .
. xx .. x.

. x. x
. x. xx.

x. . x. x.
x. . x. x .

. x .. xx
x. . x. x .

. x. .x .. XX.X.
xx. .x. .x .. x.

· x. . x ..
· x. . x. x.

x. .X.X.XX .
. x.x.

x. . xx. x .
. x. . x. xx.

xx. .x.x .
. x. .xx.x

... x.
Table 7.1: Sparse incidence matrix from PA20 circuit

194

.. x.. . X.

.. x.. . X.

. X.X.
. X .

. X ... X.
xx XXX .

. XXXX.X.
.XX.
. X.

.XXX.
xx. · X

· X .. X.
· X. X .. X.

... X.

. xx ..
· . x . X. . x .
. X.XX.
· . X .. X.
· XX .. X.

.XX.X.
· X .

· . x
· . x
· X .

· X .

.X
.X.X

. .. x

. X ..
· X .. x
· X .

.X
.X.X

.X
• X. . X .

. X. .XX. .X

. X.

. X.
XX ..

.XX.
. X. . X ..

. XX .. X. X ..

.XX.XX .
. XX.X .

. XX. . . x

. X.
· X ...

· . X .. X. . xx
· X. . . X.
· ... X ..
· .. X. xx. X.
· X .. X. xx ..

· XX .. X. . x
· .X .. X.XXX
· X. XX x

. ... X ..
· . X. X .. .

· XX. · . X X
. XXX.X .. XX .. · XXX .. X .

Table 7.2: Bordered block matrix from sparse matrix

195

Block ~/A'
/

/
/

If

B:oc'c 1 (8 Tl-od£s) " 1 28 32 33 34 35 36 37
B:oc'c 2 (11 '~odi3s) 234;5 6 7 11 13 14 15 16

Block 3

\\
, ..

B:oc~ 3 (15 nodes) 8 10 17 18 19 20 21 22 23 24 25 26 27 29 30
Bordi3r (4 r:oaes) 0 9 12 31

Figure 7.5: Graph of circuit.

groups highlighted in Figure 7.5. The border components are not grouped but act as the

connecting network through which groups can interact, similar to the connecting

network of Kron's Diakoptics.

Although the new block structure affects the experiment we have not, in this study,

allowed it to affect the initial model. Thus we fit the DACE model of Section 2.3.2,

fitting the parameters by maximum likelihood in the normal way. A more sophisticated

approach would take into account the sparse matrix methodology in the internal

numerical analysis of the statistical package itself. For example the estimation of the

parameters of the covariance function may be facilitated.

The final block sizes selected by the algorithm were 25, 19 and 17 factors (edges) for

ordinary blocks and 27 for the border. Table 7.3 presents the results of the experiment

using the block structure and using an experiment ignoring the block structure and for

three designs: D1 : simple Latin Hypercube, D2 : Improved Latin hypercube and D3: a

196

Full model predictions Block model predictions
Design type Response Full space I Restricted space Full space I Restricted space

Y1 3.740 2.361 5.029 2.381
Y2 0.432 0.316 0.610 0.324

Dl Y3 0.195 0.139 0.283 0.148
Y4 0.179 0.116 0.270 0.128
Ys 0.150 0.091 0.281 0.141
Yl 3.774 2.664 4.501 4.501
Y2 0.422 0.273 0.416 0.416

D2 Y3 0.246 0.173 0.264 0.264
Y4 0.246 0.142 0.229 0.229
Ys 0.153 0.089 0.211 0.211
Y1 4.378 2.467 6.397 3.563
Y2 0.467 0.254 0.698 0.353

D3 Y3 0.202 0.106 0.433 0.223
Y4 0.187 0.108 0.335 0.168
Ys 0.170 0.089 0.349 0.171

Table 7.3: Mean ERMSE for prediction at 500 points - 60 variable model

lattice design. For the latter the primitive root method ((ii.) in Section 2.3.1) was used

with prime power block sizes as close as possible to the values used in the first two

experiments. Thus, the sample sizes for Dl and D2 for the blocks and border were

respectively 60,48,44 and 64 and for the lattice, D3, the primes 61,47,47 and 61; in

both cases the total sample size is 216.

The entries of Table 7.3 are the mean squared error (MSE) of prediction at 500 test

points (trials) selected independently by a simple Latin Hypercube design. For each trial

there are five outputs Y1 , • •• , Ys which are the values of the frequency response at the

five selected frequency values stated in Section 7.6.1. Each frequency value was allowed

its own DACE model. Initial trials in which frequency was treated as an additional

factor incorporated into the experiment were not successful (see Section 6.2). (A

heuristic method for selecting frequency values for simulation using cross validation is

described in Chapter 6). Results are presented for each of three designs and for the four

197

..

"P L

L

-0.4 -0.2 0.0 0.2 0.4

Me8n~:~~J~ee~~~: !a~r.98 dB

-0.4 Fi.%for 'oI2r~nce r~n~e 0.4
Mean response value. 10.56 dB

A

~~~ __ ~ __ ~ __ ~ __ ~~A~ 
-0.4 -0.2 0.0 0.2 0.4 

Mean~:~~~~~e~~7~: ~a~%e05 dB 

-0.4 -0.2 0.0 0.2 0.4 
Facfor tolerance range 

Mean response value. ·3.07 dB 

It) 

~ Y3 dd 
Ete 0 

EE~~~ 0 

9 

0 
QBBBBB 

@~ 8 e
D 

I.BB 
Boil 

li BD 
BD i 

BD ~~~ BD 
BD ~~E 

B ~E 

6 ~ 

-0.4 -0.2 0.0 0.2 0.4 

Mean~:~P"C:~~ee~~~: ~~%948 dB 

Key to factors 

A : R4 
iJ. R1 
c: R18 
D: R28 
£: R36 
F: R38 

G: I'R2 
H: R2 
! .~33 
J: C19 
K: et8 
L: 3.24 

Figure 7.6: Factor plots of the 5 most important variables for the 5 responses Yt ,· .. , Ys. 

combinations of restricted/unrestricted experiment and restricted/unrestricted 

prediction region. Factor plots (see Section 3.3.4 for an explanation of factor plots) of 

the 5 most important factors for each of the five models are shown in Figure 7.6 for the 

restricted Lattice design experiment. 

Figure 7.7 shows a typical frequency response curve with the five selected values 

highlighted. The graphs are of fitted versus actual response for each frequency value and 

for the restricted Lattice design experiment. There is one frequency value, response Yt in 

Table 7.3, corresponding to the peak amplitude where the predictions are worse. 

Table 7.4 shows the results of prediction selecting the 20 'most significant' factors based 

198 



0 .. • 1il . .. . , 

. / iil 
~ 

> ~~ 

'" ~ 
.!I 

Cl> a: 
~ 

;! 

..,CD 
>- )! 

~ ~ 
~: E 

i 
u. 

. -. 
s . 

10 12 14 16 18 20 
Actual: V3 

. . 
10 20 

Ac1ual: VI 

/ .. 
r.' 

30 40 

. . 

10 12 14 
Ac1ual: V4 

.. .., 
Cl> 
E 
u. 

IQ-

III • 

15 

.'" ..1' ." . .' .. , 
' . . . 

20 25 
Ac1ual: V2 

.." . ' . . . 

Figure 7,7: Sample points and measured vs. predicted points for the 5 responses. 

Full model predictions Block model predictions 
Design type Response Full space I Restricted space Full space Restricted space 

LIIS Mk1 3 0.262 0.169 0.256 0.099 
LES Mk2 3 0.308 0.202 0.273 0.098 

Lattice 3 0.383 0.198 0.483 0.224 

Table 7.4: Mean ERMSE for prediction at 500 points - 20 variable model 

199 

30 

, 



/ __ ........ Block 1 

/ ZIJ""\ 
r-~ __ ~~~~~---"R2~O----~~~~~~--------~ ,. 

I 

"." «<19-; 

I H, 

37 34. . 
R3 36 

R2. 

... R" ///'/BIOCk 2 

"l"'.: CB I 
I 

,r' 

" 
I 

~o 

27 24 

-------

2Z . 
~, 

\ 

.r I 
J .. 

" 

/' 

9 \ R35 

;
/' 

, . 

Block 3 

4 J I ,jJ 

• tt,· C28 • R3B • ~~'.3 ,. !'f36 '4 

6 }l37 

\ 

" 
------

Figure 7.8: Graph showing 20 most important factors. 

simply on the size of the estimates of OJ, and only for the central frequency value. 

/' 

;' 
/ 

/ 

Figure 7.8 shows the subgraph containing only the significant factors (edges). It is of 

some interest that the significant factors for the selected response tend to form 'cliques' 

and that the border plays a strong connecting role. We should like to encourage the 

development of diagrams such as Figure 7.8 which weave together system structure and 

the statistical significance of components. 

7.7 Conclusions 

The following conclusions can be drawn. 

i. Despite the high dimensionality of the problem and except perhaps for the peak 

frequency the emulator model is effective. For example it may be used for fast 

optimization and sensitivity analysis. 

ii. There is an advantage in blocking, particularly if predictions are only needed over 

the restricted space. 

200 



iii. The single generator lattice designs work effectively for smaller dimensions and are 

strongly recommended as an alternative to Latin Hypercube designs. For larger 

dimensions it may be necessary to use more than one generator because some low 

dimensional projections of the design are not satisfactory when the dimension is 

too high relative to the sample size. 

The need to experiment on large systems should lead to newer styles of experimental 

design and analysis in which the structure of the experiment broadly reflects the system 

structure. It is essential to emulate the environment in which each subsystems lives. 

Lattice and other easy-to-generate codes are effective on examples but there is 

considerable theoretical and computational work needed to establish optimality for 

response surface models. 

By adapting a recently published algorithm to produce a BBD matrix from a sparse 

matrix the circuit factors, corresponding to elements in the matrix Y, can be grouped 

together with groups being connected with each other via factors in the matrix border. 

The groups of factors share the factors in the border and communicate with each other 

through them, Hence the analogy with Diakoptics where separate sets of equations are 

joined by a connecting network. Further development in the integration of sparse matrix 

techniques with RED should improve the efficiency of modelling systems for 

optimization, particularly in the area of emulator construction. 

201 



References 

[1] R J Buck and H P Wynn. Improving the distribution of points in a Latin 
Hypercube sample. Technometrics, submitted. 

[2] Leon O. Chua and Pen-Min Lin. Computer Aided Analysis of Electronic Circuits: 
algorithms and computational techniques. Prentice Hall Inc., Englewood Cliffs, New 
Jersey, 1975. 

[3] Gary D Hachtel and Alberto L Sangiovanni-Vincentelli. A survey of third-generation 
simulation techniques. Proceedings of the IEEE, 69:1264-1280, Oct 1981. 

[4] G Kron. Diakoptics: The Piece wise Solution of Large Scale Systems. MacDonald, 
London, 1963. 

[5] M. D. McKay, W J Conover, and R J Beckman. A comparison of three methods for 
selecting values of input variables in the analysis of output from a computer code. 
Technometrics, 21:239-245, 1979. 

[6] M. D. Mesarovic, D. Macko, and Y. Takahara. Theory of Hierarchical, Multileve! 
Systems. Academic Press, New York, 1970. 

[7] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. 
CBMS-NFS, SIAM, Philadelphia, 1992. 

[8] Fang K T and Wang Y. Number-theoretic Methods in Statistics. Chapman & Hall, 
London, 1994. 

[9] H. P. Wynn and A. A. Zhigljavsky. Fundamentals of Search. Springer-Verlag, New 
York, to appear. 

[10] A I Zecevic and D D Siljak. Balanced decompositions of sparse systems for 
multilevel parallel processing. IEEE Trans. Circuits (3 Systems-I: Fundamental 
Theory & Applications., 41(3):220-233, March 1994. 

202 



Chapter 8 

Conclusions 

There is a clear need for Robust Engineering Design methods to improve the design, 

manufacture and use of products and the analysis and optimization of systems in 

general. The application of state-of-the-art RED methods to real design problems is 

often hampered by the complexity of specific problems and the computer and time 

resources available. In this sense complexity can be defined as our ability to deal with 

the problem. The framework which has evolved for RED is summarised loosely as: 

i. define system inputs and responses of interest 

ii. design the experiment 

iii. do the experiment (real or simulated) 

iv. emulate the system with a simplified model 

v. optimize the system emulator 

vi. confirm results - repeat with reduced input space if more accuracy required 

203 



The work contained in this thesis is aimed at reducing the complexity of performing 

RED experiments for design optimization. This has been approached through the 

development of 

i. a common framework for RED 

11. global optimization of designs with respect to quality. 

lll. methods for modelling response functions 

iv. methods for the physical decomposition of systems for RED 

v. methods for reducing the input space of RED experiments 

The application of these methods to electronic circuit design problems has involved the 

use of partitioning algorithms, system decomposition methods, simulation theory, circuit 

optimization, experimental design and model building to electronic circuit design 

problems. 

The application of RED to circuit design problems is to some extent dependent on the 

problem itself. Different types of analysis require different approaches, in particular 

when systems are physically decomposed and this has been considered. The provision of 

software to perform RED on circuits within a commercial circuit simulation 

environment, using SPICE, has allowed experiments to be conducted quickly and 

efficiently and the collaborative project with Mentor Graphics (UK) Ltd. detailed in 

Chapter 3 provides a platform for this with some basic RED tools. 

A novel approach to system optimization is presented in Chapter 4. The notion of quality 

as discussed in Chapter 1 is encapsulated in a method of global system optimization 

where system emulators are combined with a global numerical optimizer. The issue of 

204 



system parameter tolerances is raised and incorporated into the optimization problem. 

Intelligent techniques are used for the analysis of complex systems represented by 

electronic circuits. Often in circuit analysis the response to be modelled is a function of 

time or frequency and this leads to the idea of including these as parameters in the 

emulator models of the system. This however proved to be impractical due to limitations 

in computer power and the overwhelming effect the importance of these parameters has 

on the emulator model obscuring the effects of the system parameters. A different 

approach to the integration of RED and simulation is needed. The rationale which 

emerged is to form a tiered arrangement of emulators to model a large system drawing 

from systems theory where a controller is used to direct sub-systems. 

In tackling the issue of complexity in RED two decomposition strategies have been 

employed to simplify the problem and are categorised as partitioning and tearing, the 

distinction being that partitioning involves a physical decomposition of the system 

whereas tearing decomposes system parameters into a set of connected groups without 

affecting the physical structure of the system. Another useful di~tinction between the two 

methods is that in partitioning the system equations are formulated after decomposition 

and in tearing they are formulated before decomposition. Both methods use the topology 

of the system represented by an undirected graph as the metric for decomposition. 

Partitioning follows the lines of direct decomposition where sub-systems are formed and 

modelled independently, the emulation models being combined for optimization of the 

whole system at the final stage. This is particularly useful where a system is too large to 

be analysed whole or where different types of analysis are required for the subsystems. 

205 



Tearing provides a way of incorporating system information into the experimental design 

plan for more efficient experimentation and modelling for RED. The exploitation of the 

special design plans for more efficient emulator building is a logical next step for this 

work. 

The examples given show that adopting the techniques presented provides a significant 

reduction in the complexity of performing RED on large problems. 

8.1 Future work 

The case studies detailed in this thesis relate to the analysis of electronic circuits. There 

are several issues raised in the analysis of circuits which constitute areas of future work. 

These include: 

i. Linking non-linear device model parameters with manufacturing parameters. 

ii. Dealing with feedback loops and other non-linearities in the decomposition of 

circuits. 

Ill, Mixed-mode simulation and circuit decomposition. 

iv, Use of different techniques for system decomposition such as clustering algorithms 

and the integration of decomposition with analysis. 

It should be noted however that the issues raised in (ii) and (iii) are only applicable if 

the circuit is physically partitioned as in Chapter 5. 

On a more general level the direction of research in this thesis highlights several issues in 

the design of complex systems: 

206 



i. The efficient use of RED requires the integration of experimental design and model 

building with knowledge of the system under observation. System parameters may 

be difficult to change and this may have a bearing on the order of experimentation. 

Including engineering knowledge such as system topology or known relationships 

between subsystems/parameters is desirable and a framework for doing this easily 

would make the RED process more efficient. 

ii. Expansion of the scope of RED experiments to other engineering fields, notably 

mechanical engineering, is required especially for the effective use of RED in 

product development which typically incorporates several types of engineering. 

The definition of system parameters in areas such as mechanical engineering is 

critical as this restricts the solution space of the problem. Of particular importance 

is the choice of geometric parameters. 

Hi. Intelligent techniques for dealing with complex systems need to be incorporated 

into real software tools which close the loop of design synthesis and analysis. The 

use of such tools speeds up the analysis of new design solutions and acts as a , 
catalyst for creative design and innovation. 

It is hoped that the techniques and ideas presented in this thesis prove useful in the 

continuing development of tools for design analysis and necessary integration of analysis 

and synthesis in design. 

207 



Appendix A 

C routines 

A.I Improved min-cut algorithm 

1*************************************************************** 
Algorithm copied from the Fiduccia & Mettheyeses paper. 
File mc.list contains the network information. 
File blockA.in gives the initial partition of the network. 

***************************************************************1 
#include <string.h> 
#include <malloc.h> 
#include <stdio.h> 
#define EOL '\n' 
#define NODEMAX 2000 
#define CELLNAMEMAX 5 
#define TRUE 1 
#define FALSE 0 

typedef int boolean; 

typedef struct { char name[CELLNAMEMAX]; } NAME; 

1* define structure for BUCKET which will be 2 doubly-linked lists.*1 

typedef struct dlist { 
int dcell; 
struct dlist *leftp; 
struct dlist *rightp; 
} 

DLIST; 

1* by using a lookup table to keep the cell names 
we can use the same data structures for both lists *1 

typedef struct list { 

208 



int graph_ref; 
DLIST *cell_ptr; 
int block~location; 
struct list *next; 
} 

LIST; 

1* set up pointers for each element in cell_array & net_array *1 
LIST *ca_start[NODEMAX]. *ca_point[NODEMAX]; 
LIST *na_start[NODEMAX]. *na_point[NODEMAX]; 
NAME lookup[NODEMAX]; 
DLIST *bucket_a.*bucket_b; 
int *FREE_CELL_LIST.pmax.ncells.nnets; 
int A_MAXGAIN.B-MAXGAIN.bal_tol; 

1*-----------------------------------------------*1 
1* function rb_abs computes absolute value of x. use this *1 
1* because couldn't get Sun library abs function to work *1 
1*-----------------------------------------------*1 
int rb_abs(int x) 
{ 

} 

if(x<O) x=(-1)*x; 
return(x); 

1*----------------------------------------------*1 
int *AllocInt(int n) 
{ 

} 

int *B; 
B = ( int *) calloc(n,sizeof(int»; 
return B; 

1*-----------------------------------------------*1 

1***************************************************************1 
LIST* insert(int thing. LIST *old_pointer) 
{ 

LIST *pointer; 

pointer = (LIST *)malloc(sizeof(LIST»; 
if (pointer == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit (1) ; 

209 



} 

pointer->graph_ref = thing; 
pointer->next = old_pointer; 
return(pointer); 

1***************************************************************1 
void printout(int total, int total2) 
{ 

} 

int i=O; 

for (i=O;i<total;i++) 
{ 

printf ("Yes 11 ,&:lookup [i]) ; 
for (ca_point[i]=ca_start[i]; 

ca_point[i] != NULL; 
ca_point [i]=ca_point [i]->next) 

{ 

printf(I%5d", ca_point[i]->graph_ref); 
} 

printf("\n"); 
} 

for (i=O;i<totaI2;i++) 
{ 

printf("%3d ",i); 
for (na_point[i]=na_start[i]; 

na_point[i] != NULL; 
na_point[i]=na_point[i]->next) 

{ 

printf("%s ", lookup[na_point[i]->graph_ref]); 
} 

printf("\n"); 
} 

1***************************************************************1 
I*input file syntax: # of cells &: # of nets, followed by lines of 

cell names with nets they are connected to. 
NOTE : nets must be named zero to # of nets *1 

int input_dataO 
{ 

NAME cell_name; 
char c; 
int i,net_value,pincount; 
int pmax=O; 

210 



} 

FILE* in; 
in = fopen("mc.list","r"); 

fscanf(in,"%d",&ncells); 
for (i=O;i<ncells;i++) ca_start[i] = NULL; 

fscanf(in,"%d",&nnets); 
for (i=O;i<nnets;i++) na_start[i] = NULL; 

for (i=O;(c=fgetc(in)!=EOF;i++) 
{ 

} 

ungetc(c,in); 
fscanf(in,"%s",&cell_name); 

1* set up lookup table for cell names*1 
lookup[i] = cell_name; 
pincount=O; 

while «c=fgetc(in»)!=EOL) 
{ 

} 

pincount++; 
ungetc(c,in); 
fscanf(in,"'l.d",&net_value); 

ca_point[i] = ca_start[i]; 
ca_start[i] = insert(net_value,ca_point[i]); 

na_point[net_value] = na_start[net_value]; 
na_start[net_value] = insert(i,na_point[net_value]); 

if (pincount>pmax) pmax=pincount; 

fclose(in); 
l*printout(ncells,nnets);*1 
return(pmax); 

1***************************************************************1 
I*use location info in cell array to count # of cells in a 
specified block on a specified net *1 
1***************************************************************1 
int count_cells(int block, int net) 
{ 

int count=O; 
LIST *net_ptr, *cell_ptr; 

211 



} 

net_ptr = na_start[net]; 
while (net_ptr != NULL) 
{ 

} 

cell_ptr = ca_start[net_ptr->graph_ref]; 
if (cell_ptr->block_location == block) count++; 
net_ptr = net_ptr->next; 

return(count); 

/***************************************************************/ 
boolean balance(int movecell) 
{ 

} 

int i,asum=O; 
int rtn_vec; 

if (movecell!=-1) 
{ 

} 

/*************************** 
find the # of cells in block A. 

***************************/ 
for (i=O;i<ncells;i++) 

if (ca_start[i]->block_location==O) 
asum++; 

/*************************************** 
adjust for movement of test cell 'movecell'. 

***************************************/ 
if (ca_start[movecell]->block_location==O) 

asum--; 
else asum++; 

/************************************* 
find 1. difference in integer form from zero 
*************************************/ 
rtn_vec=(int )«(asum*100)/ncells)-50); 
rtn_vec=rb_abs(rtn_vec); 

else rtn_vec=50; 
return(rtn_vec): 

/***************************************************************/ 
int *select_cell(int block,int maxgain) 
{ 

int F,T,cell,net,fblk,tblk; 

212 



} 

int best_cell=(-l),best~f=(-l),best_t=(-l)j 
DLIST *dpointer; 
LIST *pointer; 
int rtn_vec[3]; 

if (maxgainl=(-pmax-l» 
{ 

} 

if (block==O) dpointer=&bucket_a[maxgain+pmax]j 
else dpointer=&bucket_b[maxgain+pmax]; 

while (dpointer->rightpl=NULL) 
{ 

} 

F=Oj 
T=O; 
dpointer=dpointer->rightpj 
cell=dpointer->dcell; 
fblk=ca_start[cell]->block_location; 
if (fblk==O) tblk=lj else tblk=O; 
pointer=ca_start[cell]j 
while (pointerl=NULL) 
{ 

} 

net=pointer->graph_ref; 
F=F+count_cells(fblk,net); 
T=T+count_cells(tblk,net)j 
pointer=pointer->next; 

if «best_f==(-l» 11 (F<best_f) 
11 «F==best_f)&&(T>best_t») 

{ 

} 

best_f=F; 
best_t=T; 
best_cell=cell; 

rtn_vec[O]=best_celljrtn_vec[1]=best_f;rtn_vec[2]=best_tj 
return(rtn_vec)j 

1*****************************************************************1 
I*Select cell to move from one block to another. Use select_cell 
to get best cell from each group then use balance to pick to base cell. 
In the event of a tie the cell with the best balance coeff is chosen. 

*****************************************************************1 

213 



{ 

} 

best_a=select_cell(O,A_MAXGAIN)[O]; 
if (best_a!=-l) gain_a=A_MAXGAIN; 
else gain_a=(-pmax-l)j 

best_b=select_cell(l,B_MAXGAIN)[O]j 
if (best_b!=-l) gain_b=B_MAXGAIN; 
else gain_b=(-pmax-l); 

if «best_a!=-l)&&(best_b!=-l» 
{ 

} 

if (gain_a>gain_b) 
{ 

} 

if (balance(best_a)<=bal_tol) base_cell=best_a; 
else base_cell=best_b; 

if (gain_a<gain_b) 
{ 

} 

if (balance(best_b)<=bal_tol) base_cell=best_bj 
else base_cell=best_aj 

if (gain_a==gain_b) 
{ 

} 

if (balance(best_a)<=balance(best_b» base_cell=best_aj 
else base_cell=best_bj 

else if «best_a!=-l)&&(best_b==-l)&&(balance(best_a)<=bal_tol» 
base_cell=best_aj • 

else if «best_a==-l)&&(best_b!=-l)&&(balance(best_b)<=bal_tol» 
base_cell=best_bj 

else base_cell=(-l)j 

return(base_cell); 

/************************************~*****************************/ 
/*Select cell to move from one block to another. Use select_cell 
to get best cell from each group then use balance to pick to base cell. 
In case of a tie use extra info from select_cell to get '2nd order gain' 
and choose cell which is more likely to give an improvement next move. 

******************************************************************/ 
int select_base_cell() 
{ 

214 



int best_a,best_b,gain_a,gain_b,base_cell; 
int Fa, Ta, Fb, Tb; 

best_a=select_cell(O,A_MAXGAIN)[O]; 
Fa=select_cell(0,A_MAXGAIN)[1]; 
Ta=select_cell(0,A_MAXGAIN)[2]; 
if (best_a!=-1) gain_a=A_MAXGAIN; 
else gain_a=(-pmax-1); 

best_b=select_cell(1,B_MAXGAIN) [0]; 
Fb=select_cell(1,B_MAXGAIN)[1]; 
Tb=select_cell(1,B_MAXGAIN)[2]; 
if (best_b!=-1) gain_b=B_MAXGAIN; 
else gain_b=(-pmax-1); 

if «best_a!=-1)&&(best_b!=-1)) 
{ 

} 

if (gain_a>gain_b) 
{ 

if (balance(best_a)<=bal_tol) base_cell=best_a; 
else if (balance(best_b)<=bal_tol) base_cell=best_b; 

} 
if (gain_a<gain_b) 

.{ 

if (balance(best_b)<=bal_tol) base_cell=best_b; 
else if (balance(best_a)<=bal_tol) base_cell=best_a; 

} 
if (gain_a==gain_b) 
{ 

} 

if «balance(best_a)<=bal_tol)&&(balance(best_b)<=bal_tol)) 
{ 

} 

if «Fa<Fb) I I «Fa==Fb)&&(Ta>=Tb))) 
base_cell=best_a; 

else base_cell=best_b; 

else if (balance(best_a)<=bal_tol) base_cell=best_a; 
else if (balance(best_b)<=bal_tol) base_cell=best_b; 
else base_cell=(-1)j 

else if «best_a!=-1)&&(best_b==-1)&&(balance(best_a)<=bal_tol)) 
base_cell=best_aj. 

else if «best_a==-1)&&(best_bl=-1)&&(balance(best_b)<=bal_tol)) 
base_cell=best_bj 

else base_cell=(-1)j 
return(base_cell)j 

215 



} 

1***************************************************************1 
void dremove(int cell) 
{ 

DLISH dptr; 

dptr = ca_start[cell]->cell_ptr; 
dptr->leftp->rightp = dptr->rightp; 
if (dptr->rightp != NULL) dptr->rightp->leftp = dptr->leftp; 
I*free((char *)dptr);*1 I*pointer addr. is char in C++ *1 
ca_start [cell]->cell_ptr = NULL; 

} 

1***************************************************************1 
I*place cell in dlist at new gain position*1 
void move_dcell(int cell. int gain_change) 
{ 

dptr = old_ptr = ca_start[cell]->cell_ptr; 

I*point to head of new gain dlist*1 
while (dptr->leftp != NULL) dptr = dptr->leftp; 
if (gain_change==l) dptr++; 
else if (gain_change==-l) dptr--; 

if (dptr->dcell != -1) 
{ 

printf("\nERROR : gain out of range."); 
printf(" Tried to change gain of %s by %d\n". 

lookup[cell].gain_change); 
} 

else 
{ 

I*printf("%s(%d). ".lookup[cell].gain_change);*1 
I*remove cell from old position*1 
old_ptr->leftp->rightp = old_ptr->rightp; 

if (old_ptr->rightp != NULL) 
old_ptr->rightp->leftp = old_ptr->leftp; 

,. 

I*put cell at head of new position*1 
old_ptr->rightp=dptr->rightp; 
if (dptr->rightp != NULL) dptr->rightp->leftp=old_ptr; 
old_ptr->leftp=dptr; 
dptr->rightp=old_ptr; 

216 

.. 



I*free«char *)old_ptr);*1 I*screws things up*1 
} 

} 

1***************************************************************1 
int max_gain_calc(int block) 
{ 

} 

int count; 
DLIST *dpointer; 

count=2*pmax; 
if (block==O) dpointer=&bucket_a[count]; 
else dpointer=&bucket_b[count]; 

while «dpointer->rightp==NULL)&&(count>-l» 
{ 

count--; 
if (block==O) dpointer=&bucket_a[count]; 
else dpointer=&bucket_b[count]; 
} 

count=count-pmax; 
return(count); 

1**************************************************************1 
void printbucket() 
{ 

int i; 
DLIST *dpointer; 

for (i=O;i«2*pmax+l);i++) 
{ 

dpointer=&bucket_a[i]; 
while (dpointer->rightp!=NULL) 
{ 

dpointer=dpointer->rightp; 
printf("A[Yod],dcell=Yos ",(i-pmax),lookup[dpointer->dcell]); 
if (dpointer->rightp==NULL) printf("\n"); 

} 

dpointer=&bucket_b[i]; 
while (dpointer->rightp!=NULL) 
{ 

} 

dpointer=dpointer->rightp; 
printf("B[Yod],dcell=Yos ",(i-pmax),lookup[dpointer->dcell]); 
if (dpointer->rightp==NULL) printf("\n"); 

217 



} 

} 

1***************************************************************1 
1* count the # of cut nets for the partition. 'sum' is used to 
break ties between moves to find the best move for the pass.*1 
int *count_cut_nets() 
{ 

LIST *pointer; 
int i,cut=O,cell_id,a_count,b_count; 
int sum=O,rtn_vec[2J; 

for (i=O;i<nnets;i++) 
{ 

a_count=b_count=O; 
pointer=na_start[iJ; 
do 
{ 

cell_id=pointer->graph_ref; 
if (ca_start[cell_idJ->block_location==O) a_count++; 
else b_count++; 
pointer=pointer->next; 

} while (pointer!=NULL); 
if «a_count!=O)&&(b_count!=O)) 
{ 

cut++; 
l*printf(IINet Y.d : A=Y.d, B=Y.d.\nll,i,a_count,b_count);*1 
sum=sum+(rb_abs«a_count-b_count))); 

} 

} 

} 
l*printf(IITOTAL=y'd.\nll ,sum);*1 
rtn_vec[O]=cut;rtn_vec[l]=sum; 
return(rtn_vec); 

.. 

1***************************************************************1 
1***************************************** 
initialize partition for blocks A and B. 

*****************************************1 
void partition() 
{ 

int i; 
int c; 
NAME tmp_cell_name; 
FILE* in; 
in = fopen(lIblockA.in ll ,lI r ll); 

218 



} 

1* read file and update cell array locations *1 
l*printf("Entering cells in Block A.\n ");*1 
while. «c=fgetc(in))! =EOL) 
{ 

ungetc(c,in); 
fscanf(in,"%s",&:tmp_cell_name); 
for (i=O;i<ncells;i++) 

if (strcmp«char *)&:lookup[i],(char *)&:tmp_cell_name)==O) 
ca_start[i]->block_location = 0; 

} 

fclose(in); 

1***************************************************************1 
void change_gainl(LIST *ptr, int change) 
{ 

} 

int cell; 
while (ptr != NULL) 
{ 

} 

cell=ptr->graph_ref; 
if (FREE_CELL_LIST[cell]==O) 

move_dcell(cell,change); 
ptr=ptr->next; 

1***************************************************************1 
void change_gain2(LIST *ptr. int change, int block) 
{ 

} 

int cell; 

} 

while (ptr != NULL) 
{ 

cell=ptr->graph_ref; 
if «FREE_CELL_LIST[cell]==O)&:&: 

(ca_start [ptr->graph_ref]->block_location==block)) 
move_dcell(cell.change); 

ptr=ptr->next; 

.. 

1***************************************************************1 
1***************************************************************1 
inU mincut 0 
{ 

int 
int 
int 

,. 

*rvec; 
i.gain.selected_net; 
gain_index; 

219 _ 



int from_count,to_count,base_cell,nmoves=O; 
int bestpass=O,ncutnets,best_cut; 
int F,T,cutbal,bestcutbal; 
int block; 
LIST *ref_ptr; 
DLIST *dref_ptr,*new_dptr; 
FILE* out; 

rvec=AllocInt(2); 

best_cut=nnets; I*set best_cut to a high number*1 
bestcutbal=nnets; 
block=O; 
A_MAXGAIN = -pmax; 
B_MAXGAIN = -pmax; 

for (i=O;i<ncells;i++) FREE_CELL_LIST[i] =0; 

{ 

} 

for (i=0;i«2*pmax+1);i++) 

bucket_a[i].rightp = bucket_a[i].leftp = NULL; 
bucket_b[i].rightp = bucket_b[i].leftp = NULL; 
bucket_a[i].dcell = bucket_b[i].dcell = -1; 

1***************************************** 
need to define an (A,B) cell distribution, 
i.e an initial split. 

*****************************************1 
1* initialize all cells to block B *1 
for (i=O;i<ncells;i++) ca_start[i]->block_location = 1; 

partitionO; 

1***************************************** 
compute initial gains for each cell given 
block_location info. 

******************************************1 
for (i=O;i<ncells;i++) 
{ 

gain = 0; 
ref_ptr = ca_start[i]; 
F = ref_ptr->block_location; 
if (F==O) T=1; else T=O; 
while (ref_ptr != NULL) 
{ 

220 -



} 

selected_net = ref_ptr->graph_ref; 
if (count_cells(F,selected_net)==l) gain++; 
if (count_cells(T,selected_net)==O) gain--; 

.ref_ptr = ref_ptr->next; 

I*compute MAXGAIN for both block A & B*I 
switch(F) 
{ 

case 0 : if (gain>A_MAXGAIN) A_MAXGAIN=gain; 
break; 

case 1 : if (gain>B_MAXGAIN) 
B_MAXGAIN=gain; 

break; 
} 

I*printf (It gain='l.d ,Lookup [i] ='l.s \nlt ,gain,lookup [i]) ; *1 
1************************************ 

add cell i to bucket A(O) or B(l) 
(corresponding to its location) 

at position [gain] 

**************************************1 
gain_index = gain + pmax; 1* alters index from +-gain*1 
if (F==O) dref_ptr = &bucket_a[gain_index]; 
else dref_ptr = &bucket_b[gain_index]; 

new_dptr = (DLIST *)malloc(sizeof(DLIST)); 
if (new_dptr == NULL) 
{ 

printf(ltNot enough memorylt); 
exit(l); 

} 

new_dptr->dcell = i; 
if (dref_ptr->rightp != NULL) 

dref_ptr->rightp->leftp = new_dptr; 
new_dptr->rightp = dref_ptr->rightp; 
dref_ptr->rightp = new_dptr; 
new_dptr->leftp = dref_ptr: 

1******************************************** 
for each cell in bucket need to point to it 

from cell array!! 
*********************************************1 
ca_start[i]->cell_ptr = new_dptr; 

} 

l*printf(It'l.d'l.d\nlt,A_MAXGAIN,B_MAXGAIN);*1 

221 



1*********************************** 
select cell to move from one block 
to another. Use balance() to 
find best cell in group then 
select block A or B. Then move cell 
with highest gain. 

************************************1 
base_cell=select_base_cell(): 
while (base_cell!=-l) 
{ 

nmoves++; 
I*printf("****************move y'd****************\n".nmoves); 
printbucket 0 ; 
printf("New MAXGAIN for A=Y.d. New MAXGAIN for B=Y.d\n". 

A_MAXGAIN.B_MAXGAIN): 

printf("base cell=Y.d\n".base_cell); 
printf("lookup[base cell]=y's\n".lookup[base_cell]):*1 

1********************************************** 
define 'from' and 'to' blocks here but do not 
change base cell location until after gain 
adjustment. 

**********************************************1 
F=ca_start[base_cell]->block_location; 

if (F==O) T=l; else T=O; 

1********************************** 
remove base_cell from bucket list 
and place it on free cell list. 

**********************************1 
dremove(base_cell); 
FREE_CELL_LIST[base_cell]=l; 

1********************************* 
recompute cell gains with the move 
of base_cell taken into account. 
- first work on nets which are 
critical before the move ...• 

***********************************1 
ref_ptr = ca_start[base_cell]: 
while (ref_ptr != NULL) 
{ 

selected_net = ref_ptr->graph_ref; 
l*printf("Cell Gain Changed On Net y'd For 

222 

".selected_net);*1 



from_count=count_cells(F.selected_net); 
to_count=count_cells(T.selected_net); 
l*prihtf(IIF(%d) = %d. T(%d) = %d.\n ll

• 

selected_net.from_count.selected_net.to_count);*1 

if (to_count==O) change_gain1(na_start[selected_net].1); 
else if (to_count==1) change_gain2(na_start[selected_net].-1.T); 

1************************************* 
... Now simulate move and work on nets 
critical now. 

***************************************1 
from_count--; 
to_count++; 

if (from_count==O) change_gain1(na_start[selected_net].-1); 
else if (from_count==1) 

change_gain2(na_start[selected_net].1.F); 

ref_ptr = ref_ptr->next; 
} 

1********************************************* 
Now change block location marker of 
base cell in cell array. 

***********************************************1 
ca_start [base_cell]->block_location=T; 

1********************************************* 
recompute MAXGAIN for each block. 

*********************************************1 
A_MAXGAIN=max_gain_calc(O); 
B_MAXGAIN=max_gain_calc(1); 

1********************************************* 
find.the # of nets that are cut with the new 
partition. 

*********************************************1 
ncutnets=count_cut_nets()[OJ; 
cutbal=count_cut_nets()[lJ; 

I*used to find best split in pass if gains tie*1 
if «ncutnets<best_cut)I I 

«ncutnets==best_cut)&&(cutbal<=bestcutbal))) 
{ 

best_cut=ncutnets; 
bestpass=nmoves; 
bestcutbal=cutbal; 

223 



} 

} 

out = fopen(lIblockA.in ll ,lIwll): 

for (i=O:i<ncells:i++) 
if- (ca_start [i] ->block_location -- 0) 

fprintf (out, 11 %s 11 ,lookup [i] ) : 
fprintf(out,lI\n ll ): 

fc1ose(out): 

1********************************************* 
print out results of this move. 

*********************************************1 
I*printout in group order*1 
l*printf(lI\nll

): 

printf(lI# of moves: %d. Moved cell = Y.s. # of cut nets = Y.d\n ll , 

nmoves,lookup[base_cell],ncutnets): 
printf(II--------------------------------\nll ): 

printf(IIGROUP A : 11): 

for (i=O:i<ncells:i++) 
if (ca_start [i]->block_location -- 0) 

printf (lIy'S 11 ,lookup [i]) : 
printf(lI\nll ): 

printf(IIGROUP B : 11): 

for (i=O:i<ncells:i++) 
if (ca_start [i]->block_location == 1) 

printf (II%S 11 ,lookup [1] ) : 
printf(lI\nll ):*1 

1*********************************************** 
find best cells to move next from each block 

***********************************************1 
base_cell=select_base_cell(): 

printf(IIThe best move was #Y.d, with Y.d net(s) cut.\nll , 

bestpass,best_cut): 
rvec[O]=bestpass: 
rvec[1]=best_cut: 
return(rvec); 

} 

I***********************************~**********************************1 
1**********************************************************************1 
main() 
{ 

int *best,*nextbest; 
int npass=l; 
FILE *out: 
best=AllocInt(2): 

224 



nextbest=AllocInt(2); 

printf(IIBalance ratio (0-50): 11); 

I*between 0 and 50. (+-y. tolerance allowed)*1 
scanf(lIy'dll ,&baLtol); 
printf(lI\nll); 
pmax=input_data(); 

bucket_a = (DLIST *)malloc«(2*pmax)+1)*sizeof(DLIST)); 
bucket_b = (DLIST *)malloc«(2*pmax)+1)*sizeof(DLIST)); 

FREE_CELL_LIST = (int *)malloc(ncells*sizeof(int)); 

printf(II#PASS Y.d #\nll,npass); 
nextbest[OJ=O;nextbest[lJ=O; 
best=mincut 0 ; 
while «best[OJ!=ncells)&& 

«best[OJ !=nextbest[OJ) I I (best[lJ !=nextbest[lJ))) 
{ 

npass++; 
printf(II#PASS Y.d #\nll,npass); 
nextbest=best; 
best=mincut 0 ; 

} 

out=fopen(lInew2. out 11 ,lIall ) ; 
fprintf (out, lIY.d Y.d Y.d\n ll ,npass, best [oJ , best [lJ) ; 
fclose(out); 

} 

A.2 Sparse matrix decomposition algorithm 

1*--------------------------------------*1 
Construct incidence matrix from SPICE circuit description 
Data structures copied from the min-cut program. 
File mc.list contains the network information. 

1*--------------------------------------*1 
#include <stdio.h> 
#include<malloc.h> 
#define bal_ratio 0.35 
#define EOL '\n' 
#define NODEMAX 70 
#define CELLNAMEMAX 5 
#define BORDER -1 

typedef int boolean; 
typedef struct { 

I*between 0 and 0.5 *1 

char name[CELLNAMEMAXJ; 

225 



} Name; 

typedef struct-list { 
int label; 
struct list *next; 
} List; 

typedef struct block { 
int name; 
int size; 
struct block *nextb; 
List *nets; 
} Block; 

typedef struct vertex { 
int name; 
int blksum; 
int netsum; 
Block *blocks; 
List *nets; 
struct vertex *nextv; 
} Vertex; 

1* set up pointers for each element in cell_array &; net_array *1 
Block *CA_START,*NA_START,*SC_START; 
Block *TC_START,*GP_START,*CUT_START; 

Vertex *V_START; 
Block *B_START; 

1* use LOOKUP table to keep the cell names*1 
Name *LOOKUP; 

int NCELLS,NNETS; 

I*Bob's Memory Routines---------------------*I 
int *AllocInt(int n) 
{ 

} 

int *B; 
B = ( int *) calloc(n,sizeof(int)); 
return B; 

1*--------------------------------------*1 
int **AllocInt2(int n, int p) 
{ 

int i; 

226 



} 

int **A; 
A = (int **) calloc(n , sizeof(int *)); 
for(i=O;i<n;i++) A[i]=Alloclnt(p); 
return A; 

�*----------------------~---------------*I 
char *AllocChar(int n) 
{ 

} 

char *B; 
B = ( char *) calloc(n,sizeof(char)); 
return B; 

1*--------------------------------------*1 
Name *AllocName(int n) 
{ 

} 

Name *B; 
B = ( Name *) calloc(n,sizeof(Name)); 
return B; 

1*--------------------------------------*1 
List* n_point_to(int name, List *start) 
{ 

} 

while (start!=NULL) 
{ 

if (start->label==name) return(start); 
start=start->next; 

} 
return(start); 

1*--------------------------------------*1 
Block* b_point_to(int name, Block *start) 
{ 

} 

while (start!=NULL) 
{ 

} 

'if (start->name==name) return(start); 
start=start->nextb; 

return(start); 

1*--------------------------------------*1' 
Vertex* v_point_to(int name, Vertex *start) 
{ 

while (start!=NULL) 
{ 

if (start->name==name) return(start); 
start=start->nextv; 

227 



} 

} 

return(start); 

�*------~-------------------------------*I 
List* insert(int thing, List *old_pointer) 
{ 

} 

List *pointer; 

pointer = (List *)malloc(sizeof(List»; 
if (pointer == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit(l); 

pointer->label = thing; 
pointer->next = old_pointer; 
return(pointer); 

1*--------------------------------------*1 
Vertex* vinsert(int thing, Vertex *old_vptr) 
{ 

} 

Vertex *vptr; 

vptr = (Vertex *)malloc(sizeof(Vertex»; 
if (vptr == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit(!); 

vptr->name = thing; 
vptr->nextv = old_vptr; 
vptr->nets = NULL; 
vptr->blocks = NULL; 
return(vptr); 

1*--------------------------------------*1 
Block* binsert(int name,int size, Block *old_bptr) 
{ 

Block *bptr; 

bptr = (Block *)malloc(sizeof(Block»; 
if (bptr == NULL) 
{ 

} 

printf(IINot enough memoryll); 
exit(!) ; 

228 



} 

bptr->name = name; 
bptr->size = size; 
bptr->nextb = old_bptr; 
bptr->nets = NULL; 
return(bptr); 

1*--------------------------------------*1 
void nvremove(Vertex *start,int net) 
{ 

} 

List *ptr,*prevptr; 

ptr=start->nets; 
while «ptr->label!=net)&&(ptr!=NULL)) 
{ 

} 

prevptr=ptr; 
ptr=ptr->next; 

if (ptr==start->nets) start->nets=ptr->next; 
else prevptr->next=ptr->next; 
free«char *)ptr); 

1*--------------------------------------*1 
void remove(Block *bptr,int net) 
{ 

} 

List *start,*prevptr,*ptr; 

start=bptr->nets; 
prevptr=NULL: 
ptr=start: 
while «ptr->label!=net)&&(ptr!=NULL)) 
{ 

} 

prevptr=ptr: 
ptr=ptr->next; 

if" (prevptr!=NULL) prevptr->next=ptr->next; 
else bptr->nets=ptr->next; 
free«char *)ptr): 

1*--------------------------------------*1 
Block* bremove(Block *bstart,int name) 
{ 

Block *prevbptr,*bptr; 

prevbptr=NULL; 
bptr=bstart: 
while «bptr->name!=name)&&(bptr->nextb!=NULL)) 

229 



} 

{ 

} 

prevbptr=bptr; 
bptr=bptr->nextb; 

if (bptr->nets!=NULL) free«char *)bptr->nets); 
if (prevbptr!=NULL) prevbptr->nextb=bptr->nextb; 
else 
{ 

} 

bptr=bstart; 
bstart=bstart->nextb; 

free«char *)bptr); 
return(bstart); 

1*--------------------------------------*1 
Vertex* vremove(Vertex *vstart.int net) 
{ 

} 

Vertex *prevptr.*vptr; 

prevptr=NULL; 
vptr=vstart; 
while «vptr->name!=net)&&(vptr!=NULL)) 
{ 

prevptr=vptr; 
. vptr=vptr->nextv; 

} 

if (vptr->nets!=NULL) free«char *)vptr->nets); 
if (vptr->blocks!=NULL) free«char *)vptr->blocks); 
if (prevptr!=NULL) prevptr->nextv=vptr->nextv; 
else 
{ 

} 

vptr=vstart; 
vstart=vstart->nextv; 

free«char *)vptr); 
return(vstart); 

1*--------------------------------------*1 
Block* copy(Block *start) 
{ 

Block *bptr.*newstart; 
List *ptr.*newptr; 

newstart=NULL; 
while(start!=NULL) 
{ 

230 

.. 



} 

} 

bptr=newstart; 
newstart~binsert(start->name,start->size,bptr); 

for(ptr=start->nets;ptr!=NULL;ptr=ptr->next) 
{ . 

} 

newptr=newstart->nets; 
newstart->nets=insert(ptr->label,newptr); 

start=start->nextb; 

return(newstart); 

1*--------------------------------------*1 
void sc_ini to 
{ 

} 

int i=1; 
I*need to do a -1 to get range of nets O->NNETS-1*1 
int size=O; 
Block *hptr,*nstart; 

SC_START=NULL; 
for (nstart=NA_START;nstart!=NULL;nstart=nstart->nextb) 
{ 

} 

hptr=SC_START; 
SC_START=binsert«NNETS-i),size,hptr); 
i++; 

1*--------------------------------------*1 
void printout(int total, int tota12) 
{ 

'It 

Block *start; 
List *cptr,*nptr; 
int i=O; 

start=CLSTART; 
for (i=O;i(total;i++) 
{ 

printf("y's ",&:LOOKUP[i]); 
for (cptr=start->nets; 

cptr != NULL; 
cptr=cptr->next) 

{ 

printf(IY.5d", cptr->label); 
} 

printf("\n"); 

231 



} 

start=start->nextb; 
} 

start=NA_START; 
for (i=O;i<tota12;i++) 
{ 

printf(lIy'3d lI.i); 
for (nptr=start->nets; 

nptr l= NULL; 
nptr=nptr->next) 

{ 

printf (lIy'S 11. LOOKUP [nptr->label] ) ; 
} 

printf(lI\nll); 
start=start->nextb; 
} 

1*--------------------------------------*1 
void printlist(List *ptr) 
{ 

} 

while (ptrl=NULL) 
{ 

printf(lIy'4d ll ,(ptr->label»; 
ptr=ptr->next; 

} 

printf(lI\nll); 

1*--------------------------------------*1 
void printblock(Block *start,char *lab) 
{ 

} 

Block *bptr; 

for(bptr=start;bptrl=NULL;bptr=bptr->nextb) 
{ 

} 

printf(lIy's Y.4d Y.4dn: II .1ab. (bptr->name). (bptr->size»; 
printlist(bptr->nets); 

1*--------------------------------------*1 
void printvertex(Vertex *start,char *lab) 
{ 

Vertex *vptr; 

printf(lI\nll); 
for(vptr=start;vptrl=NULL;vptr=vptr->nextv) 

232 



{ 

printfC"Y,s Y.4d Y.4d Y.4d :". 
lab. (vptr->name).vptr->blksum.vptr->netsum); 

printlist(vptr->nets); 
printblock(vptr->blocks."block 11); 

} 

} 

1*--------------------------------------*1 
I*input file syntax: # of cells. # of nets. then lines of cell 

names with nets they are connected to. 
NOTE : nets named zero to # of nets*1 

void input_data() 
{ 

Block *cstart.*nstart.*bptr; 
List *cptr.*nptr; 
Name cell_name; 
char c; 
int i.net_value; 

FILE* in; 
in = fopen("mc.list"."r"); 

fscanf(in. l y'd".&NCELLS); 
CA_START = NULL: 
for (i=O;i<NCELLS;i++) 
{ 

bptr=CA_START: 
CA_START=binsert«NCELLS-i-1).0.bptr); 
1*(-1) for range O-NCELLS*I 

} 

fscanf(in. l y'd".&NNETS); 
NA_START = NULL; 
for (i=O;i<NNETS;i++) 
{ 

bptr=NA_START; 
NA_START=binsert«NNETS-i-1).0.bptr); 
1*(-1) for range O-NNETS*I 

} 

LOOKUP=AllocName(NCELLS); 

i=O: 
while «c=fgetc(in»!=EOF) 
for (cstart=CA_START;cstart!=NULL;cstart=cstart->nextb) 

233 

.' 



{ 

} 

ungetc(c,in) ; 
fscanf(in,lIy'sll,&cell_name); 
1* set up LOOKUP table for cell names*1 
LOOKUP[i] = cell_name; 

while «c=fgetc(in»!=EOL) 
{ 

} 

i++; 
} 

ungetc(c,in); 
fscanf(in,lIy'dll,&net_value): 
I*adjust range [1 to NNETS] to [0 to (NNETS-l)] *1 
Ilnet_value--; 

cptr = cstart->nets; 
cstart->nets = insert(net_value,cptr); 

nstart=b_point_to(net_value,NA_START); 
nptr = nstart->nets; 

nstart->nets = insert(i,nptr); 

1*--------------------------------------*1 
void fprintmat(int **mat) 
{ 

int x,y; 
FILE* out; 

out=fopen(lIlookupll,lIwll); 
for (x=O;x<NCELLS;x++) fprintf(out,lIy's II,LOOKUP[x]); .. 
fprintf(out,lI\n ll ); 
fclose(out); 

out=fopen(lIviewmatll,lIwll); 
for (x=O;x<NNETS;x++) 
{ 

fprintf(out,lI\n ll ); 
for (y=O;y<NNETS:y++) 
{ 

if (mat [x] [y] ==0) fprintf(out, 1IY.3d 11 ,mat [x] [y]); 
else fprintf (out, IIy'S 11 ,LOOKUP [mat [x] [y] -1]); 

} 

} 
fprintf(out,lI\n ll ); 
fclose(out); 

234 



} 

out=fopen('~smatll ,IIW II ); 
for (x=O;x<NNETS;x++) 
{ 

fprintf(out,lI\n ll ); 
for (y=O;y<NNETS;y++) fprintf(out,IIy'2d 11 ,mat [x] [y]); 

} 

fprintf(out,lI\n ll ); 
fclose(out)j 

1*--------------------------------------*1 
int listlength(int group, Block *start) 
{ 

} 

int size=O; 
List *ptr; 
Block *bptr; 

bptr=b_point_to(group,start); 
for (ptr=bptr->nets;ptrl=NULL;ptr=ptr->next) size++; 
return(size); 

1*--------------------------------------*1 
I*count cells on each net and form group of 

border nets (group=-1)*1 
int *getord(int drnin) 
{ 

} 

int *dvec,size=O; 
List *gptr; 
Block *nstart; 

GP_START=NULL; 
GP_START=binsert(-1,size,NULL); 
dvec=Alloclnt(NNETS)j 
for (nstart=NA_START;nstart!=NULL;nstart=nstart->nextb) 
{ . 

dvec[nstart->narne]=listlength(nstart->narne,NA_START); 
if (dvec[nstart->narne]>=drnin) 
{ 

gptr=GP_START->nets; , 
GP_START->nets=insert(nstart->narne,gptr); 
GP_START->size++j 

} 
} 
return(dvec); 

235 

.' 



} 

1*--------------------------------------*1 
1* use cell & net lists to get dmat and SC_LIST *1 
void makesc(int **dmat) 
{ 

int x,y; 
List *cptr,*nptr,*scptr; 
Block *nstart,*cstart,*scstart; 

for (x=O;x<NNETS;x++) 
for (y=O;y<NNETS;y++) 
{ 

} 

if (x==y) dmat[x] [y]=O; 
else dmat[x] [y]=9; 

sc_init(); I*get list SC ready to fill in*1 
for (nstart=NA_START;nstart!=NULL;nstart=nstart->nextb) 
{ 

} 
} 

for (nptr=nstart->nets;nptr!=NULL;nptr=nptr->next) 
{ 

cstart=b_point_to(nptr->label,CA_START); 

} 

for (cptr=cstart->nets;cptr!=NULL;cptr=cptr->next) 
{ 

x=nstart->name; 
y=cptr->label; 

if (x!=y) 
{ 

} 

dmat[x] [y]=l; 
scstart=b_point_to(x,SC_START); 
scptr=scstart->nets; 
if (n_point_to(y,scptr)==NULL) 

scstart->nets=insert(y,scptr); 

1*--------------------------------------*1 
void maketc(int dmin,int *dvec) I*make TC from SC*I 
{ 

Block *tcptr; 
List *ptr; 

236 



} 

for (tcptr=TC_START;tcptr!=NULL;tcptr=tcptr->nextb) 
{ 

} 

if (dvec[tcptr->name]>=dmin) 
TC_START=bremove(TC_START,tcptr->name); 

else 
{ 

} 

for(ptr=tcptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 

} 

if (dvec[ptr->label]>=dmin) 
remove(tcptr,ptr->label); 

1*--------------------------------------*1 
Block* locate(int net,Block *start) 
{ 

} 

while (start!=NULL) 
{ 

} 

if (n_point_to(net,start->nets)!=NULL) return(start); 
start=start->nextb; 

return(start); 

1*--------------------------------------*1 
Block *incutlist(int a,int b) 
{ 

} 

Block *cutptr; 
cutptr=CUT_START; 
while (cutptr!=NULL) 
{ 

} 

if (cutptr->name==a) if (cutptr->nets->label==b) break; 
if (cutptr->name==b) if (cutptr->nets->label==a) break; 
cutptr=cutptr->nextb; 

return(cutptr); 

1*--------------------------------------*1 
void makegroups(int size) 
{ 

Block *tcptr,*gptr,*gptr2,*gstart,*cutptr; 
List *ptr,*ptr2; 
int netl,net2,gpsize,group,gpcount=O; 

CUT_START=NULL; 
for(tcptr=TC_START;tcptr!=NULL;tcptr=tcptr->nextb) 

237 



{ 

netl=tcptr->name; 
gstart=locate(netl,GP_START); 
if {gstart==NULL) 
{ 

} 

for(ptr=tcptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 

} 

net2=ptr->label; 
gptr=locate(net2,GP_START); 
if (gptr!=NULL) 
{ 

{ 

} 

if «gptr->size<size)&& 
(locate(netl,GP_START)==NULL)) 

{ 

} 

gstart=gptr; 
ptr2=gstart->nets; 
gstart->nets=insert(netl,ptr2); 
gstart->size++; 

else 

} 

printf("Y.d+--Y.d cut\n",(netl),(net2)); 
gptr=CUT_START; 
CUT_START=binsert(netl,O,gptr); 
ptr2=CUT_START->nets; 
CUT_START->nets=insert(net2,ptr2); 

if (gstart==NULL) 
{ ... 

} 

gptr=GP_START; 
gpsize=l ; 
GP_START=binsert(gpcount,gpsize,gptr); 
gpcount++; 
ptr=GP_START->nets; 
GP_START->nets=insert(netl,ptr); 
gstart=GP_START; 

for(ptr=tcptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 

net2=ptr->label; 
gptr=locate(net2,GP_START); 
if (gptr==NULL) 

238 



} 

} 

{ 

} 

if (gstart->size<size) 
{ 

} 

ptr2=gstart->nets; 
gstart->nets=insert(net2,ptr2); 
gstart->size++; 

else if (incutlist(net1,net2)==NULL) 
{ 

} 

printf("%d-+-%d cut\n",(net1),(net2)); 
gptr=CUT_START; 
CUT_START=binsert(net1,O,gptr); 
ptr2=CUT_START->nets; 
CUT_START->nets=insert(net2,ptr2); 

else if «gptr->name!=gstart->name)&& 
(incutlist(net1,net2)==NULL)) 

{ 

} 

printf("%d--+%d cut\n",(net1),(net2)); 
gptr=CUT_START; 
CUT_START=binsert(net1,O,gptr); 
ptr2=CUT_START->nets; 
CUT_START->nets=insert(net2,ptr2); 

printblock(GP_START,"Pre-Cut 11); 

/*now adjust groups for cuts*/ 
for(cutptr=CUT_START;cutptr!=NULL;cutptr=cutptr->nextb) 
{ 

net1=cutptr->name; 
gptr=locate(net1,GP_START); 
if (gptr!=NULL) 
{ 

group=gptr->name; 
/*remove net1 from group*/ 
remove(gptr,net1); 
gptr->size--; 

.' 

/*if group now empty, remove group and update names*/ 
if (gptr->nets==NULL) 
{ 

GP_START= bremove(GP_START,group); 
for(gptr2=GP_START;gptr2->name>group;gptr2=gptr2->nextb) 

239 

" , 



} 

} 

gptr2->name--; 
} -

} 

I*put netl into BORDER group*1 
gptr=b_point_to(BORDER,GP_START); 
ptr2=gptr->nets; 
gptr->nets=insert(netl,ptr2); 
gptr->size++; 

1*--------------------------------------*1 
void buildvertex() 
{ 

int net,net2,group; 
Vertex *vptr; 
Block *bptr; 
Block *gptr,*scptr; 
List *ptr,*ptr2,*ptr3; 

V_START=NULL; 
B_START=NULL; 
I*for each group (excl.-border group) create a block structure*1 
for(gptr=GP_START;gptrl=NULL;gptr=gptr->nextb) 
if(gptr->namel=BORDER) 
{ 

} 

bptr=B_START; 
B_START=binsert(gptr->name,gptr->size,bptr); 

gptr=b_point_to(BORDER,GP_START); 
I*for each net in border .... *1 
for(ptr=gptr->nets;ptrl=NULL;ptr=ptr->next) 
{ 

net=ptr->label; 
vptr=V_START; 
V_START=vinsert(net,vptr); 
V_START->netsum=O; 
scptr=b_point_ to(net ,SC_START);' 
I*for each net2 connected to net in border .... *1 
for(ptr2=scptr->nets;ptr2l=NULL;ptr2=ptr2->next) 
{ 

net2=ptr2->label; 
gptr=locate(net2,GP_START); 
group=gptr->name; 
if (group==BORDER) I*enter net in vertex list (if not there)*1 

240 



}r 

} 
} 

{ 

} 

else 

ptr3=V_START->nets; 
if (n_point_to(net2.ptr3)==NULL) 
{ 

} 

V_START->nets=insert(net2.ptr3); 
V_START->netsum++; 

{ /*enter net in block list (if not in already)*/ 

} 

bptr=b_point_to(group.B_START); 
ptr3=bptr->nets; 
if (n_point_to(net.ptr3)==NULL) 

bptr->nets=insert(net.ptr3); 
/*enter block in vertex list (if not in already)*/ 
bptr=V_START->blocks; 
if (b_point_to(group.bptr)==NULL) 
{ 

} 

V_START->blocks=binsert(group.gptr->size.bptr); 
V_START->blksum+=gptr->size; 

/*--------------------------------------*/ 
void borderbalance() 
{ 

int s=O.net.bordernet.basenarne.blksize.oldblock.newblksize; 
List *ptr.*ptr2.*nptr; 
Block *gptr.*gmerge; 
Block *bbase.*bmerge.*bptr.*bptr2; 
Vertex *vptr.*vptr2.*mvptr; 

/*select vertex (net) to move from border & point to it with mvptr */ 
mvptr=NULL; 
for(vptr=V_START;vptr!=NULL;vptr=vptr->nextv) 
{ . . 

} 

if(vptr->blocks!=NULL) 
if «mvptr==NULL)I I (vptr->blksum<mvptr->blksum) I I 

«vptr->blksum==mvptr->blksum)&& 
(vptr->netsum<mvptr->netsum») 

mvptr=vptr; 

/*merge blocks if neccessary ........ */ 

241 



bordernet=mvptr->name; 
bbase=mvptr~>blocks; 

if (mvptr!=NULL) 
{ 

basename=bbase->name; 
if (bbase->nextb!=NULL) 
{ 
1* merge other blocks 'bmerge' in vertex list with 'bbase' .... *1 
bmerge=bbase->nextb; 
while (bmerge!=NULL) 
{ 

I*merge B_LIST's *1 
oldblock=bmerge->name; 
bptr=b_point_to(basename,B_START); 
bptr2=b_point_to(oldblock,B_START); 
bptr->size+=bptr2->size; 
newblksize=bptr->size; 
for(nptr=bptr2->nets;nptr!=NULL;nptr=nptr->next) 

if (n_point_to(nptr->label,bptr->nets)==NULL) 
{ 

} 

ptr=bptr->nets; 
bptr->nets=insert(nptr->label,ptr); 

1* for every net in unified block update vertex block list *1 
bptr=b_point_to(oldblock,B_START); 
for(nptr=bptr->nets;nptr!=NULL;nptr=nptr->next) 
{ 

} 

net=nptr->label; 
vptr=v_point_to(net,V_START); 
bptr2=b_point_to(basename,vptr->blocks); 
if (bptr2!=NULL) 
{ 

} 

vptr->blocks=bremove(vptr->blocks,oldblock); 
I*if changing vertex block list of basename 

then change bmerge to stop 'for' loop if needed*1 
if «net==basename)&& 

(vptr->blocks->nextb==NULL)) bmerge=NULL; 

else 
{ 

} 

bptr2=b_point_to(oldblock,vptr->blocks); 
bptr2->name=basename; 

I*update GP_LIST structure*1 

242 



gptr=b_point_to(basename.GP_START); 
gmerge=b_point_to(oldblock.GP_START); 
for(ptr=gmerge->nets;ptr!=NULL;ptr=ptr->next) 
{ 

if (n_point_to(ptr->label.gptr->nets)==NULL) 
{ 

} 

} 
} 

ptr2=gptr->nets; 
gptr->nets=insert(ptr->label.ptr2); 

B_START=bremove(B_START.oldblock); 
GP_START=bremove(GP_START.gmerge->name); 
if (bmerge!=NULL) bmerge=bmerge->nextb; 

blksize=newblksize+1; 
} 
else blksize=bbase->size+1; 
1*(+1) for the border net moving to the block*1 

1* update B_LIST *1 
bptr=b_point_to(basename.B_START); 
for(nptr=mvptr->nets;nptr!=NULL;nptr=nptr->next) 
if (n_point_to(nptr->label.bptr->nets)==NULL) 

bptr->nets=insert(nptr->label.bptr->nets); 
nptr=n_point_to(bordernet.bptr->nets); 
if (nptr!=NULL) remove(bptr.bordernet); 
bptr->size++; 

1* update border net lists of V_LIST - del. moving net 
for(vptr=V_START;vptr!=NULL;vptr=vptr->nextv) 
if (n_point_to(bordernet.vptr->nets)!=NULL) 
{ 

} 

nvremove(vptr.bordernet); 
I*update Qi*1 
vptr->netsum--; 

I*update block lists of V_LIST *1 
bptr=b_point_to(basename.B_START); 
for(ptr=bptr->nets;ptr!=NULL;ptr=ptr->next) 
{ 
vptr2=v_point_to(ptr->label.V_START); 
bptr2=b_point_to(basename.vptr2->blocks); 
if (bptr2==NULL) 

from lists*1 
~. 

vptr2->blocks=binsert(basename.blksize.vptr2->blocks); 

243 



} 

} 

else bptr2->size=blksize; 
vptr2->blksum=O; 
I*update Si*1 
for(bptr2=vptr2->blocks;bptr2!=NULL;bptr2=bptr2->nextb) 

vptr2->blksum+=bptr2->size; 
} 

I*add border net to block in G_LIST*I 
gptr=b_point_to(basename,GP_START); 
ptr=gptr->nets; 
gptr->nets=insert(bordernet,ptr); 
gptr->size=blksize; 

I*remove net from border group (BORDER) in G_LIST*I 
gptr=b_point_to(BORDER,GP_START); 
remove(gptr,bordernet); 
gptr->size--; 

V_START=vremove(V_START.bordernet); 

else 
{ 

} 

printf("ERROR - can't select a border net to move,"); 
printf(" printing groups so far ... \n"); 
printblock(GP_START,"Group"); 
exit(1); 

1*--------------------------------------*1 
void writematrix(Block *start) 
{ 

int *order,*inverseorder.i,cell.net1.net2,**smat; 
Block *bptr,*cptr; 
List *ptr.*ptr2; 

order=Alloclnt(NNETS); 
inverseorder=Alloclnt(NNETS); 
smat=Alloclnt2(NNETS,NNETS); 
i=NNETS; 
for(bptr=start;bptr!=NULL;bptr=bptr->nextb) 
{ 

ptr=bptr->nets; 
while (ptr!=NULL) 
{ 

order[--i]=ptr->label; 
ptr=ptr->next; 

244 



} 

} 

for(i=O:i<NNETS:i++) inverseorder[order[i]]=i: 
for(i=O; i<NNETS; i++) printf("y'd 11 ,order [i]); 
printf("\n") ; 
for(i=O;i<NNETS;i++) printf("y'd ",inverseorder[i]); 
printf("\n"); 
for(cptr=CA_START;cptr!=NULL;cptr=cptr->nextb) 
{ 

cell=(cptr->name+l); 
ptr=cptr->nets: 
while (ptr!=NULL) 

{ 

netl=ptr->label; 
ptr2=ptr->next; 
while (ptr2!=NULL) 
{ 

net2=ptr2->label: 
smat[inverseorder[netl]] [inverseorder[net2]]=cell; 
smat[inverseorder[net2]] [inverseorder[netl]]=cell; 
ptr2=ptr2->next; 

} 

} 

ptr=ptr->next; 
} 

} 
fprintmat(smat); 

1*--------------------------------------*1 
main() 
{ 

int **dmat; 
int *ordvec; 
int dmin,bsize,bmax,bcount,nmax,pass=O; 
Block *bestgroup,*bptr; 

I*construct cell_list and net_list from spice input file *1 
input_dataO; 
Ilprintout(NCELLS,NNETS); 

1* initialize dmat matrix *1 
dmat = Alloclnt2(NNETS,NNETS); 
makesc(dmat): 
Ilprintblock(SC_START,"I); 

do 

245 

' ... 



{ 

printf("Enter dmin :"); 
seanf("y'd" ,&dmin) j 
ordvee=getord(dmin); 
makete(dmin,ordvee); 
makese(dmat) ; 
I*te made from se so need to re-do se*1 
bsize=b_point_to(BORDER,GP_START)->size; 
if (bsize<=l) printf("dmin too large - try again.\n")j 
if (bsize==NNETS) printf("dmin too small - try again.\n")j 

} while «bsize<=l)I I (bsize==NNETS))j 

Ilprintblock(GP_START,"Group"); 
Ilprintblock(TC_START,"II); 

printf("Enter nmax for initial grouping :"); 
seanf("y'd" ,&nmax); 
makegroups(nmax); 
printf("Enter maximum block size required (>0) :"); 
scanf("y'd",&bmax)j 

Ilprintblock(TC_START,"TC"); 
Ilprintblock(GP_START,IGroup"); 
Ilprintblock(CULSTART,"Cut lI)j 

buildvertex 0 ; 

Ilprintbloek(B_START,"Bloek 11); 
Ilprintvertex(V_START,"Vertex 11); 

do 
{ 

printf("Pass Y.d\n" ,pass++); 
bestgroup=copy(GP_START)j 
borderbalance(); 
bsize=b_point_to(BORDER,GP_START)->size; 
nmax=O; 
bcount=O; 
for(bptr=B_START;bptr!=NULL;bptr=bptr->nextb) 
{ 

} 

bcount++; 
if (bptr->size>nmax) nmax=bptr->size; 

Ilprintbloek(B_START,"Bloek "); 
Ilprintvertex(V_START,"Vertex 11); 

246 

. (": 



} 

} while (nmax<=bmax); 
printblock(bestgroup,IGroup"); 

writematrix(bestgroup); 

A.3 Random graph generator 

#include <stdio.h> 
#include <math.h> 
#include <malloc.h> 
#define RAND_MAX (pow(2,31)-1) 
#define TRUE 1 
#define FALSE 0 
#define CELLMAX 1000 

. typedef struct list { 
int node_id; 
struct list *next; 
} 

LIST; 

LIST *CA_start[CELLMAX], *CA_point[CELLMAX]; 

int D,N=500; 

1*-------------------------------------------*1 
LIST* insert(int thing, LIST *old_pointer) 

} 

{ 

LIST *pointer; 

pointer = (LIST *)malloc(sizeof(LIST)); 
if (pointer == NULL) 
{. 

} 

printf("Not enough memory"); 
exit(l); 

pointer->node_id = thing; 
pointer->next = old_pointer; 
return(pointer); 

1*-------------------------------------------*1 
void printlist(int total) 
{ 

int i=O; 

247 



} 

FILE *out; 

out=fopen("mc.list","w"); 
fprintf (out, "Yed Yed\n" , total+l ,N) ; 
for (i=O;i<=total;i++) 
{ 

fprintf(out,"CYed If, i); 

for (CA_point[i] = CA_start[i]; CA_point[i] != NULL; 
CA_point[i] = CA_point[i]->next) 

fprintf(out, 11 Ye5d" , CA_point[i]->node_id); 

fprintf(out,"\n"); 
} 

fclose(out); 

out=fopen(lblockA.in",lw"); 
for (i=O;i<total;i=i+3) 
{ 

fprintf(out,ICYed", i); 
if «i+3) >= total) fprintf (out, "\n") ; 
else fprintf(out," 11); 

I*if (i Ye 20 == 0) fprintf(out,"\n");*1 
} 

fclose(out); 

1*-------------------------------------------*1 
int edge(double pr) 
{ 

} 

int make_edge=FALSE; 
double temp_ran, nrand; 

temp_ran=random(); 
nrand=temp_ran; 
nrand=(nrand/RAND_MAX); 
if (nrand<pr) make_edge=TRUE; 

return(make_edge); 

1*-------------------------------------------*1 

main() 
{ 

int i,j,seed; 

248 



int edgecount=-l, in_list; 
double pr; 
double temp_ran, nrand; 

printf("\nInput seed: 11); 

scanf("%d",&seed); 
srandom(seed); 
I*printf("\nlnput # nodes in graph: 11); 

scanf(l%d",&N);*1 
printf("Input # edges required at each node (degree < %d) 
scanf(l%d",&D); 

pr = (double)D I «double)N-1); 

printf("\nProbability of making an edge = %If\n", pr); 

for (i=O;i<N;i++) 
{ 

} 

for (j=(i+l);j<N;j++) 
{ 

} 

if (edge(pr)==TRUE) 
{ 

} 

edgecount++; 
CA_start[edgecount]=insert(i,CA_start[edgecount]); 
CA_start[edgecount]=insert(j,CA_start[edgecount]); 

", N); 

I*check that all nodes are in the list. If not then add them*1 
for (i=O;i<N;i++) ~ 

{ 

in_list=O; 
for (j=O;j<edgecount;j++) 
{ 

for (CA_point[j] = CA_start[j]; 
CA_point[j] != NULL; 
CA_point[j] = CA_point[j]->next) 

if (CA_point[j]->node_id==i) in_Iist=l; 
} 

if (in_list==O) 
{ 

do{ 
ternp_ran=randorn(); 
nrand=ternp_ran; 
nrand=(nrand/RAND_MAX)*N; 

249 



} 

} 
} 

j=(int)floor(nrand); 
} while (j==i); 
edgecount++; 
CA_start[edgecount]=insert(i,CA_start[edgecount]); 
CA_start[edgecount]=insert(j,CA_start[edgecount]); 

printlist(edgecount); 

250 

., 



Appendix B 

S functions 

B.1 Geometric graph generator 

mkgraph_function(n,d) 
{ 

coords <- cbind(runif(n), runif(n» 
distvec <- dist(coords)[l:sum(l:(n - 1»] 
nedges <- as.integer(d*n/2) 
evec_sort(order(distvec) [l:nedges]) 
edgelist <- NULL 
x_l 
weight_O 
for(i in l:nedges) { 

nxy _evec [i] 
while (nxy > (n-l» { 

if (nxy < (n+w~ight» nxy_nxy-weight 
else { 

x_x+l 
weight_weight+(n-x) 

} 
} 

edgelist <- rbind(edgelist, c(x,(nxy+l») 
} 

tmp_sort(c(edgelist[,l],edgelist[,2]» 
nnodes_ tmp [1] 
for(i in 2:1en(tmp) ) { 
if(tmp[i]!=tmp[i-l]) nnodes_c(nnodes,tmp[i]) } 
singles_NULL 
if (nnodes[l]!=l) { 

nnodes_c(NA,nnodes) 
singles_c(singles,l) 

} 

for(i in 2:n ) { 
if (nnodes[i]=="NA") { 

... 
251 



} 

} 

nnodes_c(nnodes[1:(i-1)],NA) 
singles_c(singles,i) 

} else if (nnodes[i]!=i) { 
nnodes_c(nnodes[1:(i-1)],NA,nnodes[i:len(nnodes)]) 
singles_c(singles,i) 

} 

for(i in l:len(singles» { 
cat(singles[i] ,",") 
tdist_NULL 
if (singles[i]>l) { 

tdist_c(tdist,distvec[singles[i]-l]) 
} 

if (singles[i]>2) { 

} 

for (j in 2: (singles[i]-l» { 
tdist_c(tdist,distvec[sum((n-1):(n-(j-1»)+(singles[i]-j)]) 

} 

if (singles[i]!=l) index_sum((n-1):(n-(singles[i]-1») 
else index_O 
marker_len(tdist) 
tdist_c(tdist,distvec[(index+1):(index+(n-singles[i]»]) 
j_order(tdist) [1] 
if (j>=marker) j_j+1 
edgelist (- rbind(edgelist, c(singles[i], j» 

} 

nedge_len(edgelist[,l]) 
sink("mc .list") 
cat(nedge,1I l,n,l\nll,sep="II) 
for(i in l:nedge) { 

cat ("C II , i," ", (edgelist [i ,1] -1),11 ", (edgelist [i;2] -1), lI\nlll ,sep=I"I) 
} 

sinkO 
return(list(edges=edgelist,coords=coords») 

setup_function(nedge) 
{ 

sink("blockA.inll ) 
L1 
while(i ( nedge) { 

if (i==l) cat(ICI,i,sep="I) 
else cat(1I CII,i,sep="II) 
Li+3 

.. 
252 



sinkO 
} 

253 



Appendix C 

Mathematical models 

C.l Regression model 

LINEAR MODEL BUILDING RESULTS 

The Response Variable is 1 

N= 50 NX= 12 
SIGMAZ= 9.5611e-04 R2= 0.9997 

NUMBER OF LINEAR MODEL PARAMETERS IS: 27 
Variable Beta Std. Err. t-val R2-i 
--------------------------------------------------------------
Constant 4.0965e+00 6.7102e-03 610.48 0.0000 
/R215 2.7970e+00 2.1035e-02 132.97 0.5952 

/R209 -1.7277e+00 2.2370e-02 -77.23 0.7239 

/R213 -1.4267e+00 2.1940e-02 -65.03 0.7945 

/R214 -1.3964e+00 2.0362e-02 -68.58 0.8693 
/R210 8.9753e-Ol 2.0993e-02 42.75 0.9213 

/R211 7.8512e-Ol 2.0970e-02 37.44 0.9695 
/R215*/R214 -9.3690e-Ol 8.9731e-02 -10.44 0.9735 
/R215*/R210 7.4863e-Ol 8.9638e-02 8.35 0.9777 
/R209*/R209 -1. 2634e-Ol 8.9498e-03 -14.12 0.9831 
/R209*/R213 8.1913e-Ol 7.8751e-02 10.40 0.9870 
/R215*/R209 -1.2868e+00 8.4072e-02 -15.31 0.9894 
/R213*/R214 1.391ge+00 9.7335e-02 14.30 0.9917 
/R215*/R213 -1. 1625e+00 9.0873e-02 -12.79 0.9935 
/R213*/R213 -4.5126e-02 6.9696e-03 -6.47 0.9947 
/R215*/R211 3.7826e-Ol 9.9524e-02 3.80 0.9959 
/R209*/R210 -5.3060e-Ol 7.525ge-02 -7.05 0.9975 
/R214*/R214 -4. 1297e-02 6.7094e-03 -6.16 0.9977 
/R213*/C204 -2.7096e-Ol 8.4914e-02 -3.19 0.9979 
/R209*/R211 -9.4715e-Ol 1.1232e-Ol -8.43 0.9981 
/R209*/R214 1. 148ge+00 1.1366e-Ol 10.11 0.9988 

~ 

254 



/R209*/C204 -3.2996e-01 8.2138e-02 -4.02 0.9991 
/R213*/R211 -4.6253e-01 9.7492e-02 -4.74 0.9991 
/R213*/R210 -4.1318e-01 7.4361e-02 -5.56 0.9992 
/R214*/R211 -6.5285e-01 1.2695e-01 -5.14 0.9994 
/R214*/R210 -3.9022e-01 8.0440e-02 -4.85 0.9996 
/R210*/R211 1. 7634e-01 7.6862e-02 2.29 0.9997 

255 



Bibliography 

[1] H L Abdel-Malek. The ellipsoidal technique for design centering and region 
approximation. IEEE Trans. Computer Aided Design., 10:1006-1013, Aug 1991. 

[2] H L Abdel-Malek and J W Bandler. Yield optimizations for arbitrary statistical 
distributions: Parts i & ii. IEEE Trans. Circuits Syst., CAS-27:245-262, Apr 1980. 

[3] P R Adby. Applied Circuit Theory. Ellis Horwood Limited, Chichester, 1980. 

[4] D Agnew. Design centering and tolerancing via margin sensitivity minimization. 
lEE Proc - C, 127:270-277, Dec 1980. 

[5] D Agnew. Improved minimax optimization for circuit design. IEEE Trans. 
Circuits £3 Systs., CAS-28:791-803, Aug 1981. 

[6] S BAkers. Clustering techniques for VLSI. IEEE Trans. Computers, '.', 
33(5):472-476,1982. 

[7] Antonio R Alvarez, Behrooz L Abdi, Dennis L Young, Harrison D Weed, Jim 
Teplik, and Eric R Herald. Application of statistical design and response surface 
methods to computer-aided VLSI device design. IEEE Trans. Computer Aided 
Design, 7:272-288, Feb 1988. 

, 
[8] K J Antreich, P Leibner, and F P8rnbacher. Nominal design of integrated circuits 

on circuit level by an interactive improvement method. IEEE Trans. Circuits f3 
Systs., 35:1501-1511, Dec 1988. 

[9] P Balaban and J J Golembeski. Statistical analysis for practical circuit design. 
IEEE Trans. Circuits f3 Systs., CAS-22:101-109, Feb 1975. 

[10] J W Bandler and H L Abdel-Malek. Optimal centering tolerancing and yield 
determination via updated approximations and cuts. IEEE Trans. Circuits f3 
Systs., CAS-25:853-871, Oct 1978. . 

[11] J W Bandler, R M Biernacki, Qian Cai, S H Chen, Shen Ye, and Qi-Jun Zhang. 
Integrated physics-oriented statistical modelling, simulation and optimization. 
IEEE Trans. Microwave Theory and Techniques, 40(7):1374-1399,1992. 

[12] J W Bandler, S H Chen, and S Daijavad. Microwave device modelling using 
efficient 11 optimization: A novel approach. IEEE Trans. Microwave Theory Tech., 
MTT-34:1282-1293, Dec 1986. ' ,. 

256 



[13] J W Bandler t S H Chen, S Daijavad, and K Madsen. Efficient gradient 
approximations for non-linear optimization of circuits and systems. Proc. IEEE 
Int. Symp. Circuits Syst., pages 964-966, 1986. 

[14] J W Bandler, S H Chen, S Daijavad, and K Madsen. Efficient optimization with 
integrated gradient approximations. IEEE Trans. Microwave Theory Tech., 
MTT-36:444-455, Feb 1988. 

[15] J W Bandler and P C Liu. Automated network design with optimal tolerances. 
IEEE Trans. Circuits f3 Systs., CAS-21:219-222, March 1974. 

[16] J W Bandler, P C Liu, and J H K Chen. Worst case network tolerance 
optimization. IEEE Trans. Microwave Theory fj Tech., MTT-20:630-641, Aug 
1975. 

[17] J W Bandler, P C Liu, and H Tromp. A nonlinear programming approach to 
optimal design centering tolerancing and tuning. IEEE Trans. Circuits fj Systs., 
CAS-23:155-165, March 1976. 

[18] John W Bandler and Shao Hua Chen. Circuit optimization: The state of the art. 
IEEE Trans. Microwave Theory f3 Tech., 36:424-442, Feb 1988. 

[19] John W Bandler and Qi-Jun Zhang. An automatic decomposition approach to 
optimization of large microwave systems. IEEE Trans. Microwave Theory fj Tech., 
35:1231-1239, Dec 1987. 

[20] John W Bandler, Qi-Jun Zhang, and Randoslaw M Biernacki. A unified theory for 
frequency-domain simulation and sensitivity analysis of linear and nonlinear 
circuits. IEEE Trans. Microwave Theory fj Tech., 36:1661-1454, Dec 1988. 

[21] T B Barker. Quality engineering by design: Taguchi's philosophy. Quality 
Assurance, 13:72-80, Sept 1987. 

[22] L Basso, A Winterbottom, and H P Wynn. A review of the 'taguchi methods' for 
off-line quality control. Technical Report 1, City University Statistical Laboratory, 
1991. 

[23] R A Bates, R J Buck, E Riccomagno, and H P Wynn. Experimental design and 
observation for large systems. Journal of the Royal Statistical Society B, to appear. 

[24] R A Bates, R J Buck, and H P Wynn. Generic circuit response interpolation for 
robust design. lEE Proc Circ. Dev. and Syst., to appear. 

[25] R A Bates and H P Wynn. Tolerancing and optimization for model-based Robust 
Engineering Design. Quality And Reliability Engineering International, Submitted. 

[26] Ron A Bates, R J Buck, and H P Wynn. Robust circuit design: An example. 
Technical Report 29, City University Engineering Design And Quality Centre, 
Northampton Square, London, 1991. 

257 



[27] Richard A Becker, J M Chambers, and A R Wilks. The New S Language. AT&T 
Bell Labs. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, 
California, 1988. 

[28] Maria C. Bernardo, Robert Buck, Lishin Liu, William A Nazaret, Jerome Sacks, 
and William J Welch. Integrated circuit design optimization using a sequential 
strategy. IEEE Trans. Computer Aided Design., CAD-ll:361-372, 1992. 

[29] G E P Box and D W Behnken. Some new three level designs for the study of 
quantitative variables. Technometrics, 2:455-475, 1960. 

[30] G. E. P. Box and S Jones. Designing products that are robust to the environment. 
Total Quality Management, in press, 1992. 

[31] George Box, Soren Bisgaard, and Conrad Fung. An explanation and critique of 
taguchi's contributions to quality engineering. Quality and Reliability Engineering 
International, 4:123-131, 1988. 

[32] Franklin H Branin. Computer methods of network analysis. Proceedings of the 
IEEE, 55:1787-1801, Nov 1967. 

[33] R K Bray ton and R Spence. Sensitivity and optimization. Elsevier, Amsterdam, 
1980. 

[34] R K Bray ton and R Spence. Sensitivity and optimization, chapter 6, page 134. 
Elsevier, Amsterdam, 1980. 

[35] R J Buck. Robust Engineering Design Users Guide. Technical report, City 
University Engineering Design And Quality Centre, Northampton Square, London, 
1993. 

[36] R J Buck. The design and analysis of computer experiments. PhD thesis, City 
University, London, UK, 1994. • 

[37] R J Buck and H P Wynn. Optimization strategies in robust engineering design 
and computer-aided design. Quality And Reliability Engineering International, 
9:39-48, 1993. 

[38] R J Buck and H P Wynn. Improving the distribution of points in a Latin 
Hypercube sample. Technometrics, submitted. 

[39] E M Butler. Large change sensitivities for statistical design. Bell Syst. Tech. J, 
50:1209-1224, April 1971. 

[40] E M Butler. Realistic design using large change sensitivities and performance 
contours. IEEE Trans. Circuit Theory, CT-18:58-66, Jan 1971. 

[41] Frank M Callier, Wan S Chan, and Charles S Desoer. Input-output stability 
theory of interconnected syatems using decomposition techniques. IEEE Trans. 
Circuits {3 Systems, CAS-23(12):714-729, Dec 1976 . 

... 

258 



[42] C Charalambous and M EI-Turky. Circuit design using a recent minimax 
approach. Computer Aided Design, 11(1):27-31, Jan 1979. 

[43] L K Chen, B STing, and A Sangiovanni-Vincentelli. An edge-oriented adjacency 
list for undirected graphs. Int. J Circ. Theory f3 Appl., 7:55-63, 1979. 

[44] Chung-Kuan Cheng. The optimal partitioning of networks. NETWORKS, 
22:297-315, 1992. 

[45] Leon O. Chua and Pen-Min Lin. Computer Aided Analysis of Electronic Circuits: 
algorithms and computational techniques. Prentice Hall Inc., Englewood Cliffs, 
New Jersey, 1975. 

[46] R M Cormack. A review of classification. Journal Royal Stat. Soc. B, pages 
321-353, Mar 1971. 

[47] Noel Cressie. Statistics for Spatial Data, chapter 2, page 101. John WHey and 
Sons, Inc., 1991. 

[48] An-Cheng Deng. On network partitioning algorithm of large-scale cmos circuits. 
IEEE Trans. Circuits €3 Systs., 36:294-299, Feb 1989. 

[49] Madhav P Desai and Ibrahim N Hajj. On the convergence of block relaxation 
methods for circuit simulation. IEEE Trans. Circuits f3 Systs., 36:948-958, July 
1989. 

[50] C Desoer and E Kuh. Basic Circuit Theory, page 654. McGraw-Hill, New York, 
1969. 

[51] S W Director and G D Hachtel. The simplicial approximation approach to design 
centering. IEEE Trans. Circuits €3 Systs., CAS-24:363-372, July 1977. 

[52] S W Director and R A Rohrer. The generalized adjoint network and network 
sensitivities. IEEE Trans. Circuit Theory, CT-16:318-323', Aug 1969. 

[53] Stephen W Director. Manufacturing-based simulation: An overview. IEEE 
Circuits and Devices Magazine, pages 3-9, Sep 1987. 

[54] T Eckstein and E Luder. Design centering by improved monte carlo analysis of the 
region of acceptability. Proc. IEEE Int. Symposium Circ. Syst., pages 951-954, 
1986. 

[55] H Eltahawy, S Garciasabiro, D Rodriguez, and J J Mayol. Towards an analog 
hardware description language - based on VHDL. In Proceedings of the 1994 
Western Multiconference, pages 48-53. International Conference on Simulation and 
Hardware Description Languages (ICSHDL), 1994. 

[56] WaIter L Engl, Rainer Laur, and Heinz K Dirks. MEDUSA - a simulator for 
modular circuits. IEEE Trans. Computer Aided Design., CAD-1:85-93, Apr 1982. 

[57] Brian Everitt. Cluster Analysis, volume Second Edition. Halsted Pres's, New York, 
1981. 

259 



[58] N. Fenton and G. Hill. Systems, construction and analysis. McGraw-Hill, London, 

1993 .. 

[59] C M Fiduccia and R M Mattheyses. A linear-time heuristic for improving network 
partitions. In 19th Design Automation Conference, pages 175-181,1982. 

[60] M R Garey and D S Johnson. Computers and Interactability : a guide to the 
theory of NP-completeness. W H Freeman and Co., 1979. 

[61] Georges E Gielen and Herman C C Walscharts. Isacc : A symbolic simulator for 
analog integrated circuits. IEEE Journal of Solid State Circuits, 24:1587-1597, Dec 
1989. 

[62] Georges E Gielen, Herman C C Walscharts, and Willy C Sansen. Analog circuit 
design optimization based on symbolic simulation and simulated annealing. IEEE 
Journal of Solid State Circuits, 25:707-713, June 1990. 

[63] Gary D Hachtel and Alberto L Sangiovanni-Vincentelli. A survey of 
third-generation simulation techniques. Proceedings of the IEEE, 69:1264-1280, 
Oct 1981. 

[64] Ibrahim N Hajj. Sparsity considerations in network solution by tearing. IEEE 
Trans. Circuits & Systs., CAS-27:357-366, May 1980. 

[65] D S Harrison, A R Newton, D L Spickelmier, and T J Barnes. Electronic CAD 
frameworks. IEEE Proceedings., 78(2):393-417, 1990. 

[66] J A Hartigan. Distribution problems in clustering. In J Van Ryzin, editor, 
Classification and Clustering, pages 45-71. Academic Press, Inc., London, 1977. 

[67] M R Irving and M J H Stirling. Optimal network tearing using simulated 
annealing. lEE Proceedings Pt-C, 137:69-72, Jan 1990. 

[68] L Jaulin and E WaIter. Guaranteed nonlinear parameter-estimation from 
bounded-error data via interval-analysis. Mathematics and Computers in 
Simulation, 35(2):123-137, 1993. 

[69] L Jaulin and E WaIter. Set inversion via interval-analysis for nonlinear 
bounded-error estimation. A utomatica, 29(4): 1053-1064, 1993. 

[70] A. Jebb and H P Wynn. Robust engineering design post-taguchi. Phil. Trans. R. 
Soc. London A, 327:605-616, 1989. 

[71] F Branin Jr. Network sensitivity and noise analysis simplified. IEEE Trans. 
Circuit Theory, CT-20:285-288, May 1973. 

[72] R N Kackar. Off-line quality control parameter design and the taguchi method. 
Journal Of Quality Technology, 17:176-188, Oct 1985. 

[73] B J Karafin. The optimum assignment of component tolerances for electrical 
networks. Bell Syst. Tech. J, 50:1225-1243, Apr 1971. 

260 



[74] S KirkpatricK, C D Gelatt, and M P Vecchi. Optimization by simulated annealing. 
Science, 220:671-679, May 1983. 

[75] Balakrishnan Krishnamurthy. An improved min-cut algorithm for partitioning 
VLSI networks. IEEE Trans. Computers, C-33:438-446, May 1984. 

[76] G Kron. Diakoptics: The Piece wise Solution of Large Scale Systems. MacDonald, 
London, 1963. 

[77] G Kron. Diakoptics: The Piece wise Solution of Large Scale Systems, page 6. 
MacDonald, London, 1963. 

[78] Kenneth S K undert and Alberto Sangiovanni-Vincentelli. Simulation of nonlinear 
circuits in the frequency domain. IEEE Trans. Computer Aided Design, 
CAD-5:521-535,Oct 1986. 

[79] A Liberatore and S Manetti. SAPEC - a personal computer program for the 
symbolic analysis of electric circuits. Proceedings IEEE Symposium On Circuits £3 
Systs., pages 897-900, 1988. 

[80] Dennis K J Lin and Norman R Draper. Projection properties of plackett and 
burman designs. Technometrics, 34:423-428, 1992. 

[81] P M Lin. A survey of applications of symbolic network functions. IEEE Trans. 
Circuit Theory, CT-20:732-737, Nov 1973. 

[82] K K Low and Stephen W Director. An efficient methodology for building 
macromodels of ic fabrication processes. IEEE Trans. Computer Aided Design., 
CAD-8:1299-1313, Dec 1989. 

[83] K K Low and Stephen W Director. A new methodology for the design centering of 
ic fabrication processes. IEEE Trans. Computer Aided Design, 10:895-903, July 
1991. ' ' 

[84] F Luccio and M Sami. On the decomposition of networks in minimally 
interconnected subnetworks. IEEE Trans. Circuit Theory, 16(2):184-188, 1969. 

[85] M. D. McKay, W J Conover, and R J Beckman. A comparison of three methods 
for selecting values of input variables in the analysis of output from a computer 
code. Technometrics, 21:239-245, 1979. 

[86] G J Meidt and K W Bauer Jr. Pcrsm :' A decision support system for simulation 
metamodel construction. Simulation, 59(3):183-191, 1992.-

[87] M. D. Mesarovic, D. Macko, and Y. Takahara. Theory of Hierarchical, Multilevel 
Systems. Academic Press, New York, 1970. 

[88] Glenn W Milligan. A monte carlo study of thirty internal criterion measures for 
cluster analysis. Psychometrica, 46:187-199, June June 1981. 

[89] T. Mitchell, J. Sacks, and D. Ylvisaker. Asymptotic bayes criteria for 
nonparametric response surface design. Ann.-Statist., 22, No. 2, 1994 (to appear). 

261 



[90] M. D. Morris-, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of 
computer experiments: use of derivatives in surface prediction. Technometrics, 
35(3):243-255, Aug 1993. 

[91] Peter Mucci. Handbook for engineering design using standard materials and 
components. PER Mucci Ltd., The Old Bakery, Parsonage Lane, Durley, 
Southampton S03 2AD, 1986. 

[92] Tamal Mukherjee and L Richard Carley. Rapid yield estimation as a computer aid 
for analog circuit design. IEEE Journal of Solid State Circuits, 26:291-299, Mar 
1991. 

[93] R. H. Myers. Response surface methodology in quality improvement. 
Communications in Statistics- Theory and Methods, 20(2) :457-476, 1991. 

[94] L W Nagel. SPICE 2. A computer program to simulate semiconductor circuits. 
ERL Memo ERL-M520. Univ. California, Berkley, 1975. 

[95] S R Nassif, A J Strojwas, and S W Director. FABRICS II : a statistically based IC 
fabrication process simulator. IEEE Trans. Computer-Aided Design, 3, 1984. 

[96] Arthur Richard Newton and Alberto L Sangiovanni-Vincentelli. Relaxation based 
electrical simulation. IEEE Trans. Electron Devices, ED-30:1184-1207, Sep 1983. 

[97] K G Nichols, T J Kazmierski, M Zwolinski, and A D Brown. Overview of 
SPICE-like circuit simulation algorithms. lEE Proc.-Circuits Devices Syst., 
141( 4):242-250, 1994. 

[98] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. 
CBMS-NFS, SIAM, Philadelphia, 1992. 

[99] E C Ogbuobiri, W F Tinney, and J W Walker. Sparsity-directed decomposition for 
gaussian elimination on matrices. IEEE Trans. Power Apparatus (3 Systems., 
PAS-89:141-150, Jan 1970. 

[100] J H O'Geran. Group testing and search. PhD thesis, City University, London, UK, 
1994. 

[101] A. B. Owen. A central limit for latin hypercube sampling. Jour. Roy. Statist. Soc., 
Serie B, 1992. 

[102] A. B. Owen. Lattice sampling revisited:' Monte Carlo variance of means over 
randomized orthogonal arrays. Ann. Statist., 22, 1994 (in press). 

[103] Donald 0 Pederson. A historical review of circuit simulation. IEEE Trans. 
Circuits (3 Systs., CAS-31:103-111, Jan 1984. 

[104] P Penfield Jr, R Spence, and S Duinker. A generalized form of tellegen's theorem. 
IEEE Trans. Circuit Theory, 4:302-305, 1953. 

[105] R. 1. Plackett and J. P. Burman. The design of optimum multifactorial 
experiments. Biometrika, 33:305-325, 1946. -

262 



[106] J. Sacks, S. B. Schiller, and W. J. Welch. Designs for computer experiments. 
Technometrics, 31:41-47,1989. 

[107] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and 
analysis of computer experiments. Statistical Science, 4:409-435, Nov 1989. 

[108] Alberto Sangiovanni-Vincentelli, Li-Kua Chen, and Leon 0 Chua. An efficient 
heuristic cluster algorithm for tearing large-scale networks. IEEE Trans. Circuits 
f3 Systs., CAS-24:709-717, Dec 1977. 

[109] A Sarmiento Reyes. Efficient pertitioning-based method to determine the upper 
bound on the number of operating points in transistor circuits. lEE Trans. 
Circuits and Systems, 141(4):258-264, 1994. 

[110] J D Schoeffier. The synthesis of minimum sensitivity networks. IEEE Trans. 
Circuit Theory, CT-11:271-276, June 1964. 

[111] Anne C. Shoemaker, Kwok-Leung Tsui, and C. F. Jeff Wu. Economical 
experimentation methods for robust design. Technometrics, 33:415-428, 1991. 

[112] Mark R Simpson. Pride: An integrated design environment for semiconductor 
device simulation. IEEE Trans. Computer Aided Design, 10:1163-1174, Sep 1991. 

[113] K Singhal and J F Pine!. Statistical design centering and tolerancing using 
parametric sampling. IEEE Trans. Circuits Syst., CAS-28:692-701, July 1981. 

[114] Kishore Singhal, Colin C McAndrew, Sani R Nassif, and V Visvanathan. ·The ' .' I 

CENTER design optimization system. ATfjT Technical Journal, pages 77-91, May 
1989. 

[115] Kishore Singhal and Jiri Vlach. Symbolic analysis of analog and digital circuits. 
IEEE Trans. Circuits f3 Systs., CAS-24:598-609, Nov 197.1. 

[116] R S Soin and R Spence. Statistical exploration approach to design centering. IEEE 
Proc-G, 127:260-269, Dec 1980. 

[117] James P Spoto, W Terry Coston, and C Paul Hernandez. Statistical integrated 
circuit design and characterization. IEEE Trans. Computer Aided Design, 
CAD-5:90-103, Jan 1986. 

[118] J Starzyk. Signal-flow-graph analysis by decomposition method. lEE Proceedings 
Pt-G, 127:81-86, Apr 1980. 

[119] J A Starzyk and E SHwa. Tolerances in symbolic network analysis. Proc. IEEE 
Int. Symp. Circuits fj Systems, 2:810-3, 1989. 

[120] Janusz Starzyk and Edward Sliwa. Hierarchic decomposition method for the 
topological analysis ·of electronic networks. Circuit Theory And Applications, 
8:407-417, 1980. 

[121] J.anusz A Starzyk and A Konczykowska. Flowgraph analysis oflarge electronic 
networks. IEEE Trans. Circuits fj Systs., CAS-33:302-315, Mar 1986. 

263 



[122] M. Stein. Large sample properties of simulations using latin hybercube sampling. 
Technometrics, 29:143-151,1987. 

[123] M L Stein. An efficient method of sampling for statistical circuit design. IEEE 
Trans. Computer Aided Design, CAD-5:23-29, Jan 1986. 

[124] M A Styblinski. Problems of yield gradient estimation for truncated probability 
density functions. IEEE Trans. Computer AidedDesign., CAD-5:30-38, Jan 1986. 

[125] Fang K T and Wang Y. Number-theoretic Methods in Statistics. Chapman & Hall, 
London, 1994. 

[126] G Taguchi. Off-line and on-line quality control systems. In ICQC, pages 
B4.1-B4.5., Tokyo, 1978. 

[127] G Taguchi. System Of Experimental Design: engineering methods to optimize 
quality and minimize costs, volume 1. Unipub / Kraus International Publications, 
White Plains, New York, 1987. 

[128] G Taguchi and M S Phadke. Quality engineering through design optimization. In 
IEEE Globe 1984 Conference Atlanta GA, volume 3, pages 1106-1113, Nov 1984. 

[129] K S Tahin and R Spence. A radial exploration approach to manufacturing yield 
estimation and design centering. IEEE Trans. Circuits f3 Systs., CAS-26:768-774, 
Sept 1979. 

[130] L Tao and Y C Zhao. Effective heuristic algorithms for VLSI circuit partition. lEE 
.. Proceedings-G, 140(2):127-134, April 1993. . 

[131] P Tatjewski, N Abdullah, and P D Roberts. Comparison of some algorithms for 
hierarchical steady-state optimizing control of interconnected industrial-processes. 
In International Conference on Control 88, volume 285, pages 527-531, 1988. 

[132] B D H Tellegen. A general network theorem with applications. Proc. Inst. Radio 
Engineers, Australia, 14:265-270, 1953. 

[133] G~bor C Temes and Donald A Calahan. Computer-aided network optimization the 
state of the art. IEEE Proceedings, 55:1832-1863, Nov 1967. 

[134] J. F. Traub, G. W. Wasilkowski, and H. Wozniakowki. Information-Based 
Complexity. Academic Press, New York, 1988. 

[135] M E Van Valkenburg. Analog Filter Design. CBS College Publishing, New York, 
1982. 

[136] G Geoffrey Vining and Raymond H Myers. Combining taguchi and response 
surface philosophies: A dual response approach. Journal of Quality Technology, 
22:38-44, Jan 1990. 

[137] Paul K U Wang, Chin Fu Chen, and Yuang-Sheng Kao. Sensitivity calculation and 
network optimization through decomposition. Proc. IEEE Int. Symp. Circuits f3 
Systems, 3:1034-7, 1983. 

264 



[138] G W Wasilkowski and H Wozniakowski. There exists a linear problem with infinite 
combinatory complexity. Journal of Complexity, 9:326-337, 1993. 

[139] W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris. 
Screening, predicting, and computer experiments. Technometrics, 34(1):15-25, 
1992. 

[140] W. J. Welch and J. Sacks. A system for quality improvement via computer 
experiments. Communications in Statistics-Theory and Methods, 20(2):477-496, 
1991. 

[141] W. J. Welch, Tat-Kuan Yu, S M Kang, and J Sacks. Computer experiments for 
quality control by parameter design. Journal of Quality Technology, 22:15-':'22, 1990. 

[142] Jorg Wintermantel. Optimization of real-coefficient solutions of multiple-feedback 
digital filters. Proceedings of IEEE ISCAS, pages 947-948, 1986. 

[143] H P Wynn, R A Bates, R J Buck, and A Carter. A statistical bolt-on for robust 
circut design. Journal of Design and Manufacturing, 4:81-86, 1994. 

[144] H. P. Wynn and A. A. Zhigljavsky. Fundamentals of Search. Springer-Verlag, New 
York, to appear. 

[145] S Ye§ilyurt, C K Ghaddar, M E Cruz, and A T Patera. Bayesian-validated 
surrogates for noisey computer simulationsj application to random media. SIAM 
journal on scientific computing, To appear. 

[146] S Ye§ilyurt and A T Patera. Surrogates for numerical simulations; optimization of 
eddy-promoter heat exchangers. Computer methods in applied mechanics and 
engineering, 1994. 

[147] Jih-Shyr Yih and Pinaki Mazumder. A neural network design for circuit 
partitioning. IEEE Trans. Computer Aided Design., CAD-9:1265-1271, Dec 1990. 

[148] Z. Ying. Maximum likelihood estimation of parameters under a spatial sampling 
scheme. Ann. Statist., 21(3):1567-1590, 1993. 

[149] D Ylvisaker. Prediction and design. The Annals of Statistics, 15:1-19, 1987. 

[150] Dennis L Young, Jim Teplik, Harrison D Weed, Neil T Tracht, and Antonio R 
Alvarez. Application of statistical design and response surface methods to 
computer-aided VLSI device design ii : Desirability functions and taguchi methods. 
IEEE Trans. Computer Aided Design, 10:103-115, Jan 1991. 

[151] T. K. Vu, S M Kang, J Sacks, and W J Welch. Parametric yield optimization of 
mos integrated circuits by statistical modeling of circuit performances. 
International Journal of Circuit Theory and Applications, in press, 1991. 

[152] Peter J Zemroch. Cluster analysis as an experimental design generator, with 
application to gasoline blending experiments .. Technometrics, 28:39-49, Feb 1986. 

265 



[153] A I Zecevic and D D Siljak. Balanced decompositions of sparse systems for 
multilevel parallel processing. IEEE Trans. Circuits f3 Systems-I: Fundamental 
Theory & Applications., 41(3):220-233, March 1994. 

[154] J Zhang and J W Modestino. A model-fitting approach to cluster validation with 
application to stochastic model-based image segmentation. IEEE Trans. Pattern 
Analysis & Machine Intelligence, 12:1009-1017, Oct 1990. 

[155] Anatoly A. Zhigljavsky. Theory of Global Random Search, chapter 4. Kluwer 
Academic Publishers, 1991. 

266 


