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Solutions to y′(x) = cos [πxpy(x)q]

Oliver S. Kerr
Department of Mathematics, City University London,
Northampton Square, London, EC1V 0HB, U.K.

Abstract

The asymptotic behaviour of solutions to y′(x) = cos[πxpy(x)q] is considered. This is
a generalisation of the problem of the behaviour of y′(x) = cos[πxy(x)] that was inves-
tigated by Bender, Fring and Komijani [1]. We present a derivation of the asymptotic
results that follows the approach used in Kerr [2].

1 Introduction

In Bender, Fring and Komijani [1] a detailed asymptotic analysis of the nonlinear
initial-value problem

y′(x) = cos[πxy(x)], y(0) = a (1)

was presented which focused on the solutions for x ≥ 0. They showed that for a > 0
solutions could be split into classes depending on the initial conditions such that
solution with an−1 < a < an displayed an oscillatory region with n maxima before
decaying monotonically to zero. They then found the result that as n → ∞, an ∼
25/6√n. This result was subsequently derived using a different approach by Kerr [2].
Here we use this alternative derivation to obtain equivalent results to the generalisation
of the original problem where we look for asymptotic solutions to

y′(x) = cos [πxpy(x)q] , y(0) = a (2)

where p and q are positive integers1

Much of this derivation is essentially the same as that of Kerr [2]

2 Outline

The typical behaviour of solutions to (2) is essentially the same as the original problem
and is shown by the solid lines in figure 1 (with p = q = 1). There is an initial
oscillatory phase where the frequency increases and the amplitude decreases as the
initial value, y(0), increases. These oscillatory solutions drift downwards until they
undergo a transition to monotonic decay towards the horizontal axis.

Some of the basic behaviour of the solutions of (2) can be understood by considering
the lines in the x–y plane where xpyq is constant. The situation is shown schematically
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Fig. 1: Plots of solutions to (2) with y(0) = 2, 4, 6, 8 and p = q = 1. The
dotted lines in x/p > y/q show the curves xpyq = C to which these
converge asymptotically as x → ∞. The dashed lines in x/p < y/q give
the estimate of the mean path of the oscillatory part of these curves.

in figure 2. The arguments here are essentially the same as those in section 3 of Kerr,
except the region is now divided by the line x/p = y/q and the lines under consideration
are lines of the form xpyq = c.

If we consider lines where xpyq = 2n then solutions will have gradient 1 where they
intersect these lines, similarly when xpyq = 2n+1 they will intersect with gradient −1,
and when xpyq = 2n ± 1/2 they will intersect with gradient 0. The gradients of the
solutions will have gradients with magnitude at most 1, while the lines xpyq = c for
constants c have gradients greater than 1 in magnitude for x/p < y/q, and less than
1 for x/p > y/q. In the region x/p < y/q solutions must cross the lines xpyq = c from
left to right, with a maximum each time it crosses a line xpyq = 2n+ 1

2
, n = 1, 2, 3, . . ..

In the region x/p > y/q this restriction no longer holds. This results in the solutions
having intrinsically different behaviour above and below the line x/p = y/q.

3 Solutions in the region x/p > y/q

This is essentially the same argunment as previously in Kerr [2].
Any solution that enters a region 2n+ 1

2
≤ xpyq ≤ 2n+ 1 is trapped in this region

as x increases as the gradient of a solution on the lower boundary is 0, and on the
upper boundary is −1. Indeed, in such a region any solution that is initially above a

1 Strictly speaking this requirement to be positive integers can be relaxed.
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Fig. 2: Schematic plot for solutions in the region x/p > y/q and the influences
of the lines of form xpyq = c. The dotted lines show the trajectories of
various solutions, while the dashed line shows the path of the separatrix
dividing solutions that converge to xpyq = 2n + 1/2 from those that
converge to xpyq = 2n + 5/2.

line xpyp = 2n+ 1
2

+ ε will have a negative gradient of magnitude greater than sinπε
and so must eventually pass below xpyq = 2n+ 1

2
+ ε, whose gradient tends to zero as

x→∞. Thus all solutions in this region asymptote to the line xpyq = 2n+ 1
2
.

All solutions in the region 2n − 1
2
< xpyq < 2n + 1

2
will have positive gradients

and so will pass into the region 2n+ 1
2
≤ xpyq ≤ 2n+ 1 from below, and will have one

maximum in the region x/p > y/q.
There is one solution in the region 2n+1 < xpyq < 2n+ 3

2
that stays in this region.

Solutions initially below this curve will pass into the region 2n+ 1
2
≤ xpyq ≤ 2n+1 and

remain there, while those above it will end up in the region 2n+ 5
2
≤ xpyq ≤ 2n+ 3.

This curve is indicated by the dashed line in figure 2. By a similar argument to that
given previously it can be shown that these seperatrices tend towards their asymptotes
xpyq = 2n + 3/2 from below. We will denote the point where the separatrix crosses
the line x/p = y/q as x/p = y/q = bn, and hence 2n + 1 < ppqqbp+q

n < 2n + 3/2, or
(2n+ 1)1/(p+q)/(ppqq)1/(p+q) < bn < (2n+ 3/2)1/(p+q)/(ppqq)1/(p+q).

Clearly, any solution that ends up just above the curve xpyq = 2n + 1
2

will have
crossed n lines given by xpyq = 1

2
, 5

2
, 9

2
, . . . and so will have n maxima. Hence any

solution that crosses the line x/p = y/q with bn−1 < x/p = y/q < bn will have n
maxima.
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4 Solutions in the region x/p < y/q

As before, for large values of y(0) the solution y(x) will tend to oscillate quickly with
small amplitude. The previous arguments hold here.

If lines of constant xpyq = c are given locally by the lines x + αy = C then the
mean path of the oscillatory solution is given by

dy

dx
=

√
1− α2 − 1

α
. (3)

The value of α is determined by the curves xpyq = c. On such curves

dy

dx
= − pc1/q

qx(p+q)/q
= −py

qx
. (4)

Since the gradient of the lines x + αy = C is −1/α, we find α = qx/py and so the
equation for the slope of the average curve is given by

dy

dx
=

√(
py

qx

)2

− 1− py

qx
. (5)

This has solutions(√
p2y2 − q2x2 + py

)p (
(p+ q)y −

√
p2y2 − q2x2

)p+q

= 2pppqp+qy(0)2p+q. (6)

The solution curves meet the line x/p = y/q at the point x/p = y/q = β when

y(0) =
(p+ q)

p+q
2p+q

2
p

2p+q

β (7)

If the an are the values of y(0) which correspond to the bn, and so are solutions
with n maxima then we would have here

an ≈
(p+ q)

p+q
2p+q

2
p

2p+q

bn ≈
2

1
p+q (p+ q)

p+q
2p+q n

1
p+q

2
p

2p+q p
p

p+q q
q

p+q

. (8)

5 Conclusions

We have used alternative derivation of Kerr [2] to analyse the generalisation the
proiblem considered by Bender, Fring and Komijani [1]. With luk I’ve got the co-
efficients right.
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