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Abstract
In this thesis I present the results I have been developing during my PhD studies at City

University London. The original results are based on D Bianchini et al [1], D Bianchini,

O Castro-Alvaredo and B Doyon [2], D Bianchini and F Ravanini [3], D Bianchini et

al [4] and D Bianchini and O Castro-Alvaredo [5]. In all but one ([4]) publications, we

compute the entanglement [6] of various systems. Using the celebrated “replica trick”

[7, 8] we compute the entanglement entropy of non unitary systems using integrable tools

in continuum ([1, 2]) and discrete ([3]) models. In particular, in [1] we generalise the

method described in [7] in order to take into account non unitary conformal systems. In

[2] we use a form factor expansion [9, 10] to probe a non unitary system outside the critical

point. In [4] we derive the explicit expressions of one dimensional quantum Hamiltonians

which provide a lattice realisation of off critical non unitary minimal models. Using a

Corner Transfer Matrix approach [11, 12, 13] we compute the scaling of the entanglement

of such spin chains [3]. In [5] we study the scaling of various twist field correlation functions

in order to compute the entanglement entropy and the logarithmic negativity in free boson

massive theories.
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Chapter 1

Introduction

Since the emergence of Quantum Mechanics at the beginning of the 20th century many

questions have been posed by scientists and philosophers about its intrinsic nature and

how it will affect the deterministic and accepted view of Nature. Among the numerous

quantum features of the Universe, entanglement is maybe the most intriguing and the

most manifestly quantum phenomenon [6]. Quantum entanglement, an intrinsic quantum

correlation, is what makes quantum phenomena really quantum and - for the last hun-

dred years or so - has been unlocking the doors to new possibilities and opportunities

which have no classic counterpart. Like many other physical quantities, the need of an

operative definition of a measure of entanglement arises naturally. The main focus of this

thesis is the evaluation of such measures using one of the most successful tools of modern

physics: quantum field theory. In particular, we will focus on a particular class of mod-

els, the so-called integrable systems. Like the name suggests, integrable systems enjoy

an infinite number of conservation laws which make the model integrable. When dealing

with such systems, various physical quantities, including entanglement, can be computed

exactly. Unfortunately, apart from some free theories and non local models, integrable

systems exist only in two dimensions. These two dimensions can be arranged either as a

2+0 or 1+1 dimensional systems. While a Wick’s rotation connects the two cases, they

represent quite different situations. In particular, we refer to 2+0 dimensional theories as

classical statistical bi-dimensional systems. On the other hand, 1+1 systems are unidi-

mensional quantum models with a time evolution. After having introduced the main tools

of integrable quantum field theories, we briefly review the known results in the literature

regarding entanglement in 1+1 dimensional integrable theories. In the second part of the

thesis we present some new results in the evaluation of entanglement in a particular class

of theories, called non unitary. The thesis is structured as follows:

• In Chapter 2 we introduce quantum entanglement and its measures. In particular,

we focus on entanglement entropy and logarithmic negativity, two among the most
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common measures used in the context of integrable theories.

• In Chapter 3 we briefly review conformal field theories (CFT) and integrable quan-

tum field theories (IQFT). These theories can be used to successfully describe a

large class of critical and off-critical systems. We describe some objects and tools

we use in the following chapters for the evaluation of entanglement. In particular we

describe the so-called “form factor expansion”, a powerful tool for the evaluation of

correlation functions in massive theories.

• In Chapter 4 we present some known results on the evaluation of entanglement en-

tropy in (unitary) CFT and IQFT. We introduce the so-called “replica trick”, which

can be used to represent entanglement measures as partition functions on particular

geometries. We discuss how to represent entanglement measures as correlation func-

tions of a special kind of field, called “branch point twist field”. We review how the

“central charge”, a physical quantity related to the universality class of the critical

point, affects the scaling of the entropy when the system can be described using

a CFT. Moreover, we present some known results on the scaling of entanglement

entropy in the massive regime, with a particular focus on the so-called “corrections

to saturation”.

• In Chapter 5 we present the first original result of this thesis. We compute the

entanglement entropy in non unitary CFT. The main result of this chapter is the

extension of unitary results to the non unitary case. In particular, we show that

the so-called “effective central charge” replaces the central charge in the scaling of

entanglement entropy. Moreover, we present a numerical simulation supporting our

analytical results. Additionally, we compute the entanglement entropy for the so-

called logarithmic CFTs. We will return to this class of models in Chapter 8, when

studying the uncompactified massless free boson. We show also how a new kind

of branch point twist fields can be used to compute entanglement entropy in non

unitary theories.

• In Chapter 6 we extend the previous result to massive non unitary integrable field

theories. In particular, we use the form factor expansion to probe the entanglement

entropy in the massive Lee-Yang model, the simplest non unitary IQFT. We show

how the non unitarity of the model affects the scaling of entanglement entropy and

we interpret such a difference in terms of anew kind of branch point twist fields.

• In Chapter 7 we perform another computation of entanglement entropy in a non

unitary system. While in other chapters we rely on quantum field theory techniques

to study the amount of entanglement in a system, in this chapter we present a lat-
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tice computation. In particular, we compute the entanglement entropy of some one

dimensional quantum chains associated to the so-called Forrester Baxter Restricted-

Solid-On-Solid (FB RSOS) model. The FB RSOS model is a classical lattice model

which, in the thermodynamic limit and in a particular regime, provides a lattice

realisation of the off critical minimal models, a large class of perturbed CFTs. Using

the “Corner Transfer Matrix” approach, we show how the scaling of the entropy

differs from the unitary case. In particular, we compute both the principal term

and the leading corrections to the scaling of entanglement. Moreover, we extend our

computations to the so-called “off critical logarithmic minimal models”. Addition-

ally, using a tool called “Hamiltonian limit” we compute the quantum Hamiltonian

associated to the FB RSOS model.

• In Chapter 8 we consider the entanglement entropy and the logarithmic negativity

of the massive free boson theory. Using the form factor expansion of some correla-

tion functions of branch point twist fields, we study the scaling of entanglement in

such systems. The simple nature of the free boson theory allows very precise form

factor studies. While in many theories only few terms of the form factor expansion

can be computed explicitly, in this case we could sum thousands of contributions

(in some cases even an infinite number). Using form factor expansion, we recover

a number of short distance results derived in CFT. Moreover, we find some very

interesting divergences in some correlation functions associated to entanglement en-

tropy and logarithmic negativity. We interpret these divergences as a signal of extra

double logarithmic terms in the scaling of entanglement. Such double logarithmic

corrections are in agreement with the CFT prediction of the scaling of entanglement

entropy in logarithmic CFT presented in Chapter 5. Moreover, we compute the

“three point structure constant” of twist field, which, in this context, represents an

important universal constant in the scaling of logarithmic negativity.
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Chapter 2

Measures of Entanglement

In this chapter we introduce quantum entanglement and its properties. In particular, after

having introduced the qualitative features of entanglement, we will discuss some physical

quantities which can be used to measure the amount of entanglement in a physical system.

2.1 Bipartite Quantum Entanglement

Let us start with a very simple example. Consider a two-particle system and two observers,

called Alice and Bob. Alice and Bob share a quantum state made by the two particles. In

particular, both of them have a one-half spin particle1. Let us denote by | ↑〉 positive +1
2

spin and by | ↓〉 the negative −1
2 spin. Let us now consider two different cases, namely φ

and ψ:

|φ〉 = |↑〉A ⊗ |↓〉B (2.1)

|ψ〉 =
|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B√

2
(2.2)

Even though both cases might seem similar (for instance, the total spin in the two cases is

zero), they behave quite differently., Consider the φ case first. If Alice measures the spin

of the particle A, she finds 1/2 and she does not get any additional piece of information

regarding the other particle. Of course, the same situation happens if Bob measures its

particle. In this case the two particles are not “connected” or entangled and the state

is said separable (or factorisable). The case ψ is definitely more interesting. As soon as

Alice performs a measure of the spin of her particle, she immediately knows the value of

the spin of Bob’s particle, even if they are far apart. This feature, commonly referred to

as entanglement, is intrinsic in the structure of the quantum state of the two particles. A

1For the purpose of the example, the actual kind of quantum system is not relevant. For instance, it
could be the spin of an electron, the nuclear spin of an atom or even the helicity of a photon.
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2.1. Bipartite Quantum Entanglement

quantum state is separable if it can be written as a single tensor product between single-

particle states, like |φ〉, while states like |ψ〉 are called entangled (such a decomposition

does not exist). This concept can be extended to systems with larger Hilbert spaces and

more particles, but, of course, it does not make any sense talking about entanglement if

there is only one particle.

Consider now a quantum system composed by N particles and define Hi as the single-

particle Hilbert space, the quantum states of the i-th particle. The total Hilbert space

would be given by:

HN =
N⊗

a=1

Ha (2.3)

A generic quantum state |Ψ〉 ∈ HN can be represented as

|Ψ〉 =
∑

i1,...,iN

Ci1,...,iN |ψi1〉1 ⊗ · · · ⊗ |ψiN 〉N (2.4)

where the Cs are complex numbers and |ψi〉a ∈ Ha. In the above expression, each index

ia runs from 1 to dim(Ha) (which can be either finite or infinite). Like in the two-particle

examples, states can be factorisable or entangled. For instance, the state

|Ψ〉= |ψ1〉1 ⊗ |ψ1〉2 ⊗ |ψi3〉3 ⊗ · · · ⊗ |ψiN 〉N + |ψ2〉1 ⊗ |ψ1〉2 ⊗ |ψi3〉3 ⊗ · · · ⊗ |ψiN 〉N√
2

(2.5)

is entangled. Interestingly, if we rearrange the above state, it seems now factorisable2

|Ψ〉 =

[ |ψ1〉1 ⊗ |ψ2〉2 + |ψ2〉1 ⊗ |ψ1〉2√
2

]

⊗ |ψi3〉3 ⊗ · · · ⊗ |ψiN 〉N
= |Φ〉12 ⊗ |Ω〉34···N (2.7)

In this case the state does not look entangled, even if it is the very same state as before!

From this example it is clear that a given quantum state can be either entangled or fac-

torisable according to the partition chosen. In particular, a system described by the state

(2.5) is entangled when considering the partitions A = 1 and B = 2 ∪ 3 ∪ · · · ∪N . On the

other hand, choosing a different partition like A = 1 ∪ 2 and B = 3 ∪ · · · ∪ N the state

2Here we define Φ and Ω as

|Φ〉12 =
|ψ1〉1 ⊗ |ψ2〉2 + |ψ2〉1 ⊗ |ψ1〉2√

2

|Ω〉34···N = |ψi3〉3 ⊗ · · · ⊗ |ψiN 〉N (2.6)
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2.1. Bipartite Quantum Entanglement

is separable. From this example it is clear that entanglement is a feature that does not

depend only on the explicit expression of the state but also on the partition chosen.

2.1.1 A classical analogue

Let us consider a classical analogue of the Alice’s and Bob’s measurements of quantum

states. Suppose Alice (who lives in London) decides to visit her friend Bob in Sidney.

She then prepares her suitcase and takes a plane to Australia. Once she has arrived at

Bob’s place, she opens her luggage and finds out that she has only one red sock and she

immediately realises that the other sock has been left in a drawer in London. In the same

way, if she performs a measure on the particle A of the state (2.2) and finds ’up’, she im-

mediately knows that Bob’s spin is pointing down. Of course, the main difference between

the two cases is that quantum particles “live” in both states as long as a measure has

been performed on them. On the other hand, the second red sock has never left London.

In both cases the result is uncertain before making a measure (‘which is the spin of the

first particle?’ - ‘are there two red socks in my suitcase?’). While in the socks’ case one

of the two possibilities (‘one sock’ or ‘two socks’) is chosen with a classical random dis-

tribution at the time of packing the suitcase, in the quantum case on of the two options

(‘up’ or ‘down’) is selected at the time of the measure. During the last century there have

been some attempts to interpret quantum mechanics using classical models. One of the

most important of these formulations is the theory of hidden variables3. In such theory

there is no quantum superposition and the result of a measure (say ‘up’ or ‘down’ for

a spin system) is already determined at the time of creation of the quantum state. In

particular, quantum particles have some degrees of freedom which are not experimentally

accessible, called hidden variables, which determine the outcome of a measure. To ex-

plain this concept better, we can consider the celebrated Stern-Gerlach experiment [17].

In this experiment a beam of electrons is sent through an nhomogeneous magnetic field

that deflects the trajectory of each electron according to its spin. Each electron of the

beam has its spin pointing up or down. In standard quantum mechanics, we represent

this situation as a superposition using the (not normalised) state | ↑〉 + | ↓〉. The state

collapses to one of the two options when a measure is performed. In the hidden variables

interpretation each electron has an hidden variable λ uniformly distributed between 0 and

1 such that the electron points up or down according to its value. For instance, it points

up if λ ∈ [1, 1/2[ and down if λ ∈ [1/2, 1]. In a Stern-Gerlach experiment there is no way

to rule out one of the two interpretations. In particular, we can consider the beam of

3During the last century a number of hidden variable theories has been introduced. Probably the first
attempt to define such a theory was due to Louis de Broglie [16] in 1927.

20



2.1. Bipartite Quantum Entanglement

electrons as truly quantum particles or as classical particles whose spin point up or down

according to some classical probability distribution. In order to solve this ambiguity, in

1964 J S Bell proposed an ideal experiment [18], when an entangled two-particle state is

taken into account. Bell discovered an inequality (the celebrated Bell inequality) which

holds only in the hidden variables set up. On the other hand if the particles are truly

quantum the inequality is not satisfied. Almost twenty years later, in 1981 A Aspect, P

Grangier and G Roger performed an experiment [19] to check whether Bell’s inequalities

are satisfied or not. The experiment found a strong violation of Bell’s inequality and ruled

out any (local) hidden variable theory. Further and more recent experiments [20] ruled

out some possible loopholes [21] which could have affected Aspect’s experiment [19].

From the qualitatively point of view we can then say that there is entanglement between

two parts A and B of a system if the state is not completely factorisable. While this

definition is intuitive and gives a good grasp of the quantum nature of this feature, it is

hardly quantifiable and does not distinguish between different levels of entanglement. For

instance, the state 4

√
0.001|↑↓〉 −

√
0.999|↓↑〉 (2.8)

is almost separable, but, according to our definition, it is entangled exactly as |↑↓〉−|↓↑〉√
2

.

In order to differentiate between those states, we need to introduce some quantitative

measures of entanglement. Before that we would like to illustrate a celebrated quantum

protocol which intrinsically exploits the entangled nature of certain quantum states.

2.1.2 An application: quantum teleportation

Probably, one of the most interesting protocols which exploit the entanglement of a state

is the so-called quantum teleportation. Using such a protocol [22] it is possible to copy

a given quantum state without knowing its internal structure. Consider the familiar

situation when Alice and Bob share a quantum state of two particles A and B:

|φshared〉AB =
|↑↓〉AB + |↓↑〉AB√

2
(2.9)

Each of them can perform operations and measures on one particle. Moreover, suppose

Alice has an additional unknown quantum state |φunknown〉I = α0|↑〉I +α1|↓〉I5. The total
4In the following we will use a more compact notation for states: |ψφ〉 ≡ |ψ〉1 ⊗ |φ〉2.
5For unknown state we mean that neither Alice or Bob know the value of the constants αi.
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2.1. Bipartite Quantum Entanglement

state describing the system (shared+unknown) is then

|Ψtotal〉 = |φunknown〉 ⊗ |φshared〉 =
α0|↑↑↓〉 + α0|↑↓↑〉 + α1|↓↑↓〉 + α1|↓↓↑〉√

2
(2.10)

This state can be rearranged in the following way:

|Ψtotal〉IAB =
1

2

|↓↓〉IA + |↑↑〉IA√
2

1 [α0|↑〉B + α1|↓〉B ]

+
1

2

|↑↓〉IA + |↓↑〉IA√
2

σx [α0|↑〉B + α1|↓〉B ]

+
1

2

|↑↓〉IA − |↓↑〉IA√
2

(iσy) [α0|↑〉B + α1|↓〉B ]

+
1

2

|↓↓〉IA − |↑↑〉IA√
2

︸ ︷︷ ︸

Alice

σz [α0|↑〉B + α1|↓〉B ]
︸ ︷︷ ︸

Bob

(2.11)

where σa are Pauli’s matrices.

The above state is nothing but a rearrangement of the three particle state Alice and

Bob share (one each from φshared plus the unknown state Alice has). Alice now performs

a measure on her side of the quantum state (i.e. on the first two sites of the above

equation - denoted by ‘Alice’). Before performing the measure, the quantum system

is in a superposition of different states. When performing the measure, Alice simply

make the system collapse to one state. This measure (called projective measure) can be

performed in a number of ways. For instance, Alice can check whether her two spins are

both pointing up. In this set up, it is more convenient to Alice to perform a bit more

complicated measure. In particular, she measures in which of the four states of (2.11) the

systems collapses after the measure. In this way, there are four possible results for Alice’s

measure: the state can collapse in one of the four lines of (2.11). After the measure she

communicates the result (classically - even with a normal phone call) to Bob. Once Bob

receives the result of Alice’s measure, he can perform a simple operation on its side of

the quantum state to recover the original unknown state. For instance, if Alice measures

that the system has collapsed onto the first state, Bob’s state is identical to the unknown

state |φunknown〉. On the other hand, if Alice finds out that the system has collapsed

onto the state on the second line of (2.11), Bob’s state is equal to the unknown state

multiplied by σx. To recover the unknown state |φunknown〉, Bob must simply perform a

σx operation - that is, a flipping of the spin - on his state. Of course, this argument can be

extended to the third and fourth lines of (2.11). Such a protocol has been experimentally

implemented at the end of the last century [23, 24] with successful results. It should
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2.2. Measures of Entanglement

be noticed that the shared state |φshared〉 used in such protocol is entangled (and, as we

will see in next sections is maximally entangled). Entanglement is then a very important

feature of quantum protocols and it really adds some intrinsic advantages with respect to

classical protocols. Moreover, it is possible to show that if a state like (2.8) - an almost

separable state- has been used to implement the teleportation protocol, the results, i.e.

the transmission of the unknown quantum state from Alice to Bob, would have been less

precise. In particular, the scalar product (called fidelity) between the initial unknown

state and the final Bob state is equal to one (perfect transmission) if the state (2.9) is

used, while it is close to zero (bad transmission) if (2.8) is used. This protocol shows not

only how entanglement is very important in making a system truly quantum but also it

is clear that a quantitative measure of it is important to discriminate states with different

amounts of entanglement.

2.2 Measures of Entanglement

In order to quantify entanglement and to distinguish between differently entangled states

we have to define a way to measure it. Before discussing the possible options to define en-

tanglement measures, we would like to introduce the density matrix, a useful mathematical

object to study quantum states.

2.2.1 Density matrix

States like (2.5) are usually called pure states. Pure states can describe only a fraction of all

possible quantum states. Pure states are enough to describe a system at zero temperature

(since the system is in the ground state of the Hamiltonian), but they cannot describe

systems at finite temperature, in which a complete mixture of states with different energies

play a role. An isolated system at equilibrium at temperature T can be described using

the so-called density matrix ρ:

ρ =
1

Z

∑

n

exp

[

−En

kT

]

|ψn〉〈ψn| (2.12)

where |ψn〉 is the n-th eigenvector of the Hamiltonian of the system, En is the correspond-

ing eigenvalue, Z =
∑

n e
−En

kT is the partition function and k is the Boltzmann constant

(which will be set to one in the following).

Quantum states like (2.12) are called mixed since they take into account more than one

vector of the Hilbert space. Thermal systems are just an example: a density matrix is
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2.2. Measures of Entanglement

defined by a convex combination of projectors |ψi〉〈ψi|. The operator

ρ =
∑

i

pi|ψi〉〈ψi| (2.13)

is a density matrix if pi ≥ 0 and
∑

i pi = 1. Notice that the coefficients pi play here the

role of classic probabilistic weights. Of course, density matrices can also describe pure

states. For instance, if a quantum system is in the quantum state |ψ〉 its density matrix

is simply given by

ρ = |ψ〉〈ψ| (2.14)

As we have just seen, density matrices can describe a wider variety of quantum states

than simple vectors in the Hilbert space. Moreover, they can be used to define expectation

values of operators, since

〈O〉ρ ≡ tr[ρO] (2.15)

From its definition, it is easy to show that the following properties hold for a density

matrix:

ρ = ρ† (2.16)

trρ = 1 (2.17)

〈φ|ρ|φ〉 ≥ 0 ∀ φ ∈ H (2.18)

Density matrices can be used also to define thermodinamic and statistical properties of

many-body quantum systems. In particular the von Neumann Entropy S of a quantum

state described by a density matrix ρ is given by [25]

S(ρ) = −Tr [ρ log ρ] = −
∑

i

pi log pi (2.19)

von Neumann Entropy is positive-definite, it vanishes for pure states (ρ = |ψ〉〈ψ|) and has

its maximum when the ps are all equal (all states are equally probable).
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2.2. Measures of Entanglement

Rényi entropy

Since the definition (2.19) involves the logarithm of an operator, its computation could be

challenging. Using the density matrix, it is possible to define another Entropy:

Sn(ρ) =
1

1− n
log trρn (2.20)

which is called Rényi Entropy [26]. In some circumstances (like in the majority of systems

studied in this thesis), this quantity is easier to compute than (2.19). The two entropies

are also related by

S(ρ) = lim
n→1

Sn(ρ) (2.21)

2.2.2 Reduced density matrix

Consider now a system divided into two parts A and B. As we have just seen, we can use

a density matrix ρ to define the state of the system. This density matrix is an operator

acting on the Hilbert space H = HA ⊗ HB of the whole system, while a generic vector

Ψ ∈ H can be written as (φi ∈ HA and χj ∈ HB)

|Ψ〉 =
∑

i,j

Cij|φiχj〉 (2.22)

If {χj}j form a basis of HB, we can define a partial trace over HB of an operator

O ∈ End(H) by

OA ≡ trBO ≡
∑

j

〈χj |O|χj〉 (2.23)

This new operator OA ∈ End(HA) can be used to focus only on the susbsystem A and to

consider B just an environment.

Of course we can reproduce this procedure of tracing over some degrees of freedom of a

system for any operator in H. In particular, if we consider the density matrix ρ, the new

operator ρA is the so-called reduced density matrix:

ρA ≡ trBρ (2.24)

This new object is a density matrix of the subsystem A: properties (2.16) hold and the

expectation values of operators OA defined on the subsystem A (2.23) are given by

〈OA〉 = trA(ρAOA) (2.25)
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2.2. Measures of Entanglement

The reduced density matrix is then a very useful tool to focus only on a part of a system

and regard the rest as an environment or a thermal bath. Notice that the reduced density

matrix of a subsystem can be mixed even if the state of the whole system was pure.

2.2.3 What is a good measure of entanglement?

Before looking for a good measure of entanglement, we should define which properties

such a measure must satisfy [27]. In the following we will refer to a quantum state using

its density matrix ρ.

1. Normalisation. Separable states are not entangled:

E(ρ) = 0 (2.26)

if ρ represents a separable (not entangled) state.

2. Not increasing under LOCC. Entanglement is a genuine quantum phenomenon

and its amount cannot be increased by any classical operation (or classical com-

munication CC). Additionally, since entanglement is also a feature of the partition

chosen, the action of local operator should not change the value of entanglement. Let

U = UA ⊗ UB an operator associated with a local operation (LO) on the quantum

state, its action leaves the entanglement unaffected:

E(UρU †) = E(ρ) (2.27)

We can incorporate both non increasing properties under LOCC:

E(Θ(ρ)) ≤ E(ρ) (2.28)

where Θ is a map associated with a LOCC transformation.

3. Convexity. Entanglement cannot be created by classically mixing two quantum

states. Consider two states (mixed or pure) described by density matrices ρ1 and

ρ2. A mixture of these two states can be simply obtained by ρ1+2 = αρ1+(1−α)ρ2.
Of course, we should not expect the entanglement to increase under this operation.

Entanglement must then be convex:

E(αρ1 + (1− α)ρ2) ≤ αE(ρ1) + (1− α)E(ρ2) (2.29)

4. Sub-additivity. Suppose we have two different quantum systems, each of them

defined by a density matrix, say ρ and ρ′. Entanglement should not increase by
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2.2. Measures of Entanglement

joining these two systems together:

E(ρ⊗ ρ′) ≤ E(ρ) + E(ρ′) (2.30)

Note: difference between convexity and sub-additivity

In the above requirements for a quantity to be a good measure of entanglement the last

two properties might seem equivalent. In fact they describe two quite different situations.

The third property regards the classical mixture of two quantum states. The two density

matrices are defined on the same Hilbert space H and their sum implies a mixture. For

instance, consider a quantum system with inverse temperature β and two energy levels

E1 and E2. The two density matrices relative to the two energy levels are respectively

ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|. The thermal state (a classical mixture) is then given by

ρ = Z−1(e−βE1ρ1+e
−βE2ρ2). In this case the convexity property implies that entanglement

should not increase under classical (thermal) correlations:

E(ρ) ≤ Z−1e−βE1E(ρ1) + Z−1e−βE2E(ρ2) (2.31)

On the other hand, the sub-additivity property takes into account quite a different situ-

ation. Consider two quantum systems and their Hilbert spaces H1 and H2. Let ρ1 and

ρ2 identify two quantum states, one for each system. Of course, the two systems can be

joint together. The new Hilbert space is given by H1⊗H2 and the new density matrix by

ρ = ρ1 ⊗ ρ2. Since the operation of joining the two systems together does not create any

quantum interaction between the two systems, entanglement must not increase:

E(ρ1 ⊗ ρ2) ≤ E(ρ1) + E(ρ2) (2.32)

2.2.4 Entanglement entropy

As seen in the previous section 2.1.2, the more entangled a state is, the more quantum in-

formation can be compressed into it, in the same way a classical message is less compressed

the more entropic it is. For this reason, entropy can be a good measure for entanglement.

If a system is described by a density matrix ρ, the entanglement between two subsections

A and B can be represented as the von Neumann Entropy of the reduced density matrix

ρA:

EA∪B(ρ) = S(ρA) = − Tr
HA

[ρA log ρA] (2.33)

Moreover it satisfies almost all the 2.2.3 requirements to be a good measure of entangle-

ment.
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1. Normalisation. Consider the state |Ψ〉 = |φ〉A ⊗ |χ〉B . It is separable (not en-

tangled) for the partition A ∪ B and its reduced density matrix is simply given by

ρA = |φ〉A A〈φ|. Since ρA represents a pure state, its von Neumann entropy vanishes.

Thus S(ρA) = 0 if ρ is separable.

2. Not increasing under LOCC. In the previous section we represented a LO as

a unitary operator U = UA ⊗ UB. Thanks to the cyclic property of the trace, von

Neumann entropy is invariant under such transformations:

EA∪B(UρU
†) = S(UAρAU

†
A) = S(ρ) = EA∪B(ρ) (2.34)

3. Concavity. An explicit computation shows that6

S(αρ1 + (1− α)ρ2) = αS(ρ1) + (1− α)S(ρ2)− log [α (1− α)]

≥ αS(ρ1) + (1− α)S(ρ2) (2.35)

Such a simple argument makes it clear that the von Neumann entropy cannot be

a good measure of entanglement for generic states. On the other hand, the above

inequality becomes an equality in the α = 0, 1 case, i.e. when pure states are

considered. Fortunately the ground state of a system can be represented by a pure

state, and then the von Neumann entropy can be used as a measure of entanglement

in such a case.

4. Sub-additivity. Suppose to have a quantum system A ∪B with density matrix ρ.

The entropy of the entire system is less than the sum of the entropy of the two parts

of the system:

S(ρ) ≤ S(ρA) + S(ρB) (2.36)

When comparing these properties with the requirements (2.2.3) for a good measure of en-

tanglement it is clear that the von Neumann entropy measures properly the entanglement

of a pure state. Even though it can sound very restrictive, it covers a large number of

physically interesting cases, like ground states. In following chapters we will refer to such

measure as von Neumann entropy or as entanglement entropy (EE)

6It can be easily proved by considering the diagonalised version of the matrices ρ1,2:

ρ1 =
∑

i

aiPi

ρ2 =
∑

i

biPi
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As we said in Section 2.1.2, different states provide different levels of precision in the

teleportation protocol. Truly entangled states, like

|ψ〉 =
|↑↓〉 − |↓↑〉√

2
(2.37)

allow a perfect transmission of a unknown state, On the other hand, almost separable

states, like:

|φ〉 =
√
0.001|↑↓〉 −

√
0.999|↓↑〉 (2.38)

makes the teleportation less precise. The amount of entanglement reflects this difference:

E(|ψ〉〈ψ|) = log 2 = 0.693147 . . .

E(|φ〉〈φ|) = 0.007907 . . . (2.39)

The von Neumann entropy distinguishes the two states and clearly represents the amount

of entanglement encapsulated in them.

As we have just seen, the von Neumann entropy cannot be used to measure entan-

glement in thermal systems (described by mixed states) or, as we will see in the next

section, the entanglement between two subsystems embedded in a larger environment7. In

addition to these features, von Neumann entropy encapsulates also another import prop-

erty of bipartite entanglement. Since entanglement is related to the amount of quantum

correlations between two parts of a system, the measure of entanglement must not depend

on the order in which we perform the traces. In other words, considering A as a system

and B as an environment must be the same as considering B the system and A the en-

vironment. For bipartite systems, von Neumann entropy guarantees this symmetry, since

S(ρA) = S(ρB).

2.3 Logarithmic Negativity

As we said in previous sections, the entanglement can be measured using the von Neumann

entropy only if two conditions are satisfied. First of all, the system (as a whole) has to be

in a pure state. Moreover, the entropy is a good measure of entanglement only for bipartite

systems. Whenever one of these two conditions is not satisfied, the von Neumann entropy

7From a mathematical point of view, the two cases are similar. Suppose to have a tripartite system
A ∪B ∪C. To compute the entanglement between A and B we need to trace over the degrees of freedom
of C (to create a bipartite system). Such a procedure will create (in most of the cases) a mixed states,
even if the initial state ρABC was pure.
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does not satisfy all the necessary conditions for being a good measure of entanglement

(see Section 2.2.3). Since the entanglement measures the genuine quantum correlations

between two subsystems, any thermal noise has to be factored out. As soon as the system

becomes mixed, both quantum and classical effect contribute to the von Neumann entropy

and the actual amount of quantum entanglement cannot be isolated. As we said before, a

tripartite system in a pure state can be seen as a mixed state of a bipartite system, once

the degrees of freedom of the third subsystem have been traced over. For these reasons

a new measure of entanglement has to be introduced, the so-called logarithmic negativity

(LN) [28, 29, 30].

Logarithmic negativity measures the amount of entanglement even in the particular sit-

uations when the von Neumann entropy fails. Let A ∪ B ∪ C be a quantum system in a

pure state ρ = |Ψ〉〈Ψ|. As usual, we can define a reduced density matrix tracing over only

degrees of freedom belonging to C.

ρA∪B = trCρ (2.40)

Once we have traced the degrees of freedom of C, we have an object which focuses only

on the regions A and B. Of course, we cannot compute the entanglement by simply

tracing over also the degrees of freedom of B, otherwise we will end up with the very same

difficulties of the von Neumann entropy discussed in the previous paragraph. In order to

study the quantum correlations between A and B, we should find a way to “distinguish”

them. In other words, we need to perform some operations on one side of the system

without loosing degrees of freedom. One way to do so is to perform the so-called partial

transposition, when only some degrees of freedom are transposed. For instance, consider

an operator O which acts on the Hilbert space HA ⊗ HB . Its matrix elements are given

by

〈
i′Aj

′
B |O|iAjB

〉
(2.41)

When partially transposing on HB’s degrees of freedom, only the jB indexes will be ex-

changed. We denote the partial transposition of the B’s degrees of freedom by OTB :

〈
i′Aj

′
B |OTB |iAjB

〉
=

〈
i′AjB |O|iAj′B

〉
(2.42)

The resulting operator OTB is still acting on HA ⊗ HB but the two sets of degrees of

freedom are somehow “marked”. Once the partial transposition has been performed on

the reduced density matrix, the logarithmic negativity E can be defined in a very similar
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way to the von Neumann entropy:

E = logTr
∣
∣
∣ρ

TB
A∪B

∣
∣
∣ = log

(
∑

i

|λi|
)

(2.43)

where λi are the eigenvalues of ρTB
A∪B .

Like entanglement entropy, it is possible to define logarithmic negativity as a limit [31]:

E = lim
ne→1

log trA∪B
(

ρTB
A∪B

)ne

(2.44)

Apart from the partial transposition, one of the main differences between the logarithmic

negativity and the entanglement entropy is that the above limit has to be performed once

the function log trA∪B
(

ρTB
A∪B

)ne

has been analytically continued for the even values of n.

While in the entanglement entropy case there is no intrinsic difference between the even and

the odd n series, in the negativity case there is a substantial difference. In particular, while

any density matrix is positive definite, this is no more the case once a partial transposition

has been performed. For this reason, while the even series of trA∪B
(

ρTB
A∪B

)ne

is simply

given by series of positive elements, thus it is no more the case for the odd series.

Like the von Neumann entropy, it is possible to show [28] that logarithmic negativity

satisfies all the requirements for being a good measure of entanglement.

Even though logarithmic negativity has been defined for tripartite systems, it perfectly

describes also the bipartite thermal case. In particular, consider a quantum system with

Hilbert space H in a mixed state described by a density matrix ρ. This density matrix

can be interpreted as a reduced density matrix relative to H of a larger Hilbert space

H⊗Hextra:

ρ = trextra|Ψ〉〈Ψ| (2.45)

In this way LN is a good measure of entanglement also for the bipartite mixed case.

2.4 Why Entanglement?

Apart from its unique properties of describing truly quantum phenomena, entanglement is

a very important resource also in the study of many-body quantum systems. The scaling

of entanglement entropy can be used also to probe the critical and off critical properties

of quantum systems which can be described by a quantum field theory. One of the most

important features of entanglement is its scaling in one dimensional quantum systems.

Consider a critical one dimensional quantum system of length R with periodic boundary

conditions. Suppose we are interested in evaluating the entanglement entropy between
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two parts of the system A and B of length r and R − r, respectively. It has been shown

[7, 8] that it scales as

S(ρA) =
c

3
log

(
R

π
sin

rπ

R

)

+ const. (2.46)

where c is the central charge of the system (a number associated with the universality

class of the critical point - see Chapter 3). Suppose now we study the problem from a

different prespective. Consider some quantum system, like a spin chain with a very large

number of sites. Suppose we know that the system is critical but we would like to find

out which is the underlying universality class (which depend on the central charge c). If

we perform some kind of numerical analysis of the spin chain, like a DMRG simulation

[32], it is possible to estimate the value of the entanglement entropy at various sizes of

the subsystem. Fitting these data with the theoretical prediction (2.46), it is possible to

extract the value of the central charge with very good precision.

This kind of analysis and identification of the central charge using the scaling of some

physical quantity is not limited to entanglement. It has been known for a long time that

the ground state energy E0 scales with the size R of the system (with periodic boundary

conditions) [33, 34]:

E0 ∼ Rǫ0 − v
πc

6R
(2.47)

where ǫ0 is the energy density and v is the sound velocity.

Of course, a similar numerical analysis can be performed to compute the value of the

central charge from the scaling of the ground state energy. Unfortunately, to isolate the

central charge c we need to know the sound velocity v8. On the other hand, once the

entanglement scaling has been evaluated, the central charge can be directly extracted

using (2.46).

2.5 Conclusions

In this chapter we introduced the basic notions of entanglement and its features. We

showed how entanglement clearly reflects the truly quantum nature of some systems. In

order to quantify the amount of entanglement, we introduced two measures of entangle-

ment: entanglement entropy and logarithmic negativity. Even though there are many

more suitable measures for entanglement (like the entanglement of formation [36]), these

two aforementioned measures are the most suitable for the study of many-body one di-

mensional quantum systems. In the following Chapters we will study the scaling of the

8For instance, the speed of the sound can be computed performing a Bethe ansatz [35].
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entanglement entropy in a variety of quantum systems (Chapters 4, 5, 6 and 7), while in

the last chapter we will investigate the scaling of logarithmic negativity in free theories.
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Chapter 3

Conformal and Integrable

Quantum Field Theory

In this chapter we review some known results of conformal field theory (CFT) [37, 38, 39,

40] and Integrable Quantum Field Theory (IQFT) [41, 42, 43, 44, 45, 46]. In particular,

we set up the framework for some of the CFT ideas we will use in the following chapters.

Additionally, we will briefly introduce the form factor program, a very useful tool for the

evaluation of correlation functions in massive field theories. This chapter is not intended

to be a complete review of CFT and IQFT. Our aim is to give some physical grasp of

ideas, formulæ and concepts which will be used in the following chapters.

3.1 Critical Systems

A typical feature of second order phase transitions is the absence of a length scale. If a sys-

tem is scale invariant it looks the same at every scale. It means that all the (quasi)particles

interact with each other and the system is completely “connected”. From the correlation

functions point of view, it means that the decay is no more exponential, like G(r) ∼ e−mr,

but algebraic, G(r) ∼ r−d, where m is the lightest mass of the system and r is the distance

between two points. In particular, non critical correlators decay exponentially, and each

particle is affected only by other particles inside a ball of radius ∼ ξ = m−1. At the

critical point the parameter m will vanish, the “ball of influence” will diverge and all parts

of the system will become connected. Furthermore, the majority of systems are Poicaré

invariant (invariance under rotations, translations and Lorentz boost). With the exception

of some rare cases [47], most scale and Poincaré invariant systems are also conformally

invariant. Conformal transformations can be defined as maps which act as dilations of
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3.1. Critical Systems

the metric:

gµν (x) → g′µν
(
x
′) = Λ(x) gµν (x) (3.1)

Conformal invariance encapsulate not only Poincaré and scale invariance, but also the

so-called special conformal invariance1.

In the following chapters we will make large use of conformal invariance in the study of

critical systems. In particular, since we are interested in 1+1 dimensional systems, we

specialise our introduction to two dimensional conformal field theories.

3.1.1 Two dimensional CFT

When specialising to the two dimensional case it is useful to replace the two real coordi-

nates (x0, x1) with a complex variable z and its conjugate z̄:

z = x0 + ix1

z̄ = x0 − ix1 (3.2)

Fundamental objects in CFT are the so-called primary fields, which transform as:

φ(z, z̄) =

(
df

dz

)∆(df̄

dz̄

)∆̄

φ′(z′, z̄′) (3.3)

where z′ = f(z) and f is an arbitrary conformal transformation and the constants ∆

and ∆̄ are called conformal weights or conformal dimensions. One of the most peculiar

features of conformal invariance in two dimensions is that conformal transformations are

represented by holomorphic and anti-holomorphic functions [37]. The above condition for

primary fields can be slightly relaxed. We can define quasi primary fields as objects which

transform like (3.3) under global conformal transformations2. Conformal weights affect

also the scaling of two point functions and (for spinless fields) the two components are

equal (∆ = ∆̄) and they coincide with the scaling dimension:

〈φ(z, z̄)φ(w, w̄)〉 =
1

|z − w|4∆ (3.4)

1A special conformal transformation is nothing but a translation preceded and followed by an inversion
xµ → xµ/|x|2 [37].

2From an intuitive point of view, global conformal transformations are conformal transformations whose
parameters are fixed and do not depend on the point z they are transforming. On the other hand,
local conformal transformations (which include global transformations) are conformal transformations that
depend on the point z.
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Let us now consider a conformal theory with lagrangian density L. Of course, it is possible

to define a stress energy tensor Tµν(x). As we said before, in two dimensional CFT it

comes natural to use a single complex coordinate instead of two real ones. In these new

coordinates, it is convenient to rearrange the stress energy tensor in the following way:

T ≡ 1

4
(T00 − T11 + 2iT01)

T̄ ≡ 1

4
(T00 − T11 − 2iT01)

Θ ≡ T µ
µ = T00 + T11 (3.5)

In complex coordinates, the familiar Noether conservation law ∂µTµν = 0 becomes:

∂zT̄ +
1

4
∂z̄Θ = 0

∂z̄T +
1

4
∂zΘ = 0 (3.6)

Since at the critical point Θ = 0, the above conservation laws become holomorphicity

conditions for the stress-energy tensor:

∂zT̄ = 0 = ∂z̄T (3.7)

Another important property of the stress energy tensor is how it transforms under con-

formal transformations z 7→ z′ = f(z)

T ′(z′) =

(
dz′

dz

)−2 [

T (z)− c

12
{z′; z}

]

(3.8)

where the symbol {·, ·} is the so-called Schwarzian derivative:

{z′; z} =
d3z′

dz3

dz′

dz

− 3

2

(
d2z′

dz2

dz′

dz

)2

(3.9)

The constant c appearing in (3.8) is called central charge and it is a number which depends

on the universality class of the CFT. From an intuitive point of view, the central charge

measures the number of degrees of freedom in the system. For instance, the central charge

of a free boson is equal to one, while the one of a free fermion is one half. Of course,

both field theories have infinite degrees of freedom, but, from a very naive point of view,

two (Majorana) fermions create a boson. Additionally, the stress energy tensor has a very

precise action on fields when inserted in correlators. Let X be a string of n primary fields:

X = φ1(z1, z̄1) · · · φn(zn, z̄n) (3.10)
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The action of T on X is given by the Conformal Ward identity:

〈T (z)X〉 =

n∑

i=1

[
∆i

(z − zi)2
+

∂zi
z − zi

]

〈X〉 (3.11)

After this very short review of some important properties of two dimensional CFT, let

us discuss the Hilbert space structure in such theories.

3.1.2 Conformal families

The structure of the Hilbert space in two dimensional CFT is very simple and elegant.

In order to quantise the system, it is worth moving from the complex plane to a cylinder

geometry. Consider then a one dimensional quantum system with periodic boundary

condition and size R. The time evolution of this system can be chosen along the vertical

direction of the cylinder. The actual map from the complex plane to the cylinder is given

by

z = e
2π(t+ix)

R (3.12)

where x and t are the space and time coordinates, respectively. We can now quantise the

system with the time flowing from the bottom to the top of the cylinder.

The asymptotic past (t→ −∞) is then associated with the point z = 0 while the asymp-

totic future with the point z = ∞. Asymptotic states can then be represented as the

action of primary fields on the conformal vacuum:

|φ〉 ≡ |∆, ∆̄〉 ≡ lim
z,z̄→0

φ(z, z̄)|∅〉 (3.13)

where |∅〉 is the conformal vacuum.

Of course, it is possible to define asymptotic future states as hermitian conjugates of

asymptotic past states. Using equation (3.12) it is clear that the maps t→ −t is equivalent,
in complex coordinates, to z → z̄−1. In order to avoid ill defined norms, we can define the

hermitian conjugation of a (quasi primary) field as:

[φ(z, z̄)]† = z−2∆̄z̄−2∆φ

(
1

z̄
,
1

z

)

(3.14)

Like other fields, also the stress energy tensor can be interpreted as a quantum operator.
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The Laurent expansion of the operator T is then given by

T (z) =

∞∑

n=−∞
z−n−2Ln

T̄ (z) =

∞∑

n=−∞
z̄−n−2L̄n (3.15)

The stress energy tensor can be seen as the Noether current associated with conformal

invariance. For this reason, its coefficients Ln are the actual generators of local conformal

transformations. In particular, L0 + L̄0 generates the dilations z 7→ λz. Since, according

to the map (3.12), dilations are nothing but time translations, the quantum Hamiltonian

is given by 2π
R (L0 + L̄0). On the other hand, operators L−1 and L1 generate translations

and special conformal transformations, respectively. While three operators (and their

antiholomorphic counterparts) are enough to generate global conformal transformations,

in order to generate local transformations all the generators must be taken into account.

The explicit expressions of the operators Ln can be obtained inverting the above Laurent

expansion:

Ln =
1

2πi

∮

dz zn+1T (z)

L̄n =
1

2πi

∮

dz̄ z̄n+1T̄ (z) (3.16)

These operators, also-called Virasoro generators, satisfy the celebrated Virasoro algebra

Vir:

[Ln, Lm] = (n −m)Ln+m +
c

12

(
n3 − n

)
δn+m,0

[Ln, L̄m] = 0

[L̄n, L̄m] = (n −m)L̄n+m +
c

12

(
n3 − n

)
δn+m,0

(3.17)

The study of the representations of such algebra can then be used to understand the

Hilbert space structure of systems enjoying conformal symmetry.

Conformal towers

Let us start from the conformal vacuum |∅〉. Since it should be invariant under global

conformal transformations, it should be annihilated by the three operators responsible for
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such transformations:

Ln|∅〉 = 0 for n = 0,±1 (3.18)

Moreover, in order to have a well defined action of the stress energy tensor on the vacuum

(T (z)|∅〉), the above condition can be extended to all n greater or equal to −1. Since3

〈∅|Ln = (L−n|∅〉)†, the vacuum expectation value of the stress energy tensor vanishes:

〈∅|T (z)|∅〉 = 0 (3.19)

Having discussed the properties of the conformal vacuum, we can now study the features of

the other states of the Hilbert space. Let us consider a primary state |∆, ∆̄〉. It is possible
to show that it is also an eigenstate of the operators L0 and L̄0, thus of the Hamiltonian

as well:

L0|∆, ∆̄〉 = ∆|∆, ∆̄〉
L̄0|∆, ∆̄〉 = ∆̄|∆, ∆̄〉

(3.20)

Moreover, these primary states are annihilated by Ln with n > 0:

Ln|∆, ∆̄〉 = 0

L̄n|∆, ∆̄〉 = 0 (3.21)

These two conditions (3.20) and (3.21) can also be used as an alternative definition of

primary states (and primary fields). Primary states can then be considered as the highest

weight states of the Virasoro algebra. In the same way, the highest weight states of the su2

algebra are annihilated by J+ and they are eigenvectors of Jz at the same time. In the su2

case, the operator J− creates a collection of states starting from the highest weight state.

In the same way the operators L−n (with n positive) create a family of states starting from

a highest weight state of the Virasoro algebra Vir. These states are called descendants

and the family of all descendants from a single primary state is called a conformal tower

or Verma module. We will denote it by V (c,∆). For instance, the state

L−2L−1|∆, ∆̄〉 (3.22)

3The explanation of such conjugation relation can be found in the definition of asymptotic states. In
particular, since conjugation maps states from the asymptotic past to the asymptotic future and vice versa,
it is equivalent to the exchange z ↔ z̄−1, which, according to the expansion 3.15, maps Ln into L̄−n.
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is a descendant of |∆, ∆̄〉.
Thanks to this elegant structure, the study of the representations of the Virasoro algebra

is enough to probe the Hilbert space of the states in a CFT.

3.1.3 Minimal models

As we saw in the previous section, the Hilbert space of a CFT is formed by all the conformal

towers of its primary fields. In principle there is no upper bound to the number of primary

fields a CFT can have. However, there is a particular class of models, called minimal models

in which the number of primary fields is finite. The most peculiar feature of minimal

models is the presence of primary-like states among the descendants. These states, which

are orthogonal to the entire Verma module, are called singular or null vectors and they

have zero norm. For instance, consider a CFT with central charge c and a primary state

|∆, ∆̄〉 with conformal weight (∆, ∆̄). To simplify the example we can assume a spinless

theory, where the holomorphic and anti-holomorphic parts have the same properties4. Let

|χ〉 be a descendant of |∆〉:

|χ〉 =
[
L−2 + η L2

−1

]
|∆〉 (3.23)

It is a null vector if

η = − 3

2(2∆ + 1)

∆ =
1

16

[

5− c±
√

(c− 1)(c − 25)
]

(3.24)

Such a choice makes χ a primary state at level two:

Ln|χ〉 = 0 for n > 0 (3.25)

Such a state is then a primary and a descendant at the same time. Additionally, it is clear

that χ has zero norm:

〈χ|χ〉 = 0 (3.26)

4In spinless theories we can use a shorter notation for states |∆, ∆̄〉 = |∆,∆〉 ≡ |∆〉.
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Moreover, χ is orthogonal to any state |ψ〉 = L−k1L−k2 · · ·L−kN |∆〉5 in the Verma module:

〈χ|ψ〉 = 〈χ|L−k1L−k2 · · ·L−kN |∆〉 = = (〈∆|LkN · · ·Lk2Lk1 |χ〉)∗ = 0

(3.27)

For this reason, null vectors and their descendant can be safely removed from the Verma

module V (c,∆). Let M(c,∆) be the Verma module V (c,∆) once all null vectors have

been removed. The module M(c,∆) is then irreducible and it can be used to construct

irreducible representations of the Virasoro algebra.

We can now investigate which are the conditions such that null states appear inside

a Verma module. Among the various regions of values the central charge can have, we

specialise to the c < 1 case. When the central charge is less then one and there exist some

Verma modules containing null vectors, the CFT is called a Minimal Model. In particular,

the central charge can be parametrised by two integer numbers m and m′ (with m and m′

coprime and 2 < m < m′):

c = 1− 6
(m−m′)2

mm′ (3.28)

Of course, the existence condition of null states does not rely only on the value of the

central charge, but also on the conformal weight. In order to have some null state among

its descendant, a primary state must have a conformal weight of the form (when the value

of c is given by (3.28)):

∆rs =
(mr −m′s)2 − (m−m′)2

4mm′ (3.29)

with

1 ≤ r < m′ 1 ≤ s < m (3.30)

Sometimes it is useful to denote the set {(s, r) ∈ N
2 s. t. 1 ≤ r < m′ and 1 ≤ s < m} as

J . Such models are also-called rational models thanks to the rational expressions which

define their central charges and conformal weights.

One of the main consequences of the presence of null vectors is the finite number of

5A generic descendant of |∆〉 can be represented as a linear combinations of states like
L−k1

L−k2
· · ·L−kN

|∆〉 where {k1, k2, . . . , kN} is a collection of N positive integers.
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conformal families which constitute the Hilbert space:

H =
⊕

(s,r)∈J
M(c,∆r,s)⊗ M̄(c,∆r,s) (3.31)

where the M̄ refers to the antiholomorphic part of the module. In CFT it is very common

to denote a minimal model by Mmm′ which indicates all the conformal families (once the

null states have been removed) associated with a particular choice of m and m′.

Moreover, minimal models describe a variety of common physical phenomena. For

instance, the universality class of the critical Ising model is realised by the M34 minimal

model and that of the three-state Potts model by M56.

3.1.4 Modular transformations and conformal characters

In previous sections we described the Hilbert space of the conformal states obtained by

quantising a CFT on the cylinder. Another natural geometry to quantise a two dimensional

fields theory on is the torus, i.e. a space with periodic boundary conditions on both

directions. Consider, for example, a cylinder with height L and circumference R. A torus

can be simply obtained by joining together the two sides of the cylinder. It is possible

to choose any of the two directions (R or L) to quantise the system. Of course, the

partition functions computed with the different choice of quantisations must be the same.

This property is guaranteed by quite an elegant symmetry of the torus, called modular

invariance [48]. From an intuitive point of view, a torus is modular invariant because

there are many equivalent ways to represent it on a complex plane. The simplest one

is to consider a rectangle of size L × R on the complex plane and identify the opposite

edges to recover the torus’ geometry. Without any loss of generality, we can set one vertex

to one and the other to it with t > 0. Our rectangle can then be identified by its four

vertices at (anticlockwise order) 0, 1, 1 + it and it. Since conformal systems are invariant

under rotations and dilations, the rectangle can be rotated and dilated without affecting

the partition function. Let τ be such that Imτ = t, we can deform our rectangle into a

parallelogram with vertices 0, 1, 1+ τ and τ . All the transformations of the parallelogram

which leave the partition function unchanged are called modular transformations and can

be represented by the operations T and S. The action of these operations is given by:

T : τ 7→ τ + 1

S : τ 7→ −1

τ
(3.32)
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The partition function on the torus defined by the parameter τ is then given by

Z(τ, τ̄) = Tr exp [−ImτH − iReτP ] (3.33)

where H and P are the Hamiltonian and the momentum operator, respectively. The

Hamiltonian operator on a cylinder of circumference R has already been computed in

previous sections and is given by

H =
2π

R

(

L0 + L̄0 −
c

12

)

(3.34)

where the radius R is equal to one in the present case. On the other hand, the momentum

operator is proportional to L0 − L̄0 (see e.g. [42]):

P =
2π

R
(L0 − L̄0) (3.35)

Putting everything together, the partition function is then given by:

Z(τ, τ̄ ) = Tr exp
[

qL0− c
24 q̄L̄0− c

24

]

(3.36)

with

q = e2πiτ

q̄ = e2πiτ̄ (3.37)

The partition function can also be written as a sum over all primary fields of the theory:

Z(τ, τ̄) =
∑

∆,∆̄

N∆∆̄χ∆(q)χ∆̄(q̄) (3.38)

where the coefficients N are integer numbers and the functions χ are called conformal

characters (or Virasoro characters):

χ∆(q) = Tr
∆
qL0− c

24 (3.39)

Of course, the above trace is restricted to the conformal family of the primary state ∆.

For minimal models it is possible to compute the conformal characters using the Rocha-

Caridi formula:

χrs(q) =
1

(q)∞
q−

c
24

+∆rs

∞∑

k=−∞
qmm′k

[

qk(rm
′−sm) − qk(rm

′+sm)
]

(3.40)
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where (q)∞ is the q-Pochhammer symbol [49]:

(q)∞ =

∞∏

j=1

(1− qj) (3.41)

Modular transformations have a very simple action on conformal characters in minimal

models. The action of T is given by (not only for minimal models, but for a generic CFT):

Tχ∆(q) 7→ e2πi(∆− c
24)χ∆(q) (3.42)

The action of the modular transformation S is a bit more complicated. For minimal

models, the conformal character transforms under S as

χrs(q̃) =
∑

(r′s′)∈J
Sr′s′

rs χr′s′(q) (3.43)

where q̃ = e−
2πi
τ and the modular matrix Sr′s′

rs is given by:

Sr′s′
rs =

√

8

mm′ (−1)(r+s)(r′+s′) sin
πrr′

m
sin

πss′

m′ (3.44)

3.1.5 Non unitary CFT

In this section we discuss some features of so-called non unitary CFT [50].

For instance, all minimal models Mn,m with m 6= n+ 1 are non-unitary. In the context

of CFT, non-unitarity means that there could be some states with negative norm. For

instance, setting the norm of all primary states to one (〈∆|∆〉 = 1), the state |ψ〉 = L−n|∆〉
has negative norm:

〈ψ|ψ〉 = 2n∆+
1

12
cn
(
n2 − 1

)
≤ 0 (3.45)

for negative c and n sufficiently large.

Non unitary systems have also another very interesting feature: some conformal weights

can be negative. For instance, in the Lee-Yang minimal model M25 the conformal dimen-

sion ∆Φ of the field Φ is equal to −1/5.

Even though negative conformal dimensions and non positive-definite norms could make

non unitary systems seem a bit unphysical, with the right precautions these CFTs can be

used to describe a number of physical phenomena. For example, some excitations in the

fractional quantum Hall systems with filling ν = 2/5 are described by the non unitary

minimal model M35 [51].
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3.1.6 The Casimir effect

From a many-body physics point of view, one of the most interesting features of CFT is

the relation between the energy of the lowest quantum states of a critical Hamiltonian and

the conformal dimensions of the conformal theory describing the critical point. Consider,

for instance, a spin chain with periodic boundary conditions and with large number R

of sites and its quantum Hamiltonian Hspin. With a suitable choice of parameters, the

Hamiltonian describes a quantum critical point in the thermodynamic limit R → ∞. We

can now assume that, at least for the lowest energy spectrum, the spin chain Hamiltonian

can be described by the CFT Hamiltonian H (3.34):

Hspin ∼ vH (3.46)

where v (called sound velocity) is a non universal numerical parameter which depends on

the actual implementation of the quantum Hamiltonian6. The above, together with the

CFT Hamiltonian (3.34), gives immediately the scaling of the energy of the ground state

and of the first excited states:

E(∆) ∼ 2πv

R

(

2∆ − c

12

)

(3.47)

where, for simplicity, we have considered a spinless theory (∆=∆̄).

From the above equation it is clear that, if the system is unitary, the ground state, i.e.

the state with the lowest energy, is associated with the identity field (∆ = 0) [33, 34]:

E0 ∼ −πvc
6R

(3.48)

such a scaling is sometimes referred to as Casimir effect7.

On the other hand, if the system is non unitary, there is a conformal dimension ∆min < 0.

From equation (3.47) it is clear that the ground state is no more associated with the

identify field. In fact, its scaling is associated with the primary field with the smallest

conformal dimension ∆min [50]:

E0 ∼ −πvceff
6R

(3.49)

6For instance, in the XXZ spin- 1
2
chain in the critical region (central charge c=1) the sound velocity is

equal to [52] π sin(γ/2)
2γ

where cos γ represent the anisotropy of the model (Hspin = −(1/2)
∑

σxσx+σyσy−
cos γσzσz).

7The name is linked with the celebrated Casimir effect in 3+1 dimension [53]. The vacuum energy
(associated with the quantised electromagnetic field) of two infinite parallel metallic plates at distance R
scales with R−3.
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where ceff = c − 24∆min is the effective central charge. Notice that in the unitary case

∆min = 0 and then ceff = c.

While the standard central charge c is directly associated with the CFT describing a

particular universality class, its effective counterpart is linked with the scaling of the

ground state energy. It is then possible to argue that, in non unitary CFT, the effective

central charge has a more physical role than its standard version, which is associated

with the symmetry underlying the critical point.

3.2 Integrable Quantum Field Theory

We have just seen that 2D systems enjoying conformal invariance have an infinite number

of integrals of motion thanks to invariance under the Virasoro algebra. In such a case,

there are enough integrals of motion to match all the degrees of freedom of the system. In

this case the model is called integrable, i.e. it can (in principle) be solved exactly.

The conformal invariance is not the only symmetry which gives rise to an infinite number

of integrals of motion. There are also some other non critical theories whose underlying

symmetry is enough to solve exactly the model and to make it integrable. By solving

exactly we mean a computing all correlation functions of local fields, even if it is technically

challenging.

An object we are particularly interested in is the evaluation of correlation functions outside

the critical point in massive integrable models. Such a computation can be done using

the so-called form factor (FF) programme [9, 10], which allows us to expand correlation

functions as an infinite sum over form factors. Before introducing the form factor program,

we will discuss the main features of scattering in integrable QFT (IQFT).

3.2.1 S-matrix

While the S-matrix is an object widely used in QFT, we restrict our analysis to the

systems which happen to be integrable. In QFT by S-matrix we mean the probability

amplitude that a particle state in the asymptotic past (t → −∞) evolves into another

particle state in the asymptotic future (t→ ∞). In a generic QFT a number of quantum

charges are conserved through a scattering process. A Poincaré invariant scattering process

preserves the energy and all the spatial and angular momenta 8 but not the number

of particles. For instance, a quark down decays into a quark up, an electron and an

antineutrino (beta decay) [54]. An integrable scattering process must satisfy many more

constraints than a standard relativistic process [55, 56, 57, 58, 59]. In particular, it is

8Of course, only the total charges are conserved. The momentum of a particle can vary during the
process as long as the total one does not change.
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known that a 1+1 dimensional elastic scattering process is integrable if and only if it

satisfies certain conditions. Firstly it must be completely elastic. A scattering process

is completely elastic if the final state is kinematically identical to the initial state: while

the mass and the momenta of each particle do not change during the process9, other

charges can be reassigned. Additionally, the scattering process must be factorisable. The

scattering matrix of an ℓ → ℓ scattering process factorises into ℓ(ℓ − 1)/2 two-particle

matrices. In particular, there are two ways to factorise a three-particle scattering, as it is

possible to choose two different orders for the individual two-particle processes (see Figure

3.1).

Figure 3.1: The three-particle scattering (first diagram) can be factorised into three two-

particle processes (second and third diagrams). The only difference between the two

factorisations is the order of the individual scattering processes.

Since the amplitude of the three-particle scattering has to be the same regardless

of the order of the individual processes, the two-particle S-matrix is constrained by the

Yang-Baxter equation [60, 61, 11]

S12S13S23 = S23S13S12 (3.50)

In addition to these properties, S-matrices satisfy several general physical constraint. Ev-

ery physical scattering process must be unitary10 and it must satisfy crossing symmetry.

While unitarity is associated with the conservation of probability in the scattering, cross-

ing symmetry implies that the process is the same in the three channels s, t and u.

In the 1+1 dimensional case it is useful to introduce new variables in order to represent the

energy and the momentum of the various particles. Relativistic invariance m2 = E2 − p2

9The individual linear momenta can be inverted.
10Notice that the unitarity of a scattering processes of a massive IQFT and of a CFT are two distinct

properties. In the context of scattering unitarity is associated with invariance under time reversal and
conservation of probability through the process. On the other hand, unitarity in CFT is associated with
the absence of states of negative norm.
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3.2. Integrable Quantum Field Theory

suggests a new parametrisation of the energy and momentum of a particle:

E = p0 = m cosh β

p = p1 = m sinhβ (3.51)

The momentum p = (E, p) can then be expressed using a single coordinate β, called

rapidity.

Let us then denote the two-particle S-matrix as

Scd
ab(β) (3.52)

where a and b denote the incoming and c and d the outgoing particles. Notice that, since

we are considering elastic scattering, the final particles must be equal to the initial ones

(up to a reassignment of the charges).

In the new variables it is easy to write down the explicit constraints given by unitarity

and crossing invariance. The unitarity condition translates to:

∑

ef

Sef
ab (β)S

cd
ef (−β) = δacδbd (3.53)

On the other hand, crossing invariance imposes the following constraint to the S-matrix:

Scd
ab(β) = S b̄c

d̄a (iπ − β) (3.54)

where ā denotes the antiparticle of a.

From a diagrammatic point of view, the above equation implies that the scattering does

not change when rotating the space-time frame.

Bound states and pole structure

In some theories, the scattering S-matrix presents some purely imaginary poles. If the

two-particle S-matrix Sab(β) has a pole in iucab (with ucab ∈]0, π[) such a pole is called

bound state pole and it is associated to the creation of a bound state. By a bound state

we mean a one-particle state c that can be created by the scattering of two other particles

a and b. In particular, if two particles a and b create a bound state c, the S-matrix Sab

has a simple pole at iucab:

Res
β=iuc

ab

Sab(β) = (Γc
ab)

2 (3.55)
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where Γ2 is the relative residue, or three point coupling.

Once we have briefly reviewed the properties of the S-matrix in integrable systems, we can

address the study of the form factor program, which will be largely used in the following

chapters.

3.2.2 Form factors

Before addressing the actual study of form factors, it is useful to shortly discuss the

structure of the Hilbert space. For simplicity we focus on diagonal scattering processes

with non-degenerate mass spectrum.

Faddeev-Zamolodchikov operators

In order to describe the operators responsible for the creation of particles, it is useful

to compare these operators with the familiar creation/annihilation operators of fermionic

and bosonic systems:

[

c(β1), c(β2)
†
]

∓
= 2πδ(β1 − β2)

[

c(β1), c(β2)
]

∓
=

[

c†(β1), c
†(β2)

]

∓
= 0 (3.56)

where the sign ∓ refers to either boson (-) or fermion operators (+)11.

These operators can be used to explore the Hilbert space of particles obeying the Bose-

Einstein or the Fermi-Dirac statistics. In practice, the two statistics differ only by the

parity of the commutator. In order to describe more complicate statistics (also-called

anyonic statistics) the above relations should be generalised.

We can then introduce the so-called Faddeev-Zamolodchikov (FZ) operators, a generalisa-

tion of the usual creation/annihilation operators. In particular the operator Vα(β) anni-

hilates a particle of type α with rapidity β, while V †
α (β) creates the same particle. The

exchange relations of these operators are given by the so-called Faddeev-Zamolodchikov

algebra:

Vαi (βi)Vαj (βj) = Sαiαj (βij)Vαj (βj)Vαi (βi)

V †
αi

(βi)V
†
αj

(βj) = Sαiαj (βij)V
†
αj

(βj)V
†
αi

(βi)

Vαi (βi)V
†
αj

(βj) = Sαiαj (βij)V
†
αj

(βj)Vαi (βi) + 2πδαiαjδ (βij) (3.57)

In particular, it is clear that the boson/fermion commutations relations are recovered from

the Faddeev-Zamolodchikov algebra once their S-matrices have been taken into account,

11[a, b]− ≡ [a, b] = ab− ba; [a, b]+ ≡ {a, b} = ab+ ba.
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since the S-matrix of free bosonic(fermionic) system is equal to (minus) one.

Quantum states can then be described as the action of V operators on the vacuum:

V †
α1

(β1)V
†
α2

(β2) · · ·V †
αℓ

(βℓ) |∅〉 = |β1, β2, . . . , βℓ〉α1α2···αℓ
(3.58)

while Vα(β) acts as annihilator:

Vα(β)|∅〉 = 0 (3.59)

Since the FZ operators depend explicitly on the rapidities, Poincaré transformations act

in a very simple way:

Vα(β) → Vα(β + ǫ) Lorentz boost

Vα(β) → eipµy
µ
Vα(β) Translations (3.60)

Of course, these simple properties are reflected on the states created by FZ operators.

The last equation of (3.57) gives also an explicit expression for the inner product between

states. For example:

α1〈β1|β2〉α2 = 2πδα1α2δ (β12) (3.61)

where βij ≡ βi − βj .

We can now try to assemble a vector basis for the Hilbert space. Let us consider the

following two-particle state:

|β1, β2〉α1α2 = V †
α1

(β1)V
†
α2

(β2) |∅〉 (3.62)

Using the second relation of (3.57) it is equal to

Sα1α2 (β12)V
†
α2

(β2)V
†
α1

(β1) |∅〉 = Sα1α2 (β12) |β2, β1〉α2α1 (3.63)

|β1, β2〉α1α2 and |β2, β1〉α2α1 are then clearly linearly dependent. In order to select a basis

of linearly independent vectors, we add an additional requirement on the basis vectors: by

convention, we arrange rapidities in decreasing order for incoming states and in increasing

order for outgoing states:

β1 > β2 > · · · > βℓ incoming state

β1 < β2 < · · · < βℓ outgoing state

(3.64)
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Selecting this order for incoming (outgoing) states, we can build up a basis for the Hilbert

space of incoming (outgoing) particles.

We can now address the definition and the properties of form factors.

Form factors

Let us consider the following matrix element12 of an operator O between an ℓ-particle

(incoming) and a k-particle (outgoing) state:

αℓ+1···αk
〈βℓ+1, . . . , βℓ+k|O(x)|β1, . . . , βℓ〉α1···αℓ

(3.65)

The operator O can be translated to x = 0 via

O(x) = eip̂µx
µO(0)e−ip̂µxµ

(3.66)

The action of p̂ onto states is simply given by:

p̂µ|β1, . . . , βℓ〉α1···αℓ
=

(
ℓ∑

i=1

pµ(βi)

)

|β1, . . . , βℓ〉α1···αℓ
(3.67)

Equation (3.65) can be then written as

e
i

(

k
∑

i=ℓ+1

pµ(βi)−
ℓ
∑

j=1
pµ(βj)

)

xµ

αℓ+1···αk
〈βℓ+1, . . . , βℓ+k|O(0)|β1, . . . , βℓ〉α1···αℓ

(3.68)

Let us now define the ℓ-particle form factor FF of the operator O as

F
O|α1···αℓ

ℓ (β1, . . . , βℓ) = 〈∅|O(0)|β1, . . . , βℓ〉α1···αℓ
(3.69)

If the theory is local and Poincaré invariant, form factors of scalar fields will depend only

on the differences of rapidities:

F
O|α1···αℓ

ℓ (β1, . . . , βℓ) = F
O|α1···αℓ

ℓ (β12, β13, . . . , βjk, . . .) for j < k (3.70)

A graphical representation of a form factor can be found in Figure 3.3.

12In the following, we will consider all matrix elements between out (left) and in (right) states.
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Figure 3.2: Form factors of the operator O with ℓ incoming particles

3.3 Form Factor Equations

Similarly to the S-matrix, form factors must satisfy some constraints based on physical

requirements. For simplicity, we consider theories with diagonal scattering only.

Watson equations

From the definitions (3.58) and (3.69) and the Faddevv-Zamolodchikov algebra (3.57) form

factors must satisfy two conditions, known as Watson Equations:13

F
α1···αiαi+1···αℓ
ℓ (β1, . . . , βi, βi+1, . . . , βℓ)

= Sαiαi+1 (βi,i+1)F
α1···αi+1αi···αℓ
ℓ (β1, . . . , βi+1, βi, . . . , βℓ) (3.71)

Fα1α2···αℓ
ℓ (β1 + 2πi, β2, . . . , βℓ) = Fα2···αℓα1

ℓ (β2, . . . , βℓ, β1)

=

(
ℓ∏

i=2

Sαiα1 (βi,1)

)

Fα1···αℓ
ℓ (β1, . . . , βℓ)

(3.72)

The first equation simply follows from the second identity of (3.57) and can be interpreted

with the help of the graphical representation:

13In the following, we will omit the operator O in the form factor in order to have a more compact
notation.
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Figure 3.3: Graphical representation of the first Watson equation. In the form factor on

the right the two particles i and i + 1 have been exchanged. Since these particles live in

a two-dimensional space-time, the scattering is unavoidable.

The first Watson equation simply describes the exchange of two particles. To restore

the original order, the two particles exchanged must scatter and this process is represented

by the S-matrix. If the particles were in a higher dimensional space, they could have been

exchanged without any scattering. The second Watson equation (3.72) is given by the fact

that the first particle becomes the last when rotated around the operator O. The second

equality is a simple consequence of the first Watson equation (3.71).

Figure 3.4: Graphical representation of the second Watson equation. A shift by 2πi in
the first rapidity implies a complete rotation of the particle around the operator O. The
initial order of particles can be restored by making the first particle scatter with all others.

Watson equations are not sufficient to entirely determine the form factors expressions.

However, additional constraints exist which follow from the pole structure of the form

factors.

Poles structure

There can only be two kinds of poles appearing in the form factors’ expressions: the

kinematic and the bound state poles. Each pole gives rise to an associated residue equation.
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The kinematic residue equation is given by:

Res
β̄0=β0

F ᾱ0α0α1···αℓ
ℓ+2 (β̄0 + iπ, β0, β1, . . . , βℓ) = i

(

1−
ℓ∏

i=1

Sα0αi(β1ℓ)

)

Fα1···αℓ
ℓ (β1, . . . , βℓ)

(3.73)

where ᾱ0 denotes the antiparticle of α0.

Shifting a rapidity of a particle by iπ is equivalent to inverting the direction of the motion14,

transforming the particle from incoming to outgoing. Since the scattering amplitude di-

verges when an incoming and an outgoing particle have the same rapidity15, form factors

preserve these poles at βij = iπ (kinematic poles).

Moreover, when the scattering matrix has a pole itself, the corresponding form factor

preserves the same pole (bound state pole):

Res
β0=β1

Fα0α1α2···αℓ
ℓ+1 (β0 + iuαα0α1

, β1, . . . , βℓ) = Γα
α0α1

Fαα2···αℓ
ℓ (β1, . . . , βℓ)

(3.74)

where iuαα0α1
and Γα

α0α1
are one pole of the S-matrix and its residue.

Once we have introduced all the relevant physical properties of form factors, we can

describe the tool to compute their explicit expressions. Firstly, we will define minimal

form factors, which are the building blocks of form factors with any number of particles.

The second step will be the implementation of recursive equations to build up high particle

form factors using Watson equations and the knowledge of their pole structure.

Minimal form factors

In order to construct high particle form factors (i.e. with more than two particles) we start

from the so-called minimal form factors, denoted by Fmin, which satisfy Watson equations

(3.71) for ℓ = 2 but are free from kinematic poles

Fα1α2
min (β) = Sα1α2(β)F

α2α1
min (−β) (3.75)

Fα1α2
min (β) = Fα1α2

min (2πi − β) (3.76)

While minimal form factors have no kinematic poles, they may have bound state poles if

the S-matrix has any. For instance, form factors used in Chapter 6 have bound state poles

while the ones of Chapter 8 do not.

The minimal form factors can be derived using an integral representation of the S-matrix.

14Since pµ(β + iπ) = −pµ(β), the particle becomes an anti-particle travelling backwards in time.
15The scattering amplitude depends explicitly on a delta function δ(2)(p1 − p2).
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Representing the S-matrix as:

Sα1α2(β) = exp

[∫ ∞

0

dt

t
sα1α2(t) sinh

tβ

iπ

]

(3.77)

the minimal form factor is then given by

Fα1α2
min (β) = N exp

[∫ ∞

0

dt

t

sα1α2(t)

sinh t
sin2

(
tπ(iπ − β)

2π

)]

(3.78)

where the normalisation factor N includes also the bound state poles (if any).

Once the explicit expressions of minimal form factors have been derived, higher particle

form factors can be written as:

Fα1···αℓ
ℓ (β1, . . . , βℓ) = Qα1···αℓ

ℓ (x1, . . . , xℓ)
∏

i<j

F
αiαj

min (βij)

xi + xj
(3.79)

where xi = eβi . Kinematic poles are encapsuled in the denominator 1/(xi + xj)
16.

The function Q is a pole free, completely symmetric function on the physical sheet

Imβij ∈ ]0, 2π[. This is because all the physical features of form factors (poles and Watson

conditions) are satisfied by Fmin/(xi + xj). The explicit expressions of the polynomial Q

can be derived recursively exploiting the pole structure of form factors.

Using the tool we have just introduced it is then possible to construct all possible form

factors with arbitrary number of particles. Of course, even though there is no upper limit in

the number of particles in a form factor, in an actual computation usually the expressions

of many particles form factors become too complicated to be handled. Fortunately, in the

majority of cases few particles are enough to describe faithfully a correlation function (see,

for instance, [62, 63, 64]).

Kernel solutions

If we have a closer look at the procedure to construct the explicit expressions of form

factors, we should notice that it does not depend explicitly on the field O. Additionally,

when we compute the ℓ+2-th form factor from the ℓ-th and the ℓ+1-th ones, there is no

guarantee that the solution is unique. In general, all local operators have form factors that

satisfy the same equations. As we showed before, using the kinematic residue equation,

we can relate form factors with ℓ and ℓ+ 2 particles:

FO
ℓ = C

[
FO
ℓ+2

]
(3.80)

16 eβi+iπ + eβj = −eβi + eβj = 0 for βi = βj .
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On the other hand, bound state poles connect the ℓ-th and the ℓ+1-th form factors:

FO
ℓ = B

[
FO
ℓ+1

]
(3.81)

The functions C and B simply indicate the residue operation relative to, respectively, the

kinematic and the bound state poles.

Since we do not know a priori if C and B are injective, it is possible to generate different

solutions every time we increase ℓ [65]. In particular, the above equations have some kernel

solutions K:

C [KC ] = 0

B [KB ] = 0

(3.82)

1 These kernel solutions give no contributions to the residue equations because they do

not have any poles. Since higher particle form factors can be obtained by inverting the

residue equations, kernel solutions must be taken into account. A solution of the above

kinematic residue equation will then have the generic form:

FO
ℓ+2 = F̃O

ℓ+2 + KC (3.83)

where F̃O
ℓ+2 is a particular solution of equation (3.80).

The richness of the space of form factors can be associated with the multitude of local

fields they are associated with (see e.g. [66, 65, 67, 68]). Moreover, it has been noticed

in [69], that the two-particle form factor of a modified twist field (see Chapter 6) arises

naturally from a kernel solution. For this reason, every time the form factor program is

used to evaluate a correlator (see next section), it is important to check that the series of

form factors is the right one for the correlation function under consideration.

3.3.1 Correlation functions

Once the explicit expressions of form factors have been computed, they can be used to

evaluate correlation functions.

Consider the following correlator:

G2(x) = 〈∅|O(x)O†(0)|∅〉 (3.84)
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The complete resolution of the identity can be written in terms of the states defined earlier

(3.58):

1 =

∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
|β1, . . . , βℓ〉α1···αℓ α1···αℓ

〈β1, . . . , βℓ| (3.85)

Each term of this resolution is nothing but a projector onto the space spanned by an

element of the basis of the Hilbert space. Since the basis chosen is orthogonal, the identity

operator of the relative Hilbert space can be constructed by the sum of such projectors17.

We can then insert the above resolution of the identity between the two fields O and O†:

G2(x) =
∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
〈∅|O(x)|β1, . . . , βℓ〉α1···αℓ α1···αℓ

〈β1, . . . , βℓ|O(0)|∅〉

=
∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
|〈∅|O(0)|β1, . . . , βℓ〉α1···αℓ

|2 e
−im

ℓ
∑

j=1
(cosh βix0+sinhβix1)

(3.86)

In the last step we have used (3.68) and, for simplicity, we assumed that all the particles

have the same mass mi = m. Thanks to Lorentz invariance, whenever the two points x

and 0 are separated by a time-like interval, we can rotate the frame of reference in order

to make the spatial distance x1 vanish. After a Wick rotation ix0 → r, the correlation

function becomes

G2(x) =
∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
∣
∣Fα1···αℓ

ℓ (β1, . . . , βℓ)
∣
∣2 e

−mr
ℓ
∑

j=1
cosh βi

(3.87)

where r is the Lorentz invariant distance
(
x1
)2 −

(
x0
)2

between the two points x and 0.

Thanks to the above equation we can express every correlation function as an infinite sum

of form factor contributions. If the theory is also integrable, we can, in principle, construct

the entire infinite series of form factors and evaluate the correlator exactly.

It has to be noticed that it is generally very difficult to resum the complete series of

form factors, apart from some simple cases, like the twist fields [70] or energy-energy

17In our notation, each term has integration domain R
ℓ. It should be noticed that it is in contrast with

the convention used to define basis vectors. To take into account this discrepancy, we divided each term
by ℓ!. In other words, we divide by ℓ! in order to avoid overcounting states. Such a coefficient is simply
the ratio between the volume of the box [−L,L]ℓ and the volume of the domain {x ∈ [−L, L]ℓs.t. x1 <
x2 < · · · < xℓ}.
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3.3. Form Factor Equations

[64] correlation functions of the Ising model. Even though the form factor expressions

themselves are known in many theories18, the main difficulty is usually the (numerical)

integration of all the terms of the series.

3.3.2 Ultraviolet limit

The form factor expansion can be used not only to compute the actual values of correlation

functions, but also some physical constants involved in the scaling of correlators. Since the

term exp
(

−mr∑ℓ
j=1 cosh βj

)

decays very quickly for large mr, the form factor expansion

is very precise in the far-from-criticality region. On the other hand, it would be useful

to extract some short distance scaling information. In order to probe this regime, we can

rearrange the expansion in a more convenient way to study the ultraviolet scaling [74, 75].

Instead of computing the form factor expansion of a correlation function, we can compute

its logarithm, using a different series:

log
〈O(x)O†(0)〉

〈O〉2 =
∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
Hα1···αℓ

ℓ (β1, . . . , βℓ) e
−mr

ℓ
∑

j=1
cosh βi

(3.88)

where the new functions Hℓ must be chosen in order to match the two expansions (3.88)

and log of (3.87). For instance, the first three Hs are give by

Hα1
1 (β1) =

|Fα1
1 (β1)|
〈O〉2 (3.89)

Hα1α2
2 (β1, β2) =

|Fα1α2
2 (β1, β2)|

〈O〉2 −Hα1
1 (β1)H

α2
1 (β2) (3.90)

Hα1α2α3
3 (β1, β2, β3) =

|Fα1α2α3
3 (β1, β2, β3)|

〈O〉2 −Hα1
1 (β1)H

α2
1 (β2)H

α3
1 (β3)

− Hα1α2
2 (β1, β2)H

α3
1 (β3)

− Hα1α3
2 (β1, β3)H

α2
1 (β2)

− Hα2α3
2 (β2, β3)H

α1
1 (β1) (3.91)

The Hℓ terms can be seen as the connected part of the |Fℓ|2 terms. From an intuitive

QFT point of view, |Fℓ|2 is to the partition function as Hℓ is to the free energy.

The short distance scaling is given by

〈O(r)O†(0)〉
〈O〉2 ∼ KO × r−4xO (3.92)

18Like, for instance, the sinh-Gordon model [63], the Lee-Yang model [62] or the Ising model in a
magnetic field [71, 72, 73] .
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3.3. Form Factor Equations

where the coefficients KO and xO are constants depending on the particular field O.

Comparing such short distance scaling with (3.88) we can extract KO and xO from the

form factor expansion. In other words, we can write an explicit form factor expansion for

the two constants.

Thanks to Poincaré invariance, we can shift all the rapidities by β1:

log
〈O(x)O†(0)〉

〈O〉2 =

∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
Hα1···αℓ

ℓ (0, β2 − β1, . . . , βℓ − β1) e
−mr

ℓ
∑

j=1
cosh βi

(3.93)

Performing a change of variables

β1 → t1

βj → tj + t1 (3.94)

the integral becomes

∫
dℓt

(2π)ℓ
Hα1···αℓ

ℓ (0, t2, . . . , tℓ) e
−mr[cosh t1+cosh(t1+t2)+···+cosh(t1+tℓ)] (3.95)

=

∫
dt2 · · · dtℓ
(2π)ℓ

Hα1···αℓ
ℓ (0, t2, . . . , tℓ)

∫

dt1e
−mr[cosh t1+cosh(t1+t2)+···+cosh(t1+tℓ)]

(3.96)

The exponent can be rearranged in the following way:

cosh t1 + cosh (t1 + t2) + · · ·+ cosh (t1 + tℓ)

= cosh t1 + cosh t1 cosh t2 + sinh t1 sinh t2 + · · ·+ cosh t1 cosh tℓ + sinh t1 sinh tℓ

= cosh t1 (1 + cosh t2 + · · ·+ cosh tℓ) + sinh t1 (sinh t2 + · · ·+ sinh tℓ) (3.97)

Then, the last integral of (3.95) can be performed exactly:

∫ ∞

−∞
dt1e

−mr[cosh t1+cosh(t1+t2)+···+cosh(t1+tℓ)]

=

∫ ∞

−∞
dt1e

−mr[cosh t1(1+cosh t2+···+cosh tℓ)+sinh t1(sinh t2+···+sinh tℓ)]

= 2K0(mrdℓ) (3.98)
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3.3. Form Factor Equations

where K0 is the modified Bessel function of the second kind [49] and dℓ is given by

d2ℓ = (1 + cosh t2 + · · ·+ cosh tℓ)
2 − (sinh t2 + · · ·+ sinh tℓ)

2 (3.99)

Putting everything together, (3.88) becomes

log
〈O(r)O†(0)〉

〈O〉2 = 2
∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1)K0(mrdℓ)

(3.100)

In order to study the short-distance scaling, we can expand the Bessel function around

mr = 0:

K0(mrdℓ) = (log 2− γE − log r − log(mdℓ)) +O
(
(mrdℓ)

2
)

(3.101)

where γE = lim
n→∞

(
n∑

k=1

− log n

)

= 0.5772156649 . . . is the Euler-Mascheroni constant.

Collecting all the log r and the r-independent contributions from (3.100) we have

log
〈O(r)O†(0)〉

〈O〉2 = − log r

[

2

∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1)

]

−
[

2
∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1)

(

log
mdℓ
2

− γE

)]

(3.102)

Comparing the above expansion with (3.92) we obtain a form factor expansion for xO and

KO:

xO =
1

4π

∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ−1
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1) (3.103)

KO = exp

[

− 1

π

∞∑

ℓ=0

1

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ−1
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1)

(

log
mdℓ
2

− γE

)]

(3.104)

This ultraviolet scaling can be compared with the conformal scaling, since (at short dis-

tance)

〈O(r)O†(0)〉 ∼ CAk
OOr

−2(2∆O−∆k)〈Ak〉 (3.105)
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3.3. Form Factor Equations

where Ak is the field with the smallest conformal dimension arising from the OPE between

O and O† (see the end of this chapter). Since in ordinary unitary theories Ak = 1 and

C1

OO = 1, we can use the form factor expansion of KO to compute the vacuum expectation

value of O. Combining (3.92) and (3.105) we obtain

〈O〉 =
1√
KO

(3.106)

Notice that the vacuum expectation value of a field in the massive regime is not always

easy to evaluate. The form factor programme gives a powerful tool which can be applied

in a multitude of cases.

The study of the ultraviolet regime can also be used to test (or identify) the form factors.

A direct comparison between xO and ∆O (or something slightly more complicated for the

non unitary cases) is a strong check and can be used to test whether the right form factors

have been used.

3.3.3 Non unitary case

The form factor program can be used also when studying non unitary systems, even if

some modifications need to be put in place. Since form factors can be derived directly

from the S-matrix19 and from its pole structure, the procedure is similar to the one for

unitary systems. The main difference appears when evaluating correlation functions using

form factors. The formula (3.87) has been derived from the tacit assumption that bra

states can be mapped onto ket states by a simple Hermitian conjugation:

〈β1, . . . , βℓ|O†|∅〉 = 〈∅|O|β1, · · · , βℓ〉∗ (3.107)

While this relation holds for unitary theories, it is no more valid in non unitary models. In

the Lee-Yang model it is possible to show explicitly that bra and ket states are connected

via a slightly different relation (φ is the fundamental Lee-Yang field):

〈β1, . . . , βℓ|φ(0)|∅〉
〈φ〉 = (−1)ℓ

(〈∅|φ(0)|β1, . . . , βℓ〉
〈φ〉

)∗
(3.108)

In unitary theories, the bound state residue Γ2 is always positive. On the other hand, a

signal of non unitarity of a theory is the wrong sign of the residue Γ2 < 0, even though

the associate S-matrix satisfies the unitarity condition S(β)S(−β) = 1. For instance, in

the Lee-Yang theory (see Chapter 6), the residue is −2
√
3. When a theory is non unitary,

19Note that even though the theory is called non unitary, the S-matrix describing the process satisfies
the unitarity condition.

61



3.3. Form Factor Equations

it is possible to define a charge conjugate operator C [76]:

CφC = −φ (3.109)

Moreover, the associate quantum Hamiltonians H (see [77] and Chapter 7) is not hermi-

tian, even though has real eigenvalues and satisfies a “relaxed” hermiticity condition:

CHC = H† (3.110)

Since the Hamiltonian is not hermitian, left and right eigenvectors are not related by a

simple hermitian conjugation. The operator C provides a “generalised hermitian conju-

gation”, i.e. it maps asymptotic past states into asymptotic future states. Since a generic

state is generated by the iterate action of the field φ on the vacuum state, using (3.109) it

is possible to show that asymptotic states are eigenvectors of the operator C with eigen-

values (−1)ℓ (with ℓ being the number of particles). Since the two matrix elements of

(3.108) are related one to the other by a “generalised hermitian conjugation” the (−1)ℓ

appears.

For non unitary models, the formula (3.87) is then modified to

〈O(r)O†(0)〉
〈O〉2 =

∞∑

ℓ=0

(−1)ℓ

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ

∣
∣
∣
∣

Fα1···αℓ
ℓ (β1, . . . , βℓ)

〈O〉

∣
∣
∣
∣

2

e
−mr

ℓ
∑

j=1
cosh βi

(3.111)

For the very same reason, formulas (3.88), (3.103) and (3.104) will be affected in a similar

way:

log
〈O(x)O†(0)〉

〈O〉2 =
∞∑

ℓ=0

(−1)ℓ

ℓ!

∑

α1···αℓ

∫
dℓβ

(2π)ℓ
Hα1···αℓ

ℓ (β1, . . . , βℓ) e
−mr

ℓ
∑

j=1
coshβi

(3.112)

xO =
1

4π

∞∑

ℓ=0

(−1)ℓ

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ−1
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1) (3.113)

KO = log

[

− 1

π

∞∑

ℓ=0

(−1)ℓ

ℓ!

∑

α1···αℓ

∫
dℓ−1t

(2π)ℓ−1
Hα1···αℓ

ℓ (0, t1, . . . , tℓ−1)

(

log
ξ

2
− γE

)]

(3.114)
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Since the model studied in Chapter 6 will be non unitary, we will use these last formulæ ,

which include the (−1)ℓ factor. On the other hand, the analysis performed in Chapter 8

will look at unitary theories and we will then refer to the unitary expansion (3.87).

Even though the nature of the (−1)ℓ sign is quite strange, this factor gives a strong

benefit to numerical computations: alternate series usually converge at a much faster rate

than series with elements all of the same sign.

3.4 Operator Product Expansion

In Quantum Field Theory the Operator Product Expansion (OPE) define the product of

two fields as a sum of all possible fields in the theory. Consider the product of two operators

OA and OB at two different points x and y. The OPE between the two operators gives

rise to a (possibly infinite) sum of all the operators in the theory:

OA(x)OB(y) =
∑

k

Ck
AB(|x− y|)Ok(y) (3.115)

where Ok are the various fields in the theory.

The main idea is to express the product of the two operators at different points as a

sum of other operators in one of the two points. Once the operator content {Ok}k of the

theory is known, the OPE can be performed between any two fields once the coefficients

Ck
AB(|x − y|) are known. While OPE is a tool available in any QFT, the form of the

coefficients C is very simple in CFT. In particular these coefficients become:

Ck
AB(|x− y|) = Ck

AB · |x− y|−2(∆A+∆B−∆k) (3.116)

where Ck
AB are constants (called OPE structure constants) and ∆k are the conformal

dimensions of the theory. Notice that the OPE structure constants are the same constants

appearing in the scaling of three-point conformal correlation functions. On the other

hand, when considering a perturbed CFT (i.e. a system just outside its critical phase) the

coefficients C can be expanded as a power series in the distance and the coupling constant

of the field responsible for the off-critical perturbation. An actual example of OPE in the

two regimes (critical and off critical) can be found in Section 6.2.

3.5 Conclusions

In this chapter we reviewed very briefly some fundamental concepts of integrable field the-

ories. In particular we focused on the case when the system is critical and can be described
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by conformal field theory and on massive theories with infinitely many conservation laws.

Moreover, we introduced the form factor programme for the study of correlation functions

in massive QFT. In the next chapters we will largely make use of all the tools we have just

presented in order to evaluate the amount of entanglement in integrable quantum field

theories.
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Chapter 4

Entanglement in Quantum Field

Theory

In previous chapters we discussed quantum entanglement and some of its measures.

In this chapter we will address the evaluation of the entanglement entropy in systems

whose properties can be described by a quantum field theory.

In particular we will focus on one-dimensional systems, such as spin chains. We will

introduce the so-called replica-trick and its application to conformal field theories and

integrable systems [7, 8, 14]. After having explained in some detail the replica trick and

its applications in computing entanglement entropy in CFT, we will discuss some known

generalisations to the massive case.

The main idea behind the replica trick is to compute the trace trρnA as a partition

function of n copies (or replicas) of our original theory. The interaction between these

copies depends on the shape of the subsystem A and it affects the scaling of entanglement.

Once the trace has been computed, it can be used to compute the Rényi entropy:

Sn =
1

1− n
log trρnA (4.1)

Even though the number n of copies is integer, in some cases it is possible to perform an

analytic continuation of the Rényi entropy to compute the actual entanglement entropy:

S = −tr (ρA log ρA) = lim
n→1

Sn (4.2)

In this chapter we will focus on the evaluation of the trace trρnA. While the leading

logarithmic term of the scaling of the entropy usually can be easily analytically continued,

the various corrections to such scaling sometimes require some additional effort to be
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4.1. Entanglement Entropy and Partition Functions

computed at n = 1.

4.1 Entanglement Entropy and Partition Functions

As we said, the scope of this chapter is the study of the scaling of entanglement entropy

in one dimensional systems. In our considerations the physical dimension of the system is

represented by the real axis of a complex plane C. On the other hand, the imaginary axis

plays the role of the euclidean time. For simplicity, we consider a finite system [x1, x2] and

we are interested in the entanglement between its subsystems A = [a, b] and the rest of the

system B = [x1, a] ∪ [b, x2]. Following [8], we consider a discrete system in order to give

sense to some notations otherwise ambiguous in a continuum framework. However many

of the definitions and tools we will use in this section are more suitable in a continuum

description of such models. The main idea is to consider a case such that a continuum

limit can be performed. Even though the system is discrete, the number of sites is large

enough (and the lattice spacing is small enough) to let the the system “look” continuous.

In such a limit a field theory description is perfectly suitable to investigate the properties

of the system.

To describe faithfully the system we consider a complete set of commuting local observ-

ables, denoted by {φ̂(x)} with |{φ(x)}〉 and {φ(x)} being the respective eigenvectors and

eigenvalues. For instance, when considering a spin system, the local observables could be

the spin operators at each site. Let Ĥ be the Hamiltonian underlying the time evolution

of the system. The density matrix ρ at inverse temperature β is given by

ρ =
1

Z(β)
e−βĤ (4.3)

where Z(β) = tre−βĤ is the partition function.

The matrix elements of the propagator 〈{φ′′}|e−βĤ |{φ′}〉 can be evaluated using an eu-

clidean path integral formulation (SE =
∫

⊏⊐ d2x L[φ](x, t) euclidean action):

〈{φ′′}|e−βĤ |{φ′}〉 =

∫

⊏⊐
Dφ(x, τ) e−SE

∏

x∈system
δ(φ(x, 0) − φ′(x))δ(φ(x, β) − φ′′(x))

(4.4)

which is a path integral1 from the state φ′ at euclidean time τ = 0 to φ′′ at τ = β. The

role of the δ function inside the integral is to identify the states at the bottom and at the

1The symbol ⊏⊐ = [x1, x2] × [0, β] represents the rectangular domain of the path integral. It will be
used to represent both the integration domain [x1, x2]× [0, β] in normal integrals and the domain of fields
on [x1, x2]× [0, β] when path integrals are taken into account.
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top with the given initial and the final states.

Figure 4.1: Propagator using path integrals.

The partition function can be obtained in a very similar way. Since Z(β) = tre−βĤ ,

the partition function is given by:

Z(β) =

∫

⊏⊐
Dφ(x, τ) e−SE

∏

x∈system
δ(φ(x, 0) − φ(x, β)) (4.5)

This main difference between these two path integrals is given by the boundary conditions:

while in the propagator they are fixed and equal to given configurations φ′ and φ′′, in the

partition function they have been identified (φ′ = φ = φ′′) Let us now focus on the

Figure 4.2: Partition function

evaluation of the reduced density matrix ρA. Also in this case we have to “bend” the

propagator (fig. 4.1) into a cylinder, but, if we identify the two edges only for x ∈ B, the

degrees of freedom of A remain free. This process is indeed equivalent to tracing over B’s

degrees of freedom or, in other words, to compute the reduced density matrix ρA. Its path
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Figure 4.3: Reduced density matrix.

integral representation is given by:

〈{φ′′A}|ρA|{φ′A}〉 =
1

Z(β)

∫

⊏⊐
Dφ(x, τ) e−SE

×
∏

x∈A
δ(φ(x, 0) − φ′A(x))δ(φ(x, β) − φ′′A(x))

×
∏

x/∈A
δ(φ(x, 0) − φ(x, β))

(4.6)

Once we have computed the reduced density matrix, we can address the evaluation of the

Rényi Entropy using this path integral formulation.

Let us suppose we are interested in evaluating ρ2A. Its path integral representation can be

given by two copies of the propagator (4.4), i.e. by two rectangles. For each rectangle, all

the points outside A on the top and the bottom edge are identified. Moreover, the points

inside A on the top edge of the first rectangle are identified with the respective points

inside A on the bottom edge of the second rectangle.

In the path-integral formulation these conditions become:

〈{φ′′A}|ρ2A|{φ′A}〉 =
1

Z(β)2

∫

⊏⊐2
Dφ1(x, τ)Dφ2(x, τ)e−

∫

d2x (L[φ1](x,τ)+L[φ2](x,τ))

×
2∏

i=1

∏

x/∈A
δ(φi(x, 0) − φi(x, β))

×
∏

x∈A
δ(φ1(x, β) − φ2(x, 0))

×
∏

x∈A
δ(φ1(x, 0) − φ′A(x))

×
∏

x∈A
δ(φ2(x, β) − φ′′A(x)) (4.7)

The first set of deltas (2nd line) represent the identification of the points outside A on
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the upper and lower edges of the two rectangles. The following deltas (3rd line) connect

the points inside A on the top edge of the first rectangle with the respective ones on the

bottom edge of the second rectangle. The last two lines identify the lowermost and the

uppermost edges with the states assigned φ′A and φ′′A. When taking the trace, the last two

lines of the above equations change accordingly: the points inside A on the top edge of

the second rectangle are identified with the respective points on the bottom edge of the

first rectangle:

trρ2A =
1

Z(β)2

∫

⊏⊐2
Dφ1(x, τ)Dφ2(x, τ)e−SE

×
2∏

i=1

∏

x/∈A
δ(φi(x, 0)− φi(x, β))

×
∏

x∈A
δ(φ1(x, β)− φ2(x, 0))

×
∏

x∈A
δ(φ1(x, 0)− φ2(x, β))

(4.8)

Of course, this construction can be extend to arbitrary n ∈ N:

trρnA =
1

Z(β)n

∫

⊏⊐n

(
n∏

i=1

Dφi(x, τ)
)

e
−
∫

d2x
n
∑

i=1
L[φi](x,τ)

×
n∏

i=1

∏

x/∈A
δ(φi(x, 0) − φi(x, β))

×
n∏

i=1

∏

x∈A
δ(φi(x, β)− φi+1(x, 0))

×
∏

x∈A
δ(φ1(x, 0) − φn(x, β))

(4.9)

where we have made the identification n+ 1 ≡ 1.

From a field theoretical point of view, the evaluation of the trace trρnA can be performed

by computing the partition function of n copies of the original theory. These copies are

“almost” independent of one another but for the points around the subsystem A. Such a

construction, which has been developed for the first time by P Calabrese and J Cardy [8],

provides a very good operative tool to evaluate the Rényi entropy using QFT partition
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4.1. Entanglement Entropy and Partition Functions

functions2.

The complicated integration region and the intricate set of delta functions can be

encapsulated in the definition of a particular surface Mn (a Riemann surface) whose

geometry is given by the aforementioned constraints. In this notation, the collection of

different fields {φi}ni=1 living on the different copies of ⊏⊐ is replaced by a single field

φ which is defined on the whole surface Mn. The two segments A on the top and the

bottom of each sheet ⊏⊐ become branch cuts. This is because of the gluing conditions

between sheets described before. These cuts are analogous to the branch cuts commonly

encountered in the study of complex multivalued functions. For instance, the function

f(z)=z1/n has a branch cut in [0,+∞[ and a branch point at z=0. When considering

a particular value of such function, say at z=2 + iǫ (ǫ > 0), this value changes when

performing a rotation around the origin: f(ze2πi) 6= f(z). Such an inequality is given by

the branch cut, which affects the value of a function every time it is crossed. The branch

cut makes the function single-valued and analytic. This example is particularly suitable

for the description of the surface Mn not only because it represent n sheets sequentially

connected, but also because the branch cut of z1/n is “periodic”: when it is crossed n

times the value of the function comes back to its original value f(ze2πin)=f(z). In the

same way, each time a particle in the sheet i crosses the cut A it ends up in the sheet i+1,

but it comes back to the original place after crossing the cut n times.

From a mathematical point of view, such a surface cannot be a manifold, since the points

around a and b cannot be mapped to some Rm smoothly. The mathematical object suitable

to describe such a surface is the orbifold. From an intuitive point of view, an orbifold is a

manifold quotient by some symmetry group. In particular, the surface Mn is equivalent

to R
2n where some points are identified between the copies thanks to the connections of

the sheets ⊏⊐n through the points in A.

For instance, the n = 3 equivalent surface can be represented as

For generic n the path integrals takes the form

trρnA =
1

Z(β)n

∫

Mn

Dφ(x, τ) e−
∫

d2x L[φ](x,τ) (4.10)

The lagrangian density L depends only on one single field φ which “lives” on the entire

surface Mn.

In the zero temperature case (β → ∞) the cylinders of Figure 4.1 become complex planes.

For instance, the graphical representation of the n = 3 case is given by: As we have just

seen, the computation of the Rényi entropy (and the entanglement entropy) involves the

2Different geometrical arguments had already been used [7] to compute the Rényi and von Neumann
entropy in CFT.
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Figure 4.4: Surface M3 for n = 3.

Figure 4.5: Surface M3 for n = 3 and β = ∞. Picture taken from [14] with permission
from authors.

evaluation of complicated path integrals, which can be interpreted as partition functions

on particular geometries (4.10). Alternatively, we can simplify the integration domain by

introducing some special operator to guarantee the equivalence between path integrals.

4.2 Branch Point Twist Fields

Consider the partition function (4.9), which is defined on a collection of n rectangular

sheets. The δ-functions inside the path integral constraint the values of the fields at some

particular points. In order to get rid of the δ-functions, we can restrict the integration

domain from ⊏⊐n to C, which is equivalent to ⊏⊐n once removed all the configurations not

allowed by the δs.

trρnA =
1

Z(β)n

∫

C

(
n∏

i=1

Dφi(x, τ)
)

e
−
∫

d2x
n
∑

i=1
L[φi](x,τ)

(4.11)

The main idea is to relax the conditions of the domain C to the much simpler domain

⊏⊐n. If we do so, the various fields φis are now completely free and can take different
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4.2. Branch Point Twist Fields

values around the subsystem A. Since φi(“just below A”) = φi+1(“just above A”) in the

definition of the trace trρnA, we need to restore this constraint. To do so we introduce

two fields, called branch point twist fields T and T̃ , whose role is to implement the above

constraint on the fields φis.

trρnA =
1

Z(β)n

∫

⊏⊐n

(
n∏

i=1

Dφi(x, τ)
)

T (a)T̃ (b)e
−
∫

d2x
n
∑

i=1
L[φi](x,τ)

(4.12)

Even though twist fields have been known for a long time in the literature [78, 79], in

[8] the authors associated the branch points of Riemann surfaces to some quantum fields.

Subsequently, [14] such quantum fields were interpreted as twist fields.

The action of the twist fields is to actually create the branch cut. In particular, the field

T (a) creates a cut from a to +∞, while T̃ (b) creates a “reversed” cut from b to +∞.

For reverse cut we mean a cut which works like a normal branch cut, but with opposite

orientation. If T creates a cut which maps the sheet i to i + 1 when a particle crosses it

from below, the reverse field T̃ performs a mapping from i to i− 1. The combined action

of the two fields creates a finite branch A. In particular, while T (a) creates an infinite cut

from a to infinity, T̃ (b) annihilates the effect of T (a) from b onwards.

From the operators point of view, the action of these fields on an operator Ψi (the ith

copy of some operator Ψ of the original theory) is given by:

Ψi(y)T (x) = T (x)Ψi+1(y) for x1 > y1

Ψi(y)T (x) = T (x)Ψi(y) for x1 < y1 (4.13)

where x = (x0, x1) and the above relations hold at “equal time”3 x0 = y0.

Similar relations hold also for the the conjugate field T̃ :

Ψi(y)T̃ (x) = T̃ (x)Ψi−1(y) for x1 > y1

Ψi(y)T̃ (x) = T̃ (x)Ψi(y) for x1 < y1 (4.14)

The equation 4.12 does not seem a particular improvement to the previous partition func-

tions. The tremendous advantage that such a formulation gives is the fact that it is the

actual definition of the correlation function between the two twist fields T and T̃ !

trρnA ∝
〈

T (a)T̃ (b)
〉

⊏⊐,L(n)
(4.15)

3The action of twist fields is defined at equal time since they create horizontal branch cuts.

72



4.3. Entropy in Conformal Field Theory

where 〈·〉⊏⊐,L(n) is the expectation value taken on ⊏⊐ with n copies of the original theory

(with lagrangian L(n)[φ1, . . . , φn] =
∑n

i=1 L[φi]). As we will see in the next sections, it is

worth stressing which theory we are referring to when computing correlation functions.

The action of twist fields inside correlation functions can be better understood by looking

at its operative definition [14]:

〈

T (a)T̃ (b)Ψi(x)
〉

⊏⊐,L(n)
〈

T (a)T̃ (b)
〉

⊏⊐,L(n)

= 〈Ψ(x; sheet i)〉Mn,L (4.16)

On both sides of the above definition the operator Ψ appears. On the left hand side Ψi

is the ith copy of the original field living on ⊏⊐. On the other side it is the same operator

Ψ, but in this case its domain its given by Mn. Since Ψ is multivalued on Mn, it is

important to indicate which sheet we are referring to. Apart from the actual domain of

fields, there is a substantial difference also concerning the operator content between the

two sides. Consider, for instance, a simple theory with a single field Ψ living on ⊏⊐ and a

langrangian L, to obtain the left hand side of (4.16) we copy the original theory n times

and we add the twist fields. On the right hand side the theory remains the same (from

the lagrangian point of view) but the domain of Ψ becomes Mn.

Since we are interested in the ground state properties of very large systems, the inte-

gration rectangle ⊏⊐ will be extended to the whole plane C. A particular case when the

scaling of entanglement entropy can be computed is when a method for the evaluation

of the correlation function (4.15) is available. In the next sections we will discuss the

scaling of this correlator in some known cases. In particular we will focus on critical and

off critical unitary systems. In the following chapters we will extend these results to some

non unitary cases.

4.3 Entropy in Conformal Field Theory

In the specific case of critical systems enjoying conformal invariance, two-point correlation

functions like (4.15) have a very simple power law scaling (see Chapter 3):

〈

T (a)T̃ (b)
〉

C,L(n)
= |a− b|−4∆T (4.17)

where ∆T is the conformal dimension of the field T .

The study of the scaling of entanglement entropy in one-dimensional conformal systems

is then reduced to the evaluation of the conformal dimension ∆T of twist fields. Such

a quantity can be easily computed by implementing the working definition (4.16). In
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this section we briefly review the procedure proposed in [14] to compute the conformal

dimension ∆T .

Consider a certain CFT with lagrangian L and central charge c defined on the whole

complex plane C. Its multicopied version L(n) is still a CFT and the new central charge

is given by nc. In particular, the total stress energy T (n) can be simply obtained by

combining the stress energy tensors of the various copies:

T (n)(z) =

n∑

j=1

Tj(z) z ∈ C (4.18)

where Tj is the stress energy tensor of a single copy.

On the other hand, let T (w) be the stress energy tensor of the same CFT defined on Mn.

The CFT on Mn has central charge c. In order to compare the two sides of equation

(4.16) we can map Mn to C by performing the conformal transformation:

z =

(
w − a

w − b

) 1
n

(4.19)

The stress energy tensor T (w) transforms according to (3.8):

〈T (w)〉Mn,L =

(
∂z

∂w

)2

〈T (z)〉
C,L +

c

12
{z;w} (4.20)

where {·; ·} is the Schwarzian derivative:

{z;w} =

(
∂z

∂w

)−2
[

∂3z

∂w3

∂z

∂w
− 3

2

(
∂z

∂w

)2
]

(4.21)

Since 〈T (z)〉
C,L vanishes (see equation 3.19) the above one-point function becomes:

〈T (w)〉Mn,L =
c
(
n2 − 1

)

24n2
(a− b)2

(w − a)2(w − b)2
(4.22)

On the other hand, applying (4.16), 〈T (w)〉 becomes:

〈

T (a)T̃ (b)Tj(w)
〉

C,L(n)
〈

T (a)T̃ (b)
〉

C,L(n)

= 〈T (w)〉Mn,L for any value of j (4.23)
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Combining (4.22), (4.23) with the definition (4.18) of the stress energy tensor of L(n) we

have:

〈

T (a)T̃ (b)T (n)(w)
〉

C,L(n)
〈

T (a)T̃ (b)
〉

C,L(n)

=
c
(
n2 − 1

)

24n

(a− b)2

(w − a)2(w − b)2
(4.24)

Since T (n)(z) is the stress energy tensor, we can apply conformal Ward’s identity (3.11)

on the left hand side of (4.24):

〈

T (a)T̃ (b)T (n)(w)
〉

=

(
1

w − a

∂

∂a
+

1

w − b

∂

∂b
+

∆T
(w − a)2

+
∆T̃

(w − b)2

)〈

T (a)T̃ (b)
〉

(4.25)

Since T and T̃ are conjugate to each other (T †=T̃ ), they should have the same conformal

dimension.

Inserting the scaling (4.17) in equations (4.24) and (4.25) we can extract the conformal

dimension ∆T of twist fields [8, 14, 80]

∆T =
c

24

(

n− 1

n

)

= ∆T̃ (4.26)

The scaling dimension of twist fields then depends on two parameters: the central charge

c of the underlying system and the number n of copies involved.

In the single copy case (n = 1), the conformal dimension of the twist field vanishes. Of

course, this fact should not surprise, since in the n = 1 case the twist field acts trivially

and then it is equal to the identity.

4.3.1 Entanglement entropy

Once we have computed the conformal dimension of twist fields, we can immediately

study the scaling of entanglement. From equation (4.15) we can directly estimate the

Rényi entropy:

Sn(|b− a|) =
1

1− n
log trρnA ∼ 1

1− n
log
〈

T (a)T̃ (b)
〉

C,L(n)

=
c

6

n+ 1

n
log

|b− a|
ǫ

(4.27)

where ǫ is some ultraviolet cut-off which restores the correct dimensionality of the scaling.

Of course this simple logarithmic scaling is perfectly suitable for an n → 1 limit. The
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entanglement entropy is then given by:

S(|b− a|) ∼ c

3
log

|b− a|
ǫ

(4.28)

which is the celebrated result of Holzhey, Larsen and Wilczek [7].

Thanks to the twist field interpretation, it is very easy to study also the scaling of entan-

glement in different geometries. The above result has been derived for a very large system,

represented by a complex plane, without taking into account boundary conditions. In or-

der to study a finite system with periodic boundary conditions, we can simply map the

plane into a cylinder:

f : C → S1 × R

w 7→ w′ =
R

2π
logw (4.29)

where R denotes the size of the system.

Inverting the above map and using the transformation law (3.3), it is possible to compute

the twist field correlation function in a cylindrical geometry:

〈

T (a)T̃ (b)
〉

cyl
∼

(

sin
π|b− a|
R

)−4∆T

(4.30)

Such a correlator can be used to compute directly the Rényi and von Neumann entangle-

ment entropy a periodic system [8]:

S(|b− a|) ∼ c

3
log

[
R

πǫ
sin

π|b− a|
R

]

(4.31)

Such results have been derived for unitary systems at the critical points. In Chapter 5 we

will study how the scaling is affected when the system becomes non unitary and (Chapter

6) when the conformal invariance is broken. Before addressing these problems, it is useful

to recap some known results about entanglement in systems outside their critical points.

4.3.2 Beyond criticality

From the physical point of view, the massive regime and the conformal case are quali-

tatively similar. It is known that when the system is far enough from its critical point,

i.e. its correlation lengths ξ = m−1 is smaller than the size r = |b − a| of the subsystem

studied, entanglement scales like (4.28) with r replaced by ξ [8, 81]

S(ξ) ∼ c

3
log

ξ

ǫ
for r ≫ ξ (4.32)
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The physical interpretation of this scaling is very intuitive. The correlation length (which

diverges at the critical point) is the actual size a system can physically “see”. In other

words, when the correlation length is finite, the interaction is no more long range and two

points of the system affect each other if their distance is comparable to the correlation

length.

The formulation of the entropy using correlators of twist fields makes also possible

the study of entanglement in an intermediate regime r ∼ ξ. Such a situation, which lies

between the ultraviolet conformal scale and the “highly massive” infrared regime, can be

probed by expanding the correlator using the so-called form factors program (see Chapter

3). While this approach will be explained in detail in Chapter 6 (for non unitary theories),

here we can simply summarise some of the results already known in the literature [14]. In

this intermediate regime, entanglement scales in the following way:

S(r, ξ) =
c

3
log

ξ1
3

+ U − 1

8

Np∑

α=1

K0

(
2r

ξα

)

+O
(

e
− 3r

ξ1

)

(4.33)

whereK0 is the modified Bessel’s function of second kind [49] and U is a numerical constant

which depends on the system.

The above equation describes the entanglement in a theory with Np particles types. While

there is a K0 contribution for each particle type, the logarithmic term depends only on

the lightest mass m1 = ξ−1
1 . While the logarithmic term and the constant U depend on

the theory studied, the K0 corrections are universal. No matter what kind of theory is

taken into account (as long as it is unitary) the K0 corrections have always the same form

and the coefficient is always equal to 1/8.

4.4 Conclusions

In this chapter we quickly reviewed the main known results about the scaling of entangle-

ment entropy of one-dimensional quantum systems. We introduced the replica trick for

the computation of the entropy and how to represent the trace of reduced density matrix

using partition functions on Riemann surfaces. Additionally, we reviewed the role of twist

field correlation functions in the evaluation of such partition functions. We showed how

the central charge c affects the scaling of entropy in various (conformal and not) regimes.

Moreover we reported some known results about the saturation of entanglement in the

massive regime. In particular, we showed that entanglement tends to its saturation value

as a Bessel function and that this behaviour is universal and does not depend on the par-

ticular features of the (unitary) theory taken into account. In the next chapters (5, 6 and
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7) we generalise these results to non unitary systems. We will see how the non unitary

features of these systems will affect the scaling of the entanglement entropy.
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Chapter 5

Entanglement in Non Unitary

Conformal Field Theory

Even though entanglement has been widely studied in unitary models, less is known about

the non unitary case. While such models have always been branded as non physical, they

can be used to described particular systems, like the fractional quantum Hall effect in some

configurations [51]. In the context of quantum mechanics, these models have given rise to

active areas of research [82, 83, 84, 85, 86]. In this chapter we will discuss the scaling of

entanglement of non unitary critical systems through the development of a CFT tool to

study such a quantity in systems without a mass gap. In Chapter 6 we will extend the

critical results to the massive, non critical regime. Examples of lattice systems enjoying

such a non-unitary behaviour will be introduced in Section 5.3 and Chapter 7.

As we have seen in Chapter 3, in non unitary CFT the physical ground state and the

conformal vacuum are not the same state. As the most important physical information

come from the ground state structure, such systems behave quite differently from their

unitary counterpart. In unitary systems, the confomal vacuum |∅〉 (i.e. the state anni-

hilated by all Ln with n ≥ −1) is also the ground state |gs〉 (i.e. the eigenstate of the

Hamiltonian with the smallest eigenvalue). In the non unitary regime these two states

are different: since there exist a primary field φ with negative (and smallest) conformal

dimension ∆ < 0, the relative primary state is the ground state

|gs〉 = φ(0)|∅〉 (5.1)

In this chapter we will show how non unitarity affects the scaling of entanglement entropy.

In the following, all the expectation values 〈·〉 will be taken with respect to the con-
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formal vacuum |∅〉.

5.1 Entanglement Entropy in Non Unitary CFT

In this section we will discuss a new method for the evaluation of the bipartite entangle-

ment entropy in non unitary CFT.

Let us then consider an infinite system and suppose we would like to evaluate the entangle-

ment between the subsystem A = [a, b] and the rest of the system (B = [−∞, a] ∪ [b,∞]).

In the following we will use r to denote the length of the interval [a, b]:

r = |b− a| (5.2)

In the same spirit of Chapter 4, when evaluating Zn we have to consider n different fields

Figure 5.1: Space-time representation of the system.

living on R×R ≃ C. Such fields interact only around the branch cut: a particle i becomes

the particle i+1 when it crosses [a, b] from below (or i−1 if it is approaching from above)

while it remains unaffected if it crosses at any point x /∈ [a, b]. In the following we will

refer to this situation as orbifold.1

Since in the unitary case the ground state is an excitation-free state, the reduced density

matrix obtained as a partition function on the manifold Mn is automatically normalised

(up to the expectation value of the vacuum 〈∅|∅〉 - which can be set to one). On the other

hand, in non unitary system the ground state is an excited state. For this reason, in order

to have a normalised reduced density matrix, we should take care of the normalisation of

the ground state. Such a normalisation can be obtained by dividing the partition function

Zn on the manifold Mn by the partition function of n disconnected theories Zn
1 . The

trace of the n-th power of the reduced density matrix is then given by

trρnA =
Zn

Zn
1

(5.3)

1Roughly speaking, an orbifold is a manifold - in this case C
n - modulo some symmetry group.
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The Zn
1 partition function - called replica case in the following - is calculated on C (as Zn)

without any branch cut.

In other words, both Zn and Zn
1 are partition functions of n fields on C. The only difference

is that in the former there is a branch cut between a and b.

We can map the complex plane to a cylinder using the map

z 7→ w = i log
z − a

z − b
(5.4)

Around the singularities z = a and z = b the system is no more scale invariant and then

we introduce an ultraviolet cut-off 0 < ǫ ≪ r to take care of possible divergences. After

the conformal transformation, the plane with the cut becomes a cylinder with the cut

running from Im w = log ǫ
r to Im w = − log ǫ

r (the length of the cylinder is then 2 log r
ǫ ).

Thanks to modular invariance, we can choose to quantise with the time running along the

Figure 5.2: The system mapped to a cylinder

cut. The two partition functions will then be given by

Zn =
〈

e−2 log r
ǫ
Horb

〉

Zn
1 =

〈

e−2 log r
ǫ
Hrep

〉

(5.5)

The continuity boundary conditions in the replica and the orbifold cases are different. In

the replica case, when a particle i performs a complete rotation of 2π around the cylinder it

will remain the particle i. In the orbifold case, if a particle i performs a complete rotation,

it will become the particle i± 1 (the sign depends on the orientation of the rotation). In

order to extrapolate the scaling of the partition functions (5.5), we need to investigate the

ground state structure of the two Hamiltonians Horb and Hrep. Since the Hamiltonian of

a critical conformal system can be written in terms of Virasoro modes, we can derive the

energy spectrum from the property of the stress-energy tensor in these theories.
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Figure 5.3: Different cylinders.

5.1.1 Two Virasoro algebras

The difference in the boundary conditions is reflected also in the continuity conditions of

the stress-energy tensor. Let T (j) be the holomorphic part of the stress-energy tensor of

the jth copy. In the replica case we have

T (j)(w + 2π) = T (j)(w) (5.6)

while in the orbifold case we have

T (j)(w + 2π) = T (j+1)(w) (5.7)

The two different stress energy tensors give rise to two different Virasoro Algebras. In the

two cases the total stress-energy tensor is given by the sum of the single components:

T (w) =

n∑

j=1

T (j)(w)

Replica case

Let us focus first with the replica case (periodic boundary conditions). There are n

completely non-interacting theories giving rise to n orthogonal Virasoro algebras Virj

with modes L
(j)
k , each of them with central charge c. The total Virasoro modes are then

given by

Lrep
k =

n∑

j=1

L
(j)
k (5.8)
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which give rise to the total Virasoro Algebra Virrep =
n⊕

j=1
Virj with central charge nc.

Orbifold case

The cyclical boundary conditions of the orbifold case make the underlying conformal

algebra more complicated. Let us start by constructing a continuous version of the stress

energy tensor:

Torb(w) ≡ T (1+⌊Rew
2π ⌋)(w) (5.9)

This stress energy tensor is, by construction, continuous around the cylinder and the

underlying Virasoro algebra Vir has central charge c and Virasoro modes Lk. The total

Virasoro algebra Virorb is a subalgebra of Vir, with central charge nc and it is generated

by Lnk [80, 87]:

Lorb
k =

Lnk

n
+ δk0 ∆T (5.10)

where ∆T = c
24

(
n− 1

n

)
is the conformal dimension of the twist field T introduced in

Chapter 4.

5.1.2 Partition functions

Using the explicit expressions for the Virasoro modes (5.8) and (5.10), we can now evaluate

the partition functions 5.5.

The Quantum Hamiltonian of a CFT on a cylinder is given by [37]:

Ha = La
0 + L̄a

0 −
ca
12

(5.11)

where a = rep, orb refers to the replica or the orbifold case.

Notice that this derivation is completely general and it includes also the unitary case. It

provides a slightly more general approach than [7] in order to take into account also the

non unitary case.

The leading terms of the partition functions (5.5) are given by the lowest eigenvalues of

the Hamiltonians (5.11). If ∆ is the lowest eigenvalue of L
(j)
0 and L0, the smallest and the

most relevant eigenvalues of Lrep
0 and Lorb

0 are respectively n∆ and ∆
n +∆T . In the limit
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5.1. Entanglement Entropy in Non Unitary CFT

r/ǫ→ ∞ the two partition functions diverge like

Zn
1 ∼ e−4 log r

ǫ (n∆−nc
12 ) =

(r

ǫ

)4(nc
12

−n∆)

Zn ∼ e−4 log r
ǫ (

∆
n
+∆T −nc

12 ) =
(r

ǫ

)4(nc
12

−∆
n
−∆T )

(5.12)

The extra factors 2 in the exponent are due to the contributions of both the holomorphic

and antiholomorphic parts of the Hamiltonians.

Putting together the two partition functions 5.12 we have

Tr ρnA =
Zn

Zn
1

∼
(r

ǫ

)4∆T −4n∆+ 4∆
n

(5.13)

The exponent can be rearranged in the following way:

∆T − n∆+
∆

n
=

c

24

(

n− 1

n

)

− n∆+
∆

n

=
c− 24∆

24

(

n− 1

n

)

=
ceff
24

(

n− 1

n

)

(5.14)

and the Rényi Entropy becomes

Sn =
1

1− n
log Tr ρnA ∼ ceff

6

n+ 1

n
log

r

ǫ
(5.15)

From the above expression, we can see that the Rényi entanglement entropy for non uni-

tary CFT diverges logarithmically and the coefficient is given by the effective central charge

in a similar fashion to the scaling of the ground state energy (3.49).

As we have discussed in Chapter 3, the effective central charge ceff = c − 24∆min is the

physical central charge, i.e. the one which determines the physics of a system.

A similar computation can be performed for a half-infinite system in presence of a

boundary [1]. The Entropy between the subsystemA = [0, r] and the subsystemB = [r,∞[

(we consider the whole system A ∪B as a half-infinite line [0,∞[) is given by

Sn =
1

1− n
log Tr ρnA ∼ ceff

12

n+ 1

n
log

r

ǫ
(5.16)

which differs from 5.15 only by a factor two. As in the unitary case [8], the Entropy is

proportional to the area of the boundary between the two subsystems.

A more general formula is then given by

Sn = A 1

1− n
log Tr ρnA ∼ Aceff

12

n+ 1

n
log

r

ǫ
(5.17)
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5.1. Entanglement Entropy in Non Unitary CFT

where A = 1, 2 is the number of boundary points between A and B.

Of course, our results are still valid in the unitary case: if the CFT is unitary, the

smallest conformal dimension is zero and the effective central charge is equal to the usual

central charge.

5.1.3 Interpretation in terms of twist fields

As we have seen in Chapter 4, the partition functions used to evaluate the Rényi Entropy

can be interpreted as correlation functions of Twist Fields T . This construction “as it is”

seems to fail in the non unitary case, since their conformal dimensions involve the central

charge c only and they do not depend on the smallest conformal dimension ∆. In order

to interpret our results in terms of correlation functions of twist fields, we introduced a

modified version of the these fields. Let T be the standard twist field, as introduced in 4,

and let φj be the j-th copy of the primary field with the smallest conformal dimension ∆.

We can then define a fused or composite field:

: T φ : (x) ≡ n2∆−1 lim
y→x

|x− y|2∆(1− 1
n)T (x)

n∑

j=1

φj(y) (5.18)

This field has already been introduced in a different context [88] and its conformal dimen-

sion is given by:

∆:T φ: = ∆T +
∆

n
(5.19)

By a simple comparison between the scaling of (5.15) and the conformal dimension of the

modified twist field : T φ :, we can interpret the two partition functions as

Zn

Zn
1

∝ 〈: T φ : (a) : T̃ φ : (b)〉
〈φ(a)φ(b)〉n (5.20)

These correlation functions are taken with respect to the conformal vacuum |∅〉. The

presence of the field φ in the correlation function in the numerator comes naturally, since

this fields create the physical ground state |gs〉 = φ(0)|∅〉 acting on the conformal vacuum.

In the case with a boundary, where there is only one boundary point between the two

subsystem A and B (A = [0, r] and B = [r,+∞[), dimensional analysis arguments can be

used to interpret the partition functions as the ratio:

Zn

Zn
1

∝ 〈: T φ : (r)〉
〈φ(r)〉n (5.21)
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The equation (5.20) can be very useful also for the study of entanglement outside the

critical point. Although it has been derived in CFT, we can assume that it holds also

outside the conformal regime. The study of such a correlation function in the massive

case will be discussed in Chapter 6.

5.2 Entanglement Entropy in Logarithmic CFT

The above formulation can be easily adapted to the study of logarithmic conformal field

theory. Logarithmic CFTs are a particular class of CFTs whose L0 (and thus their Hamil-

tonians) operators are not fully diagonalisable, but they can be reduced to a Jordan’s block

form. An example of logarithmic CFT is the c = −2 ghost theory, which can be seen as a

particular limit of a certain series of non unitary minimal models [89]. A particular feature

of logarithmic CFT is the presence of logarithmic terms alongside the power-law decay in

the correlation functions [90].

Let us consider the case when the projection of the operator L0 onto its lowest eigen-

state has triangular form:

L0 = ∆ 1+N (5.22)

where 1 is the identity operator and N is some nilpotent operator with Np = 0. Let

ρ = 1, 2, . . . , p− 1 be the highest number such that 〈Nρ〉 6= 0. Then we have

〈
e−u L0

〉
= e−u∆

〈
r∑

k=0

(−uN)k

k!

〉

(5.23)

In the limit u = A log r
ǫ → ∞ we can keep just the most relevant term, i.e. uρ〈Nρ〉.

Applying this argument for the two cases L
(j)
0 and L0 and putting all contributions together

into (5.5), the Rényi Entropy becomes

Sn = A 1

1− n
log Tr ρnA ∼ ceff

12

n+ 1

n
log

r

ǫ
+ ρ log log

r

ǫ
(5.24)

The presence of the double log term is not completely surprising, since logarithmic CFT

present such features. An interpretation in term of modified twist fields : T φ : is still

missing, although it is reasonable to expect a mixture of algebraic and logarithmic scaling

for the correlation functions of such fields.
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5.3 Numerical Checks

In this section we will perform a numerical study of a spin chain in order to test our field

theory results about the scaling of the entanglement entropy.

Let us consider the following spin chain, introduced and studied for the first time by Von

Gehlen [77]:

H(λ, κ) = −
N∑

j=1

[
σzj + λσxj σ

x
j+1 + iκσxj

]
(5.25)

In the thermodynamic limit N → ∞, the above Hamiltonian has a critical line in the plane

λ−κ which is described by the Lee-Yang universality class (c = −22/5, ∆min = −1/5 and

ceff = 2/5).

Whilst there is no mathematical proof about the universality class of the aforementioned

critical line, it can be easily identified by numerical exact diagonalisation of the above

Hamiltonian and by studying the scaling of the gap between the two lowest eigenenergies.

Such an exact diagonalisation can also be implemented to study the scaling of the entan-

glement entropy. An example of this behaviour is provided the massless free boson theory

(see Chapter 8). In particular, we have considered the case λ = 0.90 and κ = 0.0065 with

Figure 5.4: Scaling of entanglement entropy in the Lee-Yang chain with N = 24 sites
against the length r of the subsystem A (normalised by the correlation length ξ - see text).
The blue squares represent the numerical data, while the red dashed line corresponds to
the fit (5.26).

N = 24 sites with periodic boundary conditions. Then we computed the entanglement

entropy for different sizes of the subsystem A. Once interpolated, it can be shown that
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the entropy scales as

S =
γ

3
log

(
N

π
sin

rπ

N

)

+ α (5.26)

where the interpolating constants γ and α are respectively given by 0.4056 and 0.3952.

The constant γ is in strong agreement with the theoretical prediction γ = ceff = 2/5 = 0.4

and its value confirms the previous results.

From Picture 5.4 it is clear that the interpolating curve (red line) and the actual data

(blue squares) do not always agree. In particular, while the squares and the line match

perfectly in the small and large r regimes, the actual data are a bit smaller than the

interpolating prediction around r = ξ. Such a disagreement has actually a very physical

interpretation. Since the numerical simulation has been performed with a not so large

number of sites (N = 24), the system does not exhibit a properly critical behaviour: the

gap ξ−1 ∝ E1 − E0 defined as the difference between the lowest eigenenergies vanishes

only when considering the limit N → ∞. As long as the subsystem A is much smaller

than the correlation length (r ≪ ξ), the physical scale of the system is large enough to

“look” infinite. In such a regime, the induced correlation length is too large to affect the

system and the entanglement scales in a conformal fashion. On the other hand, when the

correlation length has almost the same size of the subsystem A, it plays an important

role and bounds the entanglement from above. While at the critical point entanglement

always scales logarithmically with the size r of the subsystem, it saturates around r ∼ ξ as

long as the mass gap is non zero. The fact that there is a very good agreement also in the

right hand side of Figure 5.4 (even though r > ξ in that region) is due to the symmetric

property of entanglement entropy. The entropy of the subsystem A with respect to B has

to be the same as the entropy of B respect with to A, as long as the entire system is just

A ∪B.

The above picture shows the scaling of entanglement for a specific point of the Lee-Yang

critical line (λ = 0.90 and κ = 0.0065). We have studied also other points of the critical

line but the larger mass gap of such points makes the system definitely not critical and

affects the entropy too much (see Figure 5.5).

5.4 Comments about Non Hermiticity

One of the first things one can notice is that the Hamiltonian (5.25) is not hermitian,

i.e. H† 6= H. Moreover, also the Hamiltonians we will introduce in Chapter 7 are not

Hermitian. Nevertheless, all their eigenvalues are real and they almost hermitian: the

so-called PT symmetry [82, 83, 84, 85, 86].

Since these Hamiltonian operators are not hermitian, the left- and right- eigenvalues do
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Figure 5.5: Scaling of entanglement entropy in the Lee-Yang chain with N = 12 sites
against the length r of the subsystem. In this case the finite size gap is too large to
extract meaningful critical information.

not always coincide. For this reason, the correct reduced density matrix should have been

ρA = trB |ΨR〉〈ΨL| (5.27)

where |ΨR〉 and |ΨL〉 represent respectively the right and left ground states (the left and

right eigenvectors relative to the lowest eigenenergy). However, at least at the critical

point, the conformal invariance and the PT symmetry implies the equality between the

two eigenvectors:

|ΨR〉 = |ΨL〉 (5.28)

Consider the conformal field φ representing the ground state. Thanks to conformal invari-

ance, it can be factorised into its holomorphic and anti-holomorphic parts:

φ(z, z̄) = ϕ(z)ϕ̄(z̄) (5.29)

Once having set the origin of the x-y axis on the point (z = eix+τ ), the parity transfor-

mation x → −x maps z to z̄. Such a transformation exchanges the roles of ϕ and ϕ̄ and

preserves φ. Thus, the ground state is P invariant. Thanks to PT symmetry, it has to be

T invariant as well. Since the T transformation (t → −t) maps left eigenvectors to their
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corresponding right versions and vice versa, the two ground states have to coincide.

5.5 Conclusions

In this chapter we extended some well know results (Chapter 4) concerning the scaling of

entanglement entropy of critical 1+1 dimensional systems. In particular, we discussed the

case when the underlying conformal theory is non unitary. The main difference between

unitary and non unitary CFT is the fact that the physical ground state and the conformal

vacuum coincide in the former while they do not in the latter. One of the most “famous”

effect of such a non unitary feature can be seen in the scaling of the ground state energy

at various sizes of the systems (also known as Casimir effect). In unitary CFT the nu-

merical multiplicative constant in from on the size−1 correction is given by the central

charge, a number associated with the universality class of the underlying conformal field

theory. In non unitary theories such a number is replaced by the effective central charge,

a combination of the central charge and the conformal dimension of the field creating the

ground state from the conformal vacuum.

When studying the scaling of entanglement entropy, we showed that the main difference

with the unitary case is the replacement of the central charge with the effective central

charge. Of course, this is not surprising, since the effective central charge is (like entan-

glement) a physical quantity.

Since logarithmic CFTs are a further generalisation of non unitary CFT, we could also

extend our results for entanglement entropy to such theories. We showed that in logarith-

mic theories a double logarithmic term is present in the scaling of the entropy. We believe

that such a correction can be associated to the logarithmic terms appearing in four-point

correlation functions in logarithmic CFT.

In addition to our CFT derivation, we presented an interpretation of entanglement entropy

of unitary systems in terms of correlation functions involving modified twist fields. Such

an interpretation will be fundamental in the next chapter to study the off-critical scaling

of the entanglement entropy in non unitary quantum field theories.
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Chapter 6

Entanglement in Non Unitary

Quantum Field Theory

In Chapter 5 we have discussed the scaling of entanglement entropy in non unitary con-

formal field theory. The Rényi Entropy between a subsystem A = [a, b] and the rest of

the system can be computed by evaluating partition functions on complicated manifolds

and it is given by:

Sn =
1

1− n
log Tr ρnA ≡ 1

1− n
log

Zn

Zn
1

∝ ceff
6

n+ 1

n
log

r

ǫ
(6.1)

where r = |b− a| is the size of the subsystem A.

It has also been suggested that the ratio of the two partition functions can be written in

terms of correlation functions:

Zn

Zn
1

= Zn ǫ
4(∆:T φ:−n∆) 〈: T φ : (a) : T̃ φ : (b)〉

〈φ(a)φ(b)〉n (6.2)

where Zn is some normalisation constant such that dZn
dn

∣
∣
n=1

= 1 and ǫ is an ultraviolet

cut-off. It has been shown that this relation reproduces the correct entanglement entropy

in non unitary CFT and it is natural to assume that the same expression holds also outside

the critical point in the massive regime.

The form factor program (see Chapter 3 ) is a successful tool for studying correlation

functions in the massive regime. In this chapter we will study the form factor expansion

of the correlation functions 6.2 for the Lee-Yang model, the simplest non unitary integrable

quantum field theory in 1 + 1 dimensions.
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6.1 Twist Field Form Factors in the Lee-Yang Model

As we have seen before in Chapter 3, it could happen that different fields’ form factors

satisfy the same equations. In this specific case, the equations of both the standard (T )

and the modified (: T φ :) twist fields are the same. In this section, we let O be either

twist field, T or : T φ :. If not otherwise stated, all form factors refer to both fields.

The Lee-Yang model is one of the simplest integrable quantum field theories in two di-

mensions. It can be seen as a thermal perturbation φ13 of the minimal model M25 with

central charge c = −22
5 . The operator content of this minimal model is very is simple:

apart from the identity field 1, there is only one other field φ ≡ φ13 ≡ φ12 with conformal

dimension ∆ = −1
5 . The two-particle scattering matrix is given by [76]:

S(β) =
tan 1

2

(
β + 2πi

3

)

tan 1
2

(
β − 2πi

3

) (6.3)

which has a bound state pole in the physical sheet at β = 2πi
3 :

−i Res
β= 2πi

3

S(β) = Γ2 = −2
√
3 (6.4)

From the sign of the bound state residue we can immediately infer the non unitarity of

the model [76], since Γ ∈ R for unitary theories.

In order to construct form factors for the twist fields, we need to define a S-matrix for the

n-copy theory:

Sµν(β) =

{

S(β) µ = ν

1 µ 6= ν
(6.5)

where the index µ refers to the µ-th copy of the theory. With the definition of the S-matrix

alone, we simply have n non-interacting theories: two given particles have a non trivial

scattering only if they belong to the same copy. Of course, this set-up is not enough to

recreate the complex situation such that particles do interact only around the branch cut.

In order to take into account this property, we introduce the Branch Point Twist Fields

(see Chapter 4). The peculiar action of twist fields on particles gives rise to a modified

version of Watson and kinematic residue equations. In standard theories, when a particle

performs a rotation around an operator (with a shift of 2πi in its rapidity) the type of

particle is not affected. Since a twist field creates a branch cut, when a particle belonging

to the copy µ rotates clockwise around it, it ends up in the copy µ−1. The second Watson
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6.1. Twist Field Form Factors in the Lee-Yang Model

equation (3.72) now becomes:

Fµ1µ2···µℓ
ℓ (β1 + 2πi, β2, . . . , βℓ) = Fµ2···µℓµ̂1

ℓ (β2, . . . , βℓ, β1)

=

(
ℓ∏

i=2

Sµiµ̂1 (βi − β1)

)

F µ̂1···µℓ
ℓ (β1, . . . , βℓ)

(6.6)

where µ̂ = µ− 1.
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Figure 6.1: Second Watson equation for twist field. The branch cut (red dashed line)

modifies particles when they cross it.

The kinematic residue equation becomes:

Res
β=β0

F µ̄µµ1···µℓ
ℓ+2 (β + iπ, β0, β1, . . . , βℓ) = iFµ1···µℓ

ℓ (β1, . . . , βℓ)

Res
β=β0

F µ̄µ̂µ1···µℓ
ℓ+2 (β + iπ, β0, β1, . . . , βℓ) = −i





k∏

j=1

Sµ̂µj
(β0j)



Fµ1···µℓ
ℓ (β1, . . . , βℓ)

(6.7)

In order to understand the formulation of these residue equations, we should recall which

is the action of twist fields on particles. Branch point twist fields can be defined on a

system in which each theory is copied n times and particles interact only if they belong to

the same copy. Additionally, when a particle belonging to the copy i crosses the segment

[a, b] from below it becomes a particle of the i + 1 copy. The role of a twist field T (a) is

to create a half-infinite branch cut from the point a onwards (see Figure 6.2 ). In order

to create a finite branch cut, we need also a second kind of twist field, denoted by T̃ .

The role of T̃ (b) is to create another half-infinite branch cut from b to +∞ with inverted

orientation. If the branch cut of T moves particles from a copy to the following one when

they approach from below, the branch cut of T̃ moves the particles to the previous copy.
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Figure 6.2: The twist field T creates a branch cut (red dashed line) which moves particles
between adjacent copies.

The second branch cut (T̃ ) annihilates the effect of the first cut (T ) from b onwards. The
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Figure 6.3: The twist field T̃ creates a branch cut (green dashed line) which moves par-
ticles between adjacent copies. Notice that the orientation of this branch cut is reversed
compared to T (Figure 6.2).

two twist fields then create a finite branch cut (see Figure 6.4):
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Figure 6.4: When both twist fields are present, a finite branch cut (red dashed line) is
created.

Let us consider the scattering of ℓ particles onto a twist field T in 0. If the first and the

second particle have the same rapidity but shifted by iπ (aka two particles with the same

momentum, one incoming and the other outgoing), they create a pole in the scattering

amplitude if they can interact. Such an interaction can happen only if the two particles

share the same copy, say µ. There are two ways such that they belong to the same copy

when they interact: they can be originally in the same copy µ (second equation) or they

can belong to neighbour copies (first equation). If they belong to neighbour copies, say µ

and µ−1, the first particle has to perform a circle around the twist field in order to decrease

its “copy number” by one. On the other hand, if they are already in the same copy, they

can interact (and then create a pole) only if neither of them perform a cycle around the
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twist field. For this reason, kinematic residue equations can be of two kinds to include

both possibilities of creating a kinematic pole. The main difference from “ordinary” form

factor kinematic poles is that in the twist field case particles change their properties when

rotating around twist fields. When studying kinematic poles of form factors for other

local operators, particles do not change their nature when performing a rotation around

the operator, so the same two particles can form a kinematic pole depending on whether

one of them rotates or not around the operator.

Of course, since the S-matrix has a pole in the physical strip, there is also a non trivial

bound state residue equation:

Res
β0=β

F
µµµ1···µℓ−1

ℓ+1

(

β +
iπ

3
, β0 −

iπ

3
, β1, . . . , βℓ−1

)

= iΓF
µµ1···µℓ−1

ℓ (β, β1, . . . , βℓ−1)

(6.8)

In “usual” form factors problems, the rapidities lie in the strip Imβ ∈ [0, 2π[, since a rota-

tion of 2πi has no effect on the rapidity of a particle, due to the periodicity of hyperbolic

functions. In this case, when a particle from the copy µ rotates by 2π around a twist field,

it ends up in the µ± 1 copy (depending on the sign of the rotation). From a form factors

point of view, such a rotation can be implemented by a 2πi shift in the rapidity. For this

reason, Twist Fields form factors cannot have periodicity of just 2πi. Since the n−th copy

is connected to the first, it is clear that the correct periodicity of such form factors has

to be 2πni. The relation between rotations of rapidities and the change of a copy can be

exploited to connect form factors of particles belonging to different copies to form factors

of particles all from the same copy (say the first one):

Fµ1···µℓ
ℓ (β1, . . . , βℓ) = F 1···1

ℓ (β1 + 2πi(µ1 − 1), . . . , βℓ + 2πi(µℓ − 1)) (6.9)

if µ1 < · · · < µℓ.

Thanks to this relation, we can compute form factors of particles belonging to the same

copy (say the first) and we can recover all the others using (6.9) together with the S-matrix

(6.5).

6.1.1 One- and two-particle form factors

Let us start from the ℓ = 0 and ℓ = 1 form factors. The zero-particle form factor is simply

given by the expectation value 〈O〉. Since we are considering a spinless theory, thanks to

relativistic invariance, form factors depend only on the difference between rapidities. Spe-

cialising to ℓ = 1, it implies that one-particle form factors have to be rapidity independent.
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The bound state residue equation connects the one- and two-particle form factors:

Res
β=β0

Fµµ
2

(

β − β0 +
2πi

3

)

= iΓFµ
1 (6.10)

The two-particle form factor must also satisfy:

Fµµ
2 (β) = S(β)Fµµ

2 (−β) = Fµµ
2 (2πin − β) (6.11)

These two equations, together with the kinematic poles in β = β1−β2 = ±iπ,±iπ(2n−1),

constrain the form of the two-particle form factor to:

Fµµ
2 (β1, β2) = Fµµ

2 (β = β1,2) =
〈O〉 sin π

n

2n sinh
(
iπ−β
2n

)

sinh
(
iπ+β
2n

)
Fmin(β)

Fmin(iπ)
+K(β)

(6.12)

where Fmin is the solution of (6.11) without kinematic poles and K is the kernel solution

of the kinematic residue equation, i.e. it has no kinematic poles (see Chapter 3):

Res
β=0

K(β + iπ) = 0 (6.13)

In order to be compatible with the bound state pole, the kernel solution has to be pro-

portional to the minimal form factor:

K(β) = κFmin(β) (6.14)

The minimal form factor Fmin can be split into two components, in a similar fashion to

[62]:

Fmin(β) = a(β)fn(β) (6.15)

where a encapsulates the bound state pole

a(β) =
cosh β

n − 1

cosh β
n − cos 2π

3n

(6.16)

and fn can be computed using the integral representation of the S-matrix [91]:

fn(β) = exp

(

2

∫ ∞

0
dt

sinh t
3 sinh

t
6

t cosh t
2 sinh(nt)

cosh

[

t

(

n+
iβ

π

)])

(6.17)
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The function fn can also be computed using an infinite product:

fn(β)
−1

=

∞∏

k=0






Γ
(
2n−2w+ 2

3
+4k

4n

)

Γ
(
2n+2w+ 2

3
+4k

4n

)

Γ
(
2n−2w+ 4

3
+4k

4n

)

Γ
(
2n+2w+ 4

3
+4k

4n

)

Γ
(
n−w+2k

2n

)
Γ
(
n+w+2k

2n

)

× Γ
(
n−w+2k+2

2n

)
Γ
(
n+w+2k+2

2n

)

Γ
(
2n−2w+ 8

3
+4k

4n

)

Γ
(
2n+2w+ 8

3
+4k

4n

)

Γ
(
2n−2w+ 10

3
+4k

4n

)

Γ
(
2n+2w− 14

3
+4k

4n

)






(6.18)

with w = n+ iβ/n.

The function fn enjoys the following property, which can be proved using either the integral

or the infinite product representation:

fn(iπ)

fn
(
2πi
3

) =
n√
3

sin3 π
3n

sin π
6n sin π

2n

(6.19)

Moreover, it can be shown that the following relations hold for minimal form factors:

Fmin

(

β +
iπ

3

)

Fmin

(

β − iπ

3

)

=
cosh β

n − cos 2π
3n

cosh β
n − cos π

n

Fmin(β) (6.20)

Fmin(β + iπ)Fmin(β) =
sinh β

2n sinh
(

β
2n + iπ

2n

)

sinh
(

β
2n − iπ

3n

)

sinh
(

β
2n + 5iπ

6n

) (6.21)

which will be used to compute the higher particle form factors.

The two functions a and fn all together satisfy the equation (6.11) and they have no pole

in the physical sheet but the bound state pole at β = 2πi
3 . Even if fn has a simple pole

at β = 0, the function Fmin as a whole is regular at this point thanks to the choice of the

function a. Furthermore, it can be shown that the minimal form factor tends to one for

|β| → ∞.
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Fixing the parameter κ

The parameter κ can be fixed using the cluster decomposition property of form factors

[92]:

lim
λ→∞

Fk+ℓ(β1, . . . , βk, θ1 + λ, . . . , θℓ + λ) =
1

〈O〉Fk(β1, . . . , βk)Fℓ(θ1, . . . , θℓ)

(6.22)

Specialising the above equation to k = ℓ = 1 and we have

lim
λ→∞

Fµµ
2 (β, θ + λ) =

1

〈O〉F
µ
1 (β)F

µ
1 (θ) =

(Fµ
1 )

2

〈O〉 (6.23)

Since Fmin(β) → 1 for |β| → ∞, when taking such a limit of (6.12), the first term vanishes

and the second tends to κ. Thanks to the above equation we can now fix κ = (Fµ
1 )

2
/〈O〉.

Fixing F1 and distinguish T from : T φ :

When applying the bound state residue equation to the two-particle form factors, a con-

straint on F1 emerges:

Fµ
1 =

1

iΓ
Res
β=β0

Fµµ
2

(

β − β0 +
2πi

3

)

=
1

Γ

[

n tan
π

3n
f

(
2πi

3

)
(Fµ

1 )
2

〈O〉 − tan π
3n

tan π
2n

fn
(
2πi
3

)

fn(iπ)

]

(6.24)

The above second order equation has two different solutions:

Fµ
1 = −〈O〉Γcos

π
3n ± 2 sin2 π

6n

2n sin π
3nfn

(
2πi
3

) (6.25)

The presence of two distinguishable solutions should not be a surprise, since the “normal”

twist field T is not the only one we are looking for. The modified twist field : T φ : has

the very same property of T , as both of them have the same action on particles. The

two solutions should then correspond to the two different twist fields. In order to identify

correctly the right form factor solution for the right field, we can specialise F1 to n = 1:

Fµ
1

n=1
=







Fφ
1 (solution with +)

0 (solution with −)

(6.26)
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where Fφ
1 is the one-particle form factor for the field φ as derived in [62]. Since when

n = 1 : T φ : coincides with φ itself and T becomes the identity 1, the solution with the

plus sign should correspond to the composite twist field : T φ : while the other is the form

factor of the twist field T :1

F
T |µ
1

〈T 〉 = −Γ
2 cos π

3n − 1

2n sin π
3nfn

(
2πi
3

) (6.27)

F
:T φ:|µ
1

〈: T φ :〉 = − Γ

2n sin π
3nfn

(
2πi
3

) (6.28)

This identification will be confirmed in the following section 6.3 checking the short-distance

scaling of the form factor expansion against perturbative CFT.

6.1.2 Higher particle form factors

Using bound state and kinematic pole recursive equations, we can construct higher particle

form factors from the zero-, one- and two-particle ones. Thanks to the special relations

between form factors of particles belonging to different copies (Equation 6.9), we can focus

on computing form factors of particles all belonging to the first copy. We can construct a

generic form factor using the following ansatz:

Fℓ(x1, . . . , xℓ) = Qℓ(x1, . . . , xℓ)
k∏

i<j

Fmin

(
xi
xj

)

(xi − αxj)(xj − αxi)
(6.29)

where new variables xi = e
βi
n and α = e

iπ
n have been introduced for convenience. In the

above equation, Qℓ is a completely symmetric polynomial. This ansatz, used for the first

time in [93], resembles the usual ansatz used for the evaluation of form factors of local

operators [62, 63]. In the above equations, all the kinematic poles have been made explicit

in the denominator.

Kinematic poles

The kinematic pole residue equation applied to (6.29) gives the first constraint on the

polynomials Qℓ:

Qℓ+2(αx0, x0, x1, . . . , xℓ) = x20Pℓ(x0, x1, . . . , xℓ)Qℓ(x1, . . . , xℓ) (6.30)

1Since 〈∅|1|ψ〉 6= 0 iff |ψ〉 = |∅〉, all form factors of the identity but the zero-particle form factor vanish.
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The polynomial Pℓ is given by

Pℓ(x0, x1, . . . , xℓ) = Cℓ(n)
ℓ∏

b=1

[
(xb − α2x0)(xb − α−1x0)(xb − γx0)(xb − αγ−1x0)

]

(6.31)

where γ = e−
2πi
3n and

Cℓ(n) =
2 sin π

n

nFmin(iπ)
α2(ℓ+1) = C0(n)α

2ℓ (6.32)

Since, by definition, the polynomials Qℓ are completely symmetric, the above constraint

(6.30) can be solved using elementary symmetric polynomials σ
(ℓ)
i , which can be generated

by the following implicit definition:

σ∑

i=0

xℓ−iσ
(ℓ)
i (x1, . . . , xℓ) =

ℓ∏

j=1

(xj + x) (6.33)

In other words, σ
(ℓ)
i (x1, . . . , xℓ) is the completely symmetric homogeneous polynomial of

degree i of ℓ variables. For instance: 2

σ
(ℓ)
0 = 1 (6.34)

σ
(ℓ)
1 =

ℓ∑

i=1

xi (6.35)

σ
(3)
2 = x1x2 + x1x3 + x2x3 (6.36)

· · · (6.37)

The polynomial Pℓ can be expressed in terms of elementary symmetric polynomials:

Pℓ = Cℓ(n)

ℓ∑

a,b,c,d=0

(−α2x0)
ℓ−a(−α−1x0)

ℓ−b(−αγ−1x0)
ℓ−c(−γx0)ℓ−dσ(ℓ)a σ

(ℓ)
b σ(ℓ)c σ

(ℓ)
d

(6.38)

The kinematic pole residue equation gives already a strong constraint on the polynomials

Qℓ, constraints which can be further strengthened using bound state residue equations.

2In the following, we will drop the arguments x1, . . . , xℓ when no confusion is possible.
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Bound state poles

Applying the bound state residue equation to (6.29) we obtain:

Qℓ+1

(

x0γ
− 1

2 , x0γ
1
2 , x1, . . . , xℓ−1

)

= x20Uℓ(x0, x1, . . . , xℓ−1)Qℓ(x0, x1, . . . , xℓ−1)

(6.39)

where Uℓ is given by:

Uℓ(x0, x1, . . . , xℓ−1) = Hℓ(n)
ℓ−1∏

i=1

(xi − γ−2x0)(xi − γ2x0) (6.40)

and the constant Hℓ is given by

Hℓ(n) =
4Γ sin2

(
π
2n

)

n tan
(

π
3n

)
a(iπ)f

(
2πi
3

)(−α)ℓ = H1(n)(−α)ℓ−1 (6.41)

As before, the polynomial Uℓ can be expressed in terms of elementary symmetric polyno-

mials:

Uℓ = Hk(n)

ℓ−1∑

a,b=0

(−γ−2x0)
ℓ−1−a(−γ2x0)ℓ−1−bσ(ℓ−1)

a σ
(ℓ−1)
b (6.42)

Using the kinematic and the bound state pole residue equations we then compute the Qℓ+2

polynomial starting from Qℓ+1 and Qℓ.

Three-particle form factors

In order to construct the polynomial Q3 (and thus the three particle form factor), we need

to know Q1 and Q2. They can be simply inferred from the explicit expressions of the

relative form factors:

Q1 = F
O|1
1 (6.43)

Q2 = 〈O〉C0(n)α
−1σ2 +

(

F
O|1
1

)2

〈O〉
(
(1 + α)2σ2 − ασ21

)
. (6.44)

One can immediately check that Q2 satisfies the kinematic residue equation (with Q0 =

FO
0 = 〈O〉) and the bound state equation. Q2 is in fact the unique solution of the two

residue equations, once Q0 and Q1 are given. This couple of residue equations fix uniquely

also higher particle form factors, without any ambiguity regarding possible kernel solutions.

In different theories, when there is no bound state residue equations, higher particle form
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factors are defined up to kernel solutions, as happens in [93].

We can now write down the most general expression for the polynomial Q3:

Q3 = A1σ
3
1σ3 +A2σ

2
1σ

2
2 +A3σ1σ2σ3 +A4σ

3
2 +A5σ

2
3 +A6σ

4
1σ2 +A7σ

6
1

(6.45)

The coefficients Ai can be computed exactly using the kinematic and bound state residue

equations. Their values are reported in appendix A. It can be noted that the n → 1

correspondence of : T φ : and T with respectively φ and 1 holds also at three-particle

level. All the Ais vanish for n = 1 and O = T , while for O = : T φ : the Ais are given by:

A1 = A4 = A5 = A6 = A7 = 0, A2 = −A3 =
(Fφ

1 )
2H1(1)

〈φ〉 =
iπm231/4

27/2f1(iπ)3/2

(6.46)

reproducing exactly the three-particle form factor for the field φ as computed in [62].

Moreover, the clustering property is automatically satisfied, since the identities

lim
λ→∞

F
O|111
3 (β1, β2, β3 + λ) =

1

〈O〉F
O|11
2 (β1, β2)F

O|1
1 (β3) (6.47)

lim
λ→∞

F
O|111
3 (β1, β2 + λ, β3 + λ) =

1

〈O〉F
O|1
1 (β1)F

O|11
2 (β2, β3) (6.48)

can be checked analytically. In this case, clustering properties produce just identities,

while in other cases, like [93], these properties have been used to fix the form factors

expressions to remove the kernel ambiguity.

The agreement in the n = 1 case and the validity of the clustering properties are a strong

hint that these form factor expressions are correct.

In the work [62], Zamolodchikov managed to make an ansatz for generic ℓ-particle form

factors. Such a generalisation cannot be done at this point when computing twist field form

factors. This is mainly due to the fact that the number of kinematic poles (xi = α±1xj)

doubles the number of poles in the standard theory (xi + xj = 0). For this reason the

degree of the polynomials Qℓ in the twist field case grows at a much greater rate then the

usual case, leading to much more intricate recursive equations.

Form factor of the fields T̃ and : T̃ φ :

In the previous sections we focused on the computation of form factors for the twist fields

T and : T φ :. These fields are not the only ones that enter the correlation functions for

the evaluation of Rényi entanglement entropy: the field T̃ and : T̃ φ : play a role too. As

we have seen in Chapter 4, the field T̃ acts as the field T but it creates a different branch
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cut. If a particle belonging to the copy µ performs an anticlockwise rotation around T ,

it will end up in the copy µ + 1. On the other hand, if this circle is performed around

T̃ , the particle will belong to the copy µ − 1. In other words, if T is associated to the

cyclic permutation symmetry i 7→ i+ 1, T̃ implements the opposite symmetry i 7→ i− 1.

Similarly, : T̃ φ : acts in the same way as : T φ : but with opposite orientation. Thanks to

this particular relation, the two fields T and T̃ can be considered one the conjugate of

the other: T transforms to T̃ once the direction of time has been inverted (as it could be

easily inferred by comparing Figures and 6.3).

The relationship between the two twist fields imposes then the following equality:

F
T |µ1···µℓ

ℓ (β1, . . . , βℓ) = F
T̃ |(n−µ1)···(n−µℓ)
ℓ (β1, . . . , βℓ) (6.49)

In other words, the conjugate twist field T̃ “counts” the copies with reversed order.

Moreover, since the theory is non unitary, we would expect the following identity to hold:

[62, 74]




1
〈

T̃
〉〈∅|T̃ (0)|β1, . . . , βℓ〉µ1···µℓ





∗

= (−1)ℓ
1

〈T 〉 µ1···µℓ
〈β1, . . . , βℓ|T |∅〉

(6.50)

The generic matrix element of the form factor expansion of the correlation function
〈

T (0)T̃ (r)
〉

is then given by

〈∅|T (0)|β1, . . . , βℓ〉µ1···µℓ

〈T 〉
µ1···µℓ

〈β1, . . . , βℓ|T̃ (0)|∅〉
〈

T̃
〉

= (−1)ℓ

∣
∣
∣
∣
∣

F
T |µ1···µℓ

ℓ (β1, . . . , βℓ)

〈T 〉2

∣
∣
∣
∣
∣

2

(6.51)

The same equality holds also for : T φ :, i.e.

〈∅|: T φ :(0)|β1, . . . , βℓ〉µ1···µℓ

〈: T φ :〉
µ1···µℓ

〈β1, . . . , βℓ| : T̃ φ : (0)|∅〉
〈

: T̃ φ :
〉

= (−1)ℓ

∣
∣
∣
∣
∣

F
:T φ:|µ1···µℓ

ℓ (β1, . . . , βℓ)

〈: T φ :〉2

∣
∣
∣
∣
∣

2

(6.52)
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Now we have the complete explicit expressions of the form factors of T and : T φ : (and

their conjugates) up to the three particle level. We can then study numerically the cor-

relation functions
〈

T (0)T̃ (r)
〉

and
〈

: T φ :(0) : T̃ φ : (r)
〉

: not only we can evaluate these

correlators at different values of the distance r, but we can also extract structural infor-

mations (like the short-distance scaling and the vacuum expectation value of these fields)

using the method illustrated in Section 3.3.2.

6.2 Conformal Perturbation Theory

Before addressing the numerical evaluation of the correlation functions, we should analyse

the expected short distance behaviour. Even though the form factor program is expected

to work very well for large mr, it can also be used to probe the short-distance behaviour

once enough particles have been taken into account. The ultraviolet behaviour can also

be studied by another approach: the conformal perturbation theory.

Massive integrable quantum field theory as perturbed conformal field theory

Let us start with the Lee-Yang model, as studied in [62]. The massive theory can be seen

as the Lee-Yang minimal model M(2, 5) perturbed by the only non trivial field of the

theory φ ≡ φ13 ≡ φ12 with dimension ∆ = −1
5 . The action of the perturbed theory can

be written as

S = SCFT + ih

∫

d2xφ(x) (6.53)

where SCFT is the unperturbed CFT action and h is some coupling constant, which is

proportional to the mass gap (h ∝ m2−∆).

A correlation function in the massive regime can be computed as an expansion involving

conformal correlators [94, 95] 3

〈OA(0)OB(x)〉 =
∑

P

∞∑

k=0

(−ih)k
k!

〈ΦP 〉

×
∫

reg
d2y1 · · · d2yk 〈OA(0)OB(x)φ(y1) · · · φ(yk)ΦP (∞)〉CFT

(6.54)

where the first summation is over all fields ΦP appearing in the conformal Operator Prod-

uct Expansion (OPE) between OA and OB . The objects appearing in the above integrals

3In the following integral all the infrared divergences have to be properly regularised.
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are defined as

〈XΦP (∞)〉CFT ≡ lim
w→∞

〈XΦP (w)〉CFT

〈ΦP (w)ΦP (0)〉CFT

(6.55)

and 〈XΦP (∞)〉CFT can be (in principle) computed using conformal OPEs. Equivalently,

correlation functions can be evaluated using perturbed OPEs, where the conformal struc-

ture constants are now functions of mr that can be evaluated perturbatively in series of

h:

CΦP
OAOB

(mr) = CΦP
OAOB

+O(h) (6.56)

This second approach is a consequence of (6.54), and the actual perturbative expansion

of the structure constants can be recovered by comparing the two approaches.

Moreover, while vacuum expectation values vanish at the critical point (〈φ〉CFT = 0), they

are finite outside the critical regime and they play a non trivial role in off-critical OPEs.

A detailed and rigorous derivation of 6.54 can be found in [96]. Intuitively, it can be

justified by considering the following argument. Consider the conformal OPE:

OA(0)OB(x) =
∑

P

CP
AB(x)ΦP (x) (6.57)

Multiplying both sides by ΦQ(w) and taking the expectation value we have:

〈ΦQ(x)ΦQ(w)〉CQ
AB(x) = 〈OA(0)OB(x)ΦQ(w)〉 (6.58)

since 〈ΦP (x)ΦQ(w)〉 = 0 if P 6= Q. Such and argument can be used to compute two-point

correlation functions:

〈OA(0)OB(x)〉 =
∑

P

CP
AB(x) 〈ΦP 〉 (6.59)

Of course, since the theory is critical, the above sum is non trivial only for P = 1 (Φ1 = 1).

Such an argument can then be extended to the massive regime by expanding the path

integral correlation function

〈X〉 ∝
∫

DφXe−SCFT−ih
∫

d2x φ(x)

around h = 0:

〈X〉 =
∞∑

k=0

(−ih)k
k!

∫

reg
d2y1 · · · d2yk 〈Xφ(y1) · · · φ(yk)〉CFT (6.60)
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Example In the Lee-Yang case, the correlation function of the field φ is given by (at

the critical point):

〈φ(0)φ(r)〉CFT = r
4
5 (〈1〉CFT + · · ·) + Cφ

φφr
2
5 (〈φ〉CFT + · · ·) (6.61)

where the structure constant is

Cφ
φφ =

i

5

Γ
(
1
5

) 3
2 Γ
(
2
5

) 1
2

Γ
(
4
5

) 3
2 Γ
(
3
5

) 1
2

= i1.91131 . . . (6.62)

The expansion of the correlator in the massive theory is given by [62]

〈φ(0)φ(r)〉 = C1

φφ(r) 〈1〉+ Cφ
φφ(r) 〈φ〉+ · · · (6.63)

alternatively, can also be estimated using (6.54):

〈φ(0)φ(r)〉 = 〈φ(0)φ(r)1(∞)〉CFT 〈1〉+ 〈φ(0)φ(r)φ(∞)〉CFT 〈φ〉+ · · ·
(6.64)

after having performed the limit, we have

〈φ(0)φ(r)1(∞)〉CFT = r
4
5 (6.65)

〈φ(0)φ(r)φ(∞)〉CFT = Cφ
φφr

2
5 (6.66)

Comparing (6.63) and (6.64) we notice that the first terms of the expansion of the massive

structure constant correspond to their conformal counterparts:

C1

φφ(r) = 1× r
4
5 + · · · (6.67)

Cφ
φφ(r) = Cφ

φφ × r
2
5 + · · · (6.68)

Of course, through a complete perturbative expansion further terms can be computed (see

[62]) for more details).

The massive expansion can now be written as

〈φ(0)φ(r)〉 = r
4
5 + r

2
5 〈φ〉Cφ

φφ + · · · (6.69)

It has been noticed [62] that the massive expansion does not tend to the ultraviolet scaling

at short-distance! Since 〈φ〉 6= 0 outside the critical point, the r
2
5 term is more relevant

than r
4
5 for small r, thus 〈φ(0)φ(r)〉 ∼ r

2
5 at small distance. On the other hand, at

the critical point 〈φ(0)φ(r)〉CFT = r
4
5 at any scale. This peculiar feature is due to the
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non-unitary nature of the Lee-Yang model, which allows primary fields to have negative

conformal dimensions.

We have just shown that the Lee-Yang model behaves in a quite surprising way in the

short distance regime. We should then expect something similar also for the twist field

case.

6.2.1 Twist field OPEs

In order to address the perturbative expansion of correlators involving twist fields, we

should study their OPEs. When the fields T and T̃ come close to each other, we would

expect that only non-twist operators arise in the OPE. Non-twisted operators are simple

combinations of fields belonging to different non-interacting copies of the theory which

preserve cyclic symmetry of the model. We would not expect any twist fields arising from

the OPE since the geometric structure will not be globally affected. Even though the field

T creates a branch cut, the geometry is “immediately” restored by T̃ . Thanks to the

intrinsic permutation symmetry of twist fields, the collection of fields arising from their

OPE has to be symmetric under permutation by construction. A generic field involved in

the OPE has the following form (J = 1, 2, . . . , n):

Φk1...kJ =
φk1 · · ·φkJ + cyclic permutations

#k1···kJ
(6.70)

where the symbol #k1···kJ counts the number of identical permutations and it is needed

to avoid overcounting (each term of (6.70) then appears with coefficient one). In order

to have a more consistent notation, we consider k1 = 1 < k2 < · · · < kJ . Consider, for

instance, the case n = 4. The permutation

φ1φ2 + cyclic permutations = φ1φ2 + φ2φ3 + φ3φ4 + φ4φ1 (6.71)

does not require any adjustment, since all terms are different and they appear just once

each. On the other hand, the term

φ1φ3 + cyclic permutations = φ1φ2 + φ2φ3 + φ3φ1 + φ4φ2 = 2φ1φ3 + 2φ2φ4

(6.72)
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presents a double degeneracy and the coefficient #13 = 2 has a non trivial normalisation

role. The general expressions for # at J = 1, 2 or 3 is given by:

#1k =

{

2 n even ∧ k = n
2 + 1

1 otherwise

#1kj =

{

3 k − 1 = j − k = n+ 1− j

1 otherwise

#1kjp =







4 k − 1 = j − k = p− j = n+ 1− p

2 k − 1 = p− j 6= j − k = n+ 1− p

1 otherwise

(6.73)

By construction, the field Φk1···kJ has conformal dimension J∆:

〈Φk1···kJ (0)Φk1···kJ (0r)〉 =
〈φk1(0) · · · φkJ (0)φk1(r) · · · φkJ (r)〉+ other combinations

#2
k1···kJ

=
〈φk1(0)φk1(r)〉 · · · 〈φkJ (0)φkJ (r)〉+ other combinations

#2
k1···kJ

=
r−4∆ · · · r−4∆ + other combinations

#2
k1···kJ

=
r−4J∆ + other combinations

#2
k1···kJ

(6.74)

We can now write down the OPE of a twist field O = T , : T φ :

O(x1)Õ(x2) ∼ r−4∆O




C

1

OÕ(mr)1+ CΦ1

OÕ(mr)r
2∆Φ1(x2)

+

⌊n
2 ⌋+1
∑

k=2

CΦ1k

OÕ (mr)r4∆Φ1k(x2) + . . .+ CΦ1···n

OÕ (mr)r2n∆Φ1···n(x2)






+ Virasoro descendants (6.75)

Since the various fields φk are independent, their two-point functions vanish if the two

indices k are different. Above r = |x1 − x2| and m is the mass of the Lee-Yang model.

The first summation stops at
⌊
n
2

⌋
+ 1 in order to avoid repetitions in the Φ1k fields.
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Short-distance scaling

The first information that can be extracted from (6.75) is its short-distance scaling: at

small mr correlation functions scale as

〈

O(x1)Õ(x2)
〉

∼ r−4∆O+2n∆ (6.76)

Like in the 〈φ(x1)φ(x2)〉 case, the leading term does not scale as r−4∆O .

This exponent can be easily checked numerically using form factors and it will be the first

numerical check of the form factor program.

Vacuum expectation value

Moreover, it is also possible to estimate the vacuum expectation value (VEV) of twist fields

by comparing the form factor expansion with the short distance perturbative expansion.

Typically, the form factor program is able to compute the coefficient KO in the short

distance expansion of local operators (3.114):

〈

O(x1)Õ(x2)
〉

〈O〉2
= KO r−4xO + · · · (6.77)

which, compared with (6.75) can be used to estimate the vacuum expectation value of

the twist field. In order to do so, we have to compare the above equation with the short-

distance limit of (6.75):

〈

O(x1)Õ(x2)
〉

∼ CΦ1···n

OÕ (mr) r−4∆O+2n∆ 〈Φ1,...,n(x2)〉 (6.78)

Before extracting the VEV of the twist field, the values of CΦ1···n

OÕ (mr) and 〈Φ1,...,n(x2)〉
have to be computed. The latter can be easily evaluated, since it is just a collection of

independent fields and it is completely factorisable:

〈Φ1...n〉 =
〈φ1 · · ·φn〉

#1···n
=

〈φ1〉 · · · 〈φn〉
#1···n

=
〈φ〉n
#1···n

(6.79)

The VEV of the field φ can be computed exactly using the Thermodynamic Bethe Ansatz

(TBA) and by solving numerically the thermodynamic Yang-Yang equation for the massive

Lee-Yang model [62, 97]:

〈φ〉 =
5im−2/5

24h
√
3

(6.80)

109



6.2. Conformal Perturbation Theory

with h = 0.09704845636 . . . .

The solution of the thermodynamic Yang-Yang equation [97] provides also a precise link

between the mass m and the perturbative parameter h:

h = hm (6.81)

The computation of structure constants is more complicated and it requires a deep analysis

of the action of twist fields.

Since we are interested in the short distance behaviour we can consider the leading term

of the expansion of the structure constants, which coincide with the respective conformal

value:

Cc
ab(r) ∼ Cc

ab + · · · (6.82)

The conformal structure constant involving twist fields Ca
OÕ can be computed by compar-

ing the twist field OPE expansion of correlators like
〈

O(x1)Õ(x2)X
〉

with the equation

4.16 of Chapter 4. Using the OPE we have:

〈

T (x1)T̃ (x2)X
〉

〈

T (x1)T̃ (x2)
〉 ∼ r2∆XCX

T T̃ 〈X〉 (6.83)

The LHS of (6.83) is also the definition of the correlation function of the string of fields

X on the Riemann manifold Mn, i.e. it is equal to 〈X〉Mn
. By direct comparison of

this correlator with the RHS of (6.83), we can evaluate directly some structure constants.

Unfortunately this method has some limitations, since the direct evaluation of 〈X〉Mn
is

not always straightforward and can be performed exactly only when X is a product of

four or less fields. In these cases the value of the structure constants are given by:

CΦ1

T T̃ = 0, C
Φ1,k

T T̃ = n−4∆
∣
∣
∣1− e

2πi(k−1)
n

∣
∣
∣

−4∆
for k > 1,

C
Φ1,k,j

T T̃ = n−6∆Cφ
φφ

∣
∣
∣

(

1− e
2πi(k−1)

n

)(

1− e
2πi(j−1)

n

)(

1− e
2πi(j−k)

n

)∣
∣
∣

−2∆
for j > k > 1,

C
Φ1,k,j,p

T T̃ = n−8∆
〈

φ
(

e
2πi
n

)

φ
(

e
2πik
n

)

φ
(

e
2πij
n

)

φ
(

e
2πip
n

)〉

for p > j > k > 1,

CΦ1

:T φ: ˜:T φ:
= n−2∆Cφ

φφ, C
Φ1,k

:T φ: ˜:T φ:
= n−4∆F

(

1− e
2πi(k−1)

n

)

for k > 1 (6.84)

A detailed derivation of these constants can be found in Appendix B. The structure con-

stants of the T fields have been computed for the first time in [98].
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For generic Φ1k2···kJ fields, structure constants are given by:

C
Φ1k1···kJ

T T̃ = n−2J∆
〈

φ
(

e
2πi
n

)

φ
(

e
2πik2

n

)

· · ·φ
(

e
2πikJ

n

)〉

(6.85)

C
Φ1k1···kJ

:T φ: ˜:T φ:
= n−2J∆F

(

e
2πi
n , e

2πik1
n , · · · , e

2πikJ
n

)

(6.86)

where the function F is a non universal, model-dependent building block of correlation

functions:

F(x1, x2, . . . ) = lim
y→∞

|y|4∆ 〈φ(0)φ(1)φ(y)φ(x1)φ(x2) · · · 〉 (6.87)

Even though in principle all structure constants can be computed, only few can be actually

evaluated. The main obstacle is the evaluation of many-point correlation functions. Note

that in the case of composite twist field : T φ :, we can compute less structure constants

than for T . This difference is due to the fact that when computing correlation functions

involving the composite twist field, two extra fields φ appear in the correlation function,

increasing the number of points by two.

Using conformal perturbation theory we managed to have a better understanding of the

short distance behaviour of correlation functions of twist fields. We can use this knowledge

for two purposes. We can check the accuracy of our form factor program, comparing the

scaling dimension computed numerically against the theoretical value. Moreover, we can

compute the vacuum expectation values of the twist fields, once we know the value of the

structure constants, which can be computed in some cases.

6.3 Numerics

In this section we will firstly check the scaling obtained using the form factor program

against that predicted by perturbative CFT in order to assess the accuracy of form factor

expressions. Moreover such a program can also be used to compute the vacuum expectation

values of twist fields as a form factor expansion.

From the form factor point of view, we will use equations (3.113) and (3.114) to compute

the coefficients KO and xO of the correlator:

〈

O(0)Õ(0)
〉

〈O〉2
= KO r−4xO + · · · for mr → 0 (6.88)

All the integrals appearing in this section have been computed using the Monte-Carlo

integration algorithm. A short introduction to this method can be found in Appendix C.
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6.3.1 Short distance scaling

Using (3.113) we can compute the scaling factor −4xO for the twist fields T and : T φ :

for some values of n:

〈

O(0)Õ(r)
〉

〈O〉2
= KOr

−4xO + · · · for mr → 0 (6.89)

which can be compared with the expected perturbative CFT scaling4

〈

O(0)Õ(r)
〉

CFT
= r−4dO (6.90)

The scaling factor dO has different values for the two twist fields:

4dT = 4∆T − 2n∆

4d:T φ: = 4∆:T φ: − 2n∆ (6.91)

In the following sections we will compare the form factor expansion for xO against the

perturbative prediction dO.

Simple twist field T

The perturbative prediction for the short distance scaling of the correlator
〈

T (0)T̃ (r)
〉

is

given by

−4dT = −4∆T + 2n∆ (6.92)

In the following table we compare this quantity against the form factor expansion (up to

the three-particle level) for some values of n:

The form factor extrapolation of the scaling is compatible with the perturbative pre-

dictions and it is clear that the agreement improves adding more particles. Plotting the

scaling obtained from the form factor expansion makes it clear that each time a particle is

added to the expansion the prediction is more precise and closer to the perturbative CFT

prediction (Figure 6.5).

4In the following we denote with −4dO the perturbative CFT scaling factor and with −4xO the form
factor expansion of such a quantity. Of course we expect that these two quantities coincide when infinite
form factor contributions are taken into account.
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n 2 3 5 8 10

1-particle 0.209643 0.442562 0.861066 1.44896 1.83206

1+2-particles 0.259028 0.564549 1.10754 1.86697 2.3611

1+2+3-particles 0.279487 0.625075 1.23376 2.13554 2.70666

CFT (−4dT )
3
10 = 0.3 34

45 = 0.756 38
25 = 1.52 103

40 = 2.575 163
50 = 3.26

Table 6.1: Scaling of the
〈

T (0)T̃ (r)
〉

correlation function. The perturbative CFT predic-

tion is presented together with the one-, two- and three-particle form factor computation.
Clearly, adding more particles, the form factors expansion approaches the perturbative
prediction.

2 3 4 5 6 7 8 9 10
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−4
x
T

1p
1p+2p
1p+2p+3p
CFT

Figure 6.5: Scaling of the correlator
〈

T (0)T̃ (r)
〉

. The CFT prediction is given by the

black solid line, while the one-, two- and three- particle form factor expansion are given
respectively by the red squares, blue circles and green triangles.

Composite twist field : T φ :

As in the previous case, the short distance scaling of the composite twist field : T φ : can be

computed using perturbative CFT and form factor expansion. The CFT approach gives:

−4d:T φ: = −4∆:T φ: + 2n∆ (6.93)

which can be checked against the form factors expansion:

Also in this case, the form factor extrapolation of the scaling is compatible with the

perturbative predictions and it is clear that the agreement improves adding more particles.

Plotting the scaling obtained from the form factors expansion makes clear that each time

a particle is added to the expansion the prediction is more precise and closer to the

perturbative CFT prediction (Figure 6.6).
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n 2 3 5 8 10

1-particle 0.391185 0.572281 0.941564 1.499823 1.87287

1+2-particles 0.505165 0.737822 1.213628 1.931704 2.41539

1+2+3-particles 0.575841 0.843472 1.38907 2.21646 2.77169

CFT (−4d:T φ:)
7
10 = 0.7 46

45 = 1.022 42
25 = 1.68 107

40 = 2.675 167
50 = 3.34

Table 6.2: Scaling of the
〈

: T φ :(0) : T̃ φ : (r)
〉

correlation function. The perturbative

CFT prediction is presented together with the one-, two- and three-particle form factor
computation. Clearly, adding more particles, the form factors expansion approaches the
perturbative prediction.

2 3 4 5 6 7 8 9 10 11
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−4
x

:Tφ
:

1p

1p+2p

1p+2p+3p

CFT

Figure 6.6: Scaling of the correlator
〈

: T φ :(r) : T̃ φ : (0)
〉

. The CFT prediction is given

by the black solid line, while the one-, two- and three- particle form factor expansion are
given respectively by the red squares, blue circles and green triangles.

In both cases (T and : T φ :) the form factors expansion recovers the relative perturba-

tive CFT prediction of the scaling. This is not only a good test of the integration routines

on their own, but it confirms also the identification of the two form factor series relative

to the two twist fields (6.27).

One-particle form factor contribution

Even though an infinite amount of form factor contributions are required to produce a

perfect 100% agreement with the short distance perturbative approach, the most impor-

tant contribution is given by the first few particles. The complicated expressions of the

form factor contributions with two or more particles makes it very hard to estimate their

contribution from the analytical point of view. On the other hand, the one-particle form
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factor is simple enough to attempt an analytical study of its contribution, at least in the

large n regime. Of course, we cannot directly compare the intricate one-particle form

factor (6.27) with a perturbative conformal prediction of the scaling

−4dO = −4∆O + 2n∆ =
(

2∆− c

6

)

n− c̃

6
n−1, (6.94)

where c̃ is equal to c or ceff according to the choice of O = T , : T φ :.

The implicit n dependence of the one-particle form factor has to be extracted in order to

do a direct comparison with the above equation.

This can be done in the large n limit, when a Laurent expansion of the form factor can

be performed.

Isolating the first contribution of equation (3.113), it is clear that the one particle contri-

bution is given by5

−4x
(1)
O =

n

π

∣
∣
∣
∣
∣

F
O|1
1

〈O〉

∣
∣
∣
∣
∣

2

(6.95)

whose explicit expression is given by

n

π

∣
∣
∣
∣
∣

F
O|1
1

〈O〉

∣
∣
∣
∣
∣

2

=
sin π

3n

2π sin π
6n sin π

2nfn(iπ)

(

cos
( π

3n

)

± 2 sin2
( π

6n

))2
(6.96)

Apart from the fn(iπ)
−1 contribution, all the other terms can be easily expanded for large

n:

sin π
3n

2π sin π
6n sin π

2n

(

cos
( π

3n

)

+ 2 sin2
( π

6n

))2
=

2n

π2
+

1

18n
+

13π2

9720n3
+O(n−5)

sin π
3n

2π sin π
6n sin π

2n

(

cos
( π

3n

)

− 2 sin2
( π

6n

))2
=

2n

π2
− 7

18n
+

173π2

9720n3
+O(n−5)

(6.97)

5Here we denote with x
(1)
O the one particle contribution of the scaling factor xO.
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The expansion of the coefficient fn(iπ)
−1 can be performed by expanding all terms of its

infinite product representation:

fn(iπ)
−1 =

∞∏

k=1

ak(n)

=

∞∏

k=1

Γ
(
kn+ 1

2

)
Γ
(
kn+ 7

6

)
Γ
(
kn+ 4

3

)

Γ
(
kn+ 2

3

)
Γ
(
kn+ 5

6

)
Γ
(
kn+ 3

2

)

× Γ
(
(k + 1)n − 1

2

)
Γ
(
(k + 1)n+ 1

6

)
Γ
(
(k + 1)n+ 1

3

)

Γ
(
(k + 1)n − 1

3

)
Γ
(
(k + 1)n− 1

6

)
Γ
(
(k + 1)n+ 1

2

)

(6.98)

The large n scaling of the first ak terms is given by

a0(n) =
1

2

Γ(56 )Γ(
2
3)

Γ(43 )Γ(
7
6)

(

1− 1

36n2
− 1

36n3
+O(n−4)

)

a1(n) = 1− 5

144n2
+

7

288n3
+O(n−4)

a2(n) = 1− 13

1296n2
+

19

7776n3
+O(n−4)

a3(n) = 1− 25

5184n2
+

37

62208n3
+O(n−4)

a4(n) = 1− 41

14400n2
+

61

288000n3
+O(n−4)

a5(n) = 1− 61

32400n2
+

91

972000n3
+O(n−4) (6.99)

Collecting all expansions together we can study the large n behaviour of the scaling di-

mension of the twist fields:

−4x
(1)
:T φ: ≈ 1

2

Γ(56)Γ(
2
3 )

Γ(43)Γ(
7
6 )

(
2n

π2
+

1

n

(

− 197

2400π2
+

1

18

)

+O(n−3)

)

= (0.186944...)n − (0.0435792...)

n
+O(n−3) (6.100)

−4x
(1)
T ≈ 1

2

Γ(56 )Γ(
2
3)

Γ(43 )Γ(
7
6)

(
2n

π2
− 1

n

(
197

2400π2
+

7

18

)

+O(n−3)

)

= (0.186944...)n − (0.366434...)

n
+O(n−3) (6.101)

where the n−1 term has been computed using up to k = 5 contributions. The subsequent

contributions can be safely dropped since the a6 term would have had a negligible contri-

bution of magnitude 0.001.

116



6.3. Numerics

This one-particle approximation can be compared with the expected CFT prediction of:

−4d:T φ: = (0.33333...)n +
(0.06666...)

n

−4dT = (0.33333...)n − (0.73333...)

n
(6.102)

A direct comparison immediately shows that the one-particle term contributes for about

50% of the scaling dimension’s value. In particular, it provides 56% of the n coefficient

and 65% (49%) of the n−1 coefficient for the : T φ : (T ) case.

We can now use the form factor expansion to address a much more complicated prob-

lem, the evaluation of the vacuum expectation values of these fields, which cannot be

computed using a perturbative CFT approach.6

6.3.2 Vacuum expectation values 〈T 〉 and 〈: T φ :〉

The short-distance form factor expansion can be used not only to extrapolate the ultra-

violet scaling of correlation functions, but it also reveals precious information concerning

other numerical constants:

〈

O(r)Õ(0)
〉

〈O〉2
= KO r−4xO + · · · for mr → 0 (6.103)

Since the value of the constant KO can be computed as a form factor expansion, the above

equation can be compared with its perturbative CFT equivalent in order to estimate the

vacuum expectation value (VEV) of the operator O.

As shown in Section 6.2, at short distances the leading term of the perturbative expansion

is given by

〈

O(r)Õ(0)
〉

∼ CΦ1···n

OÕ 〈φ〉n r−4dO (6.104)

Comparing the two expansions, the VEV of the operator O is given by

〈O〉 =

√

CΦ1···n

OÕ 〈φ〉n

KO
(6.105)

while there is no theoretical upper limit on the value of n for the computation of KO, the

conformal structure constant C depends on n-point correlation functions (or n+2-point

for composite twist fields). For this reason, this method can be used to compute the VEV

6In some other cases, e.g. Free Fermions, the VEV 〈T 〉 of the twist field can be computed using
alternative approaches [14].
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of a twist fields only for n up to 4 (or up to 2 in the composite case).

The n = 2 case

In the n = 2 case, the CFT structure constant can be computed for both twist fields T
and : T φ :. Using the results obtained in Section 6.2, we have:

CΦ12

T T̃ = 2−8∆ = 4.6566 . . .

CΦ12

:T φ: ˜:T φ:
= 2−4∆F(2) = −5.5370 . . .

(6.106)

Using the form factor program, the constants KO can be computed (at three-particle

level):

KT ∼ 1.35236 . . .

K:T φ: ∼ 1.95908 . . . (6.107)

Using these results we can estimate the VEVs of T and : T φ : as a function of the mass

gap m:

〈T 〉 ∼ i1.8555 m− 11
20

〈: T φ :〉 ∼ 2.0837 m− 3
4 (6.108)

The imaginary nature of the n = 2 VEV of T should not surprise: the VEV of the Lee

Yang field itself is purely imaginary [97]. We believe that the VEV of the composite field

is real because of the two purely imaginary contributions (T and φ).

6.3.3 The n = 3, 4 cases

As we said before, the most relevant conformal structure constant in the short-distance

OPE of two fused twist fields : T φ : is given by n+2-point correlation functions. For this

reason the n = 3 and n = 4 cases can be addressed only for the field T . The most relevant

structure constants involving twist fields T for n = 3, 4 are given by:

CΦ123

T T̃ = 3−9∆Cφ
φφ = i13.8086 . . . for n = 3

CΦ1234

T T̃ = 4−8∆ 〈φ(i)φ(−1)φ(−i)φ(1)〉 = −50.8836 . . . for n = 4

(6.109)
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These values, together with three-particle level form factor expansion for the constants

KT :

KT = 2.02966 . . . for n = 3

KT = 3.48758 . . . for n = 4 (6.110)

give the estimate of the VEV of T for n = 2 and n = 4:

〈T 〉 = 3.59903m− 44
45 for n = 3

〈T 〉 = i 6.44411m− 11
8 for n = 4 (6.111)

As before, the imaginary VEV is not a surprise and it is due to the non unitary nature of

the model.

The knowledge of the VEV plays a central role also in the actual evaluation of correlation

functions
〈

O(0)Õ(r)
〉

at different values of r, since all form factors are proportional to

the VEV itself. The estimations of the constants KO and xO require only “rescaled” form

factors |FO
k |2/ 〈O〉2 and they can be computed without knowing the actual value of the

VEV 〈O〉 a priori. On the other hand, the form factor expansion of correlation functions
〈

O(0)Õ(r)
〉

involves “non rescaled” form factors |FO
k |2, which depend on the VEV 〈O〉

explicitly.

The short distance form factor expansion of the constant KO gives then vital information

about the VEV. Such values can now be used to compare directly the perturbative CFT

approach and the form factor expansion at different values of the distance r.

6.3.4 Perturbative CFT vs form factor expansion

Once we have estimated the vacuum expectation values of twist fields in some cases, we

can compare the form factor expansion with the perturbative CFT prediction at different

values of the distance r.

While in the previous section we checked the short-distance form factor expansion only

against the most relevant perturbative CFT contribution, here we take into account all the

possible contributions of the zeroth order perturbative approach7. Since we will compare

the two approaches at different values of r, we include the extra terms in order to have a

more genuine prediction of the scaling of the correlation function.

7The complete perturbative series will include contributions not only from primary states, but also from
their descendants. The zeroth order expansion takes into account only the primary fields’ contributions
and it does not consider all the descendants’ contributions. For instance, equation (6.75) is a zeroth order
perturbative expansion once removed the “+Virasoro descendants” contributions.
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Composite twist field : T φ : at n = 2

Let us start with the n = 2 composite twist field : T φ :, which is the only configuration that

can be studied with perturbative CFT, since its structure constants require the knowledge

of up to four-point CFT correlation functions of the field φ. The complete zeroth order

perturbative expansion of the two-point correlation function is given by:

〈:T φ :(0) : T̃ φ : (r)〉 = r−4∆:T φ:

(

1 + 2CΦ1

:T φ::T̃ φ:
r2∆〈φ〉+ CΦ12

:T φ::T̃ φ:
r4∆〈φ〉2

)

+ · · ·
(6.112)

Using the VEV computed in Section 6.3.2, we can compare the above perturbative expan-

sion with the form factor estimate (up to three particles).
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Figure 6.7: Comparison between the perturbative (solid black line) and form factor
(coloured points) expansion using linear (left) and logarithmic (right) scales.

From Figure 6.7 it is clear that, while the long range scaling can be easily achieved even

with just one particle, the ultraviolet regime requires more particles in order to be more

consistent with the perturbative approach. In is important to notice that the normalised

form factor expansion used here is affected by two truncations. The correlation function

itself is computed using a truncated form factor expansion. The vacuum expectation

value 〈: T φ :〉 (which all form factors are proportional to) is estimated using a form factor

expansion truncated at the three-particle level.

Twist Field T at n = 2, 3 and 4

From the qualitative point of view, correlators involving twist fields T behave in very

similar way to correlation functions of composite fields : T φ :.
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The complete perturbative expansion at zeroth order is given by:

〈T (r)T̃ (0)〉 = r−4∆T

[

1 + 4CΦ1

T T̃ r
2∆〈φ〉 +

(

4C̃Φ12

T T̃ + 2CΦ13

T T̃

)

r4∆〈φ〉2

+4CΦ123

T T̃ r6∆〈φ〉3 + CΦ1234

T T̃ r8∆〈φ〉4
]

+ · · · (6.113)

Of course, some of the terms of the above equation vanish for n less than four. For in-

stance, for n equal to two, non vanishing structure constants involve up to two fields (one

for each copy) and the series is truncated after CΦ12

T T̃ .

Using the value of 〈T 〉 computed in the previous section, we can now compute the cor-

relation functions using form factors and compare this estimate with the perturbative

approach. Since the VEV of T is complex for even values of n, correlators have negative

values in such cases. In order to appreciate the different behaviours of the various cases,

we plot the correlators with switched sign when needed.
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Figure 6.8: Comparison between the perturbative (solid black line) and form factor
(coloured points) expansion using linear (left) and logarithmic (right) scales.

Like in the previous case, the form factor expansion does not agree perfectly with the

perturbative CFT approach to all values of mr.

Moreover, some correlators recover the expected ultraviolet scaling better than others. In

particular, the agreement is better for lower n. From a qualitatively point of view, this

feature can be explained by the zeroth order truncation. Since the scaling dimension of

the field involves increased linearly with n, sub-leading corrections are more relevant for

large n. 8

8For instance, the first sub-leading correction inside the identity’s Virasoro tower is proportional to
∫

dy
〈

T (0)T̃ (r)φ(y)
〉

CFT
∝ r−4∆T +2∆φ
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Figure 6.9: Comparison between the perturbative (solid black line) and form factor
(coloured points) expansion using linear (left) and logarithmic (right) scales.
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Figure 6.10: Comparison between the perturbative (solid black line) and form factor
(coloured points) expansion using linear (left) and logarithmic (right) scales.

In both cases (T and : T φ :) the agreement between the two expansions is not always

perfect. This difference is somehow expected and it is due to the different regimes of

validity of the two approaches. While the perturbative CFT approach is valid for very

small mr, the form factor approach is naturally more precise in the opposite regime, i.e.

for large mr. Moreover, the conformal perturbative approach we used is truncated at the

zeroth order. Such a truncation, even though is very precise at ultraviolet scales, fails to

properly describe the infrared regime.

Nevertheless, the comparison is quite encouraging and it is a very strong hint that the form

factors we are looking at are the right ones to describe both twist fields of the Lee-Yang

model.

We can now address the evaluation of entanglement entropy from the form factor expan-

while the zeroth order contribution scales with r−4∆T . Since ∆T grows with n, the first order contribution
is more relevant for large n.
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sion.

6.4 Entanglement Entropy

In previous sections we evaluated form factor expansions for the correlators of both twist

fields T and : T φ : for the Lee Yang theory.

While the short distance behaviour of the entanglement entropy has a clear universal

logarithmic scaling [1], it saturates to a constant in the long distance infrared regime. As

long as the mass scale of the system is much greater than the inverse size of the subsystem

(r ≪ ξ = m−1), the entropy scales as if the system was critical:

S ∼ ceff
3

log
r

ε
(6.114)

where ε is some ultraviolet normalisation cut-off.

In the opposite regime (mr ≫ 1) the mass scale breaks completely the conformal invariance

and the entropy saturates to a constant:

S ∼ −ceff
3

logmε (6.115)

These two regimes are connected, as they describe the same quantity at two different

scales mr ≪ 1 and mr ≫ 1. The form factor expansion can be used to estimate how the

entropy approaches its saturation value in the intermediate region mr ≈ 1. Even tough

it saturates to a constant for large values of mr, we would like to compute the behaviour

of the entropy in the intermediate region mr ≈ 1. Using form factors we can analyse the

various corrections to this saturation. Given the nature of the form factor expansion, we

expect that it will give exponentially decaying corrections to saturation.

6.4.1 Saturation

Before addressing the computation of the correction to saturation, we can have a closer

look at the saturation value of the entropy (6.115). We know that this constant depends

on the mass gap of the system, but we would like to know if it depends also on some other

physical properties of the system.

As we have seen in Chapter 5, the entanglement entropy of a non unitary system can

be represented via correlation functions involving composite twist fields : T φ : and the
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Figure 6.11: Scaling of entanglement entropy at different scales. Near the critical point
(mr ≪ 1) it scales logarithmically according to the CFT prediction. At the other end of
the scale, in the infrared regime (mr ≫ 1), the entropy is constant. Less is known about
the behaviour of the entropy in the intermediate region. The form factor expansion can
be used to estimate how the entropy tends to its saturation value.

field φ responsible for the creation of the ground state:

S(r) = − lim
n→1

d

dn



Znε
ceff
6 (n− 1

n )

〈

: T φ :(0) : T̃ φ : (r)
〉

〈φ(0)φ(r)〉n



 (6.116)

In order to separate the saturation from its correction, we split the above equation in order

to isolate all the terms which depend on r:

S(r) = − lim
n→1

d

dn

[

Znε
ceff
6 (n− 1

n)
〈: T φ :〉2

〈φ〉2n

]

− lim
n→1

d

dn

A(r, n)

B(r)n
(6.117)

where the two functions A and B are simply rescaled correlators:

A(r, n) =

〈

: T φ :(0) : T̃ φ : (r)
〉

〈: T φ :〉2
(6.118)

B(r) =
〈φ(0)φ(r)〉

〈φ〉2
(6.119)

124



6.4. Entanglement Entropy

These expressions can be further rearranged in order to highlight the various contributions:

S(r) = −ceff
3

logmε

− lim
n→1

d

dn



m− ceff
6 (n− 1

n)
〈: T φ :〉2

〈φ〉2n

(

Cφ
φφ

)n

CΦ1···n

:T φ::T̃ φ:





− lim
n→1

d

dn



Zn −

(

Cφ
φφ

)n

CΦ1···n

:T φ::T̃ φ:



 (6.120)

Such a rearrangement is not casual: the entire second line can be expressed in terms of

form factors. Using equation (6.105) we have

〈: T φ :〉2 = m4∆:T φ:

CΦ1···n

:T φ::T̃ φ:
〈φ〉n

K:T φ:
(6.121)

〈φ〉2 = m4∆φ
Cφ
φφ

Kφ
(6.122)

The second line of (6.120) can then be expressed as

U ≡ − lim
n→1

d

dn



m− ceff
6 (n− 1

n )
〈: T φ :〉2

〈φ〉2n

(

Cφ
φφ

)n

CΦ1···n

:T φ::T̃ φ:



 = − lim
n→1

d

dn

Kn
φ

K:T φ:
(6.123)

Thanks to its arbitrariness, the ultraviolet cut-off ε can be rescaled in order to absorb the

last term of equation (6.120)

ceff
3

logmε→ ceff
3

logmǫ ≡ ceff
3

logmε+ lim
n→1

d

dn



Zn −

(

Cφ
φφ

)n

CΦ1···n

:T φ::T̃ φ:



 (6.124)

Thanks to this manipulation the entropy is given by

S(r) = −ceff
3

logmǫ+ U − lim
n→1

d

dn

A(r, n)

B(r)n
(6.125)

Thus, the saturation value of entanglement entropy is given by two contributions: the

model dependent constant U and the logarithmic term which depends on the mass gap

m. Of course, the ultraviolet cut-off ǫ still appears in the scaling of the entropy. It is not

universal and depends on the physical realisation of the model.9 This is not a surprise:

9For instance, if we consider a field theory as the scaling limit of a lattice model, the short distance
cut-off ǫ can be interpreted as the lattice spacing.
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ultraviolet divergences are often present when predicting observable physical quantities

using quantum field theory. Luckily, if we use the same cut-off in both long and short

distance scales, we can still extract universal information about entanglement entropy

using QFT. Consider the two regimes (without taking into account the corrections to

saturation):

S(r) ∼







ceff
3 log r

ǫ mr ≪ 1

− ceff
3 logmǫ+ U mr ≫ 1

(6.126)

The short distance scaling can then be used to “calibrate” the model [99]. Suppose,

for instance, to study a near-to-critical (m ≪ 1) system. Using an alternative method

(e.g. a numerical computation like DMRG), we can extrapolate the value of ǫ from

S(r) ∼ ceff
3 log r

ǫ . Once the value of ǫ is known, it can be used to estimate U , even

though it is not universal but it depends on the microscopic properties of the model stud-

ied. Since there is no restriction, we can choose the same ultraviolet cutoff in both regimes.

One of the strengths of the form factor expansion is that we can estimate the universal

constant U (6.123) as:

U = − lim
n→1

d

dn

Kn
φ

K:T φ:
(6.127)

Since the constant K can be computed as form factor expansion, the above formula is a

powerful recipe, which can also be extended to the unitary case:

U = − lim
n→1

d

dn

1

KT
(6.128)

Even though K:T φ: (or KT ) are hard to compute analytically, in principle it is possible to

construct an interpolating function from their numerical estimate.

6.4.2 Corrections to saturation

We can now address the study of the corrections to saturation, i.e. how the entropy

approaches its saturation value at large mr.

The correction to saturation is given by:

lim
n→1

d

dn

A(r, n)

B(r)n
= lim

n→1

A′(r, n)−A(r, n) logB(r)

B(r)n
=
A′(r, 1)
B(r)

− logB(r) (6.129)
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The above expression cannot be computed directly using form factors. It involves a deriva-

tive, a logarithm and a division. These operations can be addressed in a easier way by

expanding the functions A and B, highlighting each form factor contribution.

Let us expand the functions A and B to highlight the one- and two-particle contributions:

A(r, n) = 1 +A1(r, n) +A2(r, n) + · · · (6.130)

B(r) = 1 +B1(r) +B2(r) + · · · (6.131)

Of course, since they are correlators normalised by the VEVs of the fields involved, the

zero-particle contribution is one. In our approach, we truncate the expansion at the two-

particle level, since, as we will show in this section, the two-particle contribution is already

strongly shadowed by the one-particle contribution at large distance mr ≫ 1.

We can now study the explicit expression of the above contributions Ai and Bi, whose

values at n = 1 (together with their derivative obtained from analytical continuation in

n) will be used to compute the various contributions to the corrections.

A terms

Let us now focus on the Ais terms, i.e. the ones coming from the form factor expansion

of the twist field correlators.

By definition we have

A1(r, n) = −
n∑

i=1

∫
dβ

2π

∣
∣
∣
∣
∣

F
:T φ:|i
1

〈: T φ :〉

∣
∣
∣
∣
∣

2

e−mr coshβ = −n
π

∣
∣
∣
∣
∣

F
:T φ:|1
1

〈: T φ :〉

∣
∣
∣
∣
∣

2

K0(mr)

(6.132)

where we have used the fact that the one-particle form factor does not depend on the copy

number j or the rapidity β. In the above equation K0 is a modified Bessel function of the

second kind [49]

Kν(z) =

∫ ∞

0
dt tνe−z cosh t (6.133)
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The two-particle contribution is given by:

A2(r, n) =
1

2!

n∑

i,j=1

∫
d2β

(2π)2

∣
∣
∣
∣
∣

F
:T φ:|ij
2 (β1, β2)

〈: T φ :〉

∣
∣
∣
∣
∣

2

e−mr(cosh β1+coshβ2)

= n
n∑

j=1

∫ ∞

−∞

dβ

(2π)2

∣
∣
∣
∣
∣

F
:T φ:|11
2 (β − 2πi(j − 1))

〈: T φ :〉

∣
∣
∣
∣
∣

2

K0

(

2mr cosh
β

2

)

(6.134)

B terms

Similarly to the As case, we can write explicitly the one- and two-particle contributions of

the form factor expansion of the 〈φ(r)φ(0)〉 correlation function. The form factors for the

φ field have been computed in [62]. Alternatively, one can use the form factors of : T φ :

and set n to one.

B1(r) = −
∫ ∞

−∞

dβ

2π

∣
∣
∣
∣
∣

Fφ
1

〈φ〉

∣
∣
∣
∣
∣

2

e−rm coshβ = − 1

π

∣
∣
∣
∣
∣

Fφ
1

〈φ〉

∣
∣
∣
∣
∣

2

K0(mr)

= − 2

31/2πf(2πi3 , 1)
2
K0(mr) (6.135)

The two-particle contribution is given by:

B2(r) =
1

2

∫ ∞

−∞

∫ ∞

−∞

dβ2

(2π)2

∣
∣
∣
∣
∣

Fφ
2 (β1 − β2)

〈φ〉

∣
∣
∣
∣
∣

2

e−rm coshβ1−rm coshβ2

=

∫ ∞

−∞

dβ

(2π)2

∣
∣
∣
∣
∣

Fφ
2 (β)

〈φ〉

∣
∣
∣
∣
∣

2

K0

(

2mr cosh
β

2

)

. (6.136)

Derivatives of As

The main difficulty in taking the derivative with respect to n of the one-particle contribu-

tion A1 relies in differentiating the function fn (6.17). Its integral representation allows

us to directly differentiate with respect to the parameter n:

dfn(β)

dn
=





∫ ∞

0
dt

4 sinh2
(
t
6

)
csch2(nt) cos

(
βt
π

)

1− 2 cosh
(
t
3

)



 fn(β) (6.137)

Since we are interested in the limit n → 1, we can specialise the above expression at

n = 1 and β = 2πi
3 (the value of β appearing in the one-particle form factor expression),
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obtaining:

lim
n→1

dfn(β)

dn
=

(
11π

72
√
3
− 1

2

)

f1

(
2πi

3

)

(6.138)

We can now compute the n → 1 limit of the derivative with respect to n of the entire

one-particle form factor:

A′
1(r, 1) = lim

n→1

d

dn



n

∣
∣
∣
∣
∣

F
:T φ:|1
1

〈: T φ :〉

∣
∣
∣
∣
∣

2




= −
(

Fφ
1

〈φ〉

)2

− 2
Fφ
1

〈φ〉 lim
n→1

d

dn

(

F
:T φ:|1
1

〈: T φ :〉

)

= −
(

Fφ
1

〈φ〉

)2

− 2
Fφ
1

〈φ〉

[

i
√
2

4
√
3f1

(
2πi
3

)

(

−1 +
π√
27

)

− i
√
2

4
√
3f1

(
2πi
3

)2 lim
n→1

dfn
(
2πi
3

)

dn

]

(6.139)

Rearranging all the terms we have:

A′
1(r, 1) = B1(r) +

2

f(2πi3 , 1)
2

(
1

π
√
3
− 13

108

)

K0(mr) (6.140)

The presence of the B1 term (i.e. the one-particle contribution of the 〈φ(0)φ(r)〉 form

factor expansion) is due to the fact the : T φ : tends to φ in the limit n→ 1.

We can immediately notice that this term is non-universal. It depends explicitly on the

function f (which depends on the explicit expression of the S-matrix of the theory). This

non-universal feature is in contrast with the universal form of the two-particle contribution,

which has been computed in [14] for all integrable theories10 and it is given by:

A′
2(r, 1) =

1

8
K0(2mr) (6.141)

Such a result was obtained from the analytic continuation in the parameter n.

We can now put together all these results in order to construct the various contributions

to the correction to the saturation of the entanglement entropy.

10Notice that this result holds also beyond integrability, as shown in [100].
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The term B−1 can be Taylor expanded as

1

1 +B1 +B2 + · · · = 1− (B1 +B2 + · · · ) + (B1 +B2 + · · · )2 + · · ·

= 1−B1 −B2 +B2
1 + · · · (6.142)

A Taylor expansion can also be used to compute the logarithmic contribution:

log (1 +B1 +B2 + · · ·) = (B1 +B2 + · · · )− 1

2
(B1 +B2 + · · · )2 + · · ·

= B1 +B2 −
1

2
B2

1 + · · · (6.143)

Putting all contributions together we have

lim
n→1

d

dn

A(r, n)

B(r)n
=

2

f1
(
2πi
3

)2

(
1

π
√
3
− 13

108

)

K0(mr) +
1

8
K0(2mr)

− 4

3f1
(
2πi
3

)4

∫ ∞

−∞

dβ

(2π)2

(

|Fmin(β, 1)|2 − 1
)

K0

(

2mr cosh
β

2

)

− 13

33
√
3πf1

(
2πi
3

)4K0(mr)
2 + · · · (6.144)

In order to “order” the various contributions, we should consider their large mr expansion:

K0(mr) = e−mr

[√
π

2

√

1

mr
− 1

8

√
π

2

(
1

mr

)3/2

+O

((
1

mr

)5/2
)]

K0(mr)
2 = e−2mr

[

π

2mr
− π

8mr2
+O

((
1

mr

)3
)]

K0(2mr) = e−2mr

[

1

2

√
π

√

1

mr
− 1

32

√
π

(
1

mr

)3/2

+O

((
1

mr

)5/2
)]

(6.145)

From the above expressions it is clear that the expansion of the function K0(mr) is not

affected by neither the function K0(mr)
2 or K0(2mr) - the former decays as e−mr while

the latter decay at a much faster rate e−2mr. Therefore, the K0(mr) term is the most

relevant term of the correction:

lim
n→1

d

dn

A(r, n)

B(r)n
=

2

f1
(
2πi
3

)2

(
1

π
√
3
− 13

108

)

K0(mr) + sub-leading corrections

(6.146)
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The coefficient in front of the Bessel function can be calculated explicitly:

a ≡ 2

f1
(
2πi
3

)2

(
1

π
√
3
− 13

108

)

= 0.0769782 . . . (6.147)

Concerning the sub-leading corrections, all the factors of order e−2mr

(2mr)α can be grouped

together. They are given by:

1

8
K0(2mr)−

4

3f1
(
2πi
3

)4

∫ ∞

−∞

dβ

(2π)2

(

|Fmin(β, 1)|2 − 1
)

K0

(

2mr cosh
β

2

)

− 13

33
√
3πf1

(
2πi
3

)4K0(mr)
2 + · · ·

=

[√
π

2

(

1

8
− 4

3f1
(
2πi
3

)4

∫ ∞

−∞

dθ

(2π)2

(

|Fmin(θ, 1)|2 − 1
)
)]

e−2mr

√
2mr

−
[

13

54
√
3f1

(
2πi
3

)4

]

e−2mr

2mr
(6.148)

where the two constants in front of the two exponential functions can be computed ex-

plicitly:

b ≡
√
π

2

(

1

8
− 4

3f1
(
2πi
3

)4

∫ ∞

−∞

dθ

(2π)2

(

|Fmin(θ, 1)|2 − 1
)
)

= 0.326234 . . .

c ≡ 13

54
√
3f1

(
2πi
3

)4 = 0.0512159 (6.149)

6.4.3 Leading correction to saturation

We have now computed all the contributions needed to build up the complete expression

for the next-to-leading order contribution to the entanglement entropy in the large mr

regime:

S = −ceff
3

logmǫ+ U − aK0(mr)− b
e−2mr

√
2mr

− c
e−2mr

2mr
+O

(
e−2mr

(2mr)3/2

)

(6.150)
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In order to compare these results with the unitary case, let us consider the entropy of a

unitary system in the same large mr regime [14]:

S = − c
3
logmǫ+ U ′ − 1

8
K0(2mr) + · · ·

= − c
3
logmǫ+ U ′ −

√
π

16

e−2mr

√
2mr

+ · · · (6.151)

where U ′ is a model-dependent computable constant. Using form factors, it is possible to

compute it:

U ′ = − lim
n→1

d

dn

1

KT
(6.152)

Of course, one of the main differences between the two cases is that the central charge

c is substituted by its effective counterpart ceff in the non-unitary case. Moreover, the

corrections to the respective saturation values scale in different ways. In unitary models

the most relevant correction has a universal behaviour: the 1
8 coefficient is the same for

any theory. On the other hand, the non-unitary corrections have a different scaling and

the coefficient is no more universal, as it depends explicitly on the features of the model.

This feature could play a very important role in the identification of the universality class

of the model, as it will be discussed in Section 6.4.4. In order to explain this feature,

we should have a look at the main differences between the two cases when evaluating the

entanglement entropy. In the non-unitary case the entanglement is given by a correlation

function involving composite twist fields : T φ :, which have a much richer structure than

the twist fields T . Since : T φ : → φ when n tends to one, the one-particle form factor

Fφ
1 6= 0 of the field φ plays an actual role in the study of the largemr regime. In the unitary

case, the entanglement is given by correlators involving twist fields T which become the

identity 1 when n tends to one. As noticed in [14], since the one-particle form factor F 1

1 of

the identity is equal to zero, it gives no contribution to the entanglement entropy. There

are no O(e−mr) corrections to the entanglement entropy in unitary QFTs.

6.4.4 Numerical identification of the universality class

The strong difference between the two cases could be an important help when identifying

the universality class of a model from numerical computation of its entanglement entropy.

Consider a spin chain and suppose we compute the scaling of its entanglement using some

numerical approach (say DMRG). Probably the easiest thing to extract is the (effective)

central charge, denoted as ceff. Suppose that the numerical estimate gives a result of

ceff = 0.71±0.02. Such a result is compatible with either the unitary minimal model M4,5

with central charge c = 7/10 = 0.7 or with the non unitary M3,7 model, with effective
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central charge ceff = 5/7 = 0.71 . . . . In order to discriminate between the two models the

study of the leading correction to the saturation could be used (if the scaling limit is a

massive QFT).

6.5 Conclusions

In this chapter we extended the results of Chapter 5 to the massive regime. The form

factor recursive equations for the twist fields of the Lee-Yang model have been derived

and their solutions found up to the three-particle level. From the recursive equations two

distinct series of form factors have been found. These series have been identified with the

form factor series of the twist field T and its composite variant : T φ :. In order to check

this identification, i.e. to check whether the two form factor series have been properly

identified with the right field, the scaling of the correlation functions has been studied.

We performed a “connected” form factor expansion of the correlation functions, i.e. we

studied their logarithm. Using a tool developed by Smirnov [74], we computed the scaling

dimensions of the two different twist fields in the ultraviolet regime. In order to check

such computations, we developed a perturbative CFT expansion of correlation functions

extending previous result known in literature [98, 101]. The form factor expansion of the

logarithm of correlation functions, together with the newly developed perturbative CFT

approach, allowed us also to estimate the vacuum expectation values of the twist fields

in the massive regime. Such a computation, available only in few small n cases, allowed

us to compare directly the perturbative CFT with the numerical form factor expansion of

correlation functions involving twist fields. In all the cases studied the agreement was not

perfect. We claim that this discrepancy can be explained by some factors, in particular

by the truncation of the form factor expansion. Such an expansion can describe very well

the large mr regime, but it fails in accuracy when it is used at short distance scales, when

many more form factors may be needed to reconstruct correctly the correlation function.

On the other hand, the perturbative CFT approach lacks in precision when trying to

describe long range scales. Moreover, all form factors depend explicitly on the vacuum

expectation value of the field they are describing. Such a value comes from a form factor

expansion itself. The form factor expansion of the correlator is then the results of two

approximations: one in truncating the actual series and the other in truncating the series

to compute the vacuum expectation value. All these numerical computations, while phys-

ically relevant on their own for the study of twist field correlation functions at different

scales, support the validity of the form factor expression we derived.

Using these expressions, we concluded this chapter studying the saturation of the en-

tanglement entropy at large scales. Using form factor expansions we could formulate a

straight recipe for the computation of the saturation constant. Moreover, we used the one-
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and two-particle form factors to compute also the corrections to this saturation: since the

saturation represents the asymptotic mr → ∞ limit, we are also interested in how the

entanglement tends to a constant. From the results we obtained the non unitarity of the

system reveals itself in a very peculiar way. In unitary theories, these corrections have a

very universal form. In this non unitary case the corrections decay at a much slower rate

and their form is not universal - it depends on the S-matrix of the model. We noticed how

this difference arises naturally from the different form factor expressions. The composite

twist field : T φ : used for the evaluation of entanglement entropy of non unitary theories

has a very different behaviour from the twist field T , used in unitary models. We con-

clude that the non unitarity of models can be manifested in the behaviour of the leading

corrections to the saturation of the entanglement entropy of such systems.
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Chapter 7

Entanglement in Forrester-Baxter

RSOS Models

In all previous chapters we studied the entanglement and its features from a field theory

point of view. Ideally, we have always had in mind some discrete one-dimensional lattice

system, i.e. a spin chain, whose continuum limit can be described by a field theory. In this

chapter we will compute the entanglement entropy of some actual spin systems, using the

Forrester-Baxter Restricted-Solid-On-Solid (FB RSOS) models. Even if RSOS models are

2D classical statistical systems, they can be interpreted as the euclidean version of some

quantum spin chain. Such systems are lattice representation of the non-unitary series of

minimal models and their off-critical massive perturbations. Some of the results of this

chapter have been already used in another thesis1. In particular, the leading logarithmic

scaling of Rényi entropy is not original. However, the results here will be presented

using a more modern notation and they will be extended to the study of the sub-leading

corrections to the logarithmic scaling of the entropy. Moreover, we will compute the

entropy of the so-called off-critical logarithmic minimal models, which can be obtained

using some special configurations of the FB systems. Additionally, we will also present

the explicit formulation of an off critical one dimensional quantum Hamiltonian associated

to the RSOS models.

7.1 The FB RSOS Models

In this section we will introduce the Forrester-Baxter RSOS models and their properties

[102]. Such models, in a particular configuration, provide a lattice realisation of the unitary

and non-unitary series of perturbed minimal models Mm,m′ . The RSOS models are clas-

1Some results of this chapter have been presented in my Master’s thesis (D Bianchini, MSc Thesis,
University of Bologna, 2013).
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sical statistical models defined on a square lattice with a nearest neighbour interaction2,

also said Interaction Round a Face (IRF) models [11]. As an IRF model, the Boltzmann

weight of a single square tile depends only on the configurations of the four corner sites i,

j, k and l (see Figure 7.1).

Figure 7.1: Square tile.

On each vertex i of a RSOS model a local variable, called local height ℓi, is defined.

It runs from 1 to some integer value r − 1 (the same for all vertices of the lattice). Not

all configurations of local heights are allowed: any two local heights must differ exactly by

one if they share one edge.

ℓi − ℓj = ±1 for any i and j connected by an edge (7.1)

The parameter r can be seen as the Coxeter number [103] of the diagram where the local

heights live (in this case Ar−1). For a more detailed discussion of the interpretation of

RSOS models in terms of Dynkin diagrams see, for instance, [104].

We can now define a Boltzmann weight for each tile:

W

(

ℓl ℓk

ℓi ℓj

)

= e−βεijlk (7.2)

From the statistical point of view a Boltzmann weight simply represents the probability

of a given configuration of local heights around a tile.

For such models, all the physical parameters of the system (such as the internal parameters

of the Hamiltonians) can be rearranged in just two [11]: the spectral parameter u and the

crossing parameter λ. The former measures the spatial anisotropy of the model, while the

2In this context, each site can interact with eight sites: one above, one below, one right, one left and
the four diagonals ones.
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latter rules the behaviour of the system when the lattice is rotated by π
2 :

W

(

ℓl ℓk

ℓi ℓj

∣
∣
∣
∣
∣
u

)

=

√

s(ℓiλ)s(ℓkλ)

s(ℓjλ)s(ℓlλ)
W

(

ℓk ℓj

ℓl ℓi

∣
∣
∣
∣
∣
λ− u

)

(7.3)

where the function s(x) = ϑ1(x; p) is the first Jacobi theta function [49] and −1 < p < 1 is

a temperature-like parameter which measures the departure from criticality (the system is

critical at p = 0). In order to be integrable, the Boltzmann weights must satisfy the Yang-

Baxter equation[11]3. A possible solution can be written in the following form [105, 102]:

w1,a(u) ≡ W

(

ℓ± 1 ℓ

ℓ ℓ∓ 1

∣
∣
∣
∣
∣
u

)

=
s(λ− u)

s(λ)

w±
2,a(u) ≡ W

(

ℓ ℓ± 1

ℓ∓ 1 ℓ

∣
∣
∣
∣
∣
u

)

=
gℓ∓1

gℓ±1

s((ℓ∓ 1)λ)

s(ℓλ)

s(u)

s(λ)
(7.4)

w±
3,a(u) ≡ W

(

ℓ ℓ± 1

ℓ± 1 ℓ

∣
∣
∣
∣
∣
u

)

=
s(ℓλ± u)

s(ℓλ)

where the gauge factor ga is an arbitrary function which does not depend on the value

of the crossing parameter u. Since all physical quantities are given by ratios, the actual

choice of the gauge parameter does not affect such quantities.

The RSOS models describe a huge variety of physical phenomena. For instance, when

fixing λ = π
r (the so-called Andrews-Baxter-Forrester (ABF) models [105], hereby denoted

by RSOSr), the model can describe four distinct phases, traditionally called regimes. In

Regime III (0 < p < 1 and 0 < u < λ), the RSOSr model is a lattice realisation of the

unitary series of φ13 thermally perturbed minimal models Mr−1,r. On the other hand,

the Regime I (−1 < p < 0 and λ < u < 3λ) describes the perturbed parafermionic theory

Zr−2. For example, when specialising to r = 4, the Regime III of the ABF model it is

equivalent to the Ising model.

As we have just seen, the ABF models describe a huge variety of unitary models. In

order to have a RSOS realisation of non-unitary theories, a further generalisation of the

ABF models is needed. We can now introduce the Forrester-Baxter (FB) [102] models

RSOSr,s. In such a case, the crossing parameter depends also on an extra parameter s

(coprime with respect to r and such that 1 ≤ s < r):

λ =
sπ

r
(7.5)

Such FB models have a structure even richer then the ABF models (which can be recovered

3also referred to as star-triangle relation.
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by setting s = 1). Among the huge varieties of regimes of the FB models, one configura-

tion is of particular interest to us: the Regime III. In this regime the FB models describe

the non-unitary4 minimal models Mr−s,r perturbed by the thermal operator φ13. Since

we are interested in evaluating the entanglement entropy of non-unitary systems we will

focus on the Regime III of the FB models. In the following we will always refer to such a

regime unless stated otherwise. Of course, a regime II exists also in FB models. However,

in this non-unitary case, a complete understanding of the underlying symmetry it is still

missing and it is not clear if non unitary parafermions [106] can be used to describe such

a phase.

Even if this notation can seem a bit abstract, it is possible to recover some interesting

physical quantities from the RSOS models. In particular, we are interested in extracting

the correlation length (or the mass gap) of the continuum limit of such theories. Extending

the previous results of O’Brien and Pearce [107], we can explicitly relate the correlation

length and the temperature-like parameter:

e
− 1

ξ = k′
(

p
r
4s

)

(7.6)

where k′(q) is the conjugate elliptic modulus for the elliptic nome q:

k′(q) =
∞∏

ℓ=1

(
1− q2ℓ−1

1 + q2ℓ−1

)4

(7.7)

The above results are in perfect agreement with the perturbative CFT approach. The

QFT action of the FB model in the continuum limit can be written as

S = SCFT + t

∫

d2xφ13(x) (7.8)

where |t| = p2 measures the departure from criticality. A simple dimensional analysis

argument gives:

m ∼ pν (7.9)

where ν = 1
2(1−∆13)

= r
4s depends on the conformal dimension of the perturbing operator

φ13.

The perturbative CFT approach recovers exactly the near-critical expansion (small p) of

4or unitary when s = 1 and the ABF models are recovered.
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(7.6):

ξ−1 = 8pν +
32

3
p3ν +

48

5
p5ν +

64

7
p7ν +O(p9ν) (7.10)

The above equation will play a very important role in the following sections. It will

allow us to express the entropy of the FB model (which depends on p) using the physical

correlation length (or the mass gap).

7.2 Entanglement Using Corner Transfer Matrix

In this section we will discuss the relation between a classical 2D and a quantum 1D

systems. In the previous section we introduced the Forrester-Baxter RSOS models, a class

of lattice 2D models. As entanglement is a genuine quantum feature, it has no proper

meaning for classical systems. The entanglement we are computing in this chapter refers

to the spin chain whose euclidean time evolution can be described by these FB models. To

do so, we need to explain how these two situations (spin chains and classical 2D models)

are related. In order to simplify the computation, we will use the so-called Corner Transfer

Matrix approach.

7.2.1 Hamiltonian limit

Let us consider a quantum one-dimensional lattice system (say a spin chain with N sites).

The time evolution with an Hamiltonian H of a given quantum state |Ψ〉 is given by

|Ψ〉′ = e−τH |Ψ〉 (7.11)

where τ is the euclidean time.

The matrix element between the evolved and the original state is given by

(
〈Ψ|e−τH |Ψ〉

)ℓ′1···ℓ′N
ℓ1···ℓN (7.12)

where ℓ1 · · · ℓN ≡ ℓ is an element of some basis of the spin chain. The above matrix

element can be seen as an operator acting on classical spin configurations. The quantum

1D evolution operator can then be interpreted as classical row-to-row transfer matrix T

(see next section):

T ∼ e−τH for τ small (7.13)

139



7.2. Entanglement Using Corner Transfer Matrix

with

[T,H] = 0 (7.14)

In other words, each time slice of the evolution of a spin chain can be seen as a row of a

2D classical system and the euclidean time step τ can be interpreted as the lattice spacing

between two rows.

The process of obtaining a row-to-row transfer matrix (aka a classical 2D system) starting

from a quantum 1D Hamiltonian can be reversed. Using such a procedure, called Hamil-

tonian limit, a quantum Hamiltonian can be derived by taking the lattice spacing to zero

in the “time” direction. For instance, using the Hamiltonian limit it is possible to show

[11] that the eight-vertex model and the XYZ spin chain are related to each other. More

precisely the two partition functions (the 2D statistical and the 1D quantum) are equal.

Later in this chapter (Section 7.4) we will compute the quantum Hamiltonian associated

to the RSOS models, a class of classical 2D system introduced in Section 7.1.

7.2.2 Corner transfer matrix

The Corner Transfer Matrix approach is a powerful tool to compute partition and one-

point functions in lattice systems. Suppose we have a very large square lattice. The

partition function of the entire lattice can be computed using the row-to-row transfer

matrix, which is the Boltzmann weight of an entire row of tiles inside the lattice.

Figure 7.2: A row-to-row transfer matrix between two spin configurations.

The row-to-row transfer matrix can then be expressed as a product of the individual

Boltzmann weights of each tile belonging to the row:

T ℓ′

ℓ =
∏

�∈row
w (�) =

∏

�∈row
e−βǫ(�) (7.15)

In order to take into account the contribution of two adjacent rows, we can consider
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the double-row-to-row transfer matrix T 2, which is composed of two single strips:

(
T 2
)ℓ′

ℓ
= T ℓ′′

ℓ T ℓ′

ℓ′′ (7.16)

where a sum over all possible intermediate configurations ℓ′′ has been performed.

Figure 7.3: A double-row-to-row transfer matrix between two spin configurations. The
intermediate spins (black dots) are summed over all possible configurations.

This process can be iterated enough times (sayM times for a rectangular lattice N×M)

to cover the entire system.

The entire partition function Z of the system can then be obtained from the M -th power

of the row-to-row transfer matrix.5

The corner transfer matrix (CTM) approach uses the individual Boltzmann weights as

building blocks, but they are grouped in a different way than the row-to-row transfer

matrix method. Instead of covering the entire lattice by adding rows, this approach is

based in covering each of the four corner of the system at a time. For simplicity, consider

a diamond shaped lattice, as shown in Figure 7.4.

Let 2N + 3 be the horizontal size of the lattice and let ℓ0 be the local height of the

central site shared by all corners. When defining a corner transfer matrix, we sum over

all possible internal configurations and we keep the values on the edges fixed. In Figure

7.4 the internal sites are denoted by •, and the states on the edges by ◦. The partition

function of the bottom left corner, denoted by A, is a corner transfer matrix:

Aℓℓ′ = δℓ0,ℓ′0

∑

•

∏

�∈A
W

(

ℓl ℓk

ℓi ℓj

)

(7.17)

In the above equation, the δ term is inserted because the two edges ℓ and ℓ
′ share the

5The M -row-to-row transfer matrix TM still depends on the two lower and upper configurations ℓ and
ℓ′. According to the boundary conditions of the system, some further action can be performed on these
two configurations. For instance, they may be left free (for free boundary conditions) or may be identified
(for periodic boundary conditions).
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!"
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Figure 7.4: Diamond shaped lattice divided into four corners. Each Corner Transfer
Matrix depends on the values of the local height on the two edges (denoted by ◦). The
internal sites (•) should be considered already summed over all possible configurations.

central site ℓ0 = ℓ′0.

To construct the partition function of the lower half of the lattice, we can just “glue”

the two corner transfer matrices A and B together, summing on all the possible inner

configurations ℓ′:

Z(lower half)ℓℓ′′ =
∑

ℓ′

Aℓℓ′Bℓ′ℓ′′ = (AB)
ℓℓ′′

(7.18)

In order to complete the lattice, we add also the corner transfer matrices C and D. To

“close” the cycle we sum over the configurations between A and D:

Z =
∑

ℓ

(ABCD)ℓℓ = tr(ABCD) (7.19)

Evaluating the partition function of the system is then equivalent to computing a matrix

product of the four corner transfer matrices.

This tool can also be used to compute the one-point function. Consider the operator Sa,

which acts diagonally on a configuration ℓ and vanishes whenever ℓ0 is different from a

given value a. In other words the operator Sa checks whether the value of the central

height is equal to a or not. The corner transfer matrix approach gives then immediately
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the probability to have ℓ0 = a:

P(a) =
tr(SaABCD)

tr(ABCD)
(7.20)

Moreover, the CTM tool can be used to compute the reduced density matrix of a quantum

1D system whose euclidean time evolution is equivalent to the 2D lattice system described

by the corner transfer matrices.

7.2.3 Reduced density matrix using CTMs

In this section we will introduce the Corner Transfer Matrix approach for the evaluation

of the reduced density matrix of a bipartite spin system. It is not always possible to use

this tool: it works (i.e. can be use to compute physical quantities) only when studying

infinite systems divided into two semi-infinite subsystems.

Consider a given infinite spin chain “living” on the real axis, from x = −∞ to x = +∞.

Let us divide our system into two semi-infinite lines: the subsystem A on the negative

x-axis and its counterpart B on the positive x-axis. The Hilbert space then factorises into

HA⊗HB and its basis is given by {ℓA, ℓB}. Let |Ψ0〉 be the ground state of some quantum

Hamiltonian H. The relative density matrix is then given by

ρ = |Ψ0〉〈Ψ0| (7.21)

The reduced density matrix ρA can be computed by tracing over all degrees of freedom of

B:

ρA(ℓA, ℓ
′

A) =
∑

ℓB

〈
ℓA, ℓB|Ψ0〉〈Ψ0|ℓ′A, ℓB

〉
(7.22)

Now we would like to express matrix elements like 〈ℓA, ℓB|Ψ0〉 using corner transfer ma-

trices.

Consider a (not normalised) generic quantum state |Ψ〉 and let T be the row-to-row trans-

fer matrix of the equivalent 2D classical system. We can decompose the state |Ψ〉 into the

eigenbasis {|Ψk〉}k of H (or T , since the two operators commute):

|Ψ〉 = |Ψ0〉+
∑

k 6=0

Ck|Ψk〉 (7.23)
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Let {λk}k be the eigenvalues of the transfer matrix T . Since |Ψ0〉 is the ground state of

H, it has the largest eigenvalue λ0 of T . The action of T onto |Ψ〉 is given by:

T |Ψ〉 = λ0



|Ψ0〉+
∑

k 6=0

Ck

(
λk
λ0

)

|Ψk〉



 (7.24)

Applying the row-to-row transfer matrix N times we have

TN |Ψ〉 = λN0



|Ψ0〉+
∑

k 6=0

Ck

(
λk
λ0

)N

|Ψk〉



 (7.25)

Since λk < λ0, for large N the only relevant term is given by

TN |Ψ〉 ∼ λN0 |Ψ0〉 (7.26)

On the other hand, TN can also be used to compute the lower half partition function of

a lattice system:

Z (lower half) = 〈ℓA, ℓB |TN |Ψ〉 (7.27)

where |ℓA, ℓB〉 represents the state of the upper edge. In other words, if Ψ is the config-

uration on of the lower edge of a large lattice, this state can be “time evolved” using the

row-to-row transfer matrix until it reaches the upper bound of the lower half of the lattice.

Combining the equations (7.26) and (7.27) we have6

〈ℓA, ℓB |Ψ0〉 ∼ Z(lower half) = (AB)ℓA,ℓB (7.28)

In a very similar way the term 〈Ψ0|ℓ′A, ℓB〉 of equation (7.22) can be written in terms of

corner transfer matrices:

〈Ψ0|ℓ′A, ℓB〉 ∼ Z(upper half) = (CD)ℓB ,ℓ′A
(7.29)

The matrix element of the reduced density matrix can be computed using corner transfer

matrices:

ρA(ℓA, ℓ
′

A) =
∑

ℓB

〈
ℓA, ℓB|Ψ0〉〈Ψ0|ℓ′A, ℓB

〉
∼
∑

ℓB

(AB)ℓA,ℓB (CD)ℓB,ℓ′A

= (ABCD)ℓA,ℓ′A
(7.30)

6According to the definition of Figure 7.4, ℓA and ℓB correspond respectively to ℓ and ℓ′.
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This result, obtained for the first time by Nishino and Okunishi [12], can be used to com-

pute also various powers of the reduced density matrix.

Of course, there is no guarantee that the reduced density matrix defined in (7.30) is nor-

malised. The correct reduced density matrix can be obtained by dividing by the partition

function:

ρA =
ABCD

trABCD
(7.31)

As we have seen in previous chapters, the key object for the evaluation of Rényi entropy

is the trace of the n-th power of the reduced density matrix:

trρnA =
tr(ABCD)n

(trABCD)n
(7.32)

In the following section we will evaluate the above quantity for the FB RSOS model in

order to compute its Rényi entropy. Notice that the normalisation of the reduced density

matrix using CTMs resembles equation (5.3).

7.3 Entanglement in Forrester-Baxter Models

In this section we will compute the Rényi entropy of the quantum chain associated with

the FB RSOS model using the Corner Transfer Matrix approach. In order to simpify our

computations, we will use the so-called symmetric gauge gℓ =
√

s(ℓλ) in equation (7.4)

Since we are interested in perturbed minimal models, we will focus on the Regime III of

the FB model:

0 < p < 1 0 < u < λ (7.33)

The main object to compute is the trace of the reduced density matrix. To do so, we will

consider the following quantity

Zn = tr (ABCD)n (7.34)

With this notation the trace of the reduced density matrix is given by:

trρnA =
Zn

Zn
1

(7.35)

Following [102], we introduce the following notation:

y = e
4π2

log p x = y
s
r (7.36)
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These auxiliary variables x and y appear naturally in Forrester’s and Baxter’s analysis of

their model. Moreover it should be noticed that x and y are related to p in a way which

resembles modular transformations.

Before computing the thermodynamic limit N → ∞ of the matrix element (ABCD)ℓℓ′ ,

we should consider its finite version with size 2N +3. In order to compute the nth power

appearing in (7.34) we can consider the diagonalised version of ABCD, which has been

computed for the first time in [102]:

(ABCD)
(diag)
ℓ,ℓ′ = E

(

xℓ0 , y
)

x2Φ(ℓ)δℓ,ℓ′ (7.37)

where ℓ = {ℓ0, ℓ1, . . . , ℓN+1} represents the string of local heights between the Corner

Transfer Matrices A and D (see Figure 7.4).

The functions E and Φ are given by

E(z, q) =
∑

k∈Z
(−1)kq

k(k−1)
2 zk =

∞∏

n=1

(1− qn−1z)(1 − qnz−1)(1 − qn)

Φ(ℓ) =

N∑

k=1

(

k
|ℓk − ℓk+2|

4
+ (ℓk − ℓk+1)

⌊
ℓks

r

⌋ )

(7.38)

where ⌊x⌋ denotes the integer part of x.

The partition function Zn is then given by

Zn = tr(ABCD)n =
∑

ℓ

[(ABCD)n]
ℓ,ℓ

=
∑

ℓ

E
(

xℓ0 , y
)n
x2nΦ(ℓ) (7.39)

Instead of summing on all possible configurations ℓ, we keep ℓN = b and ℓN+1 = c ≡ b± 1

fixed and we sum over all the other local heights, from ℓ0 to ℓN−1. Such a fixing will

not affect the main results about the scaling of the entropy. However, some non universal

constants will depend on the choice of b.

Equation (7.39) can then be rewritten as

Zn =

r−1
∑∗

a=1

E (xa, y)nDN (a, b, c;x2n) (7.40)

146



7.3. Entanglement in Forrester-Baxter Models

where a plays the role of the central height ℓ0 and the function DN is given by

DN (a, b, c; q) =
∑

ℓ1,...,ℓN−1

qΦ(ℓ) with ℓ0 = a, ℓN = b and ℓN+1 = c

(7.41)

The sum in equation (7.40) has been denoted with a star ∗ because it runs only on even

or odd values of a. Since the values of local heights are restricted to differ by one from

their neighbours, the allowed values of the central height depend on the value b on the

boundary site.

7.3.1 Thermodynamic limit

In order to perform the thermodynamic limit N → ∞ we will use some results of [102].

There are two possible results for the thermodynamic limit, according to the two possible

boundary conditions ℓN < ℓN+1 or ℓN > ℓN+1.

In the first case we have:

lim
N→∞

q−
kN
2 DN (a, b, b + 1; q) =

1

(q)∞
q

b(b−1)
4

− (k−1)b
2 F (a, b− k; q) (7.42)

with k =
⌊
s(b+1)

r

⌋

=
⌊
sℓN+1

r

⌋

.

In the opposite case ℓN > ℓN+1 the limit is given by:

lim
N→∞

q
kN
2 DN (a, b+ 1, b; q) =

1

(q)∞
q

b(b+1)
4

− k(b+1)
2 F (a, b − k; q) (7.43)

and k =
⌊
sb
r

⌋
=
⌊
sℓN+1

r

⌋

.

The function F is given by:

F (a, d; q) = q
a(a−1)

4
− ad

2

[

E
(

−qrd+(r−a)(r−s), q2r(r−s)
)

− qadE
(

−qrd+(r−a)(r+s), q2r(r−s)
)]

= q
a(a−1)

4
− ad

2
(q)∞

q−
c
24

+∆da
χda(q) (7.44)

where (q)∞ is the q-Pochhammer symbol:

(q)∞ =
∞∏

k=1

(

1− qk
)

(7.45)

In equation (7.44), ∆da is the conformal dimension of the primary field φda of the minimal

model Mr−s,r. The function χda is its relative Virasoro character, as defined in Chapter

3.
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Putting everything together we have

lim
N→∞

q∓
kN
2 DN (a, b, b± 1; q) = qf∓(b,d)q

a(a−1)
4

− ad
2
+ c

24
−∆daχda(q) with d = b− k

(7.46)

The two functions f+ and f− are given by

f+(b, d) =
b(b− 1)

4
− b(k − 1)

2

f−(b, d) =
b(b+ 1)

4
− k(b+ 1)

2
(7.47)

Since the term qf∓ does not depend on the central height a, it can be factorised out of the

sum. For this reason, both Zn and Zn
1 will be proportional to x2nf∓ . For simplicity, we

can define new partition functions Yn:

Yn =

r−1
∑∗

a=1

E(xa, y)n x
2n
(

a(a−1)
4

− ad
2
−∆da

)

χda

(
x2n
)

(7.48)

which are simpler than Zn but preserve the ratio:

trρnA =
Zn

Zn
1

=
Yn
Y n
1

(7.49)

While (7.48) is enough to compute the Rényi entropy at different temperatures p, it is not

very suitable to study its small p scaling. Using the elliptic transformation (D.11) on the

function E, an even simpler partition function can be defined:

Wn =

r−1
∑∗

a=1

ϑ1

(πas

r
,
√
p
)n
χda

(
x2n
)

(7.50)

where, as before, all common factors of Yn and Y n
1 have been dropped.

trρnA =
Zn

Zn
1

=
Yn
Y n
1

=
Wn

W n
1

(7.51)

Even though the elliptic theta function ϑ1 has a well-behaved expansion around p = 0,

the conformal character χda still depends on x = exp 4π2

log p
s
r , which tends to 1 for p→ 0.

This difficulty can be overcame by performing an S modular transformation of the con-

formal character χda (3.44):

χa,a′ (q̃) =
∑

(b,b′)∈J
Sb,b′

a,a′χb,b′(q) (7.52)
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where q̃ = x2n = e
8π2

log p
s
r
n and Sb,b′

a,a′ is the modular S matrix. The modular-transformed

parameter q can be extracted from the relation

q = e2πiτ

q̃ = e−
2πi
τ (7.53)

and is given by

q =
(

p
r
2s

) 1
n ≡ ω

1
n (7.54)

After performing the modular transformation, the partition function Wn is then given by:

Wn =

r−1
∑∗

a=1

∑

(d′,a′)∈J
ϑ1

(πas

r
,
√
p
)n

Sd′a′

da χd′a′

(

ω
1
n

)

(7.55)

The sum over (d′a′) ∈ J can be rewritten as a sum over h ∈ K, i.e. a sum over the

dimensions of primary fields of the Kac table K (see Chapter 3). The partition function

can then be written as

Wn =

r−1
∑∗

a=1

∑

h∈K
ϑ1

(πas

r
,
√
p
)n

Sh=(d′,a′)
da χh

(

ω
1
n

)

=
∑

h∈K
χh

(

ω
1
n

)

fh (n, p) (7.56)

where

fh (n, p) =

r−1
∑∗

a=1

ϑ1

(πas

r
,
√
p
)n

Sd′a′

da (7.57)

Among the different contributions of equation (7.56) coming from the various dimensions

hs of primary fields, the one coming from the field with the smallest dimension is the most

relevant for ω ≪ 1. Denoting such a dimension as ∆min, it is convenient to rearrange the

partition function Wn as

Wn = χmin

(

ω
1
n

)

fmin (n, p)



1 +
∑

h 6=min

χh

(

ω
1
n

)

χmin

(

ω
1
n

)
fh (n, p)

fmin (n, p)



 (7.58)
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Such a formulation is particularly suitable when studying the scaling of the Rényi entropy:

trρnA = log
Wn

W1
n = log

χmin

(

ω
1
n

)

χmin (ω)
n + log

fmin (n, p)

fmin (1, p)
n

+ log



1 +
∑

h 6=min

χh

(

ω
1
n

)

χmin

(

ω
1
n

)
fh (n, p)

fmin (n, p)





− n log



1 +
∑

h 6=min

χh (ω)

χmin (ω)

fh (1, p)

fmin (1, p)



 (7.59)

Since
χh(ω)

χmin(ω)
= ω∆h−∆min

1 + · · ·
1 + · · · ≪ 1 (7.60)

for ω → 0, the second and third line of the above equation can be easily expanded using

Taylor’s formula.

From the above expression we can study not only the leading logarithmic scaling of the

entropy, but we can also analyse the sub-leading corrections to such logarithmic behaviour.

Expanding the Virasoro character:

χh(q) = q∆h− c
24

(

1 + · · ·
)

(7.61)

we can compute the most relevant contributions to the Rényi entropy

S(n) =
1

1− n
log trρnA = −ceff

24

n+ 1

n
log ω + Ã(n)

+
1

1− n
log



1 +
∑

h 6=min

χh

(

ω
1
n

)

χmin

(

ω
1
n

)
fh (n, p)

fmin (n, p)





− n

1− n
log



1 +
∑

h 6=min

χh (ω)

χmin (ω)

fh (1, p)

fmin (1, p)



+ · · · (7.62)

All the powers of ω greater than one have been dropped from the above expansion, as

they are less relevant than each contribution of the kind χh/χmin ∼ ω∆h−∆min.

The constant Ã(n) is given by:

Ã(n) =
1

1− n
log

r−1
∑∗

a=1

Smin
da sinn πas

r

(
r−1
∑∗

a=1

Smin
da sin πas

r

)n (7.63)
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and it is well defined in the n→ 1 limit.

7.3.2 “Unusual” corrections

Even though the above expansion of the Rényi entropy recovers a clear logarithmic scaling

in the limit ω → 0, it requires additional manipulation to study further corrections.

As noticed before, since χh ≪ χmin when ω approaches zero, we can Taylor-expand the

second and third line of (7.62). When considering only the most relevant contributions,

we have to separate the two cases n ≶ 1.

If n > 1 the second line is more relevant and the entropy is given by:

S(n) = −ceff
24

n+ 1

n
log ω + Ã(n) +

∑

h 6=min

B̃
(n)
h ω

∆h−∆min
n + · · · (7.64)

where the constant B̃
(n)
h is given by

B̃
(n)
h =

1

1− n

∑

a
sinn πas

r Sh
da

∑

a
sinn πas

r Smin
da

(7.65)

on the other hand, in the n < 1 regime, ω
∆h−∆min

n is less relevant than ω∆h−∆min. In such

a case, the ω → 0 expansion has a slightly different form than before:

S(n) = −ceff
24

n+ 1

n
log ω + Ã(n) +

∑

h 6=min

B̃
′(n)
h ω∆h−∆min + · · · (7.66)

with

B̃
′(n)
h =

n

1− n

∑

a
sin πas

r Sh
da

∑

a
sin πas

r Smin
da

= nB̃
(1)
h (7.67)

Regardless of the value of n, in both expansions a single contribution is the most relevant.

The smallest conformal dimension but ∆min - denoted by ∆1 in the following - gives rise

to the most relevant contribution in the power series (7.64) and (7.66).

As we noticed before, when we introduced the RSOS models, the temperature-like

parameter p and its rescaled version ω are not the best quantities to describe the physical

behaviour of the system. Using equation (7.10) we can relate ω to the correlation length
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ξ:

ω = (8ξ)−2 + · · · (7.68)

The entropy is the given by

S(n) =
ceff
12

n+ 1

n
log ξ +A(n) +B

(n)
1 ξ−

2
n
(∆1−∆min) + nB

(1)
1 ξ−2(∆1−∆min) + · · ·

(7.69)

where the constants A(n) and B
(n)
1 are a simple rescaling of their “tilded” counterparts:

A(n) = Ã(n) +
ceff
4

n+ 1

n
log 2 (7.70)

B
(n)
1 = 8−

2
n
(∆1−∆min)B̃

(n)
1 (7.71)

In equation (7.69) both B1 terms have been taken into account. Of course one of them

should be dropped depending on the sign of n− 1.

The results we obtained (7.69) do not only recover the leading logarithmic scaling of

non unitary models studied in Chapters 5 and 6, but they also give interesting information

about the corrections of such logarithmic term. A previous result of De Luca and Franchini

[108] showed that such a correction scales as ξ−2∆/n, where ∆ is the conformal dimension

of the field responsible for the correction. We believe that the difference is given by the

fact that the FB RSOS model is non unitary. The most characteristic non unitary feature

is that the ground state |gs〉 is not the conformal vacuum |∅〉, but it is an excited state

|gs〉 = φmin(0)|∅〉7. In the same way as the central charge is replaced by its effective

counterpart in the leading logarithmic term, a conformal dimension is replaced by its

effective counterpart:

c → ceff = c− 24∆min

∆ → ∆eff ≡ ∆−∆min (7.72)

As expected, the unitary case can be easily recovered by setting s to one and it is consis-

tent with our results. Of course, in unitary theories, the smallest conformal dimension is

equal zero, which implies ceff = c and ∆eff = ∆.

In many areas of one-dimensional systems, two particular regimes can usually have a

7While this difference is clear at the critical point, a further clarification is needed for the massive
regime. If we consider a massive QFT as a perturbation of a given CFT, the ground state will be created
by the field φQFT

min which is itself a perturbation of its conformal equivalent φmin.
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similar functional scaling. When a system is critical, it is completely “connected” and it

is scaling invariant. A typical feature of this case is the power-law scaling of correlation

functions. On the other hand, when the system is away from its critical phase, correlator

exhibit an exponential decay, which is due to a finite correlation length. The correlation

length can be naively interpreted as the scale of the system, or, in other words, as the

maximal distance such that two points of the system can “feel” each other. When the

system is critical, the correlation length is infinite and then the physical scale of the system

is its own size ℓ. As soon as the energy spectrum of the system acquires a mass gap m -

i.e. it becomes critical - the actual physical scale of the system is given by an interplay

between its own size ℓ and the correlation length ξ = m−1. While the system is “not

very critical” it still exhibits a critical behaviour. As long as the correlation length “seems

infinite” when compared with the physical size (ξ ≫ ℓ), the system “cannot feel” the

finiteness of the correlation length, since it is larger that its own size. In the opposite case,

when the correlation length is small enough to “seem finite” (ξ ≪ ℓ), each point of the

system cannot “see” further than the correlation length. In this case, it can happen that

the physical size ℓ of the system if substituted by the correlation length ξ in the scaling

of some physical quantities. For instance, it is well known that the gap between the two

lowest eigenenergies of a discrete critical system vanishes as ℓ−1, where ℓ represents the

number of sites. On the other hand, when considering an off-critical system, such a gap

does not vanish and saturates to the mass gap m. In particular, when ℓ ≪ ξ = m−1, the

gap scales as ℓ−1 and , when ℓ≫ ξ, it scales as ξ−1.

Similarly to what happens with the energy gap, the role of the physical scale of a system

is played by either the physical size or the correlation length in the two opposite regimes

also in the scaling of the entanglement entropy.

The analogy between the large distance critical scaling (as a function of the size ℓ) and the

infinite distance massive case (as a function of the correlation length ξ) has been shown

in [8] for the unitary case. Such an analogy has been demonstrated by implementing a

“c-theorem like” argument, by computing some ground state expectation values of the

various components of the stress-energy tensor in the many-particle manifold theory. In

the non-unitary case, such an argument faces the same difficulties of a possible proof of

the non-unitary version of the c-theorem, i.e. the computation of generic four-point corre-

lation functions involving the stress-energy tensor. Also, proving that the entropy scales

in the same way in the two regimes - (ℓ ≫ 1, ξ = ∞) and (ℓ = ∞, ξ ≫ 1) - is very

intricate and it has not been achieved yet for non unitary systems. On the other hand,

this lattice computation gives a very strong hint that the critical scaling is mimicked in

the off-critical massive regime. While such a computation is not completely general, it

covers a huge variety of universality classes. The precise analogy between the scaling of
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the Rényi entropy in the two regimes suggests that Zamolodchikov’s c-theorem can be

generalised to the non-unitary case, even though a proof is still missing.

7.3.3 Off-critical logarithmic minimal models

One of the most intriguing features of critical Forrester Baxter RSOS models is that,

under certain conditions, they provide also a lattice realisation of logarithmic minimal

models [109]. In particular, it has been shown that when taking the limit of r and s going

to infinity while keeping their ratio fixed r/s ≡ R/S, the FB models at critical point -

between Regimes III and IV (p = 0, 0 < u < λ)- are a lattice realisation of logarithmic

minimal models LMR−S,R. Interestingly, it is possible to define a φ13 perturbation of

these models, called Off-critical logarithmic minimal models [110].

The Rényi entropy of such models can be obtained from (7.69) by taking the r, s → ∞
limit:

S(n) =
1

12

n+ 1

n
log ξ + Ā(n) + B̄

(n)
1 ξ−

2
n
(∆1−∆min) + nB̄

(1)
1 ξ−2(∆1−∆min) + · · · (7.73)

where the constant B̄
(n)
1 is the simple limit of its non-logarithmic counterpart:

B̄
(n)
1 = lim

r,s→∞
B

(n)
1 (7.74)

The main problem that appears when taking such a limit is inside the definition of the

modular S matrix (3.44), which is proportional to [r(r−s)]−1/2 = r−1(1−s/r)−1/2. Such a

prefactor, which tends to zero in the r, s→ ∞ logarithmic limit, creates some problems in

the definition of the constants in equation (7.73). While the S matrix appears in both the

numerator and the denominator with the same power, in the definition of the coefficient

B
(n)
1 (7.70), it is not the case for the constant A(n) (7.63). The difference between the two

powers at the nominator and the denominator makes the constant A(n) ill defined when r

and s tend to infinity.

In order to avoid this divergence, which scales with rn−1, we can multiply the partition

function Wn by rn, in a renormalisation-like approach:

Wn → rnWn (7.75)

Such a renormalisation allows Ā(n) to have a finite value:

Ā(n) = lim
r,s→∞

(

A(n) + log r
)

(7.76)
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This procedure, which can be interpreted the entropic version of the generalised order

parameter for such models [110], lacks of a better understanding from a physical point

of view. However, it affects only the numerical value of the constant term and not the

functional shape of the ξ dependence.

The leading logarithmic term of (7.73) depends on the effective central charge - which

is identically to one for any choice of R and S - in agreement with the CFT prediction

(5.24) when the size ℓ of the subsystem A is replaced by the correlation length ξ. However,

the double logarithmic term predicted in (5.24) is missing in the lattice realisation (7.73).

Such a discrepancy can be explained by the fact that off-critical logarithmic FB RSOS

models are not truly logarithmic. As noticed by Pearce and Seaton [110] the logarithmic

feature that logarithmic FB RSOS models enjoy at criticality is lost as soon as the system

is perturbed outside its critical region. As explained in Chapter 5, a model is called loga-

rithmic when its Hamiltonian presents non diagonalisable Jordan. Such a feature, which

is enjoyed by logarithmic FB RSOS models at criticality, disappears out of criticality. For

this reason, the off-critical logarithmic FB RSOS models are not properly logarithmic and

they behave as standard non-unitary systems, in agreement with the scaling predicted in

Chapter 5.

7.4 RSOS Quantum Hamiltonians

In the previous section we computed the Rényi entropy for a very broad class of one-

dimensional quantum systems associated with the Forrester Baxter RSOS models. Even

though such a computation gives precious and important information about the scaling of

the entropy in a huge variety of cases, it is legitimate to investigate which is the underlying

one-dimensional quantum Hamiltonian. In this section we will perform a Hamiltonian

limit, a procedure to compute a Hamiltonian operator from its corresponding evolution

operator, represented by a row-to-row transfer matrix in our case. In our analysis we

will specialise to the periodic case (when a single row-to-row transfer matrix is enough to

compute the Hamiltonian). However, we should expect to obtain the very same quantum

chain also in the open case (double row-to-row transfer matrix). While such a computation

had already been performed [111, 112] at the critical point, less is known about the off-

critical Hamiltonian. It is well known[112] that the generators ej of the Temperley-Lieb
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Algebra [113] can be used to build up the critical Hamiltonian for such models:

HTL = −
N∑

j=1

ej

ejej±1ej = ej

e2j = βej

eiej = ejei if |i− j| > 1 (7.77)

where the coefficient β is called loop fugacity and for RSOS models (ABF and FB) and is

equal to 2cos λ. Different representations of such an algebra have been studied [114, 115]

and it has been shown that some XXZ spin chains with particular boundary conditions

are (in their thermodynamic limit) lattice representations of conformal minimal models.

In this section we will perform the Hamiltonian limit outside the critical region and we will

provide a consistent formulation of the quantum lattice representation of φ13 perturbed

minimal models. Since we are interested in such models, we will focus on the Regime III

(0 < p < 1 and 0 < u < λ) which provides a lattice realisation of off-critical minimal

models.

Building the transfer matrix

In order to build up a row-to-row transfer matrix like the one in Figure 7.2, we intro-

duce the face transfer operator. Such operators are the building blocks of various objects

(including Corner Transfer Matrices) and represent the Boltzmann weights of a single tile:

Xj(u)
ℓ′j−1,ℓ

′
j ,ℓ

′
j+1

ℓj−1,ℓj ,ℓj+1
= δℓj−1,ℓ′j−1

δℓj+1,ℓ′j+1
×

ℓj

ℓj+1

ℓ′j

ℓj−1 u (7.78)

The red arc at the bottom of the square has the simple role to keep track of the orientation

of the tile. Such an operator, which maps the string of local variables ℓj−1, ℓj , ℓj+1 into

ℓ′j−1, ℓ
′
j , ℓ

′
j+1 can be used to compute various objects. In particular it is very useful for the

construction of transfer matrices. Such a notation encapsulates graphically the Boltzmann

weights (7.4) and it gives a visual taste of the physical meaning of such weights.

Following Baxter [11], n order to build up transfer matrices involving more than just three

sites, we should extend the definition of the face operator in order to take into account a
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string of N sites:

Xj(u)
ℓ′

ℓ =

ℓj

ℓj+1

ℓ′j

ℓj−1
u

ℓ′1 ℓ′2 · · · ℓ′j−2 ℓ′j+2 · · · ℓ′N−1 ℓ′N

a1 a2 · · · ℓj−2 ℓj+2 · · · ℓN−1 ℓN

• • • • • • • •

=




∏

i 6=j

δℓjℓ′j





ℓj

ℓj+1

ℓ′j

ℓj−1
u (7.79)

This operator acts non trivially only on the site j and does not affect all the other local

variables. The choice of considering a 45◦ rotated lattice [11] makes the construction of

corner transfer matrices easier. Moreover, with such a convention, they can be represented

as local operators - i.e. they act non trivially only on few neighbour sites.

Using the face transfer operators, we can construct explicitly the row-to-row transfer

matrix:

T (u)ℓ
′

ℓ =

N∏

i=1

Xj(u)
ℓ′jℓ

′
j+1ℓj+1

ℓ′jℓjℓj+1
=

ℓ1 ℓ2

ℓ′2ℓ′1

u

ℓ3

ℓ′3

u u

ℓN−1

ℓ′N−1

u

ℓN

ℓ′N

u

ℓ1

ℓ′1

u

(7.80)

Thanks to the above equation we can compute directly the underlying quantum Hamilto-

nian8

H = − d

du
log T (u)

∣
∣
∣
∣
u=0

(7.81)

Since the RSOS restrictions on the values of the local heights make the analysis quite

complicated, it can be convenient to specialise to one simple case first before addressing

a more generic computation. Moreover, before addressing the actual computation of the

Hamiltonian, it is worth understanding the multiplication rules of the face operators.

7.4.1 Multiplying face operators

Let us first consider the case of two face operators acting on the same site j, for instance

the operators Xj(u) and Xj(v). We define the product Xj(u)Xj(v) by placing the latter

on top of the former and summing over all possible values of the common local height (see

8Since the parameter u represents the anisotropy of the lattice, the u→ 0 limit represents a lattice with
infinitesimal lattice spacing.
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equation (7.82)).

Xj(u)Xj(v) =

a

bd u

g

b′

c′

d′ v

(7.82)

In the above equation a sum over all possible values of the internal local height g has been

performed. Moreover, since the action of a face operator does not change the values of

the external local heights, the product is non vanishing only if the external local heights

are the same in the two tiles, i.e. d′ = d and b′ = b.

In order to build up operators like the row-to-row transfer matrix (7.80), we have to

multiply face operators acting on different (adjacent sites). As before, the right value of

the multiplication will be at the bottom of the left value:

Xj+1(u)Xj(v) =

c′

d′ v

a

b

c

d u
(7.83)

In this case there is no need to sum, as there are no internal local heights. In order to

have a non zero result of the multiplication, the local heights d and c have to be the same

on both tiles.

Iterating such a definition it is possible to define larger objects, like the row-to-row transfer

matrix (7.80).

Moreover, the two multiplication rules can be used to implement explicitely the inversion

relation [11]:

Xj(u)Xj(−u) =
s(λ− u)s(λ+ u)

s(λ)2
1 (7.84)

and the Yang-Baxter equation [11]

Xj(u)Xj+1(u+ v)Xj(v) = Xj+1(v)Xj(u+ v)Xj+1(u) (7.85)

Even thougth the two equations (7.85) and (3.50) - sometimes referred to as hexagon Yang-

Baxter and vertex Yang-Baxter, respectively - are different in form, they are equivalent

one to each other [116] and they both guarantee the integrability of the models they are
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referring to.

7.4.2 The r = 5 case (the T2 quantum chains)

Let us consider first the FB (or ABF) RSOS model with the parameter r set to 5. Com-

pared to other values of r, such choice allows a more intuitive representation of the local

heights. When considering two neighbour local heights, their values run from 1 to 4 and

they have to differ exactly by one. If the first height has one of the central values, say

2, the other height can have two distinct values, 1 or 3. On the other hand, if the first

height has one of the extremal values, say 1, the other one can have just one value, 2. In

fact we can classify the values of the local heights into two subgroups: the extremal (1

and 4, denoted by •) and the bulk (2 and 3, denoted by ◦). When moving from a site to

its adjacent, a bulk value can either become an extremal or remain bulk. For instance,

the bulk value 2 can either become 1 (extremal) or 3 (still bulk). On the other hand, an

extremal value must become bulk. Such restrictions can be encapsulated into the tadpole

diagram T2:

Extremal

Bulk

Figure 7.5: Tadpole diagram T2.

In order to simplify the notation we can introduce some additional local variables σj

instead of the local heights ℓj :

σj =

{

0 ℓj = 2, 3

1 ℓj = 1, 4
(7.86)

The RSOS restriction |ℓj − ℓi+1| = 1 is simply translated into σjσi+1 = 0. If we want to

describe as a particle the state σj = 1 and as a vacuum the state σj = 0, the restriction

rule implies that there cannot be two adjacent particles. If we consider a periodic system

with N sites (σi+N ≡ σj) the number of allowed configurations with initial site σ1 = 0 is

simply given by FN+1, where FN is the Nth term of the Fibonacci sequence:

FN = FN−1 + FN−2 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . (7.87)
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while the number of allowed configurations starting with σ1 = 1 is given by FN−1. The

total number of allowed configurations (considering both starting points) is given by the

Nth Lucas number:

LN = FN+1 + FN−1 = ϕN + (−1)Nϕ−N = 1, 3, 4, 7, 11, 18, 29, 47, . . . (7.88)

where ϕ is the celebrated golden ratio

ϕ =
1 +

√
5

2
= 1.6180339887498948482 . . . (7.89)

Until now we have not specified the value of the parameter s. Since different values of

such a parameter give rise to quite different models, we will consider the s = 1 and s = 3

cases separately 9.

Golden chain

Let us now focus on the r = 5 and s = 1 case, which corresponds to the tricritical Ising

model. The critical case has been studied extensively in [111] and it has been identified

with the so-called Fibonacci Golden Chain.

The face transfer operator for the s = 1 case is given by10

Xj(u) = u

=
s(2λ+ u)

s(2λ)
+
s(2λ− u)

s(2λ)
+
s(λ− u)

s(λ)

(

+

)

+
s(λ+ u)

s(λ)
+

s(u)
√

s(λ)s(2λ)

(

+

)

(7.90)

where the yellow tiles (denoted by Ej in the following) are simple δs operators which select

the right Boltzmann weight for a given configuration. For instance, the Boltzmann weight

of the configuration σj−1 = σj = σj+1 = 0 and σ′j = 1 is given by s(u)/
√

s(λ)s(2λ).

It is possible to define a multiplication also for these simple tile operators Ej . The def-

inition is almost the same as for the face operators (Section 7.4.1). The only difference

9These are the most interesting cases, as they correspond to the thermally perturbed minimal models
M45 and M25 (the tricritical Ising and the Lee-Yang universality classes).

10In this section we chose the symmetric gauge gℓ =
√

s(ℓλ) in the Boltzmann weights (7.4).
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is that there is no sum over internal configurations. When multiplying two Ej matrices

acting on the same sites, the result is given by:

c

b′

a

b

c

g

a

=

b

c

b′

a (7.91)

Of course, such a multiplication vanishes if any of the common local heights are different

in the two tiles. For instance, consider the following examples:

=

= 0 (7.92)

When multiplying two yellow tiles acting on adjacent sites, the same convention of Section

7.4.1 applies: the result is not zero if two local heights shared by two tiles have the same

value.
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The equation (7.90) can be used to compute directly the Hamiltonian:

H =

N∑

i=1

Hj

Hj = − d

du
logXj(u)

∣
∣
∣
∣
u=0

= −Xj(0)
−1 d

du
Xj(u)

∣
∣
∣
∣
u=0

=
s′(2λ)
s(2λ)

− s′(2λ)
s(2λ)

− s′(λ)
s(λ)

(

+

)

+
s′(λ)
s(λ)

+
s′(0)

√

s(λ)s(2λ)

(

+

)

(7.93)

Notice that in the above calculation the prefactor Xj(0)
−1 plays a trivial role, since11

Xj(0) = + + + +

(7.94)

is a projector onto all possible configuration and it is, in fact, the identity operator.

From the particle-hole point of view, the various terms of the above Hamiltonian have a

very physical meaning. In particular, terms like

(7.95)

simply measure the presence (or absence) of a particle in the central site j. On the other

hand, the operators

(7.96)

have a much more interesting action: they act like creation and annihilation operators. In

fact, they transform the site j from ◦ to • and vice versa.

Such a formulation allows us also to perform a p→ 0 limit towards the critical point.

11s(0) = 0.
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The critical Hamiltonian is then given by

Hj = a+ bej (7.97)

where a and b are two simple numerical constants. The operator ej is given by

ej = +
1

β
+ β +

1√
β

(

+

)

(7.98)

where β = 2cos π
5 .

Using the multiplication rules defined above for the yellow tiles, it is possible to show that

the operator ej (as defined in (7.98) using the Ej operators) satisfy

e2j = βej

ejej±1ej = ej

eiej = ejei for |i− j| > 1 (7.99)

Such relations show that the Hamiltonian we obtained can be expressed as a representation

of the Temperley-Lieb algebra. At the critical point, our computation then recovers the

Golden Chain anyonic Hamiltonian [111].

The Lee-Yang off-critical chain

Using the same particle-hole interpretation used in the last section, we can compute also

the quantum Hamiltonian of the Lee-Yang regime (r = 5 and s = 3).

In this context the face operator and the quantum Hamiltonian are very similar to the

previous case (s = 1). The only difference relies in the different Boltzmann weight associ-

ated to two symmetric configurations. In order to simplify the notation, we will consider

the simpler, non symmetric gauge choice of gℓ = 1. The face operator in this case is given
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by

Xj(u) = u =
s(2λ+ u)

s(2λ)
+
s(2λ− u)

s(2λ)

+
s(λ− u)

s(λ)

(

+

)

+
s(λ+ u)

s(λ)

+
s(u)

s(2λ)
+
s(u)

s(λ)
(7.100)

and the Hamiltonian can be obtained immediately from it:

H = −
N∑

i=1

Hj

Hj =
s′(2λ)
s(2λ)

− s′(2λ)
s(2λ)

− s′(λ)
s(λ)

(

+

)

+
s′(λ)
s(λ)

+
s′(0)
s1(2λ)

+
s′(0)
s(λ)

(7.101)

The main difference between this Hamiltonian and the previous one (7.93) lies in the

last two terms of each operator. While in the unitary version (7.93) the creation and

annihilation operators appear with the same numerical coefficient, it is not the case for

the non unitary case (7.101). It can be argued that this discrepancy is due to the different

gauge choice. However, it should be noticed that the numerical coefficient in front of

the creation/annihilation operator - whilst it is the same for both operators - becomes

purely imaginary in the Lee Yang case when choosing the symmetric gauge gℓ =
√

s(ℓλ).

On the other hand, the choice of the asymmetric gauge gℓ = 1 in the unitary case leads

to different coefficients for the creation and annihilation operators, even though they are

still purely real. In conclusion, it is possible to fix the gauge in both cases in order to

have a meaningful physical interpretation. In the Lee Yang case it is preferable to choose

the asymmetric gauge fixing in order have real coefficients. In order to interpret these

terms as creation/annihilation operators, the coefficients in front of them - i.e. the energy

lost/gained when creating/annihilating a particle - have to be real.

Of course, the critical Hamiltonian can be obtained by performing the p → 0 limit. As
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before, the Hamiltonian can be written in terms of ej operators:

Hj = a+ bej (7.102)

where the operator ej is given by

ej = +
1

β
+ β +

1

β
+

(7.103)

and the loop fugacity β is equal to 2 cos 3π
5 .

Once again, the multiplication rules can be used to check that the above operators ej

belong to a representation of the Temperley-Lieb algebra:

e2j = βej

ejej±1ej = ej

eiej = ejei for |i− j| > 1 (7.104)

The r = 5 Hamiltonians using Pauli matrices

Once we have computed the Hamiltonians of the two r = 5 cases studied using the tiles

operators, it is worth translating these Hamiltonians into a Pauli matrix formalism. Such

a formalism is also used in the study of quantum critical chains representing the so-called

Fibonacci Anyons [111]. In particular, let nj be the (inverse) number operator (defined

as nj(◦) = 1 and nj(•) = 0) and σxj be the flipping operator (defined as σxj (◦) = • and

σxj (•) = ◦). With this notation it is possible to rewrite the Hamiltonian (7.93) as

Hj = −2
s′(λ)
s(λ)

(ni−1 + ni+1 − 1)

+ ni−1ni+1

[
s′(0)

s(λ)s(2λ)
σxj + 2

s′(2λ)
s(2λ)

nj +

(

3
s′(λ)
s(λ)

− s′(2λ)
s(2λ)

)]

− s′(λ)
s(λ)

1

(7.105)

The critical limit p → 0 of the above Hamiltonian is equal to the Fibonacci Hamiltonian

(up to a multiplicative and an additive constants) studied in [111]. The above Hamiltonian

can then be seen as the off-critical perturbation of the Fibonacci Hamiltonian.

Even though the Hilbert space is not given by C
2N (since two neighbour particles are

forbidden) a formulation using Pauli matrices could be more intuitive from the physical

point of view.
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7.4.3 The generic case

Once we have analysed the r = 5 case, we can address the computation of the quantum off-

critical Hamiltonian for a wider class of models. A generic base vector can be represented

by a collection of N local heights, each of them running from 1 to r−1 with the condition

that two neighbour heights must differ exactly by one. While the r = 5 model allows a

nice physical interpretation in terms of particles and holes, such a representation is missing

when studying the FB RSOS models with generic values of r and s. Nevertheless it is

possible to classify the various configurations around a tile using the values of the local

heights. In particular, we are interested whether opposite local heights have the same

value. In this section, we will denote with a blue dashed line a couple of opposite local

heights with the same value. On the other hand, a red dashed line indicates that the

couple of local heights have different values. Thus, the possible configurations of local

heights around a tile are just three:

(7.106)

Additionally, when one of the two dashed lines are missing, all possible configurations are

considered. For instance, consider the following example of a tile with just one dashed

line:

= + (7.107)

Moreover, we can notice that the identity 12 is the operator which leaves the three local

heights unaffected:

1 = + = (7.108)

12Intended as an operator mapping the lower configuration into the upper one.
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Using this compact notation for the yellow tiles, we can write explicitly the face operator

for generic values of r and s:

Xj(u) =

a

b

c

b′ u = ω1,b(u)

b

c

b′

a + ωb′−a
2,a (u)

b

c

b′

a + ωb′−a
3,a (u)

b

c

b′

a

(7.109)

Once again, we can perform the Hamiltonian limit of the transfer matrix to obtain an

explicit expression of the off-critical Hamiltonian. In order to avoid imaginary coefficients

in the Hamiltonian, we choose the asymmetric gℓ = 1 gauge fixing. The Hamiltonian is

then given by:

H = −
N∑

i=1

Hj

Hj =

[
s′(0)
s(λ)

Fj +Gj

]

(7.110)

where the operators Fj and Gj are given by

Fj =
s(b′λ)
s(cλ)

b

c

b′

a

Gj =

[
s′(λ)
s(λ)

− s′(0)
s(λ)

s(b′λ)
s(cλ)

+(b′−c)s
′(cλ)
s(cλ)

]

b

c

b′

a (7.111)

Also in this very generic case we can set p to zero in order to analyse the critical Hamil-

tonian. In such a regime the Gj vanishes and the Hamiltonian is simply given by

Hj =
s′(0)
s(λ)

Fj (7.112)

Decomposing the yellow tile using (7.107) it is possible to show that the operator Fj is a

representation of the Temperley-Lieb algebra with fugacity β = 2cos λ = 2cos sπ
r :

F 2
j = βFj

FjFi±1Fj = Fj

FiFj = FjFi for |i− j| > 1 (7.113)
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In conclusion, even in the generic case we are able to derive a precise form of an off-

critical Hamiltonian associated with off-critical minimal models (unitary and non unitary).

Even though these operators are not always symmetric (or hermitian) they are suitable

Hamiltonians. For instance, their eigenspectrum is real and the Hamiltonian itself can be

diagonalised, once subtleties have been considered. For instance, it is well known [114, 115]

that the so-called quantum group reduction has to be implemented in order to diagonalise

the critical version of the above Hamiltonians. In the off-critical case, even though such

a process can be implemented in a case-by-case study, a general formulation is far from

complete. This is mainly due to the fact that the underlying symmetry of the critical

case (the quantum group) has been widely studied and developed. On the other hand, a

complete understanding of the symmetries of the off-critical case is still missing.

7.5 Conclusions

While all other chapters focus on evaluation of entanglement using field theory techniques,

in this Chapter we used a lattice oriented approach. In particular, we computed the scaling

of entanglement entropy of infinite off-critical systems at different values of the mass gap

using the so-called Corner Transfer Matrix approach. The lattice system we analysed are

the so-called Forrester Baxter RSOS models. In a particular configuration (called Regime

III) these models provide a lattice realisation of thermally perturbed non unitary minimal

models. While such a computation has already been performed in some similar unitary

systems [108], the non unitary generalisation has never been attempted.

As expected, we found that the leading term of the entropy scales logarithmically, as in

the unitary case. The main difference is that the central charge has been replaced by its

effective counterpart. From the physical point of view, the reason for this replacement

is the same as in the non unitary critical case: the conformal vacuum is different from

the physical ground state. Additionally, we could also analyse the first corrections to

the logarithmic scaling. We showed that non unitarity affects not only the logarithmic

scaling, but also its corrections. While in the unitary case such corrections are related to

the conformal dimension ∆ of a certain field, we found that in the non unitary case they

are affected also by the non trivial ground state. We introduced then also the notation

of effective conformal dimension ∆ → ∆eff = ∆ − ∆min, which, like the effective central

charge, takes into account the non trivial action of the ground state. Moreover, we com-

puted the entropy of the so-called off-critical logarithmic minimal models, which can be

easily realised by a particular limit of the FB RSOS models.

While quantum one dimensional Hamiltonians associated with conformal minimal models

have been known in the literature for a long time, less is known about the off critical

case. In order to have a better understanding of the quantum chain the FB RSOS models
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represent, we performed a Hamiltonian limit of such systems. With this tool we managed

to compute the explicit expressions of one-dimensional quantum chains associated with

generic off critical minimal models. Even though the notation used might seem not very

intuitive from a physical point of view, we showed that few cases known in the litera-

ture can be recovered from our results. In particular, the critical limit of the FB RSOS

Hamiltonians matches perfectly with a class of Hamiltonians known to be a spin chain

representation of minimal models. Furthermore, we showed that the so-called Fibonacci

chain can be easily recovered from our results.
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Chapter 8

Logarithmic Negativity and

Entanglement Entropy in Free

Boson Theories

In the previous sections of this thesis (Chapters 5, 6 and 7) we focused on the evaluation

of the entanglement entropy of non unitary theories. In such cases we focused on the

bipartite case, i.e. when the system is divided in just two regions. In this Chapter we

study the entanglement of non-compactified free boson systems in various configurations.

In particular, we consider the bipartite entanglement entropy of a single interval and the

logarithmic negativity between two disjoint semi-infinite intervals. These entanglement

measures can be computed using correlation functions of twist fields and we probe both

the critical and massive regimes using form factor expansions.

8.1 Logarithmic Negativity

As we have seen in Chapter 2, entanglement entropy - one of the most celebrated entan-

glement measures - fails to measure the amount of quantum entanglement between non

complementary subsystems. As previously explained, another measure of entanglement

must be introduced. A suitable quantity is the logarithmic negativity (2.44) [28, 31]:

E = lim
ne→1

log trA∪B
(

ρTB
A∪B

)ne

(8.1)

where TB denotes the partial transposition of the degrees of freedom belonging to the

subsystem B (see Section 2.3).

As in the entanglement entropy case, logarithmic negativity can be expressed as a correla-

tion functions involving twist fields. In particular, when considering a system A ∪B ∪C,
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the partial transpose of the reduced density matrix is given by [31]:1

tr
(

ρTB
A∪B

)n
=

〈

T (a1)T̃ (a2)T̃ (b1)T (b2)
〉

(8.2)

where A = [a1, a2], B = [b1, b2]. Such a formulation can also be extended to a much

simpler case. If we consider a gapped system made of two disjoint semi infinite regions

A =]−∞, 0] and B = [r,+∞[ (see Figure 8.2), the four-point correlation function factorises

into a much simpler two-point correlator:

lim
a1→−∞
b2→+∞

〈

T (a1)T̃ (0)T̃ (r)T (b2)
〉

= 〈T 〉 〈T̃ (0)T̃ (r)〉 〈T 〉 = 〈T 〉2 〈T (a)T (b)〉

(8.3)

thanks to the fact that 〈T̃ (0)T̃ (r)〉 = 〈T (0)T (r)〉.
In this chapter we study the scaling of entanglement of a free bosonic system in various

configurations through the analysis of the correlators 〈T (0)T̃ (r)〉 and 〈T (0)T (r)〉, which
can be expanded into a form factor series.

The value of the vacuum expectation value 〈T 〉, while it is usually difficult to compute

exactly in QFT, it can be estimated through the methods discussed in Section 3.3.2.

1In the following, the subscript A ∪ B will be dropped from the expressions involving traces.
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Figure 8.1: Tripartite system. Using logarithmic negativity we can compute the amount
of entanglement between the subsystems A and B even though they are embedded into
C.

! "#

$ %

Figure 8.2: Tripartite system in Figure 8.1 in the limit A = [−∞, 0], B = [r,∞[.
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8.1.1 The 〈T (0)T̃ (r)〉 short distance scaling

The scaling of the 〈T (0)T̃ (r)〉 correlation function has been identified in previous chapters

and it is given by

log

(

〈T (0)T̃ (r)〉
〈T 〉2

)

= −4∆n log r − 2 log〈T 〉n for mr → 0 (8.4)

where the conformal dimension ∆n of T is given by [8]

∆n =
c

24

(

n− 1

n

)

(8.5)

In this chapter we are using a slightly different notation from the previous ones2. In

particular, we denote with ∆n the conformal dimension of the twist field and with 〈T 〉n
its vacuum expectation values. From this short distance scaling it is possible to numerically

extimate 〈T 〉n using a form factor expansion (see Section 8.4). While for free fermionic

theories there is an explicit interpretation of twist fields in terms of simpler fields3, such

an interpretation is still missing for free bosonic theories. All the correlation functions are

defined on the multi-copied theory (L(n),C) (using the notation of Chapter 4).

8.1.2 The 〈T (0)T (r)〉 short distance scaling

While the short distance behaviour of the 〈T (0)T̃ (r)〉 correlation function has been ex-

haustively discussed in Section 6.2, less is known about the correlation function between

two identical twist fields T . It has already been noticed that the branch cut created by T
and T̃ becomes smaller and smaller as the two fields get close to each other. On the other

hand, when two fields T come close together, the “long range” picture of their geometrical

effect is a “double” branch cut. As noticed in [31, 117], such a double cut can be associated

to a double twist field T 2. From a operational point of view, the first contribution to the

conformal OPE is given by:

T (0)T (r) ∼ r−2(2∆n−∆′
n)CT 2

T T
〈
T 2
〉

n
(8.6)

where ∆′
n is the conformal dimension of the T 2 field.

One of the most surprising features of this new field is that it behaves in quite different

ways in systems with even or odd number of copies n. In particular, if the number of

copies n is odd, a double cut gives rise to a simple rearrangement of the theory with a

2In previous chapters (especially in Chapter 6) we focused on the difference between twist fields T and
their composite versions : T φ :. In this chapter our focus is on single T and double T 2 twist fields, whose
difference is linked to the number of copies they are acting on.

3See Appendix B of [14]
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single cut. For instance, in a system with n = 3 copies, the cut connects the first sheet

with the third, the third with the second and the second with first, closing the cycle. From

an operator point of view, when a particle p1 belonging to a copy (say the first) crosses

the branch cut created by a T 2 field, it ends up in the third copy. Crossing again such

a cut, it visits the second copy end, if crosses the cut a third time, it comes back to the

original one. If the number of copies is odd, the a particle can visit all the copies through

a double branch cut created by T 2. The only difference between T and T 2 when n is odd

is a rearrangement of the order with which the various sheets are visited. For this reason,

we would expect T 2 to have the same scaling dimension ∆n of T . On the other hand, in

the even n case, the situation is quite different. Every time a particle cross the T 2 branch

cut, its “parity” is conserved: the cut connects even sheets with even sheets and odd with

odd. In this case there is no rearrangement of the copies, they are actually split into two

separate sets. The operator T 2 is then equivalent to two copies of T , and each copy acts

on a different set of n/2 sheets. Thus we expect that the field T 2 has twice the conformal

dimension ∆n
2
of a single field T with half of the number of copies. The short-distance

scaling of the 〈T (0)T (r)〉 correlation function is then given by

log
〈T (0)T (r)〉

〈T 〉2 =







−2∆n log r + log

(

CT 2

T T

〈T 〉n

)

n odd

−4(∆n −∆n
2
) log r + log

(
〈T 〉2n

2
CT 2

T T

〈T 〉2n

)

n even
for mr → 0

(8.7)

where we have used the fact that
〈
T 2
〉

n
= 〈T 〉2n

2
for n even and

〈
T 2
〉

n
= 〈T 〉n for n odd.

8.2 Form Factor Expansion of Twist Field Correlation Func-

tions

Using the techniques introduced in Chapter 3, we can study the twist field correlators in the

massive regime. In order to recover the ultraviolet conformal scaling of such correlators,

we can perform a short distance expansion of the form factor series.

8.2.1 Form factors in the massive free boson theory

In order to construct the complete form factor series, we need to compute the two-particle

contribution. The S-matrix for free bosons is identically one and the two-particle form
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factor is given by:

F
T |11
2 (β1, β2) =

sin π
n

2n sinh
(
iπ−β1+β2

2n

)

sinh
(
iπ+β1−β2

2n

) = F
T̃ |11
2 (β1, β2) (8.8)

In this Chapter we are using a more compact notation:

f(β1 − β2;n) := F
T |11
2 (β1, β2) (8.9)

As we have seen in Chapter 4, form factors of particles belonging to different copies are

simply related to the form factors of particles in the same copy (say the copy one):

F
T |p1p2
2 (β) = f(−β + 2πi(p2 − p1);n)

F
T̃ |p1p2
2 (β) = f(β + 2πi(p2 − p1);n) (8.10)

Moreover, thanks to the Z2 symmetry of the bosonic Lagrangian, all odd-particle form

factors vanish. Even-particle form factors can be obtained as sums of products of two-

particle form factors using the Wick’s theorem [118]:

F 11...1
2ℓ (β1, . . . , β2ℓ) =

∑

σ∈S2ℓ

f(βσ(1)σ(2) ;n) · · · f(βσ(2ℓ−1)σ(2ℓ);n) (8.11)

where S2ℓ is the set of all permutations of {1, 2, . . . , 2ℓ}.
Once we have an explicit expression for the all terms of the form factor expansion, we can

compute the correlation functions.

8.2.2 Connected correlation functions

In order to analyse the behaviour of the connected correlation functions, we can focus on

their expansions:

log

(

〈T (0)T̃ (r)〉
〈T 〉2

)

=
∞∑

ℓ=1

cT T̃
2ℓ (r, n)

log

(〈T (0)T (r)〉
〈T 〉2

)

=

∞∑

ℓ=1

cT T
2ℓ (r, n) (8.12)
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where the functions c2ℓ encapsulate all the contributions from a given number of particles.

Their explicit expressions are given by

cT T̃
2ℓ (r, n) =

1

(2ℓ)!(2π)2ℓ

n∑

p1,...,p2ℓ=1

∫

d2ℓβ H
T T̃ |p1...p2ℓ
2ℓ (β1, · · · , β2ℓ)e

−mr
2ℓ
∑

i=1
coshβi

cT T
2ℓ (r, n) =

1

(2ℓ)!(2π)2ℓ

n∑

p1,...,p2ℓ=1

∫

d2ℓβ H
T T |p1...p2ℓ
2ℓ (β1, · · · , β2ℓ)e

−mr
2ℓ
∑

i=1
coshβi

(8.13)

where H2ℓ are the “connected” functions introduced in Section 3.3.2:

H
O1O2|p
1 (β) = F

O1|p1
1 (β)(F

O†
2|p1

1 (β))∗

H
O1O2|p1p2
2 (β1, β2) = F

O1|p1p2
2 (β1, β2)(F

O†
2|p1p2

2 (β1, β2))
∗

− H
O1O2|p1
1 (β1)H

O1O2|p2
1 (β2)

(8.14)

The simplicity of the higher-particle form factors allows a tremendous simplification of the

above equations. Such a feature is unique of free theories and has already been exploited

in the study of twist fields in free fermionic theories [70].

The first contribution to HT T̃
2ℓ is given by

F
T |p1...p2ℓ
2ℓ (β1 · · · β2ℓ)(F T |p1...p2ℓ

2ℓ (β1 · · · β2ℓ))∗

=




∑

σ∈S2ℓ

F
T |p1p2
2 (βσ(1), βσ(2)) · · ·F T |p2ℓ−1p2ℓ

2 (βσ(2ℓ−1), βσ(2ℓ))





×




∑

σ∈S2ℓ

(F
T |p1p2
2 (βσ(1), βσ(2)))

∗ · · · (F T |p2ℓ−1p2ℓ
2 (βσ(2ℓ−1), βσ(2ℓ)))

∗



 (8.15)

while the corresponding term in the 〈T (0)T (r)〉 correlator is given by

F
T |p1...p2ℓ
2ℓ (β1 . . . β2ℓ)(F

T̃ |p1...p2ℓ
2ℓ (β1 . . . β2ℓ)

∗ =
(

F
T |p1...p2ℓ
2ℓ (β1 . . . β2ℓ;n)

)2

=




∑

σ∈S2ℓ

F
T |p1p2
2 (βσ(1), βσ(2)) · · ·F T |p2ℓ−1p2ℓ

2 (βσ(2ℓ−1), βσ(2ℓ))





2

(8.16)
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Many of these terms are identical up to integration over all rapidities. For instance, for

2ℓ = 4 we have:

F
T |p1p2p3p4
4 (β1, β2, β3, β4;n)(F

T |p1p2p3p4
4 (β1, β2, β3, β4;n))

∗

=
[

F
T |p1p2
2 (β1, β2;n)F

T |p3p4
2 (β3, β4;n) + F

T |p1p3
2 (β1, β3;n)F

T |p3p4
2 (β3, β4;n)

+F
T |p1p4
2 (β1, β4;n)F

T |p2p3
2 (β2, β3;n)

] [

F
T |p1p2
2 (β1, β2;n)F

T |p3p4
2 (β3, β4;n)

+F
T |p1p3
2 (β1, β3;n)F

T |p3p4
2 (β3, β4;n) + F

T |p1p4
2 (β1, β4;n)F

T |p2p3
2 (β2, β3;n)

]∗

int
= 6F

T |p1p2
2 (β1, β2;n)(F

T |p2p3
2 (β2, β3;n))

∗F T |p3p4
2 (β3, β4;n)(F

T |p1p4
2 (β1, β4;n))

∗

+3
∣
∣
∣F

T |p1p2
2 (β1, β2;n)

∣
∣
∣

2 ∣∣
∣F

T |p1p2
2 (β3, β4;n)

∣
∣
∣

2
(8.17)

where the notation
int
= means that the two sides are equal up to integration over all rapidi-

ties. As we said before, we can express all two particle form factors in term of F T
2 = f .

The equation (8.17) now becomes:

F
T |p1p2p3p4
4 (β1, β2, β3, β4;n)(F

T |p1p2p3p4
4 (β1, β2, β3, β4;n))

∗

int
= 6f(βp1−p2

12 ;n)f((−β23)p2−p3 ;n)f(βp3−p4
34 ;n)f((−β14)p1−p4 ;n))∗

+3
∣
∣
∣f(β

p1−p2
12 ;n)

∣
∣
∣

2 ∣∣
∣f(β

p3−p4
34 ;n)

∣
∣
∣

2
(8.18)

where we have used the notation

βp = β + 2πip (8.19)

For generic ℓ it is possible to show that there are (2ℓ−1)! “fully connected” terms. A term

is fully connected if factor f(βk;n) appears only once. For example, in equation (8.18)

the term in the second line is fully connected, while the one in the last line it is not. From

a Feynman’s diagram point of view, a fully connected diagram cannot be divided into

smaller diagrams. For generic ℓ, the contribution coming from all fully connected terms is

given by:

fully connected terms of





n∑

p1,...,p2ℓ=1

F
T |p1···p2ℓ
2ℓ (β1, . . . , β2ℓ)(F

T |p1···p2ℓ
2ℓ (β1, . . . , β2ℓ))

∗





int
= (2ℓ− 1)!n

n−1∑

p1,...,p2j−1=0

(

fn((−β12)p1)fn(βp2j−1

1 2j )
ℓ−1∏

k=1

fn(β
p2k−p2k+1

2k+1 2k+2)fn(β
p2k−p2k−1

2k 2k+1 )

)

(8.20)
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Figure 8.3: Difference between fully connected and not fully connected diagrams. The
diagram on the left (right) corresponds to terms like the second (third) line of (8.18).

Even though equation (8.18) refers to a
〈

T (0)T̃ (r)
〉

correlator, four operators appear in

this picture instead of just two. This discrepancy is corrected by the fact that the form
factors we are taking into account are normalised by the VEV of T .

In the above expression all the pis have been shifted by one in order to make the sums

start from zero. Moreover, since all form factors are invariant under a global shift on all

their indices, we can set p2j to one and we can factor out a factor n. The next crucial

step is to observe that the “fully connected” terms are the only ones which survive when

the form factors H2ℓ are considered. The fully connected terms are thus the only ones

which give contributions to the form factor expansion of the logarithm of the correlation

functions. In particular we have:

cT T̃
2ℓ (r, n) =

n

(2ℓ)(2π)ℓ

n−1∑

p1,...,p2ℓ−1=0

∫

d2ℓβ e−mr
∑2ℓ

i=1 coshβi

×
(

f((−β12)p1 ;n)f(βp2ℓ−1

1 2ℓ ;n)
ℓ−1∏

k=1

f(β
p2k−p2k+1

2k+12k+2 ;n)f(β
p2k−p2k−1

2k 2k+1 ;n)

)

(8.21)

This simplification applies also to the 〈T T 〉 correlation function, when all terms which are

not fully connected cancel out:

cT T
2ℓ (r, n) =

n

(2ℓ)(2π)2ℓ

n−1∑

p1,...,p2ℓ−1=0

∫

d2ℓβe−mℓ
∑2ℓ

i=1 coshβi

× f(βp11 2ℓ;n)f(β
p1−p2
2ℓ−1 2ℓ;n) · · · f(β

p2ℓ−2−p2ℓ−1

23 ;n)f(β
p2ℓ−1

12 ;n)

(8.22)
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This massive simplification of course can be performed thanks to the fact that the theory

studied is free and Wick’s theorem can be applied. Moreover, we will show how the sum

over pis can be performed, leading to an even further simplification of the form factors

expansion.

8.3 Short Distance Scaling

In this section we will make use of equation (3.103) to compute the scaling dimensions of

such correlation functions:

xO1O2 =
1

4π

∞∑

ℓ=0

1

(2ℓ)!

n∑

p1···p2ℓ=1

∫
d2ℓ−1β

(2π)2ℓ−1
H

O1O2|p1···p2ℓ
2ℓ (0, β1, . . . , β2ℓ−1)

(8.23)

Due to the great simplification of the free Bosonic system, it is worth sketching again the

tool introduced in Section 3.3.2. Even though the underlying strategy is exactly the same,

the notation will differ a bit from the one used in Chapters 3 and 6.

8.3.1 The two-point function
〈

T (0)T̃ (r)
〉

Let us start the study of the
〈

T (0)T̃ (r)
〉

correlation function. The logarithm of the

correlator is given by

log

(

〈T (0)T̃ (r)〉
〈T 〉2

)

=

∞∑

ℓ=1

cT T̃
2ℓ (r, n) (8.24)

In order to simplify the above equation we rearrange the variables in the following way:

βj,j+1 ≡ βj − βj+1 = xj for j = 1, 2, . . . , 2ℓ− 1

β2ℓ = x2ℓ (8.25)

whose inverse is given by

βj =

2ℓ∑

p=j

xp for j 6= 2ℓ (8.26)
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In the new variables we have:

n−1∑

p1,...,p2ℓ−1=0

(

f((−β12)p1 ;n)f(βp2ℓ−1

1 2ℓ ;n)

ℓ−1∏

k=1

f(β
p2k−p2k+1

2k+12k+2 ;n)f(β
p2k−p2k−1

2k 2k+1 ;n)

)

=

n−1∑

p1,...,p2ℓ−1=0

(f((−x1)p1 ;n)f((x1 + · · · + x2ℓ−1)
p2ℓ−1 ;n)

×
ℓ−1∏

k=1

f(x
p2k−p2k+1

2k+1 ;n)f(x
p2k−p2k−1

2k ;n)

)

=

n−1∑

p1,...,p2ℓ−1=0

[

f((−x1)p1 ;n)f(xp2−p3
3 ;n)f(xp4−p5

5 ;n) · · · f(xp2ℓ−2−p2ℓ−1

2ℓ−1 ;n)

× f((x1 + · · ·+ x2ℓ−1)
p2ℓ−1 ;n)f(xp2−p1

2 ;n)f(xp4−p3
4 ;n) · · · f(xp2ℓ−2−p2ℓ−3

2ℓ−2 ;n)
]

=
n−1∑

p1,...,p2ℓ−1=0

[

f((−x1)p1 ;n)f(xp2−p1
2 ;n)f(xp2−p3

3 ;n)f(xp4−p3
4 ;n)f(xp4−p5

5 ;n) · · ·

· · · f(x
p2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f(x
p2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f((x1 + · · · + x2ℓ−1)
p2ℓ−1 ;n)

]

(8.27)

This summation can be computed using equation (E.2) with y2ℓ = x1 + x2 + · · · x2ℓ−1 and

yi = xi:

n−1∑

p1,...,p2ℓ−1=0

[

f((−x1)p1 ;n)fn(xp2−p1
2 )f(xp2−p3

3 ;n)fn(x
p4−p3
4 )f(xp4−p5

5 ;n) · · ·

· · · f(x
p2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f(x
p2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f((x1 + · · ·+ x2ℓ−1)
p2ℓ−1 ;n)

]

=
in

ℓ(4π)2ℓ
Fℓ(
∑ℓ

p=1 x2p−1, n) sinh(
∑ℓ

p=1 x2p−1)

cosh
∑2ℓ−1

p=1 xp

2

∏2ℓ−1
i=1 cosh

xp

2

(8.28)

where the function Fℓ is given by (see Appendix E)

Fℓ(x, n) =

ℓ∑

p=1

(−1)p

(

2ℓ− 1

ℓ− p

)

[f(2x+ (2p − 1)iπ;n) − f(2x− (2p− 1)iπ;n)]

(8.29)
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The correlation function thus becomes:

log

(

〈T (0)T̃ (r)〉
〈T 〉2

)

=

∞∑

ℓ=1

in

ℓ(4π)2ℓ

∫

d2ℓ−1x










Fℓ(
ℓ∑

p=1
x2p−1, n) sinh(

ℓ∑

p=1
x2p−1)

cosh

2ℓ−1
∑

p=1
xp

2

2ℓ−1∏

i=1
cosh

xp

2

×
∫ ∞

−∞
dx2ℓ e

−mr[cosh(
∑2ℓ

i=1 xi)+cosh(
∑2ℓ

i=2 xi)+···+cosh x2ℓ]
]

(8.30)

Since the variable x2ℓ appears only in the exponential function, we can easily integrate

such a variable. After the integration we have

log

(

〈T (0)T̃ (r)〉
〈T 〉2

)

=
∞∑

ℓ=1

2in

ℓ(4π)2ℓ

∫

d2ℓ−1x










Fℓ(
ℓ∑

p=1
x2p−1, n) sinh(

ℓ∑

p=1
x2p−1)

cosh

2ℓ−1
∑

p=1
xp

2

2ℓ−1∏

i=1
cosh

xp

2

K0(mr dℓ(x1, . . . , x2ℓ−1))










where the function dℓ is given by

d2ℓ(x1, . . . , x2ℓ−1) =





2ℓ−1∑

i=1

cosh





2ℓ−1∑

j=1

xj



+ 1





2

−





2ℓ−1∑

i=1

sinh





2ℓ−1∑

j=1

xj









2

(8.31)

With the same spirit of Section 3.3.2, we can extract the short-distance scaling of the

correlation function:

log

(

〈T (0)T̃ (r)〉
〈T 〉2

)

(8.32)
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= (− log r)
∞∑

ℓ=1

2in

ℓ(4π)2ℓ

∫

d2ℓ−1x










Fℓ(
ℓ∑

p=1
x2p−1, n) sinh(

ℓ∑

p=1
x2p−1)

cosh

2ℓ−1
∑

p=1
xp

2

2ℓ−1∏

i=1
cosh

xp

2










+

∞∑

ℓ=1

2in

ℓ(4π)2ℓ

∫

d2ℓ−1x










Fℓ(
ℓ∑

p=1
x2p−1, n) sinh(

ℓ∑

p=1
x2p−1)

cosh

2ℓ−1
∑

p=1
xp

2

2ℓ−1∏

i=1
cosh

xp

2

(

γE + log
mdℓ
2

)










(8.33)

where γE = 0.5772 . . . is the Euler-Mascheroni constant.

Scaling dimension

We can now use equation (8.33) to estimate directly the scaling dimension of the
〈

T (0)T̃ (r)
〉

correlator. From (8.33) it immediately follows that:

〈

T (0)T̃ (r)
〉

∼ (mr)−4xT T̃ for mr → 0 (8.34)

with

xT T̃ =

∞∑

ℓ=1

2in

ℓ(4π)2ℓ

∫

d2ℓ−1x










Fℓ(
ℓ∑

p=1
x2p−1, n) sinh(

ℓ∑

p=1
x2p−1)

cosh

2ℓ−1
∑

p=1
xp

2

2ℓ−1∏

i=1
cosh

xp

2










(8.35)

Even though such integrals can be directly computed numerically (as we have done in

Chapter 6 for the Lee-Yang theories), the symmetries that free Bosonic systems enjoy

allow an even further simplification.

It is convenient to perform the following change of variables:

xj → yj = xj j 6= 2ℓ

x2ℓ → y =
ℓ∑

j=1

x2j−1 (8.36)
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The form factor expansion of the scaling dimension now becomes:

xT T̃ =

∞∑

ℓ=1

2in

ℓ(4π)2ℓ

∫ ∞

−∞
dy1 · · ·

∫ ∞

−∞
dy2ℓ−2

∫ ∞

−∞
dy Fℓ(y, n) sinh y

×







sech








y +
ℓ−1∑

p=1
y2p

2








sech








y −
ℓ−1∑

p=1
y2p−1

2








ℓ−1∏

p=1

sech
y2p
2

sech
y2p−1

2








(8.37)

We can now use the following identity [14] to perform all but one integral:

Gℓ(y) =

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxℓ−1sech








±y +
ℓ−1∑

p=1
xp

2








ℓ−1∏

p=1

sech
xp
2

=
(2π)ℓ−1

(ℓ− 1)!







y
πcosech

y
2

ℓ
2
−1
∏

p=1
( y

2

π2 + (2p)2) for ℓ even

sech y
2

ℓ−1
2∏

p=1
( y

2

π2 + (2p− 1)2) for ℓ odd.

(8.38)

Thus, the scaling dimension xT T̃ can be expressed as a sum of integrals:

xT T̃ =

∞∑

ℓ=1

2in

ℓ(4π)2ℓ

∫ ∞

−∞
dy Fℓ(y, n)Gℓ(y)

2 sinh y (8.39)

Such a simple formulation allows us to compute with very high precision the scaling

dimension from its form factor expansion (some results could be found in Table 8.1).

n 2 3 4 6

4∆T
1
4 = 0.25 4

9 = 0.444 5
8 = 0.625 35

36 = 0.972

xT T̃ 0.246 0.438 0.608 0.953

Table 8.1: Numerical evaluation of (8.39). The sum has been truncated at ℓ = 2000 and
it shows a very good agreement with the expected scaling dimension (8.5).

Analytic continuation

Since a limit for n tending to one is involved in the definition of entanglement entropy

(and logarithmic negativity), an analytical continuation of (8.39) is needed to take into

182



8.3. Short Distance Scaling

account the non-integer n cases. As discussed in [14], the analytical continuation of the

function xT T̃ can be performed by adding the residues of poles which appear in Fℓ(y, n)

for non integer values of n. In particular, there is a set of poles which approaches the real

axis when n goes from large values to one. The function Fℓ(y, n) presents kinematic poles

at

2y ± (2p − 1)iπ = (2k + 1)iπ

2y ± (2p − 1)iπ = (2k − 1)iπ (8.40)

for all values of k ∈ Z.

Such poles can be divided into four families:

y1 = (kn + 1− p)iπ

y2 = (kn − p)iπ

y3 = (kn − 1 + p)iπ

y4 = (kn + p)iπ (8.41)

The corresponding residues are given by:

R1,4 = −R2,3 =
i

2

ℓ∑

p=1

(−1)p

(

2ℓ− 1

ℓ− p

)

(8.42)

We should now investigate whether any of these poles become real in the limit n→ 1+. In

particular, since the imaginary part of the above poles is positive (negative) for k ≥ 1 (k ≤
−1) when n is large enough, we should study the conditions under which the imaginary

part changes sign. Once again, four families of conditions appear:

kn+ 1− p < 0 ⇒ 1 ≤ k <
p− 1

n

kn− p < 0 ⇒ 1 ≤ k <
p

n

kn− 1 + p < 0 ⇒ −p− 1

n
< k <≤ −1

kn+ p < 0 ⇒ − p
n
< k ≤ −1 (8.43)
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Figure 8.4: Numerical evaluation of the scaling dimension −4xT T for integer and non
integer values of n. In order to compute the sum (8.44) for a very high value of ℓ, the
actual values have been computed through a numerical fit. We computed and summed
the first 150 terms of (8.44), then we completed the sum by fitting the logarithm of each
term from ℓ=20 to ℓ=150 against log ℓ.

Taking into account these residues, equation (8.39) becomes:

xT T̃ → x̃T T̃

= xT T̃ −
∞∑

ℓ=1

ℓ∑

p=1

⌊ p
n
⌋−q1
∑

k=1

in

ℓ(4π)2ℓ−1

(

2ℓ− 1

ℓ− p

)

sinh (iπnk)G2
ℓ ((nk − p+ 1) iπ)

+

∞∑

ℓ=1

ℓ∑

p=1

⌊ p
n
⌋−q2
∑

k=1

in

ℓ(4π)2ℓ−1

(

2ℓ− 1

ℓ− p

)

sinh (iπnk)G2
ℓ ((nk − p) iπ) (8.44)

The shift q1 (q2) is equal to one if p (p− 1) is a multiple of n and to zero otherwise.

In principle, both (8.39) and (8.44) can be used to compute the scaling of the 〈T T̃ 〉
correlation function for non integer values of n. While the contributions of the residues

vanish for integer values of n, of course it is not the case when n is not integer.

From a direct comparison of the two expansions (see Figure 8.4) it is clear that the

residue contributions play a very important role in the form factor expansion of the scaling

dimension.
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8.3.2 The two-point function 〈T (0)T (r)〉

Like in the previous section, we can simplify the expression of the correlator 〈T (0)T (r)〉
using equation (E.2). To do so, let us consider the sum:

n−1∑

p1,p2,...,p2ℓ−1=0

f(βp11 2ℓ;n)f(β
p1−p2
2ℓ−1 2ℓ;n) · · · f(β

p2ℓ−2−p2ℓ−1

23 ;n)f(β
p2ℓ−1

12 ;n) (8.45)

In order to recover an expression compatible with equation (E.2), we should perform the

following change of variables:

β1,2ℓ = −x2ℓ
β2ℓ−1,2ℓ = x2

· · ·
β23 = x2ℓ−1

β12 = x1 (8.46)

With the new variables, equation (8.45) becomes:

n−1∑

p1,p2,...,p2ℓ−1=0

f((−x1)p1 ;n)f(xp1−p2
2 ;n) · · · f(xp2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f(x
p2ℓ−1

2ℓ ;n) (8.47)

While it is tempting to apply directly the formula (E.2), it should be noticed that since
∑2ℓ

i=1 xi = β1,2ℓ + β2ℓ−1,2ℓ + · · · + β23 + β12 = 0. Such a peculiar condition makes the

formula (E.2) ill defined and it requires a particular limit to overcome the difficulty, as

explained in Appendix E4. Using equation (E.3) we have then (once the integration over

x2ℓ has been performed):

log

(〈T (0)T (r)〉
〈T 〉2

)

=

∞∑

ℓ=1

nh(ℓ, n)

ℓ(2π)2ℓ

∫

d2ℓ−1x sech

(∑2ℓ−1
p=1 xp

2

)
2ℓ−1∏

p=1

sech
xp
2
K0(mr d(x1, . . . , x2ℓ−1))

(8.48)

4In Appendix E the limit
∑2ℓ

i=1 xi → 0 is performed.
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where the function h is given by (E.4):

h(ℓ, n) =
1

22ℓ−1





(

2ℓ− 1

ℓ− 1

)

+

⌊ ℓ
n
⌋

∑

p=1

(−1)pn

(

2ℓ

ℓ− pn

)

 (8.49)

As before, we can expand the Bessel function K0 inside (8.48) to extrapolate the scaling

dimension of the correlation function. After such a procedure we obtain:

xT T =

∞∑

ℓ=1

nh(ℓ, n)

ℓ(2π)2ℓ

∫

d2ℓ−1x sech

(∑2ℓ−1
p=1 xp

2

)
2ℓ−1∏

p=1

sech
xp
2

(8.50)

A further simplification comes from the following identity:

∫

d2ℓ−1x sech

(∑2ℓ−1
p=1 xp

2

)
2ℓ−1∏

p=1

sech
xp
2

=
(4π)2ℓ−1

(2ℓ− 1)!

1

π
((ℓ− 1)!)2

(8.51)

which reduces (8.50) to

xT T =
n

4π2

∞∑

ℓ=1

22ℓh(ℓ, n)((ℓ− 1)!)2

ℓ(2ℓ− 1)!
(8.52)

Since the scaling of the 〈T (0)T (r)〉 correlator changes with the parity of n (8.7), it is

worth analysing the two cases separately. For n even, we can use E.6, and the scaling xT T
becomes:

xeT T =
n

2π2

∞∑

ℓ=1

((ℓ− 1)!)2

ℓ(2ℓ− 1)!






(

2ℓ− 1

ℓ− 1

)

+

⌊ ℓ
n⌋∑

p=1

(

2ℓ

ℓ− pn

)





=
n

2π2

∞∑

ℓ=1

1

ℓ2
+

n

2π2

∞∑

ℓ=1

⌊ ℓ
n⌋∑

p=1

((ℓ− 1)!)2

ℓ(2ℓ− 1)!

(

2ℓ

ℓ− pn

)

=
n

12
+

n

2π2

∞∑

p=1

∞∑

ℓ=np

((ℓ− 1)!)2

ℓ(2ℓ− 1)!

(

2ℓ

ℓ− pn

)

=
n

12
+

1

6n
(8.53)

For n odd we can implement E.6, which gives

xoT T =
n

12
− 1

12n
(8.54)
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In this very particular case a complete summation of the form factor series has been

performed and the results are a perfect match with the expected CFT prediction (8.7)

〈T (0)T (r)〉 = r−4( n
12

+ 1
6n) for n even

〈T (0)T (r)〉 = r−4( n
12

− 1
12n ) for n odd

(8.55)

The different scaling in the odd end even cases is another signal of the intrinsic difference

between the two cases.

Such a complete summation of the form factor series is almost unique, since in the majority

of cases only truncated series can be actually computed.

Moreover, this result has been obtained for generic n and thus can be used directly to

compute the scaling of logarithmic negativity. In particular, the limit n → 1 of xeT is

equal to 1/4, in perfect agreement with the prediction of the scaling of negativity in

bosonic systems [31, 117, 118].

8.4 The Vacuum Expectation Value 〈T 〉 and The Structure

Constant CT 2

T T

The form factor expansion can be used not only to extract the leading scaling of correlation

functions, but also to evaluate the numerical values of other constants involved in the

scaling. In particular, it is possible to compute the constants appearing in (8.4,8.7) in

terms of form factor series. Let us define:

κT T̃ = logKT T̃ = 2 log (〈T 〉n)

κoT T = logKo
T T = − log

(

CT 2

T T
〈T 〉n

)

κeT T = logKe
T T = log




〈T 〉2n

2
CT 2

T T

〈T 〉2n



 (8.56)

In the same spirit of Section 3.3.2, we can compute the constants above using a form factor

expansion. Combining these results, we can estimate the numerical values of the vacuum

expectation value 〈T 〉n and the structure constant CT 2

T T in both n even and odd cases.
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8.4.1 The
〈

T (0)T̃ (r)
〉

correlation function

Let us start with the correlation function
〈

T (0)T̃ (r)
〉

. Such a correlator and its related

constant T T̃ can be used to estimate the numerical values of the vacuum expectation value

〈T 〉n for various values of n. From equation (8.33) we have:

κT T̃ = xT T̃

(

log
m

2
+ γE

)

+

∞∑

ℓ=1

2nuℓ(n)

ℓ(4π)2ℓ
(8.57)

where the coefficients uℓ(n) are given by the following integrals:

uℓ(n) =

∫

d2ℓ−1x
iFℓ(

∑ℓ
p=1 x2p−1, n) sinh(

∑ℓ
p=1 x2p−1)

cosh
∑2ℓ−1

p=1 xp

2

2ℓ−1∏

p=1
cosh

xp

2

log dℓ (8.58)

These integrals can be computed using the Vegas variant of the Monte Carlo Algorithm

(see Appendix C). In order to speed up the computation process we used a tool described

in Appendix G. For instance, the values of such integrals for n = 3 and n = 5 are shown

in Figure 8.5.

The coefficients uℓ(n) exhibit a clear exponential scaling, and we can attempt to fit

them (see Appendix F):

ufitℓ (n) = (4π)2ℓ+an+
bn
ℓ (8.59)

where the two numbers an and bn are the interpolation constants for uℓ(n) and depend

on n. Interestingly, the linear term 2ℓ is the same for all uℓ(n). The precision of such an

interpolation can be seen in Figure 8.6.

Unfortunately, it is clear that the sum
∞∑

ℓ=1

of (8.57) is divergent, since (from the inter-

polation) each term is given by

ufitℓ (n)

ℓ(4π)2ℓ
=

(4π)an+
bn
ℓ

ℓ
(8.60)

which gives rise to a divergent series. However, as we will see in the next sections, also

the infinite summation appearing in (8.61) presents a clear divergent behaviour. Since

the structure constant CT 2

T T can be obtained from a combination of (8.57) and (8.61), it is

possible to extract some meaningful physical information.
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Figure 8.5: Values of uℓ(3) and uℓ(5) in linear-logarithmic scale.

8.4.2 The 〈T (0)T (r)〉 correlation function

Let us focus now on the 〈T (0)T (r)〉 correlation function. From equation (8.48) we can

extract the value of κT T as a form factor expansion (regardless of the parity of n):

κT T = xT T
(

log
m

2
+ γE

)

+
∞∑

ℓ=1

nh(ℓ, n)vℓ
ℓ(2π)2ℓ

(8.61)
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Figure 8.6: Values (rescaled) of uℓ(3) and uℓ(5) (red dots) in linear scale checked against
the fit (8.59) (blue line).

where the coefficients vℓ are given by

vℓ =

∫

d2ℓ−1x sech

(∑2ℓ−1
p=1 xp

2

)
2ℓ−1∏

p=1

sech
xp
2

log dℓ (8.62)

These integrals can be evaluated using the Vegas-Monte Carlo algorithm (see Appendix

C) and their values are shown in Figure 8.4.2.
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Figure 8.7: The values of the integrals vℓ in linear-logarithmic scale.

The values of vℓ, which do not depend on n, exhibit a clear exponential scaling, which

can be easily interpolated as

vfitℓ = (2π)2ℓ−0.806996− 0.4363331
ℓ (8.63)

The precision of such an interpolation can be inferred from Figure 8.4.2, in which the data

and the interpolating function are rescaled in order to focus on the corrections beyond the

(2π)2ℓ term.

Using the interpolation (8.63) we can compute the sum appearing in equation (8.61)

with large values of ℓ without actually computing all the integrals (8.62).

The numerical evaluation of the constants KT and KT T̃ can then be used to compute the

structure constant CT 2

T T .

8.4.3 The CT 2

T T structure constant

We can now address the numerical evaluation of the structure constants CT 2

T T by combining

the results of previous sections concerning the coefficients KT and KT T̃ . Since the odd

and even n cases are intrinsically different , we will discuss the two cases separately.
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Figure 8.8: The (rescaled) values of vℓ (red dots) checked against the interpolating function
(8.63) (blue line) in linear scale.

The odd n case

Let us start with the odd n case. Even though it is not used for the computation of

the logarithmic negativity, its analysis provides us with interesting information about the

replica QFT content of the system.

First of all, we can compute the constant κoT T from the expression (8.61) and using the

odd variant ho (E.6) of the function h. Since ho tends to zero for large ℓ

lim
ℓ→∞

ho(ℓ, n) = 0 (8.64)

the sum appearing in (8.61) is convergent for n odd. Some values of κoT T are reported in

Table 8.2. Since the only non trivial n dependence of κoT T is encapsulated in ho, we can

n 3 5 7 9 11 13 15 17 19

κoT T 0.345 0.760 1.183 1.607 2.033 2.459 2.885 3.311 3.737

Table 8.2: Numerical values of κoT T = − log

(

CT 2

T T

〈T 〉n

)

for n odd. These values have been

computed from equation (8.61) summing up to ℓ = 1000 using the interpolation (8.63).

easily compute it also for non integer values of n. The simple dependence on n of such a
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constant is emphasised by the simple fit

κo,fitT T = −0.34 + 0.215n + 0.13/n (8.65)

which is shown in Figure 8.4.3 together with some values of κoT T computed for integer and

non integer values of n.

2 4 6 8 10
n

0.0

0.5

1.0

1.5

K
o T
T

Figure 8.9: Numerical values of κoT T (red dots) for different integer and non integer values
of n. The blue line represent the best fit −0.34 + 0.215n + 0.13/n.

Thanks to the linear scaling of κoT T in the large n regime, it is clear that the ratio

between CT 2

T T and 〈T 〉n decays exponentially for large n.

Moreover, if we specialise to the n = 1 case (in which ho(ℓ, n = 1) = 0), we have

log
CT 2

T T
〈T 〉n

= 0 for n = 1. (8.66)

Such a ratio can also be computed without taking into account any form factor expansion.

Since at n = 1 the twist field T is equal to the identity 1, we have ∆1 = 0 and 〈T 〉1 = 1.

Since T 2 = T when n is odd, we have CT 2

T T = CT
T T = C1

11
= 1 , which matches perfectly

with (8.66).

For odd values of n we can then compute exactly the ratio between two universal QFT

quantities: the structure constant CT 2

T T = CT
T T and the vacuum expectation value 〈T 〉n.

While the sum (8.57) is divergent, the sum (8.61) seems pretty convergent for odd values
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of n. For this reason, while the ratios between the two constants (the structure constant

and the VEV) is convergent, the VEV itself is divergent. In order to have a consistent

interpretation, the structure constant has to diverge as well.

The even n case

While the constant κoT T can be expressed as a convergent sum (thanks to the behaviour

of ho for large ℓ), the even case is more complicated.

Since he does not tend to zero for large values of ℓ

lim
ℓ→∞

he(ℓ, n) =
1

2
(8.67)

the sum appearing in (8.61) seems divergent. Luckily, as we have seen in Section 8.4.1,

the constant κT T̃ looks divergent as well. For this reason, while the two constants are

divergent on their own, the structure constant (which can be obtained from a combination

of the two κs constants) is itself convergent.

In particular, we can extract CT 2

T T by combining the equations (8.56):

logCT 2

T T = −n
∞∑

ℓ=1

(

he(ℓ, n)vℓ
ℓ(2π)2ℓ

+
uℓ
(
n
2

)
− 2uℓ(n)

ℓ(4π)2ℓ

)

(8.68)

whose actual values can be computed by employing the fitted function vfitℓ and uℓ(n)
fit

(Figure 8.10). In particular, for n = 2 we have

uℓ(2) = 22(ℓ−1)vℓ (8.69)

Such an equality can be used to simplify further the equation (8.68):

logCT 2

T T =

∞∑

j=1

(1− 2he(j, 2))vj
j(2π)2j

for n = 2 (8.70)

Since he(2, ℓ) is identically equal to 1/2 for any value of ℓ, we have:

logCT 2

T T = 0 for n = 2

CT 2

T T = 1 for n = 2 (8.71)

As it has been noticed in [119], in the n = 2 case, the squared twist field T 2 is nothing

but the identity operator (it maps each copy in itself). In such a case CT 2

T T = C1

T T and it

has to be equal to one (as imposed by the CFT normalisation of correlation functions5).

5In CFT normalisation 〈O(r)O(0)〉 = 1

r4∆O
.

194



8.4. The Vacuum Expectation Value 〈T 〉 and The Structure Constant CT 2

T T

2 4 6 8 10 12 14

n

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−l
og
C
T2 TT

Figure 8.10: Numerical values of −logCT 2

T T for some even values of n (red dots). Both
interpolating functions (blue and green lines) provide a very good fit of the data.

Continuation to n=1

As shown in Figure 8.10, the logarithm of the structure constant exhibits a clear linear

behaviour in n. Such a linear scaling can be interpolated using the fit:

log
(

CT 2

T T
)fit,1

= a+ b n+
c

n
(8.72)

Alternatively, we can consider another fitting function:

log
(

CT 2

T T
)fit,2

= a+ b n+ c log n (8.73)

Such fitting functions can then be used to extrapolate the value of the structure con-

stant at n = 1.

Many sources of error are present in computing the structure constants. First of all,

the infinite series (8.68) converges very slowly, inducing a truncation error. Furthermore,

the various terms of (8.68) come from various interpolations themselves. Probably, the

main source of error is given by the systematic truncation of the form factor expansion at

ℓ = 2000 particles. As can be noticed in table 8.1, the difference between the theoretical

prediction and the form factor expansion of the scaling dimension is around 2%. Using

a similar truncation, we should expect a similar error also for the value of the constants

κT T and κT T̃ . Since the logarithm of the structure constant can be estimated combining
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T T

three values of κ, the systematic error associated with the truncation of the form factor

expansion (8.68) should be at least 6%6. This amount is only a lower bound for the actual

error. As we said before, there is an additional uncertainty coming from the fact that the

various terms of (8.68) come themselves from a fitting extrapolation. We believe then the

values of logCT 2

T T we computed should be considered with an error of about 10%. It is

clear from (F.4), (F.5), (F.9) and (F.10) that the final error associated with the fitting

constant is proportional to the error of the logCT 2

T T values, if they are all the same as

percentage of the actual value.

Using the the formulae of Appendix F, we can compute the values of the fitting constants

and their relative errors.

When using a polynomial function (8.72), the fitting parameters are (using a 10% error)7:

a = −1.0± 0.2

b = 0.27 ± 0.02

c = 0.9± 0.2 (8.74)

On the other hand, the fitting parameters of (8.73) are given by (using a 10% error)7:

a = −0.31 ± 0.02

b = 0.31 ± 0.03

c = −0.46 ± 0.12 (8.75)

Both fitting can be used to extrapolate the value of CT 2

T T in the limit ne → 1. When

considering the fit (8.72), the structure constant is given by:

CT 2

T T = 0.8± 0.3 (8.76)

while the fitting (8.73) gives:

CT 2

T T = 1.00 ± 0.06 (8.77)

These estimates lie below the analytical value of 1.20184. . . found in [117] and the numerical

value of 1.38. . . which can be extracted using numerical data of [15]. This result has been

obtained in [117] for a compactified free boson theory. The above numerical value is

6In other words, the value of logCT 2

T T comes from three series: one in vℓ and two in uℓ (see equation
(8.68)).

7The n = 2 value is not affected by truncation error, as all terms of the series (8.70) are identically
zero. We set the numerical error of this value to 10−8, as an exactly zero error makes the fitting formulae
divergent (see Appendix F).
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computed by performing the n→ 1 limit before the taking the compactification radius to

infinity. The derivation of such values will be sketched in Sections 8.5.1 and 8.5.2. This

discrepancy should not surprise, as our form factor computations if affected by a number

of systematic errors and truncations. Moreover, it is common for form factor predictions

to approach the expected value from below (see, for instance Figure 6.5), as all series

involved are positive-definite.

8.5 Interpretation of Divergent Series

In previous sections we encountered some divergent series when studying some physical

quantities using form factors. In particular, we showed that the form factor expansion of

log 〈T 〉n (8.78)

and

log
〈T 〉2ne

2
CT 2

T T

〈T 〉2ne

(8.79)

diverge for ne even. We believe that such divergences arise from the presence of extra

logarithmic terms in the two-point correlation function. In particular, when we extracted

the form factor expansion of log 〈T 〉n from (8.33) by a direct comparison with the scaling

(8.34), we allow only power-law terms in the short distance scaling. If, on the other

hand, extra logarithmic terms are present, the definition of the constant KOO (8.56) is

ambiguous. In particular, if such terms are present, we should consider an alternative

short distance expansions:

log





〈

T (0)T̃ (r)
〉

〈T 〉2n



 = −4∆n log r − ρ1(n) log (p log r)− 2 log 〈T 〉n

(8.80)

and

log

(

〈T (0)T (r)〉
〈T 〉2n

)

=







−2∆n log r + log
CT 2

T T

〈T 〉n
for n odd

−4
(

∆n −∆n
2

)

log r + log
〈T 〉2n

2
CT 2

T T

〈T 〉2n
−ρ2(n) log (p log r) for n even

(8.81)
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where ρ1(n) and ρ2(n) are unknown functions and p is an unknown parameter. Of course,

the presence of such parameters implies a redefinition of the constants κT T̃ and κT T ,

leading to an ambiguity in the identification of the structure constant and the vacuum

expectation value of twist fields. It should be noticed that an extra logarithmic divergence

can be found only when the associated form factor expansion for the computation of the

constant term is divergent. In particular, it appears in the expansion of 〈T (0)T̃ (r)〉 and
〈T (0)T (r)〉 (n even), while no such term is present for the 〈T (0)T (r)〉 (n odd) correlation

function. An analytic derivation of the extra logarithmic scaling in the correlation function

(8.80) will appear on [120]. Even though the functions ρ1(n) and ρ2(n) are unknown, it

is possible to make same assumptions based on the convergence of some combined series.

In particular, the fact that the series (8.68) is convergent implies that

ρ1(n) + ρ1

(n

2

)

= ρ2(n) (8.82)

Additionally, preliminary results of [120] suggests that

log
〈T 〉n
〈T 〉n−1

2

(8.83)

admits a convergent form factor expansion (even though the individual vacuum expecta-

tion values 〈T 〉n themselves are divergent). The convergence of such factor implies:

ρ1(n)− (n− 2)ρ1(2) = 0 (8.84)

which is equivalent to

ρ1(n) = ρ(n− 1) (8.85)

with ρ constant.

Moreover, since the series (8.57) diverges positively, the constant ρ should be positive.

The presence of double logarithmic terms in the short distance scaling of branch point

twist fields should not surprise, as the underlying theory is (at critical point) a logarithmic

CFT [90]. Double logarithmic terms can be found when studying the logarithmic nega-

tivity of non compactified massless free boson theories [117]. Furthermore, it has been

shown in [1] (see Chapter 5) that extra double logarithmic terms in the form ρ log log r are

always present in the scaling of the Rényi entropy in logarithmic CFT. In such a context

the coefficient ρ, a positive integer, is related to the algebraic structure of the CFT. Ad-

ditionally, such double logarithmic divergences can be directly derived using some results

of [121]. In particular, combining equation (4) and (66) of [121], it is possible to study a
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8.5. Interpretation of Divergent Series

particular four-point function of twist fields in compactified free boson theory in the large

compactification radius R≫ 1 regime:

〈

T (−r1)T̃ (0)T (r2)T̃ (r2 + r3)
〉

=
g(r1, r2, r3)

4∆nRn−1

n−1∏

k=1
2F1

(
k
n , 1− k

n , 1;x
)

2F1

(
k
n , 1− k

n , 1; 1 − x
)

(8.86)

where 2F1 is an hypergeometric function [49], x = r1r3
(r1+r2)(r2+r3)

is the usual cross ratio

and g is a known ratio of the positions r1, r2 and r3.

It is possible to expand the correlation function (8.86) around r2 ≈ 0 (equivalent to x ≈ 1):

〈

T (−r1)T̃ (0)T (r2)T̃ (r2 + r3)
〉

≈ (r2(r1 + r3))
−4∆n Rn−1

∏n
k=1

− log(1−x)

Γ( k
n )Γ(1−

k
n )

=
(r2(r1 + r3))

−4∆n (2πR)n−1

n(− log(1− x))n−1
(8.87)

The von Neumann entropy of two disjoint intervals with the rest of the system can be

computed by taking the n→ 1 limit of the correlator (8.87):

lim
n→1

log
〈

T (−r1)T̃ (0)T (r2)T̃ (r2 + r3)
〉

1− n
=

1

3
log(r2(r1 + r3)) + log(− log(1− x))

− log(2πR) (8.88)

which suggests that ρ = 1 and

ρ1(n) = n− 1

ρ2(n) =
n

2
(8.89)

In conclusion, we believe that the divergences appearing in some form factors expansions

are closely related to the presence of extra logarithmic terms in the short distance scaling

of the associated correlation functions. Moreover, thanks to the expansion (8.87) (that

follows from [121]) and to suggestions coming from [120], we propose that the Rényi

entropy of the non compactified massless free boson scales as:

Sn(r) ∼ n+ 1

6n
log r + log log r (8.90)

Like other logarithmic CFTs, the double logarithmic term [1] does not depend on the

number n of copies and it appears also in the von Neumann entropy. It would be very

interesting to investigate such scaling numerically, even though, as suggested in [110],
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8.5. Interpretation of Divergent Series

logarithmic properties usually hold only at the critical point and any perturbation could

make logarithmic corrections vanish. Since numerical simulations (like DMRG [32]) creates

a small mass gap, recovering logarithmic corrections could be very challenging.

8.5.1 Three-point structure constant of CT 2

T T and logarithmic negativity

The analytical value of the three-point structure constant has been derived in [117]. In par-

ticular, they showed that in massless non compactified free boson theories the logarithmic

negativity of two adjacent regions (of size r1 and r2) scales as:

E(r1, 0, r2) ∼ 1

4
log y − 1

2
log

(
1

2
log y

)

− log P1 (8.91)

where y = r1r2/(r1 + r2) and P1 is the inverse of the structure constant8

(P1)
−1 = CT T̃ 2T (n = 1) = CT 2

T T (n = 1)

Notice that the above scaling is a generalisation of (8.81) to finite subsystems. The double

logarithmic term appears with the predicted coefficient of ρ2(1) = 1/2. As we said before,

the presence of the coefficient p (equal to 1/2 in this case), makes ambiguous the iden-

tification of the structure constant. Moreover, the value of constant P1 can be extended

beyond the n → 1 limit and their values can be compared against equation (8.68). The

generic expression for Pn can be found in [117] and it is equal to:

Pn =
2π

n−3
2√
n

exp

∫ ∞

0

dt

t
et

[

1

1− e−t

(

e
t
2 − 1

e
t
n − 1

− n

2

)

− n− 2

8

]

(8.92)

As we said before the analytic value of the structure constant has been obtained by per-

forming the n→ 1 limit before taking to infinity the compactification radius R. While the

radius R disappears in the n→ 1 limit, it plays a non trivial role for n 6= 1. In particular,

when considering the scaling of logarithmic negativity for compactified free boson theories,

a R(n−1)/2 factor is always present. For this reason, it is hard to compare (8.68) and (8.92),

as a divergent constant appears when decompactifying the theory. In order to perform

a meaningful comparison, we should impose some constraints. In particular, we impose

that P2 correctly recover the n = 2 case (8.70). In order to satisfy such a requirement, we

introduce a modified version of the function Pn:

Pn → P̃n ≡
(
π
2

)n−1
2 Pn (8.93)

8The equivalence between the two structure constants can be found in [119].
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8.5. Interpretation of Divergent Series

which satisfies the required property:

P̃2 = 1 (8.94)

Additionally, the two versions of the function Pn coincide at n = 1:

P̃ = P1 (8.95)

We can now compare the form factor expansion (8.68) and the function P̃n (see Figure

8.11).
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Figure 8.11: Numerical values (red dots) of the logarithm of the three-point structure
constant computed using equation (8.68). The blue and green solid line the −1.0+0.27n+
0.9/n and −0.31+0.31n−0.46 log n fitting functions, respectively. These values are checked
against log P̃n (yellow dashed line).

The values of P̃n are very close to the form factor expansion of the three-point struc-

ture constant CT 2

T T , especially in the large n regime. This agreement suggests that our

identification

(

P̃n

)−1
= CT 2

T T (n) (8.96)

is correct. As usual, the form factor expansion fails to recover completely the analytic val-

ues of conformal quantities. In particular, form factor computations approach by below (as

absolute value) the true values. Nevertheless, the linear and the logarithmic contributions
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8.5. Interpretation of Divergent Series

of the large n expansion of log P̃n match the logarithmic fit of the form factor expansion:

(

log P̃n

)

n≫1
= −1.25 + 0.34− 0.5 log n

(

− logCT 2

T T
)fit

= −0.31 + 0.31n − 0.46 log n (8.97)

8.5.2 Three-point structure constant of CT 2

T T and out of equilibrium sys-

tems

The three-point structure constant can also be probed studying how negativity changes

after a quantum quench. In a particular set up [15], two harmonic chains at inverse

temperature β are connected (at time t = 0) and let evolve unitarily. As can be seen in

Figure 8.12, the negativity grows logarithmically:

E ∼ 1

2
log t+ c1 (8.98)

for a short period of time and then reaches a temperature dependant plateau:

E ∼ 1

2
log β + c2 (8.99)

In [119] it has been shown that, even though the constant c1 and c2 are non universal,

 0
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Figure 8.12: Time evolution of logarithmic negativity after a quench at equal temperature
β−1. Picture taken from [15] with permission from the authors.

their difference is related to the value of the structure constant at n = 1:

−2 lim
ne→1

logCT 2

T T = c1 − c2 −
1

2π
(8.100)
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From the raw numerical data it is possible to extrapolate the constants c1 and c2. In

particular, by looking at the various plateaus (red, green, blue and purple points in Figure

8.12) and solving equation (8.99), we can infer the value of c2 ≈ 0.119. Such a result has

been obtained as an average of the four values of c2 (one for each plateau). Moreover, the

constant c1 can be extrapolated from the short time logarithmic growth (red points):

c1 ≈ 0.47 (8.101)

Using the extrapolated data it is possible to compute the structure constant:

CT 2

T T ≈ 1.33 (8.102)

The constant c1 has been obtained fitting the first ten points (up to t = 10) of the time

evolution of the negativity. As shown in [119], the logarithmic growth (8.98) holds in the

short time regime t≪ L, where L is the smallest size of the system. In [15] two subsystems

of 50 sites each have been considered.

Even though such an estimate relies on numerical (non exact) information, the agreement

with the analytical predictions (see Section 8.5.1) is remarkable. Moreover, the theoretical

explaination [119] of the time evolution of logarithmic negativity does not take into ac-

count the double logarithmic correction. As suggested in [110], the non diagonalisability

condition of the Hamiltonian underlying the logarithmic theory can be easily broken and

in some cases it appears only at the critical point. It is possible that finite size corrections

destroy the logarithmic feature of the boson model studied in [15].

8.6 Conclusions

In this chapter we have performed a number of form factor expansion to study different

correlation functions of twist fields in the free Boson theory. In particular, we were able

to compute the scaling dimensions x of the correlators:

〈T (0)T̃ (r)〉
〈T 〉2 ∼ KT T̃ r

−4xT T̃

〈T (r)T (0)〉
〈T 〉2 ∼ KT T r−4xT T for n even

〈T (r)T (0)〉
〈T 〉2 ∼ KT T r−4xT T for n odd

Thanks to the simple nature of the various terms of the form factor expansion, we could

represent each contribution of the xT T̃ expansion as a single integral, regardless of the
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number of particles. Such a simplification allowed us to truncate the expansion at a

very high number of particles. The form factor expansion of the scaling of the correlator

〈T (0)T (r)〉 is even simpler. It can be computed exactly taking into account all terms. In

this even simpler case the form factor series is computable analytically. The agreement

between such an expansion and the short distance prediction provides a powerful test for

the twist fields approach to the evaluation of entanglement. Moreover, we showed that

such scaling dimension can be computed not only for integer values of the number of copies

n, but we managed to perform also an analytic continuation to non integer values of n.

In the same spirit of Chapter 5, we computed also the form factor expansion of the con-

stant K. We found that, with the exception of KT T with n odd, the form factor series of

the constant K diverges, even though very slowly. We believe that such a divergence is

associated with the peculiar features of the free boson theory. In particular, the non com-

pactified massless free boson can be described by a logarithmic CFT and its entanglement

entropy has an extra double logarithmic correction (see Chapter 5). It has been shown in

[117] that massless twist fields correlator present logarithmic divergences at small scales

in free boson theories. Logarithmic scaling are usually associated with a degeneracy in

the values of the scaling dimensions. In particular, all composite fields of the form : T φk :

with k = 0, 1, 2, . . . have the same conformal dimension. Here φ is the free boson field

with conformal dimension 0. The composite field : T φk : is the leading field appearing in

the OPE between T and φk and it has been discussed in Chapters 5 and 6. Such double

logarithmic corrections were implicit in the scaling of Rényi and von Neumann entangle-

ment entropy [121] and they have now been independently derived in [120]. When taking

into account these extra divergences, the short distance expansion of twist fields becomes:

〈T (0)T̃ (r)〉
〈T 〉2 ∼ KT T̃ r

−4xT T̃ (log r)1−n

〈T (r)T (0)〉
〈T 〉2 ∼ KT T r−4xT T (log r)−

n
2 for n even

〈T (r)T (0)〉
〈T 〉2 ∼ KT T r−4xT T for n odd

The actual power of the logarithmic term has been fixed using some constraints derived

in [117] and [120].

Even though we were not able to compute a form factor expansion for the new constants K

(with the exception of KT T with n odd case), we managed to calculate some interesting

ratios. In particular, we wrote a form factor expansion for the three-point structure

constant CT 2

T T for n even. Like the dimensions x, the constants CT 2

T T can be expressed as

infinite sum. While the expansion of the scaling dimensions x are simple enough to allow

us to calculate them with arbitrary precision, the expansion of the structure constants CT 2

T T
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(equation 8.68) is more complicated. Using the fitted values of the coefficients uℓ and vℓ we

computed the structure constant at different even values of n using 2000 particles. Even

though the even n series is very well behaving, the structure constant seems divergent for

n odd.

In order to extrapolate the value of the structure constant CT 2

T T in the limit ne → 1, we

compute its values for n even. We compared our extrapolation with both analytical [117]

and numerical [15] results. In [15], the authors studied how the logarithmic negativity of an

harmonic chain changes after a quench. Using the CFT description of such quench [119], it

is possible to compute the structure constant CT 2

T T from the time evolution of logarithmic

negativity. Even though our extrapolation is affected by a number of truncation and

fitting, there is a reasonable agreement between our and previous results. Even if no double

logarithmic corrections has been taken into account in the study of the time evolution of

the logarithmic negativity, the value of the structure constant extrapolated from [15] data

is in good agreement with the analytical prediction [117]. Additionally, we compared our

even n results for the structure constant CT 2

T T with the analytical prediction [117] finding

a good agreement, especially in the large n regime.

It is quite remarkable how the form factor expansion of correlators involving twist fields

in free Boson theory can be actually computed with so many particles (in some case also

with an infinite number). In contrast, we managed to sum only up to three particles in

the form factor expansion in the Lee-Yang theory (see Chapter 6).
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Chapter 9

Conclusions

Through the various chapters of the thesis, we presented a number of results regarding the

scaling of entanglement. After a brief introduction to the various measures of entanglement

(Chapter 2) and to integrable field theory techniques (Chapter 3), some known results have

been presented. In particular, as discussed in Chapter 4 it is known that if a unitary one-

dimensional quantum system has a critical point described by a conformal field theory

with central charge c, the entanglement between a susbsytem and the rest of the system

scales as [7, 8]:

S ∼ c

3
log

r

ǫ
r ≪ ξ (9.1)

S ∼ c

3
log

ξ

ǫ
r ≫ ξ (9.2)

where r is the size of the subsystem and ξ is the correlation length1. These scalings

describe two very different regimes: when the system is critical ξ = ∞ (or almost critical

r ≪ ξ) and when the system is so far from the critical point that the correlation length

is much smaller than the size of the subsystem ξ ≪ r. Moreover, it is known that in an

intermediate regime r ∼ ξ, entanglement scales as [14]:

S ∼ c

3
log

ξ

ǫ
− 1

8
K0

(
2r

ξ

)

(9.3)

where K0 is a modified Bessel’s function of the second kind. While the logarithmic satura-

tion depends on the central charge c of the particular theory, the scaling of the corrections,

including the pre-factor 1/8, is universal. The above entropy has been computed by eval-

uating a correlation function of particular fields called branch point twist fields T using a

1If particles with different masses are present, the correlation length is given by the inverse of the
lightest mass.
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form factor expansion (see Chapter 3). In particular, it is known that:

S ∼ lim
n→1

d

dn
〈T (0)T̃ (r)〉 (9.4)

One of the main achievements of this thesis is the extension of these results to the non

unitary case. From the CFT point of view, the main difference between unitary and non

unitary theories is given by different ground state structures. In unitary CFT, the physical

ground state |gs〉 (i.e. the state with the lowest energy) coincides with the conformal

vacuum |∅〉. This is so because the identity operator is the field with the smallest conformal

dimension (∆1 = 0). In non unitary CFTs the smallest conformal dimension ∆min is

negative and the ground state is then created by the relative primary field φ:

|gs〉 = φ(0)|∅〉 (9.5)

In Chapter 5 we showed how this feature affects the scaling of entanglement entropy in

non unitary CFT:

S ∼ ceff
3

log
r

ǫ
(9.6)

which is a reminiscent of what happens in the scaling of the ground state energy (see

Section 3.1.6). As the ground state energy, entanglement entropy represents a physical

quantity and its scaling is governed by the effective central charge ceff. We also proposed

an interpretation in terms of modified twist fields : T φ :, which includes also the field φ

responsible for the creation of the ground state. A more general definition of entanglement

entropy which holds also in the non unitary case has been proposed:

S ∼ lim
n→1

d

dn

〈: T φ : (0) : T̃ φ : (r)〉
〈φ(0)φ(r)〉n (9.7)

The above ratio suggests a new prescription in defining additional “physical” correlators

in CFT when the ground state differs from the conformal vacuum:

〈〈O1(x1)O2(x2)〉〉 ≡ 〈: O1φ : (x1) : O2φ : (x2)〉
〈φ(x1)φ(x2)〉

(9.8)

While 〈O1(x1)O2(x2)〉 scales in an “unphysical way”, i.e. it diverges at large distances, its

modified version behaves in the usual way (it vanishes at infinity and it diverges at short

distance).

Like in (9.7), it is possible that such “improved” correlation functions should be studied

in order to probe physical features of a non unitary system, even though this assumption

requires further investigations.
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Additionally, we computed the scaling of entanglement in logarithmic CFT. In particular

we showed that, if the underlying CFT is logarithmic, entanglement entropy scales as:

S ∼ ceff
3

log
r

ǫ
+ p log log

r

ǫ
(9.9)

Moreover, we checked the scaling (9.6) in an actual spin chain using an exact diagonalisa-

tion approach.

In Chapter 6 we evaluated the entanglement entropy in the massive Lee-Yang model, the

simplest non unitary integrable quantum field theory. In particular, we performed a form

factor expansion of the correlators (9.7), obtaining:

S ∼ ceff
3

log
ξ

ǫ
+ aK0

(
r

ξ

)

r ≫ ξ (9.10)

where a is a non universal constant which depends on the theory considered. Apart

from the presence of the effective central charge, the main difference from the unitary

case is that the leading correction to saturation is not universal. We showed that this

non universal behaviour is due to the presence of modified twist fields. While a direct

numerical verification of the scaling (9.3) has already been performed in [99], such a check

is still missing in the non unitary case, mainly because it is not easy to handle the few

non unitary off critical spin chains known in the literature [77, 4].

In Chapter 7 we continued the analysis of the scaling of entanglement in non unitary

systems by implementing the Corner Transfer Matrix tool on the Forrester-Baxter RSOS

models. In a particular regime, such models provide a lattice realisation of perturbed non

unitary minimal models. The RSOS model is a two-dimensional classical theory which can

be interpreted as the euclidean time evolution of the one-dimensional quantum system we

are referring to when evaluating the entanglement. We showed non only that the effective

central charge plays an important role in the entropy , but also that the corrections to the

logarithmic scaling are affected by the non unitary nature of such models:

Sn(ξ) ∼ ceff
12

n+ 1

n
log

ξ

ǫ
+An +Bn

(
ξ

ǫ

)−∆eff
6

(9.11)

where we introduced the ∆eff = ∆ − ∆min effective conformal dimension. As for the ef-

fective central charge, we interpret the presence of an effective conformal dimension as a

consequence of the non trivial ground state. Moreover, we extended the above computa-

tion to the off critical logarithmic case. Even though double logarithmic corrections to

entropy are expected according to (9.9), they do not appear in the FB RSOS case. This

absence is in perfect agreement with the observation [110] that all the logarithmic fea-

tures of logarithmic FB RSOS minimal models hold only at the critical point. Off critical
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minimal models are only few of the many theories described by the various regimes of the

FB RSOS model. In the unitary case [108], entanglement has been computed not only in

the off critical minimal model regime, but also in other cases, like the one described by

parafermionic theories. In the non unitary case, the computation of the entanglement in

other regimes is still missing.

Since entanglement is a genuine quantum phenomenon, we need to know which is the

quantum Hamiltonian we are considering when computing the entanglement. For this

reason, we also derived the quantum chain whose euclidean time evolution can be rep-

resented by the RSOS models. Such an Hamiltonian extends some previous results and

provides the first one dimensional quantum realisation of a generic off critical minimal

model.

In Chapter 8 we studied the scaling of twist field correlation functions in non compacti-

fied massive free boson theories. In particular, we analysed the 〈T (0)T̃ (r)〉 correlator (to
compute the entanglement entropy) and the 〈T (0)T (r)〉 (to compute the logarithmic neg-

ativity) using form factor expansions. The simple nature of the free boson theory allowed

us to compute all form factor expansions with a tremendous amount of contributions.

Usually, just few form factor contributions can be actually computed. For instance, in

Chapter 6, only three contributions have been considered. In this chapter we could sum

all terms of some series while we considered few thousand contributions in others. Even

though such expansions recover very well the scaling dimensions of these correlators, they

seem to diverge when computing other physical constants relative to the same correlation

functions. We interpret such divergences as a signal of the presence of extra double loga-

rithmic corrections in the scaling of entanglement entropy and logarithmic negativity. We

suppose that such extra corrections, which have the same form of (9.9) are due to the

logarithmic nature of the non compactified free boson theory. Even though these extra

logarithmic terms make the computation of physical quantities very hard, some universal

ratios can be computed as a form factor expansion. In particular, the three point structure

constant CT 2

T T

T (0)T (r) ∼ CT 2

T T r
−2(2∆T −∆T 2 )T 2(0) (9.12)

can be expressed using an infinite series of form factor contributions.

The computation of such constant for even values of n and its continuation at n = 1 allows

us to directly access the scaling of logarithmic negativity. Using a numerical fitting, we

extrapolated its numerical value at n = 1 and we found a reasonable agreement with pre-

vious analytical [117] and numerical results [15]. Even though the form factor expansion

and the CFT computation [117] clearly show the presence of extra logarithmic corrections

in the scaling of logarithmic negativity, such corrections have not been observed in numer-
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ical simulations yet.

The study of entaglement in quantum systems is an invaluable source of information

for both unitary and non unitary theories. Even though non unitary systems have always

been regarded as “non physical”, in recent years they have been attracting the attention

of many scholars. From the many-body point of view, they constitute a magnificent play-

ground, especially because (at the critical point) their ground state is not the conformal

vacuum [50, 77].

Many questions are still open. For instance, an effective description of logarithmic negativ-

ity in non unitary quantum field theory is still missing. If we accept the prescription (9.8),

we can naively obatain the non unitary version of each formula including twist fields2 by

substituting each field T with its counterpart : T φ : and dividing by the correct normal-

ising correlation function. While this assumption provides an intuitive prescription, there

is no formal proof whether such a recipe could work or not. More work in this direction

is still needed to have a full picture of entanglement in non unitary theories.

Moreover, entanglement is a powerful probe to extract information about the conformal

properties of a system quenching through a critical point [122, 123, 124]. A further gener-

alisation of such non equilibrium mechanisms could help us understand better non unitary

theories. From a numerical point of view, these phenomena can be studied using quantum

Hamiltonians like [77] or the new class of Hamiltonians derived in Chapter 7.

Of course, the computation of entanglement in non unitary theories is not restricted only to

one dimensional systems. Interesting results in this direction for specific two dimensional

non unitary quantum models have been recently developed [125].

2Like equation (10) in [31].
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Appendix A

Values of Ai

Residue equations (6.30) and (6.39) for the polynomial Q3 can be solved using the guess

(6.45). The solution in terms of the coefficients Ai is given by:

A6 = A7 = 0, A1 = A4 =
αF

O|1
1 (C0(n) cos

2 π
3n − α〈O〉−1F

O|1
1 H1(n) cos

2 π
2n)

sin π
6n sin 5π

6n

,

A2 =
αF

O|1
1 (α〈O〉−1F

O|1
1 H1(n)− C0(n))

4 sin π
6n sin 5π

6n

,

A3 = −αC0(n)F
O|1
1

(
5 cos π

6n + 4cos π
2n + 2cos 5π

6n + 6cos 7π
6n + cos 11π

6n + cos 13π
6n − cos 5π

2n

)

4 cos π
2n sin π

6n sin 5π
6n

+
α2〈O〉−1(F

O|1
1 )2H1(n)

(
11 cos π

2n + 6cos 3π
2n + cos 5π

2n

)

4 cos π
2n sin π

6n sin 5π
6n

A5 =
αC0(n)F

O|1
1

(
2 cos π

n + 1
)2 (

cos π
6n + cos π

2n + 2cos 7π
6n − cos 3π

2n + cos 11π
6n − cos 13π

6n

)

4 cos π
2n sin π

6n sin 5π
6n

−α
2〈O〉−1(F

O|1
1 )2H1(n)

(
2 cos π

n + 1
)3

4 sin π
6n sin 5π

6n

(A.1)
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Appendix B

Structure Constants

In this appendix we will compute some conformal structure constants involved in the OPE

of simple and composite twist fields of the Lee-Yang theory. Even though the following

results are computed for the Lee-Yang theory, they can be very easily extended to different

systems. To do so, we will implement the actual definition of the twist field itself:

〈

T (x1)T̃ (x2)Ok(x3)
〉

〈

T (x1)T̃ (x2)
〉 = 〈O(x3; sheet k)〉 (B.1)

Such a situation describes a multi-copied theory with branch cut between x1 and x2.

By definition, all correlators involving twist fields are defined on C in the multi-copied

theory and the index k in Ok(x3) refers to the number of the copy. On the other hand,

correlator involving operators in the form O(x3; sheet k) are computed on the Riemann

manifold Mn(x1, x2) (see Chapter 4). The manifold Mn(x1, x2) can be mapped onto C

using the conformal map g:

g : Mn(x1, x2) → C\{0,∞}

g(z) =

(
z − x1
z − x2

) 1
n

∂g(z) :=
∂g

∂z
(z) =

1

n

y2 − y1
(z − y1)(z − y2)

(
z − y1
z − y2

)1/n

(B.2)

We can now compute the conformal structure constants involving Twist Fields by a direct

comparison between correlation functions computed with different methods.
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B.1. Structure Constants of Twist Fields T

The main idea is to compute ratios like

〈

T (x1)T̃ (x2)Ok(x3)
〉

〈

T (x1)T̃ (x2)
〉 (B.3)

using the OPE between twist fields as define in Chapter 6 and to compare the results with

(B.1).

∆ = −1/5 is the conformal dimension of the field φ. ∆T and ∆:T φ: are the conformal

dimensions of the twist fields T and : T φ :.

B.1 Structure Constants of Twist Fields T
In the following section we will compute various correlation functions involving “simple”

Twist Fields T . When two or more fields appear in the same correlation functions, the

correlator itself can be factorised if the fields belong to different copies. For instance:

〈φ1(x1)φ2(x2)φ2(x3)〉 = 〈φ1(x1)〉 〈φ2(x2)φ2(x3)〉 (B.4)

B.1.1 The CΦ1

T T̃ structure constant

Let us consider the following correlation function in the short distance limit:

〈T (x1)T̃ (x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

x1→x2∼ C̃Φ1

T T̃ |x1 − x2|2∆
n∑

j=1

〈φj(x2)φ1(x3)〉

= C̃Φ1

T T̃ |x1 − x2|2∆〈φ(x2)φ(x3)〉
= C̃Φ1

T T̃ |x1 − x2|2∆|x2 − x3|−4∆ (B.5)

Of course, there are other terms in the OPE of the Twist Fields, but all of them vanish

when the correlation function is evaluated. For instance, the following term:

⌊n
2 ⌋+1
∑

j=2

C̃
Φ1,j

T T̃ 〈Φ1j(x2)φ1(x3)〉 =

⌊n
2 ⌋+1
∑

j=2

C̃
Φ1,j

T T̃
#1j

〈φ1(x2)φj(x2)φ1(x3)〉

= 〈φ1(x2)φ1(x3)〉
⌊n

2 ⌋+1
∑

j=2

C̃
Φ1,j

T T̃
#1j

〈φj(x2)〉

(B.6)
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B.1. Structure Constants of Twist Fields T

always vanishes, since one-particle correlators are always equal to zero in CFT.

In particular, all the other terms of the OPE contain a string of fields belonging to different

sheets. All these fields but one factorise into one-point correlation functions, which are

identically zero in CFT.

On the other hand, the above correlator can be computed using the definition (B.1):

〈T (x1)T̃ (x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

= 〈φ(x3; sheet k)〉

= |∂g(x3)|2∆
〈

φ
(

e
2πik
n g(x3)

)〉

(B.7)

The last correlation function is defined on the complex plane. Any one-point function in

CFT vanishes identically for any value of x3. Comparing the two results for the correlation

functions it is clear that

CΦ1

T T̃ = 0 (B.8)

The exponential factor exp 2πik
n has a geometric interpretation coming from the conformal

map (B.2). The idea is to map each sheet into a Riemann sphere with a cut between the

two poles. Each of these cut spheres can be contracted into a slice and the all slices can

be packed together into a sphere. Such a sphere can be mapped back to a plane. For this

reason, the exponential factor is needed to keep track of the original sheet.

B.1.2 The C
Φ1j

T T̃ structure constant

The C
Φ1j

T T̃ structure constant, which is the first non-trivial involving twist fields, can be

computed in the same way as the CΦ1

T T̃ constant.

Consider the following short distance scaling, with k 6= 1:

〈T (x1)T̃ (x2)φ1(x3)φk(x4)〉
〈T (x1)T̃ (x2)〉

x1→x2∼ |x1 − x2|4∆
⌊n

2 ⌋+1
∑

j=2

C̃
Φ1,j

T T̃ 〈Φ1,j(x2)φ1(x3)φk(x4)〉

= C̃Φ1k

T T̃ |x1 − x2|4∆〈Φ1,k(x2)φ1(x3)φk(x4)〉
= C̃

Φ1,k

T T̃ |x1 − x2|4∆(|x2 − x3||x2 − x4|)−4∆ (B.9)

As before, all other terms of the OPE vanish when inserted in such a correlation function.

In all terms but one, at least one one-point function can be factorised out of the correlator.

In order to evaluate the conformal structure constant, we compute the correlation function
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B.2. Structure Constants of Composite Twist Fields : T φ :

involving twist fields using (B.1):

〈T (x1)T̃ (x2)φ1(x3)φk(x4)〉
〈T (x1)T̃ (x2)〉

= |∂g(x3)|2∆|∂g(x4)|2∆〈φ(e
2πi
n g(x3))φ(e

2πik
n g(x4))〉

=
n−4∆|x2 − x1|4∆〈φ(e

2πi
n g(x3))φ(e

2πik
n g(x4))〉

|x3 − x1|2∆(1− 1
n
)|x3 − x2|2∆(1+ 1

n
)|x4 − x1|2∆(1− 1

n
)|x4 − x2|2∆(1+ 1

n
)

=

n−4∆|x2 − x1|4∆
∣
∣
∣
∣
e

2πi
n

(
x3−x1
x3−x2

) 1
n − e

2πik
n

(
x4−x1
x4−x2

) 1
n

∣
∣
∣
∣

−4∆

|x3 − x1|2∆(1− 1
n
)|x3 − x2|2∆(1+ 1

n
)|x4 − x1|2∆(1− 1

n
)|x4 − x2|2∆(1+ 1

n
)

x1→x2∼ n−4∆|x2 − x1|4∆|e
2πi
n − e

2πik
n |−4∆

|x3 − x2|4∆|x4 − x2|4∆

(B.10)

Comparing the two results we obtain:

C̃
Φ1,k

T T̃ = n−4∆|1− e
2πi(k−1)

n |−4∆ (B.11)

B.1.3 Higher-point structure constants

From the previous case it is possible to recover a general formula to compute the J-point

structure constants. The general rule is given by

C
Φk1···kJ

T T̃ = n−2J∆
〈

φ
(

e
2πik1

n

)

φ
(

e
2πik2

n

)

· · ·φ
(

e
2πikJ

n

)〉

(B.12)

Of course, the above constant cannot be computed for an arbitrary value of J , since it

will involve a many-point correlation function.

B.2 Structure Constants of Composite Twist Fields : T φ :

The structure constants involving composite fields : T φ : are a bit more complicated than

their not composite T counterparts, even though the strategy to evaluate them is the same.

The main difference will be the implementation of the definition (5.18) of composite twist

fields:

: T φ : (x) ≡ n2∆−1 lim
y→x

|x− y|2∆(1− 1
n)T (x)

n∑

j=1

φj(y) (B.13)
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B.2. Structure Constants of Composite Twist Fields : T φ :

The structure constant C̃Φ1

:T φ::T̃ φ:

As before, let us consider the following correlation function:

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

(B.14)

As usual, we can study its short distance scaling looking at its OPE or by implementing

the definition B.1 of twist field.

The only non vanishing terms of its OPE are given by:

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

x1→x2∼ C̃Φ1

:T φ::T̃ φ:
|x1 − x2|2∆−4∆:T φ:

〈φ1(x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

= C̃Φ1

:T φ::T̃ φ:
|x1 − x2|2∆(1− 2

n
)|x2 − x3|−4∆

(B.15)

Additionally we can implement the definitions (5.18) and (B.13) to factor the normal twist

fields T from their composite counterparts : T φ : from the above equation:

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

= n4∆−2 lim
yi→xi

|x1 − y1|2∆(1− 1
n
)|x2 − y2|2∆(1− 1

n
)

×
n∑

j1,j2=1

〈T (x1)T̃ (x2)φj1(y1)φj2(y2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

(B.16)
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B.2. Structure Constants of Composite Twist Fields : T φ :

Once we have reached this point, we can proceed in the same way of the previous sections:

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)〉
〈T (x1)T̃ (x2)〉

= n4∆−2 lim
yi→xi

|x1 − y1|2∆(1− 1
n
)|x2 − y2|2∆(1− 1

n
)|∂g(y1)|2∆|∂g(y2)|2∆|∂g(x3)|2∆

×
n∑

j1,j2=1

〈φ(e
2πij1

n g(y1))φ(e
2πij2

n g(y2))φ(e
2πi
n g(x3))〉

= C̃φ
φφn

4∆−2n−4∆ lim
yi→xi

|x2 − y2|4∆(1− 1
n
)|∂g(x3)|2∆

n∑

j1,j2=1

(

|e
2πij1

n g(y1)− e
2πij2

n g(y2)| |e
2πij1

n g(y1)− e
2πi
n g(x3)| |e

2πij2
n g(y2)− e

2πi
n g(x3)|

)−2∆

= C̃φ
φφ lim

yi→xi

|x2 − y2|4∆(1− 1
n
)|∂g(x3)|2∆

(
|g(y2)|2 |g(x3)|

)− 4∆
n

= C̃φ
φφ|x1 − x2|−

4∆
n lim

yi→xi

|∂g(x3)|2∆|g(x3)|−2∆

= C̃φ
φφn

−2∆|x1 − x2|2∆(1− 2
n
)|x3 − x1|−2∆|x3 − x2|−2∆

(B.17)

Comparing the two results, we can conclude that:

C̃φ

:T φ::T̃ φ:
= n−2∆C̃φ

φφ (B.18)

The structure constant C̃
Φ1,k

:T φ::T̃ φ:

To compute C̃
Φ1,k

:T φ::T̃ φ:
we will evaluate the short distance scaling of:

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)φk(x4)〉
〈T (x1)T̃ (x2)〉

(B.19)

Its short-distance OPE is given by:

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)φk(x4)〉
〈T (x1)T̃ (x2)〉

x1→x2∼ C
Φ1,k

:T φ::T̃ φ:
|x1 − x2|4∆(1− 1

n
)〈φ1(x2)φ1(x3)〉〈φk(x2)φk(x4)〉

= C
Φ1,k

:T φ::T̃ φ:
|x1 − x2|4∆(1− 1

n
) (|x2 − x3| |x2 − x4|)−4∆

(B.20)
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B.2. Structure Constants of Composite Twist Fields : T φ :

This correlation function can also be computed via (B.13):

〈:T φ :(x1) : T̃ φ : (x2)φ1(x3)φk(x4)〉
〈T (x1)T̃ (x2)〉

= n4∆−2 lim
yi→xi

|x1 − y1|2∆(1− 1
n
)|x2 − y2|2∆(1− 1

n
)|∂g(y1)|2∆|∂g(y2)|2∆|∂g(x3)|2∆|∂g(x4)|2∆

×
n∑

j1,j2=1

〈φ(e
2πij1

n g(y1))φ(e
2πij2

n g(y2))φ(e
2πi
n g(x3))φ(e

2πik
n g(x4))〉

= n4∆−2n1−4∆ lim
yi→xi

|x2 − y2|−
4∆
n |∂g(x3)|2∆|∂g(x4)|2∆

×
n∑

j=1

〈φ(0)φ(g(y2))φ(e−
2πi(j−1)

n g(x3))φ(e
2πi(k−j)

n g(x4))〉

= |x1 − x2|−
4∆
n lim

yi→xi

|∂g(x3)|2∆|∂g(x4)|2∆|g(x4)|−4∆F
(

1− e
2πi(k−1)

n
g(x4)

g(x3)

)

= n−4∆|x1 − x2|4∆(1− 1
n
)(|x3 − x1||x4 − x2|)−2∆(1− 1

n
)(|x3 − x2||x4 − x1|)−2∆(1+ 1

n
)

× F
(

1− e
2πi(k−1)

n

(
(x4 − x1)(x3 − x2)

(x4 − x2)(x3 − x1)

) 1
n

)

x1→x2∼ n−4∆|x1 − x2|4∆(1− 1
n
)|x3 − x2|−4∆|x4 − x2|−4∆F

(

1− e
2πi(k−1)

n

)

(B.21)

where the function F is the conformal block of the four-point function 〈φφφφ〉 (6.87):

F(x) = lim
y→∞

|y|4∆ 〈φ(0)φ(1)φ(y)φ(x)〉 (B.22)

which can has been computed in [126] and it is given by

F(x) = |x| 45
(∣
∣
∣
∣ 2F1

(
3

5
,
4

5
,
6

5
;x

)∣
∣
∣
∣

2

+ (Cφ
φφ)

2

∣
∣
∣
∣
x−

1
5 2F1

(
3

5
,
2

5
,
4

5
;x

)∣
∣
∣
∣

2
)

(B.23)

and 2F1 is an hyperbolic function.
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Appendix C

Monte Carlo Integration

Algorithm

In this appendix we present a very brief introduction to the Monte Carlo Algorithm for

the numerical evaluation of integrals.

Let us consider the integral I of a function f over a d−dimensional domain D:

I =

∫

D
ddx f(x) (C.1)

Let us define a random variable y as

y =
1

N

N∑

i=1

f(xi)

ρ(xi)
(C.2)

where each of the N points xi is randomly chosen inside D using a probability distribution

with a given probability density ρ(xi).
1

The probability density of y itself is then given by

ρ̂(y) =

∫

DN

dx1 · · · dxNδ
(

y − 1

N

N∑

i=1

f(xi)

ρ(xi)

)

ρ(x1) · · · ρ(xN ) (C.3)

1Notice that a point xi s.t. ρ(xi) = 0 will never be chosen using ρ as a probability density function.
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The average of y is equal to the integral I:

〈y〉 =

∫

dyρ̂(y)y =

∫

DN

dx1 · · · dxN
[

1

N

(
N∑

i=1

f(xi)

ρ(xi)

)

ρ(x1) · · · ρ(xN )

]

=
1

N

N∑

i=1

∫

D
dxif(xi) = I (C.4)

Since

y ≈ 〈y〉+ Error = I + Error (C.5)

the integral I can then be approximated by y, i.e. by taking N random points and

calculating the average value of the function on these points.

Thanks to the simple random nature of the variable y, it can be used also to estimate

the error of the Monte Carlo algorithm. Consider

〈
y2
〉

=

∫

dyρ̂(y)y2 =
1

N2

N∑

i,j=1

∫

DN

dx1 · · · dxNρ(x1) · · · ρ(xN )
f(xi)f(xj)

ρ(xi)ρ(xj)

(C.6)

The sum on the RHS of equation (C.6) can be split into the i = j (N terms) and the

i 6= j parts (N2 −N terms). The former gives rise to
∫ f2

ρ contributions while the latter

to
(∫
f
)2

ones. Taking all terms together we have

〈
y2
〉

=
1

N

∫

D
dx
f(x)2

ρ(x)
+
N − 1

N2

(∫

D
dxf(x)

)2

(C.7)

The variance σ2 is then given by

σ2 = 〈y2〉 − 〈y〉2 =
1

N

[
∫

D
dx
f(x)2

ρ(x)
−
(∫

D
dxf(x)

)2
]

(C.8)

When approximating I with y, the error is
√
σ and it decreases as 1√

N
.

In the basic version of the Monte Carlo routine, usually called plain Monte Carlo, the

distribution is chosen to be uniform, i.e. ρ = 1
Vol(D) and the integral I is then approximated

by

I ≈ Vol(D)

N

N∑

i=1

f(xi) (C.9)
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Vegas algorithm

In plain Monte Carlo algorithm the approximation error decreases with the square root of

the number of points used to sample the domain. For this reason, to decrease the error by

a factor of 10, a 100-fold increase in the number of point is required. In order to increase

the precision, some tricks have to be put in place, like the Vegas Monte Carlo Algorithm.

Instead of using a uniform distribution for ρ, we can choose a distribution [81] that is

peaked around the points where the function f is more relevant. In particular, ρ can be

chosen as

ρ(x) =
|f(x)|

∫

D dy |f(y)|
(C.10)

The variance with this approximation is then given by

σ2 =
1

N

[(∫

D
dx |f(x)|

)2

−
(∫

D
dx f(x)

)2
]

(C.11)

Even thought the error still scales with as the square root of the number of sampling

points, σ ∼ N− 1
2 , the constant coefficient is expected to be very small.

Of course the density (C.10) is not known exactly, since it would require a complete

sampling of the function in the whole domain.2

2If a complete sampling of the function in the whole domain was done with a very fine precision, the
integral can be calculated directly with a “trapezoid-like” method.
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Appendix D

Jacobi Elliptic Theta Functions

In this Appendix we list the definitions of Jacobi elliptic theta functions and their elliptic

transformations [49].

ϑ1(z, q) = 2q
1
4

∞∑

n=0

(−1)nqn(n+1) sin[(2n + 1)z] (D.1)

ϑ1(z, q) = 2q
1
4

∞∑

n=0

qn(n+1) cos[(2n + 1)z] (D.2)

ϑ1(z, q) = 1 + 2

∞∑

n=0

qn
2
cos(2nz) (D.3)

ϑ1(z, q) = 1 + 2

∞∑

n=0

(−1)nqn
2
cos(2nz) (D.4)

It could be useful to represent the nome q in terms of a modular parameter τ :

q = eπiτ (D.5)

Theta functions can then be expressed in terms of z and τ :

ϑi(z, q) ≡ θ1(z|τ) (D.6)

Jacobi θ functions enjoy the following modular transformations [37].

θ1(z| − 1/τ) =
√
−iτe iτz2

π ϑ1(τz|τ) (D.7)

θ2(z| − 1/τ) =
√
−iτe iτz2

π ϑ4(τz|τ) (D.8)

θ3(z| − 1/τ) =
√
−iτe iτz2

π ϑ3(τz|τ) (D.9)

θ4(z| − 1/τ) =
√
−iτe iτz2

π ϑ2(τz|τ) (D.10)
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Moreover, it should be noticed ([108]) that the function E (7.38) can be expressed using

the Jacobi ϑ1 function:

E(e2iz , q2) = iq−
1
4 eizϑ1(z, q) (D.11)
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Appendix E

Summation Formulæ

Numerous summation formulæ involving two-particle form factors were derived in [118].

When specialising to the massive free boson case these formulæ become:

n−1∑

p=0

f(−x+ 2πip;n)f(y + 2πip;n)

= − i

2

sinh x+y
2

cosh x
2 cosh

y
2

[f(x+ y + iπ;n)− f(x+ y − iπ;n)]

(E.1)

where f(β;n) is the two particle form factor (8.9).

Equation (E.1) has been derived by considering the left-hand-side sum as the sum of

the residues of a contour integral and by solving such an integral using the kinematic

singularities of the two-particle form factor. Formula (E.1) can be generalised by induction

to an arbitrary number of sums. This procedure is very similar to the one used in [70]

when studying free fermion theories. The generalised summation formula is given by

n−1∑

p1,··· ,p2ℓ−1=0

f((−y1)p1 ;n)f(yp1−p2
2 ;n) · · · f(yp2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f(y
p2ℓ−1

2ℓ ;n)

=
2i sinh(12

∑2ℓ
i=1 yi)

∏2ℓ
i=1 2 cosh

yi
2

ℓ∑

p=1

(−1)p

(

2ℓ− 1

ℓ− p

)[

f(

2ℓ∑

i=1

yi + (2p − 1)iπ;n)

− f(

2ℓ∑

i=1

yi − (2p − 1)iπ;n)

]

(E.2)

where xp = x+ 2πip.

An important property of the above summation formula is its behaviour in the
∑2ℓ

i=1 xi → 0

limit. Even though the sinh term tends to zero, some kinematic poles in the two-particle
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form factors appear. Such divergences appear when p=1 (corresponding to the kinematic

pole at iπ), when p=kn, i.e. when p is a multiple of n, which correspond to the pole

at (2n − 1)iπ. Thanks to the 2πin periodicity of the two-particle form factor, an extra

kinematic pole is present when p=kn+1, which corresponds to the pole at (2n+ 1)iπ=iπ

mod(2πin). The number of such poles then depends on the relative value of n and ℓ:

lim
∑2ℓ

i=1 xi→0

n−1∑

p1,··· ,p2ℓ−1=0

f((−y1)p1 ;n)f(yp1−p2
2 ;n) · · · f(yp2ℓ−2−p2ℓ−1

2ℓ−1 ;n)f(y
p2ℓ−1

2ℓ ;n)

= h(ℓ, n) sech

(∑2ℓ
p=2 xp

2

)
2ℓ∏

p=2

sech
xp
2

(E.3)

where the function h(ℓ, n) is given by:

h(ℓ, n) =
1

22ℓ−1





(

2ℓ− 1

ℓ− 1

)

+

⌊ ℓ
n
⌋

∑

p=1

(−1)pn

(

2ℓ

ℓ− pn

)

 (E.4)

From its definition it is clear that when ℓ < n the second term does not contribute.

In case an analytic continuation of the function h is needed, it is important to distinguish

the even n case from the odd n case:

he(ℓ, n) =
1

22ℓ−1





(

2ℓ− 1

ℓ− 1

)

+

⌊ ℓ
n
⌋

∑

p=1

(

2ℓ

ℓ− pn

)

 (E.5)

ho(ℓ, n) =
1

22ℓ−1





(

2ℓ− 1

ℓ− 1

)

+

⌊ ℓ
n
⌋

∑

p=1

(−1)pn

(

2ℓ

ℓ− pn

)

 (E.6)
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Appendix F

Numerical Fit

In this appendix we discuss the fitting algorithm used to interpolate numerical data. We

derive the fitting constants for both polynomial and logarithmic fitting. In the following

we consider N couples (yi, ni) of data with associated error σi (relative only to the yi

values).

F.1 Fitting Algorithm - Polynomial

In this section we derive the best fitting constants a, b and c for the polynomial fit:

yi = a+ bni +
c

ni
(F.1)

In order to compute the values (and their relative errors) of the fitting constants a, b and

c we perform a least-squared fitting [127]. In particular, the constants a, b, and c are such

that minimise the quantity:

χ2 =

N∑

i=1

(a+ bni +
c
ni

− yi)
2

σ2i
(F.2)

Taking derivatives with respect to the coefficients a, b, and c we can minimise χ2:







1
2
∂χ2

∂a = a
∑
wi + b

∑
wini + c

∑ wi
ni

−∑wiyi = 0
1
2
∂χ2

∂b = a
∑
wini + b

∑
win

2
i + c

∑
wi −

∑
wiyini = 0

1
2
∂χ2

∂c = a
∑ wi

ni
+ b

∑
wi + c

∑ wi

n2
i
−∑ wiyi

ni
= 0

(F.3)
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F.2. Fitting Algorithm - Logarithm

where wi = σ−2
i are the statistical weights of the various points yi.

The above system can be easily solved for a, b, and c:







a = 1
∆

[(

(
∑
wi)

2 −∑ wi

n2
i

∑
win

2
i

)
∑
wiyi +

(
∑ wi

n2
i

∑
wiyini −

∑
wi
∑ wiyi

ni

)
∑
wini

−
(
∑
wi
∑
wiyini −

∑ wiyi
ni

∑
win

2
i

)
∑ wi

ni

]

b = 1
∆

[(
∑ wi

n2
i

∑
wini −

∑
wi
∑ wi

ni

)
∑
wiyi −

(
∑ wi

n2
i

∑
w −

(
wi
ni

)2
)
∑
wiyini

−
(
∑ wi

ni

∑
wini − (

∑
wi)

2
)
∑ wiyi

ni

]

c = − 1
∆

[(
∑
wi
∑
wini −

∑ wi
ni

∑
win

2
i

)
∑
wiyi +

(
∑ wi

ni

∑
wini − (

∑
wi)

2
)
∑
wiyini

−
(

(
∑
wini)

2 −∑wi
∑
win

2
i

)
∑ wiyi

ni

]

∆ =
∑ wi

n2
i
(
∑
niwi)

2 − 2
∑ wi

ni

∑
wi
∑
wini −

∑ wi

n2
i

∑
wi
∑
win

2
i +

(
∑ wi

ni

)2
+ (
∑
wi)

3

(F.4)

Since only the yi values are affected by error, the associated error of the a, b, and c

constants is given by:






∆a =

√

∑

i

(
∂a
∂yi
σi

)2

∆b =

√

∑

i

(
∂b
∂yi
σi

)2

∆c =

√

∑

i

(
∂c
∂yi
σi

)2

(F.5)

F.2 Fitting Algorithm - Logarithm

Following the steps of the previous section, we derive the fitting constants a, b and c for

the linear-logarithmic fit:

yi = a+ bni + c log ni (F.6)

As before, we minimise the χ2 value to find the best values for the fitting constants:

χ2 =
N∑

i=1

(a+ bni + c log ni − yi)
2

σ2i
(F.7)

We can now take some derivatives of χ2 respect with a, b and c:







1
2
∂χ2

∂a = a
∑
wi + b

∑
wini + c

∑
wi log ni −

∑
wiyi = 0

1
2
∂χ2

∂b = a
∑
wini + b

∑
win

2
i + c

∑
wini log ni −

∑
wiyini = 0

1
2
∂χ2

∂c = a
∑
wi log ni + b

∑
wini log ni + c

∑
wi(log ni)

2 −∑wiyi log ni = 0

(F.8)
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F.2. Fitting Algorithm - Logarithm

Such a linear system can be easily solved:







a = 1
∆

[∑
wi log ni

(∑
win

2
i

∑
wiyi log ni −

∑
wini log ni

∑
wiyini

)

+
∑
wini

(∑
wi(log ni)

2
∑
wiyini −

∑
wini log ni

∑
wiyi log ni

)

+
(∑

wini log n
2
i −

∑
wi(log ni)

2
∑
win

2
i

)∑
wiyi

]

b = 1
∆

[∑
wi

(∑
wini log ni

∑
wiyi log ni −

∑
wi(log ni)

2
∑
wiyini

)

+
∑
wi log n

2
i

∑
wiyini −

∑
wi log ni

∑
wini

∑
wiyi log ni

−
(∑

wi(log ni)
2
∑
wini −

∑
wi log ni

∑
wini log ni

)∑
wiyi

]

c = 1
∆

[∑
wi

(∑
win

2
i

∑
wiyi log ni −

∑
wini log ni

∑
wiyini

)

+
∑
wi log ni

∑
wini

∑
wiyini −

∑
win

2
i

∑
wiyi log ni

+
(∑

wini
∑
wini log ni −

∑
wi log ni

∑
win

2
i

)∑
wiyi

]

∆ =
∑
wi

(∑
wini log n

2
i −

∑
wi(log ni)

2
∑
win

2
i

)

− 2
∑
wi log ni

∑
wini

∑
wini log ni +

∑
wi log n

2
i

∑
win

2
i +

∑
wi(log ni)

2
∑
win

2
i

(F.9)

As before, since only yi values are affected by an error, the uncertainty associated to the

fitting constants a, b and c is given by:







∆a =

√

∑

i

(
∂a
∂yi
σi

)2

∆b =

√

∑

i

(
∂b
∂yi
σi

)2

∆c =

√

∑

i

(
∂c
∂yi
σi

)2

(F.10)
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Appendix G

Numerical Implementations

In this appendix we sketch the the main problems encountered when evaluating uℓ(n) and

vℓ integrals of Chapter 8.

All numerical integrals have been performed using the Vegas Monte-Carlo integration algo-

rithm (see Appendix C). In particular, we used the GNU Scientific Library implementation

[128]. Consider, for instance , the integrals (8.58):

uℓ(n) =

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dx2ℓ−1

iFℓ(
∑ℓ

p=1 x2p−1, n) sinh(
∑ℓ

p=1 x2p−1)

cosh
∑2ℓ−1

p=1 xp

2

2ℓ−1∏

p=1
cosh

xp

2

log dℓ

≡
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dx2ℓ−1 In,ℓ(x) (G.1)

Every time the integration routine calls the function In,ℓ, a
∑ℓ

p=1 sum and a
∏2ℓ−1

p=1 product

have to be performed. Since the variables xi are stored as pointers, every single time of

the function In,ℓ is called, the following loops are implemented:

double sum = 0.;

for(p=0;p<ell-1;p++) {
sum += x[2*p];

}

double prod = 1.;

for(p=0;p<2*l-2;p++) {
prod *= cosh(x[p]/2.);

}

Since the integration routine requires thousands of calls to the function, performing inte-

grals directly in the form (8.62) becomes quite demanding in terms of computation time.
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In order to speed up the code, we implemented the following procedure1

1. We wrote a Mathematica code whose role is to simplify the function In,ℓ for vari-

ous values of n and ℓ and to store the results in an header file functions U.h in

a C++ readable format. Once the Mathematica code has been executed, the file

functions U.h contains the definitions of all the functions In,ℓ without any implicit

sum or product.

2. We wrote a C++ code (integrate.cpp) which integrates a generic function, whose

declaration is inside another header file function.h, which include all the defini-

tions of the In,ℓ functions. The program integrate.cpp is able to integrate with

arbitrary precision.

3. We wrote two additional C++ codes (creator function.cpp and creator.cpp).

The latter program loop over all values of n and ℓ and compute the integral. For

each couple (n, ℓ), creator.cpp performs the following operations:

• Modify function.h (using creator function.cpp), wrapping the correct func-

tion to integrate.

• Compile integrate.cpp. At this stage, the correct function is selected at the

compilation stage. The executable is compiled and optimised for that specific

function.

• Execute integrate.cpp

Through this tool the computation time is widely reduced and we managed to compute

form factor contributions up to 24-particle level 2.

1For simplicity, in the following we refer to a source code and the relative executable using the source
code’s file name.

224 for vℓ integrals. uℓ(n) integrals give reliable results up to 12-20 particles (the low n cases perform
better).
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[98] M. Headrick. Entanglement rényi entropies in holographic theories. Phys. Rev. D,

82:126010, 2010.

[99] E. Levi, O. A. Castro-Alvaredo, and B. Doyon. Universal corrections to the entan-

glement entropy in gapped quantum spin chains: A numerical study. Phys. Rev. B,

88:094439, 2013.

[100] B. Doyon. Bipartite entanglement entropy in massive two-dimensional quantum field

theory. Phys. Rev. Lett., 102:031602, 2009.

[101] M. A. Rajabpour and F. Gliozzi. Entanglement entropy of two disjoint intervals

from fusion algebra of twist fields. Journal of Statistical Mechanics: Theory and

Experiment, 2012(02):P02016, 2012.

[102] P. J. Forrester and R. J. Baxter. Further exactsolutions of the eight-vertex SOS

model and generalizations of the Rogers-Ramanujan identities. Journal of statistical

physics, 38(3-4):435–472, 1985.

[103] H. S. M. Coxeter. Regular polytopes. Courier Corporation, 1973.

[104] S. Warnaar and B. Nienhuis. Solvable lattice models labelled by dynkin diagrams.

Journal of Physics A: Mathematical and General, 26(10):2301, 1993.

238



Bibliography

[105] G. E. Andrews, R. J. Baxter, and P. J. Forrester. Eight-vertex sos model and general-

ized rogers-ramanujan-type identities. Journal of Statistical Physics, 35(3):193–266,

1984.

[106] D. Gepner and Z. Qiu. Modular invariant partition functions for parafermionic field

theories. Nuclear Physics B, 285:423 – 453, 1987.

[107] David L O’Brien and Paul A Pearce. Surface free energies, interfacial tensions and

correlation lengths of the abf models. Journal of Physics A: Mathematical and

General, 30(7):2353, 1997.

[108] A. De Luca and F. Franchini. Approaching the restricted solid-on-solid critical points

through entanglement: One model for many universalities. Phys. Rev. B, 87:045118,

2013.

[109] P. A. Pearce, J. Rasmussen, and J.-B. Zuber. Logarithmic minimal models. Journal

of Statistical Mechanics: Theory and Experiment, 2006(11):P11017, 2006.

[110] P. A. Pearce and K. A. Seaton. Off-critical logarithmic minimal models. Journal of

Statistical Mechanics: Theory and Experiment, 2012(09):P09014, 2012.

[111] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev, Z. Wang, and M. H.

Freedman. Interacting anyons in topological quantum liquids: The golden chain.

Phys. Rev. Lett., 98:160409, 2007.

[112] V. Pasquier and H. Saleur. Symmetry of the xxz chain and quantum su(2). Ecole
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