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Abstract

In recent years plasmonic devices have become an interesting area of re-
search due to the sub-wavelength confinement and propagation of radiation,
allowing the design of very compact structures. Compact structures are neces-
sary to make smaller integrated optical circuits. Due to the use of metals, plas-
monic guides usually show more losses compared to the conventional dielectric
guides. Therefore, plasmonic waveguides are not normally used for long dis-
tance transmission. However, they are promising for inter-chip or intra-chip
communication and also have seen a lot of sensor applications.

There has been considerable interest in exploiting the frequency bands in the
terahertz regime to open up new frontiers of research across a diverse range of
applications. An array of opportunities for creating novel technologies using
this frequency band had remained largely unexplored and undeveloped for a
considerable period of time due to the lack of suitable sources, as well as lack
of guiding and detecting devices.

This thesis describes the design, analysis and optimisation of plasmonic de-
vices in optical and terahertz frequencies. A fully vectorial H-field based finite
element method has been used in the research reported in this thesis to reveal
the modal characteristics of different plasmonic structures.

A six layer planar contra-directional nano-coupler has been analysed at op-
tical frequency. Three different modes of propagation were considered to study
the characteristics of different properties of the structure, including the cou-
pling length. A design approach has been proposed to make the coupler low
loss as well as smaller in length.

For the terahertz plasmonics, a rectangular metallic hollow core guide was
considered at terahertz frequency. Several modes were considered for the modal
analysis of the structure. Modal analysis was performed by changing metal, in-
troducing different dielectric coating in the hollow core, changing the thickness
of the metal and dielectric layers and changing the dimensions of the guide.
A dispersion analysis was also performed. The criteria for designing very low
loss, compact and low dispersion guide have been presented for the structure
at the end of the study.
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Chapter 1

Introduction

1.1 History of Lightwave Technology

Glass dates back at least 4500 years to ancient Egypt and Mesopotamia [1].
3500 years ago, Egyptians were sculpting miniature heads of transparent glass,
which the years have since turned milky white.

The phenomenon of the guidance of light along transparent cylinders by
multiple total internal reflections had been observed and used in the ancient
world by Greek and later by Venetian glassblowers, in fabricating their decora-
tive glassware. In fact, the basic techniques used then form an important aspect
of present-day fibre optic technology. For 2000 years, glass blowers have thrust
glass tubes into glowing furnaces to soften them. Workers pausing to relax
from the hot, hard job must have seen the fiery glow of the furnace emerging
from the glass. Master glass makers noted total internal reflection as they made
sparkling ornaments for the bright glass chandeliers that illuminated the great
rooms of the rich. But they kept their secrets to themselves. Scientists began to
study total internal reflection in medieval times as they sought to understand
the mystery of the rainbow, but they did not understand it until the laws of
refraction were formulated in the seventeenth century [2].

The earliest recorded scientific demonstration of light confinement, was given
by John Tyndall at the Royal Society in England in 1870, where he used an illu-
minated vessel of water and showed that, when a stream of water was allowed
to flow through a hole in the side of the vessel, light was conducted along the
curved path of the stream [3]. Ten years later, in 1880, Alexander Graham Bell
invented the “photophone”, a device that varied the intensity of sunlight in-
cident upon it in response to the amplitude of speech vibrations. The light
variations were reconverted into electrical signal and then into sound, at the
receiver end, via a selenium detector. Although the photophone was impracti-
cal due to propagation losses, it provided the idea for transmission of signals

1
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over a specified distance by modulation of an optical wave: in other words, the
concept of optical communication. This brought new ideas in the early years
of the last century, and in 1910, Hondros and Debye presented the first form of
an optical waveguide, the dielectric circular rod, in an attempt to guide elec-
tromagnetic waves through a dielectric medium [4]. The dielectric losses of the
non-radiative modes propagating along the dielectric circular rod, were com-
puted much later, by Elsasser in 1949 [5].

The term “fibre optic” was first used by Kapany in mid 50s, when the fi-
bre of higher refractive index core and lower refractive index cladding was de-
veloped. He defined “fibre optic” as, ‘the art of the active and passive guid-
ance of light (rays and waveguide modes), in the ultraviolet, visible, and in-
frared regions of the spectrum, along transparent fibres through predetermined
paths [3]. A few years later, Snitzer and Osterberg [6] recorded dielectric waveg-
uide modes in the visible region of the spectrum of various optical fibres and
Kapany and Burke [7] investigated the coupling phenomenon in adjacent opti-
cal fibres. These observations were followed by further work in the field, which
established the use of optical fibres in long distance telecommunications [8].

Along with the research for higher transmission capacity, larger bandwidth
and lower losses in optical fibres, some other major developments were achieved
in the 1960s, which revolutionised lightwave technology and the telecommuni-
cation industry. In 1960, T.H. Maiman first demonstrated laser action in ruby,
by applying Einstein’s ideas for stimulated emission, dated back to 1917 [9].
The implementation of low-loss silica fibres [10], and the use of lasers as a CW
coherent source of light at optical frequencies, in the range 1.3− 1.55µm, where
such fibres exhibit minimum dispersion, had given a new dimension in the field
of optical communication.

The invention of the laser gave an enormous stimulus to the entire field of
optics. The requirement for more compact and more economical optical trans-
mission systems, less vulnerable to environmental changes, in order to replace
the existing laser beam transit in a system via mirrors and lenses, then emerged.
These requirements stimulated the development of improved thin-film fabrica-
tion techniques and studies on new materials for both active and passive func-
tion [11, 12], and led eventually to the idea of integrated optics. As a concept,
it was first visualised by Miller in 1969 [13]. Integrated optics is based on the
guiding of electromagnetic energy at optical frequencies by thin films, which
can be placed one next to the other on a single substrate. Semiconductors had
played an important role in the effort to develop monolithic integrated optical
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circuits (IOC), that would serve as miniature optical counterparts of microwave
devices and networks.

The period that followed initiated new activities, which aimed as an ulti-
mate goal for the replacement of the existing integrated electronic circuits (IEC)
by integrated optical circuits (IOC), in order to benefit from the advantages of
larger bandwidth and negligible sensitivity to interference by natural or man-
made electromagnetic fields of lower frequencies, that optical communication
systems can offer.

Recent advances in integrated optics demonstrated a rich variety of optical
components and devices, such as directional couplers, Y-branches, waveguide
crossings, Bragg gratings, transmission gratings, accousto-optical filters, opti-
cal filters, modulators, optical amplifiers and others. Also, recent technological
achievements such as laser copiers, laser printers, laser bar-code readers, CD
players and others have entered our households and have become part of ev-
eryday life.

The development of more sophisticated integrated optical communication
systems requires a knowledge of the properties of the basic elements, such as
the optical waveguides.

1.2 Dielectric Guidance

Dielectric guidance is achieved using only dielectrics of different refractive in-
dices. Refractive index n of a material is a dimensionless number that describes
how light propagates through that medium and can be defined as the ratio of
speed of light in vacuum and the speed of light in the medium as,

n =
c

v
(1.1)

Where, c = 2.99792458× 108m/s is the speed of light in vacuum and v is the
speed of light in the medium.

The velocity of light in a medium can be calculated using its permittivity, ε
and permeability, µ using,

v =
1√
µε

(1.2)

The guidance of light in dielectrics can be explained with both ray optics
and full-wave electromagnetic theory.
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Geometric/Ray Optics Geometrical optics, or ray optics, describes light prop-
agation in terms of rays. The ray in geometric optics approximates the paths
along which light propagates. Ray optics assumes the following,

1. light propagates in rectilinear paths in homogeneous medium,

2. light bends at the interface of two dissimilar medium,

3. light follows curved paths in a medium in which the refractive index
changes

4. light may be absorbed or reflected

Full-wave Electromagnetics Although ray optics makes explanations of some
properties of light it cannot explain many properties like diffraction, interfer-
ence etc. To explain the light properly, full-wave electromagnetic theory is
needed. In electromagnetics, light is considered to be a wave combining electric
and magnetic fields and is a part of the electromagnetic spectrum. Electromag-
netic force is also one of the fundamental forces of nature.

1.2.1 Snell’s Law of Refraction

As light passes the interface between the two refractive media, the light will ei-
ther be refracted to a lesser angle, or a greater one depending upon the relative
refractive indices of the two media. These angles are measured with respect to
the normal line, represented by the perpendicular to the boundary. In mathe-
matical form,

sin θ1

sin θ2

=
n2

n1

(1.3)

Here, n1 and n2 are the refractive indices of the two media and θ1 and θ2 are
the angles involved in refraction.

Figure 1.1 describes the phenomena graphically. In Fig. 1.1a, the light ray
is incident on the surface of refraction from the lighter medium with refractive
index n1 at an angle θ1, and after crossing the interface the light ray will travel
inside the denser medium with refractive index n2 at an angle θ2 which is less
than θ1 in this case. Here, θ1 is the angle of incidence and θ2 is the angle of
refraction. Figure 1.1b shows the opposite phenomenon of light ray travelling
from a denser to a lighter medium.
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(a) Incidence from lower refrac-
tive index media
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(b) Incidence from higher re-
fractive index media

FIGURE 1.1: Refraction between two media with refractive indices
n1 and n2, where n2 > n1

FIGURE 1.2: Refraction of wave at an air-Silica interface from a
point source radiating from the air layer
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Figure 1.2 1 shows refraction when a point source (wavelength, λ = 1.55µm)
is placed inside a lower index medium, in this case air (nair = 1) and the wave
travels into a higher index medium, in this case Silica (nSiO2 = 1.4440 [15] at a
wavelength of 1.55µm). It can be seen in the figure that when the wave crosses
the interface and goes into the Silica layer, the wavefront compresses in space.
This is because the speed of propagation is less inside the higher index medium.

Figure 1.2 also shows some reflected wave into the air interfering with the
circular wavefront of the air layer. This interference is not visible inside the
Silica layer as the reflection is from the air-Silica interface and the wave is ap-
proaching from the air layer. The reflection is due to the impedance mismatch
of the two media. Both the refraction and the reflection can be better observed
when an even higher index material like Silicon (nSi = 3.4777 [16] at 1.55µm

wavelength) is used instead of the Silica. Figure 1.3 shows what happens when
light with 1.55µm wavelength is incident on an air-Silicon interface. As can be
seen, the wavefront inside the Silicon layer is more compressed due to the re-
duction of speed of propagation. Therefore the sudden change of angle is also
visible for angular incidence. It also shows higher reflection into the air layer
due to the higher impedance mismatch between air and Silicon.

FIGURE 1.3: Refraction of wave on an air-Silicon interface from a
point source radiating from the air layer

The change of angle of propagation on top of the wave front is also shown
in Fig. 1.2. It can be observed that when light is incident on the interface at an
angle (the single headed arrow from the point source to the interface), due to the
compression of the wavefront and sudden decrease in speed of propagation, the
direction of the propagation changes (double headed arrow from to interface
into the Silica layer).

1The wave representations of refraction in this chapter were simulated using the Finite Ele-
ment Time Domain method presented in [14]
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In Fig. 1.1b, it is shown that if the light ray is incident on the surface of
refraction from the denser medium with refractive index n2 at an angle θ2, after
crossing the interface, the light ray will travel inside the medium with refractive
index n1 at an angle θ1 which is greater than θ2. In this case, θ2 is the angle of
incidence and θ1 is the angle of refraction.

FIGURE 1.4: Refraction, critical angle and total internal reflection
of wave on an air-Silica interface from a point source radiating

from the Silica layer

Figure 1.4 shows the refraction characteristics when the point source of Fig. 1.2
is moved inside the Silica layer. When the point source is inside the Silica layer,
the wave approaches the interface from the Silica side. It can be observed that
the wavefronts inside the air layer become expanded. This is due to the higher
speed inside the medium compared to the Silica. With the white arrows it can
also be observed that the angle of refraction becomes larger compared to the
angle of incidence.

In both the occasions, the relation between the angles and the refractive in-
dices can be determined as explained by Eq. 1.3. For both cases, θ1 > θ2 when
n2 > n1.

1.2.2 Critical Angle and Total Internal Reflection

As required by the Snell’s law when light travels from a higher refractive index
medium into a lower refractive index medium, the angle of refraction needs to
be greater than the angle of incidence. Therefore, there should be an angle of
incidence lower than 90◦ for which the angle of refraction equals 90◦. This angle
of incidence is called the critical angle. If a light ray is incident on a refraction
interface at a critical angle, no light will come out of the interface, rather the



Chapter 1. Introduction 8

��

��

��

�1

(a) Critical Angle

θ1 θ2

n1

n2

(b) Total Internal Refraction

FIGURE 1.5: Critical Angle and Total internal reflection, where
n2 > n1

light ray will propagate along the interface. Figure 1.5a, shows the critical angle
when the refractive indices are n1 and n2, n2 > n1.

In the same manner, when the angle of incidence is increased beyond the
critical angle, the angle of refraction becomes more than 90◦, as shown in Fig-
ure 1.5b. At this stage no light escapes the higher index medium and is totally
reflected back into it. This phenomenon is called total internal reflection (TIR).

In Fig. 1.4, at the point of incidence of the white arrow the wave leaks into
the air layer. But when moved further from that point, the single headed yellow
arrow shows the critical angle of incidence and the double headed yellow arrow
shows the propagation along the interface. When moved even further, the pink
arrows show the total internal reflection. Beyond the point of critical angle all
waves reflect back to the Silica layer. Although there is some reflection visible
near the point source due to impedance mismatch, in this occasion the main
reflection starts after the critical angle.

The phenomena can be better viewed with an air-Silicon interface. Figure 1.6
shows total internal reflection for an air-Silicon interface. This time the reflec-
tion due to impedance mismatch is barely visible. This is because the critical
angle for this setup is much lower than that of the air-Silica interface. The fig-
ure clearly shows that there is no wave in the air due to total internal reflection
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FIGURE 1.6: Total internal reflection of wave on an air-Silicon in-
terface from a point source radiating from the Silicon layer

inside the Silicon layer.

1.2.3 Dielectric Guidance

!"#$%&'(&)"*+,%"-

!"#$%&'(&.%!%*-+'"

Angle of Incidence

FIGURE 1.7: Dielectric guidance with total internal reflection

As total internal reflection reflects all incident light over the critical angle
into the higher index medium, if a thin higher index dielectric film is sur-
rounded by lower index medium as shown in Fig. 1.7, the total internal re-
flection will happen on both the interfaces and the light will be trapped inside
the high index film. The trapped light will only be able to escape at the end of
the high index film. This arrangement is called a dielectric waveguide.

Although dielectric guidance can be realised with ray optics, to explain a
waveguide properly and also to investigate many wave related aspects of the
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guidance and propagation, full-wave electromagnetics needs to be used. As
can be seen in Figs. 1.2, 1.3, 1.4 and 1.6, the distribution of the wave near the
boundary follows a specific pattern. According to ray optics the light should
reflect into the higher index medium without any leakage into air.

But when the wave nature of light is considered in full-wave electromag-
netics, part of the wave extends into air. In practice the pattern or wave profile
near the interface follows the interface and never moves into the air. In other
words, the field profile near the interface is guided by the interface.

When two interfaces are involved as shown in schematic diagram Fig. 1.7
both the interfaces will show the same profile across the interface. As the inter-
faces also guide the wave along themselves, the wave will propagate through
the medium in parallel to the interface. Due to the total internal reflection from
both the interfaces, moving profiles will be generated. These patterns are called
modes of propagation.

x

y

FIGURE 1.8: Wave guiding in Air-Silicon-air waveguide with core
thickness 0.2µm with a point source of 1.55µm wavelength

Figure 1.8 shows the Ez field profile for air-Silicon-air waveguide with a
point source of 1.55µm wavelength. The Silicon core is 0.2µm thick. As can be
observed, most of the field from the point source is guided inside the Silicon
core of the waveguide. Some field is also leaked out of the guide and is propa-
gating outside the guide. Compared to the outside wave, field inside the guide
is compressed.
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In this work modal analysis is the primary analysis to study and analyse
different properties of different guiding structures.

1.3 Surface Plasmon Polariton

Surface plasmon polaritons (SPPs), are electromagnetic waves which travel along
a metal-dielectric interface. The term “surface plasmon polariton” explains that
the wave involves both charge motion in the metal (“surface plasmon”) and
electromagnetic waves in the dielectric (“polariton”) [17].

They are surface waves propagated along the surface of a metallic structure.
SPPs are shorter in wavelength than the incident light (photons). Hence, per-
pendicular to the interface, SPPs can have tighter subwavelength-scale spatial
confinement and higher local field intensity [18]. An SPP will propagate along
the interface until its energy is lost.

1.3.1 History

Well before scientists set out to study the unique optical properties of metal,
they were employed by artists to generate vibrant colours in glass artifacts and
in the staining of church windows. One of the most famous examples is the
Lycurgus cup dating back to the Byzantine Empire (4 century A.D.). Some of
the first scientific studies in which surface plasmons were observed date back
to the beginning of the twentieth century.

R.M. Wood noticed that when he shone polarised light onto a metal-backed
diffraction grating, a pattern of unusual dark and light bands appeared in the
reflected light [19, 20]. Around that same time, in 1904, Maxwell Garnett de-
scribes the bright colours observed in metal doped glasses [21] using the then
newly developed Drude theory of metals, and the electromagnetic properties
of small spheres as derived by Lord Rayleigh.

The first theoretical treatment of these anomalies was by Lord Rayleigh in
1907 [22]. He based his “dynamical theory of the grating” on an expansion of
the scattered electromagnetic field in terms of outgoing waves only. With this
assumption, he found that the scattered field was singular at wavelengths for
which one of the spectral orders emerged from the grating at the grazing angle.
He then observed that these wavelengths, which have come to be called the
Rayleigh wavelengths λR, correspond to the Wood anomalies. Furthermore,
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these singularities appeared only when the electric field was polarized perpen-
dicular to the rulings, and thus accounted for the S anomalies; for P polariza-
tion, his theory predicted a normal behaviour near λR [23].

In the fifties many experimentations were carried out on electron energy
losses in gasses and on thin foils [24, 25]. Pines and Bohm suggested [26, 27, 28]
that the energy losses were due to the excitation of conducting electrons creat-
ing plasma oscillations or plasmons. Further research [25] revealed that the en-
ergy loss resulted from excitation of a surface plasma oscillation, in which part
of the restoring electric field extended beyond the specimen boundary. There-
fore, the presence of any film or contaminant on the specimen surface affects
the surface plasma oscillation. This effect was later described in terms of ex-
citation of electromagnetic ‘evanescent’ waves at the surface of the metal, and
in the 1970s evanescent waves were described as a means to study ultra-thin
metal films and coatings [29].

In the late sixties, optical excitation of surface plasmons by means of atten-
uated total reflection was demonstrated by Kretschmann [30, 31] and Otto [32].
Their methods for the optical excitation of surface plasmons on metal films,
making experiments on surface plasmons easily accessible to many researchers.

At this point the properties of surface plasmons were well known, how-
ever the connection to the optical properties of metal nanoparticles had not yet
been made. In 1970, more than sixty years after Garnett’s work on the colours
of metal doped glasses, Uwe Kreibig and Peter Zacharias performed a study
in which they compared the electronic and optical response of gold and sil-
ver nanoparticles [33]. In their work, they for the first time describe the optical
properties of metal nanoparticles in terms of surface plasmons. As the field con-
tinued to develop and the importance of the coupling between the oscillating
electrons and the electromagnetic field became more apparent, Stephen Cun-
ningham and his colleagues introduced the term surface-plasmon-polariton
(SPP) in 1974 [34].

Another major discovery in the area of metal optics occurred in that same
year, when Martin Fleischmann and coworkers observed strong Raman scat-
tering from pyridine molecules in the vicinity of roughened silver surfaces [35].
Although it was not realised at the time, the Raman scattering, an exchange
of energy between photons and molecular vibrations, was enhanced by elec-
tromagnetic fields near the rough silver surface due to the presence of surface
plasmons. This observation led to the now well established field of Surface En-
hanced Raman Scattering (SERS). All these discoveries have set the stage for
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the current surge in surface plasmon research.

1.3.2 Applications

Following the fundamental studies of light-metal interaction in the early days
(late 1950s to late 1960s), SPs have been extensively explored in thin film char-
acterisation, chemical sensing and biodetection since the late 1970s. In recent
years, interest in SPs has expanded from sensing technology to a wide range
of fields, including subwavelength optics, nanophotonics, information storage,
nanolithography, light generation and engineering left-handed metamaterials
at optical wavelengths, etc. The reformed interest was stimulated by the recent
progress in electromagnetic simulations, micro/nanofabrication and character-
isation techniques, which provide the necessary tools to revive and exploit re-
markable properties of SPs in the domains of both fundamental physics and
application development. The dynamic growth of the field of plasmonics is
clearly reflected in the fact that since 1990 the annual number of publications
on SPs has doubled every five years [36].

Sensor

A great deal of work in SP applications has been done in the exploitation of
surface plasmon resonance (SPR) sensing for physical [37], chemical [38] and
biological detection [39]. The simplest form of SPR sensing is based on reflec-
tivity measurement, which was pioneered by Nylander and co-workers in the
early 1980s for gas detection and biosensing [40, 41]. In recent years SPR sens-
ing has become a leading technology for affinity-based biosensing, owing to its
label-free, noninvasive real-time analysis nature. At present about 50% of all
publications on SPs involve the use of plasmons for biodetection [36], cover-
ing fields as diverse as molecular engineering, cell biology, proteomics, clinical
diagnosis, drug discovery and environmental monitoring [42].

The working principle behind the SPR sensing technique is that the SPP’s
resonance conditions, such as wavelength and penetration depth, are highly
sensitive to the immediate environment of the metal/dielectric interface. An
SPR sensing system generally involves four elemental modules: an optical sys-
tem comprising a light source and an optical detector; a flow system for sam-
ple delivery; a sensor surface formed by an SPP-active metal film (normally
50 ∼ 100-nm-thick Au or Ag); and an electronic system for data processing. All
these elements vary depending on the intended application.
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Subsequent to the prism-coupler-based SPR sensor, grating-coupler-based
system [43] and optical-waveguide-based systems [44, 45] have also been in-
troduced. However, the Kretschmann-Raether configuration is still the most
widely used geometry in SPR sensors [46]. Currently there are several manu-
facturers offering a wide variety of commercial SPR biosensors [47], which has
made it possible for potential users to choose the appropriate system according
to the specific requirements, such as sensitivity, selectivity, speed, portability
and price.

Waveguide

Recent resurgence of interest in SPs is not only limited to sensing technology.
SPs have also attracted increasing attention as useful tools for the construction
of deep subwavelength optical and photonic devices.

It is well known that the spatial confinement of free propagating waves is
limited to about λ0/2n (here, λ0 is the freespace wavelength and n is the refrac-
tive index of the medium), that is, about half of the wavelength in the medium.
This so-called “diffraction limit” of light is the primary factor that limits the
minimum sizes of optical elements in conventional far-field optics and has im-
posed a major challenge in the development of highly integrated optical de-
vices. The origin of the diffraction limit lies in the three-dimensional nature of
the free propagating waves, i.e., kx , ky , kz of the wavevector k of these waves
are all real. Since |k|2 = k2

x+k2
y+k2

z , there is an upper limit on ki(i = x, y, z) such
that ki 6 |k|. According to the uncertainty relation of Fourier transforms, this
spatial frequency upper limit leads directly to the lower limit in the variation of
the wave in real space as di = λ0/2n.

However, if one (or more than one) component(s) of k become purely imag-
inary (e.g., an evanescent wave), then ki > |k| can be achieved. This thus pro-
vides a means to conquer the diffraction limit. Depending on the number of real
components in k, EM waves can be defined as 3-D (three real components in k),
2-D (two real, one pure imaginary components in k), 1-D (one real, two pure
imaginary components in k) and 0-D (no real components in k) waves [48]. In
this sense, SPPs propagating along planar metal surfaces or metallic nanowires
surfaces can be classified as 2-D or 1-D waves, respectively; and LSPs confined
on the metallic nanoparticles or nanovoids can be considered as 0-D waves.
Clearly, while 3-D waves suffer from conventional diffraction limits, 2-D, 1-D,
and 0-D waves have the ability to provide one-, two-, and three-dimensional
field confinements in real space without such constraints.
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Interest in exploiting SPs for opto-electronic device applications is happen-
ing at a time when continuous miniaturisation of integrated electronic circuits is
approaching fundamental limitations. For example, ever since the semiconduc-
tor industry entered the sub-100nm technology nodes, there has been growing
concern over the issues associated with electronic interconnects [49, 50], such
as signal delay and heat generation. While conventional fibre- optic intercon-
nects offer speed-of-light propagation, large band-width and low power con-
sumption, the dimensions of these dielectric components are generally at the
microscale. This has severely limited their applications in nanoscale integrated
electronic circuits.

In contrast to the free propagating light, SPs can be sustained and guided
by nanoscale metallic structures without the constraint of the diffraction limits.
In 1997 Takahara and co-workers first proposed the use of metallic nanowires
to guide 1-D optical beams with nanometer diameter [48]. They suggested that
in visible and near-infrared ranges the negative dielectric constants of metal
removes the constraints of conventional dielectric waveguides:

0 < εclad < εcore

β, kx, ky, κx, κy 6 ω
√
εcoreµ0 (1.4)

where εclad and εcore are the dielectric constants of the core and cladding; β
is the wave vector component along the propagation direction (z-direction); kx
and ky are the transverse components of the wavevector inside the core and κx

and κy are those in the cladding. As kx and ky become imaginary in metallic
nanowires, the beam diameter is free from the limitation of the wavelength.
Simulation [48] reveals that for the lowest order TM mode β increases as the
core radius decreases and there is no transmission cut off in the core size.

The concept of nanoscale 1-D metallic waveguides has motivated many new
researches in the field of plasmonics. However, currently realising such struc-
tures still presents an engineering challenge. On the other hand, various 2-
D SPP waveguides (waveguides of 2-D SPP waves) have been experimentally
demonstrated in recent years, including: metallic stripes [51, 52, 53, 54] and
wedges [55, 56] (insulator-metal-insulator configuration), metallic gaps [57, 58]
and grooves [59] (metal-insulator-metal configuration), etc. Moreover, some
complex SPP waveguiding elements based on the principle of straight waveg-
uides, such as S-bent waveguides, four-port coupler, Y-splitter and coupler
have also been reported [60].
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Sub Wavelength Optics

Controlling the propagation of SPs is of fundamental importance to achieve SP-
based subwavelength optics. The concept of using 2-D optical elements for SP
manipulation was published in the same year as the metallic nanowire waveg-
uide was proposed. When Smolyaninov et al. investigated SP scattering by
surface defects, they suggested the design of subwavelength mirrors or lenses
for SPP focusing [61]. The experimental demonstration of SP optical elements
came in 2002; Ditlbacher and co-workers [62] reported the manipulation of SPP
propagation in a 70-nm-thick Ag film by introducing various nanoscale optical
elements through height modulation on the film. The influence of these ele-
ments on the SPP field distribution were detected through fluorescence imag-
ing.

1.4 Terahertz

Terahertz waves are increasingly redefining our view of the world by opening
up new frontiers of research across a wide domain of applications. Despite
being in the early stages of development, the use of THz technologies have
been proven to hold great potential for application areas such as imaging, spec-
troscopy and sensing. The recent breakthroughs achieved in designing novel
components for integrated THz systems will certainly augment and potentially
replace X-ray and infrared technologies in scanning and spectroscopic appli-
cations. X-ray technology is mature, having come a long way since its first
demonstration more than a century ago. In comparison, systems utilising THz
waves are still very much in their infancy, and thus offer significant potential.

In terms of definition, terahertz radiation is commonly referred to as the in-
termediate band of frequency lying between the microwave and infrared band
in the electromagnetic spectrum. In quantitative terms this is defined as the
range of frequencies between 300 GHz - 10 THz or, in terms of wavelength, the
range can also be defined as 1mm − 30.0µm.

An ever-increasing list of breakthroughs achieved in THz technology has
triggered a flurry of research activities in diverse fields. Most notable and in-
deed ground breaking milestones achieved in THz research include the demon-
stration of a fully functional THz time domain spectrometer by Grischkowsky
et al. [63] although the first demonstration of THz time domain spectroscopy
dates back to the mid 1980s [64, 65]. On the other hand, the first imaging de-
vice exploiting THz radiation was demonstrated in 1995 by Hu et al. [66]. Ever
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since then some of the most remarkable developments in the field of imaging
have included the development of three dimensional tomographic imaging by
exploiting the temporal coherence of THz pulses [67]. In addition to that, more
recently various synthetic aperture imaging configurations have also been pro-
posed [68, 69, 70] which offers imaging with remarkable resolution. Despite
the breakthroughs achieved, developments in advanced sensing and imaging
with THz band remain largely unexplored compared to the relatively well-
developed science and technology in the microwave and optical frequency re-
gion.

Since the demonstration of THz wave time-domain spectroscopy in the mid
1980s [64, 65], there have been a series of significant advances, as more powerful
and stable THz sources and higher sensitivity detectors emerged which provide
new opportunities for extending the applications in the THz frequency range.

As more and more technologies underpinning device characterisation and
fabrication emerge, THz technology will not only be seen to have an impact
on material characterisation and identification but its impact will also be felt in
applications such as communications, imaging, medical diagnosis, health mon-
itoring, environmental control, and chemical and biological sensing, as well as
security and quality-control applications. Thus twenty-first century research
in the THz band region is one of the most promising areas of study for trans-
formational advances in imaging [71] and in other fields such as biology and
medicine [72].

While interest in THz technology continues to grow throughout the whole
scientific community, its usage in many real life applications still remains strictly
limited due to a lack of sources and guidance medium. The lack of a high-
power, low-cost and portable THz source that operates at room temperature
(or even at lower temperatures for which sophisticated coolant is not neces-
sary) is by far the most significant limitation of modern THz systems. There
is an array of potential sources each with relative advantages, and advances in
high-speed electronics, laser and materials research continue to provide new
candidates. To set the context, before going into details about the background
of the research carried out here and the results achieved, it is necessary to pro-
vide an overview of the applications of THz waves in many critically important
areas of science.
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1.4.1 Application of Terahertz Radiation

Applications involving exploiting THz radiation may be classified into two
broad domains for this work: communications and sensing. Analytical tech-
niques in the frequency and time domains are currently being used to identify
and characterise various materials in this context. These techniques have the
potential to open up new frontiers of research in many fields including biology,
pharmacy, medicine, industrial non- destructive evaluation, meteorology, envi-
ronment monitoring and fundamental science. The list of applications where
the true potential of THz radiation can be harnessed is indeed a wide span-
ning one. Some of the key areas of application where the possibility of using
THz waves are currently being explored has been discussed in the following
subsections.

Biomedical Application of Terahertz

Time domain spectroscopic techniques based on THz waves have come a long
way ever since they were first established in the early 1990s [63]. Modern
THz-TDS systems may be applied to identify and characterise many biologi-
cal materials such as cancer tissues, DNA, biomolecules and proteins [73, 74].
The study of proteins, DNA and other biomolecules and various cancers using
THz systems is providing major insights into these critically important areas.
Label free DNA sensing using THz waves has attracted considerable interest in
the last decade amongst medical professionals and physicists. Several break-
throughs have also been achieved in these areas, most notably in proposing
THz biochips and label free probing of genes [75, 76, 77, 74].

The application of THz spectroscopy and imaging techniques has also been
extended to the diagnosis of cancer [78]. A system using a THz reflection
geometry [79] has been used to study frequency and time domain based 2-
dimensional images of cancerous skin cells. The high sensitivity of THz waves
to hydration levels of materials were exploited in this technique to perform de-
tection since the water content in cancerous cells is different to that in normal
cells [80]. Skin cancer is visualised by the reflection of THz-TDS at a lateral and
vertical resolution of about 350µm and 40µm, respectively, and a penetration
depth of about a millimetre has been realised.
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Application in Security Scanning

Most common explosive and narcotic substances have distinct signatures in the
THz band compared to other parts of the electromagnetic spectrum. This dis-
creet advantage offered by THz waves can potentially make THz scanners use-
ful in security systems for airports and transport hubs. THz signatures of illicit
substances allow their identification of specific chemicals through the analysis
of their transmission spectra. As radiation below 3.0 THz can generally pass
through normal envelopes, materials can be identified using THz multispec-
tral images and component spatial-pattern analysis without having to open the
mail [81, 82]. The emergence of the THz camera has also added a new dimen-
sion to the security scanning application. For instance, a passive THz cam-
era made up of an SBD (Schottky Barrier Diode) array with a silicon photonic
bandgap crystal and a heterodyne detection method operating at a frequency
of about 500 GHz is now available for use in airport security [80]. Active THz
cameras on the other hand will extend the range of application range to the area
of biometrics. Hazardous-gas detection using THz sensing is also expected to
become more common as, for instance, a new detection technique for detect-
ing gases, such as carbon monoxide, is required at fire sites where infrared gas
detection is sometimes blocked, for example by concrete walls.

Application in Spectroscopy

By far the most successful application of THz waves (apart from in the field
of astronomy) has been in spectroscopy and in imaging. The most widely em-
ployed spectroscopic technique using THz techniques is the time domain spec-
troscopy (or THz-TDS for short). In such a system, an ultrafast laser source (a
Ti:sapphire laser operating in pulsed mode at λ ∼ 800 nm with a pulse duration
of about 100 fs) is split into a pump and a probe beam using beam splitters. The
pump beam is shone on an appropriate THz emitter to generate THz pulses,
whereas the probe is used to detect the pulses generated by the emitter. The
probe pulses are then propagated along a channel of optical delay lines to sam-
ple the THz pulses and record the electric field as a function of delay time. For
detecting THz waves in a TDS system, coherent detectors are required. Two of
the most common methods are based on photoconductive sampling and free-
space electro-optic sampling [83]. After the interaction of the terahertz pulse
with a target, it can be recorded and analysed by extracting its spectrum. This
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provides the THz response of the target within the THz-pulse covered band-
width. Since the above spectroscopic measurement is carried out recording the
THz waveform in the time-domain, this technique is called time-domain spec-
troscopy (also abbreviated TDS) [84].

There are clear advantages of using THz in TDS systems over other radiation
bands of the electromagnetic spectrum. First, THz-TDS provides coherent spec-
troscopic detection over a wide range at THz. THz-TDS utilises coherent de-
tection methods, which can be used to measure coherent processes in carriers.
Coherent detection techniques offer the advantage of providing both the am-
plitude and phase of the waveform, whereas incoherent detection techniques
only offer information about the intensity of the waveform/signal. Coherent
detection techniques facilitate a rigorous investigation of the material under in-
vestigation. This is difficult to access using other methods. Second, using the
pulsed form of THz waves in TDS systems gives a high temporal resolution due
to the very short duration (measured in picoseconds) of the pulses. It is thus
very well suited for measurement in dynamic spectroscopy applications. Third,
THz- TDS uses time-gating in sampling the THz pulses that significantly sup-
presses any background noise. As a result, THz-TDS usually has a very high
signal-to-noise ratio. This is especially useful to spectroscopic applications with
high background radiation, which is comparable or even stronger than the sig-
nal [84].

THz-TDS also presents several challenges. THz-TDS is usually slow, due to
the temporal sampling of the THz pulses. Techniques have been developed in
order to improve the speed of THz-TDS measurements [85]. Today, THz-TDS
can perform a single measurement in less than one second with a fairly high
SNR. THz-TDS also suffers from poor spectral resolution (1 − 10 GHz) [86, 87]
due to the limited temporal scanning range seen in real measurements. In prin-
ciple, one can scan a THz pulse for as long a time period as it is needed. How-
ever, a longer scan not only takes more data acquisition time, but also reduces
the dynamic range of the spectrometer. The limited spectral resolution is not a
problem when measuring the spectrum of a target in a condensed state, whose
spectral features often have a bandwidth of a few tenths of THz. The spectral
resolution could, however, be insufficient when gases are measured. For such
a measurement, a continuous wave THz source with narrow line width is pre-
ferred.
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1.4.2 Terahertz Detectors

The detection of THz-frequency signals is a critical part of any THz system.
Highly sensitive and reliable detection mechanisms are often required for THz
systems due to the low output power of the available sources and the relatively
high levels of thermal background radiation that can lead to erroneous detected
signals.

Direct detectors such as InSb, Ge or Si bolometers based on thermal absorp-
tion are often utilised for broadband detection of THz waves. For these systems
it is critical to incorporate a cryogenic cooling system to eliminate the inter-
fering thermal background effects. Other commonly used detectors include
pyroelectric infrared detectors and superconductor (such as niobium) based
detectors and also through using interferometric techniques. Some major ad-
vancement has been seen recently in developing THz detection techniques. One
such major leap was the demonstration of a Ge based single photon detector by
Komiyama et al. [88]. The underlying system for this detector consists of a quan-
tum dot based single electron transistor in the presence of a high magnetic field.
Plasmonic detectors incorporating monolithic bolometers were also proposed
more recently as part of a greater effort to miniaturise THz devices [89].

Heterodyne detection is often preferred over the use of bolometric detectors
for applications that require a high degree of spectral resolution. Heterodyne
detection utilises a nonlinear device called a mixer. Schottky diodes are com-
monly used as mixers. The key process in a mixer is frequency down conver-
sion, which is carried out by mixing a THz signal ωS with reference radiation
at a fixed frequency ωLO. The mixer produces an output signal at the difference
frequency called the intermediate frequency, ωD = |ωS − ωLO|. The amplitude
of the output signal is proportional to the THz amplitude [90].

In THz-TDS systems, coherent detection mechanisms are utilised which mea-
sure both the amplitude and phase of the detected THz signal. Two of the most
commonly used coherent detection mechanism includes photoconductive and
free-space electro-optic sampling. Electro-optic sampling relies on coupling be-
tween THz and optical pulses (from a femtosecond laser) in a non-linear sensor
crystal typically ZnTe or GaSe. The birefringence of the sensor crystal gets per-
turbed due to the incident electric field of the THz pulse, which in turn modu-
lates the polarisation ellipticity of the optical beam passing through the crystal.
This change in ellipticity is then analysed to reveal key features of the ampli-
tude and the phase of the THz beam [91].
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1.4.3 THz Sources

Generating coherent radiation is one of the key requirements that must be met
for a source before it can be used in any THz system. Coherent generation
of THz has long been performed by either up or down converting radiation
emitted from electronic or photonic sources. The resistive limitation of elec-
tronic sources operating beyond 100 GHz proved to strictly limit the range of
frequencies offered by such sources. On the other hand using photonic sources
such as semiconductor lasers appeared to be an unprecedented challenge due
to limitations in achieving population inversion at small energy level separa-
tion (for THz emission, it is roughly around 40 meV) in the conduction band
of many materials. An ideal THz source would undoubtedly offer the benefit
of high power emission in narrowband with greater frequency tunability. In
addition to that, ability to operate at low cost and high temperature are also
critical. However, presently it is nearly impossible to achieve all of these from a
single source. The output power from many conventional THz sources can be
compared in the figure shown in Fig. 1.9 [80] Chapter 1. Introduction
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frequencies, increase the operational temperatures and the range 
of tunable frequencies and to obtain higher-quality beam modes. 
To achieve these goals new designs of structures, gratings and 
waveguides are being studied intensively.

Solid-state electronic devices have now entered the 
low frequency end of the THz regime. Among them, the 
UTC-PD, which produces high-quality sub-THz waves by 
means of photomixing, is one of the more promising devices. 
The THz waves in a UTC-PD are generated by the optical beat 
of the light from two different wavelength laser diodes (LDs) 
with the emission frequency being defined by the difference 
between the two wavelengths. The emission is typically tunable 
up to 1.5 THz. Maximum c.w. output powers of 20 mW and 10 
μW have been achieved16 at 100 GHz and 1 THz, respectively, 
using LDs operating at 1.55 μm. Examples of current 
applications include sub-THz wireless communication and photonic 
local oscillators.

Many researchers have also studied other sources17,18, 
such as resonant tunnelling diodes (RTDs), THz plasma-wave 
photomixers, and Bloch oscillators. Recently, an RTD was used to 
successfully demonstrate emission over 1 THz, made by coupling 

the third harmonic of the fundamental 342 GHz oscillation with 
a slot antenna19. Conventional SBD multiplexers have also been 
used in astronomy as a local oscillator at sub-THz frequencies. 
The whisker contact SBD has now been almost totally replaced 
by planar diodes, which are built using advanced semiconductor 
technology, such as air-bridge contact fabrication20.

Large facilities for generating high-power THz beams, such 
as the free-electron laser21 are also important for fundamental 
science. Among them, the p-germanium laser, which can emit a 
peak power of 10 W in the frequency range from 1 to 4 THz, is 
particularly useful as a spectroscopy source22.

DETECTORS

THz detectors for time-domain systems were intensively studied 
in the 1990s, and now GaAs grown at low temperature is often 
used as a photoconductive antenna. Alternatively, electro–optic 
sampling techniques are available for ultrawideband time-domain 
detection. One can measure over 100 THz using a 10-fs-laser and 
a thin nonlinear crystal such as GaSe (ref. 23). The time-domain 
method is explained below. DTGS (deuterated triglycine sulphate) 
crystals, bolometers, SBDs and SIS (superconductor–insulator–
superconductor) junctions are widely used as conventional THz 
detectors24–26, and their performance has improved steadily. 
Further, a THz single-photon detector has been developed using 
a single-electron transistor27.

SPECTROSCOPY AND IMAGING

Since the early 1990s, the introduction of mode-locked femtosecond 
lasers has signifi cantly expanded the use of time-domain 
spectroscopy for material research28. Th e principle of THz-TDS, 
as depicted in Fig. 4a, starts with a femtosecond laser producing 
an optical-pulse train. Each pulse separates into two paths. One 
reaches the THz emitter, such as a photoconductive antenna, 
semiconductor wafer or nonlinear crystal, where the optical pulses 
are transformed into ultrashort electromagnetic pulses. Th ese then 
propagate in free space, and are focused onto an ultrafast detector, 
such as a low-temperature-grown GaAs photoconductive switch or 
an electro–optic crystal. Th e other part of the pulse is also delivered 
onto the detector aft er passing through a time-delay stage.

The detector measures the electric-field amplitude of the 
electromagnetic waves. Examples are shown in Fig. 4b, one is 
from the surface of a p-InAs wafer29, which has been reported 
as a strong THz emitter, the other waveform is from a DAST 
crystal30. Their Fourier-transformed spectra extend to 4 and 
8 THz respectively (Fig. 4c). A 10-fs-laser allows the components 
of waves exceeding a frequency of 100 THz to be detected either 
by electro–optic sampling23 or a photoconductive switch31.

In the case of transmission spectroscopy, a specimen is placed 
in the THz beam, and the change in the waveform is measured. 
Generally, the amplitude decreases and the waveform is delayed in 
the time domain. Comparison of the waveforms with and without 
the sample enables the complex refractive index of the material to 
be estimated, which gives various parameters, such as the dielectric 
constant, conductivity and surface impedance. Th e strong 
advantage of TDS is the elimination of the uncertainty associated 
with the determination of the phase from a Kramers–Kronig 
analysis. A THz-FDS can be built in a similar way to conventional 
spectrometers, such as a Martin–Puplett interferometer, by using 
a high-power THz source, or, for some spectroscopic applications, 
a simple transmission confi guration works well32.

THz imaging33–38 also has many practical applications. THz 
waves are transmitted through many materials that block light, 
and give much higher imaging resolution than microwaves. The 
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Figure 1.1: THz-emission power as a function of frequency. Solid lines are for the conven-
tional THz sources [11].

THz source that operates at room temperature (or even at lower temperatures for

which sophisticated coolant is not necessary) is by far the most significant limitation

of modern THz systems. However ,the output power from many conventional THz

sources can be compared in the figure shown in Fig. 1.1 [11]. There is an array of

potential sources each with relative advantages, and advances in high-speed electronics,

laser and materials research continue to provide new candidates. To set the context,

before going into details about the background of the research carried out here and

the results achieved, it is necessary to provide an overview of the applications of THz

waves in many critically important areas of science.

1.1 Application of THz radiation

Applications involving exploiting THz radiation may be classified into two broad do-

mains for this work: communications and sensing. Analytical techniques in the fre-

quency and time domains are currently being used to identify and characterise various

3

FIGURE 1.9: THz-emission power as a function of frequency. Solid
lines are for the conventional THz sources [80]

Solid State THz Sources

Generating radiation at the lower end of the THz band is best performed through
the use of solid-state electronic sources, like oscillators and amplifiers which
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are generally limited in frequency due to the transit time of carriers through
the semiconductor junctions, which causes high frequency roll-off. Several re-
search groups have developed high frequency Gunn, IMPATT and TUNNET
diodes designed for generating THz waves within the range of 0.3 THz and
above [92]. Such sources were hailed as the most powerful solid-state THz os-
cillators operating at room temperature. Their high level of emission makes
these devices suitable for several applications but by contrast the output pow-
ers of these devices are known to fall as an inverse square of the emitted fre-
quency. Hence for frequencies above 0.1 THz, such sources are able to provide
several hundreds of milliwatts of output power. However, near 1 THz the out-
put power may reduce down to a few milliwatts or less. Due to their relative
compactness, it may be appealing to use such devices in THz integrated cir-
cuits. In fact, a 0.2 THz GUNN diode is currently being used in a low cost THz
imaging system [93].

THZ Emitters: Generating pulsed THz radiation is more commonly performed
using laser driven THz emitters by down converting the emitted radiation in
the optical frequency range. The most widely used techniques are: (i) by shin-
ing femtosecond laser pulses on a photoconductive emitter such GaAs or Si on
sapphire electrodes [94] (ii) by shining sub picosecond laser pulses on a non-
linear crystal such as ZnTe or GaSe [95].

Free Electron Lasers: Achieving extremely high power THz emission has been
recently performed using Free electron lasers [96]. The device using a 40 MeV
electron beam is able to achieve up to a 5 times more intensified THz beam
compared to photoconductive or optical rectifier emitter. Free-electron lasers
generate continuous or pulsed variants of THz waves, providing up to six times
more intensified beams than photoconductive emitters. This means that free-
electron lasers have significant potential for applications where an improved
signal-to-noise ratio is essential, or in the investigation of effects in non-linear
THz spectroscopy.

THz Gas Laser: The gas laser has long been a prominent source of far-IR radi-
ation, indeed since the very first lasers were developed in the early 1960’s. Such
gas lasers include optically pumped lasers in which a CO2 laser is used to excite
the rotational-vibrational states of low-pressure molecular gases. Methanol is a
commonly used gas in such lasers, which are able to provide hundreds of milli-
watts of THz emission at 0.11 THz. Gas lasers are also tuneable within a range
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of 0.3 − 5 THz with a very limited power. Frequency tailoring in such lasers
relies on the selection of the optimum gases that are available, which causes
such devices to suffer from lack of frequency agility. In addition to that, gas
lasers are also limited by the scalability factor due to their bulky size and they
are expensive to maintain and operate.

THz Semiconductor Laser: Photonic devices such as semiconductor lasers
diodes, which are typically compact sources of radiation in near-IR and opti-
cal range are also used to generate THz waves. In a semiconductor laser diode,
emission takes place due to electric-dipole oscillation at the quantum level. For
most material the band gap energy lies in the near-IR and optical frequencies.
In long wavelength emission, the low band gap energy is required which most
conventional semiconductors are unable to provide. As a result the THz spec-
trum has long remained inaccessible through conventional interband lasers, as
it is difficult to achieve population inversion at a very small energy level sep-
aration between the bands. Apart from the quantum cascade laser (discussed
in the next paragraph), the only other semiconductor lasers able to emit THz
constitutes of p-type Ge laser or Si impurity lasers. In germanium lasers, las-
ing is achieved through population inversion between heavy and light holes of
an electrically pumped p-doped Ge crystal. An external magnetic field is used
in these devices to facilitate the process of population inversion. In a different
variant of these lasers, lasing is also achievable between heavy and light holes
in impurity states of a strained p-type crystal. Such variants do not require
the presence of an external magnetic field to assist with achieving population
inversion.

Quantum Cascade Lasers: The term quantum cascade laser (QCL) was first
coined in 1994 [97] it being a novel mid IR source based on a series of juxtaposed
quantum wells fabricated on a dielectric waveguide resonator. The quantum
cascade consists of a repeating structure in which each repeat unit is made up
of an injector and an active region. In the active region, the population inversion
is created due to electrical pumping and electron transitions to a lower energy
level occur accompanied by emitting photons at a specific wavelength. The
electrons then tunnel between quantum wells and the injector region couples
them to the higher energy level in the active region of the subsequent repeat
unit. QCL has a lot of potential but may have operating temperature problem.
One major issue faced by researchers developing long wavelength QCL’s is the
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lack of suitable waveguides. At long wavelengths, the intrinsic losses of most
materials are substantially higher, hence it is important to reduce waveguide
losses in THz QCL’s that operate on low current threshold. Designing a suitable
low loss and high confinement waveguide is still a critical challenge for many
THz QCL developers.

1.5 Surface Plasmon Polaritons at THz Frequencies

SPPs at the interface between a conductor and a dielectric with refractive index
n are due to a large SPP propagation constant β > k0n, leading to evanescent
decay of the fields perpendicular to the interface. The amount of confinement
increases with β. Conversely, localisation significantly decreases for frequencies
ω � ωp, where β → k0n [98].

The THz frequency regime has negligible field penetration into the con-
ductor and thus highly delocalized fields. For metals, SPPs at these frequen-
cies therefore nearly resemble a homogeneous light field in air incident under
a grazing angle to the interface, and are also known as Sommerfeld-Zenneck
waves [99, 100].

Due to the lower free electron density, semiconductors can exhibit a SPP
propagation constant β > k0n and thus field-localisation at THz frequencies
resembling that for metals at visible frequencies, however with accompanying
large absorption. Plasmon propagation of broadband THz pulses at the inter-
face of a highly doped silicon grating has indeed been observed [101]. One
intriguing aspect of using semiconductors for low-frequency SPP propagation
apart from the enhanced confinement is the possibility to tune the carrier den-
sity and thus ωp by either thermal excitation, photocarrier generation or direct
carrier injection. Thus, active devices for switching applications seem possible.
As a first step in this direction, Gómez- Rivas and co-workers have demon-
strated the modification of Bragg scattering of THz SPPs on a InSb grating us-
ing thermal tuning [102].

The excitation and detection of broadband THz pulses, also known as THz
time-domain spectroscopy, usually employs a coherent generation and detec-
tion scheme [84]. This allows a direct investigation of both amplitude and phase
of the propagating SPPs.

The propagation of THz SPPs on flat metal films has been investigated using
these broadband techniques, confirming the highly delocalized nature of the
modes. For example, their penetration into the air space above a gold film
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up to distances of multiple centimetres has been demonstrated for frequencies
around 1 THz [103].

In addition to flat films, also cylindrical structures such as metallic wires
can efficiently guide delocalized THz SPPs. Using a typical time-domain spec-
troscopy setup, Wang and Mittleman investigated the propagation of SPPs on
a thin stainless-steel wire [104].

1.6 Aims and Objectives of the work

The discussion provided so far has provided an overview of the significant po-
tential offered by surface plasmon polariton in both optical and THz frequen-
cies. Hence the introductory information presented emphasises the motivation
for conducting this research. To do so, the primary aims and objectives of this
research work can be summarised as follows:

1. To develop and implement effectively a numerical simulation tool suit-
able to design plasmonic devices for optical and THz frequencies.

2. To use the tool to characterise different features of a plasmonic planar
contra-directional coupler in nano scale in the optical frequency range.

3. To optimise the contra-directional coupler to minimise loss and device
size.

4. To design a hybrid plasmonic waveguide and study its propagation char-
acteristics with varying structural properties.

5. To design a rectangular dielectric coated plasmonic waveguide at THz
frequency using the tool.

6. To study different aspects of the rectangular plasmonic guide to charac-
terise its behaviour with structural and frequency change.
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1.7 Presentation of the thesis

The work presented in this thesis is based on the research carried out by the
author into the use of the versatile finite element method tailored specifically
to handle the complex dielectric permittivity of materials. Further, the research
reported here has been devoted essentially to the study of wave propagation in
plasmonic waveguides at THz and optical frequencies. The discussion given in
this section provides an outline of the structure of the thesis. Beginning with a
general introduction, the first chapter introduces the reader to the historical de-
velopment of light wave propagation, history and applications of surface plas-
mon, the benefits of the THz technology and surface plasmon application in
THz frequencies. Several key areas of application have been identified which
have the potential to provide a significant enhancement of the areas of every
day applications of the technology.

The theoretical formulation of the Finite Element Method as a powerful nu-
merical tool in analysing waveguide for THz and optical frequencies is de-
scribed in Chapter 2. To do so, first a brief overview of the numerical tech-
niques commonly used in waveguide analysis is presented outlining their ad-
vantages and limitations in analysing any type of waveguide. A brief history
of the finite element method is also presented focusing on its importance in
analysing waveguide problems. The fundamental mathematical relations de-
rived from Maxwell’s equations for the application of this approach in the solu-
tion of waveguides is also derived. Further, a comparison of several variational
formulations is presented with an emphasis on the vector H field finite element
formulation. The utilisation of triangular elements, the shape functions, and
the infinite elements is undertaken in order to obtain the propagation constants
and the field profiles of various modes supported by a uniform waveguide.
The problem of spurious solutions is also investigated and the penalty function
method is implemented to avoid the appearance of non-physical solutions.

Chapter 3 begins with a brief introduction to the physics underpinning the
operation of a surface plasmon polariton. A brief introduction on the electron
transition that occurs in a single metal-dielectric interface which lays the foun-
dation for a novel plasmonic waveguide is shown in this chapter. Following
that, brief analysis on three layer planar plasmonic structures are presented.
The finite element simulation results presented here show the detailed dynam-
ics of mode formation in these basic plasmonic structures. Finally, a rigorous
analysis of a six-layer planar waveguide is also presented here where certain
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parameters of the guide were varied to obtain the propagation and loss charac-
teristics of the guide.

Chapter 4 presents a detailed analysis of a hybrid plasmonic waveguide at
optical frequency. The structure and the underlying theory of the HPWG and
its mode characteristics were investigated. In order to understand the proper-
ties and suitable applications of the waveguide, the confinement and propaga-
tion loss of the plasmonic waveguide have also been presented in this chapter.
The results are then benchmarked with the results of a published paper which
seemed in good agreement.

Chapter 5 provides a detailed insight into mode formation that can take
place in plasmonic rectangular waveguides. The Chapter begins with an intro-
duction to the various modes formed in this structure and their performances
upon variation of width, height and metal layer thickness of the guide. By per-
forming a rigorous analysis of the modes supported by the rectangular waveg-
uide after introducing a dielectric coated layer, it is shown that the loss char-
acteristics of the waveguide can be controlled by varying several parameters.
It is further discussed in this chapter that the loss values of the guide ceases to
virtually negligible values when the dimension of the waveguide was varied. It
is shown that this enables the possibility of the waveguide to be used in many
applications in integrated-optic devices and THz communications systems.

Finally in Chapter 6, general conclusions derived from this research work
are summarised and explored further. Possible future prospects for this work
are also suggested. Included within this thesis are three appendices. Appendix
A provides the detailed analysis on the evaluation of the element matrices. Ap-
pendix B provides a detailed analysis for deriving the power confinement fac-
tor. The thesis concludes with a list of relevant publications in the major inter-
national literature by the author presented in Appendix C followed by a list of
references cited in this work.
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Numerical Methods

2.1 Introduction

Advances made in modern device fabrication techniques and the continuous
emergence of novel exotic materials have resulted in waveguides and related
components used in todays photonics circuits having an intricate geometry and
having materials with complex refractive indices. A robust and highly accurate
simulation method is often required to address the challenges in defining and
characterising such waveguides and devices. Defining and characterising such
waveguides can be performed with various methods which can be classified
into analytical approximation solutions and numerical solutions through com-
puter aided simulations.

Analytical solutions can only be obtained for stepped 2-D optical waveg-
uides and stepped optical fibres, where the refractive index changes gradually
in the thickness and the radial direction respectively. Such solutions use the
Ray Approximation Method (RAM) [105], and the Wentzel, Kramers Brillouin
(WKB) method [106].

For three dimensional waveguides which are more commonly used in to-
day’s photonics systems and circuits, analytical solutions in compact form are
not always obtainable. In addition, the analytical solutions do not always treat
the modes in complex waveguides as hybrid modes but rather as purely of a
single polarization. For that reason their accuracies are sometimes question-
able in certain cases. Whenever exact analytical solutions are not available,
approximate methods are often sought. Most engineering problems involve
the derivation of partial differential equations, relating the variables of inter-
est, which are based on physics and engineering principles. The development
of approximate methods for the numerical solution of partial differential equa-
tions has attracted the attention of mathematicians, physicists and engineers for

29
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a long time. There are a number of approximate theoretical and numerical tech-
niques that could be used to determine the useful characteristics of propagation
in waveguides.

2.2 Analytical approximation solutions

Analytical approximation solutions are very widely used in many applications
for the determination of the propagation characteristics of various types of op-
tical waveguides, with relatively simple geometry. Such solutions are the Mar-
catili Method [107] and the Effective Index Method [108].

2.2.1 Marcatili’s Method

In the Marcatili’s method (MM) [107], the field in a rectangular dielectric waveg-
uide (a dielectric rod with rectangular cross-section, surrounded by four differ-
ent dielectrics of lower refractive indices), is approximated to the fields in two
slab waveguides, obtained by extending the width and the height of the rect-
angular core to infinity. The rectangular dielectric waveguide is assumed to
support a well-confined mode, therefore, only the regions on each side of the
dielectric rod are considered to carry appreciable amount of field, and the prob-
lem is then decoupled in two slab waveguides, one at each transverse direction.
The field in the centre region is assumed to vary sinusoidally, while that in the
substrates is considered to decay exponentially. Transcendental equations [109]
are then derived for each transverse direction, each of them giving a transverse
propagation constant. The axial propagation constant of the waveguide is then
calculated from the transverse propagation constants, obtained by solving si-
multaneously the two transcendental equations. In a similar way, the MM can
also be applied to the solution of the directional coupler problem. The above
approach works well in the far-from cut-off region but gives poor results in the
near-cut-off region [110].

2.2.2 The Effective Index Method

The Effective Index Method (EIM), is an improvement of the Marcatili’s method,
proposed by Knox and Toulios (1970) [108]. In this approach, the core of a rect-
angular dielectric waveguide is replaced by an equivalent slab with an effective
index obtained from another slab. The dielectric core is decoupled into two slab
waveguides, one at each transverse direction, and the transcendental equation
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is first solved in one direction, by applying the appropriate boundary condi-
tions. The effective index calculated is then used as the refractive index of the
centre region in the solution of the transcendental equation in the other trans-
verse direction, which is obtained by applying boundary conditions in that di-
rection. The new effective index obtained corresponds to the overall effective
index of the waveguide.

The above approach does not give satisfactory results near the cut-off re-
gion, therefore, several techniques have been proposed to improve the accuracy
of the method. Zhou and Itoh (1982) [111] used the approach for a trapped im-
age guide, where they replaced the original waveguide by an equivalent struc-
ture. Then they imposed the transverse resonance at the dielectric-air interface,
to include the free-space regions of the guide and solved the problem in terms
of the surface impedances in an approximate manner, with an improved accu-
racy at low frequencies. Chiang et al. [112] derived an expression for the error
in the propagation constant of a rectangular waveguide, which occurs by us-
ing the conventional EIM, and proposed a new effective-index approach with
a built-in perturbation correction of the above error, suitable for rectangular di-
electric waveguides, channel waveguides, strip waveguides and arrays of such
waveguide structures. Chiang et al. [113], proposed a dual effective index ap-
proach, in which, by combining two solutions, corresponding to two different
ways of applying the EIM to the waveguide, they achieved the elimination of
the errors occurring by applying each solution separately.

2.3 Numerical Approximation Solutions

The numerical solutions of waveguides can be classified into two groups. These
are the domain solutions, also known as differential solutions, in which the
whole domain of the optical waveguide is considered as the operational area,
and the boundary solutions, also known as integral solutions, which include
only the boundaries as the operational area. The Variational Method (VM), the
Finite Element Method (FEM), the Finite Difference Method (FDM), and the
Multilayer Approximation Method (MAM) are some of the most commonly
used domain solutions, while, the Boundary Element Method (BEM), the Point
Matching Method (PMM) and the Mode Matching Method (MMM), are typical
boundary solutions [114].

Most of the numerical solutions are concerned with methods of finding a
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numerical solution to the Helmholtz wave equation, which can be derived di-
rectly from Maxwell’s equations and can be expressed as [115]:

∇2Φ + k2Φ = 0 (2.1)

Equation ( 2.1) is valid over the entire cross section of an arbitrarily shaped
waveguide, bounded by the closed curve. The equation is also subject to bound-
ary conditions which can be of both Dirichlet and Nuemann type.

2.3.1 The Variational Method

In the variational approach, a field solution of the optical waveguide problem,
usually based on the wave equation is assumed, where the unknown param-
eters are chosen to match the assumed field to the actual field solution. The
above solution is then expressed in integral form, in terms of a functional sat-
isfying the boundary conditions of the problem. The stationary value of the
functional about the correct solution, with respect to small variation of the field
values, is achieved by minimizing the integral expression. Then by using trial
functions to represent the field solutions, the integral equations are reduced to a
set of linear equations which can be solved by standard numerical techniques.
The accuracy of the results depends on the choice of the trial functions [116],
which must be sufficiently differentiable and satisfy the boundary conditions.
The variational method forms the basis of other fundamental numerical tech-
niques, such as the Finite-Element and the Finite-Difference methods, which
are discussed in the following sections.

2.3.2 The Finite Difference Method

The finite difference method (FDM) [117], is one of the most rigorous and per-
haps the most commonly used numerical method used for the solution of bound-
ary value problems. In FDM, a finite cross-section is defined by enclosing the
optical waveguide under investigation in a rectangular box, where the side
walls may be either electric or magnetic walls, in order to include coupled
structures. At the boundaries of the enclosing rectangular box, the fields are
assumed to be negligibly small, therefore infinite elements with an associated
decay factor can be introduced, to approximate the infinite exterior region. The
cross-section of any non-homogeneous optical waveguide is implemented by
a rectangular grid, where it is essential that all the dielectric boundaries must
lie on points of the above grid. By considering any arbitrary nodal point of the
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rectangular grid, the corresponding nodal field value can be expressed in terms
of the neighbouring nodes, in the two transverse directions, by the five-point
formula of finite differences, which is based on a Taylor series expansion. The
Helmholtz wave equation (shown earlier in equation ( 2.1)), or a variational ex-
pression, can be arranged into a set of two coupled wave equations, one for each
transverse direction Hx and Hy, which can be discretized in the five-point finite
difference form. By imposing the correct continuity conditions of the fields be-
tween the adjacent cells of the grid, an eigenvalue matrix equation of the type
[A]x−λ[B]x = 0 can be formed (where λ is the eigenvalue), which can be solved
by using sparse matrix techniques.

The main disadvantage of finite difference methods are the lack of geometri-
cal flexibility in fitting irregular boundary shapes, and in concentrating points
in regions of the solution domain where the variable changes rapidly. More-
over, using the finite difference methods difficulties also arise in treating sin-
gular points and when any boundary or interface boundary does not coincide
with constant coordinate surfaces.

2.3.3 Point Matching Method

The point matching method (PMM) can be classified as a typical boundary so-
lution of the optical waveguide problem, and as an approach in which the elec-
tromagnetic field is expanded in a series of orthonormal functions (basis func-
tions). It was first proposed by Goell [118] for the solution of the rectangular
optical waveguide, where the radial variation of the longitudinal electromag-
netic fields of the modes can be represented by a series of circular harmonics.
In the above approach the electromagnetic fields inside the waveguide core are
expressed by a sum of Bessel functions and their derivatives, with the fields out-
side the core by a sum of modified Bessel functions and their derivatives, both
multiplied by trigonometric functions. Solutions can be obtained by imposing
boundary conditions of the above fields at a finite number of points, named
matching points, placed symmetrically along the boundary of the waveguide
core. The matching of the tangential electromagnetic fields leads to continu-
ity equations, arranged into matrix form, from which the eigenvalues and the
expansion coefficients can be determined.
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The above approach can be applied to dielectric waveguides having arbi-
trary cross sections, composite dielectric waveguides having multiple dielec-
tric materials and coupled dielectric waveguides composed of multiple waveg-
uides. The number of matching points lies only on the boundaries of the struc-
tures, and therefore, less computational time and memory capacity are required
for the solution of the problem, compared to the use of other numerical ap-
proaches, such as the FEM and the FDM, where nodal points are required,
not only for the boundaries, but for the whole waveguide cross section, as
well. However, it is difficult to apply the method to structures with a three-
dimensional boundary surface, or to structures with an index distribution within
the waveguides, such as graded index fibers [119].

Cullen et al. [120] improved the approach, by rotating the grid of equi-
angularly spaced matching points, in order to place matching points at the
corner of a rectangular dielectric waveguide, to reduce the overall mismatch
at the boundary. Bates and Ng [121], in a review of the method, examined the
validity of the expansions in the approach, the accuracy and the convergence
as the number of matching points increases.

2.3.4 The Boundary Element Method

The boundary element method (BEM) [122] is a computer technique, where
the basic equations are boundary integral equations, which are solved numeri-
cally, by dividing the integration domain into a set of elements. The approach
has similar features with the FEM, but instead of taking unknown nodal field
values throughout the waveguide region, as in the FEM, in the BEM the un-
knowns are taken only along the boundary. The solution of the problem, is
accomplished by first deriving integral equations with respect to unknowns
taken on the boundaries. The integral equations are then discretized to linear
equations, to obtain numerical solutions, which are again expressed in integral
forms in order to represent the values of various physical quantities. Integral
representations play a key role throughout the process, not only in the deriva-
tion of integral but also in the evaluation of the physical quantities. Various
integral representations can be used, depending on the particular case, with
the Green’s formula being the most popular for many applications.

The BEM offers the ability to deal with odd-shaped boundaries, as the FEM,
but with far less number of unknowns, since unknown values are considered
only along the boundary, while in the FEM, these are considered for the whole
waveguide cross- section, less memory storage and less computational time are
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required. Unlike the FEM, the BEM automatically incorporates the boundary
conditions at infinity and no infinite elements are required. Additionally, both
approaches may have the same discretization schemes, thus enabling the FEM
to be used for the same case. The BEM is limited though to homogeneous struc-
tures, while some unphysical solutions, known as resonant solutions, may be
involved. Another drawback of the BEM is that it may require some analytical
treatment and more programming, in some cases where the Green’s function
has some singularities with respect to the integral equations. Also the BEM for-
mulation yields dense matrices, while in the FEM they remain sparse, therefore
offering a more efficient matrix solution.

Zhu and Zhang [123] reported a modified BEM for the solution of waveg-
uide problems, named the eigenweighted boundary integral equation method,
in which a fictitious boundary and a set of eigenfunctions satisfying the bound-
ary conditions were introduced, but they reduced the weighting of eigenfunc-
tion in only one term, rather than an infinite series in modified Green’s func-
tions, thus increasing the computational efficiency. Nallo et al. [124] developed
a BEM formulation, for cylindrical dielectric structures, by expressing the fields
inside and outside the cylinder by means of free space dyadic Green’s functions,
enabling a great flexibility in the choice of basis functions for the unknowns,
thus enlarging significantly the class of algorithms for the numerical solution
of the integral equations.

2.3.5 The Mode Matching or Equivalent Network Method

The mode matching method (MMM) [125], which is also known as the equiv-
alent network method (ENM), is an approximate analysis used for the deter-
mination of the propagation characteristics of an open dielectric waveguide.
In the above approach, the open waveguide structure is considered artificially
bounded, therefore the TE-TM coupling and the continuous spectrum distribu-
tion at the sides of the waveguide are neglected [126]. The waveguide cross
section is viewed in terms of its constituent parts or building blocks, which are
usually portions of uniform dielectric layered structures interfaced by dielec-
tric step discontinuities. The fields in the various regions are then expanded
in terms of transverse modal expansions over each region, thus resulting in a
microwave equivalent circuit representation of the waveguide. The uniform di-
electric regions are then represented by uniform transmission lines with their
characteristic impedances, and the various step discontinuities are modelled by
a set of transformers, where equivalent network admittances take into account
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the effects of the outer region. Therefore, it is possible to model the whole spec-
trum of open waveguide structures as a cascade of uniform regions and step
discontinuities. By applying boundary conditions to the above modes and a
transverse-resonance condition, which requires that, for a particular mode, the
total admittance seen at any of the ports is zero, the dispersion relation for the
propagation constant can be obtained.

For more accurate analysis of open waveguide structures, which exhibit
continuous and discrete modal spectra, the continuous spectrum should be dis-
cretised by suitable basis function expansions, rather than by artificially bound-
ing the structure [127]. Additionally, the effects of the TE-TM coupling at the
sides of such structures, must be taken into account. Koshiba and Suzuki [128]
reported a vectorial wave analysis of optical waveguides with a rectangular
structure by the ENM, where by taking into consideration the discrete-continuous
spectrum coupling and the TE-TM coupling, they calculated the propagation
characteristics. Dagli and Fonstand [127] extended the ENM to GaAs Rib waveg-
uides, directional and three guide couplers, by cascading the models of single
waveguide structures.

2.3.6 The Spectral Index Method

The spectral index method (SIM), is a relatively fast and accurate approach,
in which the wave equation is expressed in terms of Fourier transforms and
Fourier series. It has been applied in the solution of the simple semiconductor
rib waveguide [129][130] and the strip loaded directional coupler [131]. Re-
cently, Pola et al. [132] have extended the approach to multiple rib waveguides.
By considering a simple semiconductor rib waveguide, the SIM replaces the
original rib structure by an effective structure, by displacing the actual physical
dimensions to new ones on which the optical field is zero, in order to model
the penetration of the optical field into the cladding. The method consists of
expanding the fields in terms of local modes and matching the fields along the
base of the rib. The E- or H-field (depending on the polarization) inside the rib
region, is expressed in terms of trial functions, such as cosine and sine Fourier
series, representing the symmetric and antisymmetric modes respectively. In
the region below the rib, the wave equation is expressed in terms of its Fourier
Transform and the problem is reduced to a 1-D slab problem, where the refrac-
tive indices of the layers below the rib are represented by their corresponding
spectral indices. The equations for the two regions are then linked via a transfer
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relation and a transcendental equation is formed, which determines the propa-
gation constant of the waveguide. In order to overcome the field discontinuities
in the rib region, an effective width is introduced, while in the Fourier transform
for the region below the rib, the evanescent regions are expressed by imaginary
spectral indices.

Although the method requires much less computational time than other nu-
merical methods, such as the FDM and the FEM, in the presence of dielectric
corners the electric field exhibits a singular behaviour produced by its trans-
verse components. This makes the design of rapidly converging numerical al-
gorithms for vector mode field computations difficult [133].

2.3.7 The Method of Lines

The method of lines (MOL) is a semi-analytical approach, suitable for the anal-
ysis of the hybrid modes of optical waveguide structures. The method was first
applied to microwave devices by Schulz and Pregla [134], for the analysis of
the dispersion characteristics of isotropic planar waveguides and microstrips.
Later on a modified version of the method was proposed [135] to treat cases
having uniaxially anisotropic regions, such as finline/strip configurations on
an anisotropic substrate. Rogge and Pregla [136] applied the method for the
analysis of strip-loaded film and rib waveguides, and Gerdes et al. [137] to op-
timize broad-band electro-optic modulators with asymmetric co-planar strip
electrodes. Also, this approach was used for the analysis of multilayered gy-
rotropic waveguide structures, where a complex permittivity and susceptibil-
ity were considered for the magnetised gyromagnetic and gyroelectric media,
respectively [138]. Recently, the application of the MOL was reported in mod-
elling optical waveguides with lossy inhomogeneous anisotropic media [139].

In the MOL, the optical waveguide is enclosed in a rectangular box, with
electric or magnetic walls at the sides, satisfying the boundary conditions of
the required polarization. The waveguide cross section is then divided into a
set of equidistant lines along the one transverse direction, resulting in the dis-
cretisation of the electromagnetic fields, which are calculated on the lines along
the other transverse direction. By substituting difference operators for the sec-
ond derivatives of the electromagnetic wave equations, a system of coupled or-
dinary differential equations, for each dielectric layer, is obtained. By suitable
matrix transformations, the above system is uncoupled and the equations can
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be solved analytically. Further application of boundary conditions at waveg-
uide discontinuities leads to a matrix equation, from which the eigenvalues can
be determined.

The above approach is related to a discrete Fourier transformation, therefore
the calculation of the fields on the discretisation lines is very accurate. Since
the interface conditions on dielectric steps are included, discontinuous field
curves can be described accurately [140]. Nevertheless, it is difficult to apply
for waveguides with curved boundaries and the accuracy in the near cut-off re-
gion is limited to the finite size of the rectangular box, as in the finite-difference
method [141].

2.3.8 The Beam Propagation Method

The research on integrated optical circuits (IOC) and optical planar devices,
has emerged from the necessity of calculating the propagation of a light wave
in an optical circuit having an arbitrary refractive index distribution. This type
of field propagation can be simulated numerically by the beam propagation
method (BPM), an approach that was developed in underwater acoustics and
seismology before it was adapted to optical waveguide problems by Feit and
Fleck [142]. Since then, it has been widely used for analysing the performance of
a light beam propagated in an optical planar circuit that has a nearly stripelike
waveguiding structure and in which the refractive index varies smoothly com-
pared with the wavelength. The main features of the BPM are that the electro-
magnetic fields are Fourier transformed with respect to the direction normal to
that of light propagation and that a stepwise method is used for successively
calculating the electromagnetic field along the axial direction.

In the BPM, the optical field is transported within one propagation step,
from the transverse plane at the longitudinal coordinate z, to the transverse
plane at z + ∆z. Calculations are performed, to relate the optical fields at the
input and output planes, which are based on the assumption that the dielectric
profile within one step, ∆z, remains unchanged [143]. As the optical field prop-
agates through a medium, it is subject to diffraction due to its wave nature, and
the light rays of the wave experience a certain amount of phase shift, depend-
ing on their x, y positions. The above influences can be applied one at a time,
provided that the space along the path is subdivided into very small sections.
By doing so, the continuous medium can then be realised as a series of lenses
separated by short sections of homogeneous space, where the contribution of
the lenses in the phase shift is expressed in the solution of the wave equation.
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For computational purposes, the wave between the lenses can be decomposed
into its spectrum of plane waves by applying a Fast Fourier Transform (FFT)
algorithm, and then it is reconstructed halfway, (∆z/2), before the next lens, by
applying the inverse FFT. The above process is repeated for each section along
the whole propagation path. The propagation step size ∆z, which must be at
most one wavelength of the light beam, must ensure that the contribution of
evanescent waves, which are part of the plane wave, is negligible, and that the
rays associated to the wave, travel parallel to the z-axis, with minimum phase
shift.

The BPM is widely accepted as a powerful method for the analysis of non-
uniform structures. But this method requires more computational resources
as discretizations in both the transverse and the longitudinal planes are re-
quired [141]. To handle the discretization in the transverse plane, two-dimensional
methods can be employed, such as the FDM [144] and the FEM [145]. The latter
can be used in many devices, such as directional couplers, optical fibers, bent
optical waveguides, Bragg and diffraction gratings, tapered optical waveguides
and optical Y -junctions. It can also be used in conjunction with other numerical
techniques such as the Fresnel approximation [144].

2.3.9 The Finite Element Method

The finite element method (FEM) has emerged as one of the most successful
numerical methods for the analysis of waveguides from low frequency to mi-
crowave to optical region. It is indeed capable of solving waveguides of arbi-
trary refractive index distribution. In the work presented in this thesis, a full-
vectorial H field based FEM has been used to characterise waveguides operat-
ing at terahertz and optical frequencies. Such methods are capable of handling
a wide range of inhomogenous problems with greater ease. It is also capable of
solving anisotropic problems.

In this approach, any waveguide cross-section can be divided into a patch-
work of triangular elements, where the appropriate field components are ap-
proximated by polynomial expressions over these elements. Each element can
have different dielectric material, which may be anisotropic, non-linear or lossy.
The FEM, which is based on the Ritz-Galerkin approach, converts a continuous
system into a discretized model. By applying the variational principle [146]
to the functional of the system, the problem reduces to a standard eigenvalue
matrix equation [A]x − λ[B]x = 0, which can then be solved by using stan-
dard matrix solver algorithms. The FEM can be used effectively for the analysis
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of various optical waveguides, with any shape, including 2D and 3D optical
waveguides, axisymmetrical and non-axisymmetrical optical fiber, and non-
linear optical waveguides. The FEM is based on the same principles as the
FDM, therefore a comparison of the two methods can be attempted. Although
in the FDM simpler matrix eigenvalue equations are formed, which are formu-
lated with less computer programming, less computer memory storage and ex-
ecution time, and the solution is free of spurious modes (Hx−Hy) formulation,
the above approach cannot be easily applied to structures with odd-shaped
boundaries. The triangular elements used in the FEM can give a better fit to
such structures and also the change of the density or the order of the elements,
in regions where there is more rapid field variation, is performed more easily
with the FEM. Additionally, in the FEM, the field is defined explicitly every-
where and this makes for easier manipulation, such as when evaluating spatial
derivatives to give related fields [146].

2.3.10 Time Domain Analysis

All methods discussed up to now produces a steady state field distribution of
one specific frequency. Transient or time varying responses of the photonic de-
vices cannot be studied by the above mentioned methods. Study of broadband
characteristics of photonic devices is also difficult using the above mentioned
methods because any broadband signal will contain more than one frequency
and the shape of the signal may vary with time depending on the type of the
signal used to excite the device. To tackle such problems, time domain analy-
sis methods were developed. The time domain analysis of EM and photonics
started with Yee’s algorithm [147] for Finite Difference analysis of time domain
problems. Followed by Finite Integration [148, 149, 150], Finite Volume [151,
152] and Finite Element [153, 154, 155, 156, 157, 158, 159, 160] based methods.

Finite Difference Time Domain Method

In 1966 Yee [147] proposed a finite difference based technique to solve Maxwell’s
equations over time to analyse time domain properties of Electromagnetics.
The method he proposed is widely known as Finite Difference Time Domain
or the FDTD method. The method solves the Maxwell’s equations in their dif-
ferential form on a rectangular grid for 2D and cuboid grid for 3D. The method
uses a special staggered distribution of field components to solve the Maxwell’s
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coupled equations. It calculates E and H field components at different space
nodes and E and H fields at different time-steps.

The advantages of the FDTD methods are as follows,

1. It can handle broadband signals. Therefore, frequency response of a struc-
ture can be calculated by performing a single simulation.

2. As the field from the injecting source evolves with time, transient re-
sponse of a device can be observed.

3. Effect of non uniform structure, bending, truncation, fracture etc. can be
observed and measured using the FDTD method.

4. It also solves an explicit form of Maxwell’s equation in localised manner
for each cell which results in a highly data parallel technique.

The FDTD method has the following disadvantages,

1. The method supports all possible modes in the same simulation. There-
fore, it is not possible to characterise each mode without explicitly inject-
ing the mode into the structure.

2. It is a finite difference method. Therefore, using dense and coarse regions
in one computational domain could be less efficient compared to finite
element techniques.

3. Due to the use of FD grid, it has numerical dispersion issues.

Finite Element Based Techniques

As mentioned in the above section, the problems associated with the FDTD
methods mostly arise from the grid. Therefore, the general idea is that a bet-
ter grid or meshing technique could improve the performance of the grid and
improve the overall performance of the time domain analysis.

To represent the structure more accurately, researchers have considered the
FEM for time domain analysis [156, 154, 155, 161, 162, 159]. Although these
methods are sometimes more accurate in structural representation, however
some of them may require an implicit solution of the computational domain for
each time step [163], some require the solution of large matrices [156] and some
require higher order solutions of Maxwell’s equations [154, 162, 159].
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2.3.11 Frequency domain over Time domain

To analyse characteristics of the plasmonic waveguides in this thesis both the
FEM method or the FDTD time domain could be used. However, for this work,
the FEM method was chosen over the time domain method because of the fol-
lowing reasons.

1. The time domain method requires a 3D grid to solve the problem and
to get the steady state solution it needs to solve the entire computational
domain many times. Therefore, it is a slow process. On the other hand, the
FEM method needs to solve only a 2D cross-section of the computational
domain. Therefore it is much faster in getting the solution.

2. Time domain cannot separate modes with different propagation constants.
Therefore, to analyse the characteristics of one single mode, that mode
profile needs to be injected into the input of the waveguide. To get that
appropriate mode profile, the FEM method is needed in the first place.
The steady state parameters could be calculated directly from the FEM
results.

3. Time domain method can calculate the dispersion characteristics of a broad
band signal in one simulation. But that leaves a possibility of generation
of other modes. This is because the mode profiles for all frequencies are
not the same. As a result, with time domain the propagating wave will
evolve into the supported modes. Therefore, more than one mode could
couple into the guide. This will lead to a less accurate solution.

4. Similar problem exists for bending analysis as the reflected wave from
the boundary could couple into other unwanted modes leading to less
accurate results. On the other hand a simple coordinate transformation
could allow us to calculate the bending characteristics for one mode using
the FEM.

2.4 Theoretical Background

Mathematically, the FEM is a numerical technique for obtaining approximate
solutions to boundary-value problems, and it is the extension of two classi-
cal methods, the Raleigh-Ritz variational method, and the Galerkin method of
weighted residuals. A boundary value problem can be defined by a govern-
ing differential equation in a domain, together with the boundary conditions
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on the boundary that encloses the domain. In the variational approach the
boundary-problem is formulated in terms of variational expressions, referred
to as functionals, whose minimum corresponds to the governing differential
equation. The approximate solution is obtained by minimising the functional
with respect to its variables [164]. The Galerkin method is based on the method
of weighted residuals [146], in which the domain of the differential equation
is discretized, and the solution is approximated by the summation of the un-
known solutions for each subdomain weighted by known functions, relating
them to the domain. The overall solution is obtained by minimising the error
residual of the differential equation. Chapter 2. Numerical Method
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Figure 2.1: Arbitrarily shaped optical waveguide, divided into arbitrary sub-domains, each
having di↵erent type of material.
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FIGURE 2.1: Arbitrarily shaped optical waveguide, divided into
arbitrary sub-domains, each having different type of material.

Research on the application of the FEM to electromagnetic-wave engineer-
ing began during the last years of the 1960s and since then, with the availability
of larger and faster computers, it has been established as a very powerful tool
dealing with the analysis of optical waveguides, particularly structures with ar-
bitrary shapes, index profiles, nonlinearities and anisotropies. A cross section
of an arbitrarily shaped optical waveguide, Ω, in the x − y transverse plane as
shown in Fig. 2.1 is considered, divided into a number of sub-domains, called
elements, being composed of several different materials, each of which can be
described by arbitrary permittivity and permeability tensors, ε̂(x, y) and µ̂(x, y)

respectively. A uniform shape of the waveguide along the longitudinal z axis,
is assumed and time and axial dependencies are given by ejωt and e−γz, where,
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ω is the angular frequency and the complex propagation constant, γ, given by:

γ = α + jβ (2.2)

where α (Np/m) is the attenuation constant and β (rad/m) is the phase
constant. For a lossless case, the propagation constant is considered to be equal
to the phase constant, jβ. The electric, E(x, y, z, t) and the magnetic H(x, y, z, t)

fields over the region of the waveguide can be expressed by:

E(x, y, z, t) = E(x, y)ej(ωt−βz) (2.3)

H(x, y, z, t) = H(x, y)ej(ωt−βz) (2.4)

where E(x, y) and H(x, y) are the spatial time-independent electric and mag-
netic fields respectively.

2.4.1 Basic Equations

Maxwell’s Equations

Maxwell’s equations comprise a set of four electromagnetic field vectors, which
represent the governing laws of the electromagnetic wave phenomena. The
four vectors are: the electric field intensity E (Volts/metre), the magnetic field
intensity H (Amperes/metre), the electric flux density D (Coulomb/metre2)
and the magnetic flux density B (Tesla). For time dependent fields they can
be written in differential or integral forms. Since the FEM is a boundary-value
problem which is defined by differential equations, Maxwell’s equations are
presented in differential form as follows:

∇× E = −∂B

∂t
(2.5)

∇×H =
∂D

∂t
+ J (2.6)

∇ ·D = ρ (2.7)

∇ ·B = 0 (2.8)
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where ρ, is the scalar volume electric charge density (coulomb/metre3) and
J is the electric current density (Amperes/metre).

The associated constitutive equations for the medium can be written as:

D = εE (2.9)

B = µH (2.10)

where ε is the permittivity and µ is the permeability of the medium and can
be defined by:

ε = ε0εr (2.11)

µ = µ0µr (2.12)

where ε0, εr, µ0 and µr are the permittivity of the vacuum (8.854 × 10−12

Farad/metre), the relative permittivity of the medium, the permeability of the
vacuum (4π × 10−7 Henry/metre) and the relative permeability of the medium
respectively.

Boundary Conditions

Boundary Conditions are conditions that must be met at the boundary surface
when two different media 1 and 2 come into contact. If the unit normal vector
n, is directed from medium 1 to medium 2 as shown in Fig. 2.2 in the absence of
any surface currents (J = 0) and surface charges (ρ = 0), the following bound-
ary conditions apply:

1. The tangential component of the electric field must be continuous.

n× (E1 − E2) = 0 (2.13)

2. The tangential component of the magnetic field must be continuous.

n× (H1 −H2) = 0 (2.14)

3. The normal component of the electric flux must be continuous.

n · (D1 −D2) = 0 (2.15)
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4. The normal component of the magnetic flux density must be continuous.

n · (B1 −B2) = 0 (2.16)

Chapter 2. Numerical Method

2. The tangential component of the magnetic field must be continuous

n ⇥ (H1 � H2) = 0 (2.14)

3. The normal component of the electric flux must be continuous

n · (D1 � D2) = 0 (2.15)

4. The normal component of the magnetic flux density must be continuous

n · (B1 � B2) = 0 (2.16)
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FIGURE 2.2: Boundary between two media of refractive indices n1

and n2, where n is the unit vector normal to the interface.

In certain cases, one of the two media can be considered either as a perfect
electric conductor or a perfect magnetic conductor. When one of the two me-
dia becomes a perfect electric conductor, an electric wall boundary condition is
imposed as:

n× E = 0 n ·H = 0 (2.17)

Such a condition ensures the continuity of the normal component of the elec-
tric field vector, E, and vanishes the magnetic field vector, H, at the boundary.

When one of the two media becomes a perfect magnetic conductor, a mag-
netic wall boundary condition is imposed as:

n×H = 0 n · E = 0 (2.18)

The above condition, vanishes the electric field vector, E, and ensures the
continuity of the normal component of the magnetic field H at the boundary.

In the case of a closed surface, such as the boundary of an optical waveguide,
additional boundary conditions are considered. These boundary conditions can
be natural, in cases where the field decays at the boundary, therefore they can
be left free. In some other cases they can be forced, in order to take advantage
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of the symmetry of a waveguide, to reduce the number of elements in FEM
(and the order of the matrices), or to impose complementary symmetry to the
waveguide, in order to achieve the required polarization. The above boundary
conditions can be classified as follows [146]:

Φ = 0 Homogenous Dirichlet (2.19)

Φ = k Inhomogenous Dirichlet (2.20)

∂Φ

∂n
= 0 Homogenous Neumann (2.21)

where Φ can be the electric or magnetic field, k is a prescribed constant value
and n is the unit vector normal to the surface.

The Neumann boundary condition represents the rate of change of the field
when it is directed out of the surface and it can be used in the FEM to impose
the field decay along finite-elements, adjacent to the boundary elements of a
waveguide structure.

Wave Equations

In an isotropic lossless medium with no wave source (J = 0, ρ = 0), with
uniform permeability µ = µ0, and uniform and constant permittivity, by elimi-
nating the magnetic flux density and the electric flux density components from
Maxwell’s equations 2.5 and 2.6, these can be written as:

∇2E + k2E = 0 (2.22)

∇2H + k2H = 0 (2.23)

where the wavenumber, k (rad/m) is given as:

k = ω
√
εµ0 (2.24)

If ε = ε0, then the wavenumber k0 is called the free space wavenumber and
is defined by:

k0 = ω
√
ε0µ0 (2.25)
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Equations 2.22 and 2.23 are known as vector Helmholtz wave equations [165]
for homogeneous media, and in addition to the physical solutions, they also
support non-physical, spurious solutions, since the condition ∇ · B = 0, is not
satisfied. In a rectangular coordinate system, if only one component of the elec-
tric or magnetic field is considered, suppose Ex, the vector Helmholtz wave
equation can lead to the scalar Helmholtz wave equation as [115]:

∇2Ex + k2Ex = 0 (2.26)

2.5 Variational Formulations

The finite-element formulation is based on the variational or Raleigh-Ritz ap-
proach, therefore, several variational formulations have been proposed for the
analysis of the optical waveguide problem. These can be in a scalar form [166],
where the Electric or Magnetic field is expressed only in terms of one compo-
nent, according to the predominant field component, or, can be in vector form,
where the Electric or Magnetic field is expressed in terms of at least two of the
constituent field components.

It should be noted that most of the formulations applied in the FEM, yield
to a standard eigenvalue problem:

[A]{x} − λ[B]{x} = 0 (2.27)

where [A] and [B] are real symmetric sparse matrices, and B is also positive
definite. The eigenvalue λ can be chosen as β2 or k2 depending on the formula-
tion, and the eigenvalues represent the nodal field values of the finite-elements.
It is desirable for the above matrix equation to be of this canonical form, to
allow an efficient solution.

2.5.1 Scalar Approximation

The scalar approximation can be applied in situations where the field can be
described as predominantly TE or TM and it can be expressed in terms of the
longitudinal components of the above modes. It has been used for the solution
of homogeneous waveguide problems [167], open boundary problems [168],
and for the analysis of anisotropic waveguides [169]. For the quasi-TE modes



Chapter 2. Numerical Methods 49

over a region Ω, where the dominant field component is Ex, the formulation
can be written as [166]:

L =

∫ ∫

Ω

[(
∂Ex
∂x

)2

+

(
∂Ex
∂y

)2

− k0n
2E2

x + β2E2
x

]
dΩ (2.28)

where, β is the propagation constant and n is the refractive index. For the
quasi- TM modes, where Hx is the dominant field, the formulation can be writ-
ten as [166]:

L =

∫ ∫

Ω

[
1

n2

(
∂Hx

∂x

)2

+
1

n2

(
∂Hx

∂y

)2

− k0H
2
x +

1

n2
β2H2

x

]
dΩ (2.29)

2.5.2 Vector Approximation

The scalar formulation is inadequate to handle general anisotropic or inhomo-
geneous problems and it can be used only as an approximation in such cases.
For a more accurate representation of general waveguide fields, a vector formu-
lation, with at least two components is essential. Several vector formulations
dealing with optical waveguide problems have been proposed by many au-
thors. However, some of them are affected by non-physical spurious solutions,
which appear mixed with the correct ones in the computations, and therefore
several methods have also been proposed to overcome such problems.

The Ez − Hz formulation which was one of the first formulations used in
finite- element analysis [170], [166] cannot treat general anisotropic problems
without destroying the canonical form of the eigenvalue equation A.1. In ad-
dition to that, some problems also arise whilst enforcing boundary conditions
for a waveguide with an arbitrary dielectric distribution. Additionally, this ap-
proach is based on the axial field components which are the least important of
the E and H fields.

A vector E-field formulation [171, 172, 173] which can handle general anisotropy,
but loss-less problems, has also been applied to the solution of several types of
optical waveguides. For such a formulation, the natural boundary conditions
correspond to a magnetic wall, and therefore it is essential to enforce the elec-
tric wall (n × E = 0) as a boundary condition, which is difficult to implement
for irregularly shaped structures. Also in this case, the field is not continuous
at the dielectric interfaces.
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The vector H-field formulation is more suitable for dielectric waveguide
problems, because the magnetic field is continuous everywhere, and the nat-
ural boundary conditions correspond to those of the electric wall, therefore no
forced boundary conditions at the boundaries are required. This formulation
can be written as [174, 175]:

ω2 =

∫
(∇×H)∗ · ε̂−1 · (∇×H)dΩ∫

H∗ · µ̂ ·HdΩ
(2.30)

where ω is the natural frequency, Ω is the waveguide cross-section, ε̂ and µ̂

are the permittivity and permeability tensors, respectively. To obtain the sta-
tionary solution of the functional 2.30, the expression is minimised with respect
to each of the variables, which are the unknown nodal field components Hx, Hy

and Hz. This minimisation leads to a matrix eigenvalue equation as stated in
equation A.1, where [A] is a complex Hermitian matrix and [B] is a real sym-
metric and positive-definite matrix. Because of the general 90◦ phase difference
between the axial and transverse components of H [176] the Hermitian matrix
[A] can be transformed to a real symmetric matrix for a loss-less problem. In
general, the matrices [A] and [B] are quite sparse. The eigenvectors {x} rep-
resent the unknown field components at the nodal points for different modes
with λ as their corresponding eigenvalues and also λ is proportional to ω2. In
order to obtain a solution for a given wavelength, the propagation constant,
β value has to be changed iteratively until the output eigenvalue corresponds
to that wavelength. By varying β over the range of interest, it is possible to
calculate the dispersion characteristics for the various modes.

However, the above formulation (as well as the E-field), yields spurious
solutions, because the divergence condition,∇·H = 0 is not satisfied, therefore
alternative approaches, such as the penalty coefficient method [174, 128] have
been proposed to eliminate those non-physical solutions. This method will be
discussed in a later section of this chapter.

2.5.3 Natural Boundary Conditions

The term ’natural boundary condition’ arises in the calculus of variations, and
since the finite element method is fundamentally one of minimisation of an
error functional, the term arises also in this context. The boundary condition,
which is automatically satisfied in the variational procedure, is called the ’natu-
ral boundary condition’. In variational formulations these can be automatically
satisfied, if left free. The scalar functional defined earlier in equation 2.28 has
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the continuity of ∂Ex

∂n
as the natural boundary condition, and the functional de-

fined in equation 2.29 has the continuity
(

1
n2

) (
∂Hx

∂n

)
as the natural boundary

condition, where n is the outward normal unit vector. The vector H-field for-
mulation described in equation 2.30, has the natural boundary condition of an
electric wall, i.e. n · H = 0. Therefore there is no need to force any bound-
ary condition on conducting guide walls. But for regular shaped waveguides,
and at the symmetric walls (if applicable) the natural boundary condition can
be imposed to reduce the matrix problem size. However, it may be necessary
to analyse the structure with complementary symmetry conditions to obtain
all the modes, although the exploitation of the symmetry greatly reduces the
computational cost.

2.6 FEM Formulation

The key to using the finite element method is to find the solution of a com-
plicated problem by replacing it with a simpler one. The differential operator
equations which describe the physical problem are replaced by an appropriate
extremum functional J , which is the variational for the desired quantity. The
problem can be regarded as obtaining the solution H over a specified region
in the transverse plane so that the boundary conditions and also the extremum
requirement are satisfied. The axial dependence is assumed in the form e−jβz

and the transverse plane is used for the discretisation.

2.6.1 Domain Discretisation

The discretisation of the domain into sub-regions (finite elements) is considered
as the initial step in the finite element method. The shapes, sizes, number and
configurations of the elements have to be chosen carefully such that the original
body or domain is simulated as closely as possible without increasing the com-
putational effort needed for the solution. Each element is essentially a simple
unit within which the unknown can be described in a simple manner. There
are various types of elements available for use in finite element formulations.
These elements can be defined to be as one, two and three dimensional ele-
ments. When the geometry and material properties can be described in terms
of only one spatial coordinate, then a one-dimensional element can be used.
However, when the configuration and other details of the problem can be de-
scribed in terms of two independent spatial coordinates, the two-dimensional
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Figure 2.3: Finite elements in two-dimension.
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FIGURE 2.3: Finite Elements in two-dimensions

elements shown in Fig. 2.3 can be used. The use of a rectangle as a basic fi-
nite element to discretise an irregular domain is certainly the simplest but not
the most suitable choice because an assembly of rectangles cannot accurately
represent the arbitrary geometrical shape of the domain. In such a case, the dis-
cretisation error is significant, although it tends to decrease as the size of rect-
angles in the domain becomes smaller. The simplest and indeed the most basic
element typically considered for two-dimensional analysis is the triangular el-
ement. If a triangle is used instead of a rectangle as the basic element for the
meshing of the 2-D domain, the discretisation error would be effectively much
smaller. The size of the element also dictates the accuracy of the final solution
as the higher order elements tend to provide more accurate solutions. A typical
representation of an arbitrary waveguide structure using triangular elements
is shown in Fig. 2.4. By dividing the waveguide cross section into triangular
elements, the unknown H is discretised into corresponding sub-regions. These
elements are easier to analyse rather than analysing the distribution over the
whole cross section. As shown in Fig. 2.4, the transverse plane is covered with
a grid of discrete nodes which are the vertices of each triangular element. The
values of H at these nodal points are the basic unknowns. The intersections of
the sides of the triangular elements are called the nodal lines.
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Figure 2.4: Finite element discretisation of a waveguide with triangular elements.
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FIGURE 2.4: Finite element discretisation of a waveguide with tri-
angular elements.

2.6.2 Shape Functions

In two-dimensional problems, the element assumes a linear interpolation be-
tween the field values at the vertices of the triangle. Within each element the
unknown field H, is approximated by means of suitably chosen set of poly-
nomials. These functions are called ’shape functions’. For a simple triangular
element the interpolation polynomial should include a constant term and both
the x and y terms rather than only one of them. The field variable representa-
tion within an element should not alter the local coordinate system. In order to
achieve this ’geometric isotropy’, the polynomial should be completed accord-
ing to Pascal’s triangle as shown in Fig. 2.5. The final consideration in selecting
the order of the interpolation polynomial is to make the total number of terms
in the polynomial equal to the number of nodal degrees of freedom of the ele-
ment. For example, the first degree polynomial involves three coefficients and
so can be expressed in terms of three nodal values at the triangle vertices. The
second degree polynomial needs six coefficients and can similarly be expressed
in terms of values of six nodes as shown in Fig. 2.5.

The continuous field function φ(x, y) in the problem domain may be re-
placed by a set of discrete values (φi, i = 1, 2, 3, ....,m), where m is the total
number of nodes. The shape functions must guarantee the continuity of the pri-
mary unknowns across interelement boundaries. To be admissible functions,
they must satisfy some specific conditions between the elements; usually the
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FIGURE 2.5: Pascal’s triangle for complete polynomials in two di-
mensions.

continuity of the field across the boundaries is preferred. A typical first order
triangular element used in finite element discretisation is shown in Fig. 2.6. In-
side each first order element, the nodal field values φ are interpolated continu-
ously. This can be achieved by introducing the interpolation functions, Ni(x, y).
Thus, using the interpolation functions, the elemental field values can be writ-
ten as:

φe(x, y) =
3∑

i=1

Ni(x, y) · φi

⇒ φe(x, y) = N1(x, y) · φ1 +N2(x, y) · φ2 +N3(x, y) · φ3

(2.31)

where φi are the nodal field values. The functions Ni(x, y) are called ’shape
functions’. Equation 2.31 can also be written in matrix form as:

φe(x, y) =
[
N1 N2 N3

]




φ1

φ2

φ3





(2.32)

φe(x, y) = [N ]{φe} (2.33)

where [N ] is the shape function matrix and the column vector {φe} is the
vector corresponding to the field values at the 3 vertices of the triangular ele-
ment. In order to obtain the shape functions, Ni(x, y) (where i = 1, 2, 3), a linear
approximation of the of the field inside the element must be performed:

φe(x, y) = α1 + α2x+ α3y (2.34)



Chapter 2. Numerical Methods 55
Chapter 2. Numerical Method

�1

�2

�3

�e(x, y)

(x1, y1)

(x2, y2)

(x3, y3)

P (x, y)

1

2

3

�e(x, y)

x

y

Figure 2.6: Representation of a first order triangular element.

�e(x, y) =
h

N1 N2 N3

i
8
>>><
>>>:

�1

�2

�3

9
>>>=
>>>;

(2.32)

�e(x, y) = [N ] {�e} (2.33)

where [N ] is the shape function matrix and the column vector {�e} is vector cor-

responding to the field values at the 3 vertices of the triangular element. In order to

obtain the shape functions, Ni(x, y) (where i = 1, 2, 3), a linear approximation of the

of the field inside the element must be performed:

�e(x, y) = ↵1 + ↵2x + ↵3y (2.34)

for which ↵1, ↵2 and ↵3 are constants. By re-writing the above relation, such that the

following conditions are satisfied:

�e(xi, yi) = �i i = 1, 2, 3 (2.35)

40

FIGURE 2.6: Representation of a first order triangular element.

for which α1, α2 and α3 are constants. By re-writing the above relation, such
that the following conditions are satisfied:

φe(xi, yi) = φi i = 1, 2, 3 (2.35)

where (xi, yi)(i = 1, 2, 3) are the global co-ordinates of the three vertices of
the triangle. Hence the nodal field values φi can be expressed as:

φ1 ≡ φe(x1, y1) = α1 + α2x1 + α3y1

φ2 ≡ φe(x2, y2) = α1 + α2x2 + α3y2 (2.36)

φ3 ≡ φe(x3, y3) = α1 + α2x3 + α3y3

This can also be written in the matrix form as:




φ1

φ2

φ3





=




1 x1 y1

1 x2 y2

1 x3 y3








α1

α2

α3





(2.37)

By solving the above matrix, the constants α1, α2, α3 can be determined in
terms of φi, i = 1, 2, 3:
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α1 =
1

2Ae
[φ1(x2y3 − x3y2) + φ2(x3y1 − x1y3) + φ3(x1y2 − x2y1)]

α2 =
1

2Ae
[φ1(y2 − y3) + φ2(y3 − y1) + φ3(y1 − y2)] (2.38)

α3 =
1

2Ae
[φ1(x3 − x2) + φ2(x1 − x3) + φ3(x2 − x1)]

where Ae is the area of the triangular element given by:

Ae =
1

2

∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣
=

1

2
[(x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1)] (2.39)

Substituting the values of αi from equation 2.38 into equation 2.34 results in
the formation of the following equation:

φe(x, y) =
1

2Ae
[φ1(x2y3 − x3y2) + φ2(x3y1 − x1y3) + φ3(x1y2 − x2y1)]

+
1

2Ae
[φ1(y2 − y3) + φ2(y3 − y1) + φ3(y1 − y2)]x

+
1

2Ae
[φ1(x3 − x2) + φ2(x1 − x3) + φ3(x2 − x1)] y

(2.40)

The above relation has close resemblance to the matrix relation given earlier
in equation 2.31. Now comparing equation 2.31 with equation 2.40, the shape
functions Ni(x, y) i = 1, 2, 3 are given by the matrix notation [146]:

[N ]T =



N1

N2

N3


 =

1

2Ae



x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1







1

x

y


 (2.41)

where N1, N2 and N3 are shape functions at the three nodal points of the
triangular element and NT denotes a transpose of the N matrix. The shape
function matrix can also be re-written as:

[N ]T =



N1

N2

N3


 =



a1 + b1x+ c1y

a2 + b2x+ c2y

a3 + b3x+ c3y


 (2.42)
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and ai, bi, ci (i = 1, 2, 3) are the constants calculated as:

a1 =
x2y3 − x3y2

2Ae

b1 =
y2 − y3

2Ae

c1 =
x3 − x2

2Ae

(2.43)

Similarly a2, b2, c2, a3, b3 and c3, can be calculated by cyclic exchange of
1 → 2 → 3 in equation 2.43. The shape functions Ni can also be expressed in
terms of the areas of the triangle shown earlier in Fig. 2.6 as:

Ni =
area of sub triangle P23

area of sub triangle 123
(2.44)

Similarly N2 and N3 can be defined in the same way. Hence, Ni has the
following property:

3∑

i=1

Ni = 1 (2.45)

Thus evaluating the shape functionN1 gives a value of 1 at the node 1(x1, y1),
whereas at nodes 2 and 3 a value of 0 is obtained. Hence it is the unique first-
degree interpolation function for node 1. Similarly the shape functions N2 and
N3 gives a value of 1 at nodes 2 and 3 respectively and 0 at other nodes.

2.6.3 Global and Element Matrices

The solution of the optical waveguide problem by the FEM can be transformed
to a standard eigenvalue problem as in equation A.1 where matrices [A] and [B]

are known as global matrices and consist of the summation of the element ma-
trices for each triangular element of the discretised cross-section of the optical
waveguide. In this section, the assembly of the element and global matrices is
shown, with respect to the shape functions and the nodal field values of each
triangular element, based on the variational formulation. Throughout the pro-
cedure, the full vectorial H- field formulation in terms of the three axial com-
ponents is assumed and first-order triangular elements are being used. Within
each of the triangular elements the three unknown field H- components Hx, Hy
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and Hz of the magnetic field can be represented as following:

Hx(x, y) =
[
N1 N2 N3

]


Hx1

Hx2

Hx3




Hy(x, y) =
[
N1 N2 N3

]


Hy1

Hy2

Hy3




Hz(x, y) =
[
N1 N2 N3

]


Hz1

Hz2

Hz3




(2.46)

where Hxi, Hyi and Hzi for i = 1, 2, 3 are the x, y and z components of the
nodal magnetic fields. Hence the magnetic field over the element [H]e can be
described as:

[H]e =



Hx(x, y)

Hy(x, y)

Hz(x, y)


 =



N1 N2 N3 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0

0 0 0 0 0 0 N1 N2 N3







Hx1

Hx2

Hx3

Hy1

Hy2

Hy3

Hz1

Hz2

Hz3




(2.47)
In a more compact form, the above equation 2.47 can be written as:

[H]e = [N]{H}e (2.48)

where {H}e is the column vector representing the three components of the
nodal field values in the element and [N] is the shape function matrix. Also
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using equation 2.48 , the curl of H equation can be written as:

∇× [H]e = ∇× [N]{H}e =




0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x

−∂/∂y ∂/∂x 0




[N]{H}e = [Q]{H̃}e

(2.49)
where the matrix [Q] can be written as:

[Q] =




[0] −∂[N ]
∂z

∂[N ]
∂y

∂[N ]
∂z

[0] −∂[N ]
∂x

−∂[N ]
∂y

∂[N ]
∂x

[0]




(2.50)

where [0] =
[

0 0 0
]

and [N ] =
[
N1 N2 N3

]
and some of the shape

function derivatives are substituted using equation 2.42 as shown:

∂N1

∂x
= b1,

∂N2

∂x
= b2,

∂N3

∂x
= b3

∂N1

∂y
= c1,

∂N2

∂y
= c2,

∂N3

∂y
= c3

(2.51)

The values of the constants b1, b2, b3, c1, c2 and c3 were given earlier in equa-
tion 2.43. By substituting the expressions shown in equations 2.48 and 2.49 in
to the variational formulation of equation 2.30, the vector H-field formulation
functional for an element can be obtained as:

ω2 =

∫
(∇×H)∗ · ε̂−1 · (∇×H)dΩ∫

(H∗ · µ̂ ·H)dΩ

⇒ ω2 =

∫
4([Q]{H}e)∗ · ε̂−1 · ([Q]{H}e)dΩ∫
4([N ]{H}e)∗ · µ̂ · ([N ]{H}e)dΩ

⇒ ω2 =

∫
4{H}Te [Q]∗ · ε̂−1[Q]{H}edΩ∫
4{H}Te [N ]T · µ̂[N ]{H}edΩ

(2.52)
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Re-arranging the last part of the above equation 2.52, the following can be
obtained:

Je =

∫

4
{H}Te [Q]∗ · ε̂−1[Q]{H}edΩ− ω2

∫

4
{H}Te [N ]T · µ̂[N ]{H}edΩ (2.53)

where 4 represents the integration over the triangular element domain. T
and ∗ denote the transpose of a matrix and the complex conjugate transpose,
respectively. The [Q] matrix was defined earlier in equation 2.50. A transpose
operation on this matrix would define the [Q]∗ matrix. For isotropic material,
the relative permittivity ε is a scalar quantity. For waveguides consisting of
anisotropic material the relative permittivity ε can be taken as a tensor repre-
sented by a 3× 3 matrix and the inverse of the matrix should be implemented.
The total function, J , associated with the whole cross section of the waveguide
can be obtained by summing Je of all the individual elements as:

J =
n∑

e=1

Je (2.54)

where n is the number of elements.
The minimisation of the functional given in equation 2.54 can be performed

by differentiating with respect to the field nodal values and equating it to zero
as below:

∂J

∂{H}e
= 0 (2.55)

Thus the following relation can be obtained:

∂J

∂{H}e
= 2

∫

4
{H}e[Q]∗ · [Q]ε̂−1dΩ− ω22

∫

4
[N ]T µ̂[N ]{H}edΩ = 0

∴
∫

4
ε̂−1[Q]∗[Q]dΩ · {H}e − ω2

∫

4
µ̂[N ]T [N ]dΩ · {H}e = 0

(2.56)

Thus the following eigenvalue equation can be obtained:

[A]{H} − ω2[B]{H} = 0 (2.57)
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where the matrices [A] and [B] can be defined as:

[A] =
n∑

e=1

[A]e =
n∑

e=1

∫

4

1

ε̂
[Q]∗[Q]dΩ

[B] =
n∑

e=1

[B]e =
n∑

e=1

µ̂

∫

4
[N ]T [N ]dΩ

(2.58)

Matrix {H} contains all the H-field nodal values over the whole cross sec-
tion of the waveguide considered. [A]e and [B]e represent the element matri-
ces whose assemblage over the whole cross section result in formation of the
so called global matrices of the eigenvalue equation, given by [A] and [B], re-
spectively. The calculation of the element matrices, [A]e and [B]e are shown in
Appendix A.

When solving waveguide problems by using finite elements, the key factor
affecting storage requirements and computational effort is the choice of algo-
rithm to solve the matrix equation. The global matrices [A] and [B] shown in
equation 2.58 are highly sparse. The sparsity increases with the order of the
matrices and decreases with the polynomial order of the shape functions. It
is obvious that using higher order basis functions, one may obtain a more ac-
curate solution of the problem under consideration. However, the added dis-
advantage to that is that the process involves increasing programming effort,
particularly when considering waveguide problems with material anisotropy,
infinite elements and penalty functions. In addition to that, using higher or-
der polynomials for a given matrix order increases the density of the matrix
although this can be handled with reasonable effort by using a sophisticated
matrix solver.

2.6.4 Spurious Solutions

The usage of vector formulations in analysing waveguide problems, results in
generating some non-physical, spurious solutions along with the physical solu-
tions of the system. Spurious solutions may evolve due to several reasons such
as: (i) enforcement of boundary condition (ii) positive definiteness of the oper-
ator and (iii) non-zero divergence of the trial fields. In the H-field formulation,
the associated Euler equation is consistent with the two curl equations 2.5, 2.6
of Maxwell, but does not satisfy the ∇ · B = 0 condition which may be the
reason behind the appearance of spurious modes [174].

The identification of the spurious modes amongst the physical modes can
be difficult, when a set of eigen modes are computed. Sometimes spurious
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modes can be spotted, from their dispersion curves, or by their eigenvectors,
where the field varies in an unreasonable, sometimes in a random way along
the cross section of the waveguide. Rahman and Davies [177] have developed
a procedure which gives a reasonable identification of the spurious modes. In
the above approach, the divergence of the magnetic field, ∇ · H, is calculated
for each eigenvector, and when the value obtained is high, it is assumed that
the eigen mode does not satisfy the divergence condition, and therefore it is a
spurious mode.

Several approaches have been used, most of them aiming to force the con-
dition ∇ · H = 0, which is considered the main cause of spurious modes. In
the method developed by Rahman and Davies [177] an integral is added to the
H-field formulation, so that the resulting Euler equation is the Helmholtz equa-
tion, plus the ∇ · B = 0 condition. The variational formulation then becomes
as [174, 177]:

ω2 =

∫
(∇×H)∗ 1

ε̂
· (∇×H)dΩ + α

ε0

∫
(∇ ·H)∗ · (∇ ·H)dΩ∫

H∗ · µ̂HdΩ
(2.59)

where α is the dimensionless penalty factor. The value of α is often taken to
be around 1

εn
, where εn is the dielectric constant of the core of the waveguide.

In this method the divergence free constraint is imposed in a least-squared
sense and the larger the penalty factor the more heavily the constraint is imple-
mented, giving a further reduction of the spurious modes from the spectrum.
The penalty function also improves the quality of the eigenvectors without in-
creasing the order of the matrix in the eigenvalue problem.

2.6.5 Mesh Resolution and Convergence

Due to the discretisation of the computational domain the effective index ob-
tained by the method might deviate from the actual value depending on the
resolution of the mesh. To obtain the accurate value of the effective index using
the above mentioned FEM technique, same structure could be simulated with
different resolutions. Results from these simulations can be used in Aitkin’s
extrapolation [178, 179] to improve the accuracy of the solution. According to
Aitkin’s technique,

ω∞ = ω3 −
(ω3 − ω2)2

ω3 − 2ω2 + ω1

(2.60)
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Here, ω1, ω2 and ω3 are results obtained by using successive higher mesh
refinement for the same structure and ω∞ is the extrapolated result equivalent
to infinite mesh division.

To validate the accuracy, a much higher resolution simulation could be per-
formed and the result can be compared to the extrapolated result.

2.7 Summary

The aim of this chapter was to present a theoretical background of the Finite
Element Method based on the variational principle to perform modal analysis
of various waveguide structures. The properties of various numerical methods
often used in analysing waveguide problems has been examined. An elaborate
mathematical description is given for the vector H-field based FEM formula-
tion. Several aspects of the method such as the boundary conditions, shape
functions and methods aimed at eliminating spurious solutions have been ex-
tensively analysed. This chapter thus serves as the underlying principle of the
numerical method used to analyse waveguides used in Terahertz and optical
plasmonic waveguides details of which will be presented in the subsequent
chapters.
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Surface Plasmonic Waveguides

3.1 Introduction

In recent years there has been considerable interest shown in the field of the
surface plasmon polariton (SPP) [48, 180, 181, 182] that emerged from the need
to have miniaturized structures and to provide optical waveguides having in-
creased functionality and efficiency. Surface Plasmon Polaritons (SPPs) are elec-
tromagnetic waves that are located at the dielectric metal interface and are cre-
ated due to the coupling between the electromagnetic field and free electrons
in the metal [183], decaying evanescently on both sides of the interface. In case
of SPPs, large electromagnetic fields can be confined within the subwavelength
region of the interface thus breaking the diffraction limit of light. It enables plas-
monic waveguides to guide light much below the diffraction limit by control-
ling and adjusting the interface parameters [181, 184, 185, 186, 187, 188]. These
unique properties have enabled the use of SPP structures for several fiber-
optic and optoelectronic devices, such as optical polarizers [189], fiber-optic
sensors [190], scanning microscopy [191, 181, 192] and also for subwavelength
laser devices namely visible nanolasers [193, 194] and terahertz lasers [195].

Metals such as silver, gold, copper which are commonly termed as noble
metals almost resemble the properties of an ideal plasma and have negative
permittivity when they are properly excited. A metal film, having certain thick-
ness sandwiched between dielectrics on both sides or a thin layer of dielec-
tric bounded by metals above and below, can be used as a planar plasmonic
waveguide of infinite width [196]. These structures can guide plasmonic modes
which are formed due to the combination of the surface waves at the two metal-
dielectric interfaces. A hybrid waveguide having the configuration I-M-I-M-I-
M can be formed by placing two such plasmonic structures (described above)
close to each other. The strongly confined modal properties of the SPM’s cre-
ated at the metal-dielectric interfaces enable the formation of highly coupled

64
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surface plasmon super modes (SPSMs).
In the first two sections we present a general overview on surface plasmons

and then followed by relating the optical properties of metals to the interaction
of EM waves with metals, which can be derived from Maxwell’s equations at
the macro scale. The discussion is further extended to three layer structures and
a six-layer metal-dielectric waveguide in the latter sections of this chapter.

3.2 Surface Plasmon Polariton

An electromagnetic wave travelling through a polarizable medium is modified
by the polarization it induces and becomes coupled to it. This coupled mode
of excitation is called a polariton and if the polarizable medium is identified,
then the polariton is qualified. In the case of an electron plasma, the coupled
modes are often called plasmon-polaritons [197]. Bulk polaritons propagate in
an unbounded medium, while surface polaritons can be defined as the cou-
pling of electromagnetic radiation to surface dipole excitation, which propa-
gates in a wave-like manner along the interface between the two media. Sur-
face plasmons exist in the boundary of a solid metal or semiconductor whose
electrons behave like those of a quasi-free electron gas. These plasmons rep-
resent the quanta of the oscillations of surface charges, which are produced
by exterior electric fields in the boundary [198]. The Electromagnetic fields of
the surface polariton can be either evanescent away from the interface (non-
radiative surface polariton) or they can be oscillatory fields away from the in-
terface (radiative surface polariton). In the first case, the amplitude of the field
is maximum at the interface and decays exponentially away from it in a non-
oscillatory manner in a direction perpendicular to the propagation, while in
the second, the field modes are unbound but maintained by balancing the en-
ergy radiating away from the surface with energy radiating to the surface. The
surface plasmon-polaritons or surface plasma waves occur at the interface of
a dielectric with a positive dielectric constant and a metal with a negative real
part of the dielectric constant. In 1941 Fano pointed out that for non-magnetic
media evanescent surface waves could exist for TM polarization only [199].

The properties of these waves are based on the solution of Maxwell’s equa-
tions for an interface between two semi-infinite and isotropic dielectric media.
They can be classified in four categories according to their dielectric function,
ε(ω), which are the ‘Fano’, ‘Brewster’, ‘Evanescent’ and the ‘Zenneck modes’.
The ‘Fano modes’ are the only surface normal modes since the existence of the
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other three modes depends in an essential way of damping and they are usu-
ally associated with ε(ω) < 0 [200]. In this work surface plasmon modes have
been examined for different types of optical and terahertz waveguide struc-
tures, like planar metal-clad waveguides, two-dimensional metal-clad waveg-
uides, multi-layer planar structure and metal-clad waveguides.

3.3 Wave Propagation in metals

The propagation of the EM waves in a material medium can be described by
Maxwell’s equations, which are:

∇×H =
∂D

∂t
+ Jf (3.1)

∇× E = −∂B

∂t
(3.2)

∇ ·D = ρf (3.3)

∇ ·B = 0 (3.4)

where E, D, H and B are electric field density, electric flux density (electric
displacement), magnetic field density and (magnetic induction) and magnetic
flux density, respectively.

Equations 3.1 to 3.4 describe the fields due to free current density Jf and free
charge density ρf . In order to determine the field vectors inside a medium, the
material equations that describe the behaviour of the medium in the given fields
(also called constitutive equations) are necessary. For metals these equations
are:

D = εE (3.5)

B = µH (3.6)

J = σE (3.7)

where ε = εrε0 and µ = µrµ0 with ε0 and µ0 being the permittivity and the
permeability of free space, respectively; εr is the relative permittivity includ-
ing the effects of both vacuum and metal core polarization; µr is the relative
permeability of the material; and σ is the conductivity of the material.
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Combining equations 3.1 and 3.2 with material equations 3.5 and 3.6 we
have a differential wave equation for the E-field in the metal:

∇2E = εrε0µrµ0
∂2E

∂t2
+ µrµ0σ

∂E

∂t
(3.8)

A solution for equation 3.8 has the form

E(r, t) = E0e
j(k·r−ωt) (3.9)

where k is called the propagation vector of the waves and k = [kx, ky, kz]; r

is the position vector, where r = [x, y, z].
Substituting equation 3.9 into equation 3.8 and using µr = 1 for non-magnetic

metals at optical frequencies, the propagation constant k = |k| of the wave in
the metal can be expressed as:

k2(ω) = ε0µ0ω
2

(
εr(ω) + j

σ(ω)

ε0ω

)
(3.10)

The bracketed term is the effective dielectric constant of the metal, which
includes the contribution from both bound electrons and conduction electrons.
However, it is common to assume that the valency electrons and the corre-
sponding ions are tightly bound, consequently, they have no considerable con-
tribution to the polarization of the metal (i.e., metal core polarization due to an
incident EM wave is zero). Therefore, the effective dielectric constant of the
metal is often expressed as:

εeff = 1 + j
σ(ω)

ε0ω
(3.11)

The propagation constant in equation 3.10 can also be expressed as:

k2 = (k′ + jk′′)2 =
ω2

c2
(n+ jκ)2 (3.12)

where k′ represents the real part of k (it describes how the waves propagate
in the metal); k′′ is the imaginary part of k (it tells how the waves attenuate
while propagating in the metal); c = 1/

√
(ε0µ0) is the speed of light in free

space; and (n+ jκ) is the complex refractive index of the material.
The time averaged field intensity in the metal follows the relation I ∝ 〈|E(r, t)|2〉 =

|E0|2e−2k′′|r| = |E0|2e−α|r|, where α = 2k′′ is the absorption coefficient and the
quantity 1/α is known as the skin depth or penetration depth of the metal which
is the propagation distance at which field intensity drops by a factor of 1/e. The
skin depth for metal is usually a very small number.
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3.3.1 SPPs at the Metal- Dielectric Interface

To understand the phenomenon of SPP, it is instructive to examine the EM-
waves at the interface of a metal and a dielectric. First we consider TM polar-
ized light incident on a planar interface of two media whose dielectric constants
are ε1 and ε2 respectively, as illustrated in Fig. 3.1. Assuming the interface plane
is at y = 0, the fields in two media can be described as:§ 2. Background 17

Figure 2.3: Scheme of the interface between two media.

signs.

Combining Equation (2.21) with the relation

"i

≥!
c

¥2

= k2
x + k2

zi (i = 1, 2), (2.22)

the dispersion relation for surface EM waves at the interface can be expressed

as:

kx =
!

c

r
"1"2

"1 + "2

, (2.23)

which indicates that in addition to the requirement of "1"2 < 0 for EM waves

existing at the interface, "1 + "2 < 0 is essential for waves to propagate

along the interface (x-direction), i.e., the real part of kx is positive. At

optical frequencies these two conditions can be fulfilled simultaneously if

one medium is a dielectric and the other one is a metal. In the literature,

surface EM waves that satisfying above descriptions are often termed as

surface plasmon polaritons (SPPs) to manifest their plasma oscillation and

EM wave propagation hybrid nature.

Assuming "1 > 0 and "2 = "02 + i"002 with "02 < 0 and |"02| > "1, the real
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FIGURE 3.1: Schematic Diagram of the interface between two me-
dia

E1 = (0, Ey1, Ez1)ej(ky1y+kz1z−ωt) (3.13)

H1 = (Hx1, 0, 0)ej(ky1y+kz1z−ωt) (3.14)

E2 = (0, Ey2, Ez2)ej(ky2y+kz2z−ωt) (3.15)

H2 = (Hx2, 0, 0)ej(ky2y+kz2z−ωt) (3.16)

Solving Maxwell’s equations with appropriate boundary conditions leads
to the implicit dispersion relation for EM waves existing at the interface, which
is

ky1

ε1
+
ky2

ε2
= 0 (3.17)

For EM waves to be localized to the interface, both ky1 and ky2 must be posi-
tive imaginary numbers, which follows that ε1 and ε2 must have opposite signs.



Chapter 3. Surface Plasmonic Waveguides 69

Combining equation 3.17 with the following relation

εi

(ω
c

)2

= k2
z + k2

yi (i = 1, 2) (3.18)

the dispersion relation for surface EM waves at the interface can be ex-
pressed as:

kz =
ω

c

√
ε1ε2
ε1 + ε2

(3.19)

which indicates that in addition to the requirement of ε1ε2 < 0 for EM waves
existing at the interface, ε1 + ε2 < 0 is essential for waves to propagate along the
interface (z-direction), i.e., the real part of kz is positive. At optical frequencies
these two conditions can be fulfilled simultaneously if one medium is a dielec-
tric and the other one is a metal. In the literature, surface EM waves that satisfy
the above descriptions are often termed surface plasmon polaritons (SPPs) to
manifest their plasma oscillation and EM wave propagation hybrid nature.

Assuming ε1 > 0 and ε2 = ε′2 + jε′′2 with ε′2 < 0 and |ε′2| > ε1, the real and
imaginary parts of kz can be expressed as [183]

{kz}Re =
ω

c

√
ε1ε′2
ε1 + ε′2

(3.20)

and

{kz}Im =
ω

c

√(
ε1ε′2
ε1 + ε′2

)3
ε′′2

2(ε′2)2
(3.21)

Equation 3.20 is generally referred to as the explicit dispersion relation of the
SPPs, in which {kz}Re is often replaced by the notation ksp. Since ε1 < |ε1 + ε′2| <
|ε′2|, the surface plasma frequency ksp > ω

c
and the SPP dispersion curve is situ-

ated below the dispersion curve of light in the dielectric medium. This shows
that the in-plane wavevector of the SPPs is always larger than that of the light at
same frequency, therefore light-SPPs interaction cannot occur spontaneously on
a flat metal surface due to the fact that the energy and momentum conservation
cannot be satisfied simultaneously in such system.

Equation 3.20 also implies that the wavevector kyi (i = 1, 2) are pure imag-
inary as ksp > ω

c
, which indicates that SPP waves are evanescent waves whose

field intensity peaks at the interface (y = 0) and decreases exponentially away
from the interface. Owing to the Ohmic loss of the metal (ε′′2), the field in-
tensity also attenuates exponentially while SPs propagate along the interface
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(z-direction). The 1/e intensity decay length along the z-direction, which is
known as the propagation length of the SPPs, is given by L = (2{kz}Im)−1.
At an Ag/air interface this is about 22 µm at λ = 514 nm and 500 µm at
λ = 1060 nm [183].

The E-field component Eyi (i = 1, 2) at the interface can also be obtained
by solving Maxwell’s equations with appropriate boundary conditions, which
leads to

Ey1

Ey2

=
ε2
ε1

(3.22)

This indicates that within two different media, both amplitude and phase of
SPPs can be different at the interface. Since the dielectric constant of the metal
is generally greater than that of the dielectric, the amplitude of the SPP field at
the dielectric side of the interface is usually larger than that at the metal side of
the interface. The penetration depth of the SPPs, which refers to 1/e intensity
decay length in the direction normal to the interface (z-direction), is given by
yi = (|kyi|)−1, is also different in the two media. For example, at λ = 600 nm the
penetration depth of the SPPs at an Ag/air interface is 24 nm in Ag and 390 nm
in air.

It is also worth noting that for a very large ksp, the group velocity and phase
velocity of SPP waves both approach zero. In this case, the waves resemble
electrostatic surface waves, that is, a non-propagating fluctuation of the electron
plasma near the metal surface; and the frequency of this collective oscillation
can be expressed as:

ωsp =
ωp√
εd + 1

(3.23)

Finally, we note that for TE polarized light, the fields in two media in Fig. 3.1
becomes:
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E1 = (Ex1, 0, 0)ej(kz1z+ky1y−ωt) (3.24)

H1 = (0, Hy1, Hz1)ej(kz1z+ky1y−ωt) (3.25)

E2 = (Ex2, 0, 0)ej(kz2z+ky2y−ωt) (3.26)

H2 = (0, Hy2, Hz2)ej(kz2z+ky2y−ωt) (3.27)

Solving Maxwell’s equations with appropriate boundary conditions leads
to

ky1 + ky2 = 0 (3.28)

which implies that ky1 and ky2 cannot be simultaneously positive, i.e., no
localized surface EM waves can be excited under TE polarized incident light.

The frequency dispersion characteristic of the relative electric permittivity
of metals incorporating loss is described by Drude-Sommerfeld’s theorem in

εm(ω) = 1− ω2
p

ω2 + j ω
τ

(3.29)

where ωp is the plasma frequency and τ is the relaxation time for the metal.

3.3.2 Evaluation of performance

The two key parameters which dictate the performance in a plasmonic waveg-
uide are the waveguide loss, αw and the fractional power confinement, Γ in the
core and cladding layers. In the analysis presented here, the waveguide loss
has been calculated from the complex propagation constant γ arising from the
complex transcendental equation as αw = 2I(γ). The power confinement, Γ,
in any particular area is obtained by integrating the Poynting vector relation
which is obtained from the H field as shown in equation. 3.30. The finite ele-
ment implementation of the Poynting vector calculation has been presented in
Appendix B.

Γ = R
∫ ∫

ΩA
[E∗xHy − E∗yHx]dΩ∫ ∫

Ω∞
[E∗xHy − E∗yHx]dΩ

(3.30)
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where, ΩA is taken as the area of the active region and Ω∞ is the integration
over the entire computational domain.

3.4 Simulation Results: Single metal-dielectric in-

terface

Air

Ag

(a)

SiO2

Ag

(b)z

y

z

y

FIGURE 3.2: Variation of the normalized Hx field profile of the
TM0 mode with the transverse direction for two values of the re-
fractive index of the dielectric a) for air with index nd = 1 and b)

for Silica with index nd = 1.44568.

Firstly, a single metal-dielectric interface, which is the most basic structure
that can support a plasmonic wave, was examined. The waveguide consisted of
a Silver layer with a complex refractive index nm, attached to a dielectric layer
with a refractive index, nd, at an operating wavelength λ = 0.3µm. By solving
the problem using the full-vectorial Finite Element Method (FEM) method, it
was found that only the lowest TM mode, (TM0), could propagate along the
interface. This is the mode, which can be classified as a non-radiative surface
plasmon mode and has a maximum amplitude at the interface and decays away
from it. All the TE and the higher TM modes, were unbounded, i.e. they did
not decay in the dielectric material region.

Figure 3.2 shows the normalised Hx field profile of single metal-dielectric
structure in the transverse direction to the propagation (y), of the TM0 optical
mode, for two different values of the refractive index of the dielectric material
and the metal is Ag. It can be observed in both Figs. 3.2 (a) and (b) that in
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the metal region, the field decays very rapidly, while in the dielectric region the
decay depends on the value of the refractive index, nd, of the dielectric material.
As the refractive index, nd, increases, the mode becomes more confined near the
interface, with a faster decay of the field in the dielectric region, while the rapid
decay in the metal region remains unchanged. That is why the magnetic field
in Silica (having higher refractive index) shown in Fig. 3.2(b) decays at a much
faster rate than that in air as shown in Fig. 3.2(a).

The TM0 mode propagates with an effective index, β/k0, very close to the
refractive index of the dielectric material, nd, so therefore, any increase of the
refractive index, nd, is followed by a linear increase of the effective index of the
mode. The optical field of the TM0 mode is concentrated at the metal/dielectric
interface, where the proportion of the optical power in the lossy metal region
gives rise to the attenuation characteristics. As the refractive index of the dielec-
tric material increases, the mode becomes more confined in the dielectric region
and the maximum field is higher at the metal/dielectric interface. Therefore,
the proportion of the optical power in the metal region increases, resulting in
an increase of loss. The normalised attenuation constant, α/k0, of the TM0 opti-
cal mode increases with the increase of the refractive index, nd, of the dielectric
material, following a second order function.

3.5 Three Layer Planar Waveguides

The propagation characteristics and field profiles, for different types of three
layer planar waveguides are examined in this section. The interaction of metal-
lic films with dielectric materials in order to accommodate guided optical waves
is also examined, since, such structures play an important role in many opto-
electronic applications. Practical metallic elements are not perfect conductors,
but suffer a small amount of loss, and therefore, in the analysis of waveguides
incorporating metal films, the attenuation characteristics should be taken into
consideration. In waveguide analysis metallic elements are represented by a
complex refractive index, nm.

3.5.1 Surface Plasmon modes in three layer planar structures

As discussed in the previous section, surface-plasmon waves are guided elec-
tromagnetic waves supported by a single or multiple metal/dielectric interface,
where the refractive index of the metal film is considered to have an almost
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purely imaginary part at the operating wavelength, thus giving a high nega-
tive dielectric constant. Surface-plasmon mode properties are used in a wide
range of device applications, such as in optical polarizers or highly sensitive
evanescent optical sensors.

After single interface, the simplest possible planar structure for plasmonic
guidance could be a three layer structure consisting of two dielectric-metal
interfaces. There could be only two types of arrangement of the dielectric
and metals that could produce two dielectric-metal interfaces. The two media
around the interface have dielectric constants of opposite sign and thus these
structures can support SPPs to form at the interface. They are,

IMI Structures: In this type of structure a metal film is sandwiched between
two dielectric (insulator) layers. Hence the name Insulator-Metal-Insulator
(IMI). Here, the metal film is considered as the core and the dielectric lay-
ers work as claddings.

MIM Structures: In this type of structure a dielectric (insulator) layer is sand-
wiched between two metal layers. Therefore this type of structure is
named Metal-Insulator-Metal (MIM). Here, the dielectric layer works as
the core and the metals are the claddings.

As was shown in Section. 3.4, a single metal/dielectric interface can sup-
port only one TM-polarized mode, which is a surface-plasmon mode, where the
field intensity is high at the interface and it decays exponentially away from it.
When two such interfaces are placed together to form a composite structure, the
two surface waves at the two dielectric-metal interfaces begin to couple through
the metal or the dielectric and thus supermodes are created. Usually, there can
be two types of bound surface modes for these kind of structures, one is sym-
metric and the other one is antisymmetric bound. These modes are known as
symmetric bound modes, sb or even modes and antisymmetric bound modes
ab or odd modes respectively. The symmetric bound mode or even mode cor-
responds to the two separate surface modes having amplitude of same polarity
being coupled whereas the antisymmetric bound mode or odd mode resembles
the coupling of two surface modes with opposite polarities.Their properties de-
pend on the arrangement of the dielectric and metallic films and the separation
between the two metal-dielectric interfaces.

Since metallic films are lossy materials, an investigation of the attenuation
characteristics is important. The full-vectorial FEM has been used to calculate
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the complex propagation constants of the above structures. To keep the charac-
terisation simple both the IMI and the MIM structures were symmetrical, hence,
the cladding materials used were kept the same.

3.5.2 Insulator-Metal-Insulator Structure

SiO2

SiO2

Agt

z

y

FIGURE 3.3: Schematic setup for the IMI Structure with SiO2 and
Silver (Ag)

The IMI structure considered in the section has Ag film core. The Ag film is
surrounded by two semi-infinite dielectric materials which is SiO2-Glass in this
case of the symmetrical structure. The thickness of the Ag core was taken to be
t. The wavelength considered for the simulation was 0.3µm and the refractive
indices at this wavelength for Ag and SiO2 are nAg = 0.013109 + j1.847482 [201]
and nSiO2 = 1.44568 [202], respectively. As mentioned before, the structure
considered here is symmetric, so both the claddings for the structure were SiO2,
hence the refractive indices are the same. Figure 3.3 shows a schematic diagram
of the structure considered. The cross section shown in the figure is taken on
the yz plane. The direction of propagation is z. The guide is considered uniform
in the x direction.

As discussed in Section 3.5.1 the structure supports only two types of super-
modes: even and odd. Figure 3.4 shows both the odd and even supermodes
for a core thickness of 0.07µm. From this point onwards the word ‘mode’ will
be used to denote “supermodes” alongside usual modes. This is because in most
cases plasmonic modes are supermodes formed by multiple surface-plasmon
modes (sp-modes). As can be seen in Fig. 3.4a, two sp-modes at the two inter-
faces are in the same direction and they are coupling to each other in the core
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FIGURE 3.4: Even and odd modes for the SiO2-Ag-SiO2 structure
with a core thickness t = 0.07µm

in a constructive manner. Therefore, the field amplitude at the core is always
positive and never crosses zero.

On the other hand the two sp-modes are in the opposite direction for the
odd mode and in the core they are coupling in a destructive manner and forcing
each of the sp-mode amplitude to fall rapidly and cross zero at the centre of the
core to obtain opposite value. This is clearly visible in Fig. 3.4b.

To characterise the structure, the thickness t of the core was varied from
0.035µm to 0.3µm. Figure 3.5 shows the even and odd mode profiles of the Hx

field for the core thickness of 0.045µm, 0.07µm, 0.2µm and 0.3µm. For both
modes, the sp-modes at the two interfaces decouple with increasing core thick-
ness t. At a very low core thickness, the even mode shows very little dip and
the odd mode shows almost linear field profile inside the core. This is due to
the fact that the fields of the odd mode penetrate progressively deeper into the
metal as its thickness is reduced. In the case of the even mode, a decreasing film
thickness causes the opposite effect, that is, the fields penetrate progressively
more into the top and bottom dielectric regions and less into the metal. But as
the thickness increases the even mode becomes more confined showing larger
dip at the centre of the core as the two metal/dielectric interfaces move apart,
whereas the odd mode started to show non-linear profile inside the core as the
mode becomes less confined and the field spreads further into the cladding. For
a very large thickness the sp-modes at the two interfaces decouple and behave
like two weakly coupled surface modes, one at each metal/dielectric interface,
propagating with almost identical propagation constants and an exponential
decay is visible in both the cladding and the core for both the modes.

Figure 3.6 shows the characteristics of the real part of the effective index
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FIGURE 3.5: Even and odd modes for the SiO2-Ag-SiO2 structure
for core thicknesses 0.045µm, 0.07µm, 0.2µm and 0.3µm
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FIGURE 3.6: Variation of effective index of the even and odd cou-
pled modes for symmetric IMI structure

of the even and odd modes of the SiO2-Ag-SiO2 guide. Both the modes have
higher effective indeices than the common cladding refractive index of the two
(top and bottom) cladding regions. When the thickness of the core of the guide
is very small the real part of the complex effective indices of the even and odd
modes are far apart. The real part of the index of the even mode is lower than
that of a single interface of the same materials. In this occasion Ag and SiO2 is
considered. The real part of the effective index of the odd mode for very thin
metal core is much higher than that of the single interface. The effective index
of the even mode reduces and approaches the cladding refractive index value,
as the metal thickness decreases and the mode becomes more weakly bounded.
When the thickness increases the real part of the effective index of the even
mode increases and the mode becomes more confined, showing a larger cen-
tral dip as the two metal/dielectric interfaces move apart. However, as the film
thickness increases, the odd mode becomes less confined since effective index
of the odd mode decreases. When the film thickness becomes wide enough, the
two supermodes behave like two weakly coupled surface modes, one at each
metal/dielectric interface, propagating with almost identical propagation con-
stants. As the metal thickness increases further, the two effective indices tend to
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reach the effective index of the mode supported by a single metal dielectric in-
terface and both indices saturate at the value of the index of the single interface.
As the (identical) refractive index of both the cladding regions is increased, the
effective index of each mode is shifted upwards by an amount equal to that
increase.

It can be seen from the figure that the indices of the even and the odd modes
at a thickness of 0.035µm are 1.918457 and 2.96971, respectively. For a thickness
of 0.07µm the indices for even and odd modes are 1.956179 and 2.378496, re-
spectively. At a thickness of 0.2µm both the indices approach saturation index
with index of even mode 2.301209 and that of odd mode 2.316047. After 0.2µm

both the modes come even closer and remain at saturation.
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FIGURE 3.7: Variation of modal loss versus metal thickness for the
first two supermodes for a symmetric IMI structure

The loss characteristics of the SiO2-Ag-SiO2 guide was also studied and
shown in Fig. 3.7. The loss value decreases monotonically for the odd mode,
with the metal thickness, whereas for the even mode, it increases. The loss
of the even mode is lower for thinner metal cores and for the odd mode, it is
higher. The modal loss for the even mode is less than that of the odd mode,
hence the even (or even-like) mode is also known as the long range mode. Sim-
ilarly the odd (or odd-like) modes are known as short range modes. When the



Chapter 3. Surface Plasmonic Waveguides 80

thickness is increased the loss of the even mode increases and the odd mode
decreases. The modal loss values reach that of the surface mode supported by
a single metal/dielectric interface when t is large. At a higher thickness both
the modes converge to the same value of loss.

At a thickness of 0.035µm the loss value for the even mode is 0.42316 dB/µm

and for odd mode the value is 7.7573 dB/µm. For a thickness of 0.07µm the loss
value of the even mode is 2.3285 dB/µm and for odd mode is 4.9672 dB/µm.
For a thickness of 0.2µm the loss for even mode is 4.7243 dB/µm and that for
the odd mode is 4.7359 dB/µm. After 0.2µm the loss of the even and odd modes
become even closer and approach the same value, that of the single interface.

3.5.3 Metal-Insulator-Metal Structure

Ag

Ag

SiO2t

z

y

FIGURE 3.8: Schematic setup for the MIM Structure with SiO2-
Glass and Silver (Ag)

The MIM structure considered in this section consists of a SiO2- core and Ag
claddings. Similar to the IMI structure described in Section 3.5.2, in MIM struc-
tures the optical guided modes propagate along the metal/dielectric interfaces,
where the field intensity is high and decays exponentially away from them.
These modes are coupled to form a supermode and the coupling depends on
the thickness of the dielectric film. The thickness of the core of the guide was
considered to be t. The wavelength considered was 0.3µm, which is the same
as Section 3.5.2 for the IMI structure with the same refractive indices of Ag and
SiO2. Figure 3.8 shows the schematic diagram of the MIM planar structure.
Similar to the IMI simulation, the schematic diagram shows the yz plane and z

is the direction of propagation whereas x direction is considered to be uniform.
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FIGURE 3.9: Even and odd modes for the Ag-SiO2-Ag structure
with a core thickness t = 0.07µm

As discussed before, the MIM guide can produce even and odd supermodes
similar to the IMI structure. Figure 3.9 shows the even and odd supermodes
obtained for the core thickness of 0.07µm. Although similar in nature to the
IMI structure, the shape of the modes inside the core and also in the cladding
are different.

To characterise the structure, the thickness of the core t was varied from
0.035µm - 0.3µm. Figure 3.10 shows Hx field profiles of the even and odd su-
permodes for the core thicknesses of 0.045µm (even only), 0.06µm (odd only),
0.07µm, 0.2µm and 0.3µm. As can be observed from the field profiles, with the
increasing core thickness, the dip at the centre of the even mode becomes more
profound and after nearly approaching 0 two single interface sp’s move away
from each other if the thickness of the guide is further increased. For the MIM
structure, the rate of decoupling is slower than that of the IMI structure consid-
ered in Section 3.5.2. The odd mode shows a similar effect when the thickness
is increased.

Figure 3.11 shows the effective index characteristics of theAg-SiO2-Ag guide.
The effective index characteristics are however different from that of the IMI
structure. In case of the MIM structure, the even mode has higher effective in-
dex (real part) than that of the odd mode for thin core structures. When the core
thickness is increased the effective index of the even mode reduces. However,
for small values of the dielectric film thickness, the odd mode is in the cut-off
region and although the effective index of the even mode could be found for the
thickness of 0.015µm, the odd mode was not found until the core thickness of
0.06µm. The effective index of the odd mode increases as the film thickness in-
creases. For higher values of the core thickness, both the effective index curves
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FIGURE 3.10: Even and odd modes for the Ag-SiO2-Ag struc-
ture for core thicknesses 0.045µm (even only), 0.06µm (odd only),

0.07µm, 0.2µm and 0.3µm
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FIGURE 3.11: Variation of effective index of the even and odd cou-
pled modes for symmetric MIM structure

converge at a single real effective index value.
As can be seen from the figure (fig 3.11), the effective index of the even mode

was very high, 3.068346 at the thickness of 0.045µm. The odd mode at 0.06µm

has an effective index of 0.974461. When the thickness of the guide is increased
the effective index of the even mode reduces and the effective index of odd
mode increases. Eventually the effective indices of both modes converge to a
single effective index value of 2.43784.

The propagation characteristics shown in Fig. 3.11 can be explained from
the observation of the field profiles of the two supermodes, for different values
of the dielectric thickness. The normalized field profile of the even supermode,
for a small film thickness of 0.045µm, is shown in Fig. 3.10(a), where it can be
seen that the field intensity is equally high at the two metal/dielectric interfaces
and quite strong in the center of the dielectric film as well. The supermode be-
haves like two strongly coupled surface plasmon modes which propagate at the
two metal/dielectric interfaces. For a larger film thickness of 0.2µm, the field
intensity at the centre of the even supermode reduces, as shown in Fig. 3.10(e).
As the two metal/dielectric interfaces are moved apart, the supermode decou-
ples into two independent surface modes. Due to symmetry, these modes then
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propagate with an identical effective index. This effective index corresponds to
the effective index of a single metal/dielectric interface, which was calculated
to be 2.43784. This value corresponds to the value at which the effective index
of the supermode converges, at a large film thickness, as shown in Fig. 3.11.

Similar features can also be observed from the normalized field profiles of
the odd supermode, for different values of dielectric thickness. For a small
dielectric thickness of 0.06µm, as shown in Fig. 3.10(b), there is an apprecia-
ble amount of field intensity in the dielectric region and the transition of the
field intensity from positive to negative, from the two opposite peaks at the
metal/dielectric interfaces, or vice versa, is nearly linear. For a larger film thick-
ness of 0.2µm, as shown in Fig. 3.10(f), the supermode is more confined at each
of the two interfaces, and the field intensity in the core of the waveguide flat-
tens. The supermode decouples into two surface plasmon modes, which propa-
gate at each metal/dielectric interface, but at opposite polarity, with an effective
index equal to that of a single metal/dielectric interface, 2.43784. The effective
indices of the odd and the even supermodes, converge to that value, as shown
in Fig. 3.11, one from below and the other from above, respectively.
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The loss characteristics are significantly different from the IMI loss charac-
teristics and it is presented in Fig. 3.12. The loss values for both the modes
reduce from two different points and converge to a single lower value when
the dielectric core thickness increases. This is unlike the opposite structure in
the previous section, where the loss values were seen to be increasing for the
even mode and decreasing for the odd one.The even mode loss curve creates a
minima lower than the converged loss value.

In this type of structure the thickness of the two metal-claddings, which are
the lossy regions, does not change, and therefore the loss values depend mostly
on the optical field intensity at the metal/dielectric interfaces. As mentioned
earlier, For the even supermode, the loss is lower than that for the odd super-
mode. As the dielectric film thickness increases, the two loss values converge to
a certain value which corresponds to the loss of a single metal/dielectric inter-
face, as in the propagation characteristics, and this was calculated as 4.75 dB/µm.
This can be explained, again, from the field profiles of the two supermodes,
which are decoupled into two independent surface plasmon modes, which
propagate at the two interfaces, for large dielectric film thickness.

It can be observed from Fig. 3.12 that both the loss curves start from higher
loss values. The even mode curve starts early as it starts from 0.04µm core
thickness. The loss value for 0.045µm is 7.005 dB/µm. The odd mode starts at
0.06µm core thickness and it has a loss value of 10.145 dB/µm at a core thickness
of 0.070µm which is much higher than that of the even mode loss values. When
the core thickness increases both the loss values started to drop exponentially
and converge to a single loss value of 4.75 dB/µm after the thickness of 0.225µm.

3.6 Six Layer Planar Optical Waveguide

Directional couplers are devices that couple fields from two different waveg-
uides. Depending on the direction of power flow, directional couplers can be
of two types, co-directional and contra-directional couplers. In a co-directional
coupler, the power flow from the two devices have the same direction. But
in case of a contra-directional coupler, power flow is in the opposite direction.
At optical frequencies, waveguides that support plasmonic modes like the IMI
and MIM structures, propagate light in the backward and forward directions
respectively. Thus the coupling of these two types of structures forming IM-
IMIM waveguide leads to contra-directional coupling between the two guides.
As SPPs can operate much below the diffraction limit, optical contra-directional
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couplers based on SPPs can show very short coupling length resulting in higher
integration density and much better confinement.

To investigate contra-directional coupling and the performance of plasmonic
planar structures further, the six layer structure presented in [203] has been
studied. Figure 3.13 shows the schematic diagram of the six layer guide. Nu-
merical simulations were performed using the full vectorial (H field formula-
tion) finite element method (as presented earlier in Chapter 2 ) at an operating
wavelength of 0.3 µm.
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FIGURE 3.13: 6 layer IMIMIM structure with Glass, Ag and SiO2

In the work, Wang et al. investigated the contra-directional coupler property
of the structure for a specific mode. It can be clearly observed in Fig. 3.13 that
the structure is constructed using one IMI and one MIM structure. Therefore
there is one metal core and another dielectric core and as can be seen there are
five metal dielectric interfaces. As discussed in Section 3.5, both the IMI and
MIM sub-structures can support both even and odd supermodes. The six layer
structure in this section has one extra metal dielectric interface between the
two substructures which could also produce even and odd coupling with the
supermodes of the substructures. Therefore, there could be 25 possible modes
in theory.

In [203], Wang et al. considered the SPSM2 supermode. The Hx magnetic
field of the mode can be seen in Fig. 3.14a and the electric field is shown in
Fig. 3.14b. The article highlights the direction of the Poynting vector in the two
cores. It can be seen in Fig. 3.14c, the Poynting vector in the Ag core and the
SiO2 core are pointing towards the opposite direction. The structure evaluated
in the work had tAg = tSiO2 = 15nm and sGlass = sAg = 20nm.

In this section a more in-depth characterisation of the structure was per-
formed for the mode analysed in [203] and two other modes namely SPSM1
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(a) Hx field profile of the SPSM2 mode
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(b) Ey field profile of the SPSM2 mode
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(c) Sz profile of the SPSM2 mode

FIGURE 3.14: SPSM2 mode for the six layer structure for tAg =
tSiO2 = 15nm and sAg = sGlass = 20nm
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FIGURE 3.15: Hx,Ey and Sz profiles of the SPSM1 mode for tAg =
tSiO2 = 15nm and sAg = sGlass = 20nm
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FIGURE 3.16: Hx,Ey and Sz profiles of the SPSM0 mode for tAg =
tSiO2 = 15nm and sAg = sGlass = 20nm
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and SPSM0 shown in Figs. 3.15 and 3.16 respectively, where the subscripts
used in the mode names denote the zero crossings of the field distribution. The
magnetic field Hx, electric field Ey and the Poynting vector Sz profile of both
the modes are shown in these two figures. To study the characteristics of each
mode, the thickness of the cores and the separation between the cores of the
substructures were varied. To make things simple, the core thicknesses and
the separations between the substructures were taken to be equal (tAg = tSiO2

and sAg = sGlass). The wavelength considered was 0.3µm. The material in-
dices are nAg = 0.013109 + j1.847482 [201], nSiO2 = 1.44568 [202] and nGlass =

2.04939 [202].

3.6.1 Variation of Separation

Separation between the two cores was varied to characterise the structure for
the three modes mentioned before. To make things simple sAg and sGlass were
kept equal for all the simulations.

SPSM2 mode

Figure 3.14a shows the SPSM2 mode. In this supermode the two single-interface
plasmonic modes on the left side couple together in an even manner. The sec-
ond and the third interfaces couple in odd manner. The third and the fourth
interfaces also couple in odd manner whereas the fourth and the fifth interfaces
couple in even manner.

To study the mode characteristics with separation, the width of separation
layers were varied from sAg+sGlass = 40nm to 90nm keeping the widths equal,
sAg = sGlass.

For examining the propagation and attenuation characteristics of the struc-
ture, it is necessary to observe the field profiles of the mode for the different
values of separation. Figure 3.17 shows the Hx, Ey field profiles and the cor-
responding Poynting vectors Sz for the SPSM2 mode for four different values
of the separation, s, whereas the thicknesses of the cores were kept constant at
tAg = tSiO2 = 25nm. The left side core denotes the SiO2 core whereas the right
handed one refers to the Ag core in all of the profiles in this figure.

At s = 45 nm, the Hx field is more confined in the SiO2 core although a
considerable amount of field is concentrated in the Ag core as well. As the
separation increases, field confined in the SiO2 core slightly increases along
with the field confinement in the Ag cladding and that in the Ag core gradually
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(f) Sz profile at s = 60
nm
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(g) Hx field profile at s =
72 nm
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(h) Ey field profile at s =
72 nm
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(i) Sz profile at s = 72
nm
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(j) Hx field profile at s =
85 nm
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(k) Ey field profile at s =
85 nm
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FIGURE 3.17: Effect of variation of separation between the cores
shown using the magnetic & electric fields and the Poynting vec-
tor profiles for different values of separation (s) for the SPSM2

mode where tAg = tSiO2 = 25nm
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becomes smaller. When the value of the separation is larger, the even mode
in the MIM substructure becomes dominant than the even mode in the IMI
substructure and the difference in confinement in the two cores start to increase.
At a separation of s = 80 nm, power confined in theAg core becomes very small
as can be observed in Figs. 3.17j, 3.17k and 3.17l. After this value of separation,
the fields in the IMI substructure almost vanishes and majority of the power is
drawn into the MIM substructure.

Variation of the real part of the effective index of this mode is shown in
Fig. 3.18. It can be noticed from the figure that the real part of the effective
index decreases steadily as the separation between the core layers increases.
Figure 3.19 shows the loss curve for the mode when the separation is varied.
Power confinement in different layers of cores and claddings are presented in
Fig. 3.20. It can be observed in Fig. 3.20, that the confinement factor character-
istics change in 3 stages when the separation between the MIM and IMI parts is
increased. Throughout the variation of separation, the glass cladding confine-
ment factor drops steadily almost in a straight line. However the confinement
in the Ag cladding increases rapidly and confinement in the Ag core decreases
also in a rapid pattern. The confinement in SiO2 core increases with the increas-
ing values of separation.
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FIGURE 3.18: Variation of the real part of the Effective index of the
SPSM2 mode when the separation between the cores are varied

from 40nm to 90nm
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The effective index and the loss characteristics can be described using the
field profiles of Fig. 3.17 and the power confinement plot for different layers
shown in Fig. 3.20. As can be observed from the power confinement curve, the
confinements in the two cores initially have almost same values. Hence the ef-
fective index is high for lower values of separation. Effective index is mostly
governed by the dielectric core confinement and is not much affected by the
metal core. For all values of separation, the mode is a MIM dominated mode
where the SiO2 core maintains higher confinement factor. When the separation
between the MIM and the IMI parts increases more power moves into the MIM
part as the power in the IMI part gets increasingly smaller which is depicted in
the field profiles of Fig. 3.17 and can also be seen in Fig. 3.20. As the MIM sub-
structure becomes more predominant, the effective index of the SPSM2 mode
approaches the effective index of the MIM mode. Therefore the effective index
curve shows a decreasing pattern with increasing separation.

The loss characteristics shown in Fig. 3.19 shows that the loss values initially
increase when the separation is increased upto s = 56 nm. After this value, the
curve starts to follow a decreasing pattern with increasing values of separa-
tion. The confinement factor characteristics of Fig. 3.20 and the field distribu-
tion plots of Fig. 3.17 can be used to explain the attenuation characteristics. At
the initial stage when the separation is increased, the loss of the guide increases
due to the high confinement in the Ag core and also the rapid increase in power
confinement in the Ag cladding. High field intensity in the metal layers, which
is the lossy material, causes the loss values to rise high for the initial values of
separation. But the confinement in the glass cladding and theAg core decreases
gradually as the evanescent tail of the Ag cladding of the MIM part leaks less
power into the glass cladding of the IMI part. Moreover, as the field inside the
Ag cladding is evanescent in nature, the increase in power confinement in this
layer slows down as the separation increases. At a separation of 56nm the loss
peaks at a value 116.1 dB/mm. After this value of separation, the Ag core con-
tinues to lose confinement more rapidly as the rate of decrease of confinement
is much greater than the increase in the Ag cladding and hence the loss values
drop exponentially. The confinement in the Ag core decreases rapidly beyond
the separation of 80nm as the right hand side interface of the IMI substructure
started to lose power rapidly. Due to the increased separation, the mode gets
mainly confined in the MIM part and field in the metal core almost vanishes.
Hence, the decrease in loss is continued as dielectric confinement increases.
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FIGURE 3.19: Loss variation when the separation between the
cores are varied from 40nm to 90nm for the SPSM2 mode
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SPSM1 mode

Figure 3.15a shows the SPSM1 mode. In this supermode the two plasmonic
modes at the leftside single interface couple together in an even manner. The
modes at the second and the third interfaces couple in odd manner, those on
the third and fourth interfaces couple in even manner and the modes on the
fourth and fifth interfaces couple in even manner.

To obtain the propagation and loss characteristics of the mode by varying
the separation of the two cores, sAg + sGlass was varied from 40 nm to 150 nm
keeping sAg and sGlass equal. These characteristics can be properly explained
using the field profiles and the confinement factors of each layer. The SPSM1

mode profiles for various values of separation are shown in Fig. 3.21. The ef-
fective index and loss characteristics of the mode are presented in Fig. 3.22 and
3.23 respectively. Figure 3.24 shows the confinement factors for the variation of
separation for the mode under consideration.

The field profiles exhibit that when the separation is small, field amplitude
in the Ag core and Glass cladding (right hand side core and cladding) is higher
compared to the field amplitude for greater values of separation (Fig. 3.21a).
As a result, at smaller separation the power confined in the Ag core is also
higher. The power confinement in the glass cladding is high as well. This is
because it is supporting the Ag core profile. This phenomenon can be observed
in Fig. 3.21c. When the separation is increased field amplitude in the Ag core
starts to decrease and the field starts to penetrate into the Ag cladding. Hence,
field confined in the Silica core also takes a rise. At 53 nm separation, the power
confined in the Silica core and the Glass cladding rises to a higher value which
is almost same as that in the Ag core. Figure 3.21f shows the almost equal dis-
tribution of Poynting vector for the mode at 53 nm separation.When separation
is further increased, the field rapidly moves into the Silica core and the confine-
ment in the Ag core rapidly decreases. The power transfer from the IMI to MIM
part continues until most of the power is transferred to the SiO2 core and the
mode effectively becomes three layer MIM mode at separation of 130nm.

The effect of varying the separation on the effective index of the mode is
depicted in Fig. 3.22. The effective index of the mode is mainly governed by
the field intensity and power confinement in the dielectric layers. Initially the
real part of the effective index increases rapidly as the separation increases.
Figure 3.21c shows the Poynting vector distribution plot of the guide when the
separation is 40 nm. It can be clearly seen that initially the power is mostly in the
IMI structure for this mode. The confinement in the Glass claddings increase
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(a) Hx field profile at s =
40 nm
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(b) Ey field profile at s =
40 nm
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(c) Sz profile at s = 40
nm
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(d) Hx field profile at s =
53 nm
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(e) Ey field profile at s =
53 nm
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(f) Sz profile at s = 53
nm
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(g) Hx field profile at s =
80 nm
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(h) Ey field profile at s =
80 nm
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(i) Sz profile at s = 80
nm
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(j) Hx field profile at s =
130 nm
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(k) Ey field profile at s =
130 nm
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FIGURE 3.21: Effect of variation of separation between the cores
shown using the magnetic & electric fields and the Poynting vec-
tor profiles for different values of separation (s) for the SPSM1

mode where tAg = tSiO2 = 25nm
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FIGURE 3.22: Variation of the real part of effective index for the
SPSM1 mode when the separation between the cores is varied

for initial values of separation. Hence the effective index also increases. When
the separation increases the power starts to move into the MIM structure and
hence the power confinement in the Silica core increases. The rate of increase of
the effective index curve is slowed down as the separation increases mainly due
to the rapid decrease in confinement of the glass claddings. After this value of
separation the confinement in the Silica core rapidly goes to a higher value. This
phenomena can be seen in the power confinement characteristics in Fig. 3.24.
Figure 3.21f shows higher Poynting vector in SiO2 core than that in Fig. 3.21c.
Hence, the effective index continues to show an increasing pattern.

The loss characteristics of the mode for variation of separation is shown
in Fig. 3.23 which is mostly dominated by the confinement in the cores of the
structure. As can be seen in the figure, the loss decreases exponentially when
the separation between the cores increases. In the power confinement factor
characteristics (Fig. 3.24) it can be seen that at the initial stage the mode is dom-
inated by the IMI structure and most of the power is confined in the Ag core.
At this stage there is very little power confined in the SiO2 core. Therefore due
to the high confinement in the metal core at smaller separation values, the loss
of the mode is the highest. When the separation is increased, power confine-
ment of the Ag core starts to decrease. Initially confinement in the Silica core
also decreases. Power confinement of the Ag cladding increases almost linearly
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FIGURE 3.23: Loss variation when the separation between the
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as the power from the Ag core moves to the middle Ag cladding. Power con-
finement in the glass cladding also increases initially, specially at the middle
plasmonic mode on glass-Ag cladding interface. When the separation is further
increased the power confinements change rapidly. More power moves from the
Ag core (or IMI) to the SiO2 core (MIM). The confinement in theAg core rapidly
decreases and this started after 45 nm of separation which can be observed in
Fig. 3.24. The confinement in the glass cladding rapidly decreases at this stage.
This is mostly due to the rapid fall of confinement in the Ag core. At this stage,
confinement in theAg cladding also increases more rapidly than before. But the
confinement in the Silica core takes over more power at a much faster rate than
any other layer. As a result, the loss of the mode exhibits a rapid decrease. At
around 53 nm separation, the power confinement in all the cores and cladding
layers become almost equal. Figure 3.21f shows the almost equal distribution
of Poynting vector for the mode at 53 nm separation. The power transfer from
the IMI to MIM part continues until most of the power is transferred to the SiO2

core and the mode effectively becomes three layer MIM mode at separation of
130 nm which can be observed in Figs. 3.21j, 3.21k and 3.21l. The decreasing
loss of the mode tend to exhibit a saturating behaviour starting at a value of
9.31 dB/mm at a separation of 70 nm. This is aligned with the power confine-
ment saturation at 70 nm separation presented in Fig. 3.24.

SPSM0 mode

For the SPSM0 supermode, theHx field profiles of all the SP’s couple with each
other in an even manner (Fig. 3.16a).

Figures 3.25a, 3.25d, 3.25g and 3.25j shows theHx field profiles of the SPSM0

mode with the separations of 50nm, 70nm, 100nm and 130nm, respectively. It
can be observed that when the separation is low at 50nm, the field amplitudes
in both the cores dominate and the SP mode at the middle single interface be-
tween Ag cladding and glass cladding is not visible in Fig. 3.25a. The field
amplitudes in both the cores are almost equal.

When the separation is increased, the field amplitude in theAg core starts to
fall and the middle interface couples more field than before and become visible.
Figure 3.25d, shows the Hx field profile with a separation of 70nm. The middle
SP is clearly visible in Fig. 3.25d.

With further increase in separation, the field amplitude in the Ag core falls
sharply. Figures 3.25g and 3.25j, shows the Hx field profiles for 100nm and
130nm values of separation, respectively. It can be seen that amplitude for both
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(a) Hx field profile at s =
50 nm
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(c) Sz profile at s = 50
nm
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(d) Hx field profile at s =
70 nm
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(e) Ey field profile at s =
70 nm
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(f) Sz profile at s = 70
nm
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(g) Hx field profile at s =
100 nm
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(h) Ey field profile at s =
100 nm
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(i) Sz profile at s = 100
nm
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(j) Hx field profile at s =
130 nm
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(k) Ey field profile at s =
130 nm

0 0.05 0.1 0.15 0.2 0.25 0.3
Y values

-2

-1

0

1

2

3

N
or

m
al

is
ed

 S
z 

(a
.u

.)

(l) Sz profile at s = 130
nm

FIGURE 3.25: Effect of variation of separation between the cores
shown using the magnetic & electric fields and the Poynting vec-
tor profiles for different values of separation (s) for the SPSM0

mode where tAg = tSiO2 = 25nm
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the Ag core and the middle interface SP mode becomes significantly lower than
the dominant amplitude in Silica core.
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FIGURE 3.26: Variation of the real part of effective index for the
SPSM0 mode when the separation between the cores is varied

from 40nm to 150nm

Figures 3.26 and 3.27 shows the variations of effective index and the loss
with separation from 40 nm to 150 nm. Power confinement in different layers
are presented in Fig. 3.28. It can be seen in Fig. 3.26 that the effective index
increases with the increase of separation and saturates around a value of 5.05

for higher values of separation. As the field moves away from the Ag core, the
index of the SPSM0 supermode exponentially moves towards a higher index
which is greater than the total index of the mode itself at a lower separation.
The mode gains noticeable amplitude when the Ag core started to lose field to
the Silica core. The middle interface SP also loses amplitude to the Silica core
when the separation is further increased. The impact of the middle interface SP
on the effective index is thus insignificant.

However, the loss of the SPSM0 mode, as shown in Fig. 3.27 initially in-
creases in an exponential manner. The loss reaches a peak value of 41.86 dB/mm
at a separation of 60 nm then started to fall again and nearly stabilises at 36.599 dB/mm
after a separation of 120 nm. The loss characteristics can be better explained
with the field profiles and the power confinement of different layers.
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cores is varied from 40nm to 150nm for the SPSM0 mode
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Figure 3.28 shows the power confinement in the two cores and the claddings
with the variation of separation. It can be observed that initially the confine-
ment of the Ag core and that of the Glass cladding increases whereas confine-
ment in the Silica core and in theAg cladding decreases and this trend continues
up to 60 nm of separation. This is inline with the maximum amplitude of the
middle interface SP at this separation. From Fig. 3.25 it can be seen that for
lower values of separation, field intensity in the lossy Ag layers are more and
the power inside the metal layers tend to get lower for higher values of sepa-
ration. For separation values upto 60 nm, the increase in Ag core confinement
is much more than the decrease of confinement in the Ag cladding. As a re-
sult the loss values increase for these values of separation. Hence, it coincides
with the peak in the loss curve (Fig. 3.25d). Beyond 60nm of separation, both
the Ag core and the middle interface SP lose field to the Silica core. After this
separation, power in both the Ag core and the Glass cladding start to decrease
whereas the Silica core and the Ag cladding start to gain more power. Hence
there is significant reduction in amplitude in the Ag core and middle interface
SP. This phenomenon causes the drop in the loss curve. It can also be seen that
at higher values of separation, the power confinement in Silica is significantly
higher than the other layers and hence the loss of the guide reduces. As the con-
finement of power in Silica core saturates at around 66% the loss also stabilises
at 36.599 dB/mm.

3.6.2 Coupling length calculation

The coupling length, Lc between two modes is defined as:

Lc =
λ

2(n1 − n2)
(3.31)

where λ is the wavelength and n1 and n2 are generally the effective indices of
the fundamental (even) and first order (odd) modes of the two coupled waveg-
uides operated at the specific wavelength.

The SPSM0 and the SPSM2 modes are primarily even in nature. This is be-
cause both the fields inside the two cores are in the same direction. On the other
hand, for the SPSM1 mode the field inside the two cores are pointing in the op-
posite directions. Therefore to calculate the coupling length, both the SPSM0

and the SPSM2 modes were used as the even mode and the SPSM1 mode
was considered to be the odd mode. Separation was varied to characterise the
coupling length for the two combinations. Figure 3.29 shows the variation of
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coupling length for both the combinations described above with separation be-
tween the cores.

It can be seen that the coupling length of SPSM1 and SPSM2 increases in
a non linear function. On the other hand the coupling length of SPSM0 and
SPSM1 increases with a linear function. At the initial stage of the separation
of 40nm both pairs show the same coupling length. But when the separation
is increased at 55nm the coupling length of SPSM1 and SPSM2 shows 63%

higher coupling length than that of the combination of SPSM0 and SPSM1

modes. Therefore, for higher separation the SPSM0 and SPSM1 pair is better
if the size of the device is considered.
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FIGURE 3.29: Variation of Coupling Length as a function of the
separation between the cores (s)

Coupling between the modes can also be analysed considering the loss val-
ues of all the modes. Figures 3.19 and 3.27 show the loss curves for the SPSM2

and SPSM0 modes respectively. As can be seen in the figures, for both modes
the loss increase with the increase in separation. Loss of SPSM2 mode is higher
than the loss of SPSM0 mode for all the values of separation. For SPSM2

mode loss at 40nm separation is 60 dB/mm and at 55nm separation the loss is
116 dB/mm. On the other hand, for SPSM0 mode the loss at 40nm is 30.78 dB/mm

and at 55nm the loss is 43.13 dB/mm. Therefore, for all thicknesses, SPSM0

mode is preferable compared to the SPSM2 mode when loss is considered.
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Figure 3.23 shows the loss curve of SPSM1 mode. As can be observed, the
loss for lower separation is extremely high compared to the loss of higher sepa-
ration. For 40nm separation the loss is 392 dB/mm and for 60nm separation the
loss is 10.15 dB/mm. Therefore, for SPSM1 mode higher separation is prefer-
able when loss is considered.

Although the loss of the SPSM0 and SPSM2 modes are lower for smaller
separations, due to extremely high loss of the SPSM1 mode for smaller separa-
tion the overall loss for the contra directional coupler will be very high. On the
other hand, for higher separation the loss of the SPSM2 mode is significantly
higher. But the loss of the SPSM0 mode is comparatively lower. The loss for
the SPSM1 mode is significantly lower for higher separation.

Therefore, overall loss could be minimised if the coupling pair of SPSM0

and SPSM1 modes are considered. As the loss of the SPSM1 mode saturates
after 55nm, the optimised separation for the structure with core thickness 25nm

is 55nm. As described earlier, the SPSM0 and SPSM1 pair is also preferable
when coupling length is considered.

3.6.3 Variation of core thickness

To analyse the impact of variation of thickness of the cores on the characteristics
of the guide, the thicknesses of the cores were varied keeping the thickness of
each core equal tAg = tSiO2 . For this analysis only the core thicknesses were
varied while the value of the separation was kept constant.

SPSM2 mode

The propagation and loss characteristics for the SPSM2 mode, with the varia-
tion of the core thickness, t, of the 6-layer planar guide were calculated using
the full-vectorial FEM method. Figure 3.30 presents the variation of the effec-
tive index of the waveguide with the variation of the core thickness of 20nm to
32nm, t, for the SPSM2 mode. As can be observed from the figure, the real part
of the effective index of the mode varies in a decreasing pattern for increasing
values of the core thickness.

In order to examine the propagation and attenuation characteristics of the
structure, it is essential to observe the field profiles of the mode for the different
values of the core thickness. Figure. 3.32 shows the Hx, Ey field profiles and
the corresponding Poynting vector Sz for the SPSM2 mode for four different
values of the core thickness, t, whereas the separation between the cores were
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kept constant at sAg = sGlass = 20nm. The left side core denotes the SiO2 core
whereas the right handed one refers to the Ag core in all of the profiles in this
figure.

For t = 16 nm, the Hx field is more confined in the SiO2 core and small
amount of field is concentrated in the Ag core. As the thickness increases, more
field in confined in the Ag core and that in the SiO2 core gradually becomes
smaller. When the value of the core thickness is larger, the even mode in the
IMI substructure becomes comparable with the even mode in the MIM sub-
structure and the confinement in the two cores come closer. At a core thickness
of t = 30.75 nm, power confined in both the cores become equal as can be ob-
served in figs. 3.32j, 3.32k and 3.32l. After this value of core thickness, the IMI
substructure becomes dominant and higher field intensity and power is drawn
into the Ag core.

The propagation characteristics shown in Fig. 3.30 can be explained using
the field profiles in Fig. 3.32. When the thickness of both the cores are smaller,
the SPSM2 mode is dominated by the power confined in the SiO2 core. This
can be seen in the Poynting vector plot in Figs. 3.32c and 3.32f. Therefore, the
effective index characteristics follows the MIM characteristics described in sec-
tion 3.5.3. As it is shown in Figs. 3.32a, 3.32d and 3.32g, the amplitude of the Hx

field in the SiO2 core decreases with the increase of the core thickness. Hence,
when the thickness of the cores is increased, the overall effective index of the
mode decreases. Fig. 3.32i shows that at 28nm thickness, the power in both
the SiO2 and the Ag cores become almost equal. The effective index curve de-
creases to a minimum at t = 30.75 nm when both the cores hold equal amount
of power. After this minimum, the effective index of the mode starts to increase
again. This is because beyond this core thickness the power inside the Ag core
becomes greater than that of the SiO2 core. This can be seen in Fig. 3.32j.

Figure 3.31 presents the loss characteristics of the mode for core thicknesses
of 20nm to 32nm. The power confinement in the two cores and the claddings
are shown in Fig. 3.33.

The attenuation characteristics of the SPSM2 mode in Fig. 3.31 can be ex-
plained by analysing the field profiles in Fig. 3.32 and variation of power con-
finement factor in Fig. 3.33. The loss values are mainly governed by the filed
intensity and power confinement in the metal layers. At the initial stage when
the thickness of the cores is small, more field is confined in the SiO2 core. Hence
the losses are lower for low values of core thickness. For increasing values of
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FIGURE 3.32: Effect of variation of thickness of the cores shown
using the magnetic & electric fields and the Poynting vector pro-
files for different values of core thickness (t) for the SPSM2 mode

where sAg = sGlass = 20nm
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the thickness, confinement in the Ag core increases, but the increase in confine-
ment in the Ag core is almost cancelled by the decrease in confinement in the
Ag cladding. The power confinement in the SiO2 core decreases steadily in al-
most a linear pattern. Therefore, the initial stage is dominated by the decrease
in confinement in SiO2. The loss values reach a minimum at t = 22 nm. After
crossing each other, the confinement in Ag core increases more rapidly than the
confinement in the Ag clad as the rate of decrease in power confinement factor
in the Ag clad slows down. Hence, there is a net increase in power confinement
in the lossy metal layers. As a result, the loss started to increase after t = 22

nm and the power confined in both the cores become more comparable. As
the thickness of the core increases, the net increase of power in the lossy metal
layers causes the loss to increase in a non-linear manner. When the core thick-
ness becomes t = 30.75 nm, the power confinement in both the cores are equal
and beyond this value, the confinement in Ag core becomes the dominant one.
Therefore the rate of change of loss value increase even more. It can be seen the
loss of the mode reduces slightly from 42.724377 dB/mm at 20nm core thick-
ness to 40.994522 dB/mm at 22nm thickness. After that, the loss begins to climb
upward in a non-linear manner. At a core thickness of 32nm, the loss of the
mode becomes 61.986688 dB/mm.
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FIGURE 3.33: Variation of power confinement factor when the
core thicknesses are varied from 20nm to 32nm for the SPSM2

mode
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SPSM0 mode

Similar to the SPSM2 mode, the variation of the effective index of the SPSM0

mode with the variation of the core thickness was examined and the results
obtained are presented in Fig. 3.34. As it can be seen from the graph, for small
values of core thickness, t, the effective index, neff , is quite high, but as the
core thickness increases, the effective index, neff , reduces to the value neff =

4.916369. Figure 3.36 shows the loss characteristics of the SPSM0 mode. As can
be observed in the figure, the loss of the mode also decreases in a non-linear
manner. The variation of power confinement in the cores and the claddings
with the variation of core thickness is presented in Fig. 3.37.even mode
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FIGURE 3.34: Variation of real part of the effective index when the
core thicknesses are varied from 20nm to 32nm keeping the total

separation constant at 40nm for the SPSM0 mode

For explaining the propagation and attenuation characteristics of the struc-
ture, the field profiles of the SPSM0 mode for the different values of the core
thickness were observed. Figure. 3.35 shows the Hx, Ey field profiles and the
corresponding Poynting vector Sz for the SPSM0 mode for four different val-
ues of the core thickness, t, whereas the separation between the cores were kept
constant at sAg = sGlass = 20nm. The left side core denotes the Ag core whereas
the right handed one refers to the SiO2 core in all of the profiles in this figure.

Similar to the SPSM2 mode, for t = 15 nm, the Hx field intensity is more in
the SiO2 core and small amount of field is concentrated in the Ag core. As the
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thickness increases, field intensity in the Ag core increases and that in the SiO2

core gradually becomes smaller. When the value of the core thickness is larger,
the amplitude of the third peak start to reduce significantly and the amplitude
difference between the even modes in the IMI and the MIM substructures also
decreases. At a thickness of 24nm, the third peak almost disappears. After
this point, the third peak takes a flip and shows odd like coupling and further
increase in thickness causes the amplitude of the third peak to increase in an
odd manner. At a core thickness of 26nm, the field intensity in the two cores
are almost equal and the confinements come closer.

The effective index characteristics in Fig. 3.34 can be explained using the
field profiles and the confinement factor curve. Similar to the SPSM2 mode,
the SPSM0 mode also exhibits higher field intensity at lower values of core
thickness in the SiO2 core as shown in field profiles of Figs. 3.35a, 3.35b and
3.35c. As can be seen in the confinement factor plot in Fig. 3.37 the power con-
finement factor in SiO2 core and Glass cladding does not vary much with the
increase in core thickness. However, the confinement factor ofAg core increases
and that of the Ag cladding decreases. For the entire range of thickness varia-
tion, the confinement in the SiO2 core is the highest of all and hence the mode
is dominated by the MIM substructure surrounding the SiO2 core. Therefore,
when the core thickness is increased the effective index decreases in a pattern
similar to the characteristics of the MIM substructure described in section 3.5.3.

The loss characteristics of the mode shown in Fig. 3.36 can be explained
by observing the power confinement factor characteristics in Fig. 3.37 and the
Sz Poynting vector profiles in Figs. 3.35c, 3.35f, 3.35i and 3.35l. It can be ob-
served in the confinement factor curves that the confinement for the SiO2 core
and the Glass cladding are not very sensitive to change in the core thickness.
But the confinements in the Ag core and in the Ag cladding increases and de-
creases respectively. Although the confinement factor for theAg core increased,
but in reality the power amplitude in the Ag core remains the same whereas
the power amplitude in the SiO2 reduces slightly but keeping the confinement
factor same. Therefore, the field confinement in the surrounding Ag cladding
layer decreases while the field confined in the Glass cladding remains almost
the same. As a result, overall, field confinement in Ag layers decreases, causing
a net decrease in loss. Moreover, for the entire range the mode is dominated by
the MIM substructure and because of this dominance of the MIM side, the loss
values decrease non-linearly with the increase of the thickness of the cores.
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(g) Hx field profile at t =
22 nm
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FIGURE 3.35: Effect of variation of thickness of the cores shown
using the magnetic & electric fields and the Poynting vector pro-
files for different values of core thickness (t) for the SPSM0 mode

where sAg = sGlass = 20nm
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3.7 Summary

In this chapter, the complex propagation characteristics of certain types of pla-
nar plasmonic waveguides were investigated, by using the full-vectorial FEM.
Planar structures incorporating metal and dielectric films, which exhibit loss
and surface plasmon properties, were analysed, and finally a multilayer struc-
ture incorporating dielectric and metal layers suitable for contra-directional
coupling applications was also examined. The analysis was carried out for
three different multi-layer plasmonic modes. The propagation and attenuation
characteristics along with the power confinements were studied.

For all the modes discussed above it was observed that the amplitude of the
Poynting vectors in the Ag and the SiO2 cores have opposite signs, suggesting
that the direction of power flow is opposite in the two cores. Therefore, light
injected in one core will couple light going in the opposite direction.

To study the loss characteristics of the contra directional coupler, the sepa-
ration and the thickness of the guide was varied. It was observed that when
the separation was increased for all three modes, the field confinement moved
into one of the cores (the SiO2 core) and at the end became almost like a three
layer guide and lost the contra directional characteristics completely. Although
SPSM1 mode shows very low and stable loss at higher values of separation, the
loss at low separation is extremely high where the contra directional coupling
is active. The SPSM2 and SPSM0 modes show much lower loss in this region
where separation value is low. Moreover, the shift of power to the SiO2 core
is much slower in SPSM2 and SPSM0 compared to the SPSM1 mode. The
SPSM0 mode shows more stability for separations between 40 − 60nm than
the other two modes.

The SPSM2 and SPSM0 modes were studied with a fixed separation of
40nm while varying the thickness of the two cores. For both the modes the
contra directional coupling characteristics of the guide was present throughout
the range. For the SPSM2 mode, the loss initially decreases to a minimum of
41 dB/mm but it increases afterwards. The SPSM0 mode shows higher loss
at lower values of core thickness than the SPSM2 mode. But the loss gradu-
ally reduces as the thickness increases and the loss saturates to 38 dB/mm for
a thickness of around 30nm. After that the loss moves up very slowly to re-
main near 38 dB/mm at the end of the range. Therefore, the loss characteristics
is more stable with change of thickness for the SPSM0 mode. It can also be
observed that the loss for the SPSM0 mode is lower compared to the SPSM2

mode at higher thickness values.
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The stability and the low loss of the SPSM0 mode with separation and thick-
ness variation makes it more suitable for practical use. As the mode is less
sensitive to both separation and thickness variations, it is more manufacturing
friendly. Lower loss of the mode means it is more likely to propagate longer in
the structure.



Chapter 4

Hybrid Plasmonic Waveguide at
Optical Frequencies

4.1 Introduction

Waveguides have been designed for many different applications and are im-
portant components in integrated optical circuits. To increase the integration
density, compact circuits are preferred. One approach to achieve this is to
use high refractive index contrast waveguides, for example, silicon waveg-
uides with silica or air cladding. Silicon waveguides can guide light in a more
confined manner than can be achieved using low index contrast waveguides.
Silicon waveguides are compatible with CMOS (Complementary metal-oxide-
semiconductor) technology; thus they offer the possibility for integrating elec-
tronics and photonics in the same material platform and have attracted much
interest [204]. Since silicon is transparent in the near-infrared range, silicon
waveguides have very low loss and are widely used in telecommunication.
However, the mode size achievable with a silicon waveguide is still limited by
the diffraction. As SPPs have shorter wavelength, plasmonic waveguides can
operate beyond the diffraction limit. They offer the possibility of increased inte-
gration density for optical circuits. But at the same time, due to the complex re-
fractive index of metal, plasmonic waveguides suffer from significant propaga-
tion loss. A combination of low propagation loss, high power density, and large
confinement will be useful for many applications of plasmonic waveguides in-
cluding nonlinear optics [205] and biosensing [206, 207]. Many kinds of plas-
monic waveguides have been proposed for nanophotonic applications such as
the dielectric loaded surface plasmon waveguide (DLSPW) [208], the plasmonic
slot waveguide [209], and the hybrid plasmonic waveguide (HPWG) [210, 187,
211].

In this chapter a hybrid plasmonic waveguide at optical frequency will be

116
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investigated. This chapter will focus on the complex propagation characteris-
tics of a hybrid plasmonic waveguide (HPWG) and characterise various aspects
such as the effective index, propagation loss, power confinements of the guide
using the full-vectorial H-field based FEM method described in Chapter 2. The
results were then compared with those obtained by Alam et al. [212], for the
same structure. From the comparison of the variation of the real part of the
effective index and the propagation loss, with the spacer thickness for fixed
core and metal layer thicknesses, the curves presented are found to be in good
agreement, for both the TE and TM modes.

4.2 Hybrid Plasmonic Waveguide

nAg = 0.469 + j 9.32 

nSiO2 = 1.44409

nSi = 3.518 + j0.0001

Ag
SiO2

Si

SiO2
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Si

t
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FIGURE 4.1: Schematic cross-sectional diagram of the hybrid plas-
monic waveguide

The HPWG consists of a dielectric substrate with a high refractive index
dielectric core sitting on the substrate, a metal layer at the top of the guide
and in between the high index core and the metal cladding layer there is a low
index dielectric layer called the spacer. The schematic structure is presented in
Fig. 4.1.

As shown in the figure, the substrate considered for the structure is a Silica
(SiO2) layer sitting on Silicon. The high index Silicon (Si) core of the slot with
width w sits on top of the Silica substrate. On top of the Silicon core there is
a thin layer of Silica. This is the spacer layer. At the very top there is a Silver
(Ag) layer. Silicon is chosen as the high index medium and silica is chosen as
the low index spacer, so that the structure is fully compatible with silicon-on-
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insulator (SOI) technology and is suitable for optical applications in the near
infrared range. The thicknesses of the core, spacer and metal cladding are d, h
and t respectively.

The most interesting aspect of the structure is that it combines both dielectric
and plasmonic guiding schemes and forms a hybrid guiding scheme. The hy-
brid mode that concentrates in the low index spacer region offers a compromise
between loss and confinement compared to pure plasmonic or pure dielectric
modes. Therefore, the structure is more suitable for nano integrated photonic
circuit design for its compactness and its low losses. Hence the HPWG offers
the possibility of successful integration of silicon photonics and plasmonics on
the same platform. In addition, the HPWG supports both the transverse electric
(TE) and the transverse magnetic (TM) modes in two different layers and offers
the possibility of developing devices which can manipulate the two polariza-
tions independently.

In [212] the structure in Fig. 4.1 was characterised for the dimensions by
varying h, d and t respectively using COMSOL multiphysics software [213]. In
this chapter both the TE and the TM modes will be studied by varying h, d
and t respectively using the full vectorial FEM method described in Chapter 2.
Therefore, this chapter is a benchmarking exercise with our method. In addi-
tion to benchmarking, this chapter explains the phenomena by calculating the
confinement factor for each layer of the structure. Material properties for silica
and silicon are taken from [202] and that of the metal Silver is taken from [214].

4.3 The TM Mode

The TM mode is a hybrid supermode combining both the dielectric mode which
is formed because of the lower index spacer and the substrate surrounding the
core and the plasmonic mode formed at the interface between the spacer and
the metal cladding on top.

Figure 4.2 shows the plasmonic and the dielectric modes separately. To ob-
tain the plasmonic mode the core of the guide was replaced with the spacer
material to obtain only a single interface. The dimensions chosen were t = 200

nm, w = 350 nm and the Silica thickness was taken as 350 nm. As there is only
one interface, only the plasmonic mode develops at the single interface.

Similarly, the metal layer was replaced with the spacer material to make a
pure dielectric guide. Figure 4.2(b) shows the pure dielectric TM mode.
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(a) (b)

FIGURE 4.2: (a) Pure plasmonic and (b) pure dielectric Hx field
profiles of the TM mode.
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FIGURE 4.3: (a) 3-D Contour profile, (b) field through the core, (c)
field through the spacer and (d) field parallel to the y-axis through
the centre of the guide of the Hx field for the TM mode of the

hybrid waveguide.
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When the metal layer is introduced at the top of the guide, both the plas-
monic and the dielectric TM modes couple to form the hybrid supermode. As
both the modes couple in an even manner, the field intensity in the spacer re-
gion does not decay. Although the mode is more confined in the Silicon core, a
significant part of the mode stays in the spacer region. Figure 4.3(a) shows the
contour field profile of the Hx field. It clearly shows that the Hx field is contin-
uing through the spacer to the metal surface with a lesser amplitude than the
core. Figure 4.3(b), (c) and (d) show the field profiles along the cross section
parallel to x-axis through the centre of the core, through the centre of the spacer
and parallel to the y-axis through the centre of the guide, respectively.

As can be observed in Fig. 4.3(b) and (c), the Hx field distribution is Gaus-
sian in shape in both the core and the spacer material. The cross section through
the centre of the guide parallel to the y-axis in Fig. 4.3(d) is more interesting as
it highlights the hybrid interaction between the dielectric and the plasmonic
modes. It can be observed that the field distribution in the spacer is not de-
caying as it would be expected for a pure plasmonic mode at the Silver-Silica
interface or for a pure dielectric mode in the core. When they are separately ob-
served they show exponential decay in the spacer region. But when they couple
together, theHx field distribution remains high. After the spacer the field inside
the metal layer decays very quickly in exponential manner.

4.3.1 Variation of Spacer Thickness h

In this section the thickness of the spacer h will be varied from 50 nm to 200

nm to observe the impact on the loss and the effective index of the structure.
Figure 4.4, shows effective index versus h (spacer thickness) curve for three
different core thicknesses of 100 nm, 150 nm and 200 nm. The thickness of the
metal layer was kept constant at 200 nm. It can be observed from the figure that
all of the curves show gradual decline. On the other hand the loss curve shown
in Fig. 4.5 depicts a rapid fall of loss value with the increase of h.

This phenomena can be better explained by observing the power confine-
ments in each layer.

Figure 4.6 shows the contour profile and the vertical cross sections of the Hx

and Ey field distributions of the guide with a spacer thickness of h = 90 nm for
a core thickness of d = 100 nm. Power Confinements in the metal layer, spacer
and the core with the variation of spacer thickness h are plotted in Fig. 4.7 for
a core thickness d = 100 nm and metal thickness t = 200 nm. Confinement
in the layers for other core thicknesses considered in the analysis also exhibit
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FIGURE 4.4: Variation of the real part of the effective index of the
TM mode as a function of the spacer thickness h for three different

core thicknesses (d)
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similar patterns. Hence only one thickness of the core is taken into account
for discussing the power confinement effects. As can be observed from the
Figs. 4.6 and 4.7, increasing the thickness of the spacer confines more and more
field within the lower index, lower loss Silica spacer. If the confinement factor
is taken into consideration, the confinement of power is only increasing in the
Silica spacer region. In the metal and the Silicon core region the power confine-
ment decreases. Although the Hx field amplitude is higher in the core region,
the power confinement of the structure is dominant in the spacer region. This
is because the Ey field is confined in the spacer region and Ey field in the core
is insignificant. As the power is more confined in the low loss spacer and the
confinement in the spacer is increasing with h, the overall loss of the structure
is decreasing with h.
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FIGURE 4.6: Normalized (a) Hx and (c) Ey field profiles of the
TM mode for spacer thickness h = 90 nm and core thickness d =
100 nm. (b) and (d) shows the vertical cross-sections of the fields,

respectively.
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TM mode power confinement
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FIGURE 4.7: Variation of power confinement in different layers of
the hybrid waveguide for the TM mode as a function of the spacer

thickness h for a core thicknesses d = 100 nm

4.3.2 Variation of Metal thickness t

In this section the thickness of the Silver layer on the top has been varied from
20 nm to 400 nm. The thickness of the spacer and the core were kept constant
at 100 nm and 150 nm, respectively. Figures 4.8 and 4.9 show the variations of
the effective index and loss for the TM mode, respectively.

In both figures it can be observed that with the increase in metal thickness
both the effective index and the loss decrease rapidly and both stabilise after
the thickness of 120 nm. After this value of metal thickness (t = 120 nm), The
value of effective index changes only 0.53% whereas the change in loss values
is only 3.03%.

4.4 The TE Mode

As the TE mode is not supported on a single metal-dielectric, the TE mode of
this guide is purely dielectric in nature. The wave is guided as the Silicon core
is surrounded by lower index air or Silica. Figure 4.10 shows the Hy and the
Ex field profiles along-with their vertical cross-sectional (parallel to the y-axis)
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FIGURE 4.8: Variation of the real part of the effective index of the
TM mode as a function of the metal thickness t for core and spacer

thicknesses of d = 150nm and h = 90nm respectively
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profiles of the TE mode supported by the hybrid plasmonic guide. Similar to
the TM mode, the variation of h, d and twere observed for the TE mode as well.
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FIGURE 4.10: Normalised (a) Hy and (c) Ex field profiles of the
TE mode for spacer thickness h = 90 nm and core thickness d =
150 nm. (b) and (d) shows the vertical cross-sections of the fields,

respectively.

4.4.1 Variation of h

Figures 4.11 and 4.12 show the effect of varying the spacer thickness on the ef-
fective index and propagation loss when the core thicknesses are 150 nm and
200 nm and metal thickness was kept at 200 nm. As can be observed, the ef-
fective index increases with increasing spacer thickness for both the values of
the core thickness. But the loss curve shows interesting behaviour. The loss
curve for the 200 nm core shows regular exponential drop in loss with spacer
thickness. But for the 150 nm core, the loss first increases to a maximum and
then starts to drop exponentially. Therefore, for a 150 nm core, the point of
maximum loss is a spacer thickness of 100 nm.
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To explain the phenomenon, the power confinement distribution was stud-
ied for 50 nm to 130 nm of spacer thicknesses for 150 nm core thickness . Fig-
ure 4.13 depicts that most of the power of the TE mode is confined in the core
and the spacer layers. With the increase in spacer thickness, power confine-
ment in the core and in the spacer increase monotonously. The confinement
in metal layer is very low compared to the confinement in the other two lay-
ers. Therefore, it can be concluded that with the increase of spacer thickness
the field distribution of the structure becomes more confined inside the struc-
ture. The confinement curve in metal shows an interesting nature. As shown in
the figure, confinement first increases with increase in h. But after 100 nm the
confinement in the metal layer started to fall. This phenomenon coincides with
the loss curve shown in Fig. 4.12. So it can be concluded that, although the TE
mode is purely dielectric in nature, the loss of the mode follows the confinement
pattern in the metal region.
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FIGURE 4.11: Variation of the real part of the effective index of the
TE mode as a function of the spacer thickness h for two different

core thicknesses (d)

4.4.2 Variation of t

Similar to the TM hybrid mode the metal thickness was varied for the TE mode
keeping the core thickness at 150 nm and the spacer thickness at 100 nm. The
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effect of the metal thickness is similar to the effect on the TM mode. After 120

nm thickness the loss saturates. The variation of the effective index and loss of
the TE mode are shown in Figs. 4.14 and 4.15.
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FIGURE 4.14: Variation of the real part of the effective index of the
TE mode as a function of the metal thickness t for core and spacer

thicknesses of d = 150nm and h = 90nm respectively

4.5 Benchmarking

As mentioned earlier the propagation characteristics of the structure are pre-
sented in [212]. In the previous sections, the propagation characteristics of
the structure using a full-vectorial H field based FEM method were described.
These results are then compared to those presented in [212]. Figures 4.16 and 4.17
show the comparison of effective index and propagation distance of the TM
mode. The propagation distance is defined as the distance over which guided
power drops to 1/e of its initial magnitude. From the comparison of the vari-
ation of the real part of the effective index and the propagation distance, with
the spacer thickness for fixed core and metal layer thicknesses, the curves pre-
sented are found to be in good agreement for the TE mode. The comparison
curves for the TE mode are shown in Figs. 4.20 and 4.21. For the TM mode, the
curves show good agreement when the thickness of the spacer layer is smaller.
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FIGURE 4.15: Variation of propagation loss of the TE mode as a
function of the metal thickness t for core and spacer thicknesses of

d = 150nm and h = 90nm respectively

But when the spacer thickness is increased beyond h = 110 nm, the propaga-
tion distances calculated by the two methods started to differ slightly from each
other.

To investigate the difference at higher values of spacer thickness, the spacer
thickness sweep was performed with different resolutions of the mesh for the
d = 200 nm core. Figure 4.18 shows the curves of several mesh resolutions along
with the result from the [212] overlaid on top (denoted by purple triangles). The
curve shown in grey circles is the one shown earlier in Fig. 4.17 (also in grey).
It can be noticed from Fig. 4.18 that at lower spacer thicknesses, the propaga-
tion distances calculated at almost all the resolutions are very much close to
each other. But as the thickness of the spacer layer was increased, curves with
higher resolution mesh started to produce slightly higher propagation distance
than that of the lower resolution meshes. It can be observed in the Fig. 4.18
that the results, presented in [212] started with a good agreement with all the
mesh resolutions for lower spacer thicknesses upto around h = 110 nm. But for
spacer thicknesses greater than this value, the [212] curve drifted towards the
lower resolution results produced by our method. Figure 4.19 shows the rela-
tion between the propagation distance and mesh resolution in terms of number
of mesh elements for different values of the spacer thickness. It can be observed
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that at lower resolution the propagation distance is lower and ******. As the
resolution increases, the calculated propagation distance becomes more stable.
All the results presented in this chapter using our technique were produced at
90 × 90 resolution where the total number of mesh elements were 16200. This
resolution was used so that the produced results are more stable. The curve of
propagation distance shown in Fig. 4.16 was also produced using 16200 mesh
elements at a 90×90 mesh resolution which gave more stable result but created
a drift with the [212] curve for higher spacer thicknesses. Therefore, it can be
concluded that the difference between the propagation distance curve obtained
by our method and that in [212] might be due to mesh resolution.
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FIGURE 4.16: Comparison of variation of the real part of the effec-
tive index of the TM mode as a function of the spacer thickness h

for three different core thicknesses (d)
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FIGURE 4.20: Comparison of variation of the real part of the effec-
tive index of the TE mode as a function of the spacer thickness h

for two different core thicknesses (d)
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4.6 Summary

The HPWG offers sub-wavelength confinement in the low index region, offers a
better compromise between confinement and loss compared to pure plasmonic
waveguides, and is compatible with SOI technology. In addition, the propaga-
tion of the TE and TM modes can be independently controlled which opens up
the possibility of implementing compact devices for manipulating polarization.
In this chapter, we have analysed the properties of the HPWG by observing the
confinement and propagation loss of the HPWG. The HPWG combines both
dielectric and plasmonic guiding schemes, and it provides good confinement
with moderate propagation loss. The HPWG supports both the TE and TM
modes which can be utilised for many applications.



Chapter 5

Rectangular Plasmonic Waveguide
in THz

5.1 Introduction

The terahertz (THz) frequency region has attracted a huge amount of research
effort in recent years and is emerging as a key technology for a number of ap-
plications. Considerable interest in THz devices has been created in the field of
imaging [215], sensing [216] and scanning microscopy [217, 191]. The develop-
ment of THz sources and receivers has also increased the demand for low loss
THz waveguides [218], which can be used as interconnects in integrated THz
devices for higher speed and wideband communications. The lack of a com-
pact and low loss interconnect has limited the capacity for THz components to
be placed either in close proximity to each other or else to use free space as the
propagation medium, which then requires bulky components [219, 220]. A low-
loss waveguide can be used to replace such bulky components with compact,
integrated circuits.

The major hurdle for THz guiding is that most of the materials considered
exhibit high absorption losses in this region of the spectrum [221]. Conven-
tional dielectrics tend to be lossy at terahertz frequencies, whereas metals show
low propagation loss owing to their high conductivities. To reduce absorption
loss, waveguides can be designed such that less power stays within the lossy
material and most of the power is guided through the air [222]. Amongst the
techniques used so far, photonic crystal fibre [223, 224], porous fibre [225, 226,
227], hollow Bragg fibre [228], metal clad hollow core [229, 230, 231, 218] and
ferroelectric clad fibre [232, 228] can be mentioned and all these approaches
guide a significant portion of the power through air.

Among various approaches considered, a metal clad guide which supports
surface plasmon modes is one of the most promising contender because of low

134
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loss in both active components and passive waveguides [218]. Recently it has
been shown, both experimentally [231] and via numerical simulations [218],
that a dielectric coated metal-clad hollow core circular waveguide yields low
loss at THz frequencies. Such flexible guides are more suitable to deliver high
power electromagnetic waves to a target, instead of using free space transmis-
sion. Previously Miyagi and Karasawa [233] have suggested that a rectangular
hollow core guide would be expected to have a lower bending loss, compared
to a circular waveguide of a similar bore. A previous study [218] also shows
that polarized modes in circular waveguides are not circular due to the bound-
ary conditions at the metal-dielectric interface, even though the superposition
of two degenerate polarized modes produces radially symmetric unpolarized
modes. With these non-circular polarized modes being degenerate, the polar-
ization state of the beam will not be stable. It is expected that modes in a rect-
angular waveguide can be designed not to be degenerate and the polarization
condition can be maintained in such a waveguide.

In this chapter, a two-dimensional modal analysis was performed for the
characterization and optimization of a dielectric coated hollow core rectangu-
lar waveguide, by using the full vectorial H-field based FEM method. Addi-
tionally, the propagation and attenuation properties of this waveguide were
examined by varying several parameters of the guide.

5.2 Dielectric coated Rectangular Waveguide

Figure 5.1 shows a schematic diagram of the rectangular cross-section of the
waveguide with a dielectric coating. The structure considered here is com-
posed of a thin metal clad silica waveguide with an air core. It was suggested
previously [234] that by using a soldering technique to join two sets of paral-
lel horizontal and vertical metal-clad dielectric slabs, such a waveguide can be
fabricated readily. As the decay length at the metal-air interface will be much
longer than that at the metal-silica interface, the electromagnetic field at the
outer surface of the guide will decay more quickly. Hence the host material,
silica, in this case, has a negligible effect on the modes guided in the air core
and any other suitable dielectric material can also be used. For the simulation
purpose, the refractive index of silica was taken as nsilica = 1.96 + j0.0061 [202]
at an operating frequency of 2.5 THz. At this operating frequency, the loss as-
sociated with the air is considered and its complex refractive index was taken
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FIGURE 5.1: Schematic diagram of the hollow core rectangular
waveguide with a dielectric coating inside the air core where W
is the guide width, H is the height of the guide, tm is the metal

thickness and td is the thickness of the dielectric coating.

as 1.0 + j1.1 × 10−6 [218]. Initially, the noble metal, gold (Au), having a refrac-
tive index nm = 281.55 + j419.74 [235], has been considered as the cladding
material. The width W and height H of the guide and the cladding thickness
tm were varied. To study the effect of the dielectric coating on the modal loss,
a thin layer of Teflon deposited at the inner surface of the metal cladding was
considered. A plasma vapour deposition process can be used to deposit Teflon
on the metal during the fabrication process. A similar technique applied to a
hollow core fiber has been studied [218] and fabricated [231] previously, where
in that case polystyrene was used as the dielectric coating material.

Quasi-TM modes with a dominant Hx field would form SPP modes at the
horizontal metal-dielectric interfaces, whereas quasi-TE modes with the dom-
inant Hy field can form SPP modes at the vertical metal/dielectric interfaces.
In this study, only the quasi-TM modes are reported; however the quasi-TE
modes would show similar features. This structure supports the surface plas-
mon modes at two metal-dielectric interfaces; one at the outer silica-gold in-
terface and the other at the gold-air interface inside. The decay length at the
gold-air interface is much higher than that at the silica-gold interface. In this
structure, at all four interfaces at the four sides, both sides of the metal cladding
are surrounded by two different dielectrics. However, as the decay length at the
gold-air interface will be much longer than that at the silica-gold interface, the
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electromagnetic field at the outer surface of the guide will decay faster. Since
the refractive indices of the inner and outer dielectrics are different, their phase
velocities are also different and they do not couple effectively to form super-
modes across the metal layer. On the other hand, the SPP modes at the upper
and lower metal/air interfaces with longer decay lengths will couple to form
supermodes as they are also phase matched. When these two modes couple in
an even-like manner, an air-guided mode is formed.
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FIGURE 5.2: Hx
10 field profile along (a) the horizontal and (b)

the vertical directions, respectively in the hollow core rectangu-
lar waveguide with W = 1.0 mm, H = 0.6 mm, tm = 0.7 µm and

td = 0.

It was observed that when the width and height of the waveguide were large
compared to the wavelength, the waveguide supports many modes and the real
part of their effective indices (neff ) are closer to the refractive index of the air
core. In this work, the fundamental Hx

10 and four higher order quasi-TM modes
Hx

20, Hx
30, Hx

11 and Hx
12 are studied. The contour profiles of these modes are

shown later. Using a familiar nomenclature for the integrated optical waveg-
uides, the waveguide modes were defined asHx

mn, whereHx is the dominant H-
field component and the subscripts m and n depict the field maxima along the
x and y coordinates, respectively. The Hx field profile of the fundamental Hx

10

mode along the horizontal and vertical directions are shown in Figs. 5.2(a) and
(b), respectively. For this mode, identical SP modes existing at the top and bot-
tom metal-air interfaces couple together to form an even-like supermode along
the vertical (y) direction, as presented in Fig. 5.2(b). Two plasmonic peaks at
the gold-air interfaces are clearly visible and are shown by arrows in Fig. 5.2(b).
However, the boundary condition along the vertical metal interfaces on the two
side walls forces Hx to be zero there. So a half sine wave curve is formed along
the horizontal direction, as can be seen in Fig. 5.2(a). On the other hand, the
Hx

11 mode is the result of the odd coupling between the SP modes of the top
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and bottom claddings. However, the Hx
12 mode has a higher order variation

along the y direction. Besides showing two sharp plasmonic peaks at the metal
interfaces, this mode also shows two additional zero-crossings. The Hx

20 and
Hx

30 modes follow a similar profile as the Hx
10 along the y direction, but their

profiles change along the horizontal (x) direction showing two and three field
extrema, respectively. Before considering possible dielectric coatings inside the
metal cladding, several parameters of the guide, namely the height, width and
the metal thickness were varied to observe their effect on the modal proper-
ties, examining the effective index and the loss values for all of the five modes
mentioned above. The effective index, neff , of a given mode is a normalized
propagation parameter, which can be defined by neff = β

k0
= nre + jnim, where

β = βre + βim is the complex propagation constant of that mode and k0 is the
free space wavenumber defined as k0 = ω

√
µε = 2π

λ
. The absorption coefficient

is αWG = 2βim [236]. From this coefficient, the value of loss (in dB/m) was cal-
culated as loss = 8.6858896βim. This expression is used for all the calculations
of loss throughout this chapter.

5.2.1 Effect of Change in Guide Height
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FIGURE 5.3: Real part of effective index of all the five modes as a
function of height at W = 1.0 mm, tm = 0.7 µm and td = 0.

Figure 5.3 shows the variations of the real part of effective index (neff ) with
the waveguide height, H . The height of the guide was varied from 0.4 mm to
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1.0 mmwhile keeping the width and cladding thickness constant at 1.0 mm and
0.7 µm respectively. It can be seen from this figure that for the Hx

10, Hx
20 and Hx

30

modes, neff ’s do not change much with the height. When the height is grad-
ually reduced from 1.0 mm to 0.4 mm at an interval of 0.1 mm, the deviation
in effective index (from that of height 1.0 mm) is only about 0.0073%, 0.0075%
and 0.0076% for the Hx

10, Hx
20 and Hx

30 modes, respectively. This is because, al-
though these three modes have different variations along the x direction, their
field profiles along the y direction are constant and these are not affected by
the changing height. Due to the much larger decay length in air, compared to
the change of height of the guide, these modes do not show significant vari-
ation of their effective index values. However, the higher order modes have
slightly smaller effective indices than those of lower order. On the other hand,
the effective index curves of the Hx

11 and Hx
12 modes fall more rapidly as the

guide height is decreased, showing a stronger dependence on the waveguide
height, H as their spatial variation is changed with the height. The Hx

12 mode
has a sharp decaying curve of its effective index when the waveguide height is
reduced.
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FIGURE 5.4: Loss of all the five modes as a function of height at
W = 1.0 mm, tm = 0.7 µm and td = 0.

Figure 5.4 shows the variation of the modal loss with height for all the five
modes considered here. It can be observed that the modal losses of the guide
increase exponentially with the reduction of height for all the modes. The loss
values, for the Hx

10, Hx
20 and Hx

30 modes, are very close to each other and their
rate of change is almost identical. For these three modes, it can be noted that
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all the loss values are very similar when the waveguide height, H , is large but
the higher order modes have slightly higher losses than those of lower order.
However losses increase at a much higher rate in the case of the Hx

11 and Hx
12

modes where the field depends strongly on the height, H . These values are also
much greater compared to the other three modes. The Hx

10 mode has the lowest
loss value among all the modes shown here. The Hx field profiles for all the
five modes are shown as insets in Figs. 5.3 and 5.4.

5.2.2 Effect of Change in Guide Width
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FIGURE 5.5: Real part of effective index of all the five modes as a
function of guide width at H = 0.6 mm, tm = 0.7 µm and td = 0.

In order to observe the dependence of the effective index and the loss val-
ues on the width of the rectangular guide, this parameter (denoted by W ) was
varied from 0.5 mm to 1.0 mm for all the five modes. Figure 5.5 depicts the
variation of neff for the five modes with respect to width for a constant height
H = 0.6 mm and a metal thickness tm = 0.7 µm. The curves suggest that the
values of neff decrease for all the modes, with decreasing width. For the Hx

10,
Hx

11 and Hx
12 modes, the rate of decrement of the neff ’s are similar due to the

fact that, in the horizontal direction, the variation of their modal field profiles
are similar. However, the lower order modes exhibit larger effective indices.
On the other hand, for the Hx

20 and Hx
30 modes, their neff values reduce much

more rapidly because of the faster change in the mode profiles in the horizontal
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direction with the width variation. The rate of decrement is much greater for
the higher order mode than for its lower order counterpart.
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FIGURE 5.6: Loss of all the five modes as a function of guide width
at H = 0.6 mm, tm = 0.7 µm and td = 0.

The propagation loss for theHx
10, Hx

11 andHx
12 modes have similar incremen-

tal rates with decreasing width, as can be seen from Fig. 5.6. The loss values for
these modes do not increase significantly as the losses arise predominantly due
to the metal confinement in the top and the bottom dielectric-metal interfaces.
The boundary conditions at the left and right interfaces demand a zero Hx field
which does not interact with the mode profile. On the other hand, for the Hx

20

and Hx
30 modes, the losses increase sharply while the width is decreased. This

arises because the change of the mode profile in the horizontal direction also
affects the interaction at the upper and lower metal-dielectric interfaces.

5.2.3 Effect of Change in Metal Thickness

Next, the effect of the metal thickness on the modal loss was also studied. When
the thickness of the Au cladding layer was varied over a range 0.2 µm < tm <

0.9 µm, the loss curves for all the five modes showed a similar nature as given
in Fig. 5.7. In this case, the width and the height of the guide were taken as
1.0 mm and 0.6 mm, respectively. The propagation loss values follow a decreas-
ing trend with increasing metal thickness. However, the higher order modes
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show higher values of loss than those of the lower order, particularly the higher
order modes in the vertical direction. The effective indices of the modes do not
change significantly with the cladding thickness and these are not shown here.
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FIGURE 5.7: Loss of all the five modes as a function of metal thick-
ness tm at W = 1.0 mm, H = 0.6 mm, and td = 0.

5.3 Dielectric Coated Design

5.3.1 Choice of Dielectric

In the work previously reported by Themistos et. al [218], polystyrene was
used as the dielectric material for the coating inside the metal cladding and the
complex refractive index for this material was reported to be 1.58 + j0.0036 at
2.5 THz. Operating at the same frequency, it has been observed that Teflon is a
lower loss medium with a complex refractive index nd = 1.445 + j0.00119 [237,
238]. For this reason, the effect of a layer of Teflon deposited inside the metal
cladding in this structure was studied. A guide width of 1.0 mm, a height of
0.6 mm and a metal thickness of 0.7 µm were considered for incorporation in
the simulation, although these parameters can also be optimized as necessary.
The effect of the Teflon thickness on the different modes was observed and this
is presented in the following sections.
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5.3.2 Effect of Teflon Thickness
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FIGURE 5.8: neff and loss of the Hx
10 mode as a function of Teflon

thickness at W = 1.0 mm, H = 0.6 mm and tm = 0.7 µm.

Initially the effect of the Teflon thickness on the fundamental Hx
10 mode,

which also shows minimum loss values, was investigated. This feature is of
particular interest where low loss applications are concerned. After consid-
ering a coating of Teflon, this mode was analysed to find a possible low loss
condition. It was observed that in the absence of the Teflon coating, the Hx

field exhibits a sharp rise at the air-Au interfaces at the top and the bottom, but
maintains a fairly constant profile at the central air core, details of which are
presented in Fig. 5.2(b). As the Teflon coating was introduced inside the metal,
the field profile deteriorates with a dip at the centre of the waveguide. Increas-
ing the thickness of the Teflon layer results in a decoupling of the two surface
plasmon modes of the top and bottom interfaces as a significant part of the field
penetrates into the Teflon layer and interacts with the metal cladding when the
Teflon coating is applied. Hence, the field inside the air core decreases with the
increase in the Teflon thickness. As a result, the propagation loss also increases.
Figure 5.8 presents the variation of the effective index and the loss curves of the
Hx

10 mode with the change in the Teflon thickness. This figure shows that the
effective index of the mode rises exponentially with an increase in the Teflon
thickness because more power is confined in the high index Teflon layer. The
loss curve for the mode shows similar characteristics, as increasing the Teflon
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layer suggest that the field confinement at the metal-Teflon interface increases,
which gives rise to the loss value seen. The top left inset in the figure shows the
contour field profile of this mode at a Teflon thickness of td = 1 µm, whereas
the other two insets present the Hx field profiles of the same mode along the
horizontal and vertical directions passing through the centre of the guide. It
can be noted that the minimum loss achievable with this mode is 10.22 dB/m

when no Teflon coating was applied.
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FIGURE 5.9: a) Normalized amplitude of the mode profile taken
at the centre of the profile in the vertical direction as a function
of Teflon thickness for the Hx

10 mode when W = 1.0 mm, H =
0.6 mm and tm = 0.7 µm.

It has already been mentioned that the field profile at the centre of the waveg-
uide reduces when the thickness of the Teflon layer was increased and this is
shown in Fig. 5.9 where the normalised Hx field amplitude at the centre of
the waveguide (normalised to its maximum value) is plotted against the Teflon
thickness. It can be noted that when the Teflon thickness is 7 µm, the field value
at the centre of the waveguide is only 10% of the maximum field at the edges.

The propagation loss depends on the power confinement in the different
layers and their corresponding loss tangent values. The power confinement in
any particular layer (constituting the guide) is calculated by normalising the
power in that layer to the total power. The fraction of the power confined in
the air core, the Teflon and the metal cladding for the Hx

10 mode are shown in
Fig. 5.10 for different Teflon thicknesses. This figure clearly illustrates the fact
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FIGURE 5.10: Power confinement factors in air, in Teflon (Γd) and
in metal (Γm) as a function of Teflon thickness for the Hx

10 mode
when W = 1.0 mm, H = 0.6 mm and tm = 0.7 µm.

that as the thickness of the Teflon layer is increased, the power confinement
in the Teflon increases (left hand scale) as more field is drawn into that layer.
This also reduces the amount of power confined in the air core (left hand scale).
The power confinement in the Au layer is also higher for a thicker Teflon layer,
which strongly contributes to the modal loss values. It should be noted that the
power confinement in the metal is shown with reference to the right hand scale
in Fig. 5.10. Although this fractional value is smaller, the dominant loss value
contribution comes from the power confinement in this layer.

The other higher order modes Hx
20, Hx

30 and Hx
11 have also been studied.

They show similar characteristics to the Hx
10 mode, with both neff and the

loss increasing exponentially with increasing Teflon thickness, but these are not
shown here. However, the Hx

12 mode shows interesting modal properties after
the Teflon coating is added and this is shown and discussed in the remainder
of the section.

It has been noticed that the presence of the Teflon layer strongly affects the
field profile of the Hx

12 mode. The field profiles for the Hx
12 mode for differ-

ent Teflon thicknesses have also been investigated. These field profiles for the
Hx

12 mode along the y direction for Teflon thicknesses of 0µm and 21.0µm are
shown in Figs. 5.11(a) and (b), respectively. For both these cases, the Hx field
profiles show a rapid change at the metal-Teflon interface (shown by arrows),
exhibiting a plasmonic nature. This mode also shows large negative fields at the
Au-Teflon interfaces, in a similar way to the case when the Teflon was absent (as
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FIGURE 5.11: The normalized Hx field profiles of the Hx
12 mode

along the vertical direction for two different Teflon thicknesses, a)
at td = 0 µm b) at td = 21 µm when W = 1.0 mm, H = 0.6 mm

and tm = 0.7 µm.

mentioned above in Section 5.2). However, for smaller thicknesses of the Teflon
layer, the field profile has significant side lobes of negative polarity and they in-
teract mainly with the metal cladding. But when the Teflon thickness increases,
a significant part of the field moves into the central air core, with the side lobes
reducing in amplitude. This situation is shown in the field profile for a Teflon
thickness of 21.0 µm in Fig. 5.11(b). As can be seen, it has an almost Gaussian
shaped profile at the central air core region for a thick Teflon layer. Therefore,
applying a Teflon coating can minimize the two negative lobes and this mode
can be more suitable for launching through this waveguide from a source with
Gaussian shaped profile. The smaller side lobes also generate plasmonic peaks
of smaller values (shown by arrows in Fig. 5.11(b)) and in turn these lower the
loss inside the metal layers.

The variation of the effective index and the loss characteristics with the
change of the Teflon thickness for the Hx

12 mode have been investigated and
are presented together in Fig. 5.12. As like the Hx

10 mode, the loss value for the
Hx

12 mode started to rise initially but then it reduces after a Teflon thickness of
3.0 µm is reached. As mentioned above, for this mode the two minor lobes of
opposite polarity contain a significant amount of power. When these two lobes
interact with the metal cladding, the loss in the metal layer starts to fall because
a higher proportion of the field is shifted from the metal to the lower loss Teflon
layer. Hence, the loss of this mode is much higher than that of the Hx

10 mode for
lower values of the Teflon thickness. The total loss is mainly governed by the
attenuation in the metal for a lower Teflon thickness. However, as the Teflon
thickness increases to a value above 3.0 µm, the Teflon layer starts interacting
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FIGURE 5.12: neff and loss of theHx
12 mode as a function of Teflon

thickness at W = 1.0 mm, H = 0.6 mm and tm = 0.7 µm.

with the metal cladding and the side lobes of the modal field profile start to
reduce in amplitude and more field is trapped inside the air core. The central
Gaussian lobe becomes predominant. The lower confinements in the metal and
the Teflon layers result in a reduction of the total loss. The loss characteristics
of the waveguide, along with the individual contributions of the metal and the
Teflon layers, are shown in Fig. 5.13 with the variation of the Teflon thickness.
The loss in the Teflon layer is shown by square symbols whereas circular sym-
bols are used to denote the loss in the metal layer in this figure (Fig. 5.13).

When the Teflon thickness is further increased, the loss in the Teflon layer
reaches the same order of magnitude of the metal losses and crosses it (the
metal loss) at a Teflon thickness of td = 16 µm. At a Teflon layer thickness of
21.0 µm, the minimum loss is achieved. Beyond this thickness, the loss in the
Teflon starts to increase. The high refractive index of Teflon compared to that of
air draws away power from the central Gaussian lobe and the confinement in
Teflon becomes predominant, compared to that in metal. Thus the total loss in-
creases again. The lowest loss found for this configuration is 3.55 dB/m, which
is obtained at a Teflon layer thickness of 21.0 µm. This is only one third of the
lowest loss of the Hx

10 mode and also a significantly low value of loss compared
to previously reported THz waveguides. McGowan et. al [239] reported a loss
of about 300 dB/m , Hidaka et. al a loss of 6.5 dB/m [232] and Harrington et.
al reported a loss of 3.9 dB/m [230] at THz frequency. The power confinement
in the central air core was determined to be around 0.99 throughout the whole



Chapter 5. Rectangular Plasmonic Waveguide in THz 148

neff & Loss (dB/m) vs teflon thickness in Hx
12 mode

Teflon thickness, td (µm)

0.96

0.97

0.98

0.99

1

0 5 10 15 20 25

0

7.5

15

22.5

30

L
o

s
s
 (

d
B

/m
)

neff 

loss

n
e

ff

0

5

10

15

20

25

30

0 5 10 15 20 25

Total loss 

Loss in metal

Loss in teflon

Teflon thickness, td (µm)

L
o

s
s
 (

d
B

/m
)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

L
o

s
s
 (

d
B

/m
)

loss with PS

loss with teflon

Dielectric thickness, td (µm)

FIGURE 5.13: Variation of the total Loss, loss in metal and in
Teflon for the Hx

12 mode as a function of Teflon thickness for
W = 1.0 mm, H = 0.6 mm and tm = 0.7 µm.

range of Teflon thickness studied.

5.3.3 Polystyrene vs. Teflon

A similar study was also performed with Polystyrene, and the loss comparison
between the Polystyrene and the Teflon is presented in Figure 5.14. Both show
a similar trend, revealing a minimum loss at td = 21 µm and td = 17 µm, with
minimum loss values of 3.55 dB/m and 6.2 dB/m for Teflon and Polystyrene,
respectively. It clearly shows that the minimum loss for the Hx

12 mode with
Polystyrene is significantly higher than for a similar guide with Teflon coating,
as was predicted earlier in Section 3.1. This is due to the higher loss tangent of
Polystyrene than that of Teflon.

5.3.4 Effect of changing Metal

A further study of the Hx
12 mode was performed for two other metal claddings,

Ag and Cu, having effective indices of 308 + j532 and 250.52 + j345.42, respec-
tively at 2.5 THz. Figure 5.15 shows the comparison of the losses for different
Teflon thicknesses at a constant metal thickness tm = 0.7 µm for the three met-
als: Au, Ag and Cu. It can be seen that the minimum values of loss with the
variation of the Teflon thickness is 3.55dB/m, 2.94dB/m and 4.21dB/m for Au,
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FIGURE 5.14: Comparison of loss characteristics of the Hx
12 mode

for two dielectric coatings (Polystyrene and Teflon) as a function
of the dielectric thickness td at a metal thickness tm = 0.7 µm

when W = 1.0 mm and H = 0.6 mm.

Ag and Cu respectively, at the same Teflon thickness value, td = 21 µm. A pure
metal with a pure imaginary refractive index does not contribute to the modal
loss. On the other hand, for a lossy metal, its imaginary part (ni) is bigger than
its real part (nr), and the real part contributes to the loss. Of the three metals
mentioned above, silver (Ag) has the lowest nr/ni ratio, at 2.5 THz, and hence
it suffers the lowest loss, as can be seen from the results obtained.

5.3.5 Effect of Metal Thickness

Further analysis on the effect of the cladding (metal) thickness on the modal
characteristics of the guide for the three metals mentioned above was performed.
It has been observed that changing the metal thickness has also gradually shifted
the minimum loss of the guide from a Teflon thickness of 21 µm to 18 µm. Fig-
ure 5.16 shows the loss characteristics of the guide with different metal thick-
nesses (with the Teflon thickness taken as 18 µm) for three different metal
claddings. As can be seen from this figure, as the metal thickness increases,
the loss of the guide further decreases to a metal thickness value of 2.9 µm. Be-
yond a metal thickness of 2.9 µm, the loss of the guide starts to increase again.
For a Teflon thickness td = 18µm, the minimum loss was found with an Ag
coated guide with a value of 2.07dB/m, whereas using Cu and Au the losses
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FIGURE 5.15: Loss of the Hx
12 mode as a function of Teflon thick-

ness td at a metal thickness tm = 0.7 µm, W = 1.0 mm and
H = 0.6 mm.

are 2.54dB/m and 2.286dB/m, respectively. This clearly shows that the loss
value can be minimised by adjusting various parameters of the waveguide.

5.3.6 Effect of Bending

Bent waveguides are important building blocks used to interconnect non-colinear
straight waveguides and input/output ports, and they also are used in the de-
signs of specialised components, such as ring resonators [240], arrayed waveg-
uide filters [241], optical delay lines [242] and S-bend attenuators [243].

Previous research [244] has shown that the field distribution of the funda-
mental mode in a bent waveguide is different from that of the straight waveg-
uide. The radiation and transition losses between the straight and the bent
waveguide contribute to the propagation properties of a bent waveguide. As a
result, the power loss in a bent waveguide will be higher, due to the conversion
of the incident beam to the higher order modes.

Therefore it is important to analyse the bending properties of a waveguide
for proper characterisation of the structure. The first step in the process is to
transform the curved waveguide to an equivalent straight waveguide using the
conformal transformation [245]. The coordinate transformation allows a bent
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waveguide in the y-plane to be represented by an equivalent straight waveg-
uide with a modified refractive index distribution, n′(x, y).

n′(x, y) = nm(x, y)(1 + y/R) (5.1)

Here, nm(x, y) is the original refractive index profile of the bent waveguide,
n′(x, y) is the equivalent index profile of a straight guide, R is the radius of the
curvature, and y is the distance from the centre of the waveguide.

Bending Characteristics of Hx
10 mode

To see the bending characteristics of the Hx
10 mode of the loss optimised dielec-

tric coated rectangular guide, the bending radius was varied from 1000 mm to
150 mm and the bending of the guide was done in the downward i.e −y direc-
tion. This suggests that because of the bending, the effective index of the mode
will increase in the +y direction and reduce in the −y direction. Figure 5.17
shows the Hx field profiles of the Hx

10 mode and the normalised line plots for a
cross section on the y axis for bending radius of 1000 mm, 500 mm and 150 mm
respectively.

The effect of bending is visible for even 1000 mm radius. As can be seen in
Figs. 5.17a and 5.17b, the bottom interface plasmonic peak is significantly lower
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R = 150 mm respectively
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than that of the top interface depicting the fact that more field is pulled to the
top interface due to the increase in effective index. When the bending radius
is reduced further, the difference between the peaks increases. Figures 5.17c,
5.17d and 5.17e, 5.17f show the effect on Hx field profile of Hx

10 mode at a bend-
ing radius of 500 mm and 150 mm. It can be clearly observed that the bottom
interface peak is reducing in amplitude compared to the top interface peak am-
plitude. In fact the field distribution is moving towards the top interface with
the decrease in bending radius.

Hx10 mode
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FIGURE 5.18: Variation of the real part of effective index of the
Hx

10 mode as a function of bending radius R

The effect of the bending on the real part of the effective index can be seen
in Fig. 5.18. As can be seen, the real part of the effective index increases slightly
as the bending radius is decreased.

The effect on loss is shown in Fig. 5.19. As can be seen the loss of guide
increases exponentially with the reduction of the bending radius.

Bending Characteristics of Hx
12 mode

To see the bending characteristics of the Hx
12 mode of the loss optimised dielec-

tric coated rectangular guide, the bending radius was changed from 1000 mm
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to 10 mm. Figure 5.20 shows the Hx field profiles of the Hx
12 mode and the nor-

malised line plots for a cross section on the y axis for bending radius of 1000

mm, 100 mm, 50 mm and 10 mm respectively.
It can be observed that the field profile for bending radius 1000 mm has no

visual difference from the field profile of a straight guide.
For 100 mm bending radius shown in Figs. 5.20(c) and (d), although there

is no visual difference in the contour plot, the line plot shows slight increase of
the right side lobe compared to the left side.

With bending radius 50 mm, the imbalance between the sidelobes can clearly
be seen in the 2D contour profile in Fig. 5.20(e) and the line plot of Fig. 5.20(f)
confirms the higher imbalance between the two lobes compared to 100 mm
bending radius. It can also be noticed in the line plot that the central lobe is
also moving towards the right, as expected.

At bending radius 10 mm it can be clearly seen from the contour plot of
Fig. 5.20(g) that the central lobe has also moved from the centre to the top and
the top sidelobe is higher in amplitude than the bottom lobe. The line plot also
confirms the same thing. The central lobe has clearly shifted to the right (which
is the upperside) and the right side lobe is much bigger in amplitude than the
left side lobe.
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Figure 5.22 shows the power confinement of the guide in air, Teflon and in
metal. As can be seen in the figure, power confinement of the air core exponen-
tially decreases with the reduction of bending radius whereas the confinement
in air is more or less unchanged with higher bending radius. The confinement
in the Teflon layer slightly increases when the bending radius is reduced. The
increase in this layer happens in almost a linear manner. Although the decrease
in the air confinement is exponential the drop of confinement is at the scale of
10−3 and the increase in power confinement in Teflon layer is at the scale of
10−2. Power confinement in metal was unchanged from 1000 mm to 70 mm and
after that it started to decrease slightly. But the scale is negligible compared to
the air and Teflon layer.

Although the power confinement change for the bending is very little, the
impact of the change in confinement is significant when the bending radius
reduces greatly. This is due to the movement of power near one of the metal
dielectric interfaces.

Figure 5.21 shows the change in real part of effective index of theHx
12 mode.

As can be seen, the real part of the effective index increases slightly as the bend-
ing radius is decreased. Figure 5.23 shows the loss characteristics for bending.
It shows both the total loss of the guide and the bending loss. It can be ob-
served that from 1000 mm to 100 mm there is no significant increase in loss.
Just after 100 mm from 60 − 55 mm there is a local maximum. After that when
the bending radius is further reduced, both the losses follow the same function
they were following before the hump and with the increase in bending loss,
total loss increases sharply after the hump.

Bending Loss Comparison between Hx
10 and Hx

12 modes

To compare the bending characteristics of the Hx
10 and Hx

12 modes, the bending
losses of the two modes were compared. Figure 5.24 shows the bending losses
of the two modes for the bending radius range 100− 1000 mm (Hx

10 mode start-
ing at 150 mm). As it can be seen that bending loss for the Hx

10 mode rapidly
increases with the reduction of bending radius. On the other hand, bending
loss for the Hx

12 shows negligible increase at 150 mm. Therefore, the Hx
10 mode

is more affected by bending compared to theHx
12 mode. At this radius the bend-

ing loss for the Hx
10 mode is 1.31 dB/m and that for Hx

12 mode is 0.0076 dB/m.
As shown in Fig. 5.23 the bending loss for the Hx

12 mode reaches 1.3 dB/m for a
bending radius of 15 mm, which is 10 times smaller. Therefore, when bending
loss is considered the Hx

12 mode is preferable over the Hx
10 mode.
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5.4 Analysis of bigger rectangular guides

In the previous section, the metals used were gold, copper and silver. In that
analysis the effects of change of height, width, metal thickness and dielectric
thickness on the loss property of the guide were studied for the Hx

10, Hx
20, Hx

30,
Hx

11 and Hx
12 modes at 2.5 THz. It was found that for a Silver guide with width

1mm, height 0.6mm, metal thickness 2.9µm and Teflon thickness 18µm the
loss for the Hx

12 mode reduced to the minimum to 2.07 dB/m. The loss obtained
compares much favourably with the circular hollow core Polystyrene coated
guide, which shows minimum loss value both experimentally [230] and numer-
ically [218]. The loss can be further reduced by considering a larger waveguide
with increased height and width. Due to the rectangular shape of the guide,
the horizontally and vertically polarized modes will not be degenerate. Hence
such a low-loss rectangular waveguide, which can be made flexible, would be
able to maintain the polarization state of the input wave and may be easier to
integrate with other components than would a circular structure.

In this section only the guide with Silver cladding is considered for analysis
as it produces minimum loss and the effect of change in dimension is studied.
All the analyses of this section are for the Hx

12 mode only. This is because in
[218, 246] it is already shown that for both circular and rectangular structures,
with the optimal thickness of dielectric layer, theHx

12 mode shows far lower loss
than any other mode.

5.4.1 Effect of Dimension

In the previous analysis the effect of height and width variations were studied.
But the effect of change of the cross sectional dimensions is now presented.
In [246] it was predicted that increase in the dimension (cross sectional area) of
the guide could lead to lower losses. As mentioned in the previous section the
goal of the previous analysis was to obtain a rectangular guide with equal loss
to [218]. The guide proposed in that work had slightly lower loss but with only
20% of the cross-sectional area.

To evaluate the lower loss prediction a rectangular guide is considered with
the dimensions 2.5mm × 1.25mm (width 2.5mm and height 1.25mm) which
has a cross section very close to the circular guide of [218]. To optimise the loss
of the guide the dielectric thickness was varied from 0 to 28µm. Figure 5.25
shows the variation of loss of the Hx

12 mode with the dielectric thickness. As
can be observed there are three major features of the curve. The loss value is
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FIGURE 5.25: Variation of loss for 2.5mm × 1.25mm guide with
varying dielectric thickness. The inset shows a zoomed in view of

the curve for a range of 7.0µm to 27µm

extremely low, unlike [246]. The new observation is that there are 2 minima
in the loss curve. The loss curve also shows a large valley which has almost
loss free operative regions. The inset inside the figure shows the 2 minima
clearly. It can also clearly be seen that the first minimum is at td = 11.6µm and
the second minimum is at td = 25µm. The first minimum loss found for the
2.5mm × 1.25mm guide was 0.008 dB/m at 11.6µm Teflon thickness whereas
the second minimum was found to be 0.008 dB/m at 25µm Teflon thickness.

Another new interesting phenomenon which can be observed is the change
of field distribution with the change of dielectric thickness when width of the
dielectric layer is further extended up to 29µm. As can be seen in Fig. 5.26 the
field distribution along the horizontal direction is changing with the increase of
the dielectric thickness.

Figure 5.26(a) shows the field when Teflon thickness is td = 25µm. The Hx

field is totally confined in the air core. There is very little interaction with the
metal cladding. The contour field profile in Fig. 5.26(b) shows that for 28µm

thickness of the Teflon layer, there is significant interaction of the field distri-
bution with the metal cladding in the horizontal direction. Interaction in the
vertical direction is insignificant. For 28.8µm thickness of the Teflon coating
Fig. 5.26(c) shows even more interaction in the horizontal direction causing the
field distribution becoming almost uniform in the horizontal direction inside
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(a) (b)

(c) (d)

FIGURE 5.26: Hx field of the Hx
12 mode of the 2.5mm × 1.25mm

guide for dielectric thicknesses of (a) 25µm, (b) 28µm, (c) 28.8µm
and (d) 29µm
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the air core. Figure 5.26(d) shows the Hx distribution with 29µm thickness. As
shown the field in this case has moved to the side of the air core. The horizontal
distribution of the field component is plasmonic in nature. For all the profiles
shown in Fig. 5.26 the vertical interactions are not noticeable.

To understand the behaviour better, variation of the Hx field along the x
and y directions through the centre of the guide for different Teflon thicknesses
are also shown. Figure 5.27 shows the horizontal and vertical line plots for
Teflon thicknesses of 0, 11.6µm and 20µm. It can be seen in Figs. 5.27(b), (d)
and (f) that with the increase in thickness the interaction of the side-lobes with
the Silver cladding reduces. As mentioned in section 5.3.2, the reduction in
the side-lobes is the main reason for the loss reduction in this range. The first
minimum we observed was at 11.6µm thickness. Although the size of the side
lobes continue to fall, the loss starts to rise. The explanation of the rise in loss
can be explained by using Figs. 5.27(a), (c) and (e). In Figs. 5.27(a) and (c) the
horizontal field component does not interfare with the Silver or Teflon layers
as there is no visible change of slope at the corners of the line plots. But in
Fig. 5.27(e) a small change in slope can be observed at the corner. A zoomed in
version can be seen in the inset of Fig. 5.27(e).

Figure 5.28 shows the vertical and horizontal cross sectional profiles of the
Hx

12 mode for larger Teflon thicknesses of 25µm, 27µm, 28.8µm and 28.9µm.
In Fig. 5.25, the second minimum was observed at 25µm Teflon thickness. As
shown in Fig. 5.28(b) the side lobes are minimum at 25µm thickness. But hor-
izontal interaction is more prominent in Fig. 5.28(a). In fact, from 11.6µm to
25µm of Teflon thickness, the side interaction increased in the horizontal direc-
tion and the side lobes in the vertical direction reduced in amplitude. The loss
property in this section can be explained as follows.

After 11.6µm the side interaction in the horizontal direction started. There-
fore, the loss started to increase. The loss reduction due to reduction of side lobe
in the vertical direction started to compensate the loss increase due to the hor-
izontal side interaction. As a result the initial increase in loss was suppressed
and another minimum was found at 25µm thickness.

As can be seen in Figs. 5.28(b), (d), (f) and (h), there is no significant change
in the side lobe sizes when the thickness is further increased. But in Figs. 5.28(a),
(c) and (e) the horizontal side interaction has increased significantly with the
increase in Teflon thickness. In Fig. 5.28(g) the shape of the horizontal field
changed from convex to concave. In this section due to the increase in horizon-
tal side interaction, the loss increases very rapidly.
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FIGURE 5.27: Line plots of the Hx field of the Hx
12 mode (a) hor-

izontal cross section with no Teflon layer, (b) vertical cross sec-
tion with no Teflon layer, (c) horizontal cross section with 11.6µm
Teflon thickness, (d) vertical cross section with 11.6µm Teflon
thickness, (e) horizontal cross section with 20µm Teflon thickness,

(f) vertical cross section with 20µm Teflon thickness
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12 field for Teflon thickness (a), (b)
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FIGURE 5.29: Loss characteristics of guides from 2.0mm×1.0mm
to 2.9mm× 1.45mm

In the previous section, for a smaller rectangular guide, only one mini-
mum was observed. But for a larger guide, 2 different minima were identi-
fied. To make the explanation consistent with the previous work, the effect of
dimension was observed by keeping both the aspect ratio and the Silver thick-
ness fixed and changing the cross sectional area between 2.9mm × 1.45mm

to 2.0mm × 1.0mm. The thickness of the Teflon layer was also varied from 0

to 30µm to find the loss characteristics curve for all of the guide dimensions
considered. It can be observed in Fig. 5.29 that the 2 minima are present in rect-
angular waveguides with larger cross section and they are further apart from
each other when the cross sectional area is large. As the cross sectional area re-
duces, the two minima move towards each other and they start to merge when
the cross sectional area was 2.1mm × 1.05mm. When the cross sectional area
is 2.0mm× 1.0mm, the two minima merge completely to become a single min-
imum. The previously studied dimension 1.0mm × 0.6mm is lower than this
dimension. Therefore, the finding in this section is consistent with the previ-
ously found phenomenon of single minimum.

However, for smaller thicknesses of the Teflon layer, the field profile has
significant side lobes of negative polarity and they interact mainly with the
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metal cladding. But when the Teflon thickness increases, a significant part of the
field moves into the central air core, with the side lobes reducing in amplitude.

The reason for the two minima for the higher dimension guides and later
on for the single minima for the lower dimension guides can be explained us-
ing the field profiles of the Hx

12 mode for varying Teflon thicknesses. It can be
observed from Fig. 5.29 that when the cross-sectional dimension of the guide is
varied, the Hx

12 follows the similar pattern as that of Fig. 5.25. It was previously
mentioned that for this mode the two minor lobes of opposite polarity contain
a significant amount of power. For lower values of Teflon thickness, these two
lobes interact mainly with the metal cladding, Hence, for lower Teflon thick-
nesses, the total loss is mainly governed by the attenuation in the metal layer
and the loss of this mode is much higher. However, as the Teflon thickness in-
creases , a higher proportion of the field is shifted from the metal to the lower
loss Teflon layer and the loss in the metal layer starts to fall. Interaction of the
Teflon layer with the metal cladding starts to increase and the side lobes of the
modal field profile start to reduce in amplitude. The air core has more field
trapped inside it and the central Gaussian lobe becomes predominant. The
reduction in the side-lobes leads to lower confinements in the metal and the
Teflon layers which eventually result in a reduction of the total loss.

When the Teflon thickness is further increased, the loss in the Teflon layer
reaches the same order of magnitude of the metal losses and crosses it (the
metal loss) and the first minimum loss point is achieved. For example, at a
Teflon layer thickness of 11.6 µ m, the first minimum loss is achieved for the
2.5mm × 1.25mm guide. The horizontal field component does not interfere
with the Silver or the Teflon layers upto this Teflon thickness (corresponding to
the first minimum loss value) as there is no visible change of slope at the corners
of the line plots. Beyond this thickness, the loss in the Teflon starts to increase.
The high refractive index of Teflon compared to that of air draws away power
from the central Gaussian lobe and the confinement in Teflon becomes predom-
inant, compared to that in metal. Although the size of the side lobes continue to
fall, but after the first minimum, the side interaction in the horizontal direction
started to build up and a small change in slope can be observed at the corner
of the field plots. Increase in Teflon loss and also the horizontal side interaction
make the total loss to increase again after the first minimum.

Although the horizontal interaction gets more prominent for increasing val-
ues of Teflon thickness, the side lobes in the vertical direction continue to get
reduced in amplitude. As the Teflon layer thickness increases, the decrease in
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loss due to reduction of side lobe amplitude in the vertical direction started
to compensate the increase in loss due to the horizontal side interaction. As a
result the initial increase in loss, that started after the first minimum, was sup-
pressed and a second minimum was found. For the 2.5mm × 1.25mm guide
the second minimum is achieved at 25µ m Teflon thickness. After the second
minimum, it can be observed from the field plots in Fig. 5.28 that there is no
significant change in the side lobe sizes when the thickness of Teflon is further
increased. But the horizontal side interaction increases significantly with the
increase in Teflon thickness and the field shapes also change. Due to the rapid
increase in horizontal side interaction, the loss also increases very rapidly.

However, one significant contribution of this work is to identify that all of
the curves show extremely low loss at the central part of the figure. The loss
is stable for a large range of Teflon thickness for guides 2.3mm × 1.15mm to
2.9mm × 1.45mm. i.e. Among them, the stable section is the largest for the
2.9mm× 1.45mm guide as shown in Fig. 5.29. For the 2.9mm× 1.45mm guide,
the loss is comparatively stable in the 12µm to 25µm range. For this section the
minimum loss was 0.2 dB/m and the maximum was 0.3 dB/m. Although the
minimum loss found for the 2.9mm × 1.45mm guide was 0.04 dB/m at 9µm

thickness of the Teflon layer, the thickness range 12µm to 25µm might be more
interesting as it will provide manufacturing flexibility for the Teflon thickness.
Increasing the dimension further could produce a larger stable section, how-
ever then the loss value in the stable region would be slightly higher. This can
be explained from Fig. 5.29. In the figure, it can be observed that as the waveg-
uide dimension is increasing, the loss values within the stable mid-valley re-
gion show an increasing pattern, though the rate of increase is very low and
the loss values are gradually going to a saturation. As the window of the low
loss region remains similar and the maximum loss for the stable section sat-
urates and stabilises around 0.3 dB/m we have shown our simulations up to
2.9mm× 1.45mm.

The curves also show a stable and extremely low loss behaviour across the
dimensions. For example, for the Teflon thickness of 20µm the losses for the
guides ranging from 2.3mm×1.15mm to 2.9mm×1.45mm, vary from 0.1 dB/m

to 0.3 dB/m only. This phenomenon is true for the whole of the stable range
mentioned in the previous paragraph. This should also provide some manu-
facturing flexibility for the dimension of the guide.

Although the stable section for the Teflon thickness becomes shorter with
decreasing dimension and disappears below a dimension of 2.2mm × 1.1mm,
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the guide 2.5mm×1.25mm chosen for study is within the flexible range. There-
fore, it should produce stable loss characteristics even with some manufactur-
ing shortcomings.

5.5 Dispersion Characteristics of the Rectangular Guides

Modal dispersion of a guide is a very important parameter to study informa-
tion propagation through it. This is because information always has a band-
width. In a dispersive guide the shape of the information signal changes with
propagation distance. On the other hand a low dispersion or dispersion free
guide allows the unmodified shape of the pulse for a longer length. To con-
sider a guide for information transmission, the dispersion properties of the
guide should be known alongside its loss characteristics. The loss property
determines the length of propagation of a signal for a given input power. The
dispersion property measures the quality of the signal after a specific distance.
If the signal gets weaker this can be compensated by using an amplifier, but if
the signal gets distorted by dispersion, it cannot be mitigated.

To calculate the dispersion characteristics of the structure, the modal solu-
tion of the Hx

12 mode has been considered. The real part of the effective index of
the structure for a specific mode and wavelength has been taken into consider-
ation. If the effective indices are calculated for a specific range of wavelengths
[λ1, λ2] with the fixed wavelength division ∆λ, the following equation can be
used to calculate the dispersion relation of the structure.

D = −λ
c

d2n

dλ2
(5.2)

Here, c is the speed of light, λ is the wavelength and n is the real part of
effective index.

To study the dispersion property of the guide, both the rectangular guides
analysed so far of dimension 1.0 mm×0.6 mm and 2.5 mm×1.25 mm have been
considered. The frequency range for the dispersion characteristics were taken
from 2.0 THz to 3.0 THz.

The thicknesses of the Teflon layers were set to minimum loss thickness for
each guide. The frequency range chosen for the study was 2.0 THz−3.0 THz.
The complex refractive indices of the metal were calculated using the Drude
model and the dielectric properties are taken from [237, 202]. The dispersion
calculation was carried out by using the formula described in Eq. 5.2 and the
results are presented in Fig. 5.30.
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FIGURE 5.30: Dispersion curves for 1.0 mm×0.6 mm rectangu-
lar guide (red dotted line) and the 2.5 mm×1.25 mm rectangular

guide (green solid line).
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FIGURE 5.31: Dispersion curves for 1.0 mm×0.6 mm rectangular
guide (red dotted line), the 2.5 mm×1.25 mm rectangular guide
(green solid line) and the 2.0 mm×1.0 mm rectangular guide (pur-
ple dashed line). The inset shows a closer look of the dispersion

characteristics of the 2.0 mm×1.0 mm rectangular guide
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The dispersion for the 1.0 mm×0.6 mm rectangular guide is the highest be-
tween the two guides considered in Fig. 5.30. The dispersion remains positive
in the range considered here and increases non-linearly when frequency is in-
creased. The rate of increase is also highest between the two guides. The dis-
persion for the 2.5 mm×1.25 mm rectangular guide comes next. But this guide
shows negative dispersion and the value of dispersion becomes more negative
in a non-linear function with the increase of frequency.

It can be observed that the dispersion of the 1.0 mm×0.6 mm is completely
in the positive side and 2.5 mm×1.25 mm is completely in the negative side.
The major difference between these two guides is the dimension of the guide.
Therefore, it can be assumed that there could be a dimension in between the
above mentioned two where the dispersion will be less than both of them.

To check the hypothesis the dispersion characteristics of 2.0 mm×1.0 mm
guide was considered. Figure 5.31 plots the dispersion characteristics of the
2.0 mm×1.0 mm rectangular guide with the earlier presented guides in Fig. 5.30.
It can be noticed that the dispersion characteristic for the 2.0 mm×1.0 mm guide
almost overlaps the x-axis of the figure. Therefore, a close look at the charac-
taristics of the 2.0 mm×1.0 mm guide is needed. The inset of Fig. 5.31 shows a
closer view of dispersion of the 2.0 mm×1.0 mm guide.

The dispersion of the guide starts with a very low positive dispersion value
at 2.0 THz frequency and the value reduces as the frequency is increased. It
crosses zero dispersion at 2.43 THz and continue to reduce in value and be-
comes negative. As can be seen in the Fig. 5.31 inset the dispersion is almost a
linear function of frequency within our band of interest, 2.0 THz to 3.0 THz.

5.5.1 Effect of Frequency on Loss

To see the full picture for a propagating signal through a guide requires study
of the loss at the modulating frequency and the dispersion relation. It also re-
quires the study of loss over the frequency band. This is because, the loss at
the modulating frequency does not show the loss property for a signal which
must have a bandwidth. To see the effect of frequency on loss of the optimal
2.5 mm×1.25 mm guide, loss values for the frequency band 2.0 THz to 3.0 THz
has been calculated.

Figure 5.32 shows the loss characteristics of the guide. As can be seen the
guide has its minimum loss at 2.48 THz and the loss increases with both the in-
crease or decrease of the frequency. The increase in loss is almost linear beyond
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Comparison of Dispersion at two different Teflon thickness 
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FIGURE 5.32: Loss of the optimal 2.5 mm×1.25 mm guide for the
frequency band 2.0 THz to 3.0 THz

the minimum loss frequency but shows a non-linear pattern before 2.48 THz.
Some small local peaks were detected.

Further investigation was performed on the left most local peak in Fig. 5.32.
To find the cause of the sudden rise in the loss profile, the effective indices and
losses of theHy

21 mode were calculated over the same frequency range. Fig. 5.33
shows the contour profile of theHx

12 and theHy
21 modes along with their vertical

and horizontal cross-sections.. Although in the contour profile, the distribution
of the Hy

21 mode looks similar to that of the Hx
12 mode, the cross sectional line

plots show that unlike the Hx
12 mode the plasmonic interaction with the metal

cladding for the Hy
21 mode happens in the horizontal x-direction.

Figure. 5.34 and Fig. 5.35 show the effective indices and the loss curves of
both the modes. It can clearly be observed that as the effective index curves
cross each other at f = 2.28 THz, the loss curves of both the modes also experi-
ence a sudden change around that frequency. This sudden change in loss could
be due to the degeneration of the Hx

12 and Hy
21 modes. Due to the degeneration,

the two modes get mixed up and the loss values change rapidly. Similar to the
leftmost local peak, the other local peaks could also be caused by degeneration
of the Hx

12 mode with other modes.
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(a) Contour field profile of the Hx
12

mode at f = 2.50 THz
(b) Contour field profile of the Hy

21

mode at f = 2.50 THz
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FIGURE 5.33: Contour field profile along with the vertical and hor-
izontal cross-sections of the Hx

12 and the Hy
21 modes
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5.6 Selective coupling to the Hx
12 mode

When an input beam is coupled to such a waveguide, it is predominantly the
Hx

12 mode which would be excited and guided, and the first modeHx
10 of smaller

magnitude (which may also be excited) would dissipate very quickly due to its
higher modal loss. Therefore the mode selection will happen automatically due
to the difference in losses of different modes. As theHx

12 mode has very low loss,
it will sustain in the guide for longer distances.

Evanescent coupling technique from a dielectric waveguide [247, 98, 248,
249] could be used to excite the metal dielectric interface having the SPPs. Ei-
ther a conventional tapered waveguide [247, 98] or, a dielectric waveguide at-
tached to the metal cladding of the plasmonic waveguide can be used [248,
249]. In both the techniques, the evanescent tail outside the dielectric waveg-
uide could be coupled with the metal dielectric interface to excite the surface
plasmon on both sides of the hollow core guide. As the coupled wave contin-
ues to propagate through the guide, the Hx

12 mode will eventually be selected
because the loss of the mode is far lower than all the other modes.

5.7 Summary

In this chapter, the characterization and optimization of a dielectric coated hol-
low core rectangular waveguide is presented. The goal was to find an opti-
mized condition of the guide so that it supports low-loss propagation at THz
frequencies and also which will be small in size and easy to fabricate. Several
surface plasmonic modes have been studied in the waveguide under two main
conditions: with and without dielectric coating inside the metal cladding. To
obtain strong field confinement and low loss propagation at THz frequencies,
several parameters of the structure were varied. The analysis carried out has
revealed that introducing the dielectric coating minimizes the loss of the Hx

12

mode of the guide significantly and transforms the mode shape into one that is
Gaussian like, which should be easier to couple to transmitters and receivers. It
has also been revealed that, by choosing appropriate parameters for dimension,
the guide shows very low loss with a relatively small guide size.



Chapter 6

Discussion and Future Works

A general evaluation of the work carried out during the course of this study,
in terms of the methodology used and the validity of the results presented, is
attempted in the following discussion, which eventually leads to the conclu-
sion that the objectives set out at the beginning of this research were essentially
achieved.

The primary objective of this research work has been to design and charac-
terise waveguides using surface plasmon polaritons. The objectives outlined
at the beginning of the study have been successfully achieved with a detailed
analysis of results during the entire work. In this work, a numerical method
based on the finite element formulation has been extensively used to accurately
characterise various types of plasmonic waveguide in THz and optical frequen-
cies and study their propagation properties.

Following the fundamental studies of light-metal interaction in the early
days (late 1950s to late 1960s), SPs have been extensively explored in thin film
characterization, chemical sensing and biodetection since late 1970s. In recent
years interest in SPs has expended from sensing technology to a wide range
of fields, including subwavelength optics, nanophotonics, information storage,
nanolithography, light generation and engineering left- handed metamaterials
at optical wavelengths, etc. The reformed interest was stimulated by the recent
progress in electromagnetic simulations, micro/nanofabrication and character-
ization techniques, which provide the necessary tools to revive and exploit re-
markable properties of SPs in the domains of both fundamental physics and
application development.

Waveguides used in many THz systems incorporate materials which expe-
rience high intrinsic losses at longer wavelengths due to free carrier effects. A
suitable waveguide that aims to reduce these losses is often the key challenge
that needs to be addressed before designing any THz systems. This issue is
even more critical in plasmonic waveguides as these are utilised to miniaturise

175
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the overall device sizes. Most plasmonic waveguides consist of either noble
metals or doped semiconductors, both of which exhibit a staggering amount of
losses at THz frequencies. Hence designing a low loss waveguide is one of the
most critical steps in the fabrication process of plasmonic waveguides. Com-
puter aided simulation plays a key role in waveguide designs in many opto-
electronic systems and over the years several available techniques have been
proposed. The finite element method has evolved as the most powerful, ver-
satile and accurate method in analysing propagation characteristics of waveg-
uides. This method can handle a wide variety of waveguide problems with ar-
bitrary cross section, complex and arbitrary refractive index profile, anisotropy
and nonlinearity, thus enabling the development of efficient and flexible com-
puter programs. In this work, the emphasis has been on the usage of a cus-
tomised finite element based technique to handle complex refractive index of
materials used in THz and optical plasmonic waveguides.

The chapters presented in this thesis have dealt with the basic principles and
theory of the numerical methods, and the characteristic simulations of various
quantum cascade laser waveguides by employing full vectorial H-field finite
element method.

Chapter. 2 was devoted to the mathematical background for the finite el-
ement method. The full vectorial H-field based variational formulation has
been implemented in the numerical tool utilised in the work carried out here.
In this formulation, the magnetic field vector H is naturally continuous across
the waveguide interfaces and also the associated natural boundary condition is
that of an electric wall, which is very convenient to implement in many prac-
tical waveguide problems. Key primary concepts such as discretisation of the
domain, the shape functions and the element matrices were explained in detail
in this chapter. Since the shape functions provide only an approximate repre-
sentation of the true fields, it is necessary to increase the number of elements
or nodal points to reduce the resulting error. In doing so, the numerical model
becomes a closer representation of the real physical problem. However, with
this H-field formulation, the appearance of the spurious (non-physical) modes
along with the physical modes is a key problem. The penalty function method
was incorporated to eliminate these spurious modes by imposing the condition
(∇ · H = 0). The finite element method has been proven to be a very power-
ful method of finding the field profiles and propagation characteristics of the
guided modes of most waveguides used across the broader electromagnetic
spectrum.
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Analysing the dynamics of the mode formation is a key step that must be
carried out before designing waveguides for any systems. Such an analysis
aimed at revealing the process of mode formation in plasmonic waveguides
was shown in Chapter. 3. The chapter begins with an insight on the develop-
ment of surface plasmons at single interfaces. Analysis of the physics under-
pinning the operation of plasmonic waveguides are presented which laid the
foundation for the discussion on two basic type of planar plasmonic waveg-
uides i.e IMI and MIM. The coupling between the plasmon modes on the sin-
gle interfaces results in formation of a supermode. The thickness of the core
layer was adjusted for the IMI and MIM structures to tailor the phase velocities
of the different plasmon modes supported by the interfaces of these waveg-
uides. The simulation results revealing the propagation and loss characteristics
of these waveguides formed the basis of this chapter. The knowledge gained
from the determination of the fundamental properties of the 3-layer plasmonic
waveguide structures, which are the basic elements of the several integrated
optics applications, enabled the extension of the analysis to optical waveguides
with more complex geometry, whose solutions are of significant practical in-
terest in the optoelectronics industry. The rigorous modal analysis of a 6-layer
planar structure, where surface plasmon modes and attenuation characteristics
take place due to the interaction of metal and dielectric elements, was carried
out by using the full vectorial finite element method. The variation of certain
parameters of the structure were carried out to examine the propagation and
loss characteristics. Among the list of objectives outlined in the first chapter,
the second objective was fulfilled through the analysis and discussion of the
simulation results presented in this chapter.

In Chapter 4 a rigorous characterisation of the hybrid plasmonic waveg-
uide was presented using a full- vectorial H field based FEM formulation. The
HPWG offers sub-wavelength confinement in the low index region, offers a
better compromise between confinement and loss compared to pure plasmonic
waveguides, and is compatible with SOI technology. In addition, the propaga-
tion of the TE and TM modes can be independently controlled which opens up
the possibility of implementing compact devices for manipulating polarization.
In this chapter, we have analysed the properties of the HPWG by observing the
confinement and propagation loss of the HPWG. The HPWG combines both
dielectric and plasmonic guiding schemes, and it provides good confinement
with moderate propagation loss. The HPWG supports both the TE and TM
modes which can be utilized for many applications.
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In Chapter 5 a rigorous finite element approach based on a full-vectorial H-
field formulation has been used to study the characteristics of a hollow core
Teflon coated rectangular plasmonic waveguide at THz wavelengths. The goal
of the work was to find the mode with the minimum loss and the optimal con-
figuration of the waveguide for that mode. At the beginning of the chapter,
detailed studies have been performed by varying the height and width of the
waveguide and the thickness of the metal layer for several different modes.
Then it was shown that introducing the Teflon coating causes significant change
in the performance of the guide. The thickness of the Teflon layer and that of
the metal cladding were varied to optimize the waveguide. By performing a
rigorous modal analysis, it was revealed that the loss can be minimized by
selecting a suitable low-loss dielectric coating, a metal and its thickness for a
given dimension of the THz waveguide. After the design optimization, the Hx

12

mode was found to have the lowest loss amongst all the modes considered here.
Moreover, in the optimum configuration, this mode resembles a near Gaussian
shape in both the transverse directions and using this would facilitate better
coupling to the input and output sections. Different metals were also used to
design the guide and determine the minimum loss conditions. A study using
Polystyrene as the coating dielectric was also performed to compare the loss
characteristics with those of Teflon. Finally, it was shown in this chapter that by
altering the dimension i.e. the width and height of the dielectric coated metal
clad hollow core guide, it is possible to substantially minimize the loss of the
guide to a virtually negligible value. Analysis of the dispersion characteristics
with the dimension has also been presented. It showed interesting dispersion
characteristics as the dispersion of the guide can be controlled from highly dis-
persive to near zero dispersion just by varying the dimension.

Therefore, the guide is manufacturing friendly with consistent loss. Combi-
nation of low and consistent loss and controllable dispersion makes the guide
eligible for many interesting devices and guide designs which includes com-
pact interchip communication, sensing, dispersion compensators etc.
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6.1 Proposals for future work

In chapter 3, the full vectorial finite element method was used to study and
analyse properties of the six layer planner contra-directional coupler. It re-
vealed the loss characteristics of different modes and also showed a path to
optimise the loss and coupling length of the structure. Although the loss and
the coupling length were optimised, the dispersion characteristics of the struc-
ture need to be analysed in future.

The effect of finite length and finite width of the device was not considered
in this study. This will be crucial for integrated circuits as there will be limited
space around the device.

An input output characteristics (S-parameter) analysis could be performed
on a minimum length (based on coupling length) to see the reverse flow of
the power for a frequency range. Further investigation can be performed by
changing the metal and the dielectrics involved.

In chapter 4, the hybrid plasmonic waveguide at optical frequency was anal-
ysed. A further study could be performed using these results to observe the
performances of TE/TM pass polarizers, biosensors and a polarization inde-
pendent hybrid plasmonic coupler. We can continue further research on the
integrated optical circuits, and investigate the possibility of finding an efficient
way to integrate optical circuits with electronic circuits.

In chapter 5, the dielectric coated waveguide at THz frequency was anal-
ysed. The core of the guide is filled with air. A study of the guide as a gas
sensor can be evaluated in future.

As the core is hollow, it can be filled with liquid and could be used as a liquid
or bio-sensor. Therefore, a study could be performed to design a liquid/bio-
sensor with this structure.

It has been discovered that the dispersion characteristics could be controlled
by changing the dimension of the structure. Hence multiple dispersion com-
pensation devices can be designed using the dielectric coated rectangular guide
at THz frequency range.
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Evaluation of Element Matrices

The elements of the matrices [A]e and [B]e in equation (2.58) can be evaluated
by expressing the derivatives of the shape function vectors in terms of the shape
function coefficients, as determined in equations (A.1) and (2.58), and by per-
forming the integration of the shape functions

[A]{H} − ω2[B]{H} = 0 (A.1)

The matrices [A] and [B] are expressed as:

[A] =
n∑

e=1

[A]e =
n∑

e=1

∫

4

1

ε̂
[Q]∗[Q]dΩ (A.2)

and

[B] =
n∑

e=1

[B]e =
n∑

e=1

µ̂

∫

4
[N ]T [N ]dΩ (A.3)

In equation A.2, the matrix [A] has matrices Q and Q∗ which can be written
as follows:

[Q] =




[0] −∂[N ]
∂z

∂[N ]
∂y

∂[N ]
∂z

[0] −∂[N ]
∂x

−∂[N ]
∂y

∂[N ]
∂x

[0]




(A.4)
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Replacing ∂
∂z

with −jβ, the following [Q] matrix is obtained:

[Q] =




[0] jβ[N ] ∂[N ]
∂y

−jβ[N ] [0] −∂[N ]
∂x

−∂[N ]
∂y

∂[N ]
∂x

[0]




(A.5)

Consequently, the Q∗ matrix is defined as:

[Q]∗ =




[0] jβ[N ]T ∂[N ]T

∂y

−jβ[N ]T [0] −∂[N ]T

∂x

−∂[N ]T

∂y
∂[N ]T

∂x
[0]




(A.6)

where [N ] is defined as

[N ] =
[
N1 N2 N3

]
(A.7)

∴ jβ[N ] =
[
jβN1 jβN2 jβN3

]
(A.8)

This results in the formation of the [A]e matrix as:

[A]e =
1

ε̂

∫

4
[Q]∗[Q]dΩ (A.9)

=
1

ε̂

∫

4




[0] jβ[N ]T ∂[N ]T

∂y

−jβ[N ]T [0] −∂[N ]T

∂x

−∂[N ]T

∂y
∂[N ]T

∂x
[0]



×




[0] jβ[N ] ∂[N ]
∂y

−jβ[N ] [0] −∂[N ]
∂x

−∂[N ]
∂y

∂[N ]
∂x

[0]



dΩ

(A.10)
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=
1

ε̂

∫

4




β2[N ]T [N ] + ∂[N ]T

∂y
∂[N ]
∂y

−∂[N ]T

∂y
∂[N ]
∂x

−jβ[N ]T ∂[N ]
∂x

−∂[N ]T

∂x
∂[N ]
∂y

β2[N ]T [N ] + ∂[N ]T

∂x
−jβ[N ]T ∂[N ]

∂y

jβ ∂[N ]
∂x

[N ] jβ ∂[N ]T

∂y
[N ] ∂[N ]T

∂y
∂[N ]
∂y

+ ∂[N ]T

∂x
∂[N ]
∂x



dΩ

(A.11)

The [B]e element matrix of equation A.3 can be defined as:

[B]e = µ

∫

4
[N]T [N]dΩ (A.12)

where the matrix [N] is defined as:

[N] =



N1 N2 N3 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0

0 0 0 0 0 0 N1 N2 N3


 (A.13)

which can also be written as

[N] =




[N ] [0] [0]

[0] [N ] [0]

[0] [0] [N ]




(A.14)
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where [N ] is a row vector defined as [N ] =
[
N1 N2 N3

]
. The transpose

of [N] can be defined as [N]T which can be represented as:

[N]T =




N1 0 0

N2 0 0

N3 0 0

0 N1 0

0 N2 0

0 N3 0

0 0 N1

0 0 N2

0 0 N3




=




[N ]T [0]T [0]T

[0]T [N ]T [0]T

[0]T [0]T [N ]T




(A.15)

Hence the [B]e matrix in equation A.12 can be written as:

[B]e = µ

∫

4




[N ]T [0]T [0]T

[0]T [N ]T [0]T

[0]T [0]T [N ]T



×




[N ] [0] [0]

[0] [N ] [0]

[0] [0] [N ]



dΩ

= µ

∫

4




[N ]T [N ] [0]T [0] [0]T [0]

[0]T [0] [N ]T [N ] [0]T [0]

[0]T [0] [0]T [0] [N ]T [N ]



dΩ

(A.16)
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Now, integrating the individual shape functions inside the matrix will re-
sult:

∫

4
[N ]T [N ]dΩ =

∫

4



N1

N2

N3



[
N1 N2 N3

]
dΩ

=

∫

4




(N1)2 N1N2 N1N3

N2N1 (N2)2 N2N3

N3N1 N3N2 (N3)2



dΩ

=




∫
4 (N1)2 dΩ

∫
4N1N2dΩ

∫
4N1N3dΩ

∫
4N2N1dΩ

∫
4 (N2)2 dΩ

∫
4N2N3dΩ

∫
4N3N1dΩ

∫
4N3N2dΩ

∫
4 (N3)2 dΩ




(A.17)

For a triangular element, the shape functions can be integrated using the
relation:

∫

4
N l

1N
m
2 N

n
3 dΩ =

l! m! n!

(l +m+ n+ 2)!
2Ae (A.18)
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Hence the integral elements in the matrix relation shown in equation A.17
can be expressed as:

∫

4
N2

1dΩ =
2! 0! 0!

4!
· 2Ae =

Ae
6

=

∫

4
N2

1dΩ =

∫

4
N2

1dΩ

∫

4
N1N2dΩ =

1! 1! 0!

4!
· 2Ae =

Ae
12

=

∫

4
N2N1dΩ

∫

4
N1N3dΩ =

1! 0! 1!

4!
· 2Ae =

Ae
12

=

∫

4
N3N1dΩ

∫

4
N2N3dΩ =

0! 1! 1!

4!
· 2Ae =

Ae
12

=

∫

4
N2N3dΩ

(A.19)

Now, if we consider a matrix [K], where [K] can be defined in terms of the
shape function integrals as:

[K] = µ

∫

4
[N ]T [N ]dΩ (A.20)

Thus using the shape function definition in equation A.19 the above relation
for [K] can be expressed as:

[K] =




µAe

6
µAe

12
µAe

12

µAe

12
µAe

6
µAe

12

µAe

12
µAe

12
µAe

6




(A.21)

Therefore the [B] matrix in equation A.16 can be represented in terms of the
[K] matrix as:

[B]e =




[K] [0]T [0] [0]T [0]

[0]T [0] [K] [0]T [0]

[0]T [0] [0]T [0] [K]




(A.22)
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The integral elements of the [A]e matrix in equation A.11 can be further ex-
pressed as:

∫

4
β2[N ]T [N ]dΩ =




β2Ae

6
β2Ae

12
β2Ae

12

β2Ae

12
β2Ae

6
β2Ae

12

β2Ae

12
β2Ae

12
β2Ae

6




(A.23)

Now

∫

4

∂[N ]T

∂y

∂[N ]

∂y
dΩ =

∫

4




∂N1

∂y
∂N2

∂y
∂N3

∂y


×

[
∂N1

∂y
∂N2

∂y
∂N3

∂y

]
dΩ (A.24)

=

∫

4




(
∂N1

∂y

)2
∂N1

∂y
∂N2

∂y
∂N1

∂y
∂N3

∂y

∂N2

∂y
∂N1

∂y

(
∂N2

∂y

)2
∂N2

∂y
∂N3

∂y

∂N3

∂y
∂N1

∂y
∂N3

∂y
∂N2

∂y

(
∂N3

∂y

)2




dΩ (A.25)
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The elements of the matrix in equation A.25 can be expressed after integra-
tion as:

∫

4

(
∂N1

∂y

)2

=

∫

4
c2

1dΩ = c2
1Ae

∫

4

∂N1

∂y

∂N2

∂y
dΩ =

∫

4
c1c2dΩ = c1c2Ae

∫

4

∂N1

∂y

∂N3

∂y
dΩ =

∫

4
c1c3dΩ = c1c3Ae

∫

4

∂N2

∂y

∂N1

∂y
dΩ =

∫

4
c2c1dΩ = c2c1Ae

∫

4

(
∂N2

∂y

)2

=

∫

4
c2

2dΩ = c2
2Ae

∫

4

∂N2

∂y

∂N3

∂y
dΩ =

∫

4
c2c3dΩ = c2c3Ae

∫

4

∂N3

∂y

∂N1

∂y
dΩ =

∫

4
c3c1dΩ = c3c1Ae

∫

4

∂N3

∂y

∂N2

∂y
dΩ =

∫

4
c3c2dΩ = c3c2Ae

∫

4

(
∂N3

∂y

)2

=

∫

4
c2

3dΩ = c2
3Ae

(A.26)

Hence the matrix in equation A.25 can be re-written as:

∫

4

∂[N ]T

∂y

∂[N ]

∂y
dΩ =

∫

4




c2
1Ae c1c2Ae c1c3Ae

c2c1Ae c2
2Ae c2c3Ae

c3c1Ae c3c2Ae c2
3Ae



dΩ (A.27)

Similarly, the
∫
4−

∂[N ]T

∂y
∂[N ]
∂x
dΩ term in equation A.20 can be expressed as:

∫

4

∂[N ]T

∂y

∂[N ]

∂x
dΩ =

∫

4




−∂N1

∂y

−∂N2

∂y

−∂N3

∂y



×
[
−∂N1

∂x
−∂N2

∂x
−∂N3

∂x

]
dΩ (A.28)
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This results in the formation of the following matrix:

∫

4

∂[N ]T

∂y

∂[N ]

∂x
dΩ =

∫

4




−∂N1

∂y
∂N1

∂x
−∂N1

∂y
∂N2

∂x
−∂N1

∂y
∂N3

∂x

−∂N2

∂y
∂N1

∂x
−∂N2

∂y
∂N2

∂x
−∂N2

∂y
∂N3

∂x

−∂N3

∂y
∂N1

∂x
−∂N3

∂y
∂N2

∂x
−∂N3

∂y
∂N3

∂x



dΩ (A.29)

The components in the above matrix shown in equation A.29 can be re-
arranged by substituting the relation of equation 2.51:

∫

4

∂[N ]T

∂y

∂[N ]

∂x
dΩ =

∫

4




−b1c1Ae −b2c1Ae b3c1Ae

−b1c2Ae −b2c2Ae b3c2Ae

−b1c3Ae −b2c3Ae b3c3Ae




(A.30)

Similarly other terms of equation A.11 such as −jβ
∫
4[N ]T ∂[N ]

∂x
dΩ can also

be expressed as:

−jβ
∫

4
[N ]T

∂[N ]

∂x
dΩ = −jβ

∫

4



N1

N2

N3


×

[
∂N1

∂x
∂N2

∂x
∂N3

∂x

]
dΩ

= −jβ
∫

4




N1
∂N1

∂x
N1

∂N2

∂x
N1

∂N3

∂x

N2
∂N1

∂x
N2

∂N2

∂x
N2

∂N3

∂x

N3
∂N1

∂x
N3

∂N2

∂x
N3

∂N3

∂x



dΩ

= −jβ




b1
Ae

3
b2
Ae

3
b3
Ae

3

b1
Ae

3
b2
Ae

3
b3
Ae

3

b1
Ae

3
b2
Ae

3
b3
Ae

3




(A.31)
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Similarly

−jβ
∫

4
[N ]T

∂[N ]

∂y
dΩ = −jβ




c1
Ae

3
c2
Ae

3
c3
Ae

3

c1
Ae

3
c2
Ae

3
c3
Ae

3

c1
Ae

3
c2
Ae

3
c3
Ae

3




(A.32)

Other terms such as −
∫
4

∂[N ]T

∂x
∂[N ]
∂y
dΩ and

∫
4

∂[N ]T

∂x
∂[N ]
∂x
dΩ can also be ex-

pressed as follows:

−
∫

4

∂[N ]T

∂x

∂[N ]

∂y
dΩ =

∫

4




−∂N1

∂x

−∂N2

∂x

−∂N3

∂x



×
[

∂N1

∂y
∂N2

∂y
∂N3

∂y

]
dΩ

=

∫

4




−∂N1

∂x
∂N1

∂y
−∂N1

∂x
∂N2

∂y
−∂N1

∂x
∂N3

∂y

−∂N2

∂x
∂N1

∂y
−∂N2

∂x
∂N2

∂y
−∂N2

∂x
∂N3

∂y

−∂N3

∂x
∂N1

∂y
−∂N3

∂x
∂N2

∂y
−∂N3

∂x
∂N3

∂y



dΩ

=




−b1c1Ae −b1c2Ae −b1c3Ae

−b2c1Ae −b2c2Ae −b2c3Ae

−b3c1Ae −b3c2Ae −b3c3Ae




(A.33)
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∫

4

∂[N ]T

∂x

∂[N ]

∂x
dΩ =

∫

4




∂N1

∂x

∂N2

∂x

∂N3

∂x



×
[

∂N1

∂x
∂N2

∂x
∂N3

∂x

]
dΩ

=

∫

4




(
∂N1

∂x

)2 ∂N1

∂x
∂N2

∂x
∂N1

∂x
∂N3

∂x

∂N2

∂x
∂N1

∂x

(
∂N2

∂x

)2 ∂N2

∂x
∂N3

∂x

∂N3

∂x
∂N1

∂x
∂N3

∂x
∂N2

∂x

(
∂N3

∂x

)2



dΩ

=




b2
1Ae b1b2Ae b1b3Ae

b2b1Ae b2
2Ae b2b3Ae

b3b1Ae b3b2Ae b2
3Ae




(A.34)

Hence

∫

4

(
∂[N ]T

∂y

∂[N ]

∂y
+
∂[N ]T

∂x

∂[N ]

∂x

)
dΩ =




(b2
1 + c2

1)Ae (b1b2 + c1c2Ae) (b1b3 + c1c3)Ae

(b1b2 + c1c2Ae) (b2
2 + c2

2)Ae (b2b3 + c2c3Ae)

(b1b3 + c1c3)Ae (b2b3 + c2c3Ae) (b2
3 + c2

3)Ae




(A.35)
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Therefore from equation A.11, the 9× 9 [A]e matrix can be evaluated as:

[A]e =




Ae(1,1) Ae(1,2) Ae(1,3) Ae(1,4) Ae(1,5) Ae(1,6) Ae(1,7) Ae(1,8) Ae(1,9)

Ae(2,1) Ae(2,2) Ae(2,3) Ae(2,4) Ae(2,5) Ae(2,6) Ae(2,7) Ae(2,8) Ae(2,9)

Ae(3,1) Ae(3,2) Ae(3,3) Ae(3,4) Ae(3,5) Ae(3,6) Ae(3,7) Ae(3,8) Ae(3,9)

Ae(4,1) Ae(4,2) Ae(4,3) Ae(4,4) Ae(4,5) Ae(4,6) Ae(4,7) Ae(4,8) Ae(4,9)

Ae(5,1) Ae(5,2) Ae(5,3) Ae(5,4) Ae(5,5) Ae(5,6) Ae(5,7) Ae(5,8) Ae(5,9)

Ae(6,1) Ae(6,2) Ae(6,3) Ae(6,4) Ae(6,5) Ae(6,6) Ae(6,7) Ae(6,8) Ae(6,9)

Ae(7,1) Ae(7,2) Ae(7,3) Ae(7,4) Ae(7,5) Ae(7,6) Ae(7,7) Ae(7,8) Ae(7,9)

Ae(8,1) Ae(8,2) Ae(8,3) Ae(8,4) Ae(8,5) Ae(8,6) Ae(8,7) Ae(8,8) Ae(8,9)

Ae(9,1) Ae(9,2) Ae(9,3) Ae(9,4) Ae(9,5) Ae(9,6) Ae(9,7) Ae(9,8) Ae(9,9)




(A.36)
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Thus some of the elements of the 9× 9 [A]e matrix can be evaluated as:

[A]e(1,1) =
1

ε

[
β2Ae

6
+ c2

1Ae

]

[A]e(1,2) =
1

ε

[
β2Ae

12
+ c1c2Ae

]

[A]e(1,3) =
1

ε

[
β2Ae

12
+ c1c2Ae

]

[A]e(1,4) =
1

ε
[−b1c1Ae]

[A]e(1,5) =
1

ε
[−b2c1Ae]

[A]e(1,6) =
1

ε
[−b3c1Ae]

[A]e(1,7) =
1

ε

[
−jβb1

Ae
3

]

[A]e(1,8) =
1

ε

[
−jβb2

Ae
3

]

[A]e(1,9) =
1

ε

[
−jβb3

Ae
3

]

(A.37)

Similarly 72 other elements of the 9× 9 [A]e matrix can be evaluated.



Appendix B

Calculation of Confinement Factor

The Power in an electromagnetic field can be deduced using the Poynting vec-
tor relation

S =

∫

4
(E∗ ×H)dΩ (B.1)

Where the cross product relation in the above equation B.1 is given as:

E∗ ×H =

∣∣∣∣∣∣∣∣∣∣∣∣

āx āy āz

E∗x E∗y E∗z

Hx Hy Hz

∣∣∣∣∣∣∣∣∣∣∣∣

= āx(E
∗
yHz − E∗zHy)− āy(E∗xHz − E∗zHx) + āz(E

∗
xHy − E∗yHx)

(B.2)

In equation B.1, integration is carried out over each element cross section,
however, only the variation in the propagation direction is of particular interest.
Hence the z-component of the Poynting vector relation may be expressed as:

S =

∫

4
(E∗xHy − E∗yHx)dΩ (B.3)

The above equation can be simplified by establishing a relation between the
E and H components so that the final expression is one variable only. From

193
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Maxwell’s equations, the following can be derived:

∇×H∗ = jωεE∗

∣∣∣∣∣∣∣∣∣∣∣∣

x̄ ȳ z̄

∂x ∂y ∂z

H∗x H∗y H∗z

∣∣∣∣∣∣∣∣∣∣∣∣

(B.4)

from which the following is obtained:

jωε(E∗xx̄+E∗y ȳ+E∗z z̄) =

(
∂H∗z
∂y
− ∂H∗y

∂z

)
x̄−
(
∂H∗z
∂x
− ∂H∗x

∂z

)
ȳ+

(
∂H∗y
∂x
− ∂H∗x

∂y

)
z̄

(B.5)
Equating terms with like coefficients:

jωεE∗x =

(
∂H∗z
∂y
− ∂H∗y

∂z

)

jωεE∗y = −
(
∂H∗z
∂x
− ∂H∗x

∂z

)
(B.6)

Replacing the ∂/∂z component with −jβ the following relation can be ob-
tained:

jωεE∗x =
∂H∗z
∂y

+ jβH∗y ⇒ E∗x =
1

jωε

∂H∗z
∂y

+
β

ωε
H∗y

jωεE∗y = −∂H
∗
z

∂x
− jβH∗x ⇒ E∗y = − 1

jωε

∂H∗z
∂x
− β

ωε
H∗x

(B.7)

Substituting E∗x and E∗y from the above expression into the Poynting vector
relation of equation B.3, the following can be obtained:

Sz =

∫

4

1

ωε

(
βH∗y +

1

j

∂H∗z
∂y

)
Hy +

1

ωε

(
βH∗x +

1

j

∂H∗z
∂x

)
HxdΩ

∴ Sz =

∫

4

[
1

ωε

(
βH∗yHy + βH∗xHx

)
− 1

ωε

(
j
∂H∗z
∂x

Hx + j
∂H∗z
∂y

Hy

)]
dΩ

(B.8)

For plasmonic medium with a complex propagation constant β = β′ + jβ”

and dielectric permittivity ε = ε′ + jε”, the eigen value solutions obtained are
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also complex. Due to which the resultant fields are also complex as Hx = H ′x +

jHx”, Hy = H ′y + jHy”, Hz = H ′z + jHz”, and the conjugate fields are as: H∗x =

H ′x − jHx”, H∗y = H ′y − jHy”, H∗z = H ′z − jHz”.
Representing the fields in a triangular element using the shape function de-

scription, the following can be written:

H = [N ]{H}e and H∗ = {H}Te [N ]T (B.9)

Thus using the field representation in equation B.9, the Poynting vector re-
lation in equation B.8 can be represented as:

Sz =

∫

4

[
β

ωε

(
{Hy}Te [N ]T [N ]{Hy}e + {Hx}Te [N ]T [N ]{Hx}e

)

− j

ωε

(
{Hz}Te

∂[N ]T [N ]

∂x
{Hx}e + {Hz}Te

∂[N ]T [N ]

∂y
{Hy}e

)]
dΩ

(B.10)

The shape function derivatives can be expressed as:

∂[N ]T

∂x
[N ] =




∂N1

∂x
N1

∂N1

∂x
N2

∂N1

∂x
N3

∂N2

∂x
N1

∂N2

∂x
N2

∂N2

∂x
N3

∂N3

∂x
N1

∂N3

∂x
N2

∂N3

∂x
N3




(B.11)

Using the shape function approximation derived from equation B.6, the
above equation can be expressed as:

∂[N ]T

∂x
[N ] =




b1N1 b1N2 b1N3

b2N1 b2N2 b2N3

b3N1 b3N2 b3N3




(B.12)
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Similarly ∂[N ]T

∂y
[N ] can be expressed as

∂[N ]T

∂x
[N ] =




c1N1 c1N2 c1N3

c2N1 c2N2 c2N3

c3N1 c3N2 c3N3




(B.13)

where the coefficients b1, b2, b3, c1, c2 and c3 can be defined as:

∂N1

∂x
= b1 ;

∂N2

∂x
= b2 ;

∂N3

∂x
= b3

∂N1

∂y
= c1 ;

∂N2

∂y
= c2 ;

∂N3

∂y
= c3

(B.14)

Thus the power equation can be written as:

Sz =
β

ωε



{Hy}Te




Ae

6
Ae

12
Ae

12

Ae

12
Ae

6
Ae

12

Ae

12
Ae

12
Ae

6



{Hy}e + {Hx}Te




Ae

6
Ae

12
Ae

12

Ae

12
Ae

6
Ae

12

Ae

12
Ae

12
Ae

6



{Hx}e




− j

ωε




{Hz}Te
Ae
3




b1 b1 b1

b2 b2 b2

b3 b3 b3




{Hx}e + {Hz}Te
Ae
3




c1 c1 c1

c2 c2 c2

c3 c3 c3




{Hy}e




(B.15)
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