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Abstract—Forecasts combinations normally use point forecasts
that were obtained from different models or sources ([1], [2],
[3]). This paper explores the incorporation of internal structure
parameters of feed-forward neural network (NN) models as an
approach to combine their forecasts via ensembles. First, the gen-
erated NN models that could be part of the ensembles are subject
to a clustering algorithm that uses the structure parameters and,
from each of the clusters obtained, a small set of models is selected
and their forecasts are combined in a two-stage procedure.
Secondly, in an alternative and simpler implementation, a subset
of the generated NN models is selected by using several reference
points in the model structure parameter space. The choice of the
reference points is optimised through a genetic algorithm and
the models selected are averaged. Hourly electricity demand time
series is used to assess multi-step ahead forecasting performance
for up to a 12 hours horizon. Results are compared against several
statistical benchmarks, the average of the individual forecasts and
the best models in the ensembles. Results show that the cluster-
based (CB) structural combinations do better than the genetic
algorithm (GA) structural combinations in outperforming the
average forecast, which is the traditional point forecast from an
ensemble.

I. INTRODUCTION

The term ensemble originated in climate modelling, where
scientists distinguish different types of uncertainty, as [4]
described. Structural uncertainty refers to uncertainty about
the form that the modelling equations should take; parametric
uncertainty is about the values that should be assigned to
parameters within a set of modelling equations and initial con-
dition uncertainty, which refers to the difficulty in measuring
all the required variables needed in models.

Ensembles were adopted in NNs by [5], and came to mean
the use of several models, constructed with differences in one
or more of their design parameters. They used ensembles of
NNs for classification. In this seminal research only synthetic
data were used, and superiority of the ensemble was reported
in comparison to individual models. Since this research, NN
ensembles have evolved from the use of simple sets of models
to the collective evolution of them through sophisticated
computational intelligence techniques.

Ensembles involve three main tasks, as depicted in Figure 1:
generation, pruning and combination. Generation involves the
creation of different models. Pruning comprises a selection
of them, and is optional ([6]). The final stage performs the
combination of forecasts. Other factors to be considered are:
the type of model to ensemble, how the individual models

are produced, the level of automation of the process and the
way combinations are made. Therefore the construction of
ensembles is far more complex than the construction of a
single model.

Generate.

Prune.

Combine.

Fig. 1. General steps in ensemble generation.

There are sequential approaches where the generation of
models is followed by a pruning stage and finished with a
combination stage (see for example [7]). But in other ap-
proaches this sequence is not entirely observed: the evolution
(or generation) of the individual models can be done in
parallel, so that the information from the training stage can
be shared, and used to modify the collective estimation of
parameters ([8] ,[9]).

The type of model used and the generation process are in-
terrelated. The most common types of models in the literature
are feed-forward NNs (e.g. [5] , [10]), although Radial Basis
Functions ([11], [12]), Elman recurrent network and Hopfield
([12]), Deep belief network ([13]) and Abductive networks
([14]) can also be found.

Once the type of model is chosen, a question arises about
how to specify the individual models. In the case of feed-
forward NN, the creation of a single model for forecast-
ing requires several parameters, which can be determined
by trial and error, heuristic rules or systematic approaches.
For example, [15] conducted model selection with strategies
based on sequential statistical tests, information criteria and
cross validation. [16] and [17] use design of experiments to
identify an appropriate network configuration. [18] emphasised
input selection, as part of model specification, and proposed
a methodology for seasonal components. Nevertheless, no
universal guideline exists on how to select the appropriate
model ([19]).

In ensemble construction, once the characteristics of the
models are established, variety is usually introduced by modi-
fying initial random weights ([20]), or by randomising training



samples ([7], [21]). The randomisation of the feature space
([9]) could count both as a strategy for model variation and
as a strategy for model specification.

In the final block in Figure 1, models are combined to
produce the output of the ensemble. The methods that have
been proposed in the literature (focusing on forecasting rather
than on classification) include: a gating network ([22]), a
simple or weighted average ([8], [12], [23], [24]), a nonlinear
average through another NN ([23]), a feed-forward NN ([25],
[26]), a Radial Basis Function ([11]), the median of forecasts
([10], [20]) and the mode ([19]). It can be seen that the
complexity and effectiveness of the ensembling approaches
are only partially related to the combining procedure at the
end of the process, as there are other steps involved.

In the energy forecasting area the use of NN ensembles is
common. [27] and [28] forecasted hourly electricity demand
and gas consumption, respectively, by using feed-forward
NNs. Forecasts were combined through the average, recursive
least squares, fuzzy logic, feed-forward NN, functional link
NN, a partition of the temperature space (an external vari-
able), a linear programming algorithm and a mixture of local
experts. The best performance was obtained with a NN as a
combination mechanism.

[29] forecasted hourly and peak load (with data from two
US utilities) for the next 24 and 120 hours with a small
ensemble of NNs. K-nearest neighbour was used to select
training sets. NNs were trained in parallel with an itera-
tive approach, feeding back averaged forecasts as inputs for
subsequent forecast horizons. Results were competitive when
compared with usual forecast error measures in similar utilities
and previous publications .

[30] used NNs to produce load forecasts from 1 to 10 days
ahead based on ensembles of weather forecasts. Comparisons
were made with uni-variate benchmarks and point forecasts
from individual models. For ten lead times, the mean of
the load scenarios built with weather variables was a more
accurate forecast than that produced by the non-ensemble
based procedure. This research combines the use of ensemble
weather forecasts with an ensemble of rather low complexity
NNs leading to a improvements in forecast accuracy. Variety
in the data is not needed as different scenarios are used as
inputs.

Further research involving combination of forecasts pro-
duced with different types of NNs include [10], [13], [14],
[26], [31], [32] and [33]. In general, there is limited research
on forecast combination approaches that consider the internal
characteristics of the models involved. [21] suggested this
direction, by considering clustering of structural parameters to
summarise models based on such clusters. This line of thought
can be further explored, in terms of the clustering techniques
and the kind of time series to be considered.

This paper proposes one form of structural combination,
implemented in two ways: one with a recursive partitioning of
the weights space of NNs to then select models to combine,
and another with a Genetic Algorithm which searches for
reference points in such parameter space to select models to

combine. The next sections describe the method and illustrate
their use in forecasting electricity demand from Rio de Janeiro
12 hours ahead.

II. METHODOLOGY

The most common types of NN models in the literature of
ensemble development are feed-forward NNs (see for example
[5] and [10]). Such NNs are common in forecasting ([34], [18])
and, specifically, in the electricity sector (i.e. [27], [29], [14]).
Multi-layer perceptrons are the most frequently applied ([34])
and, therefore, are adopted here.

Figure 2 describes the modelling process. A base NN struc-
ture, which has been selected through a preliminary process
(such as a sensitivity analysis or a heuristic approach, e.g.
[17]), is used to fit the time series with different models.
Parameter diversity can be introduced through various mech-
anisms, one of which is the randomisation of input-output
patterns for the neural networks, which is adopted here and
is described in the next subsection. Once the ensemble is
generated, the models are subject to a combination procedure
involving the structure, as described below, and, finally, fore-
casts are produced and their uncertainty assessed.

The modelling process depends on specific design decisions.
The combination algorithm, the forecast stage, the uncertainty
assessment and the multi-step ahead forecast approach used
to fit the individual models can influence each other. In an
iterative approach, where a network produces forecasts for all
horizons, the modelling process leads to a single ensemble that
forecasts different horizons.

A. Randomisation of input-output patterns

The pre-processing stage uses randomisation of input-output
data patterns during the training period. This mechanism
facilitates the creation of diverse NN models (with different
parameter sets), thus facilitating the identification of different
clusters of models in the parameter space.

B. Structural Combination based on Clustering

When the structural combination stage in Figure 2 is
implemented through clustering, the combination becomes a
mechanism that looks into the structure of models and finds
groups in the space defined by such structure. An algorithm
based on fuzzy C-means was chosen, which incorporates
concepts from fuzzy systems.

Fuzzy C-Means is an algorithm that partitions a collection
of vectors into c fuzzy groups and finds a cluster centre in each
group such that a cost function of dissimilarity is minimised
(see [35]). The choice of a fuzzy C-means oriented approach
is due to its use of a degree of membership of elements to
clusters (between 0 and 1), instead of a binary membership
(0 or 1, equivalent to non-member and member in K-means).
Therefore, a NN model can belong to several clusters with
different degrees of belongingness that are defined by grades
between 0 and 1 ([35, p. 426]).

However, C-means produces non-deterministic partitions or
clusters. A variant of the algorithm was therefore adopted here,
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Fig. 2. Modelling process.

based on [36], which uses a recursive partitioning of the model
space that helps in producing a deterministic partition. The
next sub-section describes the model in detail.

C. The forecasting model

The clustering-based algorithm (CB) uses structure informa-
tion of models and produces forecasts based on the data and
this information. It creates partitions in the parameter space
of the NNs and centres of such regions are used as cluster
centres. When the individual NN models are used to issue
forecasts in an iterative manner, the clustering procedure takes
into account the in-sample one-step-ahead forecasts produced
by NNs in order to calculate the loss function, which is to be
minimised. The forecast for each horizon h is calculated based
on the forecasts made by the clustered NNs for the respective
horizon, as follows:

ŷh =

n∑
i=1

φiŷCi,h (1)

Where ŷCi,h is the forecast from cluster i for horizon h:

ŷCi,h = α0 +α1Mi1(h) +α2Mi2(h) + . . .+αLMiL(h) (2)

Mi1(h),Mi2(h), . . . are forecasts for step ahead h from
models selected within cluster i.

The coefficients φk are calculated as an average of the
normalised weights of vectors (models in vectorial form):

φk =

∑Nk

i=1 wk
Nk

(3)

where Nk is the number of models in cluster k.

wi(v) =
ui(v)∑n
j=1 uj(v)

(4)

ui(v) = e
− D2

i (v)∑n
j=1

D2
j
(v) (5)

ui(v) is the membership of v to cluster i (v is a model
represented in the form of a vector). The squared distance
between v and the i-th centre is divided by the sum of
squared distances from v to all centres. Subsequently, an
exponential transformation is taken so that the membership

of a model to a cluster decreases as long as its distance from
the centre increases. Consequently, there is always a degree of
membership, however small, of every vector to every cluster.

Recursively partition
the parameter space, Z,
using (X,Y,Mmax).

Obtain centres.

Use centres to obtain
models per partition.

Minimise MSE in
Equation (1) to

obtain αi and φk .

Fig. 3. Clustering Scheme.

The partitioning routine, in Figure 3, which is used to build
the clusters, recursively splits the parameter space of models in
two steps. A forward step, which grows partitions in the form
of a tree and a backward step, which prunes those regions that
do not improve fit function (MSE).
X is the set of input variables, including lagged values of

the dependent variable, Y is the one step ahead forecast for the
independent variable. The recursive partitioning uses internally
a matrix Z, where every row represents a model (a NN) in
the parameter space, which has already been trained with the
X , Y data set. Mmax is the maximum number of clusters
allowed.

In the first step of Figure 3, a procedure
regressByCluster(X,Y,B) is internally used, which
performs an OLS regression of Y on X in a per-cluster
manner, with B containing the definitions of the regions or
clusters. This gives initial estimates of α and φ that are then
updated in the last stage of Figure 3.

The regions, B, are defined in the form of base functions:

Bm (Z) =

Km∏
k=1

H
(
skm ·

(
zv(k,m) − tkm

))
(6)



H(η) =

{
1 if η ≥ 0

0 otherwise (7)

For a vector z, the function Bm(z) establishes if z belongs
to the m-th region. If so, the function takes the value 1. If
z does not belong to the region, the function would have the
value 0. Km is the number of partitions in the space that
define the region. skm is a constant that takes the values 1 or
-1, signalling if the partition is to the right or to the left of
the value tkm. The variable zv is the dimension, in the space
of parameters, in which a partition is made.

Both the individual NNs and the CB algorithms were imple-
mented in Matlab R© 2010 using its neural networks toolbox.

D. Structural combination based on genetic algorithms

The cluster-based implementation described in the previous
subsection creates clusters that serve to extract and combine
models. A simplified implementation was conducted by using
genetic algorithms. Again, X is the set of input variables,
including lagged values of the dependent variable, Y is the
one step ahead forecast for the independent variable and Z is a
matrix where every row represents a model (a neural network)
in the parameter space, which has already been trained with
the X , Y data set.

A series of reference points in the parameter space is
generated. From each point, Pi, a number of NN models
is selected, having the smallest euclidean distance to it. The
forecast produced by this combination (yAvg) is calculated as
the average forecast of all models selected from all reference
points (5 models are selected from each point, as specified in
Table I). The routine optimises through a genetic algorithm
the set of reference points such that the MSE of the yAvg
in-sample one-step-ahead point forecasts is minimised.

A GA combination can be viewed as a structurally informed
average: it selects models based on closeness around different
points in the parameter space and then performs an average.
The algorithm is run over the same NN pool used to perform
the structural combination proposed in previous subsections.
It was implemented in Matlab R© 2010 using ga routine, setting
a maximum number of generations to 3000.

III. STUDY WITH AN ELECTRICITY DEMAND TIME-SERIES

A time series of electricity demand was used to asses
the performance of CB and GA structural combination ap-
proaches. The series contains hourly observations in Rio de
Janeiro covering the period from Sunday 5 May 1996 to
Saturday 30 November 1996 (Figure 4). It has been used by
[37] to evaluate the performance of various uni-variate models,
including a NN, which was implemented according to [38].

The direct approach of fitting different NNs for different
forecast horizons led to a performance markedly different from
results obtained by [37]. In their study, the authors fitted a
NN with input lags 1, 2, 24, 25, 48, 72, 96, 120, 144, 168,
192, 216, 240, 264, 312, 336 and forecasted the differences
in an iterative manner. Further experiments with this setting
provided better results than the direct approach and therefore
it was adopted for the present study.

A preliminary analysis suggested that an NN architecture
with 16 inputs (corresponding to all lags considered) and 2
neurons would be the best choice. Such architecture is used
here with the CB and GA procedures described above to test
the structural combination of forecasts. Due to the existence of
extreme values in the out-of-sample performance of NNs, the
ensemble to perform the combination was built with the over-
produce and choose approach ([6]): 150 NNs where generated
and 50 selected. The forecast performance for h = 12 was
assessed with a rolling window in the in-sample period and the
best models were used to conduct the structural combination.
The configurations of the individual NNs and combination
algorithms is summarised in Table I.

Results are compared with those obtained by [37] with
a Holt-Winters-Taylor (HWT) exponential smoothing method
and a NN. Comparisons are made by using MSE and MAPE
error metrics.

TABLE I
STUDY CONFIGURATION.

Individual NN configuration.
Factor Values
Num. inputs 1, . . . , 16, being 16 the

number of lags.
Num. hidden layers 1
Num. hidden units 2
Activation function for
hidden nodes

Tangent Sigmoid

Activation function for
the output node

Linear

Initial values for the
weights

Values in the range [-
2 2] established by the
Nguyen-Widrow algo-
rithm

Training algorithm Backpropagation with
Levenberg-Marquardt
optimisation and
Bayesian regularization

Data normalisation Yes
Init. Combination coef-
ficient (µ)

0.001

Sample size 5040
Data config. for train-
ing, testing and valida-
tion

Ntr = 3024, Nva =
336 Nte = 1680

Extreme values treated No.
Forecast approach Iterative

Combination configuration.
Num. of models 50
Num. Max. clusters 2, 4, 8
Models per cluster 5
Final combination Linear
Randomised input-
output patterns

Yes

Structural content All synaptic weights in
each NN.

Figure 5 shows the out-of-sample MAPE for the different
CB models and the selected benchmarks and Figure 6 provides
a ranking of models and the percentage differences in perfor-
mance with respect to the average forecast of all NN models.
While the rankings comprise all models and benchmarks, the



Fig. 4. Hourly electricity demand in Rio de Janeiro for Sunday, 5 May 1996 to Saturday, 30 November 1996. Original Series.

percentage differences are calculated only for models derived
from the NNs produced in the study. Table II provides sample
coefficients for CB models. The assessment of uncertainty in
forecasts, by using forecast intervals, is provided in Figure 7
(only CB models are considered).

TABLE II
COEFFICIENTS FOR STRUCTURAL COMBINATION OF NN FOR RIO

DE JANEIRO ELECTRICITY DEMAND SERIES.

CB2
α1 24.9383 0.38 0.4028 0.0896 -0.0942 0.2126
Φ 1

CB4
α1 25.3822 0.7965 -1.7627 1.1277 0.2929 -0.4866
α2 26.3815 -1.0451 3.2846 0.5185 1.8219 1.4281
α3 28.9069 0.5246 -2.3253 0.5201 0.8754 0.2391
Φ 0.3984 0.1786 0.4233

CB8
α1 24.9104 1.4617 -5.6481 2.2431 0.3346 0.1906
α2 26.1478 1.7667 6.8272 0.5522 3.0498 1.7813
α3 27.6467 -2.071 1.087 0.9352 0.0621 0.3737
α4 21.5636 -2.3524 0.62 -0.3881 1.4783 -1.4435
α5 29.9801 -6.0529 1.2764 2.8328 0.9112 1.7857
Φ 0.2199 0.1086 0.2297 0.2243 0.2169

αi are the coefficients applied to point-forecasts from models
in cluster i and Φ are the weights applied to the outputs
from clusters. The α in the first column (αi,0) is the
intercept of the linear combination. The αi,j , for j > 0,
in the remaining columns, are applied to point forecasts.

IV. DISCUSSION

It is noticeable that not only the best performing NNs for the
electricity demand series are simple in terms neurons, but also
the best performing CB models are the simplest. For example,
CB2, with a maximum of 2 clusters, was able to consistently
outperform the average forecast from the NNs. The need for
structural simplicity in the case of the electricity demand series
is manifested both at single model and at ensemble level.

This time series required a sensible selection of inputs in
the early stages of the study, so as to capture the regularities
in the series, in accord with [18]. However, this also implies
that the the statistical benchmarks are very well suited to the
data, and thus the NN models and ensembles had difficulty in
outperforming the well specified models. It thus appears that

faced with regular data, it pays off to invest time and effort
in the selection of inputs and use a well-specified model that
address these regularities to forecast the series.

Larger structural representations of models can be used.
However, their complexity could create challenging features
to perform structural combinations. A proper balance between
dimension reduction and the use of a sufficiently rich structural
representation would be needed to achieve practical computing
times.

Replacing the randomisation of the training set by a boot-
strap strategy to create the individuals models that participate
in the clustering algorithm, would move the approach in the di-
rection of bagging. The GA combination can also benefit from
such modification and these are potential research avenues for
future research.

V. CONCLUSION

This paper presents a novel forecasting combination ap-
proach that involves the creation of ensembles of NNs and
the combination of a subset of them based on parameters
from their structure. The first implementation of the proposed
combination approach is based on clustering algorithms, which
groups together models that share a measure of similarity (in
this case, a measure of distance in the parameter space of
models). The second implementation uses genetic algorithms
to select models by using reference points (analogous to
cluster centres) in the parameter space and can be seen as a
structurally informed average of forecasts. Different levels in
the number of clusters were used to assess the combinations.

For the double-seasonal time series considered here the CB
tend to do better in relation to the simple average combination.
Furthermore, there is no marked superiority of structural
combinations over individual models. In spite of this, CB
shows better performance than GA with respect to the best
models.

CB and GA structural combinations were outperformed by
the chosen statistical benchmark. HWT exponential smoothing
models are better equipped to capture the regularities in these
time series and are more adaptive to changes in the data than
NNs. Consequently, the potential structural combinations of
these models should be investigated, as they may be more



Fig. 5. Out-of-sample MAPE for Rio de Janeiro electricity demand series.

Ranking of models (MAPE). % difference wrt. Average (MAPE).

Ranking of models (MSE). % difference wrt. Average (MSE).

Fig. 6. Comparison by forecast horizon. Best model is in rank 1. % differences with respect to the average are negative when there is improvement over the
average benchmark. CB2 stands for a cluster-based combination with a maximum of 2 clusters. GA2 stands for a genetic-algorithm based combination with
2 reference points. Bst. ismape denotes the NN in the study with the lowest in-sample MAPE. Bst. ismse denotes the NN with the lowest in-sample MSE.
HWT Taylor and NN Taylor denote results from [37].

attractive in the case of double-seasonal time series data.
Nonetheless, it is noteworthy that HWT has an in-built error
correction mechanism, which is not present in the NNs. Given
changes in the data pattern within the out-of-sample period,
as observed in this time series, structural combinations of
recursive neural networks become an attractive avenue for
research.

Based on these findings, future research could investigate
the behaviour of a structural combination approach when
models of different nature are combined. If, for example,
instead of using single single unit models (statistical or com-
putational intelligence model), bundles of the form Bi =<

ARIMA,NN > are formed, the structural combination of
such bundles could potentially improve performance, when
dealing with complex forecasting problems.

Other forms of structural representation can be envisaged,
while taking care of keeping a reasonable computing cost.
Changes in the generation of individual models could lead to
approaches closer to bagging, thus facilitating the exploration
of research avenues that could improve forecasting perfor-
mance.

Additionally, the better performance obtained with an iter-
ative multi-step-ahead forecasting approach, when compared
to a direct approach, in the case of electricity demand time



(a) MaxC = 2 clusters. (b) MaxC = 4 clusters.

(c) MaxC = 8 clusters.

Fig. 7. Forecast intervals for Rio electricity demand time series.

The graphs cover the period for t − 12 ≤ t ≤ t + H where t is the last observation of the in-sample period and H = 12 is the
number of forecast horizons. The shades, from lighter to darker, correspond to α levels 0.95, 0.90, 0.85, 0.80, 0.75 and 0.60.

series, suggests that an extension of the present research could
investigate how the chosen multi-step-ahead forecast approach
affects the performance of structural combination.

Overall, the exploration of structural combination of fore-
casts, and its implementation in two forms, open the possibility
to investigate new forms of ensembles, specially when rela-
tionships between components in the individual models can
be clearly distinguished.
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