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Abstract

The Morita Frobenius number of an algebra is the number of Morita equivalence classes of its
Frobenius twists. Introduced by Kessar in 2004, these numbers are important in the context of
Donovan’s conjecture for blocks of finite group algebras. Let P be a finite `-group. Donovan’s
conjecture states that there are finitely many Morita equivalence classes of blocks of finite
group algebras with defect groups isomorphic to P . Kessar proved that Donovan’s conjecture
holds if and only if Weak Donovan’s conjecture and the Rationality conjecture hold. Our
thesis relates to the Rationality conjecture, which states that there exists a bound on the
Morita Frobenius numbers of blocks of finite group algebras with defect groups isomorphic
to P , which depends only on ∣P ∣. In this thesis we calculate the Morita Frobenius numbers,
or produce a bound for the Morita Frobenius numbers, of many of the blocks of quasi-simple
finite groups. We also discuss the issues faced in the outstanding blocks and outline some
possible approaches to solving these cases.
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Notation

∆ Base of a root system

εG (−1)Fq-rank of G

θG Character of G induced from θ

Λ(R) Fundamental group of R

σ ∶ k → k Frobenius automorphism

σ ∶ kG→ kG Galois conjugation map

σ̂ ∶K →K Aut. of K fixed in Section 2.2.1
σ̂χ(g) σ̂(χ(g))
σ(b) σ(b) if R = k, σ̂(b̃) if R = O
Φ Root system

Φ̌ Coroots

Φ+ Positive roots in Φ

Φ− Negative roots in Φ

Φe eth cyclotomic polynomial

ωχ Linear char. of Z(KG) corr to χ

A,B Finite dimensional algebras

A0,B0 Basic algebras

A(`m) mth Frobenius twist of A

A ∼M B A and B are Morita equivalent

An Alternating group on n letters

Ãn Double cover of An

AG∗(s) Group of components CG∗(s)/C○

G∗(s)

B, b Blocks of kG or RG

b̃ Block of OG
B2(G;F×) 2-boundaries of G

bGF (L, λ) Block of GF containing irre-

ducible consitutents of RG
L⊆P(λ)

Bl(G) Set of blocks of G

BrP Brauer homomorphism

d(b) Defect of b

e`(q) Order of q modulo `

eG
F

s Sum of block idempotents of

E` (GF , s)
eχ Central primitive idempotent of

KG corresponding to χ

E (GF , s) Lusztig series associated to [s]
E (GF , `′) Characters in E (GF , s) for any

semisimple `′ element s ∈ G∗F

E (GF ,1) Unipotent characters of GF

E` (GF , s) Union of `-blocks of GF contain-

ing characters E(GF , s)

F Arbitrary field
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F ∶ G→G Frobenius morphism

FG Group algebra of G over F

frob(A) Frobenius number of A

FαG Twisted group alg. of G over F

G Finite group

G Algebraic group

Ga Additive group ≅ (F,+)
Gm Multiplicative group ≅ GL1(F )
Gu Set of unipotent elements of G

GΦe Sylow e-torus of G

G∗ Algebraic group dual to G

G○ Connected component of G

containing the identity element

GF Finite group of Lie type

H2(G;F ×) Second cohomology group of G

i ∶ G→ G̃ Regular embedding

i∗ ∶ G̃→G Surjective morphism dual to i

IG(b) Inertial group of b

IG(θ) Inertial group of θ

Irr(B) Set of irreducible characters in B

Irr(G) Set of irreducible characters of G

k Field of characteristic `

K Field of characteristic zero

(K,O, k) `-modular system

` A prime number

L Levi subgroup

L ∶ G→G Lang map L(g) = g−1F (g)

mf (A) Morita Frobenius number of A

NFn/F Norm map of Fn at F

O Complete discrete valuation ring

P Parabolic subgroup

(P, b) Brauer pair

PGF (x) Order polynomial of GF over Z

QG
L⊆P Green functions

R O or k

RG
L⊆P Deligne Lusztig induction

∗RG
L⊆P Deligne Lusztig restriction

R(G) Radical of G

Ru(G) Unipotent radical of G

rk(G) Rank of G

(s) Geometric conjugacy class of s

[s] Rational conjugacy class of s

sα Reflection corr. to α ∈ Φ

Sn Symmetric group on n letters

S̃n, Ŝn Double covers of Sn

T Torus

(T, θ) G←→ (T∗, s) (T, θ) corresponds to

(T∗, s) in bijection (4.2)

WGF (L, λ) Relative Weyl group of (L, λ)

(X,R,Y, Ř) Abstract root datum

X(T) / Y (T) Character/Cocharacter

group of T

Z2(G;F×) 2-cocycles of G

ZR / ZŘ Root/Coroot lattice
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Chapter 1

Introduction

Modular representation theory is a branch of mathematics which began around the turn of

the 20th century. Ordinary representation theory is concerned with the representations of

finite groups over a field of characteristic zero. The term modular representation theory was

first used by Dickson in 1907 [21] to describe the study of representations of finite groups

over fields of positive characteristic. He showed that if the characteristic of the field divides

the order of the group then the modular representation theory of a group is quite different to

its ordinary representation theory. Important work of Brauer begun in the 1930s established

modular representation theory as a mainstream area of mathematics. Today the field is very

active with recent developments leading to breakthroughs for some fundamental conjectures

which have been open in the area for many decades.

Let G be a finite group and let k be an algebraically closed field of positive characteristic

`. Our thesis is concerned with the indecomposable 2-sided ideals of the group algebra kG,

known as blocks. For each block B of kG there exists an associated conjugacy class of finite

`-subgroups of G known as defect groups. The defect groups of B provide a measure of

how far B is from being a semisimple algebra. One important open question in modular

representation theory today is; can the blocks of finite group algebras be classified according

to their defect groups? Our thesis relates to this question via Donovan’s conjecture.
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Conjecture (Donovan’s Conjecture [1, Conjecture M]). Let P be a finite `-group. Then

there are finitely many Morita equivalence classes of blocks of finite group algebras with defect

groups isomorphic to P .

Donovan’s conjecture is open in the general case, but there are certain situations where

it is known to hold. This is discussed in more detail in Section 2.3. There exists a weaker

version of Donovan’s conjecture, known as Weak Donovan’s conjecture. This states that the

entries of the Cartan matrices of blocks with defect groups isomorphic to P are bounded by

some function which depends only on ∣P ∣. In 2004, Kessar showed in [46, Theorem 1.4] that

the gap between Donovan’s conjecture and Weak Donovan’s conjecture is another finiteness

condition usually referred to as the Rationality conjecture [46, Conjecture 1.3].

Conjecture (Rationality Conjecture). The Morita Frobenius numbers of blocks of finite group

algebras with defect groups isomorphic to P are bounded by a function which depends only on

∣P ∣.

The theorem of Kessar shows that Donovan’s conjecture holds if and only if both Weak

Donovan’s conjecture and the Rationality conjecture hold. This gives us another way to

approach Donovan’s conjecture. The aim of our thesis is to calculate, or find bounds for, the

Morita Frobenius numbers of the blocks of quasi-simple finite groups.

A Morita Frobenius number can be defined for any finite dimensional k-algebra A. For

a positive integer m, the mth Frobenius twist of A is another finite dimensional k-algebra

which is isomorphic to A as rings, endowed with a twisted scalar multiplication defined by

λ.x = λ 1
`m x for all x ∈ A, λ ∈ k. The Morita Frobenius number of A is the least positive

integer m such that A is Morita equivalent to its mth Frobenius twist as k-algebras, denoted

by mf (A). Since A is finite dimensional and k is algebraically closed, the Morita Frobenius

number of A is finite.

Little is known in general about the values of the Morita Frobenius numbers. The Morita

Frobenius number of a block of a finite group algebra can be greater than 1 – in 2007 Benson

13



and Kessar gave a general method for producing examples of blocks of finite group algebras

with Morita Frobenius number equal to 2 [2]. There exist algebras which have arbitrarily large

Morita Frobenius numbers, for example some algebras in the family of algebras of quaternion

type given in [28]. However, it is not known whether the algebras of quaternion type with

arbitrarily large Morita Frobenius numbers arise as blocks of finite group algebras.

Our results are summarised in Theorems A, B, C and D below. An explanation of the

notation can be found in Chapters 2 and 4. In many cases the Morita Frobenius number of

B is 1 and in some cases we even find that B is isomorphic to its first Frobenius twist, not

just Morita equivalent. There remain some open cases for the finite groups of Lie type in

non-defining characteristic. Apart from these, which are discussed in Section 5.4, we prove

that the Morita Frobenius number of B is at most 4.

Theorem A. Let b be an `-block of a quasi-simple finite group G. Let G = G/Z(G). Suppose

that one of the following holds.

(a) G is an alternating group

(b) G is a sporadic group

(c) G is a finite group of Lie type in characteristic `

Then mf (b) = 1.

Theorem B. Let ` and p be different primes and let q be a power of p. Let G be a simple, sim-

ply connected algebraic group defined over Fp and let F ∶G→G be a not very twisted Frobenius

morphism with respect to an Fq-structure. Let s be a semisimple `′ element of G∗F and let

b ∈ E`(GF , s) be an `-block of GF .

(a) If b is a unipotent block not equal to one of the following blocks of E8

� b = bE8(φ2
1.E6(q),E6[θi]) (i = 1,2) with ` = 2 and q of order 1 modulo 4, or

� b = bE8(φ2
2.

2E6(q), 2E6[θi]) (i = 1,2) with ` ≡ 2 mod 3 and q of order 2 modulo `,

then mf (b) = 1. If b is one of the two blocks above then mf (b) ≤ 2.

14



(b) If s ≠ 1 is quasi-isolated in G∗ then

� if G is of type A or B then mf (b) = 1;

� if G is of type E8 then mf (b) ≤ 4; and

� otherwise mf (b) ≤ 2.

(c) If s ≠ 1 is such that C○

G∗(s) is a Levi subgroup of G∗ and AG∗(s) is cyclic, or if CG∗(s)

is connected and s is not isolated in G∗, then

� if G is of type E7 or E8 then mf (b) ≤ 2,

� otherwise mf (b) = 1.

One consequence of Theorem B is the following result for groups of type A.

Theorem C. Let G1 = {SLn(q) ∶ n ∈ N, q = pa for some prime p ≠ `, a ∈ N} , and let G2 =

{SUn(q) ∶ n ∈ N, q = pa for some prime p ≠ ` and some a ∈ N such that ` ∤ q2s+1 + 1 ∀ s ∈ N} .

Then Donovan’s conjecture holds for the `-blocks of groups in G1 and G2.

Theorem D. Let GF be a Suzuki or Ree group. Let b be an `-block of GF . If b is a block of the

large Ree group in non-defining characteristic, assume that b is unipotent. Then mf (b) = 1.

We begin with an introduction to block theory in Section 2.1 followed by a summary of

the methods used in Section 2.2. Results relating to groups not of Lie type are included in

Section 3, including calculations of the Morita Frobenius numbers for the symmetric groups,

the alternating groups and their double covers, and for the sporadic groups, their covers, and

the exceptional covering groups. In Section 4 we introduce the finite groups of Lie type, and

the calculations of the Morita Frobenius numbers of the blocks of the finite groups of Lie type

are presented in Section 5. In Section 5.4 we discuss the outstanding open cases in the finite

groups of Lie type and present progress made on these cases to date. Finally, the proofs of

the Theorems A, B, C and D are given in Section 6.

Parts of results of this thesis have appeared in print in [29].
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Chapter 2

Block theory, methods and the

connection to Donovan’s conjecture

2.1 Introduction to block theory

In this section we present all the necessary preliminaries from representation theory and block

theory. The primary sources are [58], [44] and [57].

2.1.1 Algebras and modules

We start by recalling some definitions. Let F be an arbitrary field and let A be an F -algebra

with unit element 1A. We will assume for this section that all algebras are finite dimensional.

The Jacobson radical of A, denoted by J(A), is the maximal nilpotent ideal of A. If J(A) = 0

then A is semisimple, therefore by Wedderburn’s theorem [58, Theorem 1.17], A is isomorphic

to a direct product of matrix algebras.

A left A-module M is an F -vector space with an F -bilinear map A ×M → M given by

a × m = am such that (ab)m = a(bm) and 1Am = m for all a, b ∈ A and all m ∈ M . A

right A-module is defined analogously with the product operation on the other side. An A-

module is irreducible if its only submodules are 0 and itself. An A-homomorphism between

16



two A-modules M and N is an F -linear map ϕ ∶ M → N such that ϕ(am) = aϕ(m) for all

a ∈ A and m ∈ M . The category of A-modules, Mod(A), is the category with A-modules as

objects, A-homomorphisms as morphisms, and with the composition of A-homomorphisms

as composition of morphisms. We say that two finite dimensional F -algebras A and B are

Morita equivalent if there is an F -linear equivalence between their module categories Mod(A)

and Mod(B), and denote this by A ∼M B.

For a finite group G, let FG denote the group algebra of G over F – a finite dimensional

F -algebra with basis {g ∈ G}. The elements of FG are of the form ∑g∈G αgg with αg ∈ F for

every g ∈ G, and the product map is given by F -linear extension of the usual multiplication

in G.

A non-zero element a ∈ A is an idempotent if a2 = a. Two idempotents a and b are

orthogonal if ab = 0 = ba and an idempotent is primitive if it cannot be expressed as the sum

of two orthogonal idempotents. If a is an idempotent of A, a primitive decomposition of a is

a finite set I of primitive orthogonal idempotents of A such that ∑i∈I i = a. Since any two

primitive decompositions of 1A are conjugate, the primitive decomposition of 1A in Z(A) is

unique [63, Corollary 4.2].

An F -algebra A is basic if for any primitive decomposition I of 1A, the elements in I are

mutually non-conjugate. Two basic algebras are Morita equivalent if and only if they are

isomorphic [28, Lemma I.2.6]. Every F -algebra is Morita equivalent to a basic F -algebra. For

a given algebra A, we can construct a basic algebra A0 in the following way. Suppose that I

is a primitive decomposition of 1A. Let I0 be a set of representatives of the conjugacy classes

of elements in I and let i0 = ∑i∈I0 i. Set A0 ∶= i0Ai0 = {i0ai0 ∣ a ∈ A}. Then A and A0 are

Morita equivalent [28, Corollary I.2.7] . It therefore follows that if A and B are two finite

dimensional F -algebras with basic algebras A0 and B0 respectively, then A and B are Morita

equivalent if and only if A0 and B0 are isomorphic.

For the rest of this section let k be an algebraically closed field of characteristic ` and let A

be a finite dimensional k-algebra. Recall that since algebraically closed fields are perfect, the

17



Frobenius homomorphism σ ∶ k → k given by λ ↦ λ` is an automorphism. We can therefore

consider the inverse map σ−1 ∶ k → k sending λ↦ λ
1
` .

Definition 2.1.1. For m ∈ N, the m-th Frobenius twist of A, denoted by A(`m), is a k-algebra

with the same underlying ring structure as A, endowed with a new action of the scalars of k

given by λ.x = λ 1
`m x for all λ ∈ k, x ∈ A.

Definition 2.1.2. The Morita Frobenius number of A, denoted by mf (A), is the least integer

m such that A is Morita equivalent to A(`m).

Definition 2.1.3. The Frobenius number of A, denoted by frob(A), is the the least integer

m such that A ≅ A(`m) as k-algebras.

Note that the basic algebra of the m-th Frobenius twist of A is equal to the m-th Frobenius

twist of its basic algebra, i.e. (A(`m))
0
= A(`m)

0 . Suppose that {a1, . . . , an} is a basis for the

k-vector space underlying a finite dimensional k-algebra A. The structure constants of A with

respect to this basis are the scalars cijr ∈ k such that

aiaj =
n

∑
r=1

cijrar.

If the k-vector space underlying A has a basis such that all the structure constants cijr lie in

F`m , then A is said to have an F`m-form. Note that a matrix algebra has a basis such that

the structure constants are just 1 and 0, so every matrix algebra has an F`m-form. It can be

shown that a k-algebra A has an F`m-form if and only if A ≅ A(`m) as k-algebras [46, Lemma

2.1]. In particular, A has an F`-form if and only if frob(A)= 1.

Lemma 2.1.4. Let k be an algebraically closed field of characteristic ` and let A be a finite

dimensional k-algebra. Then mf (A) and frob (A) are finite.

Proof. Since k is an algebraically closed field of characteristic `, every structure constant of

A is contained in Fr` for some positive integer r. As A is finite dimensional we can let t be

the maximum such r, so Ft` contains all the structure constants of A. Thus A has an Ft`-form,
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so A ≅ (A(`t)) as k-algebras by [46, Lemma 2.1]. Therefore, mf (A) ≤ frob(A) ≤ t < ∞ as

required.

Lemma 2.1.5. Let A be a finite dimensional k-algebra and let A0 be the basic algebra of A.

Then

1 ≤ mf (A0) = frob (A0) = mf (A) ≤ frob (A).

Proof. This follows directly from the fact that A and A(`m) are Morita equivalent if and only

if their basic algebras A0 and A
(`m)

0 are isomorphic.

2.1.2 The second cohomology group and twisted group algebras

Let G be a finite group and let F be an arbitrary field. A map α ∶ G ×G → F× is called a

2-cocycle if α(xy, z)α(x, z) = α(x, yz)α(y, z) for all x, y, z ∈ G. The set of all 2-cocycles of G

with coefficients in F × is denoted by Z2(G;F ×), and Z2(G;F ×) has the structure of an abelian

group with multiplication defined by (αα′)(x, y) = α(x, y)α′(x, y) for all α,α′ ∈ Z2(G;F×)

and all x, y ∈ G. A 2-cocycle α ∈ Z2(G;F×) is called a 2-boundary if there exists a map

γ ∶ G → F × such that α(x, y) = γ(x)γ(y)γ(xy)−1 for all x, y ∈ G. The set of 2-boundaries of

G with coefficients in F × is a subgroup of Z2(G;F×) denoted by B2(G;F×).

The second cohomology group of G with coefficients in F× is the quotient group

H2(G;F×) = Z2(G;F ×)/B2(G;F ×).

The twisted group algebra of G by α ∈ Z2(G;F×) is the F -algebra, FαG, which is equal to

FG as an F -vector space, with a twisted multiplication operation FG × FG → FG given by

x.y = α(x, y)xy for all x, y ∈ G.

2.1.3 Representations

For this section, continue to let F be an arbitrary field and let A be a finite dimensional

F -algebra. A representation of A is an algebra homomorphism X ∶ A → Matn(F ), for some
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natural number n called the degree of the representation. Two representations X and X′ of an

F -algebra A are similar if there exists an invertible n×nmatrix T such that TX(a)T−1 = X′(a)

for every a ∈ A.

A representation X of A naturally defines an A-module, and vice versa. Consider the

vector space V of n-dimensional column vectors over F . Given a representation X of A, we

can give V the structure of a left A-module by defining multiplication by av = X(a)v for all

v ∈ V by a ∈ A . On the other hand, suppose we are given an A-module M . By picking a basis

for M we can express any a ∈ A as a matrix aM in Matn(F ) determined by the action of a on

the basis elements. Then by defining X(a) = aM , we get a representation X ∶ A → Matn(F )

of A. Different choices of bases for M may give rise to different representations, but they will

be similar representations. Conversely, two similar representations will determine isomorphic

A-modules. A representation is irreducible if the module it determines is irreducible.

2.1.4 Characters

Let K be a field of characteristic 0 such that for any of the finite groups G considered below, K

contains the ∣G∣th roots of unity. By Brauer’s Splitting Field Theorem, [57, Ch. 3, Theorem

4.11], K is then a splitting field for G. Let X be a representation of a group algebra KG.

The character of G afforded by X is the function χ ∶ G → K given by χ(g) = tr (X(g)), for

all g ∈ G. The degree of χ is defined to be χ(1) = tr (X(1)). Characters of degree 1 are

called linear characters. A character is called irreducible if it is afforded by an irreducible

representation.

Since tr(AB) = tr(BA) for any n × n matrices A,B, similar representations X and X′

afford equal characters: if X′ = TXT−1 for some invertible n × n matrix T , then tr(X′) =

tr(TXT −1) = tr(T−1TX) = tr(X). If we take one representative of each isomorphism class

of irreducible A-modules, this determines a set of representations which afford the set of

irreducible characters of G, denoted by Irr(G).
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A class function on G is a function which is constant on conjugacy classes. For any

g, h ∈ G, tr(X(hgh−1)) = tr(X(h)X(g)X(h−1))) = tr(X(g)X(h−1)X(h))) = tr(X(g)) since

X is a homomorphism. Therefore characters are class functions. In fact, with the sums of

characters defined by

(χ + θ) (g) = χ(g) + θ(g),

for all θ,χ ∈ Irr(G), and for all g ∈ G, the irreducible characters of G form a basis for the

space of all class functions on G [44, Theorem 2.8]. Therefore any character ψ of G can be

expressed as a sum ψ = ∑ri=1 λiχi where χi are irreducible characters of G and λi, r ∈ N. If

λi ≠ 0 then we say that χi is an irreducible constituent of ψ.

We define an inner product on the space of class functions by

⟨χ, θ⟩ = 1

∣G∣ ∑g∈G
χ(g)θ(g−1),

for any two class functions χ and θ on G. The product of two characters χ and θ of G is

defined by χθ(g) = χ(g)θ(g) for all g ∈ G. Then χθ is also a character of G [44, Corollary 4.2],

although not necessarily irreducible. We say that a character χ is rational valued if χ(g) ∈ Q

for all g ∈ G.

The structure of the centre of the group algebra KG is related to the character theory of

G in the following way. The set of primitive idempotents of Z(KG) has the form [57, Ch. 3,

Theorem 2.22]
⎧⎪⎪⎨⎪⎪⎩
eχ =

χ(1)
∣G∣ ∑g∈G

χ(g−1)g ∣ χ ∈ Irr(G)
⎫⎪⎪⎬⎪⎪⎭
,

and is a basis for Z(KG). Thus any element z ∈ Z(KG) can be expressed as z = ∑χ∈ Irr(G)
ωχ(z)eχ

for some ωχ(z) ∈ K. The map ωχ ∶ Z(KG) → K defines a linear character of Z(KG) known

as the linear character of Z(KG) (or central character of KG) corresponding to χ. Let C be

21



a conjugacy class of G and let Ĉ = ∑x∈C x. Then it can be shown that

ωχ(Ĉ) = ∣G∣χ(x)
∣CG(x)∣χ(1)

,

where x is a representative of the conjugacy class C (see [57, Ch. 3, Theorem 2.23]).

2.1.5 `-modular systems

We are interested in studying the representation theory of finite groups over a field k of positive

characteristic. A triple (K,O, k) is an `-modular system if K is a field of characteristic zero

with complete discrete valuation ν ∶ K → Z ∪ {∞}, O is the valuation ring of ν with unique

maximal ideal m, and k is the residue field O/m of characteristic `. By working over an

`-modular system it is possible to use the representation theory of G over K, and therefore

the character theory of G, to determine properties of the representation theory of G over k.

From now on, let (K,O, k) be an `-modular system in which k is an algebraically closed

field and K contains a ∣G∣th primitive root of unity. Let π ∶ O → k denote the quotient map

and denote the induced map on the group algebras also by π ∶ OG → kG. Many definitions

and results apply to both O and k. If that is the case, then to simplify the notation we will

state these results over R, where it is understood that R could denote either O or k.

2.1.6 Blocks

Blocks can be defined for a general finite dimensional algebra but here we focus on the case of

group algebras. A block idempotent of RG is a primitive idempotent in Z(RG). The sum of

block idempotents ∑ni=1 bi is the unique primitive decomposition of 1RG in Z(RG). For each

block idempotent bi, the algebra RGbi is an indecomposable 2-sided ideal of RG called a block

algebra. The decomposition of RG into its block algebras is the unique decomposition of RG

22



into a direct product of indecomposable factors [3, Lemma 1.8.2],

RG =
n

∏
i=1

RGbi.

The map π ∶ OG → kG induces a bijection between the set of block algebras of OG and the

set of block algebras of kG [3, Section 6.1]. In general we will refer to a block algebra RGb

as an ‘`-block’ (or simply a ‘block’) of G and label it by its block idempotent b rather than

writing the full block algebra RGb. We let Bl(G) denote the set of blocks of RG. Where we

want to explicitly differentiate between blocks of OG and kG, if b is a block of kG then we

denote the corresponding block of OG by b̃.

The block idempotent b̃ of a block of OG is a central idempotent in KG, but it may not be

primitive in Z(KG). Thus since {eχ ∣ χ ∈ Irr(G)} is the unique set of primitive idempotents

in Z(KG), as discussed in the previous section, there exists a subset Γb of Irr(G) such that

b̃ = ∑
χ∈Γb

eχ,

where χ ∈ Γb if and only if b̃eχ = eχ. We say that the irreducible characters in Γb belong to b̃

and b (or are ‘in’ or ‘of’ b̃ and b), and write Irr(b) = Irr(b̃) = Γb. The principal block of RG is

the block containing the trivial character. Let G`′ denote the set of elements g ∈ G such that

` ∤ o(g). Two irreducible characters χ,χ′ ∈ Irr(G) lie in the same block of RG if and only if

for every conjugacy class C of G`′ ,

π (ωχ (Ĉ)) = π (ωχ′ (Ĉ)) ,

(see [57, Ch. 3, Theorem 6.4]).
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2.1.7 The Brauer homomorphism, defect groups and Brauer pairs

Let P be an `-subgroup of G and consider the following map,

BrP ∶ RG Ð→ kCG(P )

∑
g∈G

αgg z→ ∑
g∈CG(P )

αgg,

where αg = π(αg) if R = O and αg = αg if R = k. Let (RG)P denote the fixed points of

RG under the R-linear extension of the conjugation action of P on G. It can be shown that

BrP ∣(RG)P is a surjective homomorphism of R-algebras [47, Proposition 2.2]. This restriction

is called the Brauer homomorphism and is usually also denoted by BrP .

Let b be a block of RG. A defect group of b is a maximal `-subgroup P of G such that

BrP (b) ≠ 0. The defect groups of b form a G-conjugacy class of `-subgroups of G [58, Theorem

4.3]. We define the defect of b to be the positive integer d(b) ∈ N such that ∣P ∣ = `d(b) for any

defect group P of b, and we say that b has defect zero or trivial defect if d(b) = 0. Blocks of

defect zero are well understood as they are isomorphic to a matrix algebra Matn(R) for some

positive integer n [63, Theorem 39.1]. For an integer x ∈ Z, let x` denote the `-part of x. We

have the following very useful collection of characterisations of blocks of defect zero.

Theorem 2.1.6 ([58, Theorem 3.18]). Let b be a block of RG. The following are equivalent.

� b has defect zero

� ∣Irr(b)∣ = 1

� Irr(b) contains a character χ such that χ(1)` = ∣G∣`

� Irr(b) contains a character χ such that χ(g) = 0 for all elements g ∈ G such that ` ∣ o(g)

If a character χ satisfies χ(1)` = ∣G∣` then we say that χ is of `-defect zero.

A Brauer pair of G is a pair (P, b) where P is an `-subgroup of G and b is a block of

RCG(P ). The group G acts on the set of Brauer pairs by conjugation. We write (P1, b1) ⊴
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(P2, b2) if P1 ⊴ P2, b1 is P2 stable, and BrP2(b1)b2 = b2. Then if there exists a sequence of

Brauer pairs (Si, ci), 1 ≤ i ≤ n, such that (P1, b1) ⊴ (S1, c1) ⊴ (S2, c2) ⊴ ⋅ ⋅ ⋅ ⊴ (Sn, cn) ⊴ (P2, b2)

we write (P1, b1) ≤ (P2, b2), and this defines a transitive order relation on the set of Brauer

pairs of G.

If b is a block of RG then a Brauer pair (P, e) is called a b-Brauer pair if (1, b) ≤ (P, e).

A b-Brauer pair (P, b) is called self centralising or centric if Z(P ) is a defect group of b. For

a given block b of RG, a group P is a defect group of b if and only if there exists a block e

of RCG(P ) such that (1, b) ≤ (P, e). If (1, b) ≤ (P, e) and (P, e) is maximal with respect to ≤

then (P, e) is called a maximal b-Brauer pair .

2.1.8 Notation for restricted and induced characters

Let H be a subgroup of G. Suppose that X is a representation of KG affording a character

χ. Then XH is a representation of KH affording the character χH , the restriction of χ to H.

More generally, for any class function χ of G we can consider the restriction χH of χ to H.

Suppose that θ is a class function of H. The class function of G induced from θ is denoted

by θG and defined by

θG(g) = 1

∣H ∣ ∑h∈H
θ′(hgh−1),

where

θ′(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ(g) if g ∈H

0 otherwise.

Frobenius Reciprocity holds for induced and restricted class functions: ⟨θ,χH⟩ = ⟨θG, χ⟩,

for all class functions χ on G and all class functions θ on H [44, Lemma 5.2].

Suppose now that θ is a character of H and let χ ∈ Irr(G). Then since χH is a character

of H, ⟨θ,χH⟩ is a non-negative integer. By Frobenius reciprocity it follows that ⟨θG, χ⟩ is a
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non-negative integer, so θG is a character of G. Note, however, that θG may not be irreducible,

even if θ is an irreducible character of H.

2.1.9 Normal subgroups

Let N be a normal subgroup of G and let θ ∈ Irr(N). There is a natural action of G on the

irreducible characters of N . For any g ∈ G, define gθ by

gθ(n) = θ(gng−1)

for all n ∈ N . It can be shown that gθ is an irreducible character of N [44, Lemma 6.1].

Because N itself acts trivially, in fact this defines an action of G/N on Irr(N).

Let χ ∶ G→K be an irreducible character of G. The restriction χN ∶ N →K of χ to N is a

character of N but it may not be irreducible. If θ ∈ Irr(N) is an irreducible constituent of χN

then we say that χ covers θ and we let Irr(G ∣ θ) denote the set of irreducible characters of G

covering θ. A powerful result from Clifford allows us to work with restrictions of characters

in a practical way. Let θ be an irreducible constituent of χN and let {θi}ri=1 denote the set of

G-conjugates of θ. Then

χN = e
r

∑
i=1

θi,

where e = ⟨χN , θ⟩ is the multiplicity of θ in χN [44, Theorem 6.2].

The inertial group of an irreducible character θ of N is the stabilizer of θ under the action

of G,

IG(θ) = {g ∈ G ∣ gθ = θ}.

By the Orbit-Stabilizer theorem, θ has ∣G ∶ IG(θ)∣ conjugates under G, so r = ∣G ∶ IG(θi)∣ in

Clifford’s result above. The irreducible characters of G covering θ are closely related to the

irreducible characters of IG(θ) covering θ: if ψ ∈ Irr(IG(θ) ∣ θ) then ψG is irreducible and also
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covers θ. In fact, the induction map defines a bijection known as the Clifford correspondence

Irr(IG(θ) ∣ θ) Ð→ Irr(G ∣ θ)

ψ z→ ψG,

[44, Theorem 6.11]. In many situations, therefore, we can work over IG(θ) instead of G and

assume that the character θ is G-stable.

Let θ ∈ Irr(N) and suppose that θG = ∑ti=1 fiχi for some positive integers t and fi. By

Frobenius Reciprocity θ is an irreducible constituent of χiN for each i. We say that θ is

extendible if there exists a χ ∈ Irr(G) such that χN = θ. In block theory, many questions

about blocks of G can be answered by looking at the blocks of a normal subgroup N , and

at the connections between the character theory of N and G. If θ extends to χ then clearly

θ is invariant under the action of G. It is not true in general that G-stable characters are

extendible, however, but we will often use the following fact: if G/N is cyclic and θ ∈ Irr(N)

is invariant under the action of G, then θ is extendible to G [44, Corollary 11.22].

In the following Lemma for a character θ ∈ Irr(G), let θ ∈ Irr(G) denote the character

given by θ(g) = θ(g−1) for all g ∈ G.

Lemma 2.1.7. Suppose N �G are finite groups such that G/N is abelian. Let χ ∈ Irr(N)

and θ1, θ2 ∈ Irr(G ∣ χ). Then there exists a linear character η ∈ Irr(G/N) such that θ2 = ηθ1.

Proof. The character χχ is a constituent of (θ1θ2)N . Let 1N denote the trivial character of N .

Since ⟨χχ,1N ⟩ = ⟨χ,χ⟩ = 1, 1N is an irreducible constituent of χχ. It follows that there exists

some irreducible constituent η of θ1θ2 which covers 1N . Thus η ∈ Irr(G/N) and ⟨η, θ1θ2⟩ ≠ 0.

However, ⟨η, θ1θ2⟩ = ⟨ηθ1, θ2⟩, so since ηθ1 and θ2 are both irreducible characters, it follows

that θ2 = ηθ1 as required.
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2.1.10 Covering blocks

Let N �G. The action of G on the irreducible characters of N is reflected in an action of G

on the blocks of RN . If b is a block of RN then gb = gbg−1 is a G-conjugate block of b and it

contains characters {gχ ∣ χ ∈ Irr(b)}. Let {b1, . . . , bn} be the orbit of a block b of RN under

the action of G, and let f = ∑ni=1 bi. Then f is an idempotent in RG such that

gf =
n

∑
i=1

gbi =
n

∑
i=1

bi = f

for any g ∈ G, so in fact f is a central idempotent of RG. Let f = ∑mi=1Bi be a primitive

idempotent decomposition of f in Z(RG). Each Bi is a central primitive idempotent of RG,

that is, a block idempotent of RG. We say that the blocks Bi cover b, for 1 ≤ i ≤ m, and we

let Bl (G ∣ b) denote the set of blocks in RG covering b.

Lemma 2.1.8. Let N �G. A block B of RG covers a block b of RN if and only if Bb ≠ 0.

Proof. Let b be a block of RN and let {b1, . . . , bn} be the orbit of b under the action of G.

Let f = ∑ni=1 bi and let ∑mi=1Bi be a primitive idempotent decomposition of f in Z(RG). A

block B of RG covers b if and only if B = Bj for some 1 ≤ j ≤ m. This holds if and only if

Bf ≠ 0, in other words, ∑ni=1Bbi ≠ 0.

Note that if br = gbg−1 is conjugate to b for some g ∈ G, then Bbr = B(gbg−1) = g(Bb)g−1,

so either Bb = Bbr = 0, or both Bb ≠ 0 and Bbr ≠ 0. It follows that ∑ni=1Bbi ≠ 0 if and only if

Bb ≠ 0 as required.

We note a few facts about covering blocks. Firstly, the set of blocks of RN covered by

a block B of RG form a G-conjugacy class of Bl(N) [57, Ch. 5, Lemma 5.3]. If G/N is an

`-group, then a block b of RN is covered by a unique block B of RG [57, Ch. 5, Corollary 5.6],

but in general, a block of RN can be covered by multiple blocks of RG. If B covers b then for

every χ ∈ Irr(B), each irreducible constituent of χN is contained in some G-conjugate block

of b, and for every θ ∈ Irr(b), there exists a χ ∈ Irr(B) such that θ is an irreducible constituent
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of χN . On the other hand, if b is a block of RN containing an irreducible character θ, and if

B is a block of RG containing a character χ such that θ is an irreducible contituent of χN ,

then B covers b. [57, Ch. 5, Lemma 5.7 and 5.8].

Like the stabilizer of a character, the stabilizer of a block b of RN under the action of G

plays an important role in the theory of covering blocks. Let b be a block of RN . The inertial

group of b is defined by

IG(b) = {g ∈ G ∣ gb = b}.

By Fong-Reynolds [57, Ch. 5, Theorem 5.10] there exists a bijection

Bl (IG(b) ∣ b) Ð→ Bl (G ∣ b)

such that if B0 ∈ Bl (IG(b) ∣ b) corresponds to B ∈ Bl (G ∣ b) under this bijection then

R (IG(b))B0 is Morita equivalent to RGB [51, Theorem C]. Similar to the character theory

situation where it is often possible to assume that a character θ of N is G-stable, we can often

work over IG(b) instead of G and assume that b is a G-stable block.

Let b be a block of RN and suppose that B ∈ Bl (G ∣ b). Choose a defect group P of

B such that P ≤ IG(b) (this is always possible by [3, Theorem 6.4.1 (ii)]). Then P ∩N is a

defect group of b by [57, Ch. 5, Theorem 5.16 (ii)]. If G/N is an `′-group then P ∩N = P so

in particular, when G/N is an `′-group any defect group of b is a defect group of B.

The linear characters of G form an abelian group with multiplication given by the usual

product of characters – for two linear characters χ1 and χ2 of G, χ1χ2(g) = χ1(g)χ2(g) for

all g ∈ G. The trivial character acts as identity in this group. There is an action of the linear

characters of G on Irr(G) which respects blocks. Let θ be a linear character of G and consider
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the following R-algebra isomorphism.

ϕθ ∶ RG Ð→ RG

∑g∈G αgg z→ ∑g∈G αgθ (g−1) g.

Suppose that B is a block of RG. Then ϕθ(B) is a block of RG which we denote by θB,

containing irreducible characters {θχ ∣ χ ∈ Irr(B)}.

Lemma 2.1.9. Let N be a normal subgroup of G such that G/N is abelian and suppose that

B and B′ are blocks of RG. Then B and B′ cover the same block of RN if and only if B′ = θB

for some linear character θ of G/N . In particular, if B and B′ cover the same block of RN

then RGB ≅ RGB′ as R-algebras.

Proof. First suppose that B′ = θB for some linear character θ of G/N . Then for every

χ ∈ Irr(B), χN = (θχ)N so the irreducible characters of B and of B′ cover the same set of

irreducible characters of N . Hence B and B′ cover the same blocks of RN .

Now suppose that B and B′ are blocks of RG which cover the same block b of RN . Let

ψ ∈ Irr(b). Then there exists a χ ∈ Irr(B) and a χ′ ∈ Irr(B′) such that ψ is an irreducible

constituent of χN and χ′N . Therefore χ = θχ′ for some linear character θ ∈ Irr(G/N) by

Lemma 2.1.7. Hence B′ = θB.

2.1.11 Dominating blocks

Another approach to understanding the blocks of RG is to study the blocks of its quotient

groups G/N for normal subgroups N . Let N �G, let G = G/N and denote the quotient map

by µ ∶ G→ G. Extend µ linearly to an R-algebra homomorphism

µ ∶ RG Ð→ RG

∑g∈G αgg z→ ∑g∈G αgµ(g),
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for all ∑g∈G αgg ∈ RG. Since µ ∶ RG Ð→ RG is surjective, µ maps elements in Z(RG) to

elements in Z(RG). It follows that for any block B of RG, µ(B) is either 0, or a central

idempotent of RG. If µ(B) ≠ 0 then let µ(B) = ∑ni=1Bi denote a primitive idempotent

decomposition of µ(B) in Z(RG). We say that B dominates the blocks Bi of RG, for

1 ≤ i ≤ n.

The notion of dominance of blocks over O and dominance of blocks over k is compatible

with the relation between O and k: a block b of kG dominates a block c of kG if and only if

the corresponding block b̃ of OG dominates the corresponding block c̃ of OG.

Let 1RG = ∑b∈Bl(G)
b be the unique primitive decomposition of 1RG in Z(RG), and let

1RG = ∑B∈Bl(G)
B be the unique primitive decomposition of 1RG in Z(RG). By applying µ

to 1RG we see that

∑
b∈Bl(G)

b = ∑
B∈Bl(G)

µ(B).

Since each b ∈ Bl (G) appears precisely once in the sum it follows that bµ(B) = b for exactly

one block B of RG. Therefore each block of RG is dominated by a unique block of RG. On

the other hand, a block B of RG does not necessarily dominate any block of RG, and if B

does dominate some block of RG, then in general B dominates multiple blocks of RG.

The following Lemma collects together some other useful facts about block domination.

Note that we consider Irr(G) ⊆ Irr(G) by identifying χ ∈ Irr(G) with χ ○ µ ∈ Irr(G).

Lemma 2.1.10. Let B be a block of RG, N �G and G = G/N .

(a) B dominates a block of RG if and only if it covers the principal block of RN

(b) If N ≤ Z(G) and B dominates some block of RG, then B dominates a unique block of

RG

(c) If N is an `′-group (not necessarily central) and B dominates some block of RG, then B

dominates a unique block B of RG and RGB ≅ RGB as R-algebras
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Proof. By [57, Ch. 5, Lemma 8.6 (i)], B dominates a block of RG if and only if B contains a

character χ such that N ≤ ker χ. If this is the case then χ(n) = χ(1) for all n ∈ N so χ covers

the trivial character of N . Since the trivial character of N is contained in the principal block

of RN , it follows that B covers the principal block of RN . On the other hand, if B covers

the principal block of RN then there exists a χ ∈ Irr(B) covering the trivial character of N ,

so N ≤ ker χ. Thus B dominates a block of RG, showing part (a).

Part (b) is a special case of [57, Ch. 5 Theorem 8.11].

Finally for part (c), suppose that N is an `′-subgroup of G and that B dominates a block

B of RG. By [57, Ch. 5, Theorem 8.8], B is the unique block of RG dominated by B and

Irr(B) = Irr(B). Therefore µ(B) = B, so µ restricts to the surjection

µ ∶ RGB Ð→ RGB

(∑g∈G αgg)B z→ (∑g∈G αgµ(g))B,

for all ∑g∈G αgg ∈ RG. Since dimR(RGB) = ∑χ∈Irr(B)
χ(1)2 and Irr(B) = Irr(B), it follows

that dimR(RGB) = dimR(RGB) so µ ∶ RGB → RGB is injective. Therefore RGB ≅ RGB as

R-algebras, showing part (c).

2.2 Methods

In this section let G be a finite group and let (K,O, k) be an `-modular system in which k is

algebraically closed and K contains the ∣G∣th roots of unity.
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2.2.1 Galois conjugation

Let σ ∶ k → k denote the Frobenius automorphism given by λ↦ λ` for all λ ∈ k. We also let σ

denote the induced Galois conjugation map σ ∶ kG→ kG defined by

σ
⎛
⎝∑g∈G

αgg
⎞
⎠
= ∑
g∈G

α`gg

for all ∑g∈G αgg ∈ kG. Although not an isomorphism of k-algebras, Galois conjugation is a

ring isomorphism so it permutes the blocks of kG. Let b be a block of kG. We call σ(b) (or

kGσ(b)) the Galois conjugate of b (respectively kGb), and we say that two blocks b and c of

kG are Galois conjugate if b = σn(c) for some positive integer n. Corresponding blocks b̃ and

c̃ of OG are said to be Galois conjugate if b and c are Galois conjugate. Note that defect

groups are preserved by Galois conjugation.

We fix an automorphism σ̂ ∶ K → K such that σ̂(ζ) = ζ` for any `′-root of unity ζ in K.

Then σ̂ induces an ring automorphism of KG via

σ̂
⎛
⎝∑g∈G

αgg
⎞
⎠
= ∑
g∈G

σ̂(αg)g

for all ∑g∈G αgg ∈KG, and an action on Irr(G) via

σ̂χ(g) = σ̂(χ(g))

for all χ ∈ Irr(G), g ∈ G. Note that although σ̂ may not preserve O, it induces an action

on the set of blocks of OG compatible with the action of σ on the blocks of kG [48, Lemma

3.1 (ii)]. The following Lemma shows this more precisely, and also shows that the irreducible

characters of σ(b) are the images of the irreducible characters of b under σ̂.

Lemma 2.2.1. Let b be a block of kG and b̃ be the corresponding block of OG. Then

(a) σ̂ (b̃) = σ̃ (b), and
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(b) Irr(σ (b)) = {σ̂χ ∣ χ ∈ Irr (b)}.

Proof. For part (a), see [48, Lemma 3.1]. For part (b), we first note that the following holds

for any χ ∈ Irr(G).

σ̂ (eχ) = σ̂
⎛
⎝
χ(1)
∣G∣ ∑g∈G

χ(g−1)g
⎞
⎠

= χ(1)
∣G∣ ∑g∈G

σ̂ (χ(g−1)) g

=
σ̂χ(1)
∣G∣ ∑

g∈G

σ̂χ(g−1)g

= eσ̂χ

Suppose that χ ∈ Irr(b). Then

σ̃ (b)eσ̂χ = σ̂ (b̃) σ̂(eχ) = σ̂ (b̃eχ) = σ̂ (eχ) = eσ̂χ,

so σ̂χ ∈ Irr(σ (b)), showing that {σ̂χ ∣ χ ∈ Irr(b)} ⊆ Irr(σ (b)).

On the other hand, for any ψ ∈ Irr(σ (b)), since σ̂ is an automorphism of K we can define

a character χ ∈ Irr(G) by χ(g) = σ̂−1 (ψ(g)) for all g ∈ G, so σ̂χ = ψ. Since ψ ∈ Irr(σ (b)),

σ̃ (b)eψ = eψ, so

σ̂ (b̃eχ) = σ̂(b̃)σ̂(eχ) = σ̃ (b)eσ̂χ = σ̃ (b)eψ = eψ = eσ̂χ = σ̂(eχ).

Therefore b̃eχ = eχ so χ ∈ Irr(b), hence Irr(σ (b)) ⊆ {σ̂χ ∣ χ ∈ Irr (b)} and the result follows.

When discussing blocks of RG, we will use σ (b) to denote either σ (b) if R = k or σ̂(b̃)

if R = O. The following Lemma is crucial when using Galois conjugation and the theory of

covering and dominating blocks to calculate the Morita Frobenius numbers of blocks of kG.

Lemma 2.2.2. Let N �G. Let B be a block of RG, let b be a block of RN and let B be a

block of R (G/N). Then
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(a) B covers b if and only if σ(B) covers σ(b), and

(b) B dominates B if and only if σ(B) dominates σ(B).

Proof. First recall that B covers b if and only if Bb ≠ 0 by Lemma 2.1.8. This holds if and

only if σ (B)σ (b) = σ(Bb) ≠ 0 because σ is a ring isomorphism, thus if and only if σ (B)

covers σ (b) showing part (a).

Now recall that by [57, Ch. 5, Lemma 8.6 (ii)], B dominates B if and only if Irr(B) ⊆

Irr(B). This holds if and only if we have the following.

Irr (σ (B)) = {σ̂χ ∣ χ ∈ Irr (B)} ⊆ {σ̂χ ∣ χ ∈ Irr(B)} = Irr(σ (B))

Therefore B dominates B if and only if σ (B) dominates σ (B), as required for part (b).

Lemma 2.2.3. Let b be a block of RG and suppose that (P, e) is a (maximal) b-Brauer pair.

Then (P,σ(e)) is a (maximal) σ(b)-Brauer pair and

NG(P, e)/PCG(P ) ≅ NG(P,σ(e))/PCG(P ).

Proof. Since (P, e) is a b-Brauer pair, (1, b) ≤ (P, e). Thus there exists a sequence of Brauer

pairs (Si, ci), 1 ≤ i ≤ n, such that (1, b) ⊴ (S1, c1) ⊴ (S2, c2) ⊴ ⋅ ⋅ ⋅ ⊴ (Sn, cn) ⊴ (P, e). Then

BrS1(b)c1 = c1, so σ(BrS1(b)c1) = σ(c1) and therefore BrS1(σ(b))σ(c1) = σ(c1). Hence

(1, σ(b)) ⊴ (S1, σ(c1)). Applying the same argument at each ⊴, it follows that (1, σ(b)) ≤

(P,σ(e)), therefore (P,σ(e)) is a σ(b)-Brauer pair. Clearly (P,σ(e)) is maximal if (P, e) is

maximal, and since NG(P, e) ≅ NG(P,σ(e)), the last part of the statement also holds.

2.2.2 Calculating Morita Frobenius numbers

The following important observation allows us to study the Galois conjugate of a block rather

than its Frobenius twist.

35



Lemma 2.2.4. There is a k-algebra isomorphism kGb(`) ≅ kGσ (b) between the first Frobenius

twist of kGb and the Galois conjugate of kGb.

Proof. By definition, kGb(`) and kGσ (b) are isomorphic as rings. As in Definition 2.1.1,

denote scalar multiplication in kGb(`) by λ.x for λ ∈ k and x ∈ kGb(`). Let ∑g∈G αgg ∈ kGb(`)

and λ ∈ k. Then

σ
⎛
⎝
λ.

⎛
⎝∑g∈G

αgg
⎞
⎠
⎞
⎠
= σ

⎛
⎝∑g∈G

λ
1
`αgg

⎞
⎠
=
⎛
⎝∑g∈G

λα`gg
⎞
⎠
= λσ

⎛
⎝∑g∈G

αgg
⎞
⎠

so σ ∶ kGb(`) → kGσ(b) is k-linear and therefore kGb(`) ≅ kGσ (b) as k-algebras.

The following proposition contains our most useful tools for calculating Morita Frobenius

numbers.

Proposition 2.2.5. Let b be a block of kG. Suppose that one of the following holds.

(a) b̃ ∈ QG

(b) Irr(b) contains a subset of characters {χ1, . . . , χr} for some r ≥ 1, such that for all g ∈ G

(χ1 + ⋅ ⋅ ⋅ + χr) (g) ∈ Q

(c) There exists an irreducible character of `-defect zero in b

(d) The defect groups of b are cyclic, dihedral or semi-dihedral

Then mf (b) = 1. Moreover, if (a), (b) or (c) holds then frob (b) = 1.

Proof. Let σ̂ ∶ K → K be the automorphism fixed in Section 2.2.1. Clearly σ̂ acts as the

identity on Q. Suppose that b̃ = ∑g∈G αgg ∈ QG. Then σ̂ (b̃) = ∑g∈G σ̂(αg)g = ∑g∈G αgg = b̃, so

σ̂ stabilizes b̃. Since the action of σ̂ on the blocks of OG is compatible with the action of σ on

the blocks of kG as shown in Lemma 2.2.1, therefore σ (b) = b. It follows from Lemma 2.2.4

that kGb(`) ≅ kGσ (b) ≅ kGb as k-algebras. Therefore frob(b) = 1 and thus mf (b) = 1 by

Lemma 2.1.5, showing part (a).
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Suppose that there exists a set of characters of b, {χ1, . . . , χr} ⊂ Irr(b) for some r ≥ 1, such

that (χ1 + ⋅ ⋅ ⋅ + χr) (g) ∈ Q for all g ∈ G. Then

(σ̂χ1 + ⋅ ⋅ ⋅ + σ̂χr) (g) = σ̂ ((χ1 + ⋅ ⋅ ⋅ + χr)(g)) = (χ1 + ⋅ ⋅ ⋅ + χr) (g)

for all g ∈ G. It follows that {σ̂χ1, . . . ,
σ̂χr} and {χ1, . . . , χr} are equal as sets of irreducible

characters, so σ (b) = b by Lemma 2.2.1 (b). Therefore frob(b) = mf (b) = 1 following the same

argument as in part (a).

By Theorem 2.1.6, if b contains a character of `-defect zero then b has trivial defect, hence

kGb is a matrix algebra. As discussed in Section 2.1.1, it follows that b has an F`-form and

therefore frob(b) = 1. Hence mf (b) = 1 by Lemma 2.1.5 showing part (c).

If b has cyclic defect then its basic algebras are Brauer tree algebras, so they are defined

over F`. By results of Erdmann given in [28, Tables starting page 294], if b has dihedral or

semi-dihedral defect then its basic algebras are defined over F2. Thus if b has cyclic, dihedral

or semi-dihedral defect then the Frobenius number of any basic algebra of b is 1, so mf (b) = 1

by Lemma 2.1.5.

Lemma 2.2.6. Let b be a block of kG. Suppose that there exists a group automorphism

ϕ ∈Aut (G) such that for R = O or R = k, the induced R-algebra isomorphism ϕ ∶ RG → RG

satisfies ϕ(b) = σ (b). Then frob (b) = mf (b) = 1.

Proof. If R = O and ϕ ∶ OG → OG is such that ϕ (b̃) = σ̂ (b̃) then ϕ ∶ OG → OG induces

a k-algebra isomorphism ϕ ∶ kG → kG such that ϕ(b) = σ (b). Thus when R = O or R = k,

ϕ∣kGb ∶ kGb→ kGσ (b) is a k-algebra isomorphism so kGb ≅ kGσ (b) as k-algebras. It follows

that kGb ≅ kGb(`) as k-algebras by Lemma 2.2.4, so frob(b) = 1, whence mf (b) = 1 by

Lemma 2.1.5.

For the next Lemma we define a map φ ∶ H2(G;k×) → H2(G;k×) as follows. Let

γ ∈H2(G;k×) and let γ̃ be a 2-cocycle representing γ. Define φ(γ) to be the class in H2(G;k×)
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represented by the 2-cocycle given by

(g, h) z→ φ (γ̃ (g, h)) ,

for all g, h ∈ G. It is easy to check that φ is a well-defined group homomorphism on H2(G;k×).

Lemma 2.2.7. Let G be a finite group such that H2(G;k×) ≅ C2 and let γ ∈H2(G;k×). Then

frob (kγG) = mf (kγG) = 1.

Proof. Let φ ∶ H2(G;k×) → H2(G;k×) be as defined above. If γ is non-trivial then is φ(γ)

is also non-trivial since φ is a group homomorphism. Thus, since H2(G;k×) ≅ C2, it follows

that kγG ≅ kφ(γ)G as k-algebras.

Recall that kγG
(`) ≅ kγG as rings but not necessarily as k-algebras, and that scalar mul-

tiplication in kγG
(`) is given by λ.x = λ 1

` x for all λ ∈ k, x ∈ kγG. Let ϕ ∶ kφ(γ)G → kγG
(`) be

the map defined by

ϕ
⎛
⎝∑g∈G

αgg
⎞
⎠
= ∑
g∈G

α
1
`
g g

for all ∑g∈G αgg ∈ kφ(γ)G. This is a ring isomorphism, and

ϕ
⎛
⎝
λ∑
g∈G

αgg
⎞
⎠
= ∑
g∈G

(λαg)
1
` g = λ

1
` ∑
g∈G

α
1
`
g g = λ.ϕ

⎛
⎝∑g∈G

αgg
⎞
⎠

for all λ ∈ k and ∑g∈G αgg ∈ kφ(γ)G, so ϕ is in fact an isomorphism of k-algebras. Therefore

kγG ≅ kφ(γ)G ≅ kγG(`) as k-algebras, so frob(kγG) = 1, hence mf (kγG) = 1.

Lemma 2.2.8. Suppose that there exists a finite group Ĝ such that G� Ĝ and for all blocks

b̂ of kĜ, either b̂ has cyclic, dihedral or semi-dihedral defect or σ (b̂) = b̂. Then mf (b) = 1 for

all blocks b of kG.

Proof. First suppose that b is covered by some block b̂ of kĜ which has cyclic, dihedral or

semi-dihedral defect. Then, as discussed in Section 2.1.10, there exists some defect group P
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of b̂ such that P ≤ IĜ(b) and P ∩G is a defect group of b. Thus the defect groups of b are also

cyclic, dihedral or semi-dihedral. Therefore mf (b) = 1 by Proposition 2.2.5 (d).

Now suppose that b is covered by a block b̂ of kĜ such that σ(b̂) = b̂. Then σ (b) is also

covered by b̂, by Lemma 2.2.2 (a). Hence b and σ (b) are in the same Ĝ-orbit, so there is

a group automorphism of G whose induced k-algebra automorphism of kG sends b to σ (b).

Therefore frob(b) = mf (b) = 1 by Lemma 2.2.6.

Lemma 2.2.9. Let b be a block of kG and suppose that b dominates a block b̄ of k (G/N)

such that σ (b̄) = b̄. Then frob (b) = mf (b) = 1.

Proof. By Lemma 2.2.2 (b), σ (b) dominates σ (b̄), and by assumption, σ(b̄) = b̄. Therefore b

and σ (b) both dominate b̄. Since every block of k(G/N) is dominated by a unique block of

kG, as discussed in Section 2.1.11, it follows that b = σ (b). Therefore frob(b) = mf (b) = 1 by

Lemmas 2.2.4 and 2.1.5.

2.3 The connection to Donovan’s conjecture

As discussed in the Introduction, Donovan’s conjecture is one of the important open questions

in modular representation theory today.

Conjecture 2.3.1 (Donovan’s Conjecture [1, Conjecture M]). Let P be a finite `-group. Then

there are finitely many Morita equivalence classes of blocks of finite group algebras with defect

groups isomorphic to P .

Donovan’s conjecture dates from the 1960’s. It is open in general but is known to hold in

some specific cases. For example, if P is cyclic then results of Dade, Janusz and Kupisch show

that there are finitely many Morita equivalence classes of blocks of finite group algebras with

defect groups isomorphic to P . Erdman proved that Donovan’s conjecture holds for dihedral

and semi-dihedral P [28]. More recently, Eaton-Kessar-Külshammer-Sambale showed that

Donovan’s conjecture holds if P is an elementary abelian 2-group [25]. On the other hand, it
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is also known that if we only consider the blocks of finite group algebras for certain families

of groups, then Donovan’s conjecture holds for any P . For example, Külshammer showed in

[51] that the finite group algebras of the family of `-solvable groups only contribute finitely

many Morita equivalence classes of blocks with defect groups isomorphic to P , for any given

`-group P .

Külshammer proved a reduction to Donovan’s conjecture in [52, Section 5]. He showed

that in order to prove Donovan’s conjecture it is enough to show that for any finite `-group

P , there are only finitely many Morita equivalence classes of blocks of kG with defect groups

isomorphic to P for finite groups of the form G = ⟨P g ∣ g ∈ G⟩, generated by conjugates of P .

The Cartan matrix of a finite dimensional k-algebra A is a square matrix (cij) where

entry cij is the number of composition factors in a composition series of the jth projective

indecomposable A-module which are isomorphic to the ith simple A-module. We can now

state Weak Donovan’s conjecture, which, as the name suggests, is implied by Donovan’s

conjecture.

Conjecture 2.3.2 (Weak Donovan’s Conjecture). Let P be a finite `-group. Then there are

finitely many Cartan matrices of blocks of finite group algebras with defect groups isomorphic

to P .

In 1999, Düvel proved that Weak Donovan’s conjecture can be reduced to blocks of quasi-

simple finite groups [24]. Weak Donovan has also been proved in particular situations, for

example the following two cases which we will use in Section 5.2.3.

Theorem 2.3.3 ([40, Theorem 8.6 (b) and Theorem 8.8 (c)]). Let G1 = {SLn(q) ∶ n ∈ N, q = pa

for some prime p ≠ `, a ∈ N} , and let G2 = {SUn(q) ∶ n ∈ N, q = pa for some prime p ≠ ` and

some a ∈ N such that ` ∤ q2s+1 + 1 ∀ s ∈ N} . Then Weak Donovan’s conjecture holds for the

`-blocks of groups in G1 and G2.

The connection between Donovan’s conjecture and Morita Frobenius numbers was made by

Kessar in 2004 [46]. Let P be a finite `-group and consider a block B of a finite group algebra
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kG with defect groups isomorphic to P . As mentioned in Section 2.2.1, Galois conjugation

preserves defect groups. Since the Frobenius twist of B is isomorphic to its Galois conjugate

by Lemma 2.2.4, B and its Frobenius twists have the same defect group. Hence if Donovan’s

conjecture holds, then there are only finitely many Morita equivalence classes of Frobenius

twists of B. It follows that the Morita Frobenius number of B is bounded by some number

which depends only on the defect group, P , of B. In particular, Donovan’s conjecture implies

the following conjecture.

Conjecture 2.3.4 (Rationality Conjecture [46, Conjecture 1.3]). Let P be a finite `-group.

The Morita Frobenius numbers of blocks of finite group algebras with defect groups isomorphic

to P are bounded by a function which depends only on ∣P ∣.

It turns out that the Rationality conjecture is precisely the ‘gap’ between Donovan’s

conjecture and Weak Donovan’s conjecture. This was proved by Kessar in [46], and it is this

connection between Morita Frobenius numbers and Donovan’s conjecture that provides the

main motivation for our research.

Theorem 2.3.5 ([46, Theorem 1.4]). Let P be a finite `-group. Conjecture 2.3.1 holds if and

only if both Conjecture 2.3.2 and Conjecture 2.3.4 hold.

Remark 2.3.6. In the introduction we mentioned the family of algebras of quaternion type

which are described in [26]. These algebras are known to satisfy Weak Donovan’s conjecture,

but there exist algebras in this family with arbitrarily large structure constants so they do

not all satisfy the Rationality conjecture. Blocks with quaternion defect groups fall into this

family of algebras. However, it is not known whether the algebras of quaternion type with

arbitrarily large structure constants arise as blocks with quaternion defect. If they do then

thanks to Theorem 2.3.5, these would be counter examples to Donovan’s conjecture.

Although there is currently no reduction theorem for the Rationality conjecture, investi-

gating the Morita Frobenius numbers of the quasi-simple finite groups is an important first

step towards a proof of the conjecture.
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Chapter 3

Morita Frobenius numbers of blocks

of quasi-simple groups not of Lie

type

3.1 The symmetric and alternating groups and their double

covers

The ordinary representation theory of the symmetric group is very well understood. Here we

present only the parts of this theory which are essential to our proofs. More information can

be found in [56] and [45].

Let Sn denote the symmetric group on n letters for some positive integer n. A partition of

n is a sequence of positive integers λ = (λ1, . . . , λm) called parts, such that ∣λ ∣ = λ1+⋅ ⋅ ⋅+λm = n

and λi ≥ λi+1 for all 1 ≤ i ≤ m − 1. A partition is called strict if λi > λi+1 for all 1 ≤ i ≤ m − 1.

The parity of λ is

ε(λ) =
⎧⎪⎪⎨⎪⎪⎩

1 if n −m is even,

−1 otherwise.
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An element g ∈ Sn is a permutation so g can be expressed as a product of disjoint cycles.

The cycle type of g is the sequence µg = (µ1, . . . , µl) of the lengths of the disjoint cycles of g,

and it is uniquely determined up to order. A permutation g ∈ Sn is called even if it is the

composition of an even number of transpositions, otherwise g is called odd . We say that g

has odd cycle type if and only if all of its disjoint cycles are odd.

The irreducible characters of Sn are labelled by partitions of n. The character values can

be calculated using the Murnaghan-Nakayama recursion formula [45, 2.4.7], and it is clear

from this formula that χ(g) ∈ Q for all g ∈ G, for any irreducible character χ of Sn.

Proposition 3.1.1. Suppose that b is a block of kSn. Then frob (b) = mf (b) = 1.

Proof. Since all characters of Sn are rational valued the result follows immediately from

Proposition 2.2.5 (b).

Let An denote the alternating group on n letters – that is, the normal subgroup of Sn

containing all even permutations. The irreducible characters of An arise as constituents of

restrictions of irreducible characters of Sn and the blocks of kAn are covered by the blocks if

kSn. More details about the block structure of kAn can be found in [60, Section 12].

Proposition 3.1.2. Suppose that b is a block of kAn. Then frob (b) = mf (b) = 1.

Proof. This follows immediately from the proof of Lemma 2.2.8 because An�Sn and σ(b̂) = b̂

for every block b̂ of kSn.

Definition 3.1.3. Define S̃n to be a double cover of Sn generated by elements {z, t1, . . . , tn−1}

such that z2 = 1, and for all 1 ≤ i, j ≤ n − 1, (titj)mij = z where mii = 1 and

mij =
⎧⎪⎪⎨⎪⎪⎩

3 if i − j = ±1,

2 otherwise.

We define S̃0 = S̃1 = ⟨z ∣ z2 = 1⟩ and let θ ∶ S̃n → Sn denote the surjective map sending

ti ↦ (i, i + 1) with kernel ⟨z⟩.
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This definition is just one of two possible ways to define a double cover of Sn. Let Ŝn

denote the other double cover of Sn. If n = 6, S̃n and Ŝn are isomorphic but for general n

they are non-isomorphic [41, Theorem 2.12]. There is a one-to-one correspondence between

the faithful irreducible characters of S̃n and Ŝn for all n, however, and all results below still

apply if we replace Ŝn by S̃n. For further information see [41, Chapter 2].

Suppose that λ = (λ1, . . . , λm) is a strict partition of n and let e be a positive integer.

Then we say that a partition µ of n − e is obtained from λ by removing an e-bar if one of the

following holds:

� λi = e for some i ∈ {1, . . . ,m} and the parts of µ are {λ1 . . . , λi−1, λi+1, . . . , λm};

� λi > e for some i ∈ {1, . . . ,m} such that λi − e is not a part of λ, and the parts of µ are

{λ1, . . . , λi−1, λi − e, λi+1, . . . , λm}; or

� λi+λj = e for some i ≠ j in {1, . . . ,m} and the parts of µ are {λ1, . . . , λi−1, λi+1, . . . , λj−1,

λj+1, . . . , λm}.

Suppose that there exists a chain of strict partitions λ = λ(0), . . . , λ(t) = η such that λ(i)

is obtained from λ(i−1) by removing an e-bar for 1 ≤ i ≤ t. Then if there does not exist a

partition of n − (t + 1)e which can be obtained by removing an e-bar from η, η is called an

e-bar core of λ.

The block theory of S̃n is discussed in [13] and [59]. S̃n has two types of characters –

non-faithful characters with ⟨z⟩ in their kernel which correspond to the characters of Sn, and

faithful characters known as spin characters. Spin characters are parametrized by the strict

partitions of n with a strict partition λ labelling a unique spin character if ε(λ) = −1 and

labelling a pair of spin characters called associates if ε(λ) = 1. The distribution of irreducible

characters of S̃n into `-blocks for odd ` is given in [13, Theorems A and B].

The cycle type of g ∈ S̃n is defined to be the cycle type of θ(g), its image in Sn. When

g ∈ S̃n has odd cycle type then by results of Schur and Morris (see [13, Theorems 3 (1) and 7]),

the values of the spin characters on g can be calculated using an analogue of the Murnaghan
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Nakayama formula. In particular, χ(g) ∈ Q for every spin character χ of S̃n if g has odd cycle

type.

Proposition 3.1.4. Suppose that b is a block of kS̃n. Then mf (b) = 1.

Proof. Let b be a block of kS̃n. First we consider the case when ` = 2. The 2-blocks of S̃n are

in one-to-one correspondence with the 2-blocks of Sn by [57, Ch. 5, Theorem 8.11]. Therefore

each 2-block of S̃n contains at least one rational valued character of Sn, so σ (b) = b and

frob(b) = mf (b) = 1 by Proposition 2.2.5 (b).

Assume now that ` is odd. Then Sn is a quotient of S̃n by a central `′-subgroup, so by

Lemma 2.1.10 (c), kS̃n has two types of blocks – blocks which dominate unique blocks of kSn,

and blocks which do not dominate any block of kSn. Suppose first that b dominates a block b̄

of kSn and recall that then b is the unique block dominating b̄. Then since σ (b̄) = b̄ it follows

from Lemma 2.2.2 that σ (b) = b and frob(b) = mf (b) = 1.

Now suppose that b does not dominate a block of kSn. Then Irr(b) contains only spin

characters. Let χ be one such character and suppose that χ is labelled by a strict partition

λ of n. If ε(λ) = 1 then χ is the unique character labelled by λ, and by [13, Theorem 3 (2)]

χ(g) ≠ 0 only if g has odd cycle type. Thus as discussed above, χ(g) ∈ Q for all g ∈ G, so

σ (b) = b and frob(b) = mf (b) = 1 by Proposition 2.2.5 (b).

If ε(λ) = −1 then λ labels two spin characters, χ and its associate χ′. As shown in [13,

Theorems A and B], there are two possibilities to consider. If λ is equal to its `-bar core then

χ and χ′ lie in separate blocks of defect zero so mf (b) = 1 by Proposition 2.2.5 (d). If λ is

not equal to its `-bar core, then χ and χ′ are both in Irr(b). In that case, if g has cycle type

λ then by [13, Theorem 3 (3)], χ(g) = −χ′(g), so (χ + χ′) (g) = 0. If g has cycle type different

to λ, then χ(g) and χ′(g) are non-zero only if g has odd cycle type, so χ(g) and χ′(g) are

rational valued. Therefore (χ + χ′) (g) ∈ Q for all g ∈ G, so again, σ (b) = b and frob(b) =mf (b)

= 1 by Proposition 2.2.5 (b).
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Definition 3.1.5. The double cover of An is Ãn = θ−1(An) where θ ∶ S̃n → Sn is as given in

Definition 3.1.3.

Note that the double cover of An is unique up to isomorphism – if Ân is defined analogously

using Ŝn instead of S̃n, then Ân is isomorphic to Ãn. Again, see [41, Chapter 2] for more

details.

Proposition 3.1.6. Suppose that b is a block of kÃn. Then mf (b) = 1.

Proof. First we note that Ãn� S̃n, and by the proof of Proposition 3.1.4, every block b̂ of S̃n

either has defect zero or satisfies σ(b̂) = b̂. The result therefore follows from Lemma 2.2.8.

3.2 The sporadic groups, their covers, and the exceptional

covering groups

In this section we deal with the sporadic groups, the Tits group, the covers of the sporadic

groups and the so-called ‘exceptional covering groups’, obtained from [37, Table 6.1.3].

The Sporadic groups and the Tits group [64, 1.2 (v)]

Mathieu groups M11, M12, M22, M23, M24

Leech lattice groups Co1, Co2, Co3, McL, HS, Suz, J2

Fischer groups Fi22, Fi23, Fi′24

Monstrous groups M , B, Th, HN , He

Pariahs J1, J3, J4, ON , Ly, Ru

The Tits group 2F4(2)′
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The covers of the sporadic groups [37, Table 6.1.3]

2.M12, 12.M22, 2.J2, 3.J3, 2.Co1, 2.HS, 6.Suz, 3.McL, 3.ON , 2.Ru, 6.F i22, 3.F i′24, 2.B

The exceptional covering groups [37, Table 6.1.3]

2.L2(4), 2.L3(2), 2.L3(4), 41.L3(4), 42.L3(4), 6.L3(4), 42.L3(4), 121.L3(4),

122.L3(4), (42 × 3).L3(4), 2.L4(2), 2.U4(2), 2.U6(2), 6.U6(2), 22.U6(2), (22 × 3).U6(2),

3.A6, 6.A6, 2.S6(2), 2.Sz(8), 22.Sz(8), 2.O+

8 (2), 22.O+

8 (2), 2.G2(4), 2.F4(2),

2.2E6(2), 6.2E6(2), 22.2E6(2), (22 × 3).2E6(2), 31.U4(3), 32.U4(3), 61.U4(3), 62.U4(3),

32.U4(3), 121.U4(3), 122.U4(3), (32 × 4).U4(3), 3.O7(3), 6.O7(3), 3.G2(3), 3.A7, 6.A7

Remark 3.2.1. [Exceptional Covering Groups] Let G be a finite simple group and let U

be a universal central extension of G. The Schur multiplier M(G) of G is the kernel of the

surjection U → G, contained in Z(U) [37, Definition 5.1.6]. Suppose that the exceptional part

of M(G), as defined in [37, Definition 6.1.3], is non-trivial and let χ ∈ Irr(U).

The centre of χ is defined to be Z(χ) = {g ∈ U ∣ ∣χ(g)∣ = χ(1)}. By [44, Lemma 2.27 (d)],

if χ is faithful then Z(χ) is cyclic, and by [44, Corollary 2.28], Z(U) ≤ Z(χ). Thus if M(G)

is not cyclic, then U has no faithful characters, and by Lemma 2.1.10 (b), every block of U

dominates a unique block of U/Z for some Z ≤ Z(U) such that U/Z has cyclic centre. By
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the proof of Lemma 2.1.10 (c), it follows that if M(G) is not cyclic then every block of U is

isomorphic to a block of U/Z for some for some Z ≤ Z(U) such that U/Z has cyclic centre.

Thus, to find the Morita Frobenius numbers of the blocks of the exceptional covering

groups of a simple group G, it is enough to conisder the blocks of U/Z where U is a universal

central extension of G, and Z ≤ Z(U) is such that U/Z has cyclic centre.

Proposition 3.2.2. Suppose that G is one of the groups listed in the three tables above. Then

for any `-block b of G, mf (b) = 1.

Proof. By Remark 3.2.1, it is enough to consider the cases when G is a sporadic group, the

Tits group, a cover of a sporadic group, or a quotient H/Z with cyclic centre where H is an

exceptional covering group listed above, and Z ≤ Z(H). Let G be one of these groups and let

` be a prime dividing ∣G∣.

By examination in GAP [34], if (G, `) is not in Table 1 or 2 below, then there are no

non-principal `-blocks of G with equal, non-cyclic defect, which have the same number and

degrees of characters, none of which are rational valued. It follows that every `-block b of G

either has cyclic defect or is stabilized by Galois conjugation. Thus by Proposition 2.2.5 (d)

and Lemma 2.2.4, mf (b) = 1 for every `-block b of G.

Suppose now that G is one of the groups listed in Table 1. Then by examination in GAP

[34], there exist non-principal `-blocks of G with equal, non-cyclic defect, which have the same

number and degrees of characters, none of which are rational valued. However, there exists a

finite group Ĝ, listed in the third column, such that G� Ĝ and by examination in GAP [34],

for every `-block b̂ of Ĝ, either b̂ has cyclic defect or σ(b̂) = b̂. It follows that mf (b) = 1 for

every block b of G by Lemma 2.2.8.
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Table 1: G� Ĝ and for every `-block b̂ of Ĝ,
either b̂ has cyclic defect or σ(b̂) = b̂

G ` Ĝ G ` Ĝ

12.M22 2,3 12.M22.2 122.L3(4) 3 122.L3(4).21

3.J3 2 3.J3.2 6.U6(2) 2 6.U6(2).2

6.Suz 2,5 6.Suz.2 6.A6 2 6.A6.21

3.McL 2,5 3.McL.2 6.2E6(2) 2,3,5,7 6.2E6(2).2

3.ON 2,7 3.ON.2 3.A6 2 3.A6.21

6.F i22 2,5 6.F i22.2 31.U4(3) 2 31.U4(3).21

3.F i′24 2,5,7 3.F i′24.2 32.U4(3) 2 32.U4(3).21

41.L3(4) 3 41.L3(4).21 121.U4(3) 3 121.U4(3).22

42.L3(4) 3 42.L3(4).21 122.U4(3) 3 122.U4(3).23

6.L3(4) 2 6.L3(4).22 3.O7(3) 2 3.O7(3).2

121.L3(4) 2 121.L3(4).22 3.G2(3) 2 3.O7(3).2

121.L3(4) 3 121.L3(4).21 3.A7 2 3.A7.2

122.L3(4) 3 122.L3(4).22 6.A7 2 6.A7.2

Finally, let G be one of the groups listed in Table 2. By examination in GAP [34], there

exist non-principal `-blocks of G with equal, non-cyclic defect, which have the same number

and degrees of characters, none of which are rational valued. However, for every pair of `-

blocks b1, b2 of G which are non-principal with equal, non-cyclic defect and the same number

and degrees of characters, none of which are rational valued, there exists a single block b̂ of

a finite group Ĝ with G� Ĝ such that b̂ covers both b1 and b2. Therefore b1 and b2 are Ĝ

conjugate so there is a group automorphism of G whose induced k-algebra automorphism of

kG sends b1 to b2. It follows that mf (b) = 1 for every block b of G by Lemma 2.2.6.
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Table 2: `-blocks of G checked case by case∗

G ` Defects of Bl (G) Ĝ Defects of Bl (Ĝ)

61.U4(3) 2 [8,1,1,1,8,8,1,1] 61.U4(3).21 [9,2,2,2,8,1]

62.U4(3) 2 [8,1,1,1,8,8] 62.U4(3).21 [9,2,2,2,8]

121.U4(3) 2 [9,2,2,2,9,9,2,2] 121.U4(3).21 [10,3,3,3,9,2]

121.U4(3).22 [10,2,3,10,10,3,3]

122.U4(3) 2 [9,2,2,2,9,9] 122.U4(3).21 [10,3,3,3,9]

122.U4(3).23 [10,2,3,10,10]

6.O7(3) 2 [10,4,2,1,1,10,10,4,4] 6.O7(3).2 [11,5,3,2,2,10,4]

∗ The defects of the `-blocks of G are listed in column 3. They are obtained from GAP [34] using

the PrimeBlocks function. If two blocks b1 and b2 of G are non-principal with equal, non-cyclic defect

and the same number and degrees of characters, none of which are rational valued, then their defects

have the same colour in column 3. If a block b̂ of Ĝ covers both b1 and b2 then the defect of b̂ in

column 5 has the same colour as that of b1 and b2.
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Chapter 4

Blocks of finite groups of Lie type:

background

4.1 Finite groups of Lie type

4.1.1 Introduction to linear algebraic groups

We start this chapter with a very brief introduction to algebraic groups. More information

can be found in [18], [55] and [23].

Let F be an algebraically closed field and let I � F [X1, . . . ,Xn] be an ideal of the ring

of polynomial functions in n variables over F . A subset of Fn annihilated by an ideal I is

called an algebraic set and the Zariski topology on Fn is defined by taking complements of

algebraic sets as open sets. An affine algebraic variety is an algebraic set V (I), for a radical

ideal I, together with the induced Zariski topology. Associated to an affine algebraic variety

is a coordinate algebra F [X1, . . . ,Xn]/I, the algebra of polynomial functions on V (I). A

map between two affine algebraic varieties is called a morphism (of algebraic varieties) if it is

defined by polynomial functions in the coordinates. If V (I) and V (J) are two affine algebraic

varieties with I � F [X1, . . . ,Xn] and J � F [Y1, . . . , Ym] for some integers n and m, then
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the cartesian product V (I) × V (J) equipped with the Zariski topology is an affine algebraic

variety, realised as an algebraic set in Fn+m.

A linear algebraic group, often referred to just as an algebraic group, is an affine algebraic

variety G with a group structure such that the group operation m ∶ G×G→G and the inverse

map i ∶ G→G are morphisms of varieties. The general linear group GLn(F ) = {(aij) ∈ Fn×n ∶

det(aij) ≠ 0} plays an important role in the theory of linear algebraic groups. Firstly, GLn(F )

itself is a linear algebraic group. This is clearly illustrated if we re-express the definition as

GLn(F ) = {(a11, . . . , ann, b) ∈ Fn
2
+1 ∶ b det(aij) = 1},

since the determinant map is a polynomial function. Any closed subgroup of GLn(F ) is also

a linear algebraic group. On the other hand, every linear algebraic group can be embedded

as a closed subgroup into GLn(F ) for some n [55, Theorem 1.7].

A linear algebraic group G is connected if it is irreducible as a topological space. The

maximal irreducible varieties in G are called its connected components or just components. We

denote the connected component of G containing the identity element by G○. This is a closed

normal subgroup of finite index in G and the connected components of G are cosets of G○

[55, Proposition 1.13 (b)]. If G is connected, its dimension is defined to be the transcendence

degree of the field of fractions of the coordinate algebra F [X1, . . . ,Xm]/I, over F , where I is

the radical ideal defining G. If G has more than one connected component then dim(G) =

dim(G○).

The multiplicative group Gm ≅ GL1(F ) and the additive group Ga ≅ (F,+) are algebraic

groups of dimension 1. A torus of a linear algebraic group G is a subgroup T of G which

is isomorphic to Gm × ⋅ ⋅ ⋅ × Gm for some number of copies of Gm. Since all maximal tori

of G are conjugate [55, Corollary 6.5], we can define the rank of G to be the dimension of

the maximal tori, denoted by rk(G). A Borel subgroup of G is a maximal closed, connected,

solvable subgroup of G. The Borel subgroups of G are conjugate [55, Theorem 6.4 (a)].
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Let g ∈ G and let ρ ∶ G → GLn(F ) be an embedding of algebraic groups. Then g is

called semisimple if ρ(g) is diagonalizable, and unipotent if ρ(g) − 1 is nilpotent, and it can

be shown that these definitions are independent of the choice of ρ. By Jordan decomposition,

every g ∈ G can be decomposed uniquely into g = gsgu = gugs where gs is semisimple and gu

is unipotent [55, Theorem 2.5]. A group consisting entirely of unipotent elements is called a

unipotent group, and we denote the subset of all unipotent elements of G by Gu.

The radical of G, R(G), is the maximal closed connected solvable normal subgroup of

G. If G is connected and R(G) = 1 then G is called semisimple. The unipotent radical of

G, Ru(G) = R(G)u, is the maximal closed connected normal unipotent subgroup of G. If

Ru(G) is trivial then G is called reductive. The structure of connected reductive algebraic

groups is well understood. If G is connected reductive then R(G) is a torus equal to Z(G)○

[55, Proposition 6.20 (a)], and G = Z(G)○[G,G] [55, Corollary 8.22]. This product is almost

direct, that is, the intersection [G,G] ∩Z(G)○ is finite [23, Proposition 0.19].

Let G be a connected algebraic group. A closed subgroup of G containing a Borel subgroup

is called a parabolic subgroup of G. A parabolic subgroup of G admits a Levi decomposition.

This means that P = Ru(P) ⋊L for some closed subgroup L called a Levi subgroup of P [23,

Proposition 1.15]. A Levi subgroup of G is a closed subgroup of G which is the Levi subgroup

of some parabolic P of G, and a Levi subgroup of G is a connected reductive algebraic group

[55, Proposition 12.6]. For any maximal torus T contained in P, there is a unique Levi

subgroup of P containing T, and any two Levi subgroups of P are conjugate by an element

of Ru(P) [23, Proposition 1.17, Corollary 1.18]. A Levi subgroup L is the centralizer of its

central torus, Z(L)○, and the centralizer of any torus T of G is a Levi subgroup of some

parabolic subgroup of G [55, Proposition 12.6, Proposition 12.10].

We note that since a Levi subgroup L of G contains a maximal torus T of G, and T is

also a maximal torus of L, since all maximal tori of L are conjugate, it follows that all the

maximal tori of L are maximal tori of G.
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Lemma 4.1.1. Let G be a connected algebraic group and let L be a Levi subgroup of G. Then

dim Z○(L) = rk(G) − rk ([L,L]) .

Proof. Since L is a connected reductive algebraic group, L = Z○(L)[L,L]. Let T be a maximal

torus of [L,L]. Then Z○(L)T is a torus of L. We claim that Z○(L)T is maximal in L.

Suppose S ⊇ Z○(L)T is another torus of L. Then since L = Z○(L)[L,L], [L,L] ⊴ L and

Z○(L) ≤ S,

S = Z○(L) (S ∩ [L,L]) .

The intersection S ∩ [L,L] is a torus of [L,L] containing the maximal torus T of [L,L],

therefore S ∩ [L,L] = T. Thus S = Z○(L)T so Z○(L)T is a maximal torus of L, as claimed.

Since the maximal tori of L are maximal tori of G, therefore Z○(L)T is also a maximal torus

of G. Hence rk(G) = dim(Z○(L)T).

Since Z○(L)∩ [L,L] is finite and Z○(L) and T are tori, rk(G) = dim Z○(L)+dim T. As

T is a maximal torus of [L,L], it follows that dim Z○(L) = rk(G) − rk ([L,L]).

Definition 4.1.2. Let s be a semisimple element of a connected reductive algebraic group

G. Then s is quasi-isolated if there does not exist a Levi subgroup L of a proper parabolic

subgroup P of G such that CG(s) ⊆ L, and s is isolated if there does not exist a Levi subgroup

L of a proper parabolic subgroup P of G such that C○

G(s) ⊆ L.

4.1.2 Root systems

Definition 4.1.3. Suppose that E is a finite dimensional real vector space with a positive

definite inner product ⟨⋅, ⋅⟩. A finite subset Φ of vectors of E is called an (abstract) root system

in E if the following conditions hold.

� Φ is finite, non-empty, and spans E

� For any α ∈ Φ, if cα ∈ Φ for some c ∈ R, then c = ±1

54



� For each α ∈ Φ there exists a reflection of GL(E) denoted by sα which sends α to −α

and fixes Φ (as a set)

� (Crystallographic condition) For every α,β ∈ Φ, sα.β − β = nα for some integer n ∈ Z

The subgroup ⟨sα ∣ α ∈ Φ⟩ of GL(E) generated by the reflections sα is called the Weyl group

of Φ.

A base of a root system Φ is a subset ∆ ⊆ Φ such that for any β ∈ Φ, β = ∑α∈∆ cαα with

either cα ≤ 0 for every α ∈ ∆ or cα ≥ 0 for every α ∈ ∆. A positive root of Φ with respect to

a base ∆ is an element α ∈ Φ that can be expressed as a non-negative linear combination of

elements in ∆. We denote the set of positive roots by Φ+ and make an analogous definition

for negative roots and denote them by Φ−.

A root system Φ with a base ∆ is indecomposable if ∆ cannot be partitioned into two

mutually orthogonal, non-empty subsets. The indecomposable root systems can be classified

according to their Dynkin diagrams. The Dynkin diagram of a root system Φ is a graph with

one node for each element in the base ∆. Two nodes labelled by α,β ∈ ∆ are joined by a

number of edges depending on the order of the product of the reflections sα and sβ; they

are not joined if o(sαsβ) = 2, they have one edge between them if o(sαsβ) = 3, two edges if

o(sαsβ) = 4, and three edges if o(sαsβ) = 6. Arrows are drawn on edges between roots of

different lengths, pointing from the longer root to the shorter one. It can be shown that up to

isomorphism, an indecomposable Dynkin diagram has one of the following types [55, Theorem

9.6].
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G Dynkin diagram of G

An

α1 α2
. . .

αn−1 αn

Bn

α1 α2
. . .

αn−1 αn
⇒

Cn

α1 α2
. . .

αn−1 αn
⇐

Dn

α1 α2
. . .

αn−2 αn−1

αn

G2

α1 α2
⇛

F4

α1 α2 α3 α4
⇒

E6

α1 α2 α3 α4 α5

α6

E7

α1 α2 α3 α4 α5 α6

α7

E8

α1 α2 α3 α4 α5 α6 α7

α8

Definition 4.1.4. An abstract root datum is a quadruple (X,R,Y, Ř) such that the following

hold.
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� X and Y are free abelian groups of the same rank, and there is a non-degenerate inner

product ⟨⋅, ⋅⟩ ∶ X × Y → Z defining a perfect pairing betwen X and Y . That is, any

homomorphism X → Z has the form χ↦ ⟨χ, γ⟩ for some γ ∈ Y , and any homomorphism

Y → Z has the form γ ↦ ⟨χ, γ⟩ for some χ ∈X.

� R ⊆X and Ř ⊆ Y are abstract root systems in ZR⊗Z R and ZŘ⊗Z R respectively

� There is a bijection between R and Ř such that if α corresponds to α̌ then ⟨α, α̌⟩ = 2

� The reflections defined by the roots in R and Ř are given by

sαχ = χ − ⟨χ, α̌⟩α for all χ ∈X,

sα̌γ = γ − ⟨α, γ⟩α̌ for all γ ∈ Y.

Two root data (X1,R1, Y1, Ř1) and (X2,R2, Y2, Ř2) are said to be isomorphic if there exists

a group isomorphism ϕ ∶ X2 → X1 with transpose map ϕ′ ∶ Y1 → Y2 such that ⟨ϕ(χ2), γ⟩ =

⟨χ2, ϕ
′(γ)⟩ for all χ2 ∈X2, γ ∈ Y1 such that ϕ(R2) = R1 and ϕ′(Ř1) = Ř2.

Let G be a connected reductive group with a maximal torus T ≅ Gm × ⋅ ⋅ ⋅ × Gm. The

character group of T is X(T) ∶= Hom (T,Gm) and the cocharacter group of T is Y (T) ∶=

Hom (Gm,T). It is possible to construct an abstract root datum from X(T) and Y (T) in

the following way.

Let χ ∈X(T). Then for any (t1, . . . , tn) ∈ T, χ(t1, . . . , tn) = ta11 . . . tann for some a1, . . . , an ∈ Z.

Thus χ is determined by n integers a1, . . . , an, and therefore X(T) ≅ Zn. Similarly any cochar-

acter γ ∈ Y (T) is determined by n integers because for any c ∈ Gm, γ(c) = (ca1 , . . . , can) for

some a1, . . . , an ∈ Z, so Y (T) ≅ Zn. Note that χ○γ ∈ Hom (Gm,Gm) and any homomorphism

Gm → Gm is of the form c ↦ ca for some integer a, for c ∈ Gm. We can therefore define an

inner product ⟨⋅, ⋅⟩ ∶X(T)×Y (T)→ Z by setting ⟨χ, γ⟩ ∶= a ∈ Z such that χ○γ(c) = ca for any

c ∈ Gm. This inner product defines a perfect pairing (as given in Definition 4.1.4) between

X(T) and Y (T) [55, Proposition 3.6].
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We now determine a subset Φ ⊆ X(T) of roots, following [18, Section 1.9]. Let B be

a Borel subgroup of G containing T and let U = Ru(B). Then B has a unique semidirect

product decomposition B = U⋊T. Let B− denote the unique Borel subgroup of G such that

B ∩B− = T and let U− = Ru(B−). Then U and U− are connected and normalized by T, and

are maximal unipotent subgroups of G. Let {Ui} be the minimal nontrivial subgroups of U

and U− normalized by T. Then Ui ≅ Ga for each i and T acts on these groups by conjugation,

defining a homomorphism T→Aut Ga. Homomorphisms Ga →Ga are of the form c↦ λc for

some λ ∈ k×, therefore Aut Ga ≅ Gm, so the action of T defines a homomorphism T → Gm.

In other words, for each Ui the action of T determines an element of Hom(T,Gm) = X(T).

Let Φ be the set of elements of X(T) determined in this way by the action of T on some Ui.

The set of roots Φ is independent of the choice of the Borel subgroup B containing T.

The positive roots are those coming from subgroups Ui of U and the negative roots come

from the subgroups Ui of U−. This fixes a base ∆ for Φ: a root α ∈ Φ is a base element if α

cannot be expressed as a sum of two elements of Φ+. We call the minimal subgroups Ui root

subgroups, and label them according to the root they define, {Uα}α∈Φ. For each α ∈ Φ there

exists a unique cocharacter α̌ ∈ Y (T) such that sα.χ = χ − ⟨χ, α̌⟩α for all χ ∈ X(T) by [55,

Lemma 8.19]. Define Φ̌ = {α̌ ∣ α ∈ Φ} to be the coroots. Then we have the following important

result.

Theorem 4.1.5 (Chevalley, [55, Proposition 9.11 and Theorem 9.13]).

(a) Let G be a connected reductive group and let T be a maximal torus of G. Let Φ and Φ̌

be as defined in the last paragraph. Then (X(T),Φ, Y (T), Φ̌) is an abstract root datum.

A different choice of maximal torus gives rise to an abstract root datum isomorphic to

(X(T),Φ, Y (T), Φ̌).

(b) For any abstract root datum (X,R,Y, Ř) there exists a semisimple group with a maximal

torus T such that its root datum with respect to T is isomorphic to (X,R,Y, Ř).

(c) Two semisimple groups are isomorphic if and only if their root data are isomorphic.
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(d) A semisimple group G corresponding to the abstract root datum (X,R,Y, Ř) is simple

if and only if R is indecomposable.

Let G be a simple algebraic group. We say that G is of classical type if the Dynkin

diagram associated to the root datum of G is of type An,Bn,Cn or Dn, and say that G is of

exceptional type otherwise. A Dynkin diagram does not uniquely determine the isomorphism

class of a group. We say that two groups with the same Dynkin diagram are isogenous.

Given a root datum (X,R,Y, Ř), we call ZR ⊆ X the root lattice and ZŘ ⊆ Y the coroot

lattice. The connected reductive groups determined by (X,R,Y, Ř) are semisimple if and only

if rank (ZR) = rank X. Suppose that rank (ZR) = rank X. Let Ω = Hom (ZŘ,Z). Because

of the perfect pairing between X and Y , X ≅ Hom (Y,Z) [55, Proposition 3.6]. Thus there

exists an injective restriction map

X ≅ Hom (Y,Z) Ð→ Hom (ZŘ,Z) = Ω,

so we can view X, and therefore ZR ⊆ X, as subgroups of Ω. The fundamental group of the

root system R is defined to be Λ(R) = Ω/ZR. The fundamental group of R is independent

of X, and each X satisfying ZR ⊆ X ⊆ Ω determines a different root datum for a fixed root

system R, up to automorphisms of Ω stabilising the roots R.

Each simple group G with a particular Dynkin diagram determines an X such that ZR ⊆

X ⊆ Ω. The isomorphism class of G is determined by the position of X between ZR and Ω.

We say that G is of adjoint type if X = ZR and of simply connected type if X = Ω. For a given

isogeny class, there are only finitely many possibilities for X.

Definition 4.1.6. Let Φ be a root system. A prime number ` is said to be good for Φ if and

only if (ZΦ/Zβ)` = {0} for every β ∈ Φ. If G is a connected reductive group with root system

Φ then ` is good for G if ` is good for Φ. If ` is not good for G, then we say that ` is bad for

G.

59



Definition 4.1.7. Let G be a connected reductive group with maximal torus T and corre-

sponding root datum (X(T),Φ, Y (T), Φ̌). A connected reductive group G∗ is called a dual

group of G if there exists a maximal torus T∗ of G∗ such that if (X(T∗),Φ∗, Y (T∗), Φ̌∗) is

the root datum of G∗ with respect to T∗, then there exists an isomorphism from X(T) to

Y (T∗) such that Φ is mapped isomorphically onto Φ̌. In this case (X(T∗),Φ∗, Y (T∗), Φ̌∗)

is isomorphic to (Y (T), Φ̌,X(T),Φ) and we say that the pair (G,T) is dual to the pair

(G∗,T∗).

4.1.3 Finite groups of Lie type

In this section let G be a linear algebraic group defined over Fp, an algebraic closure of the

finite field of p elements. Let i ∶ G → GLn (Fp) be an embedding of G into GLn (Fp) as

discussed in Section 4.1.1. Let q = pa for some a ∈ N and let Fq ∶ GLn (Fp)→ GLn (Fp) denote

the homomorphism given by Fq ((xij)) = (xqij) for every matrix (xij) ∈ GLn (Fp).

A homomorphism F ∶ G→G is called a standard Frobenius morphism (with respect to an

Fq-structure) if there exists a q such that (i ○ F ) (g) = (Fq ○ i) (g) for every g ∈ G. A homo-

morphism F ∶ G→G is called a Frobenius morphism (with respect to an Fq-structure) if there

exists an m ∈ N such that Fm is a standard Frobenius morphism. Note that the terminology in

[55] is different – what we call a standard Frobenius morphism is called a Frobenius morphism

in [55], and what we call a Frobenius morphism is called a Steinberg morphism.

Although a Frobenius morphism is a bijective map, it is not an isomorphism of algebraic

groups because the inverse map is not a polynomial function in the coordinates, and therefore

is not a morphism of algebraic groups. The important point about Frobenius morphisms is

that they are surjective homomorphisms such that the group of fixed points is finite. For a

Frobenius morphism F ∶ G→G we denote the group of fixed points by

GF = {g ∈ G ∣ F (g) = g},

and call groups of this form finite groups of Lie type.
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Theorem 4.1.8 (Lang-Steinberg Theorem [55, Theorem 21.7]). Let G be a connected linear

algebraic group defined over Fp and let F ∶ G → G be a Frobenius morphism with respect to

an Fq-structure. The Lang map, L ∶G→G given by L(g) = g−1F (g), is surjective.

For any Frobenius morphism F , G contains a pair of subgroups T ≤ B where T is an F -

stable maximal torus and B is an F -stable Borel subgroup. For a given Frobenius morphism,

any two such pairs T ≤ B are GF -conjugate [55, Corollary 21.12]. We call an F -stable

maximal torus T contained in an F -stable Borel B a maximally split torus of G.

A Frobenius morphism F is Fq-split if there exists an F -stable maximal torus T of G

such that F (t) = tq for all t ∈ T. The Chevalley groups are the finite groups of Lie type

which arise as the fixed points of Fq-split Frobenius morphisms. If F is not split then it is

called twisted . In this case F is the product of an Fq-split endomorphism and an algebraic

automorphism of G which induces a symmetry ρ of the Dynkin diagram of G (ignoring the

arrows), see [55, Definition 22.4 and Theorem 11.11]. The fixed points of twisted Frobenius

morphisms are called twisted groups. If F is twisted and ρ is the non-trivial symmetry of a

Dynkin diagram of type B2, G2 or F4 (still ignoring the arrows), then F is called very twisted .

There are three types of very twisted finite groups of Lie type – the Suzuki groups 2B2(q2)

where q2 = 22a+1, the small Ree groups 2G2(q2) where q2 = 32a+1 and the large Ree groups

2F4(q) with q2 = 22a+1, for a some positive integer.

Definition 4.1.9. Suppose that G and G∗ are connected reductive groups defined over Fq

with maximal tori T and T∗ such that (G,T) and (G∗,T∗) are dual pairs as in Defini-

tion 4.1.7. Let F ∶ G → G and F ∗ ∶ G∗ → G∗ be Frobenius morphisms with respect to an

Fq-structure on G and G∗ respectively. If T is F -stable, T∗ is F ∗-stable, and the isomorphism

X(T) ≅ Y (T∗) is compatible with the action of the Frobenius morphisms, then we say that

(G, F ) is dual to (G∗, F ∗).

Remark 4.1.10. If (G, F ) and (G∗, F ∗) are dual then since it will be clear which Frobenius

we are referring to, we drop the ∗ notation and just write F for both Frobenius maps.
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4.1.4 The order of finite groups of Lie type, e-tori and e`(q)

For any finite group of Lie type GF , there exists an order polynomial PGF (x) ∈ Z[x]. This

is the unique polynomial such that PGF (qm) = ∣GFm∣ for infinitely many m ∈ N and it is

independent of the isogeny type of G.

Let e be a natural number. The e-th cyclotomic polynomial is the minimal polynomial

of a primitive e-th root of unity over Q, denoted by Φe. Many features of the representation

theory of GF over k do not in fact depend on `, the characteristic of k, but only on the

cyclotomic factor of ∣GF ∣ divisible by `. For further discussion of this see, for example, [35].

It is thus often useful to factorise the order polynomial of GF into a product of cyclotomic

polynomials,

∣GF ∣ = q∣Φ+
∣∑
e≥1

Φe(q)a(e)

for some integers a(e) [55, Section 25.1].

We define

e`(q) ∶=
⎧⎪⎪⎨⎪⎪⎩

the order of q modulo ` if ` is odd

the order of q modulo 4 if ` = 2.

Then for ` ≠ 2, e`(q) is the minimal e such that `∣Φe(q). Note that e`(q) < `, and if ` = 2 or

5 then e`(q) ≠ 3.

An F -stable torus T of G is called an e-torus if PTF (x) is a power of the e-th cyclotomic

polynomial, Φe(x). The e-tori of G satisfy a Sylow theory analogous to the theory of Sylow

subgroups of finite groups. We say that an F -stable torus T is a Sylow e-torus of G if

PTF (q) = Φe(q)a(e) where a(e) is precisely the power of Φe(q) dividing PGF (q). By the

Generic Sylow Theorems [55, Theorem 25.11], for every e ≥ 1 there exists a Sylow e-torus

of G, any two Sylow e-tori are GF -conjugate, and any e-torus of G is contained in a Sylow

e-torus. The original proofs of these results can be found in [10], as well as some further

discussion on cyclotomic polynomials. We let GΦe denote a Sylow e-torus of G. A Levi

subgroup L of G is called e-split if it is the centralizer in G of an e-torus of G.
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Lemma 4.1.11. Let G be a connected reductive algebraic group and let s be a semisimple

element of G contained in an e-split Levi subgroup L of G. Then C○

L(s) is an e-split Levi

subgroup of C○

G(s).

Proof. Since L is an e-split Levi subgroup of G, L = CG(T) for some e-torus T of G.

Then CL(s) = CCG(T)(s) = CCG(s)(T) = CG(s) ∩ CG(T) so C○

L(s) = (CG (s) ∩CG (T))○ ⊆

C○

G(s) ∩C○

G(T) = CC○
G(s)(T). On the other hand, CC○

G(s)(T) is the centralizer of an e-torus

in a connected group, so it is a Levi subgroup of C○

G(s). In particular, CC○
G(s)(T) is con-

nected, so CC○
G(s)(T) ⊆ C○

CG(s)(T) = C○

L(s). Therefore C○

L(s) = CC○
G(s)(T) so C○

L(s) is the

centralizer of an e-torus of C○

G(s), hence an e-split Levi subgroup of C○

G(s).

Lemma 4.1.12. Let G be a connected reductive algebraic group defined over Fp and let

F ∶G→G be a Frobenius morphism with respect to an Fq-structure. Suppose ` is good for G

and let e = e`(q). If Φe divides the order of GF precisely once and if Φe`i does not divide the

order of GF for any i ≥ 1, then the blocks of kGF have cyclic defect.

Proof. By definition, defect groups of blocks of kGF are finite `-subgroups of GF . Since

`∣Φe(q) and Φe`i(q) does not divide the order of GF for any i ≥ 1, Φe(q) is the only factor of

∣GF ∣ which is divisible by `. Thus the `-subgroups of GF are contained in the fixed points of

a Sylow e-torus of GF . Since Φe divides ∣GF ∣ precisely once, it follows from [10, Proposition

3.3] that the fixed point groups of the Sylow e-tori of GF are cyclic of order Φe(q). Therefore

all defect groups of blocks of kGF are cyclic.

The Fq-rank of a torus T is the rank of a maximal subtorus T′ of T such that there

exists an isomorphism T′ ≅ (Gm)a defined over Fq where a = rk(T′). The Fq-rank of an

algebraic group G is the Fq-rank of a maximally split torus of G [23, Definition 8.3] and we

let εG ∶= (−1)Fq-rank of G.
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4.2 Character theory of finite groups of Lie type

From now until the end of Chapter 4, we fix the following setting. Let p be a prime different

from ` and let G be a connected reductive algebraic group defined over Fp. Fix q, a power of

p, and let F ∶ G → G be a Frobenius morphism with respect to an Fq-structure. Let GF be

the fixed points of G under F – a finite group of Lie type.

4.2.1 Harish-Chandra and Deligne-Lusztig induction and restriction

In order to apply inductive arguments to `-blocks of finite reductive groups, we need a way

to relate the characters of G to characters of subgroups of G. The first maps introduced to

do this are called Harish-Chandra induction and restriction. Let P be an F -stable parabolic

subgroup of G and let L be an F -stable Levi subgroup of P. Then Harish-Chandra induction

is given by

RG
L⊂P ∶ CLF -mod Ð→ CGF -mod

V z→ IndGF

PF
InfP

F

LF
(V ),

which is just just inflation from LF to PF followed by induction from PF to GF . This is

discussed in greater detail in [23, Example 4.6 (iii)]. Harish-Chandra restriction is given by

∗RG
L⊂P ∶ CGF -mod Ð→ CLF -mod

V z→ FixRu(P)F (V ).

A more powerful pair of adjoint maps can be defined using cohomology. These maps,

known as Deligne-Lusztig induction and restriction can be defined even if the Levi subgroup

L is not contained in an F -stable parabolic P. Details about the construction of these maps

can be found in [23, Chapters 10 and 11]. Let L be an F -stable Levi subgroup of G contained
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in a parabolic subgroup P which is not necessarily F -stable. Then Deligne-Lusztig induction

and restriction are linear maps denoted by

RG
L⊂P ∶ ZIrr (LF ) Ð→ ZIrr (GF ) ,

∗RG
L⊂P ∶ ZIrr (GF ) Ð→ ZIrr (LF ) .

If P is F -stable then Deligne-Lusztig induction reduces to Harish-Chandra induction (see

[23, Chapter 11, page 81]) so there is no ambiguity in using the same notation for the Harish-

Chandra and Deligne-Lusztig maps.

Let P and P′ be parabolics of G, and let L be an F -stable Levi subgroup of P, L′ an

F -stable Levi subgroup of P′. Let Y = {x ∈ G ∣ L∩ xL′} and let X be a set of representatives

of the double cosets LF /Y /L′F . Then the Mackey formula is

∗RG
L⊂P ○RG

L′⊂P′ = ∑
x∈X

RL
(L∩xL′)⊂(P∩xP′

)
○ ∗R

xL′
(L∩xL′)⊂(P∩xL′) ○ ad x

where ad x(χ) = xχ for all χ ∈ Irr(L′F ), x ∈ X. When the Mackey formula holds, it is

possible to show that RG
L⊂P is independent of the choice of P, see [23, Proposition 6.1]. By

[7, Theorem], the Mackey formula holds if L is an F -stable maximal torus of G, and holds in

all cases for Harish-Chandra induction and restriction. It also holds in all cases for Deligne-

Lusztig induction and restriction except possibly when GF contains a component of type

2E6(2),E7(2) or E8(2). Where we know that Deligne-Lusztig induction and restriction do

not depend on the choice of the parabolic we will drop the reference to P and just write RG
L

and ∗RG
L .

The properties of Deligne-Lusztig induction and restriction are particularly well under-

stood when L = T is an F -stable maximal torus of G. In this case RG
T (θ) is called a Deligne-

Lusztig character , for any θ ∈ Irr(TF ).

Definition 4.2.1. A class function is called a uniform function if it is a linear combination

of Deligne-Lusztig characters. The orthogonal projection of class functions onto the space of
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uniform functions is called uniform projection and is given by the operator

1

∣GF ∣
∑
T

∣TF ∣RG
T ○ ∗RG

T ,

where the sum runs over all F -stable maximal tori T of G. The uniform projection of

an irreducible character χ ∈ Irr(GF ) uniquely determines a set of multiplicities of χ as an

irreducible constituent of RG
T (θ) for every F -stable maximal torus T, and every θ ∈ Irr(TF ).

{⟨χ,RG
T (θ)⟩ ∣ T is an F -stable maximal torus of G and θ ∈ Irr (TF )}

Let L be an F -stable Levi subgroup of G contained in a parabolic subgroup P. The Green

functions, denoted by QG
L⊂P, send elements (u, v) ∈ GF

u × LFu to values in Z [23, Definition

12.1]. Let g ∈ G and let g = su be the Jordan decomposition of g. The character formula for

Deligne-Lusztig induction is given by

(RG
L⊂P (χ)) (g) = 1

∣LF ∣∣C○

G(s)F ∣
∑

{h∈GF
∣s∈hL}

∣C○

hL(s)
F ∣ ∑

v∈C○
hL

(s)Fu

Q
C○
hG

(s)

C○
hL

(s)
(u, v−1)hχ(sv), (4.1)

see [23, Proposition 12.2].

4.2.2 Lusztig series and Jordan decomposition

Many of the results of the following section can be found in [23] and [5]. We follow the

notation of [5]. From now until the end of Chapter 4, we fix a connected reductive group G∗

such that (G, F ) and (G∗, F ) are dual pairs in the sense of Definition 4.1.9.

Let ∇(G, F ) denote the set of all pairs (T, θ) such that T is an F -stable maximal torus

of G and θ is a linear character of TF . Let ∇∗(G, F ) denote the set of all pairs (T∗, s) such

that T∗ is an F -stable maximal torus of the dual group G∗ and s is a semisimple element in

T∗F . By [23, Proposition 13.13] we can fix a bijection
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

GF -conjugacy classes of

(T, θ) ∈ ∇(G, F )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
←→

⎧⎪⎪⎪⎨⎪⎪⎪⎩

G∗F -conjugacy classes of

(T∗, s) ∈ ∇∗(G, F )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (4.2)

If (T, θ) corresponds to (T∗, s) via this bijection, then we write (T, θ) G←→ (T∗, s), and we

can denote RG
T (θ) by RG

T∗(s).

There are two different types of conjugacy for elements in the fixed points G∗F . Let

s, s′ ∈ G∗F be semisimple. Then s and s′ are geometrically conjugate if there exists g ∈ G∗

such that s = gs′, and s and s′ are rationally conjugate if there exists g ∈ G∗F such that s = gs′.

We denote the geometric conjugacy class of s ∈ G∗F by (s) and the rational conjugacy class

of s by [s]. Clearly rational conjugacy implies geometric conjugacy, but not the other way

around. If Z(G) is connected then geometric and rational conjugacy is the same in G∗F , [5,

Proposition 9.7].

Using bijection (4.2), we say that two pairs (T, θ), (T′, θ′) are geometrically conjugate

(respectively rationally conjugate) if (T, θ) G←→ (T∗, s) and (T′, θ′) G←→ (T′∗, s′) for some pairs

(T∗, s), (T′∗, s′) ∈ ∇∗(G, F ) such that s and s′ are geometrically conjugate (respectively

rationally conjugate). We can then fix the following notation.

∇∗ (G, F, (s)) ∶= {(T∗, s′) ∈ ∇∗(G, F ) ∣ s′ ∈ (s)}

∇∗ (G, F, [s]) ∶= {(T∗, s′) ∈ ∇∗(G, F ) ∣ s′ ∈ [s]}

∇ (G, F, (s)) ∶= {(T, θ) ∈ ∇(G, F ) ∣ (T, θ) G←→ (T∗, s′) for some (T∗, s′) ∈ ∇∗ (G, F, (s))}

∇ (G, F, [s]) ∶= {(T, θ) ∈ ∇(G, F ) ∣ (T, θ) G←→ (T∗, s′) for some (T∗, s′) ∈ ∇∗ (G, F, [s])}

Let T be an F -stable torus of G and let n ∈ N. We define the norm map of Fn at F by

NFn/F ∶ T Ð→ T

t z→ t.F (t) . . . Fn−1(t).

We will need the following property of NFn/F in Section 5.2.2.
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Lemma 4.2.2. The norm map restricts to a surjection NFn/F ∶ TFn → TF .

Proof. First suppose that t ∈ TFn . Then

F (NFn/F (t)) = F (t.F (t) . . . Fn−1(t))

= F (t)F 2(t) . . . Fn−1(t)Fn(t)

= F (t)F 2(t) . . . Fn−1(t)t

= NFn/F (t)

since t ∈ T is central. Therefore NFn/F (TFn) ⊆ TF .

Now let t ∈ T. By the Lang-Steinberg Theorem (Theorem 4.1.8), since Fn is a Frobenius

morphism, there exists u ∈ T such that t = uFn(u−1). Then

NFn/F (uF (u−1)) = uF (u−1)F (u)F 2(u−1) . . . Fn−1(u)Fn(u−1)

= uFn(u−1),

so NFn/F (uF (u−1)) = t, showing that NFn/F surjects onto T.

Now suppose that t ∈ TF and suppose that s ∈ T is such that NFn/F (s) = t. Then

F (NFn/F (s)) = NFn/F (s) therefore

F (s)F 2(s) . . . Fn(s) = sF (s) . . . Fn−1(s)

Fn(s) = s

Therefore s ∈ TFn as required.

The following result gives us a useful alternative formulation for geometric conjugacy of

pairs in ∇(G, F ), see [5, Corollaire 9.5].
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Lemma 4.2.3. Two pairs (T, θ), (T′, θ′) ∈ ∇(G, F ) are geometrically conjugate if and only

if there exists n ∈ N and g ∈GFn such that gT = T′ and for all x ∈ T′,

θ′ (NFn/F (x)) = θ (NFn/F (gxg−1)) .

Definition 4.2.4. Let s ∈ G∗F be semisimple. The Lusztig series associated to [s], the

rational conjugacy class of s, is

E (GF , s) = {χ ∈ Irr(GF ) ∣ ⟨χ,RG
T (θ)⟩ ≠ 0 for some (T, θ) ∈ ∇ (G, F, [s])} .

Note that some authors use the notation E(GF , (s)) and E(GF , [s]) to differentiate be-

tween Lusztig series corresponding to geometric and rational conjugacy classes of s. We will

only use the Lusztig series corresponding to a rational conjugacy class of s so we drop the

brackets in our notation. The irreducible characters in χ ∈ E(GF ,1) are called unipotent and

a block containing a unipotent character is called a unipotent block .

By [23, Proposition 13.1], every irreducible character χ ∈ Irr(GF ) appears as a component

of a Deligne-Lusztig character RG
T (θ) for some F -stable maximal torus T of G and some

irreducible character θ ∈ Irr(TF ). The pair (T, θ) determines a G∗F -conjugacy class of pairs

(T∗, s) by bijection (4.2). More precisely, we have a partitioning of Irr(GF ) according to

Lusztig series, [23, Proposition 13.17].

Proposition 4.2.5. The irreducible characters of GF are partitioned by the Lusztig series

for each rational conjugacy class of semisimple elements in G∗F .

Irr (GF ) =∐
[s]

E(GF , s)
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We denote by E(GF , `′) the set of all characters appearing in some E (GF , s) where s is

a semisimple `′ element of G∗F ,

E(GF , `′) = ⋃
s an `′-element of G∗F

E (GF , s)

Recall that G` denotes the set of elements of G with order a power of `.

Theorem 4.2.6 (Broué-Michel, Hiss). Let G be a connected reductive algebraic group and

let s ∈G∗F be a semisimple `′ element. Then

E` (GF , s) ∶= ⋃
t∈CG∗(s)F`

E(GF , st)

is a union of `-blocks of GF . Moreover, each `-block in E` (GF , s) contains an irreducible

character of E (GF , s).

The original proof of the first part of this theorem is in [12]; for a full proof of both parts

see [16, Theorem 9.12]. If b is an `-block in E` (GF , s) we write b ∈ E` (GF , s), and the sum

of block idempotents of blocks in E` (GF , s) is denoted by eG
F

s .

Definition 4.2.7. Let s ∈ G∗F be a semisimple `′ element and suppose that b ∈ E`(GF , s).

Then b is a (quasi-)isolated block if s is (quasi-)isolated in G∗.

In 1984 Lusztig proved a very important correspondence between the irreducible characters

of a finite group of Lie type GF , and the unipotent characters of a subgroup of GF , [53].

Theorem 4.2.8 (Jordan decomposition for Z(G) connected [16, Theorem 15.8] and [23,

Remark 13.24]). Let G be a connected reductive algebraic group and let F ∶ G → G be a

Frobenius morphism with respect to an Fq-structure where q = pa for some prime p and some

a ∈ N. Assume that G has connected centre. Let (G∗, F ) be dual to (G, F ) and let s ∈ G∗F

be a semisimple element. Then there exists a bijection

ΨG,s ∶ E(CG∗(s)F ,1) Ð→ E (GF , s) ,
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such that

εG⟨ΨG,s(χ),RG
T∗(s)⟩GF = εCG∗(s)⟨χ,R

CG∗(s)
T∗ (1)⟩CG∗(s)F , (4.3)

for all χ ∈ E(CG∗(s)F ,1), where εG is as defined in Section 4.1.4. Moreover, for every

χ ∈ E(CG∗(s)F ,1),

ΨG,s(χ)(1) =
∣GF ∣p′

∣CG∗(s)F ∣p′
χ(1).

Note that property (4.3) does not uniquely determine the bijection ΨG,s. It is, however,

possible to add extra conditions to ensure that ΨG,s is uniquely defined, as shown in [22,

Part II]. If Z(G) is not connected, then the centralizers of semisimple elements in G∗ are

not necessarily connected. If CG∗(s) is not connected then we define a unipotent character

of CG∗(s)F to be an irreducible character which covers a unipotent character of C○

G∗(s)F .

Jordan decomposition can be adapted to cater for this situation, but first we need some more

theory.

4.2.3 Regular embeddings

Definition 4.2.9. Let G be a connected reductive group. A regular embedding of G is a

homomorphism of algebraic groups i ∶ G ↪ G̃ where G̃ is a connected reductive algebraic

group defined over Fq such that Z(G̃) is connected and [G̃, G̃] ⊆ G. For example, let G =

SLn and G̃ = GLn. Then the inclusion map i ∶ SLn ↪ GLn is a regular embedding.

Given a regular embedding i ∶ G ↪ G̃ and a maximal torus T of G, let T̃ = i(T).Z(G̃).

Then there exist pairs (G∗,T∗) and (G̃∗

, T̃
∗) which are dual to (G,T) and (G̃, T̃) respec-

tively, and there exists a morphism i∗ ∶ G̃↠G dual to i. Note that i∗ is surjective and restricts

to a surjection on the fixed points, i∗ ∶ G̃∗F → G∗F [5, Corollaire 2.7]. Then ker i∗⊆ Z(G̃∗).

The idea of a regular embedding is that we can first work in the “nicer” setting of G̃ where

the centre is connected, and then use i∗ to determine properties of G. For a given connected

reductive group G with maximal torus T it is possible to explicitly construct a suitable G̃,

see [16, Section 15.1].
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For the rest of this section, we fix a regular embedding i ∶ G ↪ G̃ and semisimple `′

elements s ∈ G∗F and s̃ ∈ G̃
∗F

such that i∗(s̃) = s. Since the centre of G̃ is connected, we

have the following results.

Theorem 4.2.10 ([5, Théorème 3.5]). The centralizers of semisimple elements in G̃
∗

are

connected.

Proposition 4.2.11 ([5, Corollaire 4.4]). For any Levi subgroup L̃ of G̃, Z(L̃) is connected.

As discussed in [5, Section 9B and Corollaire 9.5], we can define two restriction maps

ResG̃G ∶ ∇ (G̃, F, (s̃))→ ∇ (G, F, (s)) and ∗ResG̃G ∶ ∇∗ (G̃, F, (s̃))→ ∇∗ (G, F, (s)) given by

ResG̃G (T̃, θ̃) = (T̃ ∩G, ResT̃
F

T̃
F
∩GF

θ̃)

∗ResG̃G (T̃∗

, s̃) = (i∗ (T̃∗) , i∗ (s̃)) .

These maps satisfy the following.

Lemma 4.2.12 ([5, Lemme 9.3]). (a) Let (T̃, θ̃) ∈ ∇(G̃, F ) and (T̃∗

, s̃) ∈ ∇∗(G̃, F ) be such

that (T̃, θ̃) G̃←→ (T̃∗

, s̃). Then ResG̃G(T̃, θ̃) G←→ ∗ResG̃G(T̃∗

, s̃).

(b) Let (T, θ) ∈ ∇(G, F ) and (T∗, s) ∈ ∇∗(G, F ) be such that (T, θ) G←→ (T∗, s). Let

T̃ = T.Z(G̃), T̃
∗ = i∗−1(T∗) and s̃ ∈ G̃

∗F
be such that i∗(s̃) = s. Then there exists

an irreducible character θ̃ ∈ Irr(T̃F ) which extends θ such that (T̃, θ̃) G̃←→ (T̃∗

, s̃).

For semisimple elements in G̃
∗F

, geometric conjugacy and rational conjugacy coincide

by [5, Proposition 9.7]. Therefore, two pairs (T̃, θ), (T̃′

, θ′) ∈ ∇(G̃, F ) are geometrically

conjugate if and only if they are rationally conjugate – i.e.∇ (G̃, F, (s̃)) = ∇ (G, F, [s̃]). Two

semisimple elements s1, s2 ∈ G are rationally conjugate if and only if there exist semisimple

elements s̃1, s̃2 ∈ G̃
∗F

such that i∗(s̃i) = si for i = 1,2, and s̃1 and s̃2 are rationally (and

therefore also geometrically) conjugate in G̃
∗

[5, Proposition 9.9].

We denote the group of components by AG∗(s) ∶= CG∗(s)/C○

G∗(s). If Z(G) is connected

then AG∗(s) = 1 for all s.
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Lemma 4.2.13 ([5, Lemme 8.3]).

AG∗(s) ≅ {z ∈ Ker i∗ ∣ s̃ and s̃z are conjugate in G̃
∗}

We now return to Jordan decomposition for the case when G has non-connected centre.

By [16, Theorem 15.13], there is an action of ker i∗ ∩ [s, G̃∗F ] on E (GF , s) and of AG∗(s)

on E(C○

G∗(s),1). Jordan decomposition generalizes to a bijection between orbits of charac-

ters under these actions. In particular, to each χ ∈ E (GF , s) there corresponds an orbit of

unipotent characters of C○

G∗(s)F under the action of AG∗(s).

Theorem 4.2.14 (Jordan decomposition for Z(G) not connected [16, Corollary 15.14]). Let

G be a connected reductive algebraic group and let F ∶G →G be a Frobenius morphism with

respect to an Fq-structure where q = pa for some prime p and some a ∈ N. Let i ∶G→ G̃ be a

regular embedding, and let s̃ ∈ G̃∗F
be a semisimple element such that i∗(s̃) = s ∈G∗F . Then

there exists a bijection

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Orbits of E (GF , s)

under the action of

ker i∗ ∩ [s, G̃∗F ]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

←→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Orbits of E(C○

G∗(s),1)

under the action of

AG∗(s)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

.

If Z(G) is connected then the orbits on each side contain a unique character so this reduces

to normal Jordan decomposition as in Theorem 4.2.8.

4.3 Block theory of finite groups of Lie type

We continue with the assumptions made at the beginning of section 4.2. In particular, p is a

prime different to `.
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4.3.1 Generalized e-Harish-Chandra theory and the parametrisation of `-

blocks

Work towards a parametrisation of the `-blocks of the finite groups of Lie type in non-defining

characteristic began in the 1980s. It was completed in 2015 by Kessar and Malle [50]. The

final parametrisation allows us to label an `-block of an F -stable Levi subgroup of a simple

simply connected algebraic group by what is called an e-Jordan quasi-central cuspidal pair.

The e-Jordan quasi-central cuspidal pair labelling a block encodes many properties of the

block, including information about the characters it contains. In many cases we can calculate

the Morita Frobenius number of a block from an earlier (usually simpler but less general)

edition of this parametrisation, so we now give a summary of the evolution of the theory,

pointing out various results along the way which will be of particular use for our calculations.

In 1982, Fong and Srinivasan proved an explicit “Jordan-style” decomposition for the

characters and blocks of the general linear and unitary groups [31]. This was possible because

of the well-understood combinatorial nature of the character theory of these groups. Let GF

be the fixed points of a general linear or general unitary group under a Frobenius morphism F .

Fong and Srinivasan first developed an analogue to the Nakayama conjecture (originally for

the symmetric groups) for the unipotent characters and unipotent blocks of GF . They then

extended this to a parametrisation of all characters and all blocks, giving explicit combinatorial

methods for determining which characters are in which blocks.

In 1989 Fong and Srinivasan went on to show that if GF is the fixed points of any classical

group with connected centre under a Frobenius morphism, and p and ` are different from 2,

then the `-blocks of GF can be parametrised by pairs (s, κ) where s is a representative of a

conjugacy class of a semisimple `′ element of G∗F , and κ is a unipotent block of CG∗(s)∗F

[33]. Again, the parametrisation is explicit and combinatorial because of the nature of the

character theory of the classical groups.

For the next developments we first need a few more definitions. Let e > 0.

74



Definition 4.3.1. Let χ ∈ Irr(GF ). Then χ is cuspidal if ∗RG
L⊆P(χ) = 0 for any proper

F -stable Levi subgroup L of G contained in an F -stable parabolic P of G, and χ is e-cuspidal

if ∗RG
L⊆P(χ) = 0 for any proper e-split Levi subgroup L of G. Note that χ is 1-cuspidal if and

only if χ is cuspidal.

Definition 4.3.2. A (unipotent) cuspidal pair of G is a pair (L, λ) where L is an e-split F -

stable Levi subgroup contained in an F -stable parabolic of G, and λ is a (unipotent) cuspidal

character of LF . A (unipotent) e-cuspidal pair is a pair (L, λ) where L is an e-split F -stable

Levi subgroup contained in a parabolic of G which is not necessarily F -stable, and λ is a

(unipotent) e-cuspidal character of LF .

Definition 4.3.3. We define a partial ordering on the set of all pairs (L, λ) of G where L

is an e-split F -stable Levi subgroup of G and λ is an irreducible character of LF , by setting

(L1, λ1) ≪e (L2, λ2) if there exists a parabolic subgroup P of L2 such that L1 is an e-split

Levi subgroup of L2 contained in P, and λ2 is an irreducible constituent of RL2
L1⊆P

(λ1).

Definition 4.3.4. Let (L, λ) be an e-cuspidal pair of G. The e-Harish-Chandra series of

GF above (L, λ) denoted by E (GF , (L, λ)) is the set of irreducible characters which appear

as constituents in RG
L⊆P(λ), where P is a parabolic containing L.

E (GF , (L, λ)) = {χ ∈ Irr (GF ) ∣ ⟨χ,RG
L⊆P (λ)⟩ ≠ 0 for some P ⊇ L}

A 1-Harish-Chandra series is usually just referred to as a Harish-Chandra series.

Definition 4.3.5. The relative Weyl group of an e-cuspidal pair (L, λ) is defined to be

WGF (L, λ) = NGF (L, λ)/LF .

To parametrise the blocks of the finite groups of Lie type of all types, we need the concept of

a generalized e-Harish-Chandra theory. There are some variations in the literature as to what

exactly constitutes a generalized e-Harish-Chandra theory. Since Deligne-Lusztig induction

preserves Lusztig series (i.e. it restricts to a linear map RG
L⊆P ∶ ZE (LF , s) → ZE (GF , s) [50,
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Theorem 2.8 (b)]), it is possible to consider the e-Harish-Chandra series above each (L, λ)

series by series. We will therefore use the following definition.

Definition 4.3.6. Let s ∈ G∗F be semisimple. A generalized e-Harish-Chandra theory holds

in E (GF , s) if

(a) for every χ ∈ E (GF , s) there exists, up to GF -conjugacy, a unique e-cuspidal pair (L, λ)

of G such that χ ∈ E (GF , (L, λ)), and

(b) for every e-cuspidal pair (L, λ) of G there exists a collection of isometries

IM
(L,λ) ∶ Z Irr (WMF (L, λ)) Ð→ ZE (MF , (L, λ))

where M runs over all of the e-split Levi subgroups of G and (L, λ) runs over all of the

e-cuspidal pairs of M, such that for all such M and (L, λ),

RG
M⊆P ○ IM

(L,λ) = I
G
(L,λ) ○ Ind

WG(L,λ)
WM(L,λ)

,

the collection (IM
(L,λ))M,(L,λ)

is stable under the conjugation action by WGF , and I(L,λ)

maps the trivial character of the trivial group WLF (L, λ) to λ.

In some sources (for example [32] and [11]), the term generalized e-Harish-Chandra theory

is used to refer just to unipotent characters – i.e. for every χ ∈ E(GF ,1) there exists a unique

unipotent e-cuspidal pair etc. When referring to these sources we will make this explicit by

specifying that s = 1.

In 1986, Fong and Srinivasan showed that part (a) of a generalized e-Harish-Chandra

theory holds for E(GF ,1) if G is a classical group, [32]. In 1993 Broué, Malle and Michel

showed that parts (a) and (b) of a generalized e-Harish-Chandra theory hold for E(GF ,1) for

all finite groups of Lie type of all types [11]. The proof in [11] is entirely done on a case by

case basis and involves directly calculating the e-Harish-Chandra series in many situations.
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This result paved the way for Cabanes and Enguehard who used the generalized e-Harish-

Chandra theory of E(GF ,1) to prove a parametrisation of the unipotent blocks of GF when

` > 2 is good for G and ` ≠ 3 if 3D4 is a factor of GF in 1994, [14]. Enguehard then extended

the parametrisation to include bad ` in 2000 [26]. We state this parametrisation fully as we

will use it to calculate the Morita Frobenius numbers of the unipotent blocks of the finite

groups of Lie type in Section 5.2.1. First we need one more definition.

Definition 4.3.7. Let χ ∈ Irr(GF ). Then χ is of central `-defect if χ(1)`∣Z(G)F ∣` = ∣GF ∣`
and χ is of quasi-central `-defect if χ covers a character of [G,G]F which is of central `-defect.

An e-cuspidal pair (L, λ) is of (quasi-) central `-defect if λ is of (quasi-)central `-defect.

We say that a group K is involved in a group G if there exists a surjective homomorphism

from some subgroup H of G to K. If ` is odd, good for G, and ` ≠ 3 if 3D4 is involved in G,

then all unipotent e-cuspidal pairs are of central `-defect [14, Theorem 4.3].

Theorem 4.3.8 (Parametrisation of unipotent blocks of finite groups of Lie type [14, Theorem

4.4] and [26, Théorème A]). Let G be a connected reductive algebraic group with Frobenius

morphism F ∶G →G defined with respect to an Fq-structure for some q = pa where p ≠ ` is a

prime and a ∈ N. Let e = e`(q).

(a) Let (L, λ) be a unipotent e-cuspidal pair of G. Then all irreducible constituents of

RG
L⊆P(λ) lie in the same `-block, bGF (L, λ), of GF .

(b) There exists a surjection

Γ ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GF -conjugacy classes of

unipotent e-cuspidal

pairs of G

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

↠
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Unipotent

`-blocks of GF

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(L, λ) z→ bGF (L, λ)
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sending a unipotent e-cuspidal pair (L, λ) to the `-block of GF containing the irreducible

constituents of RG
L⊆P(λ), bGF (L, λ).

(c) The map Γ restricts to a bijection ΓC if we only consider GF -conjugacy classes of unipo-

tent e-cuspidal pairs of central `-defect.

ΓC ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GF -conjugacy classes of

unipotent e-cuspidal pairs of G

of central `-defect

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

←→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Unipotent

`-blocks of GF

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(L, λ) z→ bGF (L, λ)

(d) When ` is odd, good for G and ` ≠ 3 if 3D4 is involved in G, then Γ is itself a bijection.

Finally we come to the parametrisation of general blocks of finite groups of Lie type.

Cabanes and Enguehard proved a general parametrisation for good ` in 1998 in [15]. This

was extended to general ` by Kessar and Malle in 2015 in [50]. Before we can state the final

parametrisation, again, we need a few more definitions. Let e > 0. Recall that GΦe denotes a

Sylow e-torus of G.

Definition 4.3.9. Let s ∈ G∗F be a semisimple `′ element and let χ ∈ E (GF , s). We say that

χ is e-Jordan cuspidal if (G, χ) satisfies the Jordan condition (J) made of the following two

parts:

(J1) Z○(C○

G∗(s))Φe = Z○(G∗)Φe

(J2) χ corresponds to a CG∗(s)F -orbit of e-cuspidal unipotent characters of C○

G∗(s)F via

Jordan decomposition given in Theorem 4.2.14.

We say that χ is e-Jordan quasi-central cuspidal if it is e-Jordan cuspidal and if the CG∗(s)F -

orbit of e-cuspidal irreducible unipotent characters of C○

G∗(s)F to which it corresponds in (J2)

consists of characters of quasi-central `-defect.
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Definition 4.3.10. The pair (L, λ) is an e-Jordan (quasi-central) cuspidal pair if L is an

e-split Levi subgroup of G (contained in a parabolic which is not necessarily F -stable) and λ

is an e-Jordan (quasi-central) cuspidal character of LF .

Theorem 4.3.11 (Parametrisation of blocks of finite groups of Lie type [50, Theorem A]). Let

H be a simple, simply connected algebraic group and let F ∶H→H be a Frobenius morphism

with respect to an Fq-structure where q = pa for some prime p ≠ ` and some a ∈ N. Let G be

an F -stable Levi subgroup of H, and let e = e`(q).

(a) Let (L, λ) be an e-Jordan cuspidal pair of G. Then all irreducible constituents of

RG
L⊆P(λ) lie in the same `-block, bGF (L, λ), of GF .

(b) There exists a surjection

Θ ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GF -conjugacy classes of e-Jordan

cuspidal pairs (L, λ) of G

such that λ ∈ E(LF , `′)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

↠ { `-blocks of GF }

(L, λ) z→ bGF (L, λ),

sending an e-Jordan cuspidal pair (L, λ) to the `-block of GF containing the irreducible

constituents of RG
L⊆P(λ), bGF (L, λ).

(c) The map Θ restricts to another surjection ΘQC if we only consider the GF -conjugacy

classes of e-Jordan quasi-central cuspidal pairs.

ΘQC ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GF -conjugacy classes of e-Jordan

quasi-central cuspidal pairs (L, λ)

of G such that λ ∈ E(LF , `′)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

↠ { `-blocks of GF }

(L, λ) z→ bGF (L, λ)

(d) If ` ≥ 3 then ΘQC is a bijection.
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(e) If ` is good for G, and ` ≠ 3 if 3D4 is involved in G, then Θ is a bijection.

It is clear from this theorem that the set of pairs (L, λ) needed to parametrise the blocks

of GF is determined by properties of the Jordan correspondent(s) of λ, which must be a

unipotent, e-cuspidal, and of quasi-central `-defect.

We make one final definition in relation to Jordan decomposition, using the final parametri-

sation of `-blocks. Recall that for a semisimple `′ element s ∈ G∗F , E`(GF , s) is a union of

`-blocks of GF .

Definition 4.3.12. Let s ∈ G∗F be a semisimple `′ element and consider a blockB ∈ E` (GF , s).

By Theorem 4.3.11, B = bGF (L, λ) for some e-Jordan quasi-central cuspidal pair (L, λ) of G.

Note that (L, λ) may not be uniquely determined if ` is bad for G. By condition (J2), λ

corresponds to a CL∗(s)F -orbit of e-cuspidal unipotent characters of C○

L∗(s)
F of `-central

defect via Jordan decomposition. Let α be character in this orbit. Then since C○

L∗(s) is an

e-split Levi subgroup of C○

G∗(s) by Lemma 4.1.11, (C○

L∗(s), α) is a unipotent e-cuspidal pair

for C○

G∗(s) of `-central defect. Therefore by Theorem 4.3.8 (b), (C○

L∗(s), α) labels a unipo-

tent block of C○

G∗(s), bC○
G∗(s)F (C

○

L∗(s), α). We call the unipotent block bC○
G∗(s)F (C

○

L∗(s), α)

a Jordan correspondent of bGF (L, λ). Note that if Z(G) is connected then λ corresponds to a

unique unipotent e-cuspidal character of C○

L∗(s)
F , so the Jordan correspondent of bGF (L, λ)

is unique.

4.3.2 Results from Bonnafé-Rouquier and Bonnafé-Dat-Rouquier

In this section we will give some important results of Bonnafé-Rouquier and Bonnafé-Dat-

Rouquier which are used in Section 5.2. Recall that eG
F

s denotes the sum of the block

idempotents of the blocks in E` (GF , s) for some semisimple `′ element s ∈ G∗F .

Theorem 4.3.13 ([8, Théorème B’]). Let G be a connected reductive algebraic group. Let

s ∈G∗F be a semisimple `′ element, and let L∗ be an F -stable Levi subgroup of G∗ such that
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CG∗(s) ⊆ L∗. Let L be dual to L∗. Then there exists a Morita equivalence

OGF eG
F

s ∼M OLF eL
F

s , (4.4)

so the blocks of E` (GF , s) are Morita equivalent to blocks in E`(LF , s).

Let L∗ be the smallest F -stable Levi subgroup of G∗ containing CG∗(s). Then Theo-

rem 4.3.13 shows that blocks of GF are Morita equivalent to quasi-isolated blocks of the fixed

points of Levi subgroups of G.

Remark 4.3.14. Note that it follows from Theorem 4.3.13 that in order to parametrise the

blocks of the finite groups of Lie type up to Morita equivalence, it is enough to parametrise the

quasi-isolated blocks. When Bonnafé- Rouquier published this result in 2003, the parametri-

sation of blocks of finite groups of Lie type for good ` had been completed by Cabanes and

Enguehard. Thus for a full parametrisation up to Morita equivalence, it only remained to

parametrise the quasi-isolated blocks of the finite groups of Lie type for bad `. This was done

by Kessar and Malle in [49] in 2013 with a case by case proof. We use their results extensively

in Section 5.2.2.

We now give an important refinement of Theorem 4.3.13, also from [8]. Suppose that we

are in the setting of Theorem 4.3.13 and that CG∗(s) = L∗ is a Levi subgroup of G∗. Then L∗

is F stable and s is central in L∗ so by [23, Proposition 13.30] there exists a linear character

ŝ ∈ Irr(LF ) such that tensoring by ŝ defines a bijection

E(LF ,1) Ð→ E(LF , s).

As discussed in [8, Section 11.5], the map given by l ↦ ŝ(l)l for all l ∈ OLF is an automorphism

of OLF and it restricts to an isomorphism of O-algebras,

OLF eL
F

s Ð̃→ OLF eL
F

1 .
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By [8, Théorème 11.8], this O-algebra isomorphism can be combined with Equation (4.4) to

give a Morita equivalence:

OGF eG
F

s ∼M OLF eL
F

1 . (4.5)

Thus if CG∗(s) is a Levi subgroup of G∗ then every block of E` (GF , s) is Morita equivalent

to a unipotent block of the fixed points of a Levi subgroup of G dual to CG∗(s).

Bonnafé, Dat and Rouquier extended the results of [8] in [6]. We now set up some notation

as in [6, Section 7]. Fix a semisimple `′ element s ∈ G∗F . Let L∗ = CG∗ (Z○ (C○

G∗(s))) be the

minimal Levi subgroup of G∗ containing C○

G∗(s). Let N∗ = CG∗(s)F .L∗ and let L be dual

to L∗. Define N to be the subgroup of NG(L) containing L such that N/L corresponds to

N∗/L∗ via the canonical isomorphism between NG∗(L∗)/L∗ and NG(L)/L.

Theorem 4.3.15 ([6, Theorem 7.7]). Let G be a connected reductive algebraic group. Let

s ∈ G∗F be a semisimple `′ element, and let L and N be as defined above. Then there exists

a Morita equivalence

OGF eG
F

s ∼M ONF eL
F

s . (4.6)

Because of the minimality of L∗, s is isolated in L∗ so the blocks in eL
F

s are isolated.

Thus Theorem 4.3.15 shows that every block of E` (GF , s) is Morita equivalent to a block of

a subgroup of GF which covers an isolated block of the fixed points of a Levi subgroup of G.

Recall the definition of the component group AG∗(s) = CG∗(s)/C○

G∗(s). By [6, Section

7A], NF /LF = N/L ≅ N∗/L∗ = (N∗/L∗)F , and therefore by the third isomorphism theorem,

NF /LF = CG∗(s)F /C○

G∗(s)F ≤ (CG∗(s)/C○

G∗(s))F = AG∗(s)F . (4.7)

Suppose that AG∗(s)F is cyclic and C○

G∗(s) = L∗ is a Levi subgroup of G∗. Then by [6,

Example 7.9], ONF eL
F

s ≅ ONF eL
F

1 , so Equation (4.6) gives a Morita equivalence;

OGF eG
F

s ∼M ONF eL
F

1 . (4.8)

82



Therefore if AG∗(s)F is cyclic and C○

G∗(s) = L∗ is a Levi subgroup of G∗ then every block

of E` (GF , s) is Morita equivalent to a block of a subgroup of GF , which covers a unipotent

block of the fixed points of a Levi subgroup of G.

83



Chapter 5

Morita Frobenius numbers of blocks

of finite groups of Lie type

5.1 Defining characteristic

Let G be a simple, simply-connected algebraic group defined over F`, an algebraic closure

of the finite field of ` elements. Let q be a power of ` and let F ∶ G → G be a Frobenius

morphism with respect to an Fq-structure with finite group of fixed points, GF . Note that we

place no restriction on the type of Frobenius morphism here – F can be split, twisted, or very

twisted as the methods of this section work in all cases. We start with the following result

from [42, Chapter 8] which is fundamental to our arguments.

Theorem 5.1.1 (Humphreys). GF has ∣Z (GF )∣ `-blocks of maximal defect and a unique

block of defect 0 containing the Steinberg character.

From this theorem it follows that kGF has ∣Z (GF )∣ + 1 blocks; the Steinberg block with

trivial defect, and ∣Z (GF )∣ many blocks whose defect groups are Sylow `-subgroups of GF .

We will use the next Theorem to calculate the Morita Frobenius numbers of these blocks.
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Theorem 5.1.2. Let B be a block of kGF with Galois conjugate σ(B). Then there ex-

ists a group automorphism ϕ ∶ GF → GF such that for the induced k-algebra isomorphism

ϕ ∶ kGF → kGF , ϕ(B) = σ(B).

Proof. First suppose that ∣Z (GF )∣ ≤ 2. Then it follows from Theorem 5.1.1 that GF has at

most three `-blocks. At least two of the blocks contain rational valued characters – the prin-

cipal and Steinberg blocks – therefore σ(B) = B for all `-blocks B of GF by Proposition 2.2.5

(b). Hence the result follows in this case by letting ϕ be the identity map.

Now suppose that Z (GF ) ≅ Cm for some m > 2 coprime to `. We will determine the block

idempotents of the `-blocks explicitly and then construct a suitable ϕ by defining its action

on those block idempotents.

Let Z (GF ) = ⟨g⟩. Then Z (GF ) has m irreducible characters χi ∶ Z (GF ) → K, and for

each 0 ≤ i ≤m − 1, χi has an associated central primitive idempotent of KZ (GF ),

ei =
1

m
∑

0≤a≤m−1

χi(ga)g−a.

Since m is coprime to ` it is invertible in O, so ei ∈ OGF . Let ēi be the image of ei in

kGF under the canonical quotient mapping OGF → kGF . Then {ēi}m−1
i=0 are the m block

idempotents for the `-blocks of kZ (GF ).

Since kGF has m+1 blocks, there are exactly m+1 primitive central idempotents in kGF .

Note that {ēi} is a set of m central, but not necessarily primitive, idempotents of kGF . Thus

since they are GF -stable, precisely one ēj is imprimitive in Z(kGF ). Since the trivial and

Steinberg characters of GF both restrict to the trivial character on Z (GF ), it follows that

the block idempotent for the principal block of kZ (GF ) – ē0, say – is imprimitive in kGF

and splits into the block idempotents for the principal and Steinberg blocks of kGF . The

remaining {ēi}m−1
i=1 are block idempotents of kGF .
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If B is either the principal or Steinberg block of GF then, as mentioned above, σ(B) = B

so we can let ϕ be the identity map. For the other blocks, Galois conjugation acts on ēi by

σ(ēi) =
1

m
∑

0≤a≤m−1

χi(ga)
`
g−a.

If ` ≡ 1 mod m then this action is trivial so again we can take ϕ = id. Thus assume from now

on that B is an `-block of GF different from the principal and Steinberg blocks, with block

idempotent ēi and that ` ≢ 1 mod m. We will construct a suitable ϕ such that ϕ(ēi) = σ(ēi).

Let F` ∶ G→G be an F`-split Frobenius morphism of G and let T be an F -stable maximal

torus of G such that F`(t) = t` for all t ∈ T (this is possible by [55, Theorem 16.5 and Example

22.6]). By [18, Proposition 3.6.8], Z (GF ) = Z (G)F . Since Z (G)F ⊆ Z (G) and Z (G) is

contained in every maximal torus of G, it follows that F`(z) = z` for every z ∈ Z(GF ).

Therefore,

F`(ēi) =
1

m
∑

0≤a≤m−1

χi(ga)F`(g−a) =
1

m
∑

0≤a≤m−1

χi(ga)g−`a.

Let ω be a primitive m-th root of unity such that χi(ga) = ωia for 1 ≤ a ≤m, let φ denote the

Euler totient function, and define ϕ by ϕ = (F`)φ(m)−1. Then

ϕ(ēi) =
1

m
∑

0≤a≤m−1

(ωia)g−`φ(m)−1a

and letting a′ = `φ(m)−1a so that `a′ = `φ(m)a ≡ a mod m, it follows that

ϕ(ēi) =
1

m
∑

0≤a′≤m−1

(ωi`a′)g−a′ = 1

m
∑

0≤a′≤m−1

χi(ga′)
`
g−a

′ = σ(ēi),

as required.

Since q is a power of `, by examination of [55, Table 24.2] it is clear that ` ∤ ∣Z (GF )∣ and

the only case that remains to consider is when GF = Spin+2n(q), with n ≥ 4 even, ` odd, and

Z (GF ) ≅ C2 ×C2. The irreducible characters of C2 ×C2 are rational valued so the associated

central primitive idempotents of kZ (GF ) are stabilized by Galois conjugation. It follows that

86



the central primitive idempotents of kGF are also stabilized by Galois conjugation, so again,

we can let ϕ be the identity map.

Corollary 5.1.3. Let Z be a central (possibly trivial) subgroup of GF and suppose that B is

an `-block of GF /Z. Then frob (B) =mf (B) = 1.

Proof. First suppose that Z is trivial. Then by Theorem 5.1.2 there exists a group auto-

morphism ϕ ∶ GF → GF such that for the induced k-algebra isomorphism ϕ ∶ kGF → kGF ,

ϕ(B) = σ(B). Then frob(B) =mf (B) = 1 by Lemma 2.2.6.

Now suppose that Z is not trivial and B, an `-block of GF /Z, is dominated by an `-

block B̂ of GF . By above, mf (B̂) = 1. Since Z (GF ) is an `′-group, by Lemma 2.1.10 (c)

kGF B̂ ≅ k (GF /Z)B as k-algebras. Therefore frob(B) =frob(B̂) = 1 whence mf (B) = 1.

5.2 Non-defining characteristic

Throughout Section 5.2 let p and ` be different primes and let q be a power of p. Let G be a

connected reductive algebraic group defined over Fp, an algebraic closure of the finite field of

p elements. Let F ∶ G→G be a Frobenius morphism with respect to an Fq-structure which is

not very twisted, and let GF denote the finite group of fixed points. Let e = e`(q), as defined

in Section 4.1.4.

Let σ̂ denote the automorphism of K defined in Section 2.2.1 and recall that σ̂ acts on

the irreducible characters of GF by σ̂χ(g) = σ̂(χ(g)) for all g ∈ GF , χ ∈ Irr(GF ).

Lemma 5.2.1. Let b = bGF (L, λ) be the `-block of GF containing the irreducible constituents

of RG
L⊆P(λ) for an e-Jordan quasi-central cuspidal pair (L, λ) of G, as in Theorem 4.3.11 (a).

Suppose that λ is rational valued. Then mf (bGF (L, λ)) = 1.

Proof. As discussed in Section 2.2.1 if λ is rational valued then σ̂λ = λ. By the Deligne

Lusztig induction character formula (Equation (4.1)), since the Green functions are integer

valued ([23, Definition 12.1]), it therefore follows that σ̂ (RG
L⊆P(λ)) = RG

L⊆P (σ̂λ) = RG
L⊆P (λ).
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Let χ ∈ Irr(b) be an irreducible constituent of RG
L⊆P(λ). Then σ̂χ ∈ Irr(σ(b)), by Lemma

2.2.1 (b). On the other hand, σ̂χ is an irreducible constituent of σ̂ (RG
L⊆P(λ)) = RG

L⊆P (λ),

by above, so σ̂χ is also an irreducible character in b. It follows that σ(b) = b and therefore

kGF b ≅ kGF b(`) as k-algebras by Lemma 2.2.4, so frob(b) = 1, hence mf (b) = 1.

5.2.1 Unipotent blocks

For Section 5.2.1 we will use the parametrisation of the unipotent blocks of finite groups of

Lie type given in Theorem 4.3.8. As in the theorem, we let bGF (L, λ) denote the unipotent

`-block of GF containing the irreducible constituents of RG
L (λ) for a unipotent e-cuspidal pair

(L, λ) of G of central `-defect.

Lemma 5.2.2. Let b be a unipotent `-block of GF containing a unipotent e-cuspidal character

χ ∈ Irr (GF ) of central `-defect. Suppose that ` is good for G and Z ([G,G]F ) is an `′-group.

Then all characters in Irr(b) are e-cuspidal.

Proof. Let χ0 = χ∣
[G,G]

F . Since χ is unipotent, it follows from results of Lusztig that χ0 is

irreducible (see for example [14, Proposition 3.1]). We have ∣GF ∣
`
= ∣Z○ (G)F ∣

`
∣[G,G]F ∣

`
and

since χ is of central `-defect, ∣GF ∣
`
= χ(1)` ∣Z (GF )∣

`
= χ0(1)` ∣Z (GF )∣

`
, therefore

χ0(1)` = ∣[G,G]F ∣
`

∣Z○ (G)F ∣
`

∣Z (GF )∣
`

. (5.1)

The subgroup Z○ (G)F [G,G]F is of index ∣Z○ (G)F ∩ [G,G]F ∣ in GF . Since Z○ (G)F ∩

[G,G]F ⊆ Z ([G,G]F ), and by assumption, Z ([G,G]F ) is an `′-group, it follows that

Z○ (G)F [G,G]F is of `′ index in GF and thus GF /Z○ (G)F [G,G]F is an `′-group.

Consider the natural map

Z (G)F ↪GF ↠GF /Z○ (G)F [G,G]F .
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This map has kernel Z(G)F ∩ (Z○(G)F [G,G]F ) = Z○(G)F ∩ Z ([G,G]F ), therefore the

quotient Z(G)F / (Z○(G)F ∩Z ([G,G]F )) is `′, since it is isomorphic to a subgroup of the

`′-group GF /Z○(G)F [G,G]F . By the third isomorphism theorem,

Z(G)F / (Z○ (G)F ∩Z ([G,G]F )) ≅ (Z (G)F /Z○ (G)F ) / ((Z○ (G)F ∩Z ([G,G]F )) /Z○ (G)F ) .

Since (Z○ (G)F ∩Z ([G,G]F )) is `′, the quotient (Z○ (G)F ∩Z ([G,G]F )) /Z○ (G)F is `′,

and thus Z (G)F /Z○ (G)F is also `′. Therefore ∣Z (G)F ∣
`
= ∣Z○(G)F ∣

`
so it follows from

equation (5.1) that

χ0(1)` = ∣[G,G]F ∣
`
.

Thus by Theorem 2.1.6, χ0 is in a block b̄ of [G,G]F of defect 0.

Consider a character θ ∈ Irr(b). Since b covers b̄ and χ0 is the only character in b̄, θ

covers χ0. By [20, Corollary 11.7], therefore θ = ηχ for a uniquely determined character η

of Irr(GF / [G,G]F ). Since [GF ,GF ] ⊆ [G,G]F , GF / [G,G]F is abelian, so η is a linear

character.

By the e-cuspidality of χ (see Definition 4.3.1), ⟨χ,RG
L (τ)⟩ = 0 for any proper e-split

Levi subgroup L of G and any τ ∈ Irr(LF ). Because η is linear, therefore ⟨ηχ, ηRG
L (τ)⟩ =

⟨θ,RG
L (ητ)⟩ = 0 for all τ ∈ Irr(LF ). Let τ̃ = ητ . Then τ̃ runs over Irr(LF ) as τ does, so

⟨θ,RG
L (τ̃)⟩ = 0 for all τ̃ ∈ Irr(LF ). Therefore θ is e-cuspidal, as required.

Proposition 5.2.3. Let b = bGF (L, λ) be a unipotent block of GF for a unipotent e-cuspidal

pair (L, λ) of G of central `-defect. Suppose that ` is odd or G is of exceptional type. Then b

has a defect group P such that Z(L)F` ⊴ P and P /Z(L)F` is isomorphic to a Sylow `-subgroup

of WGF (L, λ).

Proof. By the proof of [49, Theorem 7.12], since ` is odd or G is of exceptional type,

CGF (Z(L)F` ) = LF and GF has the following inclusion of Brauer pairs

({1}, b) ⊴ (Z(L)F` , bLF (λ)) ⊴ (P, f) ,
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where bLF (λ) is the block of LF containing λ, f is a block of CGF (P ), (Z(L)F` , bLF (λ)) is self-

centralizing and (P, f) is maximal. Then it follows from [49, Lemma 2.1] that P / (P ∩Z (L)F` )

= P /Z (L)F` is isomorphic to a Sylow `-subgroup of

NGF (Z(L)F` , bLF (λ)) /CGF (Z(L)F` ) = NGF (Z(L)F` , bLF (λ)) /L
F =WGF (L, λ),

as required.

Similar results to Proposition 5.2.3 can be obtained if ` = 2 and G is of classical type but

these will not be needed here.

The next theorem shows that under certain conditions, we can apply a result of Puig

[61, Theorem 5.5] to a unipotent block b = bGF (L, λ) to show that b is Morita equivalent to

a specific block of ONGF (L, λ). This result will be used to calculate the Morita Frobenius

number of some unipotent blocks of E8(q).

First we recall the following. Suppose M is a finite group with a normal `′-subgroup U ,

and suppose that L ≅ M/U . Let µ ∶ M → L be the quotient map. Denote the O-linear

extension of µ also by µ ∶ OM → OL. For x ∈ OL, let x̃ denote an element of OM such that

µ (x̃) = x. If d is the principal block of OU , then Fong reduction yields the following inverse

O-algebra isomorphisms,

OL Ð̃→ OMd

x z→ x̃d

µ(y) ←Ð [ y,

for all x ∈ OL, y ∈ OMd [38, Proposition 3.5].

Theorem 5.2.4. Let b = bGF (L, λ) be a unipotent block of GF for a unipotent e-cuspidal

pair (L, λ) of G of central `-defect. Suppose that ` ≥ 5, `∣q − 1, L is a proper Levi subgroup

of G and P = Z(L)F` is a defect group of b. Let f = bLF (λ) be the block of OLF containing
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λ. Then f is a block of ONGF (L, λ) with defect group P such that OGF b and ONGF (L, λ)f

are Morita equivalent.

Proof. Since L is a 1-split Levi subgroup, L is contained in an F -stable parabolic subgroup

of G, M, say. Let U = Ru(M), so M = U⋊L. We have MF = UF ⋊LF . Then MF /UF ≅ LF .

Let µ ∶ MF → LF be the quotient map. Let N = NGF (L, λ) and let c be the block of kMF

that dominates f . We show that the hypotheses of [61, Theorem 5.5] are satisfied by MF , N ,

LF , c and f .

Because UF is an `′-group, c dominates a unique block of OLF by Lemma 2.1.10 (c), so

µ(c) = f . Let d be the principal block of OUF . Then it follows from the isomorphisms due

to Fong reduction mentioned above that c = fd. Since d is central in OMF , therefore cf = c.

Since λ is a 1-cuspidal unipotent character in f with central `-defect, Lemma 5.2.2 shows that

all the characters in f are 1-cuspidal. It then follows by arguments given in [61, 5.3] that

c(OGF )c = c(ON)c.

Next, since NGF (L, λ) ⊆ NGF (LF , λ), N normalizes LF and therefore f . By the proof of

[23, Corollary 1.18], NG(L)∩U = {1}. Therefore NMF (L, λ)∩UF = {1}, so NMF (L, λ) ⊆ LF

and thus LF = NMF (L, λ) = N∩MF . By [14, Proposition 2.2 (ii)], since ` ≥ 5 and L is a proper

Levi subgroup of G, LF = CGF (Z(L)F` ) = CGF (P ). Therefore f is a block of OCGF (P ),

so BrP (f) = f where BrP denotes the Brauer homomorphism as defined in Section 2.1.6. It

follows that BrP (c) = BrP (df) = 1
∣UF

∣
BrP (f) ≠ 0, so all hypotheses of [61, Theorem 5.5] are

satisfied.

Recall that we have the following inclusion of Brauer pairs (1, b) ≤ (P, f) from the proof

of Proposition 5.2.3. Therefore BrP (b)f = f . Since N/LF , the relative Weyl group of (LF , λ)

in GF , is an `′-group, [61, 5.5.4] implies that f is a block of ONGF (L, λ) with defect group

P , and ONf and OGF b are source algebra equivalent, and hence Morita equivalent by [63,

Theorem 38.2].

Theorem 5.2.5. Suppose that G is simple, simply-connected. Let e = e`(q). Let b = bGF (L, λ)

be a unipotent block of GF for a unipotent e-cuspidal pair (L, λ) of G of central `-defect. Then
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(a) mf (b) ≤ 2 and

(b) mf (b) = 1, except possibly in the following situations.

� G = E8, L = φ2
1.E6, λ = E6[θi] (i = 1,2), with ` = 2 and e = 1

� G = E8, L = φ2
2.

2E6, λ = 2E6[θi] (i = 1,2), with ` ≡ 2 mod 3 and e = 2

Proof. By [36, Table 1 and Proposition 5.6], the unipotent characters of classical finite groups

of Lie type (including 3D4(q)) are rational valued. Thus if G is of classical type, if L has all

classical components, or if λ is rational valued, then mf (b) = 1 by Proposition 2.2.5 (b) and

Lemma 5.2.1. It therefore only remains to consider the cases where G is of exceptional type,

L contains some component of exceptional type, and λ is not rational valued. The following

table lists all the unipotent e-cuspidal pairs of central `-defect for these cases, identified using

[11, Appendix: Table 1], [26] and [18, Chapter 13]. The character labels are as in [18, Chapter

13].

G e (L, λ) Is of `-central defect for

G2 1,2 (G2,G2[θi]) ` ≠ 3

F4 1,2 (F4, F4[θi]) ` ≠ 3

F4 1,2 (F4, F4[±i])∗ ` ≠ 2

E6 1,2 (E6,E6[θi]) ` ≠ 3

2E6 1,2 (2E6,
2E6[θi]) ` ≠ 3

E7 1 (E7,E7[±ξ])� ` ≠ 2

E7 2 (E7, φ512,11) , (E7, φ512,12) ` ≠ 2

E7 1 (E6,E6[θi]) ` ≠ 3

E7 2 (2E6,
2E6[θi]) ` ≠ 3

E8 1,4 (E8,E8[±θi]) ` ≠ 2,3
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E8 1,2 (E8,E8[±i]) ` ≠ 2

E8 1,2,4 (E8,E8[ζj]) ` ≠ 5

E8 2,4 (E8,E6[θi], φ2,1) , (E8,E6[θi], φ2,2) ` ≠ 5

E8 4

(E8,E6[θi], φ1,0) , (E8,E6[θi], φ1,6) ,

(E8,E6[θi], φ1,3′) , (E8,E6[θi], φ1,3′′) ,

(E8, φ4096,11) , (E8, φ4096,26) ,

(E8, φ4096,12) , (E8, φ4096,27) ,

(E8,E7[±ξ,1]) , (E8,E7[±ξ, ε])

every `

E8 1 (E7,E7[±ξ]) ` ≠ 2

E8 2 (E7, φ512,11) , (E7, φ512,12)� ` ≠ 2

E8 1 (E6,E6[θi]) ` ≠ 3

E8 2 (2E6,
2E6[θi]) ` ≠ 3

θ ∶= exp(2πi/3), ζ ∶= exp(2πi/5), ξ ∶= √−q

*[26] omits this pair for ` = 3, e = 2 �[26] writes E7[±ζ] instead of E7[±ξ] for ` = 2, e = 1

�[26] writes E7[±ξ] instead of φ512,11, φ512,12 for ` = 5, e = 2

Suppose that ` is good for G. Then by inspection, the Sylow `-subgroups of WGF (L, λ)

are trivial so by Proposition 5.2.3, the defect groups of b are isomorphic to a Sylow `-subgroup

of Z (L)F . If L = G, then the Sylow `-subgroups of Z(LF ) are trivial by inspection of [55,

Table 24.2]. By [18, Proposition 3.6.8], since L is connected reductive, Z(L)F = Z (LF ),

therefore b has trivial defect and mf (b) = 1 by Proposition 2.2.5 (d). If L and G are such

that rk(G) = rk([L,L]) + 1, then dim(Z○ (L)) = 1 by Lemma 4.1.1. The Sylow `-subgroups

of Z○ (L)F are therefore isomorphic to subgroups of the multiplicative group Gm, so they are

cyclic. By [14, Proposition 2.2 (i)], since ` is good for G, Z(L)F` = Z○(L)F` , therefore b has

cyclic defect so mf (b) = 1 by Proposition 2.2.5 (d).
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Now suppose that ` is bad for G, that L = G. By inspection of the character degrees

given in [18, Chapter 13], we see that e-cuspidal characters λ of GF satisfy λ(1)` = ∣GF ∣`, so

mf (b) = 1 by Proposition 2.2.5 (c).

The remaining `-blocks will be handled on a case-by-case basis. First, suppose that G = E8,

L = φ2
1.E6 and λ = E6[θi] (i = 1,2) with ` ≥ 5 and e = 1. Then by Theorem 5.2.4, kGF b

is Morita equivalent to kNf where N = NGF (L, λ) and f = bLF (λ) is the block of kLF

containing λ. Suppose that P is a defect group of kLF f . Then since ` is odd and WGF (L, λ) ≅

D12 is an `′-group, P is isomorphic to a Sylow `-subgroup of Z(L)F by Proposition 5.2.3.

Since N normalizes L, P � N so kNf has normal defect. Then by [63, Theorem 45.12],

kNf is Morita equivalent to a twisted group algebra kα(P ⋊D12), where α ∈ H2(D12;k×).

Since H2(D12;k×) ≅ C2, it follows from Lemma 2.2.7 that mf (kα (P ⋊D12)) = 1. Whence,

mf (b) = 1.

Suppose now that G = E8. If ` = 3 and L = φ1.E7, λ = E7[±ξ] and e = 1, or L = φ1.E7,

λ = φ512,11 or φ512,12 and e = 2, then b has cyclic defect by [26, page 364]. If ` = 5 and

L = φ1.E7, λ = E7[±ξ] and e = 1, or L = φ1.E7, λ = φ512,11 or φ512,12 and e = 2, then the

relative Weyl group WGF (L, λ) ≅ S2 has trivial Sylow `-subgroups, so by Proposition 5.2.3

the defect groups of b are isomorphic to a Sylow `-subgroup of Z(L)F . Note that rk(G) =

rk([L,L])+ 1, so dim(Z○ (L)) = 1 and the Sylow `-subgroups of Z○(L)F are cyclic, as above.

Again, using [14, Proposition 2.2], Z(L)F` = Z○(L)F` , so b has cyclic defect and mf (b) = 1 by

Proposition 2.2.5 (d).

Suppose that G = E7, L = φ1.E6(q), λ = E6[θi], (i = 1,2), with ` = 2 and e = 1. Then b

has dihedral defect by [26, page 357]. Therefore by Proposition 2.2.5 (d), mf (b) = 1.

Finally, suppose that we are in one of the following cases: G = E8, L = φ2
1.E6, λ = E6[θi],

(i = 1,2), with ` = 2 and e = 1; or G = E8, L = φ2
2.

2E6, λ = 2E6[θi], (i = 1,2), with ` ≠ 3 and

e = 2. From [36, Table 1] we know that the character field of λ is Q(θ) where θ = exp(2πi
3 ).

Since ` ≠ 3, θ is an `′-root of unity so σ̂(θ) = θ` (see Section 5.2.4). If ` ≡ 1 mod 3, then

σ̂(θ) = θ so σ̂λ = λ. Therefore by the arguments of Lemma 5.2.1, mf (b) = 1. If ` ≡ 2 mod 3,
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however, then σ̂(θ) = θ2 ≠ θ so we cannot conclude that mf (b) = 1. Because σ̂2(θ) = θ4 = θ,

however, it follows that σ̂2
λ = λ, so mf (b) is at most 2.

Corollary 5.2.6. Let G be as in Theorem 5.2.5 and suppose that GF has non trivial centre.

Let Z be a central subgroup of GF and suppose that b is a block of k(GF /Z) dominated by a

unipotent block b of kGF . Then mf (b) = 1.

Proof. Since GF has non trivial centre, G ≠ E8, therefore by the proof of Theorem 5.2.5,

either σ(b) = b, or b has trivial, cyclic or dihedral defect.

First suppose that b is dominated by a unipotent block b of kGF such that σ(b) = b. Then

by Lemma 2.2.2 (b), σ (b) is also dominated by b. Since Z is central, it then follows from

parts (b) and (c) of Lemma 2.1.10 that σ (b) = b. Therefore k (GF /Z) b ≅ k (GF /Z) b(`) as

k-algebras by Lemma 2.2.4, so frob(b) = 1, hence mf (b) = 1.

Now suppose that b is dominated by a unipotent block b of kGF which has either trivial,

cyclic or dihedral defect. Then by [57, Ch.5, Theorem 8.7 (ii)], the defect groups of b are also

either trivial, cyclic or dihedral. Therefore mf (b) = 1 by Proposition 2.2.5 (d).

5.2.2 Quasi-isolated blocks

For the rest of Section 5.2 we fix a pair (G∗, F ) which is dual to (G, F ) as in Definition 4.1.9,

and we fix a regular embedding i ∶ G ↪ G̃ as in Definition 4.2.9. Recall that an element

s ∈ G∗ is quasi-isolated if there does not exist a proper Levi subgroup L∗ of G∗ such that

CG∗(s) ⊆ L∗.

Lemma 5.2.7. Let s ∈G∗F be a semisimple element such that the components of CG∗(s) are

all of classical type and suppose that Z(G) is connected. Then every χ ∈ E (GF , s) is uniquely

determined by its uniform projection.

Proof. Since G is a reductive algebraic group with connected centre, CG∗(s) is a connected

group for any semisimple element s ∈ G∗F [23, Lemma 13.14 (iii)]. By assumption, CG∗(s)

has only classical components, so by results of Lusztig (see [15, Theorem 15.8]), the unipotent
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characters of CG∗(s)F are uniquely determined by their uniform projection. Thus by Jordan

decomposition, Theorem 4.2.8, each χ ∈ E (GF , s) is uniquely determined by its uniform

projection.

The next two results use the notation of Section 4.2.2.

Lemma 5.2.8. Suppose that (T̃1, θ̃1) , (T̃2, θ̃2) ∈ ∇ (G̃, F ) are geometrically conjugate pairs.

Let ϕ ∶ K → K be a field automorphism, and for i ∈ {1,2} define an action of ϕ on θ̃i by

ϕθ̃i(t) = ϕ(θ̃i(t)) for all t ∈ T̃F
i . Suppose that there exists a linear character η ∈ Irr (G̃F /GF )

such that ϕθ̃1 = θ̃1η∣T̃F1 . Then ϕθ̃2 = θ̃2η∣T̃F2 .

Proof. By Lemma 4.2.3, since (T̃1, θ̃1) and (T̃2, θ̃2) are geometrically conjugate, there exists

n ∈ N and g ∈ G̃
Fn

such that T̃1 = gT̃2g
−1 and for all x ∈ T̃2,

θ̃2 (NFn/F (x)) = θ̃1 (NFn/F (gxg−1))

where, for i ∈ {1,2}, NFn/F ∶ T̃i → T̃i is the norm map sending t ↦ tF (t) . . . Fn−1(t) for all

t ∈ T̃i.

The inclusion G̃
F ↪ G̃

Fn

induces an inclusion G̃
F /GF ↪ G̃

Fn/GFn . Therefore, since

G̃
Fn/GFn is an abelian group, η ∶ G̃F /GF → C× extends to a linear character η̂ ∶ G̃Fn/GFn → C×.

We can view η̂ as a character of G̃
Fn

.

Let x ∈ T̃
Fn

2 . Then for any h ∈ G̃
F

,
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η∣
T̃
F
1

(NFn/F (hxh−1)) = η̂ (NFn/F (hxh−1)) by definition of η̂

= η̂ (hxh−1F (hxh−1) . . . Fn(hxh−1)) by definition of NFn/F

= η̂(h)η̂(x)η̂(h−1)η̂(F (h))η̂(F (x))η̂(F (h−1)) . . .

η̂(Fn−1(h))η̂(Fn−1(x))η̂(Fn−1(h−1)) since η̂ and F are homomorphisms

= η̂(x)η̂(F (x)) . . . η̂(Fn−1(x))

= η̂ (xF (x) . . . Fn−1(x))

= η̂ (NFn/F (x)) by definition of NFn/F

= η∣
T̃
F
2

(NFn/F (x)) since NFn/F (x) ∈ T̃
F
2 .

Then for any x ∈ T̃
Fn

2 ,

ϕθ̃2 (NFn/F (x)) = ϕ (θ̃2 (NFn/F (x)))

= ϕ (θ̃1 (NFn/F (gxg−1)))

= θ̃1η∣T̃F1 (NFn/F (gxg−1)) by assumption

= θ̃1 (NFn/F (gxg−1))η∣
T̃
F
1

(NFn/F (gxg−1))

= θ̃2 (NFn/F (x))η∣T̃F2 (NFn/F (x)) by above

= θ̃2η∣T̃F2 (NFn/F (x)) .

Since the norm map restricts to a surjection NFn/F ∶ T̃Fn

2 → T̃
F
2 by Lemma 4.2.2, therefore

ϕθ̃2 = θ̃2η∣T̃F2 as required.

Proposition 5.2.9. Let s ∈ G∗F be a semisimple `′ element of order m such that the com-

ponents of CG∗(s) are all of classical type. Let b ∈ E` (GF , s) be an `-block of GF . Then

mf (b) ≤ ϕ(m) where ϕ is the Euler totient function.
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Proof. Let χ ∈ Irr(b) ∩ E (GF , s) and let (T, θ) ∈ ∇(G, F, [s]) be such that χ is an irreducible

constituent of RG
T (θ). Let T̃ = T.Z(G̃) and let s̃ ∈ G̃

∗F
be such that i∗(s̃) = s. Then by

Lemma 4.2.12 (b), there exists an irreducible character θ̃ ∈ Irr(T̃F ) extending θ, so θ̃∣TF = θ

and (T̃, θ̃) ∈ ∇(G̃, F, [s̃]). It follows that there exists a character ψ ∈ Irr(G̃F ) which is an

irreducible constituent of RG̃
T̃
(θ̃), such that χ is an irreducible constituent of ψ∣GF .

Let n = ϕ(m). Since o(s) = m and (T, θ) ∈ ∇(G, F, [s]), it follows from [23, Proposition

13.11] that o(θ) =m. Hence σ̂nθ = θ. We claim that there exists a linear character η ∈ Irr(G̃F )

such that σ̂nψ = ψη.

As σ̂nθ = θ is an irreducible component of σ̂n θ̃∣TF , it follows from [43, Lemma 3.1] that

σ̂n θ̃ = θ̃η for some irreducible character η ∈ Irr(T̃F /TF ). Since T̃
F /TF is abelian, η is a linear

character, and since T̃
F /TF ≅ G̃

F /GF (see the proof of [5, Corollaire 2.7]) we can view η

as a character of G̃
F

. Thus σ̂n θ̃ = θ̃η∣
T̃
F for a linear character η ∈ Irr(G̃F ). It follows from

Lemma 5.2.8 that for any pair (S̃, γ̃) ∈ ∇ (G̃, F, [s̃]), σ̂
n
γ̃ = γ̃η∣

S̃
F . Recall that since Z(G̃) is

connected, geometric conjugacy is the same as rational conjugacy for G̃.

Let (S̃, γ̃) ∈ ∇ (G̃, F ). Then

⟨ψ,RG̃
S̃
(γ̃)⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if (S̃, γ̃) ∉ ∇(G̃, F, [s̃]),

⟨ σ̂nψ,RG̃
S̃
( σ̂n γ̃)⟩ otherwise,

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if (S̃, γ̃) ∉ ∇(G̃, F, [s̃]),

⟨ σ̂nψ,RG̃
S̃
(γ̃η∣

S̃
F )⟩ otherwise.

Since ⟨ σ̂nψ,RG̃
S̃
(γ̃η∣

S̃
F )⟩ = 0 if σ̂nψ ∉ RG̃

S̃
(γ̃η∣

S̃
F ), and this holds if (S̃, γ̃) ∉ ∇(G̃, F, [s̃]), it

follows that ⟨ψ,RG̃
S̃
(γ̃)⟩ = ⟨ σ̂nψ,RG̃

S̃
(γ̃η∣

S̃
F )⟩ for every (S̃, γ̃) ∈ ∇(G̃, F ).

On the other hand, η is a linear character so for every (S̃, γ̃) ∈ ∇ (G̃, F ),

⟨ψ,RG̃
S̃
(γ̃)⟩ = ⟨ψη, (RG̃

S̃
(γ̃))η⟩ = ⟨ψη,RG̃

S̃
(γ̃η∣

S̃
F )⟩,
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and therefore

⟨ σ̂nψ,RG̃
S̃
(γ̃η∣

S̃
F )⟩ = ⟨ψη,RG̃

S̃
(γ̃η∣

S̃
F )⟩.

Thus σ̂nψ and ψη have the same uniform projection. Since Z (G̃F ) is connected and all

components of C
G̃
∗F (s̃) are of classical type by assumption, it follows from Lemma 5.2.7 that

σ̂nψ = ψη.

Recall that χ is an irreducible component of ψ∣GF . Now since σ̂nψ∣GF = (ψη) ∣GF = ψ∣GF ,

it follows that σ̂nχ is also an irreducible component of ψ∣GF . Thus by Clifford theory [44,

Theorem 6.2], χ and σ̂nχ are G̃
F
-conjugate, and therefore b and σ̂n(b) are G̃

F
-conjugate.

This action restricts to an automorphism of OGF sending b to σ̂n(b), so OGF b ≅ OGF σ̂n(b).

Therefore mf (b) ≤ n = ϕ(m).

Theorem 5.2.10. Let G be simple and simply connected. Let s ∈ G∗F be a quasi-isolated

semisimple `′ element such that the components of CG∗(s) are all of classical type. Let b ∈

E` (GF , s) be a block of GF . Then if G is of type B, mf (b) = 1; if G is of type C, D, G2,

F4, E6, 2E6 or E7, then mf (b) ≤ 2; and if G is of type E8 then mf (b) ≤ 4.

Proof. The orders and centralizers of the quasi-isolated elements of finite groups of Lie type

are given in [4, Table 3] and [49, Table 1]. The result therefore follows directly from Proposi-

tion 5.2.9.
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Type o(s) ∈ ϕ(o(s)) ≤

B {1,2} 1

C {1,2,4} 2

D {1,2,4} 2

G2 {1,2,3} 2

F4 {1,2,3} 2

E6 {1,2,3,6} 2

E7 {1,2,3,6} 2

E8 {1,2,3,5,6} 4

The remaining quasi-isolated blocks not covered by Theorem 5.2.10 are blocks of E7 and

E8. We need the following two results.

Lemma 5.2.11. Suppose that s is a semisimple `′ element of G∗F of order m and b ∈

E` (GF , s). Let n = ϕ(m) where ϕ denotes the Euler totient function. Then σn(b) ∈ E` (GF , s).

Proof. Let χ ∈ Irr(b) ∩ E (GF , s) where s is a semisimple `′ element of G∗F of order m and

let n = ϕ(m). Then σ̂nχ ∈ Irr(σn(b)) and there exists a pair (T, θ) ∈ ∇(G, F, (s)) such that

χ ∈ RG
T (θ) and σ̂nχ ∈ RG

T (σ̂nθ). Since s has order m, so does θ, so Q(θ) = Q[ω] for ω a

primitive mth root of unity, and therefore σ̂nθ = θ. Thus σ̂nχ ∈ RG
T (θ) so σn(b) ∈ E` (GF , s)

as required.

In the next Lemma we use the general parametrisation of blocks of GF from Theo-

rem 4.3.11 (d), and let bGF (L, λ) denote the block of GF containing the irreducible com-

ponents of RG
L⊆P(λ) for an e-Jordan quasi-central cuspidal pair (L, λ) of G.
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Lemma 5.2.12. Let G be an exceptional group with connected centre. Let ` ≥ 3 and let s be

a quasi-isolated semisimple `′ element of G∗F . Let B = BGF (L, λ) and B′ = BGF (L′, λ′) be

blocks of E` (GF , s), and let α (respectively α′) denote the e-cuspidal unipotent character of

CG∗(s)F corresponding to λ (respectively λ′) by Jordan decomposition, Theorem 4.2.8. Then

if B is Galois conjugate to B′, α(1) = α′(1).

Proof. By [15, Theorem 4.2] and [50] since G is of exceptional type and s is quasi-isolated,

e-Jordan quasi-central cuspidality is equivalent to e-cuspidality for (L, λ) and (L′, λ′) (see

[50, Remark 2.2]). Therefore, since ` ≥ 3, (L′, λ′) is the unique e-cuspidal pair of G up to GF-

conjugacy such that B′ contains the irreducible constituents of RG
L′⊆P′(λ′), by Theorem 4.3.11

(d).

Suppose that B and B′ are Galois conjugate, so B′ = σn(B) for some positive integer n.

Then B′ contains the irreducible components of σ̂
n(RG

L⊆P (λ)) = RG
L⊆P (σ̂nλ). As (L, λ) is an

e-cuspidal pair, (L, σnλ) is also an e-cuspidal pair. Thus (L, σ̂nλ) is GF-conjugate to (L′, λ′).

It follows that λ′(1) = σ̂nλ(1) = λ(1). By the degree formula for Jordan decomposition,

Theorem 4.2.8, therefore α(1) = α′(1).

Remark 5.2.13. In the following propositions the Morita Frobenius number of certain blocks

can be obtained by applying Ennola duality to other blocks. This is done by formally changing

q to −q. See [11, Section 3A] for more details.

Proposition 5.2.14. Let G be a simple, simply connected algebraic group of type E8. Let

s ∈G∗F be a quasi-isolated semisimple `′ element such that the components of CG∗(s) are not

all of classical type. Let B ∈ E` (GF , s) be an `-block of GF . If o(s) = 2 then mf (B) ≤ 2 and

if o(s) = 3 then mf (B) ≤ 4.

Proof. By [49, Table 1], we need to consider the following cases:
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o(s) CG∗(s)

2 E7 ×A1

3 E6 ×A2

3 2E6 × 2A2

Our strategy is the following. If a block B has cyclic defect, then mf (B) = 1 by Proposi-

tion 2.2.5 (d). If B has defect group different from the defect groups of all the other blocks

of E` (GF , s), then B is not Galois conjugate to any other block in EG(GF , s). We there-

fore restrict our attention to the blocks of E` (GF , s) of non-cyclic, non-unique defect within

E` (GF , s) and, for each E` (GF , s), we calculate the largest possible size of a collection of

Galois conjugate blocks of non-cyclic defect in E` (GF , s). Using Lemma 5.2.11, this allows

us to determine upper bounds on the Morita Frobenius numbers of the blocks in E` (GF , s).

First suppose that ` is bad for G (i.e. ` ≤ 5). Then the blocks of E` (GF , s) are given

in [49, Section 6] along with information about their defects. In the table below we list the

blocks of E` (GF , s) which do not have cyclic defect, and do not have unique defect within

E` (GF , s). Each row contains blocks corresponding to the pairs (L, λ) in the bijection given

in [49, Theorem 1.2 (a)]. As in the tables in [49], instead of giving λ, we give the unipotent

character α of CG∗(s)F which corresponds to λ by Jordan decomposition, Theorem 4.2.8.

Note that the α’s given in rows 3, 4 and 5 of the table for ` = 5 are identified using [11,

Appendix: Table 1].
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Row ` e CG∗(s)F LF α WGF (L, λ)

1 2 1 E6(q)A2(q) Φ2
1(q)E6(q) E6[θi] (i = 1,2) A2

2 2 1 2E6(q)2A2(q) Φ1(q)E7(q) 2E6[θi] (i = 1,2) A1

1 5 1 E6(q)A2(q) Φ2
1(q)E6(q) E6[θi] (i = 1,2) A2

2 5 1 E7(q)A1(q) Φ2
1(q)E6(q) E6[θi] (i = 1,2) A1 ×A1

3 5 4 E7(q)A1(q) Φ2
4(q)D4(q)

13 ⊗ 1,13 ⊗ φ11

φ3
11 ⊗ 1, φ3

11 ⊗ φ11

G8

4 5 4 E7(q)A1(q) Φ2
4(q)D4(q)

12φ11 ⊗ 1,12φ11 ⊗ φ11

1φ2
11 ⊗ 1,1φ2

11 ⊗ φ11

G(4,1,2)

5 5 4 E6(q)A2(q) Φ2
4(q)D4(q)

1⊗ 1,1⊗ φ21

1⊗ φ111

G8

When ` = 2, rows 1 and 2 contain pairs of blocks which could be Galois conjugate pairs.

When ` = 3 all blocks have cyclic defect, or unique defect within E` (GF , s). When ` = 5 rows 1

and 2 both contain pairs of blocks which could be Galois conjugate pairs. Rows 3 and 4 contain

blocks of equal non-cyclic defect. Let B be a block from row 3 or 4 and let P denote the defect

group of B. Since P is abelian, Lemma 2.2.3 shows that N(P,B)/GF ≅ N(P,σ(B))/GF and

therefore B and σ(B) have the same relative Weyl group. Thus blocks in row 3 are not

Galois conjugate to blocks in row 4. Within row 3, all blocks correspond to an α of unique

degree, therefore by Lemma 5.2.12 row 3 contains no Galois conjugate blocks. In row 4 there

is one pair of blocks which could be Galois conjugate. In row 5 each α has unique degree

so again by Lemma 5.2.12, there are no Galois conjugate blocks. The results for e = 2 are

analogous to e = 1, obtained by applying Ennola duality. Therefore for bad `, for any e, a

block B ∈ E` (GF , s) of non-cyclic defect is Galois conjugate to at most one other block in

E` (GF , s). Thus by Lemma 5.2.11, mf (B) ≤ 2 if o(s) = 2 and mf (B) ≤ 4 if o(s) = 3.
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Now suppose that ` is good for G. Since

∣E8(q)∣ = q120Φ8
1Φ8

2Φ4
3Φ4

4Φ2
5Φ4

6Φ7Φ2
8Φ9Φ2

10Φ2
12Φ14Φ18Φ20Φ24Φ30,

we need to consider e = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 20, 24, 15 and 30. When

e = 7, 9, 14, 18, 20, 24 or 30, Φe only divides ∣GF ∣ once, so by Lemma 4.1.12, the defect

groups of all blocks are cyclic and therefore the Morita Frobenius number of every block is 1

by Proposition 2.2.5 (d). Hence it only remains to consider the cases when e = 1, 2, 3, 4, 5, 6,

8, 10 and 12.

When e = 1,2,4 the e-Jordan quasi-central cuspidal pairs labelling B ∈ E` (GF , s) are

given in [49] and we calculate the defects using [15, Lemma 4.16]. The following table lists

the blocks of E` (GF , s) which do not have cyclic defect, and do not have unique defect within

E` (GF , s).

Row e CG∗(s)F LF α WGF (L, λ)

1 1 E6(q)A2(q) Φ2
1(q)E6(q) E6[θi] (i = 1,2) A2

2 1 E7(q)A1(q) Φ2
1(q)E6(q) E6[θi] (i = 1,2) A1 ×A1

3 4 E6(q)A2(q) Φ2
4(q)D4(q)

1⊗ 1,1⊗ φ21

1⊗ φ111

G8

4 4 E7(q)A1(q) Φ2
4(q)D4(q)

13 ⊗ 1,13 ⊗ φ11

φ3
11 ⊗ 1, φ3

11 ⊗ φ11

G8

5 4 E7(q)A1(q) Φ2
4(q)D4(q)

12φ11 ⊗ 1,12φ11 ⊗ φ11

1φ2
11 ⊗ 1,1φ2

11 ⊗ φ11

G(4,1,2)

The case e = 2 can again be obtained from e = 1 using Ennola duality. Following the same

arguments as for bad `, we find that for good `, when e = 1,2 or 4, a block B ∈ E` (GF , s) of

non-cyclic defect is Galois conjugate to at most one other block in E` (GF , s). Therefore by

Lemma 5.2.11, mf (B) ≤ 2 if o(s) = 2 and mf (B) ≤ 4 if o(s) = 3.
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For the remaining e’s for good `, the e-Jordan quasi-central cuspidal pairs corresponding to

B are not explicitly listed in [49] so instead we look at properties of the Jordan correspondent

block as defined in Definition 4.3.12. Let B ∈ E` (GF , s) and let b = bCG∗(s)F (C○

L∗(s), α) be

the Jordan correspondent of B. By [15, Proposition 5.1], the defect groups of B and b are

isomorphic. Suppose that e = 5, 8, 10 or 12. Then Φe divides the order of CG∗(s)F at most

once so by Lemma 4.1.12, b has cyclic defect and hence so does B. Thus it only remains to

consider when e = 3 or 6. Since these are Ennola dual, it is enough to just consider e = 3, and

the results will hold analogously for e = 6.

The following table lists the unipotent 3-cuspidal pairs of CG∗(s)F for each of the three

cases we need to consider. These are identified by finding the 3-cuspidal unipotent pairs for

each of the components of CG∗(s)F (using [11, Appendix: Table 1] and [18, Section 13.9]),

and then applying [27, Proposition 2.1.5 (b)]. We let T3(G) denote a 3-split maximal torus

of G. The defects are calculated using Proposition 5.2.3.

Row CG∗(s)
F

(CL∗(s), α) WLF (CL∗(s), α) Defect

1 E7(q)A1(q)

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

(Φ3
3.A1(q),1⊗ 1)

(Φ3
3.A1(q),1⊗ φ11)

G26

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1 + log7 ((Φ3
3)7

) if ` = 7

log` ((Φ3
3)`

) o/w

2 E7(q)A1(q)

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

(Φ1Φ3
3D4(q).A1(q),

3D4[−1]⊗ 1)

(Φ1Φ3
3D4(q).A1(q),

3D4[−1]⊗ φ11)

Z6 log` ((Φ3)`)

3 E7(q)A1(q)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(Φ3.A5(q).A1(q), φ42 ⊗ 1)

(Φ3.A5(q).A1(q), φ42 ⊗ φ11)

(Φ3.A5(q).A1(q), φ2211 ⊗ 1)

(Φ3.A5(q).A1(q), φ2211 ⊗ φ11)

Z6 log` ((Φ3)`)

4 E7(q)A1(q)

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

(E7(q).A1(q),10 chars⊗ 1)

(E7(q).A1(q),10 chars⊗ φ11)

1 Trivial

5 E6(q)A2(q) (T3 (E6) (q).T3 (A2) (q),1) G25 ×Z3 log` ((Φ4
3)`

)

6 E6(q)A2(q) (Φ3
3D4(q).T3 (A2) (q),

3D4[−1]) Z3 ×Z3 log` ((Φ2
3)`

)
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7 E6(q)A2(q)

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

(E6(q).T3 (A2) (q), φ81,6)

(E6(q).T3 (A2) (q), φ81,10)

(E6(q).T3 (A2) (q), φ90,8)

Z3 log` ((Φ3)`)

8 2E6(q)
2A2(q)

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

(T3 (
2E6) (q).

2A2(q),1⊗ 1)

(T3 (
2E6) (q).

2A2(q),1⊗ φ21)

(T3 (
2E6) (q).

2A2(q),1⊗ φ111)

G25 log` ((Φ2
3)`

)

9 2E6(q)
2A2(q)

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

(
2E6(q).

2A2(q),9 chars⊗ 1)

(
2E6(q).

2A2(q),9 chars⊗ φ21)

(
2E6(q).

2A2(q),9 chars⊗ φ111)

1 Trivial

If B ∈ E` (GF , s) has a Jordan correspondent b contained in row 2, 3, 4, 7, or 9, then b

has cyclic defect, so B has cyclic defect and thus mf (B) = 1. If b is in row 5 or 6 then b has

unique defect within E`(CG∗(s)F ,1) so B has unique defect within E` (GF , s) and therefore

is not Galois conjugate to any other block in E` (GF , s). Finally, if b is in row 1 or 8 then α

has unique degree within the blocks of E`(CG∗(s)F ,1) of defect equal to the defect of b. Thus

by Lemma 5.2.12, B is not Galois conjugate to any other block in E` (GF , s). Therefore every

block B ∈ E` (GF , s) of non-cyclic defect is fixed by Galois conjugation, so by Lemma 5.2.11,

mf (B) = 1 if o(s) = 2 and mf (B) ≤ 2 if o(s) = 3.

Proposition 5.2.15. Let G be a simple, simply connected algebraic group of type E7. Let

s ∈G∗F be a quasi-isolated semisimple `′ element such that the components of CG∗(s) are not

all of classical type. Let B ∈ E` (GF , s) be an `-block of GF . Then mf (B) ≤ 2.

Proof. We follow the same strategy as in Proposition 5.2.14. The cases to consider are the

following.

o(s) Components of CG∗(s)

3 E6

3 2E6
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Note that since Z(G) is not connected, a block B of GF has multiple Jordan correspondent

blocks. However, [15, Proposition 5.1] still applies in this case, so the defect of B is equal to

the defect of b where b is any Jordan correspondent of B.

First suppose ` is bad for G. Then by [49, Table 4], every block B ∈ E` (GF , s) either has

cyclic defect, or has unique defect within E` (GF , s).

Now suppose ` is good for G. By checking which Φe’s divide ∣GF ∣ and ∣CG∗(s)F ∣ more

than once, it follows that we only need to consider e = 1, 2, 3, 4 or 6. By [49, Table 4] and

[15, Lemma 4.16], when e = 1 or 2, every block B ∈ E` (GF , s) either has cyclic defect, or has

unique defect within E` (GF , s). For e = 3 and 4, we identify the unipotent e-cuspidal pairs

of CG∗(s)F explicitly from [11, Appendix: Table 1] and [18, Section 13.9]. Again, Te(G)

denotes an e-split maximal torus of G.

Row CG∗(s)F e (CL∗(s), α) WLF (CL∗(s), α) Defect

1 Φ1.E6(q) 3 (Φ1.T3 (E6) (q),1) G25

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + log5 ((Φ3
3)5

) if ` = 5

log` ((Φ3
3)`) o/w

2 Φ1.E6(q) 3 (Φ1Φ3
3D4(q), 3D4[−1]) Z3 log` ((Φ3)`)

3 Φ1.E6(q) 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(Φ1.E6(q), φ81,6)

(Φ1.E6(q), φ81,10)

(Φ1.E6(q), φ90,8)

1 Trivial

1 Φ1.E6(q) 4 (Φ3
1Φ2

4,1) G8

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + log5 ((Φ2
4)5

) if ` = 5

log` ((Φ2
4)`) o/w

2 Φ1.E6(q) 4 (Φ2
1Φ4.

2A3(q), φ22) Z4 log` ((Φ4)`)

3 Φ1.E6(q) 4 (Φ1E6(q),10 chars) 1 Trivial

1 Φ2.
2E6(q) 3 (Φ2T3 (2E6) (q),1) G25

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + log5 ((Φ2
3)5

) if ` = 5

log` ((Φ2
3)`) o/w

2 Φ2.
2E6(q) 3 (Φ2

2E6(q),9 chars) 1 Trivial
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1 Φ2.
2E6(q) 4 (Φ2T4 (2E6) (q),1) G25

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + log5 ((Φ2
4)5

) if ` = 5

log` ((Φ2
4)`) o/w

2 Φ2.
2E6(q) 4 (Φ2

2Φ4A3(q), φ22) Z4 log` ((Φ4)`)

3 Φ2.
2E6(q) 4 (Φ2

2E6(q),10 chars) 1 Trivial

By examination of the defects in column 6, when ` is good for G and e = 3 or 4, every

block B ∈ E` (GF , s) either has cyclic defect, or has unique defect within E` (GF , s). The

results for e = 6 are analogous to those for e = 3 by Ennola duality.

Therefore for any ` and any e, every block B ∈ E` (GF , s) either has cyclic defect, or has

unique defect within E` (GF , s), so since o(s) = 3, mf (B) ≤ 2 by Lemma 5.2.11.

5.2.3 C○

G∗(s) is a Levi subgroup of G∗ and AG∗(s)F is cyclic

Proposition 5.2.16. Let s ∈ G∗F be a semisimple `′ element such that C○

G∗(s) is a Levi

subgroup of G∗ and AG∗(s)F is cyclic. Let B ∈ E` (GF , s) be an `-block of GF . Let m ≥ 1

be the minimum positive integer such that σm(c′) = c′ for all unipotent blocks c′ of C○

G∗(s).

Then mf (B) ≤m.

Proof. Let L∗ = C○

G∗(s). Since L∗ is an F -stable Levi subgroup of G∗, there exists an F -

stable Levi subgroup L of G in duality with L∗. By equivalence (4.6) there exists an `-block

b of a subgroup NF of GF such that b is Morita equivalent to B, and b covers an `-block c of

LF in E`(LF , s).

Since s is central in L∗F , there exists an NF -stable linear character ŝ ∈ Irr(LF ) such that

for every χ ∈ Irr(c), χ = ŝψ for a uniquely determined unipotent character ψ ∈ Irr(LF ), by

[23, Proposition 13.30, (ii)]. Therefore c = ŝc′ for a uniquely determined unipotent block c′ of

LF . Now σ(c) = σ̂(ŝ)σ(c′) and by assumption, σm(c′) = c′. Therefore σm(c) = σ̂m(ŝ)c′. Let

ξ = σ̂m(ŝ)ŝ−1. Then ξ is a linear and NF -stable character of LF and σm(c) = ξc.

Since NF /LF ≤ AG∗(s)F by equation (4.7), AG∗(s)F is cyclic by assumption, and ξ is NF -

stable, it follows from [44, Corollary 11.22] that ξ extends to a linear character ξ̂ ∈ Irr(NF ).
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Therefore ξ̂b and σm(b) both cover σm(c). Hence, since NF /LF is abelian, ONF (σm(b)) ≅

ONF (ξ̂b) ≅ ONF b by Lemma 2.1.9. Therefore mf (B) = mf (b) ≤m.

Theorem 5.2.17. Let G be a simple, simply connected algebraic group. Let s ∈ G∗F be a

semisimple `′ element such that C○

G∗(s) is a Levi subgroup of G∗ and AG∗(s)F is cyclic. Let

B ∈ E` (GF , s) be an `-block of GF . If G is of type E7 or E8 then mf (B) ≤ 2 and in all other

cases mf (B) = 1.

Proof. First suppose that G is of type E7 or E8 and let L be a proper Levi subgroup of G.

Suppose χ ∈ E(LF ,1). Then by examining the character fields of the unipotent characters in

[36, Table 1], we see that σ̂2
χ(g) = χ(g) for all g ∈ LF . Therefore σ2(c) = c for any unipotent

block of LF and thus mf (B) ≤ 2 by Proposition 5.2.16. If G is of any other type, then any

proper Levi subgroup of G has all classical components and therefore σ(c) = c for all unipotent

blocks c of proper Levi subgroups of G. Therefore mf (B) = 1 by Proposition 5.2.16.

Theorem 5.2.18. The Rationality Conjecture (Conjecture 2.3.4) holds for the blocks of the

finite groups of Lie type of type A.

Proof. In type A, C○

G∗(s) is a Levi subgroup of G∗ [17] and AG∗(s)F is cyclic for any semisim-

ple s ∈ G∗F . The result follows therefore from Theorem 5.2.17.

Theorem 5.2.19. Let G1 = {SLn(q) ∶ n ∈ N, q = pa for some prime p ≠ ` and some a ∈ N}, and

let G2 = {SUn(q) ∶ n ∈ N, q = pa for some prime p ≠ ` and some a ∈ N such that ` ∤ q2s+1 + 1

∀ s ∈ N} . Then Donovan’s conjecture holds for the`-blocks of groups in G1 and G2.

Proof. By Theorem 2.3.5, Donovan’s conjecture holds if and only if both Weak Donovan’s

conjecture, Conjecture 2.3.2, and the Rationality conjecture, Conjecture 2.3.4, hold. The

Rationality conjecture holds for the blocks of groups in G1 and G2 by Theorem 5.2.18. Weak

Donovan’s conjecture holds for the blocks of groups in G1 and G2 by Theorem 2.3.3.
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5.2.4 CG∗(s) is connected, s not isolated

Proposition 5.2.20. Let G be a simple, simply conected algebraic group. Let s ∈ G∗F be a

semisimple `′ element which is not isolated in G∗ such that CG∗(s) is connected and CG∗(s)

is not a Levi subgroup of G∗. Let B ∈ E` (GF , s). Let m be the maximal order of an isolated

semisimple `′ element in a component of a proper Levi subgroup of G∗ not of type A. Let ϕ

be the Euler totient function. Then mf (B) ≤ ϕ(m).

Proof. Let L∗ be the minimal proper Levi subgroup of G∗ such that CG∗(s) ⊂ L∗ and let

L be the dual group of L∗. By Theorem 4.3.13, B is Morita equivalent to an isolated block

b ∈ E(LF , s). Suppose that all the components of L∗ are of type A. Then s is central in L∗ so

CG∗(s) = L∗, which contradicts our assumption that CG∗(s) is not a Levi subgroup of G∗.

We can therefore assume that L∗ contains precisely one component not of type A. Thus since

[L,L] is simply connected by [55, Proposition 12.14], without loss of generality we can let

[L,L] = M1 × ⋅ ⋅ ⋅ ×Mr ×M where Mi is of type A for i = 1, . . . , r, and M is of the same type

as G if G is classical, M is of type D if G is of type E6 or 2E6, M is of type D or E6 if G is

of type E7, and M is of type D, E6 or E7 if G is of type E8.

Let i1 ∶ G↪ G̃ be a regular embedding as in Definition 4.2.9, and let L̃ = Z(G̃)L. Define

i2 ∶ L ↪ L̃ to be the inclusion map, and i3 ∶= i2∣[L,L] ∶ [L,L] → L̃ to be the restriction of

i2 to [L,L]. Then i2 and i3 are regular embeddings of L and [L,L] respectively. Define a

morphism i∗ ∶ L∗ → [L,L]∗ by

i∗(x) = i∗3(x̃),

for all x ∈ L∗, where x̃ denotes an element of L̃
∗

such that i∗2(x̃) = x. Then i∗ is well defined:

suppose that x̃1 and x̃2 are elements in L̃
∗

such that i∗2(x̃1) = i∗2(x̃2). Then there exists a

z ∈ ker i∗2 such that x̃2 = zx̃1, and therefore i∗3(x̃1) = i∗3(x̃2).

Let s̄ = i∗(s) denote the image of s in [L,L]∗. Then s̄ = (1, . . . ,1, t) where t is an element

of M∗, a group dual to M and o(s̄) = o(t). It follows from [4, Proposition 2.3] that since s
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is isolated, s̄, and therefore t, are also isolated. Let c ∈ E` ([L,L]F , s̄) be a block of [L,L]F

covered by b.

The components of CM∗(t) are all of classical type by [4, Section 5B]. Therefore C[L,L]∗(s̄)

has all classical components, so by the proof of Proposition 5.2.9, σn(c) = xc for some x ∈

L̃. Then xb and σn(b) both cover σn(c) so, since LF /[L,L]F is abelian, it follows from

Lemma 2.1.9 that OLF b ≅ OLF xb ≅ OLFσn(b). Therefore mf (b) ≤ ϕ(m), whence mf (B)

≤ ϕ(m) as required.

Theorem 5.2.21. Let G be a simple, simply connected algebraic group. Let s ∈ G∗F be

a semisimple `′ element which is not isolated in G∗, such that CG∗(s) is connected. Let

B ∈ E` (GF , s). Then if G is type E7 or E8, mf (B) ≤ 2 and if G is of any other type,

mf (B) = 1.

Proof. First suppose that CG∗(s) is a Levi subgroup of G∗. By assumption, s is not isolated

so CG∗(s) is a proper subgroup of G∗. By equivalence (4.5), B is Morita equivalent to a

unipotent block b ∈ E`(CG∗(s)F ,1). It then follows from examination of the character fields

of unipotent characters given in [36, Table 1] that σ2(b) = b if G is of type E7 or E8, and

σ(b) = b if G is of any other type. Thus if G is of type E7 or E8, mf (b) ≤ 2 so mf (B) ≤ 2

and if G is of any other type, mf (b) = mf (B) = 1.

Now suppose that CG∗(s) is not a Levi subgroup of G∗. By Proposition 5.2.20, therefore

mf (B) ≤ ϕ(m) where m is the maximal order of an isolated semisimple `′ element in a

component of a proper Levi subgroup of G∗ not of type A, and ϕ is the Euler totient function.

By [4, Section 5B], if G is of type E7 or E8 then the maximal order of an isolated semisimple

`′ element in a component of a proper Levi subgroup of G∗ not of type A is 4. Therefore

mf (B) ≤ ϕ(m) ≤ 2. If G is not of type E7 or E8 then the maximal order of an isolated

semisimple `′ element in a component of a proper Levi subgroup of G∗ not of type A is 2.

Therefore mf (B) ≤ ϕ(m) = 1.
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5.3 Ree and Suzuki groups

Theorem 5.3.1. Let G be a simple, simply connected algebraic group defined over Fp. Let

F ∶ G → G be a very twisted Frobenius morphism with respect to an Fq-structure for q some

power of p, and let GF be the associated finite Suzuki or Ree group. Let b be an `-block of

GF . If p ≠ ` and GF is a large Ree group, then assume that b is unipotent. Then mf (b) = 1.

Proof. First let GF = 2B2(q2) (q2 = 22m+1) be a Suzuki group. If ` = 2 then mf (b) = 1

by Corollary 5.1.3. Suppose that ` ≠ 2. The subgroups of GF of odd order are cyclic [62,

Theorem 9], so b has cyclic defect and therefore mf (b) = 1 by Proposition 2.2.5 (d).

Next let GF = 2G2(q2) (q2 = 32m+1) be a small Ree group and let b be a 2-block of GF . The

Sylow 2-subgroups of GF are elementary abelian of order 8 and [64, I. 8] shows that the only

2-block of GF of full defect is the principal block, which contains the rational valued trivial

character. If b is not the principal block, then the defect groups of b are proper subgroups

of an elementary abelian group of order 8, so b either has Klein-4 or cyclic defect. Therefore

mf (b) = 1 by Proposition 2.2.5 (b) and (d). If ` = 3 then mf (b) = 1 by Corollary 5.1.3.

Now let GF be a small Ree group and ` ≥ 5, and let b be an `-block of GF . The order

of GF is ∣GF ∣ = q6Φ1Φ2Φ4Φ12. Since ` divides only one Φi for some i ∈ {1,2,4,12}, and each

Φi divides ∣GF ∣ exactly once, by Lemma 4.1.12 b has cyclic defect and thus mf (b) = 1 by

Proposition 2.2.5 (d).

Finally, let GF = 2F 4(q2) (q2 = 22m+1) be a large Ree group, and let b be a unipotent

`-block of GF . If ` = 2 then mf (b) = 1 by Corollary 5.1.3. Suppose that ` ≠ 2. By [54], there

are two cases to consider. In the first case we suppose that ` ∤ (q2 − 1). Then b is either the

principal block of GF , or b has trivial defect and therefore mf (b) = 1 by Proposition 2.2.5

(b) and (d). In the second case, suppose that ` ∣ (q2 − 1). Then there are three unipotent

blocks – the principal block, and two blocks of cyclic defect [39, Appendix D], so mf (b) = 1

by Proposition 2.2.5 (b) and (d).
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5.4 Next steps

The original goal of this project was to find a bound for the Morita Frobenius numbers of all

blocks of quasi-simple finite groups. The following cases are outstanding.

� Non-unipotent blocks of the large Ree group in non-defining characteristic

With the notation and setup of Section 5.2:

� B ∈ E`(GF , s) such that C○

G∗(s) is a Levi subgroup of G∗ and AG∗(s)F is not cyclic

� B ∈ E`(GF , s) such that s is not quasi-isolated, CG∗(s) is not connected, and C○

G∗(s) is

not a Levi subgroup of G∗

Recall that we also have two cases of unipotent blocks of E8 where we know that the Morita

Frobenius number of the blocks is at most 2, but we don’t know whether or not it is equal to

1. In this section we first discuss a strategy which may enable us to prove that all unipotent

blocks of E8 have Morita Frobenius number equal to 1. We then discuss progress made to

date on the third case listed above where B ∈ E`(GF , s) such that s is not quasi-isolated,

CG∗(s) is not connected, and C○

G∗(s) is not a Levi subgroup of G∗.

Let p and ` be different primes and let q be a power of p. Let G be a connected reductive

algebraic group defined over Fp and let F ∶ G →G be a Frobenius morphism with respect to

an Fq-structure which is not very twisted. As usual, we fix a connected reductive group G∗

such that (G, F ) is dual to (G∗, F ). Let s ∈ G∗F be a semisimple `′ element.

Unipotent blocks of E8 with mf (B) ≤ 2

Recall the following case from Theorem 5.2.5. Let G = E8. Suppose that s = 1, ` ≠ 2,

` ≡ 2 mod 3 and e = e`(q) = 2. Let b be the unipotent block of GF = E8(q) containing the

irreducible constituents of the unipotent e-cuspidal pair (L, λ) = (φ2
2.

2E6,
2E6[θi]) for i = 1 or

2.
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Since ` is odd, it follows from Proposition 5.2.3 that b has a defect group P such that

Z(L)F` ⊴ P and P /Z(L)F` is isomorphic to a Sylow `-subgroup ofWGF (L, λ). SinceWGF (L, λ)

≅ D12 (by [11, Appendix: Table 1]), WGF (L, λ) is an `′ group. Therefore P ≅ Z(φ2
2.

2E6)F` ,

and this is isomorphic to C`a ×C`a , where `a is the power of ` dividing q + 1, since e = 2 and

` ∤ ∣Z (2E6(q)) ∣, by [10, Proposition 3.3 (iii)]. Hence b has abelian defect.

A recent result of Kessar and Chuang, [19], relates the Morita Frobenius numbers of

perversely equivalent blocks. Let A be a k-algebra. For a field automorphism σ ∶ k → k, a σ-

twist of A is the k-algebra Aσ which is equal to A as a ring, endowed with scalar multiplication

given by λ.x = σ−1(λ)x for all x ∈ A, λ ∈ k. Note that the mth Frobenius twist of a k-algebra

A (as defined in Section 2.1.1) is a specific case of a σ-twist of A, with σ ∶ k → k equal to the

Frobenius automorphism λ→ λ`.

Definition 5.4.1. A k-linear equivalence E ∶ Mod(A)→ Mod(Aσ) is a σ-Morita equivalence

if E(V ) ≅ V σ for all simple A-modules V . We say that A and Aσ are σ-Morita equivalent if

there is a σ-Morita equivalence between them. The σ-Morita Frobenius number of A is the

least positive number m such that A and Aσ
m

are σm-Morita equivalent.

For the rest of this section, let σ denote the Frobenius automorphism. Note that the

Morita Frobenius number of A is always less than or equal to the σ-Morita Frobenius number

of A. The following result relates the σ-Morita Frobenius number of two perversely equivalent

k-algebras.

Theorem 5.4.2 ([19, Corollary 5]). Let A and B be finite dimensional k-algebras. If A and

B are perversely equivalent, then the σ-Morita Frobenius number of A is equal to the σ-Morita

Frobenius number of B.

Recall Broué’s abelian defect group conjecture. For further discussion of Brauer corre-

spondent blocks, see [30, Ch. III, Section 9].
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Conjecture (Broué’s Abelian Defect Group Conjecture [9]). Let G be a finite group and let

B be a block of kG. Let P be a defect group of B and let C be the block of kNG(P ) in Brauer

correspondence with B. If P is abelian then B and C are derived equivalent.

As discussed in [19], results of Chuang, Rouquier and Craven suggest that for the finite

groups of Lie type in non-defining characteristic, the derived equivalence between a block and

its Brauer correspondent predicted by Broué is in fact a perverse equivalence.

We expect that for b = bE8(q) (φ2
2.

2E6,
2E6[θi]), mf (b) = 1. We hope that it will be possible

to prove this by first showing that Broué’s abelian defect group conjecture holds for b, then

showing that b is in fact perversely equivalent to its Brauer correspondent c, and finally

by showing that the σ-Morita Frobenius number of c is 1 (where σ is the usual Frobenius

automorphism) and applying Theorem 5.4.2.

General blocks of finite groups of Lie type

Suppose that G is simple, simply connected, and let B ∈ E` (GF , s). Suppose that s is not

quasi-isolated in G∗, that CG∗(s) is not connected and that AG∗(s)F is cyclic of prime

order. In this section we will outline the progress made on this general situation to date.

Theorem 4.3.15 of Bonnafé-Dat-Rouquier can be applied to B in many cases to give bounds

for mf (B) . However, our method runs into problems that we have not yet been able to

resolve in all situations.

First, recall the notation of [6, Section 7]. Let L∗ = CG∗ (Z○ (C○

G∗(s))) be the minimal

Levi subgroup of G∗ containing C○

G∗(s) and let L be dual to L∗. Let N∗ = CG∗(s)F .L∗ and

define N to be the subgroup of NG(L) containing L such that N/L corresponds to N∗/L∗

via the canonical isomorphism between NG∗(L∗)/L∗ and NG(L)/L. Theorem 4.3.15 shows

that B is Morita equivalent to an `-block b of NF covering a block c ∈ E` (LF , s). By the

minimality of L∗, c is an isolated block.

Let i1 ∶ G ↪ G̃ be a regular embedding and let L̃ = Z(G̃)L. Define i2 ∶ L ↪ L̃,

i3 ∶ [L,L]↪ L̃, i∗ ∶ L∗ → [L,L]∗ and s̄ = i∗(s) as in Proposition 5.2.20, so i2 and i3 are regular
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embeddings, i∗ is a surjection, and s̄ is a semisimple element of [L,L]∗F . Let d ∈ E` ([L,L]F , s̄)

denote a block of [L,L]F covered by c and note that by [4, Proposition 2.3], d is an isolated

block.

As in Proposition 5.2.20, we can assume without loss of generality that [L,L] = M1 ×

⋅ ⋅ ⋅ ×Mr ×M where Mi is of type A for i = 1, . . . , r, and M is not of type A or E8. Let M∗

denote a group dual to M. It follows that s̄ = (1, . . . ,1, t) for some isolated element t ∈ M∗F .

Let m = o(t) and n = ϕ(m). Since s is isolated and M∗ is simple, not of type E8, CM∗(s)

has only classical components [4, Section 5]. Thus by the proof of Proposition 5.2.9, σn(d) is

L̃
F
-conjugate to d. Let x ∈ L̃

F
be such that σn(d) = xd.

Since σn(c) and xc both cover σn(d) = xd, and LF /[L,L]F is abelian, it follows from

Lemma 2.1.9 that σn(c) = θxc for some linear character θ ∈ Irr(LF /[L,L]F ) and OLF xc ≅

OLFσn(c). In particular, mf (c) ≤ n.

We claim that L̃
F

acts on NF . Suppose that ã1 ∈ L̃
F

and a2 ∈ NF . Then clearly

ã1a2ã1
−1 ∈ GF so it only remains to show that ã1a2ã1

−1 ∈ N. Since L̃ = Z(G̃)L, let ã1 = za1

where z ∈ Z(G̃), a1 ∈ L. Then ã1a2ã1
−1 = za1na

−1
1 z−1 = a1na

−1
1 ∈ N since L ⊂ N, thus

ã1a2ã1
−1 ∈ NF as claimed. We can therefore consider the block yb for any y ∈ L̃

F
. In

particular, we can consider the block xb where x ∈ L̃
F

is such that σn(d) = xd.

Proposition 5.4.3. Let G be a simple, simply connected algebraic group. Let s ∈ G∗F be a

semisimple `′ element. Suppose that s is not quasi-isolated in G∗, C∗

G(s) is not connected,

and AG∗(s)F is cyclic of prime order. Let B ∈ E`(GF , s) and let L∗, L, N∗, N, i∗, s̄, t, m,

n, b, c, d, x and θ be as defined above. Suppose that one of the following holds.

(a) NF /[L,L]F is abelian

(b) θ is NF-stable

(c) c is not stable in NF

(d) C[L,L]∗ (s̄) is connected

Then mf (B) = mf (b) ≤ n.
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Proof. First suppose that NF /[L,L]F is abelian. Then since σn(b) and xb both cover σn(d) =
xd, it follows from Lemma 2.1.9 that σn(b) = η xb for some linear character η ∈ Irr(NF /[L,L]F ),

and ONF xb ≅ ONFσn(b). Therefore mf (b) ≤ n.

If θ is NF -stable then since NF /LF ≤ AG∗(s)F by equation (4.7) and since AG∗(s)F is

cyclic by assumption, θ extends to some θ̂ ∈ Irr(NF ) by [44, Lemma 11.22]. Therefore θ̂ xb

and σn(b) both cover σn(c) = θ xc, so σn(b) = λθ̂b for some linear character λ ∈ Irr(NF /LF )

by Lemma 2.1.9 and ONF xb ≅ ONFσn(b). Thus mf (b) ≤ n showing part (b).

Now suppose that c is not stable in NF . By assumption, AG∗(s)F is cyclic of prime order.

Therefore StabNF (c) = LF so c is Morita equivalent to b by [51, Theorem C]. Hence mf (b) =

mf (c) ≤ n.

Finally, suppose that C[L,L]∗ (s̄) is connected. If any of conditions (a), (b) or (c) hold

then we are done, so assume that NF /[L,L]F is not abelian, θ is not NF -stable, and c is

NF -stable. Then for any y ∈ NF , y(σn(c)) = σn(yc) = σn(c) so σn(c) is also NF -stable.

Suppose that xc is not NF -stable. Then there exists a y ∈ NF such that y(xc) ≠ xc. This

holds if and only if c ≠ x−1y−1xcx−1yx = x−1yxc. Since x ∈ L̃
F

, y ∈ NF and L̃
F

acts on NF ,

it follows that x−1yx ∈ NF . Thus c ≠ x−1yxc contradicts the fact that c is NF -stable, so xc is

NF -stable.

Let y ∈ NF be such that yθ ≠ θ. Then σn(c) = y(σn (c)) = y(θ xc) = yθ xc. Therefore

yθ xc = θ xc, so xc = (yθ)−1θ xc. Let η = (yθ)−1θ, a linear character of LF /[L,L]F , so xc = η xc.

We claim that since C[L,L]∗ (s̄) is connected, η is trivial. If the claim holds, then yθ = θ for

every y ∈ NF , which contradicts the assumption that θ is not NF -stable. Thus if C[L,L]∗(s̄)

is connected, mf (b) ≤ n, as required.

We now prove the claim. Since G is simply connected, G∗ is of adjoint type so Z(G∗) is

trivial, therefore Z(L∗) is connected by [5, Corollaire 4.4]. Thus ker i∗ = Z(L∗). Any element

s′ ∈ L∗F such that i∗(s′) = s̄ is of the form s′ = zs for some z ∈ ker i∗F = Z(L∗)F . In other

words, there are ∣Z(L∗)F ∣ lifts of s̄ in L∗F .

117



Two lifts s and s′ are L∗F-conjugate if and only if there exists a g ∈ L∗F such that

s = gs′g−1 = gzsg−1. This holds if and only if z = s−1gsg−1 for some g ∈ L∗F . Let i∗(g) = ḡ. By

applying i∗ to the equation s = gs′g−1, it follows that s and s′ are L∗F-conjugate if and only

if z = s−1gsg−1 for some g ∈ L∗F such that s̄ = ḡs̄ḡ−1, i.e. such that g is a lift of an element

ḡ ∈ C[L,L]∗ (s̄)F .

Let ker ′i∗ = [L,L]∩ ker i∗. Define a map,

ϕs ∶ C[L,L]∗ (s̄)F Ð→ ker ′i∗F

ḡ z→ [g, s]

where g ∈ LF is such that i∗(g) = ḡ. This map does not depend on the choice of lift g for

ḡ. Then s and s′ are L∗F-conjugate if and only if s′ = sz for some z ∈ Im ϕs. The kernel

of ϕs is the set of all elements ḡ ∈ C[L,L]∗ (s̄)F such that the lifts of ḡ to L∗F commute

with s, therefore ker ϕs = i∗ (CL∗(s)F ). Since i∗ (CL∗(s)F ) = C○

[L,L]∗(s)
F , and C[L,L]∗(s) is

connected by assumption, it follows that Im ϕs ≅ C[L,L]∗ (s̄)F /C○

[L,L]∗ (s̄)
F is trivial. Thus

no two lifts of s̄ are L∗F-conjugate.

Let ψ ∈ Irr(xd) ∩ E ([L,L] , s̄). Then Irr(LF ∣ψ) fall into ∣LF /[L,L]F ∣ conjugacy classes.

There is a transitive action of Irr(LF /[L,L]F ) on Irr(LF ∣ψ). Recall that two irreducible

characters χ and χ′ of LF are in the same block if and only if

π(ωχ(Ĉ)) = π(ωχ′(Ĉ))

for every conjugacy class C of LF , where ωχ is the linear character of χ as defined in Sec-

tion 2.1.4. The action of Irr(LF /[L,L]F ) on Irr(LF ∣ψ) therefore induces a transitive action

of Irr(LF /[L,L]F )
`′ on the blocks Bl(LF ∣ xd).

There are ∣LF /[L,L]F ∣`′ `′ Lusztig series of characters covering ψ and each corresponds

to a different block covering xd, so ∣Bl(LF ∣ xd) ∣ = ∣LF /[L,L]F ∣`′ . In other words, the action of
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Irr(LF /[L,L]F )
`′ on Bl(LF ∣ xd) is regular (has no fixed points). Thus, since xc ∈ Bl(LF ∣ xd),

η ∈ Irr(LF /[L,L]F )
`′ and η xc = xc, it follows that η is trivial, as claimed.

Remark 5.4.4. In the proof of Proposition 5.4.3, if C[L,L]∗ (s̄) is not connected then

Im ϕs ≅ C[L,L]∗ (s̄)F /C○

[L,L]∗ (s̄)
F = A[L,L]∗ (s̄)F ,

so the lifts of s̄ fall into ∣Z(L∗)F ∣/∣A[L,L]∗ (s̄)F ∣ conjugacy classes of L∗F . Thus the action

of Irr(LF /[L,L]F )
`′ on Bl(LF ∣ xd) has a kernel of size ∣A[L,L]∗ (s̄)F ∣ and so η could be non-

trivial. If η is non-trivial, then (yθ)−1θ for some y ∈ NF , so θ is not NF -stable. Therefore θ

doesn’t extend to Irr(NF ) and so the method of Proposition 5.4.3 falls down if C[L,L]∗ (s̄) is

not connected. At present we have not found any way around this issue.
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Chapter 6

Proof of Theorems A, B, C and D

Theorem A. Let b be an `-block of a quasi-simple finite group G. Let G = G/Z(G). Suppose

that one of the following holds.

(a) G is an alternating group

(b) G is a sporadic group

(c) G is a finite group of Lie type in characteristic `

Then mf (b) = 1.

Proof. Part (a) is proved in Proposition 3.1.6, part (b) is proved in Proposition 3.2.2 and part

(c) is proved in Corollary 5.1.3.

Theorem B. Let ` and p be different primes and let q be a power of p. Let G be a simple, sim-

ply connected algebraic group defined over Fp and let F ∶G→G be a not very twisted Frobenius

morphism with respect to an Fq-structure. Let s be a semisimple `′ element of G∗F and let

b ∈ E`(GF , s) be an `-block of GF .

(a) If b is a unipotent block not equal to one of the following blocks of E8

� b = bE8(φ2
1.E6(q),E6[θi]) (i = 1,2) with ` = 2 and q of order 1 modulo 4, or

� b = bE8(φ2
2.

2E6(q), 2E6[θi]) (i = 1,2) with ` ≡ 2 mod 3 and q of order 2 modulo `,
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then mf (b) = 1. If b is one of the two blocks above then mf (b) ≤ 2.

(b) If s ≠ 1 is quasi-isolated in G∗ then

� if G is of type A or B then mf (b) = 1;

� if G is of type E8 then mf (b) ≤ 4; and

� otherwise mf (b) ≤ 2.

(c) If s ≠ 1 is such that C○

G∗(s) is a Levi subgroup of G∗ and AG∗(s) is cyclic, or if CG∗(s)

is connected and s is not isolated in G∗, then

� if G is of type E7 or E8 then mf (b) ≤ 2,

� otherwise mf (b) = 1.

Proof. Part (a) is proved in Theorem 5.2.5 and Corollary 5.2.6, part (b) follows from Theo-

rem 5.2.10 and Propositions 5.2.14 and 5.2.15. Part (c) follows for C○

G∗(s) a Levi subgroup

of G∗ and AG∗(s) cyclic by Theorem 5.2.17 and for CG∗(s) connected and s not isolated in

G∗ by Theorem 5.2.21.

Theorem C. Let G1 = {SLn(q) ∶ n ∈ N, q = pa for some prime p ≠ `, a ∈ N} , and let G2 =

{SUn(q) ∶ n ∈ N, q = pa for some prime p ≠ ` and some a ∈ N such that ` ∤ q2s+1 + 1 ∀ s ∈ N} .

Then Donovan’s conjecture holds for the `-blocks of groups in G1 and G2.

Proof. This is Theorem 5.2.19.

Theorem D. Let G be a Suzuki or Ree group. Let b be an `-block of G. If b is a block of the

large Ree group in non-defining characteristic, assume that b is unipotent. Then mf (b) = 1.

Proof. This is Theorem 5.3.1.
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Appendix A

Calculations for Section 3.2

In this Appendix we give an idea of the GAP code used to calculate the Morita Frobenius

numbers of the sporadic groups as discussed in Section 3.2.

For each group G and each `∣∣G∣, we check the following. Note that if the answer is no at

any stage, we exit the loop and move on to the next group.

� Check if there are more than 2 blocks in kG

� If yes, check if there is some non-principal block of cyclic defect

� If yes, check if there are two non-principal blocks with equal, non-cyclic defect

� If yes, check if there are two non-principal blocks with equal non-cyclic defect and no
rational valued characters

� If yes, check if there are two non-principal blocks with equal non-cyclic defect and no
rational valued characters that have an equal numbers of characters

� If yes, check if there are two non-principal blocks with equal non-cyclic defect and no
rational valued characters, with an equal numbers of characters whose degrees add up
to the same number

� If yes, list all the blocks for this `, indicating

– if the block is the principal block

– if not, if the block has cyclic defect
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– if not, if the block has unique defect amongst non-principal blocks

– if not, if the block has a rational valued character (name the character)

– if not, if the block has unique number of characters amongst the non-principal
blocks of equal defect containing no rational valued characters

– if not, if the block has unique sum of degrees of characters amongst the non-
principal blocks of equal defect containing no rational valued characters with the
same number of characters

– if not, call the block a Problem Block

If there are any “Problem Blocks” then we have to deal with these separately, as illustrated

in the following examples.

A.1 Example: J3 and 3.J3

The output for G = J3 is as follows.

1. G = J3

Group Order = 50232960

Prime factors of ∣G∣ = [ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 17, 19 ]

Number of unique prime factors = 5

Prime 1: ` = 2

Number of blocks: 5

Defects: [ 7, 0, 0, 0, 0 ]

More than two blocks, but all non-principal blocks have cyclic defect.

Prime 2: ` = 3

Number of blocks: 4

Defects: [ 5, 1, 0, 0 ]

More than two blocks, but all non-principal blocks have cyclic defect.
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Prime 3: ` = 5

Number of blocks: 12

Defects: [ 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ]

More than two blocks, but ` divides ∣G∣ just once so all blocks are cyclic.

Prime 4: ` = 17

Number of blocks: 12

Defects: [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

More than two blocks, but ` divides ∣G∣ just once so all blocks are cyclic.

Prime 5: ` = 19

Number of blocks: 11

Defects: [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

More than two blocks, but ` divides ∣G∣ just once so all blocks are cyclic.

We find that for G = J3, there do not exist collections of non-principal `-blocks of G with

equal, non-cyclic defect. Therefore every block B either has cyclic defect, or is not Galois

conjugate to any other block, so mf (B) = 1.

The output for G = 3.J3 is as follows.

2. G = 3.J3

Group Order = 150698880

Prime factors of ∣G∣ = [ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 17, 19 ]

Number of unique prime factors = 5

Prime 1: ` = 2

Number of blocks: 7

Defects: [ 7, 0, 0, 0, 0, 7, 7 ]
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More than two blocks and ` divides ∣G∣ more than once, so can’t conclude that all

blocks have cyclic defect, and there is some pair of non-principal, non-cyclic blocks

which have equal defect.

Block 1: principal block

Block 2: cyclic defect

Block 3: cyclic defect

Block 4: cyclic defect

Block 5: cyclic defect

Block 6: Problem Block

Block 7: Problem Block

Prime 2: ` = 3

Number of blocks: 4

Defects: [ 6, 2, 1, 1 ]

More than two blocks and ` divides ∣G∣ more than once, so can’t conclude that all

blocks have cyclic defect, but all non-principal, non-cyclic blocks have unique defect.

Prime 3: ` = 5

Number of blocks: 28

Defects: [ 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

More than two blocks, but ` divides ∣G∣ just once so all blocks are cyclic.

Prime 4: ` = 17

Number of blocks: 28

Defects: [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

More than two blocks, but ` divides ∣G∣ just once so all blocks are cyclic.
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Prime 5: ` = 19

Number of blocks: 25

Defects: [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

More than two blocks, but ` divides ∣G∣ just once so all blocks are cyclic.

When G = 3.J3 and ` ≠ 2, there do not exist collections of non-principal `-blocks of G with

equal, non-cyclic defect. Therefore every block B either has cyclic defect, or is not Galois

conjugate to any other block, so mf (B) = 1.

When G = 3.J3 and ` = 2, however, there are two non principal, non-cyclic blocks with the

same number and degrees of characters, none of which are rational valued. We therefore let

Ĝ = 3.J3.2 and check what happens for the blocks of Ĝ when ` = 2.

3. G = 3.J3.2

Prime: ` = 2

Number of blocks: 6

Defects: [ 8, 1, 1, 1, 1, 7 ]

More than two blocks and ` divides ∣G∣ more than once, so can’t conclude that all

blocks have cyclic defect, but all non-principal, non-cyclic blocks have unique defect

so any non-cyclic block is stabilized by Galois conjugation.

When ` = 2, every block B̂ of Ĝ = 3.J3.2 either has cyclic defect, or σ(B̂) = B̂. Therefore

by Lemma 2.2.8, mf (B) = 1 for every block B of 3.J3 when ` = 2.
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[10] Broué, M., and Malle, G. Théorèmes de Sylow génériques pour les groupes réductifs
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