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Abstract  

We investigate the common assumption in applied research that reporting errors are negligible 

in variables where there is no clear incentive for misreporting. Using major medical operations, 

we find high misreporting rates, but the coefficients of their predictors remain unbiased.  
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Introduction 

The ever-growing acknowledgement of non-random measurement error in self-reported data 

has motivated researchers to investigate its impact (e.g., Johnston et al., 2009; Akee, 2011; 

Erickson and Whited, 2000; Forbes, 2000; Dwyer and Mitchell, 1999) and to improve 

techniques to deal with it in empirical models (Bound et al., 2001; Black et al., 2000; 

Brownstone and Valletta, 1996). The measurement error literature has focused on variables 

where misreporting may be perceived to provide an advantage, real or psychological, for the 

respondent. For example, studies have examined measurement errors in self-reported earnings 
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(Akee 2011; Brownstone and Valletta, 1996); disability status (Kreider and Pepper, 2007); 

grades, class ranks and test scores (Kuncel et al., 2005); height, weight and body mass index 

(Gorber 2007); sexual behaviour (Tennekoon and Rosenman, 2013); and subjective health or 

wellbeing (Bago d’Uva et al., 2006; Dwyer and Mitchell, 1999). Labour market outcomes, 

wealth and income are often misreported to gain a tax or subsidy advantage; principals and 

teachers may inflate their school’s achievement scores in order to improve reputation; due to 

stigma associated with undesirable body shape, survey respondents often misreport their 

weight and height; subjective variables such as self-rated general health or well-being may not 

reflect the true health and well-being conditions, because the answers to these questions are 

affected by adaptation bias and cultural norm. For other variables, there is no clear incentive 

for the survey respondents to be untruthful and/or they are deemed to be objective. These 

variables may also be reported with errors, but they are often assumed to be harmless and 

random (conditional on basic demographics). The purpose of this study is to confirm such 

assumption, using the case of life-changing medical operations. 

In contrast to previous studies, we investigate reporting errors in variables that might be 

expected to have small, most likely random errors. If they are found to be truly random and 

therefore harmless to subsequent analysis then we can have confidence in relying on the self-

reports of such variables. We use the case of major medical operations that are likely to be 

memorable. We cross-check the self-reports of operations with contemporaneous hospital 

administrative records. To examine the consequence of ignoring a reporting error, we compare 

the socio economic status (SES)-health gradient estimated based on the self-reported and 

administrative data.  

Our study is related to Johnston et al (2009) who show that reliance on self-reported chronic 

conditions can lead to underestimation of income-related inequalities in health because low 

income individuals are more likely than high income individuals to under-report bad health. 

As a result, the size of the income-health gradient using measured health is much stronger than 

that implied by self-reported health. Their study uses hypertension as a measure of health and 

finds that over 85% of individuals measured by a trained nurse to have hypertension do not 

indicate in the survey to have hypertension. One issue with the study of Johnston et al (2009) 

is that disparity in hypertension rates may reflect infrequent health checks, rather than reporting 

error. Moreover, the respondents may have been prescribed hypertension medication and 

believe that their blood pressure has returned to normal. Our use of major, life-changing 

operations does not suffer from these drawbacks.  

Data and Method  

Our analysis sample is based on 241,138 non-institutionalised individuals who participated in 

the 45 and Up Study2 in the state of New South Wales (NSW), Australia, fielded in stages 

during 2006-2009; NSW has a population of about 7.3 million with 39% aged over 45. In this 
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survey, respondents were prompted with a list of operations and asked whether they had any 

of these operations, and for each of them, the age at the most recent operation. The 45 and Up 

Study is linked to the Admitted Patient Data Collection (APDC) consisting of all admissions 

in NSW hospitals during 2000-2009.3 This data linkage allows us to cross-check the 

consistency of the self-reported history of operations with the hospital records during this 

period. From the operations listed in the survey, we select four operations that are performed 

in a hospital setting and specifically defined so that matching them in the administrative data 

is straightforward. For example, it is difficult to match “heart operation”, because we cannot 

tell from the survey question which procedures should be included in the definition of “heart 

operation” in the administrative data. The four operations are knee replacement, removal of 

gall bladder, removal of prostate, and hysterectomy.  

So that all respondents have an equal cross-check window, we focus on the hospital records in 

the last 5 years from the survey date. To be consistent, using the survey data, we create binary 

variables that indicate whether or not a respondent reported an operation in the last 5 years. 

Imposing the 5 years window, we define four possible cases: (1) an operation found both in the 

survey and hospital data (true positive); (2) an operation not found in the survey and hospital 

data (true negative); (3) an operation found in the administrative data but not in the survey data 

(false negative or under-reporting); and (4) an operation found in the survey data but not in the 

administrative data (false positive or over-reporting). 

Our analysis has three stages. In the first stage for each of the above mentioned operations, we 

present the under-reporting rates, calculated as the proportion of operations in the hospital 

records that are not found in the survey data, and the over-reporting rates, calculated as the 

proportion of operations in the survey data that are not found in the hospital records. The under-

reporting rates are due to respondents either: (i) not reporting the operation at all or (ii) 

misreporting the timing of the operation. Since we are only looking at operations in the last 5 

years, it is unlikely that respondents would forget having them, especially since the selected 

operations are life-changing, occurring only once in a lifetime and/or involving major 

interventions. But there could be other reasons why respondents did not report an operation, 

including the question being considered too sensitive and lack of attention or medical 

knowledge (comprehension) in filling in the survey. On the other hand, the over-reporting rates 

may be also explained by the limited coverage of the administrative data. For instance, 

operations overseas will not be captured in the data, although we can expect them to be rare 

given that Australian public hospitals provide these operations for free. Operations performed 

in other Australian states are also outside the data range, but studies suggests that incentives to 

travel inter-state are small (e.g., Johar et al., 2012).  

In the second stage, we investigate whether the propensity of misreporting (over or under) can 

be explained by individual characteristics, capturing variation in memory capabilities, 

preferences for health, and medical knowledge. R-squared statistics from OLS regressions are 

used as measures of explanatory power. We reveal the proportion of the variation in reporting 

                                                           
3 The data linkage is undertaken by the Centre for Health Records Linkage and the linked, de-identified data is 
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error that is explained by individual characteristics such as age, sex, ethnicity, marital status, 

education, income, employment, housing, neighborhood characteristics, and family health 

history. We also investigate whether own health variables have additional explanatory power 

over and above the other individual background variables.  

The last stage assesses the implications of reliance on survey data. We run probit regressions 

of the propensity of having each of these operations using first survey then hospital data. We 

pay specific attention to the slope coefficients of SES measures: education, income and 

employment. If the measurement error is random, we would find a consistent SES-health 

gradient, regardless of the source of data.   

In addition, we also look at hypertension, which unlike operations, may be harder for an 

individual to notice, because it is often asymptomatic. Previous literature finds that 

misreporting in such hard-to-observe variables correlates with SES (Johnston et al., 2009). We 

verify self-reported diagnosis of hypertension using administrative data on claims for anti-

hypertensive prescription drugs and hypertension diagnoses in hospital admission records in 

the next 12 months from the survey date.  

Results 

The first two columns of Table 1 present the incidence of the selected operations and 

hypertension by each data source. The incidence of most of the operations is higher in the 

survey data than in the hospital records, suggesting that respondents are more likely to over-

report than under-report the operations. On the other hand, hypertension tends to be slightly 

over-reported. Columns 3 and 4 show the extent of the under- and over-reporting. As an 

example, there are 1,294 self-reports of knee replacements that are not found in the hospital 

data, giving an over-reporting rate of 26.4% (1294/4896), and there are 686 hospital admissions 

for knee replacement that are not reported in the survey, giving an under-reporting rate of 

16.0% (686/4288). The over-reporting rates are surprisingly high (24.3%-29.1%) and are 

similar for all the operations, whereas the under-reporting rates are on average lower and vary 

from 8.8% for hysterectomies to 32.3% for prostate removal operations. These high over-

reporting rates may be partly explained by respondents mistakenly reporting operations that 

should not be included in the definition of a particular surgery. For example, when other 

procedures on prostate are added to the definition of prostate removal surgery in administrative 

data, the false positive rate goes down from 24.3% to 20.8%. The over- and under-reporting 

rates of hypertension are slightly higher than the average misreporting rates of the operations4. 

Next, we investigate whether the under-reporting rates are driven by misreporting of age at the 

operation. For this purpose, we separate the operations found in the hospital records but not in 

the survey into those not reported in the survey at all (column 5) and those reported but with 

an error in age, that is, outside the 5 year period (column 6). The results show that misreporting 

                                                           
4 Note that the pharmaceutical administrative data record only claims that are eligible for a subsidy (i.e., drugs 

that cost above a co-payment or if a claimant has reached the Medicare’s safety net threshold). If we restrict the 

sample to a small sub-sample of health care concession card holders, who are more heavily subsidized and for 

whom the claims are accurately recorded, the over-reporting rate of hypertension is lower (7.24%) while the 

underreporting rate is comparable to the full sample at 29.7%.   
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of age at the operation is not driving the under-reporting rates, except for knee replacements. 

Most of the under-reporting rates are due to not reporting the surgery in the survey at all.  

To further check how accurately individuals recall the timing of their operations, we use the 

respondents who had an operation in the 5 year period before the survey date and reported this 

operation in the survey, possibly with an error in age, which can vary from 0 to 4 years. Table 

2 presents the distribution of the discrepancy in age by operation. These results also show that 

age misreporting is not common, as most of the respondents either report the age accurately or 

misreport age by only one year.  

Next, we investigate whether or not reporting error in the operations and hypertension status 

can be explained by individual characteristics. For each of these variables, we create a binary 

variable that takes the value one if a respondent over- or under-reported an operation or 

hypertension status and the value zero otherwise. Then, we regress these variables on individual 

background characteristics and health measures. Table 3 reports the R-squared statistics for 

these OLS regressions. The results show that an extensive list of individual background 

characteristics (66 variables) can explain only a small proportion of the variation in the 

reporting errors. Adding own health measures improves R-squared statistics, but most of the 

measurement error remains unexplained. We find that the SES variables predict the 

misreporting in hypertension better than the misreporting in the operations (F-statistic for the 

joint significance test is 51.5 for hypertension and 1.0 – 6.3 for the operations).  

Finally, we analyse whether the observed misreporting behaviour affects the estimation of the 

impact of SES on health, as measured by the above mentioned operations and hypertension 

status5. Table 4 presents the estimated average partial effects of education, income, and 

employment on the probabilities of having these health problems, first using the survey data 

and then the hospital records. The regressions control for the individual background 

characteristics. In the case of the operations, the estimated coefficients are very similar 

irrespective of the data source used, consistent with the earlier finding that the reporting error 

is largely unexplained by SES. In contrast, the effects of SES on hypertension differ 

substantially depending on the data source used. Specifically, these effects are under-estimated 

when the survey data is used to measure hypertension, which is consistent with Johnston et al’s 

(2009) results.  As in the previous studies, we find positive effects of SES on health (e.g., 

Lleras-Muney, 2005; Currie, 2009; Johnston et al., 2009; Conti et al., 2010). 

 

Concluding remarks 

Without restricting our study to a health audience, we carefully consider the measurement error 

in major health operations. We choose these variables because they are objective, memorable 

events, which intuitively should be accurately reported. In addition, unlike previous studies, 

which use externally measured variables (by interviewer, nurse, etc) as the true information to 

                                                           
5 Under the well-functioning Australian universal health care system, all sick individuals have access to medical 

treatment so it is reasonable to assume that heath care utilisations capture health state. Nonetheless, it is possible 

that operations also capture non-health factors. 
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compare against the self-reported data, we cross-check the self-reports with the linked 

contemporaneous administrative data. This avoids yet another potential measurement error, for 

example, due to the gaps between the survey and measurement dates. 

Our results provide comfort to many applied researchers who rely on survey data for analysis 

and suggest that we can rely on survey variables that are objective in nature. While the 

measurement errors are large, they do not create bias in the slope estimates when the survey 

variables are used as dependent variables. Previously, researchers had assumed (and were 

hopeful) that correction for potential reporting errors is not necessary for these types of 

objective variables, but until now this assumption has not yet been put to a real empirical test. 

On the other hand, our findings suggest that measurement error in harder-to-observe variables 

may lead to substantially biased slope estimates.  
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Table 1. Incidence, under-reporting and over-reporting of operations  

  Incidence Over-reporting Under-reporting 

  Survey Admin. Total Total Misreport status Misreport age 

Prostate 3,608 4,034 24.3% 32.3% 23.2% 9.0% 

Hysterectomy 3,931 3,057 29.1% 8.8% 5.1% 3.7% 

Knee 4,896 4,288 26.4% 16.0% 4.9% 11.1% 

Gall bladder 4,770 4,207 27.1% 17.4% 12.3% 5.0% 

Hypertension 84,611 80,341 31.6% 27.9% - - 

 

Table 2. Distribution of error in age at the operation 

  No error 1 year 2 years 3 years 4 years Sample size 

Prostate 63.54% 30.82% 4.69% 0.92% 0.04% 2,732 

Hysterectomy 64.35% 31.67% 3.52% 0.43% 0.04% 2,788 

Knee 61.83% 32.18% 4.66% 0.94% 0.39% 3,602 

Gall bladder 57.09% 34.86% 6.70% 1.24% 0.09% 3,477 

 

Table 3. Proportion of reporting error explained by individual characteristics 

  Background  Health  Mean error 

Prostate 0.016 0.034 0.019 

Hysterectomy 0.002 0.005 0.011 

Knee 0.006 0.012 0.008 

Gall bladder 0.002 0.003 0.008 

Hypertension 0.018 0.043 0.205 

Notes: For operations, sample sizes are 111,983 for males, 129,155 for females, and 241,138 overall. 

For hypertension, sample size is 239,467. The reported figures in columns 1 and 2 are R-squared 

statistics from OLS regressions.  In column 1, the model includes background characteristics: 

demographic and socio-economic variables, neighbourhood characteristics and family health history.  

The model in column 2 additionally includes health measures. Column 3 reports mean measurement 

error in the sample. 
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Table 4. Variation in the estimated effects of socio-economic status variables by data source  

  Prostate Hysterectomy Knee Gall bladder Hypertension 

  Survey Admin. Survey Admin. Survey Admin. Survey Admin. Survey Admin. 

Education a: 
          

High school (year 12) -0.007*** -0.007*** -0.003* -0.003* -0.001 -0.002** -0.002** -0.002*** -0.001 -0.012*** 

 
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) 

University 0.000 -0.002 -0.003*** -0.003*** -0.006*** -0.005*** -0.003*** -0.004*** -0.034*** -0.043*** 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 

Household income b: 
          

$30,000-$49,999 pa -0.002 -0.002 0.001 0.000 -0.002*** -0.001 -0.004*** -0.004*** -0.015*** -0.058*** 

 
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.002) 

$50,000-$69,999 pa -0.001 -0.002 0.000 -0.003* -0.003*** -0.002* -0.003*** -0.002** -0.016*** -0.098*** 

 
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.004) (0.003) 

>$69,999 pa -0.001 -0.001 -0.001 -0.002 -0.003*** -0.002* -0.005*** -0.005*** -0.014*** -0.126*** 

 
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) 

Employed -0.001 -0.001 -0.000 0.000 -0.007*** -0.006*** -0.003*** -0.003*** -0.040*** -0.107*** 

 
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.002) 

Pseudo R2 0.072 0.085 0.028 0.027 0.086 0.095 0.018 0.016 0.115 0.261 

Sample size 111,983 111,983 129,155 129,155 241,138 241,138 241,138 241,138 239,467 239,467 

Mean 0.032 0.036 0.030 0.024 0.020 0.018 0.020 0.017 0.353 0.335 

 Notes: Standard errors are reported in parentheses. ***, **, and * indicates significance at the 1%, 5%, and 10% level, respectively. a the reference group is 

less than high school. b the reference group is less than $30,000 per annum.  


