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Abstract. In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration 
control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned 
mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative 
acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD 
is endowed with additional inertia, beyond the one offered by the attached mass, without any 
substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI 
parameters, stiffness and damping, given attached mass and inertance are derived by application of Den 
Hartog’s tuning approach to suppress the response amplitude of force and base-acceleration excited 
single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a 
same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled 
structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification 
effect of the inerter achieves significant weight reduction for a target/predefined level of vibration 
suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, 
the potential of using the TMDI for energy harvesting is explored by substituting the dissipative 
damper with an electromagnetic motor and assuming that the inertance can vary through the use of a 
flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a 
mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, 
the available power for electric generation increases for fixed attached mass/weight, electromechanical 
damping, and stiffness properties.  
 

Keywords: tuned mass damper; inerter; passive vibration control; energy harvesting; weight reduction; 
electromagnetic motor; optimal design 

 
 

1. Introduction 
 

The concept of the dynamic vibration absorber (DVA) is historically one of the first strategies 

for passive vibration control of dynamically excited mechanical and civil engineering structures 

and structural components (Frahm 1911). It relies on attaching a free-to-vibrate mass to the 

structural system whose motion is to be suppressed (primary structure), such that significant 

kinetic energy is transferred from the primary structure to the attached mass. Considering a linear 

spring in parallel with a dashpot (e.g., a linear viscous damper) to attach the vibrating mass to the 

primary structure, the so-called tuned mass-damper (TMD) is, arguably, the most widely studied 

passive DVA in the literature (e.g., Ormondroyd and Den Hartog 1928, Brock 1946, Den Hartog 

1956, Warburton 1982, Rana and Soong 1998, Asami et al 2002, Krenk 2005, Ghosh and Basu 
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2007, Bakre and Jangid 2007, Leung and Zhang 2009, Tributch and Adam 2012, Bortoluzzi et al. 

2015, Salvi and Rizzi 2016) and the most commonly used in practical applications. The 

widespread use of the classical linear TMD is mainly due to the existence of simple and well-

established design approaches seeking to determine optimal TMD stiffness and damping 

properties that minimize the response of a given dynamically excited primary structure for an a 

priori fixed attached mass. Focusing on periodic narrow-band excitations, Den Hartog (1956) 

established a semi-empirical TMD design approach by relying on the observation that all 

frequency response functions (FRFs) of a TMD-equipped undamped single degree-of-freedom 

(SDOF) primary structure pass through the same two points. Based on this “fixed point” theory, 

Den Hartog (1956) and Brock (1946) reached simple closed-form expressions for the TMD 

stiffness and damping properties, widely used in practical TMD design, to suppress the peak 

displacement of sinusoidal force-excited undamped SDOF primary structures (see also Krenk 

2005). Further, Warburton (1982) followed the above design approach to derive TMD design 

formulae minimizing different response quantities of interest for harmonic force and base-excited 

undamped SDOF primary structures. More recently, Ghosh and Basu (2007) demonstrated that 

the fixed point theory leads to near-optimal TMD vibration suppression performance for the case 

of lightly damped SDOF primary structures with critical damping ratio up to 3%, applicable to a 

wide range of structures and structural components. Notably, the above TMD design formulae can 

be further applied to suppress the vibratory motion corresponding to a single (e.g. the dominant) 

structural mode shape in the case of lightly damped multi degree-of-freedom (MDOF) primary 

structures (e.g. Rana and Soong 1998). 

 Further to vibration suppression, the potential of the TMD to harvest energy from large- 

amplitude low-frequency oscillating primary structures has been recently recognized (Rome et al 

2005) and explored by various researchers focusing primarily on large-scale (civil engineering) 

primary structures. In particular, TMDs can achieve simultaneous vibration suppression and 

energy generation by employing either electromagnetic (EM) devices (e.g. Tang and Zuo 2012, 

Shen et al 2012, Zuo and Tang 2013, Gonzalez-Buelga et al 2014, Shen et al 2016), or piezo-

electric materials (e.g. Adhikari and Ali 2013) to connect the TMD mass to the primary structure 

as opposed to using only dampers. In this manner, part of the kinetic energy of the primary 

structure is transformed into electric energy instead of being “lost” at the dampers in the form of 

heat. The thus generated energy may be stored to batteries for later use (Zuo and Tang 2013), or 

can be used to achieve energy-autonomous semi-active or even active TMD vibration control 

strategies (Tang and Zuo 2012, Gonzalez-Buelga et al 2014), or to power wireless sensors for 

structural health monitoring (Shen et al 2012, Makihara et al 2015). 

Despite being widely used in practice, the classical (linear passive) TMD is known to suffer 

from the problem of “detuning” due to such reasons as nonlinear behaviour of the primary 

structure (e.g. Domizio et al 2015), and/or uncertainty and variations to the dynamic properties of 

the primary structure over time (e.g. Wang and Lin 2015). Detuning affects significantly the TMD 

vibration suppression performance (and consequently its potential for energy harvesting), 

especially for the case of harmonic/narrow band excitations as its effectiveness depends heavily 

on ensuring resonance between the primary structure and the TMD. To this end, different 

strategies have been considered to enhance the robustness to detuning of the passive TMD for the 

purpose of controlling a single primary structure vibration mode. One such strategy is to use 

hysteretic/yielding components to attach the TMD mass to the primary structure (e.g. Ricciardeli 

and Vickery 1999) which widens the operational TMD frequency range around the target primary 



 

 

 

 

structure natural frequency. Nevertheless, optimal design of inelastic TMDs is considerably more 

challenging compared to the linear TMD. Alternatively, robustness to detuning effects can be 

achieved by use of multiple TMDs (MTMDs) linked in parallel (e.g. Xu and Igusa, 1992, 

Yamaguchi and Harnpornchai 1993) or in series (Zuo 2009). In the parallel configuration, each 

individual TMD is tuned to a different frequency such that the effective frequency band becomes 

wider. In the series configuration, a chain of two or more appropriately determined masses are 

attached to the primary structure and tuned to achieve “multiple resonance” at the cost of 

excessive attached mass displacements. Parallel MTMDs have been considered for wind-induced 

vibration suppression in piers of cable-stayed bridges (Casciati and Giuliano 2009) and for traffic-

induced vibrations suppression in (foot-)bridges (e.g. Lin et al 2005), among other applications. 

Nevertheless, optimal MTMD design is appreciably more involved than single TMD design (see 

e.g. Jokic et al. 2011) due to the increased number of design variables, while heuristic/experiential 

assumptions need to be made for the mass distribution among the TMDs (see e.g. Bandivadekar 

and Jangid 2012, Yang et al. 2015).  

To this end, it is argued that, perhaps, the simplest and most straightforward way to enhance 

the performance and robustness to detuning of the classical single TMD is to increase the attached 

mass for which “optimum” stiffness and damping parameters is sought in TMD design. Indeed, 

the larger the attached TMD mass considered, the more effective an optimally designed linear 

TMD becomes to suppress excessive primary structure vibrations and the less sensitive to 

detuning effects (see e.g. De Angelis et al 2012 and references therein). Nevertheless, these 

benefits come at the cost of an increase total weight of the overall TMD-equipped structural 

system. To circumvent the latter trade-off, this paper considers coupling the classical linear TMD 

with an inerter device, introduced by Smith (2002), in a so-called “sky-hook” configuration as has 

been recently proposed by the authors (Marian and Giaralis 2014). In this manner, the resulting 

tuned mass-damper-inerter (TMDI) configuration exploits the mass amplification effect of the 

inerter (i.e., a linear two-terminal device of negligible mass/weight which resists the relative 

acceleration of its terminals) to increase the inertia of the attached mass, without increasing the 

overall weight of the controlled structure. In fact, the authors showed that for the same attached 

mass the TMDI performs better than the classical TMD, treated as a special case of the TMDI, in 

suppressing the displacement variance of stochastically based-excited SDOF and MDOF primary 

structures (Marian and Giaralis 2013, 2014). More recently, the potential of the TMDI for the 

seismic protection of primary structures modelled as SDOF systems has been explored by 

Pietrosanti et al (2017) and by Masri and Caffrey (2017), while Giaralis and Petrini (2017) 

considered the use of TMDI for wind-induced vibration mitigation in a benchmark tall building 

accounting for vortex shedding effects.   

Herein, closed-form formulae are derived for optimal TMDI design in harmonically excited 

undamped SDOF primary structures based on the fixed point theory. These formulae are then 

used to quantify the gains in terms of vibration suppression and of weight reduction for optimally 

designed TMDI vis-à-vis the classical TMD. Further, the incorporation of a linear electromagnetic 

motor shunted by a resistive load is considered to gauge the potential of the TMDI for energy 

harvesting. This is analytically assessed by assuming the availability of a flywheel-based inerter 

device with varying mass amplification property. The latter consideration introduces a new 

“degree of freedom” which allows to vary the apparent inertia of the energy harvester leveraging 

the trade-off between vibration suppression and energy harvesting at will, without any changes to 

the attached mass. 



 

 

 

 

Overall, apart from the novel closed-form expressions for the TMDI design for harmonic 

excitations, this paper makes original contributions by analytically quantifying (1) the vibration 

suppression performance enhancement of the TMDI compared to the classical TMD in 

harmonically force-excited and support-excited primary structures, (2) the weight reduction 

achieved by the TMDI compared to the classical TMD as a function of the inerter mass 

amplification property for a predefined vibration suppression performance, and (3) the increase of 

the available electric power to be generated from harmonically excited primary structures by 

employing a passive energy harvesting enabled TMDI with varying inertance.  

The remainder of the paper is organized as follows. In Section 2 the ideal flywheel-based 

inerter is briefly presented and the governing equations of motion and associated frequency 

response functions of TMDI equipped SDOF primary structures are furnished. In Section 3, 

closed-form expressions for the design of the TMDI for harmonically excited primary structures 

are derived based on the fixed point theory and the benefits of the TMDI vis-à-vis the TMD in 

terms of vibration suppression and weight reduction are analytically quantified. Section 4 

introduces an energy harvesting enabled TMDI and quantifies analytically its vibration 

suppression and power generation capabilities for harmonically excited primary structures, while 

Section 5 quantifies the increase to the available energy for harvesting by varying the inerter 

property of the energy harvesting enabled TMDI. Finally, Section 6 summarizes the main 

conclusions of the work. 
 
 

2. The tuned mass-damper-inerter for single-degree-of-freedom (SDOF) structures 
 

2.1  Rack-and-pinion flywheel-based ideal inerter 
 

The ideal inerter was conceptually defined by Smith (2002) as a linear two terminal 

mechanical element of negligible physical mass/weight developing an internal (resisting) force F 

proportional to the relative acceleration of its terminals. That is, 

 1 2( - )F b u u  (1) 

where u1 and u2 are the displacement coordinates of the inerter terminals and, hereafter, a dot over 

a symbol denotes time differentiation. In the above equation, the constant of proportionality b is 

the so-called inertance measured in mass units (kg). Importantly, several different inerter 

prototypes were devised and experimentally characterized over the past decade achieving 

inertance values b orders of magnitude larger than the devices’ physical mass, while 

approximating the linear behavior in Eq. (1) within a wide frequency range of practical interest 

(e.g. Papageorgiou and Smith 2005, Wang et al 2011, Chuan et al 2012, Swift et al 2013, 

Gonzalez-Buelga et al 2016, Hu et al 2016). For example, the early and most widely-known 

inerter implementations incorporate rack-and-pinion or ball-screw mechanisms to transform, 

through gearing, the translational kinetic energy associated with the relative motion of the device 

terminals into rotational kinetic energy at a lightweight fast-spinning disk or “flywheel” (Smith 

2002, Papageorgiou and Smith 2005). The inertance in such flywheel-based inerters depends 

primarily on the number of gears and on the gearing ratio used to drive the flywheel, rather than 

on the mass of the flywheel.  



 

 

 

 

To elaborate further on this point, consider a typical mechanical realisation of the inerter 

comprising a flywheel linked to a rack-and-pinion via n gears. Figure 1 depicts such a device for 

the special case of n=4. The inertance of this device is given by 
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where fm  and f  are the mass and the radius of gyration of the flywheel, respectively, pr  is the 

radius of the flywheel pinion, and kr  and kpr  (k=1,2,..,n) are the radii of the k-th gear and its 

corresponding pinion, respectively, linking the rack to the flywheel pinion (see also Fig. 1). 

Assuming a flywheel of 10kg mass with a ratio /f pr  = 3 driven by a single gear (i.e., n=1) with 

a 1 1/r pr =4 gear ratio, the inertance computed from Eq. (2) is b= 1440kg (see also Smith 2002). 

Adding two more gears with a common gear ratio equal to 3, yields an inerter with b= 116640kg, 

that is, a device with a physical mass three orders of magnitude smaller than its inertance. The 

above simple example illustrates the scalability of flywheel-based inerters through gearing. It also 

suggests that it is practically feasible to achieve inerters with adjustable/varying inertance without 

any change to their weight either in a stepped manner, by means of standard gearboxes with fixed 

gear ratios, or, continuously, by means of continuously varying transmission gearboxes, similar to 

those used in automotive engineering applications (Dhand and Pullen 2015).  

 

 
Fig. 1 Schematic representation of a rack-and-pinion flywheel-based inerter device with 4 gears. 

In view of Eqs. (1) and (2), it is seen that the ideal (linear) inerter can be construed as an 

inertial/mass amplification device whose gain depends on b and on the relative acceleration 

observed by its terminals. In fact, in the special case where one of the inerter terminals is 

“grounded” (i.e., linked to a stationary point), the inerter behaves as a “weightless” mass equal to 

b. For instance, by setting 2 0u   in Eq. (1), the inertance b is added to the physical mass 

associated with the dynamic degree-of-freedom (DOF) corresponding to the displacement u1 

within a dynamical system. This inerter property was originally recognized by Smith (2002) and 

motivates the consideration of the so-called tuned mass-damper-inerter (TMDI) configuration 

(Marian and Giaralis 2014) reviewed in the following sub-section.  

 

 



 

 

 

 

2.2  Equations of motion for TMDI equipped SDOF primary structures 
 

Consider the class of dynamically excited structures amenable to be modelled as single-degree-

of-freedom (SDOF) systems. The TMDI aims to suppress the motion of such systems (primary 

structures) by coupling the classical tuned mass-damper (TMD) with a grounded inerter in a 

skyhook configuration (Marian and Giaralis 2014). Specifically, the TMDI comprises a mass m2 

attached to the primary structure via a linear spring of stiffness k2 and a viscous damper with 

damping coefficient 2c , along with an inerter device with inertance b linking the attached mass to 

the ground as shown in Fig. 2. It is emphasized, in passing, that the TMDI is different from the 

various inerter-based DVAs considered by Hu and Chen (2015) and optimally designed in Hu et 

al. (2015) for harmonic excitation. In the latter DVAs, motivated mostly by suspension systems in 

vehicle engineering applications, the inerter is sandwiched in between the primary structure and 

the attached mass is conjunction with damper and spring elements in different layouts. 

Nevertheless, the TMDI considers a sky-hooked (grounded) inerter aiming to suppress vibrations 

in stationary (i.e., non-moving) primary structures. A practical example is the case of highway 

truss bridges oscillating along their longitudinal direction in which the deck is interpreted as the 

attached mass m2 connected to the main truss of mass m1 through bearings modelled via the spring 

k2 and dashpot c2 as considered by Hoang et al. (2008). In this case, the inerter can link the bridge 

deck to the ground at the abutments and the dynamical system of Fig.2 applies to find the optimal 

bearing system that would minimise the truss vibrations in the longitudinal direction of the bridge.   

 

  

(a)  Force-excited (b)  Base acceleration-excited 

Fig.2 Tuned mass-damper-inerter-equipped SDOF primary structure 

 

The equations of motion of a TMDI equipped undamped SDOF primary structure with mass 

m1 and stiffness k1 are written in matrix form as 

 
 

 
22 2 2 2 2 2 2 2

11 1 2 2 1 2 1 2 1
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F tm b x c c x k k x

F tm x c c x k k k x

             
              

              
 (3) 

under the assumption that the physical mass of the inerter, the damper, and the spring are 

negligible compared to the m1 and m2 masses. In the previous equations, x1 and x2 are the 

displacement response histories relative to the ground of the primary structure and of the attached 

mass, respectively. Furthermore, the forcing vector in the right hand size of Eq. (3) specializes as 
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The first vector in Eq. (4) corresponds to a force-excited primary structure subject to a load F(t) 

as shown in Fig. 2(a). The second vector in Eq. (4) corresponds to a base-excited primary 

structure subject to the ground acceleration time-history αg(t) as shown in Fig. 2(b).  

In view of Eqs. (3) and (4), it is readily seen that for the case of force-excited primary 

structures, the TMDI coincides with a classical TMD with attached mass m2+b. In this regard, all 

known approaches and formulae for vibration control and energy harvesting for force-excited 

SDOF primary structures equipped with the classical TMD are applicable for the TMDI as well: 

one needs only to replace the attached TMD mass, m2, by the sum of the attached mass and the 

inertance, m2+b, as required in the various expressions derived for the classical TMD (e.g., Den 

Hartog 1956, Krenk 2005, Salvi and Rizzi 2016). However, this is not the case for acceleration 

base-excited primary structures in which the effective (inertial) force applied to the attached mass 

due to the ground acceleration is proportional to m2 and not to m2+b. To this end, only the case of 

acceleration base-excited TMDI equipped primary structures is explicitly considered in the 

ensuing mathematical development as the associated expressions quantifying the performance for 

vibration suppression and energy harvesting cannot be trivially derived by substitution to known 

results applicable to the classical TMD. Still, certain plots and final analytical formulae pertaining 

to force-excited TMDI equipped primary structures will also be presented and discussed in 

subsequent sections for the sake of completeness and comparison, as deemed essential. 

Denote by ωTMDI and ζTMDI  the natural frequency and the critical damping ratio of the TMDI, 

respectively, defined as  
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Further, consider the mass ratio µ, frequency ratio TMDI , and inertance ratio 𝛽 expressed as 

 2

1

m

m
   , 

1

TMDI
TMDI





  , and 

1

b

m
  , (6) 

respectively, where ω1= (k1/m1)1/2 is the natural frequency of the primary structure. Using the 
above dimensionless quantities, the complex frequency response function (FRF) in terms of the 
relative displacement x1 of the base-excited primary structure in Fig. 2(b) can be written as 
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in the domain of frequencies ω by considering the normalized acceleration input ag/ω1
2. In the 

latter equation and hereafter 1i   . Moreover, the complex FRF for the same dynamical system 

in terms of the relative displacement x2 of the attached mass is written as 
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Note that by setting b=β=0 in Eqs. (7) and (8), the FRFs in terms of the relative displacements 

x1 and x2, respectively, for an undamped SDOF primary structure equipped with the classical 

TMD are retrieved. In this regard, the classical TMD may be viewed as a special case of the 

TMDI. 

In the following section, optimal TMDI design for undamped harmonically excited SDOF 

primary structures is sought by considering the minimization of the peak value attained by the 

magnitude of the FRF in Eq. (7), |G1(ω)|, hereafter referred to as the dynamic amplification factor 

(DAF). This is the most common design criterion adopted in the literature for vibration 

suppression under harmonic excitation (Krenk 2005). Further, in Section 4, the kinetic energy of 

the TMDI equipped SDOF primary structures available to be transformed into electric energy via 

a standard electromagnetic energy harvester is quantified. The latter requires the consideration of 

both the FRFs in Eqs. (7) and (8).  
 
 

3. Optimal TMDI design and performance for vibration suppression in harmonically 

excited SDOF structures 
 

3.1 Derivation of TMDI parameters in closed-form based on the fixed point theory 
 

Assume that the TMDI equipped structure in Fig. 2(b) is subjected to a harmonic ground 

acceleration excitation αg. Given fixed values for the μ and β ratios defined in Eq. (6), it is sought 

to determine optimal values for the TMDI stiffness coefficient k2 and damping coefficient c2, or, 

equivalently, for the dimensionless frequency and damping ratios TMDI  and ζTMDI defined in Eqs. 

(6) and (5), respectively, such that the peak relative displacement of the primary structure is 

minimized. To this aim, the optimal tuning/design approach of Den Hartog (1956) is herein 

adopted. This approach is based on the “fixed point theory” which relies on the empirical 

observation that the DAF curves |G1(ω)| in Eq. (7) for b=β=0 (i.e., for the classical TMD) and for 

fixed attached mass and frequency ratio pass through two specific points, the location of which is 

independent of the damping coefficient c2. Importantly, this observation holds for TMDI equipped 

harmonically base-excited primary structures (case of β≠0), as well. For illustration, Fig. 3 plots 

the DAF |G1(ω)| in Eq. (7) for several values of the TMDI damping ratio ζTMDI and for fixed values 

μ, β, and TMDI . Evidently, there exist two “stationary” points, denoted by P1 and P2, where the 

DAF curves intersect for all damping coefficient values c2 or, equivalently, for all TMDI damping 

ratios ζTMDI.  



 

 

 

 

 
Fig. 3 Relative displacement response amplitude of undamped support excited TMDI equipped SDOF 

primary structure with mass ratio μ=0.1, inertance ratio β=0.1, frequency ratio υTMDI=0.5, and for various 

damping ratios ζTMDI 

The location of P1 and P2 points on the frequency axis can be found by considering the 

equation 
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By collecting the real and imaginary parts in the numerator and denominator in Eq. (7), the square 

magnitude of the FRF G1(ω) can be expressed as 
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where 
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By substituting Eq. (10) in Eq. (9) and upon some algebraic manipulation, one obtains 

 AD BC   (12) 

Adopting the positive sign in Eq. (12) and making use of the expressions in Eq. (11), the trivial 
(static) solution ω=0 is reached, which is not of interest. However, by adopting the negative sign 
in Eq. (12) together with Eq. (11) yields the following quadratic equation in ω2 

 2 24 2 2 2

1 1(2 2) ([ 22 ) ((1 ) 1 )   2(1 0] )TMDI TMDIµ µ µ µ µ               (13) 

The two roots, 
2

1P  and 
2

2P , of the last equation are the squared frequencies corresponding to the 

stationary points P1 and P2.  
The tuning approach of Den Hartog [3] suggests that the peak response of the considered 

primary structure is minimized when the following two conditions hold:  
(I) |G1(ω)| attains the same value at the points P1 and P2, and  



 

 

 

 

(II) |G1(ω)| attains a local maximum at the points P1 and P2. 
By enforcing condition (I) for the limiting value ζTMDI→∞, that is,  
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the following expression for the sum of the roots of Eq. (13) is reached  
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Further, a second expression for the sum of the roots of Eq. (13) can be readily written as  
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This is obtained by taking the ratio of the linear coefficient over the quadratic coefficient in Eq. 
(13) with the negative sign. Making use of Eqs. (15) and (16) the following formula for the 
optimal frequency ratio in Eq. (6) is obtained in closed-form as a function of the (given) ratios μ 
and β  
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The above frequency ratio ensures that |G1(ω)| in Eq. (7) attains the same value at frequencies 

1P  and 2P  for any ζTMDI since it satisfies condition (I) through Eq. (14). 

Next, condition (II) of the Den Hartog design approach is enforced by setting the first 
derivative of |G1(ω)| at the two stationary points equal to zero. That is, 
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Application of Eq. (18) yields two different values for ζTMDI which make the gradient of the 
DAF curve zero at the two stationary points. Following Brock (1946), the “optimal” TMDI 
parameter ζTMDI is taken as the average of these two values (though other alternatives are possible 
Krenk (2005)), yielding 
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Substituting in Eq. (7) the TMDI tuning parameters in Eqs. (17) and (19), the following 

expression for the DAF at points P1 and P2 is reached 
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Note that by setting β=b=0 to Eqs. (17), (19), and (20) the closed-form expressions for optimal 

parameters and DAF of the classical TMD for undamped harmonic base acceleration excited 

SDOF systems are retrieved (Warburton 1982). In the remainder of this section, the potential of 

the TMDI vis-à-vis the classical TMD to achieve enhanced vibration suppression for the same 

attached mass and attached mass/weight reduction for the same level of vibration suppression is 

assessed. In doing so, pertinent plots based on the herein considered optimal design approach are 

provided and discussed. 
 

3.2 Vibration suppression performance of TMDI vis-à-vis the classical TMD 
 

To facilitate a comparison between the TMDI configuration of Fig. 2(b) and the classical 

TMD, Table 1 collects the previously derived formulae for the optimal TMDI tuning parameters 

and the corresponding peak DAF for undamped SDOF primary structures subjected harmonic 

base acceleration with the known formulae for the classical TMD (b=0). Furthermore, closed-

form expressions for optimal tuning parameters and peak DAF for the case of TMDI-equipped 

force excited primary structures (Fig. 2(a)) are also included in Table 1 for the sake of 

completeness. In the latter case, the expressions for the TMDI are trivially derived from the 

known expressions of the classical TMD (also included in Table 1) with attached mass m2+b.  
 

Table 1 Closed-form expressions for optimally tuned TMDI and classical TMD for undamped SDOF 

structures subjected to harmonic excitation. 
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* Den Hartog (1956); ** Warburton (1982) 

 

Further, Figs. 4(a) and 4(b) plot the optimal design parameters in Eqs. (17) and (19), 
respectively, for several different values of the mass ratio μ as a function of the inertance ratio β. 
The latter quantity takes values within a suggested interval of practical interest [0,1], with β=0 
being the limiting value for which the TMDI degenerates to the classical TMD. It is observed that 

the optimal frequency ratio TMDI  decreases as β increases for all values of μ considered, while it 

also decreases as the attached m2 mass increases. Further, the optimum damping ratio ζTMDI 
increases monotonically with the normalized inerter constant β for all considered values of μ, 
while it also increases as the attached m2 mass increases. The rate of change of both the TMDI 



 

 

 

 

optimum parameters with β is higher for smaller values of β and μ, while for μ>0.2 the rate of 
change is almost constant. Similar trends are observed for the optimal parameters for the case of 
force-excited primary structures in Figs. 4(c) and 4(d), though a more prominent trend of 
saturation (i.e., decrease rate of change) is seen with β, especially for the relatively small values of 
mass ratio considered. A comparison between figs. 4(a) and 4(b), and figs. 4(c) and 4(d), 
respectively, suggests that for μ<0.1 the optimal TMDI parameters are practically the same for the 
force-excited and the base-acceleration-excited primary structures across the considered range [0 
1] of β values, despite the differences in the derived analytical formulae in Table 1. This 
observation suggests that β and μ ratios are not interchangeable in treating different types of 
excitations for relatively large attached mass ratios.  

 

  
(a)  Base-excited primary structure (b)  Base-excited primary structure 

  
(c)  Force-excited primary structure (d)  Force-excited primary structure 

Fig. 4 Optimum TMDI frequency ratio υTMDI and damping ratio ζTMDI for varying inertance ratio 𝛽 and for 

several mass ratio values μ for undamped SDOF primary structures 

 
To assess the achieved level of vibration suppression by the TMDI vis-à-vis a same-weight 

classical TMD, Fig. 5(a) plots the DAF |G1(ω)| for optimally designed (i.e., using the formulae in 

Table 1) TMDI-equipped undamped SDOF primary structure under harmonic base acceleration 

excitation with mass ratio μ= 0.1 and for different values of the inertance ratio β, including the 

β=0 value corresponding to the classical TMD. The frequency axis is normalized by the natural 

frequency of the uncontrolled primary structure ω1. It is seen that the larger the inertance of the 

optimally designed TMDI is, the more significant DAF reduction is achieved compared to the 

TMD case at the natural frequency ω1 of the primary structure as well as at the frequencies
1P  

and 2P of the stationary points. Note, however, that as the inertance increases, the location of the 

stationary points shifts to lower frequencies and the distance of the two points increases. As a 

result, the DAF values for relatively low excitation frequencies (i.e., lower than 70% the resonant 

frequency ω1) may increase with increasing inertance. Nevertheless, in practical applications, 



 

 

 

 

dynamic vibration absorbers are used to suppress excessive oscillations in harmonically excited 

structures due to resonance and, therefore, their vibration suppression performance is normally 

gauged within a relatively narrow frequency band centered at the natural frequency of the 

uncontrolled structure. In this regard, it is observed that optimally designed TMDIs perform 

remarkably better than a same-weight optimally designed TMD within a substantially wide 

frequency (wider than [0.8ω1 1.2ω1] for the considered case of μ=0.1) and, more importantly, the 

DAF curves become flatter across frequencies as the inertance ratio increases. The latter 

observation demonstrates that TMDIs with larger inertance ratios are also more robust to detuning 

effects and to uncertainty in the excitation frequency and/or in the primary structure properties 

than a same-weight TMD. 

In light of the above discussion and plots in Figure 5(a), it can be intuitively argued that an 

increase of the inertance in the TMDI has the same positive effects as an increase of the mass 

ratio in the TMD (see e.g. De Angelis et al 2014), without, however, any substantial increase to 

the overall weight. To further elaborate on this important practical aspect, Fig. 5(b) plots DAF 

curves for optimally designed TMDs for different attached mass values. A comparison between 

Figs. 5(a) and 5(b) establishes that better vibration suppression close to resonance and increased 

robustness to detuning effects and uncertainty can be achieved either by increasing the attached 

mass (and therefore the added weight) of the classical TMD or by increasing the inertance of the 

TMDI (for a fixed attached mass/weight). Interestingly, for base acceleration excited primary 

structures (i.e., the case considered in Fig. 5) an optimally designed TMD with attached mass 

ratio μTMD performs worse than an optimally designed TMDI having a sum of the attached mass 

and inertance ratio, μTMDI + β equal to μTMD. Nevertheless, for force excited primary structures the 

previous two dynamic vibration absorbers yield the same DAF curve. 

 

  
(a)  Optimally designed TMDIs (b>0) (b)  Optimally designed TMDs (b=0) 

Fig. 5 Dynamic amplification factor (DAF) spectra for base acceleration excited primary structures 

 

Further to the above comments, it is observed in Fig. 5(a) that the positive influence of the 

inerter tends to saturate with increasing inertance values. To better quantify this trend, Figure 6 

plots the peak DAF (i.e.,  1max ( )G


  in Table 1) for optimally designed TMDIs as a function 

of the inertance ratio β and for several attached mass ratios normalized by the peak DAF for 

optimally designed TMDs. It is seen that the rate of reduction of the peak DAF achieved by the 

TMDI compared to same-weight TMDs at the stationary points (note that the location of these 

points varies for each structure, since 1P  and 2P  frequencies are functions of μ and β as seen 

by Eqs. (13) and (17)), reduces as larger inertance ratio values are considered. Furthermore, it is 



 

 

 

 

also deduced from Fig. 6 that for a fixed value of inertance the positive impact of the inerter is 

more prominent as TMDs with smaller attached mass are considered. In other words, the positive 

influence of increasing the attached TMDI mass saturates for larger mass ratios, as in the case of 

the classical TMD (see also Fig. 5(b)). The practical significance of this observation is that the 

inerter is more effective/beneficial for vibration supression when it is coupled with more 

lightweight TMDs. Importantly, similar observations and trends on the improved level of 

vibration suppression achieved by the TMDI vis-a-vis the classical TMD as a function of the 

attached mass and inertance ratio hold for randomly base-excited primary structures (Marian and 

Giaralis 2014). As a final remark, the curves in Figs. 6(a) (base acceleration excitation) and 6(b) 

(force excitation) practically coincide even for excessively large attached mass ratio values.  

  

(a) Base-excited primary structure (b) Force-excited primary structure 

Fig. 6 Peak DAF of optimally designed TMDI-equipped SDOF structures normalized by the peak DAF of 

optimally designed TMD-equipped SDOF structures.   

 

3.3 Attached mass/weight reduction of TMDI vis-à-vis the classical TMD 
 

The previous discussion quantified the improved vibration suppression capabilities of the 
TMDI vis-à-vis the classical TMD in a performance-assessment context. However, the TMDI 
bears a significant advantage over the TMD within the more practical performance-based design 
context: it achieves the same level of vibration suppression with significantly smaller attached 
mass ratios than the classical TMD and therefore with significantly reduced added weight to a 
given primary structure. This aspect is quantified in Fig. 7 which plots the peak DAF in a TMD(I) 
design bar-chart format. These design charts provide for the required attached mass ratio to 
achieve a target (i.e., pre-specified by the design engineer) peak DAF for different values of 
inertance including the limiting case of β=b=0 corresponding to the classical TMD. For 
illustration, suppose that it is sought to achieve a peak DAF of 4 for a particular base acceleration 
excited primary structure. From Fig. 7(a), it is seen that this value of DAF can be achieved by an 
optimally designed TMDI with 60% smaller attached mass than the one required by an optimally 
designed classical TMD and an inertance ratio of β=0.05. Further, an optimally designed TMDI 
with double the previous inertance (i.e., β=0.1) achieves the target peak DAF of 4 with a 4.5 times 
smaller attached mass than the one required by the TMD yielding an overall significantly lighter 
dynamic vibration absorber. To further support this argument, assume that the mass of the primary 
structure under consideration is m1= 360t. A flywheel-based rack-and-pinion inerter with 
inertance b= 36t (i.e., corresponding to β=0.1) can be achieved by using a flywheel with mass 
equal to 10kg and ratio γf/γpr= 3 connected to the rack by two gears (n=2 in Eq. (2)) with 



 

 

 

 

transmission ratios: r1/pr1= 5 and r2/pr2= 4 (see also Fig. 1). Clearly, the total weight of such an 
inerter device is negligible compared to the achieved inertance b.      

 

  

(a) Base-excited primary structure (b) Force-excited primary structure 

Fig. 7 Mass ratio against peak DAF bar-charts for optimum design of TMDI-equipped SDOF structures. 

 
 

4. Energy harvesting in harmonically excited TMDI equipped structures 
 

4.1 An energy harvesting enabled TMDI  
 

Having established the benefits of the TMDI for vibration suppression, this section explores its 
potential for harvesting energy from primary structure oscillations. To this aim, the linear 
dissipative damper of the TMDI is substituted by a linear translational electromagnetic motor 
(EM) shunted by a purely resistive load, as shown in Fig. 8. Compared to the standard TMD-
based energy harvesters proposed in the literature for electric generation from low-frequency 
large-amplitude oscillations (see e.g., Tang and Zuo 2012, Gonzalez-Buelga et al 2014), the 
herein considered energy harvesting-enabled TMDI considers additionally a grounded inerter. 
This consideration enables leveraging the inertia of the attached mass, without changing the DVA 
total weight. In this respect, the functionality of the inerter in the proposed configuration is 
significantly different from the various energy harvesters found in the literature which utilize 
rack-and-pinion (e.g. Tang and Zuo 2012) or ball-screw mechanisms (e.g. Cassidy et al 2011, 
Hendijanizadeh et al 2013), similar to those used in flywheel-based inerters, to enable the use of 
rotational EMs by transforming the translational kinetic energy to rotational kinetic energy. 

 

  
(a) Force-excited (b) Base acceleration-excited 

Fig.8 Energy harvesting enabled TMDI-equipped SDOF primary structure 



 

 

 

 

 

The dashpot with coefficient cM shown in the mechanical configurations of Fig.8 is included to 

model the mechanical parasitic damping leading to energy losses. A standard EM comprising a 

moving magnet DC voice coil linear actuator is assumed (e.g. Zhu et al 2012, Gonzalez-Buelga et 

al 2014). The moving magnet observes the relative motion of the primary structure and of the 

attached mass and travels within a magnetic field of constant flux density J generating a voltage V 

expressed as 

 1 2( )V J x x  . (21) 

The EM resists the relative motion between the primary structure and the attached mass by 

developing a damping force FEM in the mechanical domain written as 

 1 2( )EM EMF c x x  , (22) 

where 
EMc  is the electromechanical damping coefficient. The above damping force is linearly 

proportional to the generated electric current I, that is, 

 EMF J I . (23) 

Using Eqs. (21) to (23) in conjunction with Ohm’s law I=V/R, which relates the electric 

current I through a circuit with total resistance R due to a voltage V, the electromechanical 

damping coefficient 
EMc is expressed as 
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. (24) 

In the last equation, RC represents the internal “parasitic” resistance of the EM modeling the 

energy losses within the device, while RL is the resistive load. In deriving Eq. (24), the inductance 

of the EM is neglected (e.g. Zhu et al 2012). A comparison between the dynamical systems in 

Figs. 2 and 8 suggests that the equations of motion and the FRFs of section 2.2 are applicable to 

the herein considered energy harvesting enabled TMDI by setting 

 2 EM Mc c c  . (25) 

 
4.2 Quantification of the available energy for harvesting 
 

In this section, the available energy to be harvested from the vibrating system of Fig. 8 is 

quantified by assuming that the energy harvesting enabled TMDI is optimally designed for 

vibration suppression under harmonic excitation as detailed in section 3.1. (Table 1). Specifically, 

the available power to be harvested through the resistive load RL is given by the standard 

relationship in the electrical domain 

 2

LP I R . (26) 

Using the above relationship in conjunction with Eq. (21) and Ohm’s law, the following 
expression for the available power to be harvested from the dynamical systems in Fig. 8 under 
harmonic excitation is reached 
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In the above equation, 
RVG is the relative velocity FRF between the m1 mass of the primary 

structure and the attached m2 mass given as 
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 , (28) 

where the FRFs G1 and G2 have been defined in Eqs. (7) and (8), respectively, for base 
acceleration excitation. Similar expressions for G1 and G2 readily follow from Eqs. (3) and (4) for 
force excited primary structures. 

 

  
(a) Base-excited primary structure (b) Base-excited primary structure 

  
(c) Force-excited primary structure (d) Force-excited primary structure 

Fig. 9 Relative velocity amplitude FRF (Eq. (28)) and available power for harvesting (Eq. (29)) spectra for 

various optimally designed TMDI equipped SDOF primary structures 

 

Figures 9(a) and 9(c) plot the magnitude of the RVG  FRFs against the normalized frequency by 

ω1= (k1/m1)1/2 for optimally designed TMDI-equipped undamped SDOF primary structures under 

base acceleration and force excitations, respectively, with mass ratio μ= 0.1 and for different 

values of the inertance ratio β. It is seen that the values of these FRF spectra reduce for increasing 

inertance ratios which achieve an overall improved level of vibration suppression (see also Figs. 

5(a) and 6). However, the reduction of  RVG  is not beneficial in terms of energy harvesting as is 

readily seen in Eq. (27). The effect of the increased inertance ratio β to the energy harvesting 

potential of the proposed TMDI system is quantified in Figs. 9(b) and (d) plotting the magnitude 

of the power in Eq. (27) as a function of the normalized ω/ω1 frequency. These plots have been 

obtained by taking J=11.34 N/A and Rc= 2.96Ω which corresponds to a particular off-the-shelf 



 

 

 

 

EM device used by Gonzalez-Buelga et al (2014), and by assuming that 
M EMc c . It is observed 

that the increase of the ratio β reduces the available power for harvesting close to the natural 

period of the primary structure. However, similarly to what has been observed and discussed in 

view of Fig. 5(a), the effect of β to saturates for β>0.5, while the range of frequencies that the 

available power spectra take on non-negligible values increases (i.e., the curves become flatter). 

In every case, by juxtaposing Figs. 5(a) and 9(b), the well-known trade-off between vibration 

suppression performance and available energy for harvesting of the TMD-based energy harvesters 

(e.g., Tang and Zuo 2012, Ali and Adhikari 2013 and Gonzalez-Buelga et al 2014) is confirmed 

for the proposed energy harvesting enabled TMDI, as well. In passive optimally designed TMD-

based energy harvesters, this trade-off depends heavily on the assumed TMD inertial property 

governed by the fixed mass ratio μ (e.g., Gonzalez-Buelga et al 2014). Nevertheless, the inertial 

property of the herein considered TMDI system, depends not only on the a priori fixed mass ratio 

μ, but also on the inertance ratio β. To this end, the next section explores the potential of 

considering passive sub-optimal TMDIs with varying inertance to achieve increased available 

energy for electric power generation. 

 

 

5. Enhanced energy harvesting TMDI performance through varying inertance 
 

Ιn certain practical applications, it may be desired to increase electric power generation from 

primary structure oscillations during times when vibration suppression requirements are relaxed. 

In conventional TMD-based energy harvesters, such considerations are addressed by varying the 

damping property of the EM (e.g., Cassidy et al 2011, Zhu et al 2012, Gonzalez-Buelga et al 

2014), to achieve a desirable trade-off between energy harvesting and vibration suppression. 

However, in the case of the energy harvesting enabled TMDI of Fig.8 it is viable to achieve a 

trading between the above two objectives by varying its total apparent inertia, intuitively defined 

as m2+b. This can be accomplished by considering a typical flywheel-based inerter, as the one 

shown schematically in Fig. 1, with varying inertance b in Eq. (2) via standard transmission 

gearboxes to switch gearing ratios /k kr pr  and/or the number of gearing stages n. 

To illustrate the usefulness of treating the inertance property of the energy harvesting-enabled 

TMDI as a “degree of freedom” leveraging the trade-off between energy harvesting and vibration 

suppression, Fig. 10 plots DAF spectra and available power for harvesting spectra for one 

optimally designed TMDI for vibration suppression with mass ratio μ= 0.1 and inertance ratio 

𝛽=0.6 and for several sub-optimal TMDIs. The optimal TMDI parameters are determined as 

 0.1, 0.6OPT

TMDI    =0.5651 and  0.1, 0.6OPT

TMDI    =0.4132 using Eqs. (17) and (19), 

respectively. It is observed that as β reduces, the (sub-optimal) TMDI allows for more energy to 

be harvested across a range of excitation frequencies centered at the primary structure natural 

frequency ω1, at the cost of increased oscillations to the primary structure at the same range of 

frequencies. Therefore, by keeping constant all the TMDI properties but the inertance b leverages 

effectively the trade-off between energy harvesting and vibration suppression. This aspect is 

further quantified in Fig. 11 which plots the normalized peak DAF and peak available power for 

harvesting for non-optimal TMDIs as the inertance ratio β changes for four different values of the 

mass ratio μ and for constant optimal TMDI parameters (β=0.6) reported in Table 2. As the 

inertance is reduced below β=0.6 (i.e., departing from the optimum design point for vibration 



 

 

 

 

control), the available energy for harvesting increases significantly (for fixed attached mass, 

stiffness, and damping properties). 

 

  
(a) DAF spectra (b) Available power for harvesting speactra 

Fig. 10 Performance of optimally designed TMDI system for vibration suppresion with  µ=0.1and 𝛽=0.6 

(constant ʋTMDI=0.5651 and ζTMDI=0.4132) and for several values of inertance 

 

It is important to note that in the above presented numerical results and discussion the damping 

and stiffness properties of the TMDI are purposely kept constant, for the following two reasons: 

(i) to isolate the effect of a varying inertance to the achieved levels of vibration suppression and 

of available energy for harvesting, and (ii) to by-pass the need of posing any particular, and 

therefore non-general, optimization criterion balancing between the conflicting objectives of 

minimizing the oscillation amplitude of the primary structure and maximizing energy generation. 

Nevertheless, it is possible to vary the stiffness and/or the damping properties, as well, to achieve 

an overall optimal retuning of the device assembly as a whole, yet such considerations fall outside 

the scope of this study and are left for future work. 

 

 
 

(a) Peak DAF (b) peak available power for harvesting 

Fig. 11 Performance of non-optimal TMDIs normalized by the peak DAF and peak available power for 

harvesting, respectively for optimally designed TMDI for β=0.6 as functions of the inertance ratio β 

 

Table 2. Optimal TMDI parameters derived for β=0.6 and several mass ratio μ values 

Mass ratio μ Frequency ratio 
OPT

TMDI  Damping ratio 
OPT

TMDI  

0.2 0.5512 0.4497 

0.4 0.4226 0.5227 

0.6 0.3484 0.6026 

0.8 0.2846 0.6990 

 



 

 

 

 

6. Concluding remarks 
 

The TMDI configuration, recently introduced by the authors for vibration suppression of 

stochastically base-excited structures, have been considered for vibration control and energy 

harvesting in harmonically excited structures. Closed-form analytical expressions for optimal 

TMDI parameters, stiffness and damping, given mass and inertance ratios have been derived by 

application of Den Hartog semi-empirical approach widely used for the design of the classical 

TMD to suppress the motion of harmonically excited undamped SDOF structures. Based on 

pertinent analytically derived results, it was shown that the TMDI is more effective from a same 

mass/weight classical TMD to suppress vibrations close to the natural frequency of the 

uncontrolled structure, while it is more robust to de-tuning effects and uncertainties in estimating 

the structural properties of the primary structure. This is because the TMDI exploits the mass 

amplification effect of a grounded inerter: the larger the inerter constant (inertance), the more 

reduction to the peak response displacement of the primary structure is achieved over a wider 

band of frequencies for the same attached mass. Moreover, it was demonstrated that the mass 

amplification effect of the inerter coupled with the herein derived optimum TMDI design 

parameters achieves significant weight reductions for a target/predefined level of vibration 

suppression in the context of performance-based design compared to the classical TMD. It is 

expected that this aspect of the TMDI can lead to simple and cost-effective robust vibration 

suppression in demanding practical applications enjoying many practical benefits over large-mass 

passive TMDs. Furthermore, the potential of simultaneous energy harvesting and vibration 

suppression in passive mode by means of a novel energy harvesting enabled TMDI has been 

explored utilizing a typical electromagnetic motor for electric energy generation.  It was shown 

that the inertance leverages the available power to be harvested in an optimally designed TMDI 

for vibration suppression. This was achieved by treating the inertance as an inertial/mass related 

degree of freedom, not normally considered in the design of conventional TMDs for energy 

harvesting, assuming the availability of a flywheel-based inerter device implementation with 

varying inertance through mechanical gearing.  

Overall, the herein furnished analytical results have quantified the benefits of coupling a 

grounded linear inerter device with the classical TMD for vibrations suppression, attached weight 

reduction, and energy harvesting in harmonically excited SDOF structures. In this respect, it is 

envisioned that this study will pave the way for further developments, through theoretical and 

experimental research, towards adaptive DVAs and energy harvesters with varying inertial/mass 

properties, besides stiffness and damping, yielding smart structures and structural components. 

Nevertheless, further research is warranted to gauge the gains of the TMDI over the classical 

TMD in terms of weight reduction and energy harvesting in multi-mode MDOF structures such as 

in wind-excited tall buildings. In such structures, the TMDI mass is attached towards the top 

floors via dampers and linear stiffeners, or hangers in case of pendulum-like TMD 

implementations and, therefore, the inerter cannot be grounded: it needs to be connected to a 

different floor from the one that the mass damper is attached to (Marian and Giaralis 2014, 

Giaralis and Petrini 2017).  
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