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Abstract. Movement data comes in various forms, including trajectory
data and checkpoint data. While trajectories give detailed information
about the movement of individual entities, checkpoint data in its sim-
plest form does not give identities, just counts at checkpoints. However,
checkpoint data is of increasing interest since it is readily available due
to privacy reasons and as a by-product of other data collection. In this
paper we propose to use the Earth Mover’s Distance as a versatile tool
to reconstruct individual movements or flow based on checkpoint counts
at different times. We analyze the modeling possibilities and provide ex-
periments that validate model predictions, based on coarse-grained ag-
gregations of data about actual movements of couriers in London, UK.
While we cannot expect to reconstruct precise individual movements
from highly granular checkpoint data, the evaluation does show that the
approach can generate meaningful estimates of object movements.

1 Introduction

Throughout the years, interest in spatial data has shifted from static planar
maps, to space-time [19] and 3D GIS [1], and to movement data [21],[29]. The
study of movement data has grown explosively due to the availability of tracking
devices and their increased quality. Movement is essential for modeling many
types of spatial interaction, one of the central concepts in spatial analysis.

Movement data is often available in the form of trajectories: sequences of
time-stamped locations acquired through GPS or other devices that can deter-
mine the location of an individual entity. There are a host of computational
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tools to analyze trajectories, for example, to determine similarity, to cluster, or
to find specific patterns in the trajectories (such as flocks or leadership) or the
underlying space (like hotspots) [9],[16].

Recently, a different type of movement data has become of increasing inter-
est, namely checkpoint data [3,4],[6],[11],[25,26],[28]. Here the entities themselves
need not be equipped with GPS, but rather their presence at a location or neigh-
borhood is recorded by a stationary sensor. Such sensors include street cameras
counting passing pedestrians, check-in gates at metro stations, inductive loops
counting cars, RFID sensors in mass participation sporting events, and mobile
phone cell towers and wifi access points counting the number of connections in
their vicinity. The resulting type of movement data is typically either anonymous
or anonymized before being made available for analysis. Hence, frequently the
only data available is counts of entities at certain times or in certain intervals.

Checkpoint data is usually much less information-rich than trajectory data.
This is partly due to the typically coarse spatial granularity of fixed checkpoint
locations, but also due to the lack of heading, speed, chosen route, and stops that
are not recorded nor so easily derived from aggregate counts. We can identify
several types of checkpoint data based on the spatial extent of acquisition of
the data (point-based or area-based) and the movement space (network or more
general). Examples of the resulting four classes are given in Table 1.

Table 1. Examples of various types of checkpoint data.

Network movement Areal movement

Point-based check Road traffic, subway Indoor movement
(cameras, gates, inductive loops) (airport, hall)

Area-based check Pedestrians Pedestrians
(cell towers, satellite) (street) (square, park)

The coarse-grained aspect of the data makes it suitable only for coarse-
grained pattern analysis. Perhaps the most important one of these patterns is
global flow of entities. But since no identity, heading, or speed data is avail-
able, flow must be reconstructed from the counts. Reconstruction of flow can be
based on any of various spatial interaction models. Spatial interaction models
describe the flow of people, goods, infections, or information between locations
in geographic space, and are therefore studied in various fields of geography.

In this paper we assume a tessellated geographic space and a number of
time stamps as a model for area-based checkpoint data. At each time stamp
or snapshot, we have a count of the number of entities in each region of the
tessellation (termed “temporal checkpoints” in [25], akin to a function from time
to a spatial field). Such data may arise from mobile phone connection counts in
cell tower regions, for example, aggregated over time intervals.

We will study the possibilities of reconstructing flow consistent with this
data using the Earth Mover’s Distance [23], a well-known measure for capturing
the distance (or its inverse, similarity) between two images or weighted point
sets. It has also been used in GIS for similarity assessment (see, for example,
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[10],[15],[17]). Let R = {(r1, w1), . . . , (rn, wn)} be a set of n tuples consisting
of points ri and corresponding weights wi. Let W =

∑
wi. Similarly, let B =

{(b1, v1), . . . , (bm, vm)} be a set of m tuples, and let V =
∑
vi. The Earth

Mover’s Distance between R and B is defined if W = V , and is the minimum
total effort to transport all the weight from R to B. The effort to transport
weight w from a point r to a point b is defined as w · dist(r, b), where dist(r, b)
is a distance measure, for example the Euclidean distance. The Earth Mover’s
Distance is a metric, also known as the Wasserstein metric. Since the total weight
in R and B is the same, we must transport all weight from R to give all points
of B the correct weight. Any point in R can give its weight to multiple points
in B, and any point in B may receive its weight from one or more points in R.
Therefore, a minimum effort transportation corresponds to a flow from R to B.

Reconstructing flows allows us to make effective visualizations including OD
maps [27] and flow maps [2],[5]. Figure 1 shows a typical output of our model
estimating flows of people based on granular mobile phone data.

Results and Organization. In Section 2 we overview spatial interaction mod-
els and argue that the Earth Mover’s Distance is suitable for reconstructing flow
from checkpoint data. We recap a linear-programming formulation to compute
the Earth Mover’s Distance. In Section 3 we use the Earth Mover’s Distance
to reconstruct flow in typical scenarios like mobility in a city. We show that
environmental situations like obstacles (rivers) and metro stations can easily be
incorporated by adapting the objective function and constraints of the linear
program. In Section 4 we analyze the success of the Earth Mover’s Distance to
reconstruct flows. To this end we evaluate our approach using data about real
trajectories of couriers in London, UK, by converting them to tessellated counts
at time stamps and then trying to reconstruct the flows present in the origi-

Fig. 1. Estimated flows of people between 9:05 and 9:10am in central London, 3rd
June 2012. Flow estimations based on least cost movement between mobile telephone
density surfaces over the 5 minute period.
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nal trajectories. Section 5 summarizes the contribution of this work, as well as
indicating further possibilities and improvements for future work.

2 Spatial Interaction and the Earth Mover’s Distance

Spatial interaction models of flow are commonly associated with the gravity
model [8],[20],[22], which in its original form relates the trade flow Fij between
two countries i, j using their economic masses Mi and Mj and their distance dij :

Fij = c ·
Mβ1

i Mβ2

j

dβ3

ij

,

where c, β1, β2, β3 are constants. The distance may be influenced by the cost of
transportation but also by trade barriers. Many extensions of the gravity model
have been described, taking into account more factors or compensating for weak-
nesses. Besides economics, the gravity model is also popular in transportation,
migration, and mobility modeling. Other spatial interaction models include the
radiation model [24] and Huff’s probabilistic model [13,14].

While these models could be used to model movement in checkpoint data, the
Earth Mover’s Distance [23] (EMD) has potential advantages. The other mod-
els aim to represent global patterns of interaction, established over long time
periods (over which small variations are smoothed out), and focus on economic
principles such as supply and demand. There is little reason to believe that such
models would work well for reconstruction of movement based on checkpoint
data, which has a much finer time resolution and may vary rapidly in both time
and space. Furthermore, models like the gravity model attempt to explain the
degree of interaction based on (economic) masses without taking local patterns
into account. A gravity function can be fitted to the data, but such a function
will be global and apply to the whole grid. Geographically weighted regression
approach [18] has been taken recently to support local spatial interaction mod-
eling. While more location specific parameters were introduced to reach a better
fit, existing flow data is required in training the models. Our objective is to re-
construct deviations from global movement behavior, or random patterns, and
detect local trends of movement that exist in specific areas at specific times. For
this we use one of the simplest possible models, the EMD. Importantly the EMD
conserves mass in flow, although we purposefully adapt it to account for loss or
gain of mass, for example, because of sensor error or movements not detected
by sensors.

We consider a specific instance of checkpoint data where we have counts at time
steps t1, . . . , ts at all checkpoints. For descriptive purposes we assume that the
checkpoints provide counts in regions of a regular grid. When a grid of counts
at time ti and a grid of counts at time ti+1 are known, we can infer movement
from entities in cells at time ti to cells at time ti+1, see Fig. 2. In particular,
if some cell c contains 10 entities at time ti and 6 entities at time ti+1, we are
certain that at least 4 entities have left the cell. Possibly, all 10 entities have left
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and 6 other entities appeared. It is also possible that yet other entities passed
all the way through cell c between times ti and ti+1 and were never counted.

Checkpoint data does not allow us to completely reconstruct flow, since, for
example, it is difficult to identify flow between two cells of the same magnitude,
because they cancel out. However, we can still hope to determine flows at a some-
what more global level if there is a trend. To this end, we make an assumption
of minimum cost movement. We do not claim that this is realistic, but it does
provide a lower bound on the total flow. Minimum cost flow can be derived from
the EMD, as described in the introduction. We let the location of an entity be
the center of the cell the entity is in. So an entity sits in the same cell at time
ti and ti+1 has exactly the same location despite that it might moved slightly.
When a minimum cost flow lets entities move to the same cell as the one they
started, the cost of the movement is zero because the movement distance is zero.
Movement of entities to an adjacent cell has cost equal to the product of the cell
size and the number of entities moving. In Fig. 2 there are two minimum flow
solutions.

The minimum cost flow problem can be formulated as a linear program. Here
the flow from a cell j at ti to a cell k at time ti+1 becomes a variable Fjk. The
objective function, to be minimized, is the summation of all flows times the
distance: ∑

j,k

Fjk · djk (1)

where the distance is assumed to be the distance between the cell centers. To
ensure that the flow transports the correct numbers, we use constraints. They
come in three types:

– Non-negativity constraint: Fjk ≥ 0 for all j, k
– Origin constraint:

∑
k Fjk = count of cell j at time ti, for all j

– Destination constraint:
∑
j Fjk = count of cell k at time ti+1, for all k

In principle, no flow is negative, the whole count must exit each cell at time ti,
and the resulting count at each cell has arrived at time ti+1. We can replace
the two equalities by inequalities and obtain a linear program with the same
solution.

ti ti+1

10 6 3

1

2 2

3 1 1 1 1 3

1 1

Fig. 2. Grid with counts at times ti and ti+1, and a possible flow indicated to the right
by arrows. In another minimum cost movement, two of the three entities at the top
left moved two cells to the right, and the one entity in the middle did not move.
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3 Modeling and Computation of Flow in Specific Cases

To demonstrate the versatility of linear programming to compute the EMD flow,
we show how to incorporate various situations in a natural way. We consider flow
in an urban environment based on mobile phone data and a time interval of 5
minutes. This is a typical situation in practice. It allows identification of the
main flows during morning and evening rush hours, flow during big events, and
generally flow patterns at different times. We can imagine a grid of, for instance,
20× 20 cells, each of 100× 100 meters.

Urban movement from area-based counts. The basic computation of flow
using the EMD follows the three linear programming constraints given in the
previous section. The EMD is in principle mass preserving, but we can expect
that in our situation of urban movement there will be different total counts at
times ti and ti+1. There are two main reasons for this:

– People at the edges of the area of interest move to the outside, or people just
outside the area of interest move inside. We can assume that this movement
influences the counts in the cells close to the boundary.

– People can at any time switch on or off their device, and they may also lose
connection or acquire a connection.

To incorporate the former we extend the grid with an extra ring of cells sur-
rounding the original grid, see Fig. 3. The extra ring does not have data, so
there are no counts for these cells. In our model we allow these cells to produce
extra entities moving into the core grid, or take up entities departing from the
core grid. This models the boundary effects in a simple and elegant manner as
a (potentially infinite) sink/source.

To incorporate the latter we allow entities in every cell to disappear or appear
in a count. Since we prefer to “explain” changing numbers by movement, the cost
of appearing or disappearing will be significantly higher than that of movement.
Technically, we add one extra “cell” to ti and to ti+1, which does not have a
location. The extra cell in ti (and ti+1) allows movement of any number to (from)

ti ti+1

7 6 1

3 2

3 1 1 1

1 1

1

Fig. 3. An extra ring of cells (grey) around the core grid (white) allows us to model
movement of entities to and from the outside area.
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any cell in ti+1 (and ti) at the same, high cost per unit. That is, we set dcj and
dkc′ to high values in Eq. (1) when c and c′ are the extra cells.

In many big cities, a major reason for losing cell tower connection is going
underground to take a subway. This can be incorporated easily in our model.
Grid cells that contain an entrance to the subway have a lower cost (captured
in djk) of appearing and disappearing. The same applies to cells from which a
subway entrance can be reached, naturally incorporating the distance between
the cell and the subway entrance.

Another common feature is the presence of obstacles in a city, like a river
or a stretch of train tracks that does not have crossings. Such situations can
cause two nearby grid cells to be much further apart by travel distance than by
Euclidean distance. So again, we need only change the distance function djk in
Eq. (1) to accommodate for the increased distance. It is reasonable to use the
geodesic distance, the length of the shortest path that does not cross obstacles,
as the altered distance.

In the model we can choose to favor many small movements over fewer larger
movements or vice versa. With the linear conversion of distance to cost in Eq. (1)
we observe that five unit-distance movements cost as much as one movement over
five units. By raising djk to a power γ we can favor smaller movements by setting
γ > 1 or larger movements by setting γ < 1. The parameter γ is closely related
to β3 in the gravity model and corresponds to the concept of distance decay.
Also note that the LP remains linear in its variables, so this adaptation does not
influence efficiency.

We observe that it is generally not possible in our scenario to get from any
cell to any other cell in a given time interval. By assuming a maximum travel
speed in the city, we can limit the number of cells that can be reached from any
cell. This has a positive effect on both the resulting flow (we forbid long-distance,
unrealistic flows) and on the efficiency. Since the LP has a flow variable Fjk for
every cell pair j at ti and k at ti+1 between which flow is possible, we can reduce
the number of variables drastically this way.

Finally, we observe that the assumption of a grid is not necessary for EMD
and its LP-based algorithm. For any partition into regions we can use a repre-
sentative point inside (the cell tower location) instead of the grid cell center.

Other movement. Movement monitored by gates or cameras leads to point-
based counts rather than area-based counts. With toll gates on highways and
with check-in gates of subways, we know the direction and precise count of
entities accessing a particular area; with cameras this is less precise. Previous
research on traffic management in combination with checkpoints concentrated
on toll gate placement and pricing [7,11,28], travel time estimation [3,26], or
traffic flow modeling in general, see, for example, [12].

We briefly discuss movement described by point-based counts, because it
is considerably different from movement described by area-based counts. We
assume a network is given with certain positions where check-in and check-out
is possible. Again our objective is to determine flow, which is closely related to
matching up in-flow of the network with out-flow. For example, if there is a large
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check-in count at checkpoints a and i in Fig. 4, and a large check-out count later
at checkpoints f and d, it is interesting to try and determine if entities mostly
went from a to d and from i to f , or if they mostly went from a to f and from
i to d.

a
b c d e

f g h i

Fig. 4. A simple network with
checkpoints.

With area-based checkpoints every entity –
in theory – is counted once by a checkpoint at
any time. With point-based checkpoints, time
plays a different role. To be able to compute a
matching also for point-based checkpoint data,
we can generate check-in counts and check-out
counts in 5-minute intervals. This results in two
sets of weighted points, where the points are a
combination (c, i) of checkpoint c and time in-
terval ti, and the weights are the corresponding
counts. Thus, we can again use the EMD to reconstruct flow. This results in flows
of the form Fc,i,c′,j , where Fc,i,c′,j describes the potential flow from any check-in
point c at time interval ti to any check-out point c′ at time interval tj . In our LP,
we need a variable for Fc,i,c′,j only if j ≥ i, or more generally, if the trip from c
to c′ is possible in tj− ti time, plus the sampling interval. It is natural to use the
typical travel times between checkpoints to obtain the most likely matching. For
a particular flow Fc,i,c′,j we set the cost (djk in Eq. (1)) to capture the likelihood
that an entity that checked in at c in time interval ti will check out at c′ in time
interval tj . This likelihood can be modeled using various factors.

We observe that also with anonymous point-based checkpoint data in a net-
work, we can potentially reconstruct flow using the EMD. However, the number
of variables needed may be large, especially if we use fine granularity of time.

4 Evaluation

This section provides an experimental validation of the use of our approach in
estimating flows from checkpoint snapshots. The evaluation uses real movement
data as its “ground truth”, generates granulations of this data at different times-
tamps based on spatial tessellations as input to the EMD LP, and evaluates the
accuracy of the estimates based on comparison with the original movement data.
It is important to note that the experiments described in this section are not
overly concerned with actually reconstructing precise moving object flows and
trajectories from granular snapshots—the snapshots are too information-poor
for any method to reliably achieve that. Rather, the evaluation attempts to
demonstrate the extent to which our approach can capture the broader flows,
directions, and distances, and show that it is flexible enough to accommodate a
range of other information about constraints to movement.

Experimental setup. Our evaluations use a real data set of courier move-
ment trajectories in central London, UK, in 2007 (the Ecourier data set6). The

6 https://en.wikipedia.org/wiki/Ecourier
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location-update frequency of trajectories varies between one coordinate every
10–30 seconds.

As discussed above, the EMD LP takes as input two snapshots of the granular
distribution of spatial objects, generating a matching between the cells in one
snapshot to the cells in the next snapshot as output. This matching can be
directly interpreted as flow. Each input snapshot summarizes the number of
objects in each cell at that time. Thus in our experiments, we spatially granulate
the trajectory data by aggregating courier locations at specified times according
to a raster grid of user-defined size and location. Based on preliminary studies of
the data, a 22km squared area of central London was chosen for this study, and
decomposed into a 40×40 raster grid for the purposes of trajectory aggregation
(i.e., each cell is square with a 550m side length). Each trajectory was snapped
at the relevant snapshot times to the nearest grid center, yielding a rounded
ground truth that can in theory be reconstructed exactly. Our evaluation can
then compare these known “ground truth” trajectories with the flows predicted
by the EMD LP based only on the counts in cells.

Using the Ecourier data set ensures that our evaluation operates upon re-
alistic movement patterns. However, the limited number of couriers in close
proximity at any one time would make the task of unambiguously identifying
movements in the raw courier data too simple for the EMD LP (that is, in re-
ality, most grid cells would contain zero or one couriers at any one time). To
provide a more challenging simulation of the contemporaneous movements of
larger numbers of objects, we densified the trajectory data set by aggregating
all courier trajectories over every day over a two month period (May–July 2007)
down to a single day (that is, retaining the time-of-day portion of the trajectory
time stamps, but discarding the trajectory date). Hence, our evaluation uses ap-
proximately 280 courier trajectories in our study area at any one time, ensuring
that between zero and 10 couriers may appear in the same cell at a time.

Experiment 1: Flow accuracy. We begin by comparing the flows estimated by
the EMD with the known “ground truth” trajectories of moving objects. Fig. 5a
shows the changes in accuracy with increasing the time interval between the two
input snapshots. Accuracy is measured on a per-object basis as the number of
correctly estimated object movements (i.e., correct flow between an origin cell
to a destination cell) divided by the total number of objects.

Broadly, Fig. 5 shows EMD estimation accuracy decreasing with increasing
time interval between snapshots. This decrease is to be expected, as in longer
temporal intervals, objects have a greater range of potential destinations. On
average, couriers in our data set travel about 400m in 1 minute, with the fastest
objects traveling 1.8km in that time (≈110km/h).

Overall, the model can be said to perform relatively well. At the smallest
temporal interval between snapshots (10s), the model achieves near perfect ac-
curacy of prediction. With snapshots 2 minutes apart (120s), the model still
achieves 50% accuracy in predictions.

Experiment 2: Distance and direction accuracy. The evaluations in Fig. 5
do not account for “near misses”; only estimated flows that are exactly correct
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contribute to the accuracy or skill scores. In practice, estimations may differ
in the degree to which they approximate the true flows. Figure 6a shows the
accuracy of estimated flow distance, in terms of the total number of objects with
estimated flows of the correct length, when compared with the total number
of moving objects. As might be expected, the accuracy is moderately increased
over the accuracy observed in Fig. 5.
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Fig. 5. Estimation accuracy of the flow.

Fig. 6b shows the accuracy of esti-
mated flow direction. Averaging the di-
rection of all flows from each cell pro-
vides an overall flow direction for that
cell. The accuracy in Figure 6b is the
proportion of cells with an overall esti-
mated flow direction within 30◦ of the
overall true flow direction. Even though
the individual estimated flows might
not exactly match the main flows, the
response curve in Fig. 6b shows that
the overall direction of estimated flows
closely matches (i.e., is within 30◦) of
the overall direction of main flows in the
majority of cases, even up to and beyond 2 minute gaps between snapshots.
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(a) Flow-distance accuracy.
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(b) Cell-direction accuracy.

Fig. 6. Flow accuracy for movements with various distances.

Experiment 3: Comparison with Baseline. One further evaluation of the
EMD LP flow estimations is to compare with an independent matching baseline.
A natural baseline is a randomized, greedy allocation, as summarized in Algo-
rithm 1. In short, based on the two snapshots, the algorithm randomly selects
a “provider” cell with a stock of objects that must flow out. It then allocates as
much of that stock as possible to the nearest “consumer” cell with a demand for



Modeling Checkpoint-Based Movement with the Earth Mover’s Distance 11

in-flowing objects. The algorithm iterates until all the stocks are exhausted and
demands are satisfied.

Algorithm 1: Randomized, greedy allocation Baseline

Data: Set of cells L and numbers of objects in each cell ns : L→ N and
ne : L→ N at start and end snapshots respectively

1 Initialize the stock of each cell stock : L→ N as stock(l) 7→ ns(l)− ne(l) ;
2 Initialize P = {l ∈ L|stock(l) > 0} (providers) ;
3 while P is not empty do
4 Select a random provider cell p ∈ P ;
5 Assign as many objects as possible from stock(p) to the nearest consumer

cell, c ∈ C where stock(p) < 0;
6 Update remaining stock for c and p;
7 If stock(p) = 0 remove p from P ;

Fig. 7a compares the estimation accuracy of the EMD with the estimation
accuracy of the Baseline. The response curves of the two estimations, the EMD
(also shown in Fig. 5 and the Baseline, show little difference, with perhaps the
EMD marginally outperforming the Baseline over shorter time intervals. How-
ever, a t-test comparing the per-cell accuracy values at each time interval re-
vealed no significant difference between EMD and Baseline estimations (at the
95% level).

At first glance, this result is disappointing as it seems to indicate the EMD
solution cannot demonstrably outperform the näıve, suboptimal Baseline. How-
ever, on closer inspection, both EMD and Baseline are fundamentally matching
algorithms, using exactly the same information and constraints. Further, look-
ing more closely at the quality of estimation, in terms of the spatial distance
between estimated and true flows, does reveal a performance advantage of us-
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Fig. 7. Distance prediction accuracy.
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ing the EMD. Fig. 7b shows the average distance (in terms of number of cells)
between the estimated target (destination cell) of flows and the true target of
flows. The results show that the flows estimated by the EMD have targets that
are systematically closer to the targets of the true flows than for the correspond-
ing Baseline estimation. A t-test showed that this difference was statistically
significant at the 95% level for all time intervals, except the shortest (10s).

Experiment 4: Movement constraints. One final evaluation examines the
addition of movement constraints to the LP model. As discussed in Section 3, it
is possible to add to the LP known constraints to movement, such as obstacles
or barriers to movement. It was not possible to add these constraints to the
experimental setup used in the previous experiments, because in central London
at a grid size of 550m, every grid cell is effectively “connected” to every adjacent
cell by at least one road. Hence, at this level of granularity, there are no obstacles
to movement.

Instead, Experiment 4 “zooms in” on one road, a 16km section of the M25
London Orbital. This major motorway was frequently used by many couriers, al-
though once again we densified the data, aggregating all the courier trips along
that stretch of motorway to a single day, to ensure a sufficiently challenging,
large set of contemporaneous movements. The road was then segmented into 20
1.6km long segments: 10 segments for couriers traveling east to west; 10 segments
for couriers traveling west to east. Fig. 8a illustrates the cells of the granulation
and their connectivity, with all neighboring cells connected. At each timestep,
moving objects were assigned to cells in this granulation based on both coordi-
nate location (provides east/west cell location) and on direction of movement,
to enable disambiguation of which carriageway the object was traveling on.

Fig. 8a illustrates the cells of the granulation and their connectivity, with all
neighboring cells connected. Of course, in practice we know that vehicles cannot
travel in the wrong direction along a motorway carriageway, nor can they switch
between carriageways directly, without first leaving the motorway and rejoining
at an exit. Hence, Fig. 8b illustrates these constraints to movement, encoded
through penalizing to the maximum weight disallowed movements between cells
(i.e., between carriageways or in the wrong direction along a carriageway).

Fig. 9 compares the EMD estimated flows with and without the constraints
to disallowed movements along the motorway. The figure shows that the EMD

(a) Fully connected road. (b) Carriageway and direction con-
straints.

Fig. 8. Cells and connectivity of Experiment 4 road granulation.
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Fig. 9. Effect of movement constraints upon EMD estimation accuracy

does provide a better estimation of flows when information of underlying move-
ment constraints are provided. As temporal granularity decreases, the difference
network information makes tends to be more significant. A t-test suggested that
the difference was statistically significant at the 95% level except for the 30s
time intervals group.

Discussion. The four experiments described above aim to provide a picture of
the strengths and weaknesses of our approach, using the EMD to reconstruct
flows from granular checkpoint data. In summary, the results of these experi-
ments indicate that the EMD:

1. is capable of regenerating flows from spatially granular checkpoint data with
relatively high accuracy, certainly better than chance, especially for shorter
temporal intervals where the potential for dispersion are lessened (Experi-
ment 1);

2. is able to provide even greater reliability in generating information about
broader distance and directions of flows (Experiment 2);

3. can significantly improve on the quality of estimations when compared with a
näıve, suboptimal baseline matching solution, at least in terms of the spatial
proximity of estimated flow targets to true flow targets; and

4. is able to incorporate information about constraints to movement, where
available, and use that to improve the accuracy of estimates.

5 Conclusions and Future Work

Checkpoint data is becoming increasingly a source of data to be analyzed. This is
due to both new data acquisition methods and to privacy considerations. We have
shown that movement based on anonymous checkpoint data can be analyzed,
and flow reconstructed, despite the low information content. We suggest the
Earth Mover’s Distance as a general, versatile technique to achieve this. In our
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experiments we analyze the Ecourier data set and obtain meaningful results
on flow, provided that the temporal resolution is relatively small. We cannot
reconstruct flow if it is random, or different patterns cancel out the possibilities
of detection.

The opportunities for future research abound, especially in experimentation
and validation. We list several research directions of interest.

In our data set, we can expect better performance, or meaningful results over
longer time periods, if we add further information like major roads. These can
be incorporated using flow direction and as obstacles, as described, but also as
preferred (faster) routes by lowering the distance costs between certain cells.

Intuitively, network distance is more accurate than other types of distances
for network-based movement. The difficulty for applying it lies in choosing rep-
resentative network nodes for cells based on which network distance can be
defined. Such difficulty can be reduced by aggregating movement with a fine-
grained space partition schema. Also, with point-based checkpoint data in stead
of area-based one as used in this paper, network distance is naturally more suit-
able than Euclidean distance.

It is also interesting to analyze to what extent we can find flow patterns in
other data sets, using similar approaches. These could be data sets based on
mobile phone data, as in Section 3, or point-based checkpoint data in a network.

We are interested in the spatial and temporal granularities and how they
affect the correctness of the flow we find. With a high spatial granularity, we
will run into efficiency problems and may need to develop hierarchical methods
to approximate the EMD-based flow efficiently.

We can potentially obtain better and more reliable flow when we use more
than two snapshots in a single flow reconstruction. This must be modeled first,
and then tested against flow reconstruction based on two snapshots only.
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21. C. Rense, S. Spaccapietra, and E. Zimányi, editors. Mobility Data - Modelling,

Management, and Understanding. Cambridge University Press, 2013.
22. J.-P. Rodrigue, C. Comtois, and B. Slack. The Geography of Transport Systems.

Routledge, 2006.
23. Y. Rubner, C. Tomasi, and L.J. Guibas. The Earth Mover’s Distance as a metric

for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.
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