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Rigorous analysis of numerical methods: a comparative
study

Surendra L. Hada1 • B. M. A. Rahman2

Abstract For any photonic device simulation, the accuracy of the numerical solution not

only depends on the methods being used but also on the discretization parameters used in

that numerical method. In this work, Finite Element Method and Finite Difference Time

Domain Method based on Maxwell’s equations were used to simulate optical waveguides

and directional couplers. As the solution accuracy may also depend on the index contrast

used in such photonic devices, the characteristics of low-index contrast Germanium doped

Silica and high-index contrast Silicon Nanowire Waveguides were analyzed, evaluated and

benchmarked. Numerical results to benchmark Directional Couplers are also reported in

this paper.

Keywords Waveguides, couplers, and arrays � Finite element methods � Integrated optics

1 Introduction

The propagation of light through optical guided wave devices can be characterised by

using various modelling techniques. These techniques can be classified into analytical

methods and numerical methods. Analytical methods, if possible, a solution may be
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obtained by solving the basic electromagnetic equations. In contrast, numerical methods

are computational schemes or models that can be applied to a spectrum of problems by

modifying the basic model to fit the problem. Be it an analytical or numerical, an accurate

modelling of optical waveguides and devices is important.

However, due to the complex nature for modern optical devices, the use of analytical

methods is restricted to only simple structures. Even for two-dimensional optical waveg-

uide structures, analytical solutions are not possible and some approximations have to be

made (Rahman and Agrawal 2013). Instead, existing and improved numerical methods and

techniques are receiving wider attention for modeling optical components and devices,

such as the Method of Moments (MoM) (Garcia et al. 2002; Hagness et al. 1997), the

Finite Element Method (FEM), Beam Propagation Method (BPM), Finite Difference

Method (FDM), the Finite Difference Time Domain Method (FDTD) (Luebbers 1994), the

Transmission Line Modeling method (TLM), and the Time Domain Integral Equa-

tion (TDIE) techniques (de Electroniagnetisnio et al. 1992).

2 Theory

2.1 Wave equation

Modal analysis of optical waveguides implies the process of finding the propagation

constants and the field profiles of all the modes that a waveguide can support. To obtain

these propagation characteristics, solutions of the well-known Maxwell’s equations given

below, are necessary along with the satisfaction of the associated boundary conditions

(Rahman and Agrawal 2013):

r� Eþ oB

ot
¼ 0 ð1Þ

r �H� oD

ot
¼ J ð2Þ

In an isotropic lossless medium with no source ðJ ¼ 0; q ¼ 0Þ, with constant permeability

l ¼ l0, by eliminating the magnetic flux density in and the electric flux density compo-

nents for Maxwell’s Eqs. (1) and (2) can be written as:

r2Eþ k2E ¼ 0 ð3Þ

r2Hþ k2H ¼ 0 ð4Þ

where, the wavenumber, k (rad/m) is given as;

k ¼ x
ffiffiffiffiffiffiffiffiffiffi

� � l0

p ð5Þ

Equations (3) and (4) are called Helmholtz wave equations (März 1995) for homoge-

nous media.

2.2 Analytical method

Analytical solution is only possible for planar (slab) optical waveguides by solving a

resultant transcendental equation. For an optical waveguide with two-dimensional



confinement, analytical solution is not possible. Marcatili’s Method was one of the first

semi-analytical approximation methods developed for the analysis of buried waveguides

and couplers (Marcatili 1969). This method works well in the regions far from cut-off but

does not provide a satisfactory solution close to cut-off region (Chiang 1994).

Subsequently, the Effective Index Method (EIM) was proposed by Knox and Toulios in

1970 (Knox and Toulios 1970) as an extension to the Marcatili’s method that became one

of the most popular methods in the 1970s for the analysis of optical waveguides whereby

the rectangular structure is replaced by an equivalent slab with an effective refractive index

obtained from another slab. The disadvantage of this method is that it does not give good

results when the structure operates near cut-off region. However, the simplicity and speed

of the method have encouraged many researchers to search for different approaches to

improve the accuracy of the EIM, which subsequently led to many different variants of the

EIM to be developed including the EIM based on linear combinations of solutions (Chiang

1986) or the EIM with perturbation correction (Chiang et al. 1996).

2.3 Numerical methods

On the other hand, the Finite Difference Method, Finite Element Method, Beam Propa-

gation Method, and the Finite Difference Time Domain Method are the popular numerical

analysis methods used in many Engineering simulations. With continuous improvement of

computational power at a reduced price, made these numerical methods more versatile,

accurate and cost-effective.

2.3.1 Finite difference method

The Finite Difference Method (FDM) is one of the oldest and perhaps the most commonly

used numerical techniques, until recently, in analysing optical waveguide problems. Its

application to the modelling of optical waveguides dates from the early eighties, originally

evolving from previous finite difference models for metal waveguides (Davies and

Muilwyk 1966). The finite difference method discretizes the cross section of the waveguide

that is being analysed and it is therefore suitable for modelling inhomogeneous media and

complicated boundaries. In the FDM, it is necessary to define the finite cross section by

enclosing the dielectric guide in a rectangular box, with the side walls as either electric or

magnetic walls and the field at these boundaries are assumed to be very small. However, if

leakage losses need to be calculated, these hard boundaries can be replaced by Perfectly

Matched Layer (PML) (Berenger 1994). The enclosed cross section is divided into a

rectangular grids allowing for the material discontinuities only along mesh lines (Bierwirth

et al. 1986). The nodes are placed on mesh points so that each node can be associated to a

maximum of four or eight neighbouring nodes and each node can be of one or more field

variables depending on vector, semi-vectorial or scalar wave equations that can be

approximated in terms of the fields at the neighbouring nodes of the mesh. Taking into

account the boundary conditions of the electric and magnetic components at the dielectric

interfaces, an eigenvalue problem is generated which can be solved in order to obtain the

modal propagation constants and their modal field profiles. The accuracy of the method

depends on the mesh size, the assumed nature of the electromagnetic field (scalar, semi-

vectorial or vector) and the order of the finite difference scheme used. Often uniform mesh

is used which can result in a very large number of nodes and large matrices and therefore

may be computationally less efficient, particularly when dimensions of the sub-regions can

be widely different, such as a graphene clad silicon nanowire.



2.3.2 Finite element method

The Finite Element Method (FEM) is a numerical technique for solving a wide variety of

engineering problems, including computational electromagnetics.

In FEM formulation, the domain of interest is divided into many discrete elements,

often triangular, which is also the principal characteristic of the method. Each element is

then possible to have different material properties in terms of its relative permeability and

relative permittivity, thus making the dielectric material lossy, anisotropic, or non-linear, if

necessary.

The accuracy of the method also depends upon the mesh, although a finer mesh across

the whole domain may yield accurate results but at the cost of increased computing time. A

finer mesh can be used in areas, where the field will have a rapid variation and/or higher

magnitudes and a much coarser mesh in those areas where there is little variation or

negligible field. Elements should not contain physical boundaries, i.e., there should be no

abrupt change in property (e.g., refractive index) within the confines of an element even

though the property may change from element to element. Symmetrical domains should

have symmetrical meshes as well, although whenever possible it may be better to take

advantage of the symmetry in the waveguide by using the appropriate boundary conditions

along the line of symmetry. The variational procedure is applied to this functional by the

way of the stationary requirement, from which the Euler equation is derived and which

corresponds to the wave equation. We have used a magnetic-field based formulation as

shown in Eq. (6), which is then integrated over the domain (Rahman and Davies 1984).

x2 ¼
R

ðr �HÞ� � �̂�1 � ðr �HÞdX
R

H� � l̂ �HdX
ð6Þ

where, x is the angular frequency of each waveguide mode, X is the waveguide cross-

section and, �̂ and l̂ are the permittivity and permeability tensors of the loss-free material,

respectively.

The Rayleigh-Ritz approach can be applied to this (variational) formulation by using an

interpolation function of the elements used to discretise the domain. The polynomial

function, which approximates the field, should remain unchanged under a linear (or higher

order) transformation form one co-ordinate system to the other. All the element contri-

butions should then be combined to form a global matrix. The resultant system of (matrix)

equations or rather matrix eigenvalue equation given in Eq. (7) (Rahman and Davies

1984), should be solved using an appropriate matrix solver, as the matrices are generally

very sparse.

½A�fxg � k½B�fxg ¼ 0 ð7Þ

where, [A] is a complex Hermitian matrix and [B] is a real symmetric and positive-definite

matrix, k is the eigenvalue and this can be taken as k2
0 or b2 depending on the formulation

used. However, for a loss-less optical waveguide, by considering Hz 90� out of phase with

the transverse components, the [A] and [B] matrices can be transformed to Real and

Symmetric and its solution would then be easier.

2.3.3 Beam propagation method

The Beam Propagation Method (BPM) describes the evolution of the total field propa-

gating along a guided-wave structure and it is the most widely used tool in the study of



light propagation in longitudinally varying wavguides such as tapers, Y-junctions, and

bends. The beam propagation method was first applied to optoelectronics in 1980 (Feit and

Fleck 1980) and the solutions for the optical waveguides can be made to generate mode-

related properties such as propagation constants, relative mode powers and group delays

with high precision and considerable flexibility. The first reported BPM was based on the

Fast Fourier Transform (FFT) and only solved the scalar wave equations under paraxial

approximation. Therefore the FFT-BPM is only suitable for the case of weakly guiding

structures, neglecting the vectorial properties of the field. Several numerical algorithms to

treat the vectorial wave propagation (vector BPM) using the finite difference method, have

been reported (Chung et al. 1991; Huang et al. 1992a; Huang and Xu 1992b). The VBPMs

are capable of simulating polarized or even hybrid wave propagation in strongly guiding

structures. Subsequently, the finite element method has been utilised to develop BPM

approaches. A unified finite element beam propagation method has been reported (Tsuji

and Koshiba 1996) for both TE and TM waves propagating in strongly guiding longitu-

dinally varying optical waveguides. Obayya et al. (2000) has reported a full-vectorial BPM

algorithm based on the finite element method to characterise 3-D optical guided wave

devices.

Although imaginary distance BPM (Obayya et al. 2000) can find modes in a uniform

optical waveguide, but being a 3-dimensional method, these are numerically costlier than

2-D FDM or FEM based modal analysis approaches.

2.3.4 Finite difference time domain method

However, if the optical structure contain strong discontinuity or nonlinearity or time

dependent excitation, a time-domain approach would be necessary.

Kane Yee published the first paper in May 1966 to describe Maxwell’s equations in the

equivalent set of finite difference equations, thus showing the discretisation of space and

time (Yee 1966). This led to further investigation of time-varying media and also formed

the basis of the Finite Difference Time Domain (FDTD) method. Yee’s approach applies a

simple, second order accurate central-difference approximations for the space and time

derivatives of the electric and magnetic fields directly to the respective differential oper-

ators of the curl equations. The algorithm proposed by Yee solves for both electric and

magnetic fields using the coupled Maxwell’s equations instead of solving individual

components (electric or magnetic) alone with a wave equation, which is similar to the

combined-field integral equation of the Method of Moments. Thus, creating a more robust

solution in a straight forward manner in which the electric and magnetic properties of the

material can be modeled. This method divides the three-dimensional geometry into cells to

form a grid, called Yee cell.

Yee’s leapfrog algorithm solves for all the E components at a given time-step based on

previously computed and stored in memory H data. Then, the magnetic field is computed at

the next time-step using the E data just computed. The process is repeated until the time-

stepping is concluded. As the algorithm runs, at each time-step the system of the electric

and magnetic field components are updated based on the system of equations, which is

fully explicit. In this case, there is no need to solve a system of linear equations, and the

required computer memory and time is proportional to the size of the computational

domain, which is based on the size of the photonic structure modelled. The computational

domain is the space under consideration, where the simulation will be performed. Since the

FDTD method is an explicit scheme, there is a limit on the time step Dt to ensure stability

in the algorithm. The choice of S, called numerical stability or the Courant–Friedrichs–



Lewy factor, is then essential to minimise numerical instability, numerical dispersion and

the numerical phase-velocity discontinuity. This stability factor for three dimensional

geometry is then given by Taflove and Hagness (2005),

S ¼ c � Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðDxÞ2
þ 1

ðDyÞ2
þ 1

ðDzÞ2

s

ð8Þ

where, c is the wave propagation speed, Dt is the time step, Dx, Dy and Dz are the space

increments in the x, y and z directions, respectively, and the stability condition as, S\1.

Although FDTD is a very powerful numerical approach but being a 4-dimensional

approach (with added time), it is numerically much more expensive than the methods

described earlier.

3 Numerical results

3.1 Benchmarking

To consider a low-index contrast structure, first a waveguide with Germanium doped Silica

core is studied, where cladding is pure Silica with refractive index of 1.44427. The core

width is set at 6 lm and height at 4 lm. The index difference of the core with the cladding

is considered to be 1.5 %, which enables us to investigate the behaviour of a low index

contrast material. Using the H-field FEM (Rahman and Davies 1984), the numerical

analysis has been carried out to find the effective index of the fundamental mode with

different mesh divisions. The waveguide structure is simulated as a full waveguide and also

exploiting onefold symmetry and twofold symmetry. The simulations are carried out at

1550 nm operating wavelength.

Figure 1 shows the variation of effective index with the number of elements being used

for the H
y
11 mode. Here, effective index is defined as the ratio of propagation constant, b, to

the wavenumber, k. It can be clearly observed that the effective index increases with the

increase in number of elements to a certain level and then settles asymptotically. Initially,
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simulation was conducted for full waveguide structure and the result of the effective index

is shown by a green line. As often there may be a limitations on the number of elements

that can be used or computational resources needed, it should be noted that, if a structure

has onefold or twofold symmetry, then this symmetry can be exploited. In this case, to

show the advantages of exploiting symmetry, results for both the cases are also shown in

Fig. 1. As such, the effective index obtained for half symmetry is higher than that of full

structure, shown by a red line. This shows that for a given number of elements, results

using onefold symmetry is more accurate than that of considering the full structure.

Similarly, in case of a twofold symmetry, it is even higher, shown by a blue line in this

figure, compared to the other two lines. This clearly proves that whenever symmetry

condition(s) exists, this can be exploited to improve the solution accuracy.

It should also be noted, sometimes several modes can have the same or very close

eigenvalues. In that case, these modes can degenerate and eigenvectors can be mixed up. If

symmetry condition is available, and used, mode degeneration can be avoided.

It is known that various extrapolation techniques can also be used to improve the

solution accuracy further. Amongst them, Aitken’s extrapolation is a powerful one but this

requires 3 successive solutions using a fixed geometric ratio of the mesh refinements, as

given below (Rahman and Davies 1985).

x1 ¼ xrþ1 �
ðxrþ1 � xrÞ2

xrþ1 � 2xr þ xr�1

ð9Þ

where, xr�1, xr, xrþ1 are the results for three successive mesh refinements, and x1, is the

extrapolated result.

To test the convergence, the results obtained from twofold symmetry is used in Eq. (9),

considering the mesh division ratio of 1:2:4. The result obtained is shown by the purple

dotted line in Fig. 1. In order to benchmark our results, the commercially available

packages, COMSOL, FIMMPROP and the FDTD based Lumerical have been used for the

simulation of the same waveguide structure.

Table 1 shows the effective index of Ge doped Silica core for fundamental quasi-TE,

H
y
11 mode. The effective indices obtained using COMSOL, FIMMPROP, Lumerical and

the Aitken-extrapolation method are also tabulated in Table 1.

The result shows effective indices are accurate upto the 5th decimal, for most of the

approaches used here. The normalised propagation constant, ‘b’ variation with mesh size

for Germanium (Ge) doped Silica is much less with 0.001 only, where ‘b’ is given by

Marcatili (1969),

b ¼ ðneÞ2 � ðnsÞ2

ðngÞ2 � ðnsÞ2
ð10Þ

where, ne is the effective index of the waveguide, and ns and ng are the refractive indices of

Silica cladding and the doped-Silica core, respectively.

Table 1 Effective index of Ge
doped silica using various
numerical methods

FEM (quarter
structure)

Aitken’s COMSOL FIMMPROP Lumerical

1.4572161 1.4572163 1.457214 1.4572164 1.457237



Most of the optical waveguides are open-type structure and not confined inside a box.

However, all the numerical method considers a finite computational region for analyses

and at the computational boundary an artificial boundary condition is introduced depending

on the natural boundary condition of the formulation used. These boundary conditions can

be classified as (Itoh 1989),

/ ¼ 0 HomogenousDirichlet ð11Þ

/ ¼ k InhomogeneousDirichlet ð12Þ

o/
ot

¼ 0 HomogenousNeumann ð13Þ

where, / can be electric or magnetic field and k is a prescribed constant value. The vector

H-field formulation described in Eq. (6) has the natural boundary condition of an electric

wall, i.e. n �H ¼ 0, where, n is the unit vector normal to the surface. Therefore, when this

formulation is used, there is no need to force any boundary condition on conducting guide

walls.

Earlier a powerful approach, infinite element was introduced to extend the domain of

the field representation (Rahman and Davies 1984). So, it is important to study the effect of

using infinite element in which the computational domain can be extended in both the

transverse directions.

Figure 2 shows the Hy field variation along the x-direction without infinite element. The

Hy field variation obtained so far for the different waveguide width is converted to a

normalised form to compare them easily. Here, ‘a’ is shown as the distance of the right

hand side boundary from the edge of the guide. When ‘a’ is reduced, Electrical wall comes

closer to the waveguide core and influences the modal field. For Hy
mn mode, the vertical

metal (electric) wall imposes Neumann boundary condition on the dominant Hy field. The

field plots in Fig. 2 show the case of Neumann boundary condition with oHy/ox = 0 at the

computational wall. The introduction of metal wall on the side is equivalent to a multicore

periodic waveguide array. In this case, (for H
y
11 mode), as the electric wall introduces even-
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like supermode field profile, so introduces error in mode profile and this also cause the

effective index to increase as shown in Fig. 3.

Figure 3 shows variation of effective index with respect to the distance, a, the distance

between the waveguide core edge to the boundary wall of the computational domain, with

and without infinite element. The blue line in the graph represents the effective index

variation without infinite element, whereas, red line with the infinite element. In this case,

effective index variation is more stable with the infinite element, even though the boundary

wall is brought much closer to the core, compared to that of without infinite element as the

percentage change in such variation is very less. It is being observed that Dn without

infinite element is 0.0062856 %, whereas, with infinite element is 0.0002745 % only.

When infinite element is not used, the boundary wall acts like an electric wall. Hence,

the effect of this wall is like a mirror, where Hy field is normal to this wall and forces a

non-zero value which mimics an even coupled array. As even supermode of a coupled

structure has higher effective index than that of isolated modes, so here the effective index

becomes higher than that of the actual mode. Similarly, if the boundary on the top and

bottom come closer to waveguide, this will force Hy ¼ 0 at the boundary and the effective

index of H
y
11 mode will reduce, as it mimics odd supermode. For the quasi-TM ðHx

mnÞ
mode, the boundary condition of the Hx field would be Neumann for the upper and lower

boundary and Dirichlet for vertical side walls.

Figure 4 shows the Hy field variation along the x-direction with infinite element. Once

again, the Hy field variation obtained so far for the different waveguide width is converted

to a normalised form to make them comparable with each other. The plot shows that the

field, even when the side wall was closer to waveguide, still follows the actual modal field

with highest waveguide width. That means, even when the computational domain is

reduced, it does not force the natural boundary condition at that position. Resulting fields

correctly represent the field decay ðe�axÞ in the cladding region.

Next, a high-index contrast waveguide structure is considered, where a Silicon core,

with refractive index of 3.47638, is placed on a SiO2 buffer having refractive index of

1.44427 and covered with Air cladding. The core width is taken as 800 nm and its height as

200 nm. Using the H-field FEM (Rahman and Davies 1984), the numerical analysis has

been carried out to find the effective index of the fundamental and second modes, for

different mesh divisions. The structure considered here has an onefold symmetry. So, only
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half symmetry waveguide is represented and the simulation is conducted at 1550 nm

operating wavelength.

The simulation result reveals that effective index increases with the finer mesh to a

certain level and then settles asymptotically to 2.5829386, as shown by a blue line in

Fig. 5. Similar as for low-index contrast, to test the convergence, Aitken extrapolation

technique has been used, considering a fixed geometric ratio of 1:2:4 and 1:1.5:2.25

(integer 4:6:9). Thus, the new effective index is calculated using Eq. (9), shown by red

dotted line for 1:2:4 and green dot for 4:6:9. Based on the results, it is observed that the

convergence value is more accurate with the geometric ratio of 4:6:9 for a given final mesh

division used. Although using a geometric ratio 4:6:9 is more restrictive in distributing

mesh over the whole problem domain, but we have observed that this approach yields

better convergence than using a simpler 1:2:4 geometric mesh refinement.

Table 2 shows the effective index of the fundamental quasi-TE H
y
11 mode for a Silicon

Nanowire. For comparison purpose, the commercially available packages, COMSOL,

FIMMPROP and FDTD based Lumerical were used to find the effective index of the same

Fig. 4 Hy field variation along width of waveguide for Ge doped Silica with infinite wall
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waveguide. The results shows effective indices are nearly close to each other with

FIMMPROP result slightly higher and that of Lumerical considerably lower, which are

also tabulated in Table 2. It can be noted that for this case, when the index contrast is

higher, variations of effective index with the mesh or between the approaches are higher

than that of a low index contrast Silica guide, as shown in Table 1.

However, as the Dn between the core and cladding index was higher for a Silicon

nanowire, it may be useful to compare the range of normalized propagation constant,

b. The normalised propagation constant, ‘b’ variation with mesh size for Silicon Nanowire

is also found to be significantly high with 0.0045. This suggests, extra care must be taken to

find accurate solutions of high index contrast waveguides.

3.2 Directional coupler

The directional coupler is a key optical devices where modal solution can also be applied,

and yet z-dependence optical parameter extracted from different numerical approaches can

be tested. It works on the principle that the two guides, having separation, s, and with light

input into Guide 1 is completely coupled into Guide 2 when the length of the device, Lc, is,

Lc ¼
p

be � bo
ð14Þ

where, be and bo are the propagation constants of the even and odd supermodes.

Using H-field FEM, the simulation of Silicon waveguide directional coupler was per-

formed considering different width, height and separation ranging between 100 and

1000 nm. For these dimensions, simulation has been conducted for 400 � 400 to 1000 �
1000 mesh divisions in order to analyse its trend. Typical result for the coupling length of

the Silicon waveguide directional coupler for 800 nm core width, 200 nm core height and

100 nm separation for 1550 nm operating wavelength, with mesh division of 1000 � 1000

is found to be 146.19 lm that seems to converge with very little increment if the simu-

lation is carried out beyond 1000 � 1000 mesh. For the H-formulation used here, the

individual propagation constants, be and bo of the two supermodes increase slightly with

the mesh, but their difference is more stable with the mesh division. The coupling length

variation against mesh division is shown in Fig. 6, which shows its convergence as the

mesh number is increased. However, their differences reduces slightly, so with the

increasing mesh, Lc increases upto the saturation level.

Using commercial package, COMSOL, FIMMPROP and FDTD based Lumerical, the

simulations were carried out for the Directional Coupler with the same physical dimension

as above. Results show that the coupling length obtained from COMSOL and FIMMPROP

were very close to the FEM results but slightly lower in case of Lumerical. The results are

tabulated in Table 3.

Table 2 Effective index of Si
nanowire using various numeri-
cal methods

FEM (half
structure)

Aitken’s COMSOL FIMMPROP Lumerical

2.5829386 2.5830376 2.58293381 2.58307 2.581929



4 Conclusion

The Finite Element Method and Finite-Difference Time-Domain Method are very popular

today in terms of solving electromagnetic problems. However, new codes, packages or

methods are constantly published with novel analytical methods to solve electromagnetic

problems. For any photonics modelling, it is useful to have some confidence in the results

obtained.

In this paper, we aimed to provide a detailed and comprehensive analysis defining the

modal characteristics of both low-index contrast Silica and high-index contrast Silicon

nanowire waveguides and these are presented here. We have also shown the effects of the

mesh size used and the infinite element. The results obtained so far are again compared

with various other numerical methods in order to benchmark them. It can be noted that, as

the solution accuracy of high index guide is slightly poorer, convergence of the modal

solutions should be checked and if possible they should be benchmarked against another

alternative approaches.

It is also shown the advantage of exploiting the structural symmetry, if available, to

obtain better accuracy and also to avoid mode degeneration. Similarly, more accurate

solution can be obtained by using Aitken’s extrapolation. Most of the commercial package

do not clearly state the boundary conditions at the orthodox boundary, and it is shown here

that if the boundary is taken close to waveguide core it can introduce error in both the

effective index value and for the field profile. If possible, infinite element can be introduced

to avoid artificial effect of the computational window. It should be noted that PML

boundary (Berenger 1994) should only be used when leakage or bending loss needs to be

Fig. 6 Variation of the coupling length with the mesh division

Table 3 Coupling length, Lc,
using various numerical methods

FEM COMSOL FIMMPROP Lumerical

146.19 146.1 144.8 142.85



calculated, as introduction of PML makes the eigenvalue equation complex, and needs

more computational resources.
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