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Abstract In the “producer-scrounger” model, a producer discovers a resource
and is in turn discovered by a second individual, the scrounger, who at-
tempts to steal it. This resource can be food or a territory, and in some situa-
tions, potentially divisible. In a previous paper we considered a producer and
scrounger competing for an indivisible resource, where each individual could
choose the level of energy that they would invest in the contest. The higher
the investment, the higher the probability of success, but also the higher the
costs incurred in the contest. In that paper decisions were sequential with the
scrounger choosing their strategy before the producer. In this paper we con-
sider a version of the game where decisions are made simultaneously. For the
same cost functions as before, we analyse this case in detail, and then make
comparisons between the two cases. Finally we discuss some real examples
with potentially variable and asymmetric energetic investments, including in-
traspecific contests amongst spiders and amongst parasitoid wasps. In the case
of the spiders, detailed estimates of energetic expenditure are available which
demonstrate the asymmetric values assumed in our models. For the wasps the
value of the resource can affect the probabilities of success of the defender and
attacker, and differential energetic investment can be inferred. In general for
real populations energy usage varies markedly depending upon crucial param-
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eters extrinsic to the individual such as resource value and intrinsic ones such
as age, and is thus an important factor to consider when modelling.

Keywords kleptoparasitism · food stealing · producer-scrounger · game
theory · simultaneous decisions

1 Introduction

Animal competition takes many forms, involving a range of potential resources
such as mates, territories or food. Competition can be with close relatives such
as nestmates, unrelated conspecifics or members of other species, and can
involve different kinds of contests such as direct fights or indirect competition,
e.g. competitive begging from parents in the case of chicks within a brood.
The value of different resources also varies markedly; territories can be key to
mating, and if held for a long period can be of central importance in a given
individual’s life (Kruuk, 1972; Hamilton and Dill, 2003a; Iyengar, 2008; Kokko,
2013). Food resources may also be very valuable, or of relatively small value,
but in either case tend to be relatively short-lived prizes. If an item can be
eaten immediately, then once an individual takes possession of it, there may
be no further possibility of another contesting it (although contest possibilities
persist if this item needs to be taken to young).

Larger food items, or those with defences that need to be breached, such
as shellfish, need some time to consume, and during this item there is the
opportunity for others to attempt to steal the item, see for example Spear
et al (1999); Steele and Hockey (1995); Triplet et al (1999). Models where this
item was an indivisible one which needed to be competed for were considered
in Broom and Ruxton (2003); Broom et al (2004); Broom and Rychtář (2007);
Broom et al (2008); Broom and Rychtář (2011); Hadjichrysanthou and Broom
(2012). Alternative models that considered the resource as a large patch of
smaller items, so that the resource became divisible, were considered in the
so-called “producer-scrounger” models (Barnard and Sibly, 1981; Barnard,
1984; Caraco and Giraldeau, 1991; Dubois and Giraldeau, 2005; Vickery et al,
1991); consider also Giraldeau and Livoreil (1998); Kokko (2013); Broom and
Rychtář (2013) for more general reviews. We note that a key element of the
former kleptoparasitism models was a time-delay element in the model which
meant that contests were not simple independent ones, but the probability of
a given opponent type was correlated with their strategy.

In a previous model Broom et al (2015) we considered a version of the
producer-scrounger model, where the producer discovers a resource which can-
not be immediately consumed, and is then subsequently found by a scrounger
who challenges for possession of the resource. In earlier models of this type
the competitors could only choose from a finite range of options such as fight
or display, as in the classical Hawk-Dove game (Maynard Smith and Price,
1973; Maynard Smith, 1982). More realistically animals can vary the effort
they make in any contest, and in Broom et al (2015) we allowed a range of
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investment levels; the higher the investment, the higher the chances of suc-
cess, but also the higher the costs incurred. First the scrounger had to decide
the level it should invest (including no investment, so it does not challenge
for the resource), after which the producer chose a level of investment in re-
sponse. In this paper, we consider an alternative version of the game where
both individuals make the choice of investment level simultaneously.

From a modelling point of view, it is often the case (see e.g. McNamara
et al, 2006)), as it is here, that the order of the players matters. But what is the
most realistic ordering to model real populations? We believe that this very
much depends upon the biological scenario being considered. For example, if
the producer is in control of a small stationary resource, then it may make sense
that the scrounger makes the first move, and the producer has to respond.

On the other hand if the resource is a large spread out territory an active
defence may be best, and so there may be some complex interaction, best mod-
elled by a simultaneous game, as in the early models of e.g. Barnard (1984)
(or even on occasions a game with the producer moving first). An example of
a case where large territories are defended and so simultaneous contests are
plausible can be seen with the subtropical reef fish Kyphosus cornelii which de-
fends sizeable gardens from kleptoparasitic rivals Hamilton and Dill (2003b).
Such territories are not necessary for complex energetic contests, however.
An example is the fighting behaviour of the sierra dome spider Neriene liti-
giosa where the “resource” is small but mobile (female spiders). Here the male
spiders undergo fights in a series of stages, the energetic cost of which was
intevstigated in deCarvalho et al (2004).

We introduce the model formally in Section 2, and go on to analyse the
model in detail in Sections 3 and 4, including a comparison with the results
from the sequential case. As we shall see, the results here are very different.
Finally in Section 5 we discuss our results.

2 The model

A scrounger encounters a producer who has a resource item. Simultaneously
both individuals decide, whether they will fight for the item or not and if
they decide to fight, then how much energy they will invest into the fight.
This is in contrast to our earlier paper Broom et al (2015), where decisions
were sequential. As we shall see, this leads to significantly different analytical
problems and predictions. This is modelled in the following way:
The scrounger chooses the amount of energy s to invest, where s ∈ {0} ∪
[S1, S2] for 0 < S1 < S2. The choice s = 0 corresponds to the decision not to
fight, otherwise the scrounger has to invest at least S1 so that his opponent
registers this as a decision to fight; S2 is the maximal amount of energy that
the scrounger can invest in the fight. Similarly, the producer chooses p ∈
{0} ∪ [P1, P2] for 0 < P1 < P2.

As in Broom et al (2015), we consider the fight cost equal for both individ-
uals and given by (s+p)α. One interpretation of this choice of cost function is
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that s+p is a measure of the complexity of (or of the time taken for) the fight,
and that both individuals pay more for more complex (or longer) fights. For a
detailed justification of the choice of this cost function, see Broom et al (2015).
If neither individual decides to fight, the producer keeps the resource. Other-
wise the scrounger wins the resource with a probability of s

s+p . Accordingly,
the payoff to the scrounger is

Us(s, p) =

{
0 if s = p = 0,
s
s+pv − (s+ p)α if s+ p > 0.

(1)

Similarly, the payoff to the producer is

Up(s, p) =

{
v if s = p = 0,
p
s+pv − (s+ p)α if s+ p > 0.

(2)

We note that this is the same payoff function as used in the game Broom
et al (2015), except that a constant v, representing a value of the resource, has
been added to all payoffs. This has no effect on the solution of the game. It
effectively considers the payoff as being the gain to the producer from the point
where a new food item is discovered and neither individual is in possession,
rather than from the “gain” upon the assumption that the producer possesses
the item without contest.

We also note that, as written, the payoff function does not appear dimen-
sionally consistent. The parameter alpha is intended to represent the rate at
which costs increase with the total amount of effort expended by the partic-
ipants. Thus we can denote e as the total amount of effort required to make
the cost 1 energetic unit, and then our cost function is ((s+ p)/e)

α
. For con-

venience we select e = 1. We will focus on α > 0; the case α = 0 is investigated
in Sykes and Rychtář (in press).

3 Analysis

3.1 Best responses

In this section we identify the best responses, i.e. for a given s ≥ 0 we find the
potentially multi-valued function BRp(s) ⊂ {0} ∪ [P1, P2] such that any p ∈
BRp(s) maximises the function Up(s, p), and the analogous function BRs(p)
for the scrounger.

If s = 0, then Up(0, p) = v − pα for p ≥ 0 and so clearly BRp(0) = 0.

For s > 0 we have
∂Up
∂p (s, p) = vs

(s+p)2 − α(s+ p)α−1 for p > −s, in particular

for all biologically meaningful values of p ≥ 0. Consequently, for fixed s and
variable p, the function Up(s, p) is increasing on (−s, f(s)] and decreasing on
[f(s),+∞), where

f(s) =
(vs
α

) 1
α+1 − s. (3)
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Therefore

BRp(s) =





0 if s = 0, or s > 0 and f(s) ≤ 0, or

0 < f(s) < P1 and Up(s, 0) > Up(s, P1),

{0, P1} if 0 < f(s) < P1 and Up(s, 0) = Up(s, P1),

P1 if 0 < f(s) ≤ P1 and Up(s, 0) < Up(s, P1),

f(s) if P1 ≤ f(s) ≤ P2,

P2 if f(s) ≥ P2,

(4)

where by {0, P1} we denote the fact that both 0 and P1 are best responses to
s under the given conditions.

Similarly, if p = 0, then

Us(s, 0) =

{
0 if s = 0,

v − sα if s > 0,
(5)

and so BRs(0) = 0 if v < Sα1 , BRs(0) = S1 if v > Sα1 , and BRs(0) = {0, S1}
if v = Sα1 . For p > 0 we have ∂Us

∂s (s, p) = vp
(s+p)2 − α(s + p)α−1 for s > −p,

in particular for all biologically meaningful values of s ≥ 0. Consequently, for
a fixed p and variable s, the function Us(s, p) is increasing on (−p, f(p)] and
decreasing on [f(p),+∞). Therefore

BRs(p) =





0 if p = 0 and v < Sα1 , or p > 0 and f(p) ≤ 0, or

0 < f(p) < S1 and Us(0, p) > Us(S1, p),

{0, S1} if p = 0 and v = Sα1 , or

0 < f(p) < S1 and Us(0, p) = Us(S1, p),

S1 if p = 0 and v > Sα1 , or

0 < f(p) ≤ S1 and Us(0, p) < Us(S1, p),

f(p) if S1 ≤ f(p) ≤ S2,

S2 if f(p) ≥ S2.

(6)

In order to simplify conditions in (4) and (6), note the following. Firstly,

f(x) > 0 if and only if 0 < x <
(
v
α

) 1
α , and f(x) = 0 if and only if x = 0 or

x =
(
v
α

) 1
α . secondly, f(x) < y, y > 0 if and only if x = 0 or v < α

x (x+ y)α+1,
and f(x) = y if and only if v = α

x (x+ y)α+1. Finally, the inequality Up(s, 0) >

Up(s, P1) is equivalent to v < s+P1

P1

(
(s + P1)α − sα

)
. For this last expression

we have the following inequalities:

αsα <
s+ P1

P1

(
(s+ P1)α − sα

)
<
α

s
(s+ P1)α+1. (7)

Both can be shown using the substitution t = P1

s and Bernoulli’s inequality
with the exponent 1 + α, resp. −α. Hence, the definition of BRp(s) can be
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simplified:

BRp(s) =





0 if s = 0 or v < s+P1

P1

(
(s+ P1)α − sα

)
,

{0, P1} if s > 0 and v = s+P1

P1

(
(s+ P1)α − sα

)
,

P1 if s > 0 and s+P1

P1

(
(s+ P1)α − sα

)
< v and

v ≤ α
s (s+ P1)α+1,

f(s) if α
s (s+ P1)α+1 ≤ v ≤ α

s (s+ P2)α+1,

P2 if v ≥ α
s (s+ P2)α+1.

(8)

Similarly, for BRs we obtain

BRs(p) =





0 if p = 0 and v < Sα1 , or v < S1+p
S1

(
(S1 + p)α − pα

)
,

{0, S1} if p = 0 and v = Sα1 , or

p > 0 and v = S1+p
S1

(
(S1 + p)α − pα

)
,

S1 if p = 0 and v > Sα1 , or

p > 0 and S1+p
S1

(
(S1 + p)α − pα

)
< v ≤ α

p (S1 + p)α+1,

f(p) if α
p (S1 + p)α+1 ≤ v ≤ α

p (S2 + p)α+1,

S2 if v ≥ α
p (S2 + p)α+1.

(9)

3.2 Nash equilibria, Strict Nash equilibria and Evolutionarily Stable
Strategies

Since individuals can either be in the role of scrounger or producer, an indi-
vidual strategy is given by a pair (s, p) in order to specify that the individual
will play s as a scrounger and p as a producer.

A point (s∗, p∗) is a pure strategy Nash equilibrium if p∗ is the producer’s
best response to s∗ and s∗ is the scrounger’s best response to p∗. It is a strict
Nash equilibrium if all alternative strategies have a strictly lower payoff. It is an
Evolutionarily Stable Strategy (ESS) if in an infinite population of individuals
playing (s∗, p∗), any sufficiently small (potentially) invading group playing an
alternative strategy has a lower payoff than (s∗, p∗).

Since our best responses are unique, then almost all of our pure Nash
equilibria are strict (the exceptions will be for non-generic cases, see Broom and
Rychtář, 2013). Strict Nash equilibria are also necessarily ESSs. We note that
in addition there may be mixed strategy Nash equilibria, where individuals
can employ more than one pure strategy, the value used in any given contest
selected according to a probability distribution. We will in general search for
pure solutions only, although there are cases when these do not exist, and we
discuss mixed strategy solutions then.

Since BRs(p
∗) ⊂ {0, S1, S2, f(p∗)}, we will consider these four cases sepa-

rately.
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3.2.1 Case s∗ = 0

We have BRp(0) = 0, which means that p∗ = 0. Further, 0 ∈ BRs(0) if and
only if v ≤ Sα1 .

Hence in this case there is only the equilibrium (0, 0) and this equilibrium
exists if and only if v ≤ Sα1 .

3.2.2 Case s∗ = S1

By (9), we have either p∗ = 0 and v ≥ Sα1 , or p∗ > 0 and S1+p
∗

S1

(
(S1 + p∗)α −

p∗α
)
≤ v ≤ α

p∗ (S1 + p∗)α+1. In the first case we need 0 ∈ BRp(S1), which

holds if and only if v ≤ S1+P1

P1

(
(S1 +P1)α−Sα1

)
. Thus there is an equilibrium

(S1, 0) if and only if Sα1 ≤ v ≤ S1+P1

P1

(
(S1 + P1)α − Sα1

)
.

In the second case we have either

1. p∗ = P1, which holds if and only if S1+P1

P1

(
(S1 +P1)α−Sα1

)
≤ v ≤ α

S1
(S1 +

P1)α+1; or
2. p∗ = f(S1), which holds if and only if α

S1
(S1 + P1)α+1 ≤ v ≤ α

S1
(S1 +

P2)α+1; or
3. p∗ = P2, which holds if and only if v ≥ α

S1
(S1 + P2)α+1.

Therefore we obtain an equilibrium (S1, P1) if and only if

S1 + P1

P1

(
(S1 + P1)α − Sα1

)
≤ v ≤ α

S1
(S1 + P1)α+1, and (10)

S1 + P1

S1

(
(S1 + P1)α − Pα1

)
≤ v ≤ α

P1
(S1 + P1)α+1; (11)

another equilibrium (S1, f(S1)) which occurs if and only if

α

S1
(S1 + P1)α+1 ≤ v ≤ α

S1
(S1 + P2)α+1, and (12)

S1 + f(S1)

S1

(
(S1 + f(S1))α − f(S1)

α) ≤ v ≤ α

f(S1)
(S1 + f(S1))α+1; (13)

and finally an equilibrium (S1, P2) if and only if

v ≥ α

S1
(S1 + P2)α+1, and (14)

S1 + P2

S1

(
(S1 + P2)α − P2

α
)
≤ v ≤ α

P2
(S1 + P2)α+1. (15)

Further, the second inequality in (13) simplifies to v ≤ 2α(2S1)α, the first

inequality in (13) always holds when α ≥ 1 and simplifies to v ≥ αSα1(
1−(1−α)1/α

)α+1

for α < 1. Finally, for α ≥ 1, (14) implies the first inequality in (15).
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3.2.3 Case s∗ = S2

By (9), we have v ≥ α
p∗ (S2 + p∗)α+1 and either

1. p∗ = P1, which holds if and only if S2+P1

P1

(
(S2 +P1)α−Sα2

)
≤ v ≤ α

S2
(S2 +

P1)α+1; or
2. p∗ = f(S2), which holds if and only if α

S2
(S2 + P1)α+1 ≤ v ≤ α

S2
(S2 +

P2)α+1; or
3. p∗ = P2, which holds if and only if v ≥ α

S2
(S2 + P2)α+1.

Therefore we obtain an equilibrium (S2, P1) if and only if

S2 + P1

P1

(
(S2 + P1)α − Sα2

)
≤ v ≤ α

S2
(S2 + P1)α+1, and (16)

v ≥ α

P1
(S2 + P1)α+1; (17)

another equilibrium (S2, f(S2)) which occurs if and only if

α

S2
(S2 + P1)α+1 ≤ v ≤ α

S2
(S2 + P2)α+1, and (18)

v ≥ α

f(S2)
(S2 + f(S2))α+1; (19)

and finally an equilibrium (S2, P2) if and only if

v ≥ α

S2
(S2 + P2)α+1, and (20)

v ≥ α

P2
(S2 + P2)α+1. (21)

Moreover, (19) can be simplified to v ≥ 2α(2S2)α. Also, when α ≥ 1, (17)
implies the first inequality in (16).

3.2.4 Case s∗ = f(p∗) > 0

By (9), we have α
p∗ (S1 + p∗)α+1 ≤ v ≤ α

p∗ (S2 + p∗)α+1 (or equivalently S1 ≤
f(p∗) ≤ S2) and either

1. p∗ = P1, which holds if and only if f(P1)+P1

P1

(
(f(P1) + P1)α − f(P1)α

)
≤

v ≤ α
f(P1)

(f(P1) + P1)α+1 = vP1

f(P1)
; or

2. p∗ = f(s∗), which holds if and only if P1 ≤ f(s∗) ≤ P2; or
3. p∗ = P2, which holds if and only if v ≥ α

f(P2)
(f(P2) + P2)α+1 = vP2

f(P2)
.

Therefore we obtain an equilibrium (f(P1), P1) if and only if

f(P1) + P1

P1

(
(f(P1) + P1)α − f(P1)α

)
≤ v ≤ 2α(2P1)α, and (22)

α

P1
(S1 + P1)α+1 ≤ v ≤ α

P1
(S2 + P1)α+1. (23)
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Similarly as above, (22) always holds when α ≥ 1 and it simplifies to v ≥
αPα1(

1−(1−α)1/α
)α+1 for α < 1.

Another equilibrium is (f(P2), P2) which occurs if and only if

v ≥ 2α(2P2)α, and (24)
α

P2
(S1 + P2)α+1 ≤ v ≤ α

P2
(S2 + P2)α+1. (25)

The last equilibrium is in the case p∗ = f(s∗) = f(f(p∗)). We have

f(f(x)) =

(
vf(x)

α

) 1
α+1

− f(x) =

(
vf(x)

α

) 1
α+1

−
(vx
α

) 1
α+1

+ x. (26)

Thus p∗ = f(f(p∗)) if and only if p∗ = f(p∗) = s∗ if and only if p∗ = s∗ =
1
2

(
v
2α

) 1
α . So the last equilibrium is

(
1
2

(
v
2α

) 1
α , 12

(
v
2α

) 1
α
)

and such an equilibrium
exists if and only if S1 ≤ f(p∗) = p∗ ≤ S2 and P1 ≤ f(s∗) = f(p∗) = p∗ ≤ P2,
or equivalently

S1 ≤
1

2

( v
2α

) 1
α ≤ S2, and (27)

P1 ≤
1

2

( v
2α

) 1
α ≤ P2. (28)

4 Results

4.1 Overview of all possible equilibria

For fixed parameters S1, S2, P1, and P2, Table 1 gives conditions on v un-
der which the respective equilibrium is present. For low values of v neither
individual will invest, leaving the producer with the reward. For larger val-
ues of v, the scrounger will jump to investing the minimum level S1, if this
level is sufficiently small in comparison to the producer’s minimum level P1,
thus taking the reward. We note that there is no situation where the producer
would make the equivalent jump whilst the scrounger remained at zero in-
vestment, since he gains the reward in the case where neither invest. If P1 is
small compared to S1, this can lead to no pure equilibrium (this asymmetry
of conditions between the two players is closely linked to the cases with no
pure equilibrium in general, as we discuss later). As v increases the game goes
through a series of stages where one or other player increases its investment.
After the initial jump to the minimum level, the investment level of either (or
both) increases gradually, until both individuals invest at the maximum level.
For a more technical summary, including an alternative way of writing some
of the key conditions, see the Appendix.

Figure 1 shows various regions of existence of equilibria when v and S2 = P2

are fixed and S1 and P1 vary. Figure 2 shows various regions of existence of
equilibria when v and S2 > P2 are fixed and S1 and P1 vary. We notice that
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when S1 and P1 are high, then there is no real contest, the producer always
investing nothing, and the scrounger sometimes making the (substantial) in-
vestment of S1 to gain the reward. As these minimum values are decreased,
we see that more complex behaviour occurs.

In Figures 3-6 we show Nash equilibria and corresponding payoffs when
the opponents are fixed (i.e. S1, S2, P1 and P2 are fixed) and v varies (i.e. they
play for different resources). These figures clearly show the way the investment
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Fig. 3 Nash equilibria and payoffs relative to v (i.e. (Us(s∗, p∗)/v for the scrounger and
(Up(s∗, p∗)/v for the producer) when S1 = 0.2, S2 = 0.4, P1 = 0.6, P2 = 1 and a) α = 2 or
b) α = 0.5.
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Fig. 4 Nash equilibria and payoffs relative to v (i.e. (Us(s∗, p∗)/v for the scrounger and
(Up(s∗, p∗)/v for the producer) when S1 = 0.2, S2 = 0.6, P1 = 0.4, P2 = 1 and a) α = 2 or
b) α = 0.5.

strategies increase, as discussed in relation to Table 1 above, with sometimes
one individual, sometimes the other, being the one to increase their strategy.
The payoffs are not monotone in this way, however, where the payoff of either
can increase or decrease, gradually or suddenly, in response to the strategy
changes of the players. In Figure 3 b), for example, we see that the scrounger
receives a lower payoff for high values of v than it does for quite low values.
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Fig. 5 Nash equilibria and payoffs relative to v (i.e. (Us(s∗, p∗)/v for the scrounger and
(Up(s∗, p∗)/v for the producer) when S1 = 0.6, S2 = 1, P1 = 0.2, P2 = 0.4 and a) α = 2 or
b) α = 0.5.
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Fig. 6 Nash equilibria and payoffs relative to v (i.e. (Us(s∗, p∗)/v for the scrounger and
(Up(s∗, p∗)/v for the producer) when S1 = 0.4, S2 = 1, P1 = 0.2, P2 = 0.6 and a) α = 2 or
b) α = 0.5 .

4.1.1 Equilibrium (0, 0)

This equilibrium is possible if (and only if) the resource is not worth enough for
the scrounger to be worth fighting for. Note that when the scrounger does not
fight at all, the producer simply prefers not to fight (and keeps the resource).
Typically, this happens when S1 is large compared to v1/α, i.e. when v is very
small.
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Table 1 All types of equilibria. For fixed parameters S1, S2, P1, and P2, we give conditions
on v under which the respective equilibrium is present.

Conditions Equilibrium #

v ≤ Sα1 (0, 0) 1

Sα1 ≤ v ≤ S1+P1
P1

(
(S1 + P1)

α − Sα1
)

(S1, 0) 2

S1+P1
P1

(
(S1 + P1)

α − Sα1
)
≤ v ≤ α

S1
(S1 + P1)

α+1 and
(S1, P1) 3

S1+P1
S1

(
(S1 + P1)

α − Pα1
)
≤ v ≤ α

P1
(S1 + P1)

α+1

α
S1

(S1 + P1)
α+1 ≤ v ≤ α

S1
(S1 + P2)

α+1 and v ≤ 2α(2S1)
α

(S1, f(S1)) 4

and v ≥ αSα1(
1−(1−α)1/α

)α+1 if α < 1

α
P1

(S1 + P1)
α+1 ≤ v ≤ α

P1
(S2 + P1)

α+1 and v ≤ 2α(2P1)
α

(f(P1), P1) 5

and v ≥ αPα1(
1−(1−α)1/α

)α+1 if α < 1

α
S1

(S1 + P2)
α+1 ≤ v ≤ α

P2
(S1 + P2)

α+1 and
(S1, P2) 6

v ≥ S1+P2
S1

(
(S1 + P2)

α − P2
α
)
if α < 1

α
P1

(S2 + P1)
α+1 ≤ v ≤ α

S2
(S2 + P1)

α+1 and
(S2, P1) 7

v ≥ S2+P1
P1

(
(S2 + P1)

α − Sα2
)
if α < 1

2α(2S1)
α ≤ v ≤ 2α(2S2)

α and 2α(2P1)
α ≤ v ≤ 2α(2P2)

α
(

1
2

(
v
2α

) 1
α , 1

2

(
v
2α

) 1
α

)
8

α
P2

(S1 + P2)
α+1 ≤ v ≤ α

P2
(S2 + P2)

α+1 and v ≥ 2α(2P2)
α (f(P2), P2) 9

α
S2

(S2 + P1)
α+1 ≤ v ≤ α

S2
(S2 + P2)

α+1 and v ≥ 2α(2S2)
α (S2, f(S2)) 10

v ≥ α
P2

(S2 + P2)
α+1 and v ≥ α

S2
(S2 + P2)

α+1 (S2, P2) 11

4.1.2 Equilibrium (S1, 0)

This equilibrium is possible if the resource is worth enough for the scrounger to
fight for, but once the scrounger fights, the cost is prohibitive for the producer
to fight back. This happens if either a) S1 is relatively small and P1 relatively
large, or b) (especially for α > 1) S1 is large enough so that small p increases
the costs for the producer without significantly improving the chances of win-
ning the resource while large p increases the cost to make it unprofitable for
the producer to fight.

4.1.3 Equilibrium (S1, P1)

This equilibrium happens when v is large enough for both individuals to fight
for but not large enough to really engage in the fight “vigorously”. Specifically,
the scrounger finds the resource attractive to “initiate” the fight and invest
S1. The producer also finds the resource attractive enough to fight back at
level P1, but the cost is prohibitive to invest more. When the producer invests
P1, the cost becomes prohibitive for the scrounger to invest more.
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Moreover, in this situation, both individuals would prefer to invest even less
into the fight; yet investing S1 and P1 is better for them than not fighting at
all. Also note that when α < 1, this equilibrium can happen simultaneously to
(0, 0). This phenomenon is also observed for the case α = 0, which is analysed
in detail in Sykes and Rychtář (in press).

4.1.4 Equilibria (S1, f(S1)) and (f(P1), P1)

These are in effect natural continuations of (S1, P1). As the value of the re-
source increases a little more, one individual finds it beneficial to fight for it
with an investment above its minimal level. Note that the conditions are such
that P1 < f(S1) < S1 (for the equilibrium (S1, f(S1))) or S1 < f(P1) < P1

(for the equilibrium (f(P1), P1)). An alternative way of thinking about this
is that P1 (or S1) is already small enough relative to v so that the producer
(or scrounger) fights at the optimal level whereas the other individual would
prefer to fight less (but still prefers to fight rather than to not fight).

4.1.5 Equilibria (S1, P2) and (S2, P1)

Here, one individual invests at its minimum level while the other invests at its
maximum. However, these equilibria occur only if S1 > P2 or if P1 > S1, i.e.
the individual investing its minimum is actually stronger than the individual
investing its maximum (and the stronger individual would prefer to invest less
while the weaker individual would prefer to invest more).

4.1.6 Equilibrium
(

1
2

(
v
2α

) 1
α , 12

(
v
2α

) 1
α

)

This is the “most natural” equilibrium. It happens for “medium” values of
v and both individuals play at the optimal level and any sufficiently small
change in their abilities would not change the equilibrium. This equilibrium
corresponds to the fixed point s∗ = f(p∗) and p∗ = f(s∗).

4.1.7 Equilibria (S2, f(S2)) or (f(P2), P2)

This equilibrium happens whenever there is a strength asymmetry in the play-
ers and v is large enough. Both individuals want to fight for it but the stronger
individual does not fight at full force (since the additional cost of a bigger fight
does not outweigh the benefits of only a slightly higher chances of winning the
fight).

4.1.8 Equilibrium (S2, P2)

This equilibrium happens whenever v is large enough, in which case both
individuals want to fight for the reward to the maximum extent, as the value
of the resource outweighs the cost of the fight.
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Fig. 7 Regions of existence of equilibria as v = 0.8, S2 = 1, P2 = 4, α = 0.36 and S1 and
P1 vary.

4.2 Co-existence of equilibria

Next, we consider the question of whether multiple equilibria can occur for the
same parameter values. More specifically, we show that none of the equilibria
when both players invest non-zero in the fights (equilibria numbered 3–11) can
occur at the same time, of course unless they coincide (e.g. when P1 = f(S1)).
For α ≥ 1 the only equilibria that can occur at the same time are the combi-
nations (0, 0) and (S1, 0) or (S1, 0) and (S1, P1). Moreover, these two coexist
only on the lines between their respective regions, which can be considered as
a non-generic case (see Broom and Rychtář (2013)). Other equilibria appear
to co-exist on the lines between their regions but in those cases, the equilibria
coincide on those lines. For α < 1 the equilibria (0, 0) and (S1, 0) can occur
together with any other equilibrium with the exception that (S1, 0) cannot
coexist with (S1, f(S1)) nor with (S1, P2). See for example Figure 7.

For the remaining cases we consider first the case α ≥ 1. The equilibria
(0, 0) and (S1, 0) occur at the same time when v = Sα1 . The equilibria (S1, 0)
and (S1, P1) occur at the same time when v = S1+P1

P1

(
(S1 + P1)α − Sα1

)
. The

equilibria (0, 0) and (S1, P1) cannot occur at the same time due to inequality
(7). Further, we easily check that S1+P1

P1

(
(S1 + P1)α − Sα1

)
< α

P1
(S1 + P1)α+1

which combined with inequality (7) yields

Sα1 <
S1 + P1

P1

(
(S1 +P1)α−Sα1

)
<

α

max{S1, P1}
(S1 +P1)α+1 ≤ 2α(S1 +P1)α.

Comparing this estimates against those in Table 1 (and also Table 4 from the
Appendix) we obtain that neither equilibrium (0, 0) nor (S1, 0) can occur at
the same time as any of 4-11.

Finally, from (7) we obtain that (S1, 0) combined with (S1, f(S1)) and
(S1, 0) combined with (S1, P2) cannot occur even in the case α < 1. On the
other hand, in this case equilibrium 1 can occur at the same time as any of
the other equilibria, and the equilibrium (S1, 0) can occur at the same time as
any of 3,5,7–11.
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4.2.1 No (pure) equilibria

As we have seen in Figure 1, there are instances of no pure strategy equilibria.
These are linked to the asymmetry between the two players, and in particular
the fact that (S1, 0) can be an equilibrium, but (0, P1) cannot. This leads to
a break in the natural sequences of solutions; for example there is a natural
progression from 1 to 2 to 3 to 4 to 6 to 9 to 11 (there are six such sequences
starting 1 to 2 to 3), where regions share a boundary linked to the reversing
of one condition. However, the “region” associated with (0, P1) connecting 3
to 1 does not exist, resulting in disconnected conditions between regions 1 and
3, but also between regions 1 and 5.

For region 3 the lower boundaries, must satisfy both of the following con-
ditions: S1+P1

P1

(
(S1 + P1)α − Sα1

)
≤ v, S1+P1

S1

(
(S1 + P1)α − Pα1

)
≤ v.

The first of these would form a boundary with region 2, but the second has no
equivalent region sharing the boundary. Thus when this is the more restrictive
condition, then a gap appears which can potentially yield no pure equilibrium.
This occurs if and only if

S1 + P1

P1

(
(S1 + P1)α − Sα1

)
<
S1 + P1

S1

(
(S1 + P1)α − Pα1

)
, (29)

which rearranges to

(
1 +

S1

P1

)α(
1− S1

P1

)
− 1 +

(
S1

P1

)1+α

> 0. (30)

This holds for S1 < P1 when α > 1, and for S1 > P1 when α < 1. When α > 1,
then for any v, there is always a region of no pure equilibria when P1 > S1 as
in Figure 1 a), following from the disconnect between regions 1 and 3.

For example, there is no pure equilibrium when α = 4, v = 1, S1 = 0.1, S2 =
1.2, P1 = 0.8, P2 = 1.2. Here the players effectively decide between two dis-
crete cases a) do not fight at all, or b) fight at the minimal level. Thus, the
scrounger’s payoff is

(S\P 0 P1

0 0 −Pα1
S1 v − Sα1 S1

S1+P1
v − (S1 + P1)α

)
(31)

and the producer’s payoff is

(S\P 0 P1

0 v v − Pα1
S1 −Sα1 P1

S1+P1
v − (S1 + P1)α

)
(32)

When p = 0, the scrounger prefers s = S1 over s = 0. When s = S1, the
producer prefers p = P1 over p = 0. When p = P1, the scrounger prefers s = 0
over s = S1. Finally, when s = 0, the producer prefers p = 0 over p = P1. Note
that this leads to an internal mixed equilibrium strategy.
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When α = 1, then for any v and any S1, P1, S2, P2, there is exactly one
(pure) equilibrium as in Figure 1 b). When α falls below 1 there can be two
regions with no equilibria, corresponding to the disconnects between the re-
gions 1 and 3, 1 and 5. As α becomes small the disconnect boundaries discussed
above do not occur, and there is always at least one equilibrium and sometimes
two (although never more than two) equilibria.

4.3 Some observations for particular cases

4.3.1 The case when α < 1

When α < 1, we observe the following phenomenon, see any of the Figures
3-6. If the players do not engage in the conflict at all, the producer would get v
and the scrounger would get 0. However, as v grows, (0, 0) is no longer a Nash
equilibrium (or the only Nash equilibrium) and very often (S1, P1) emerges as
the Nash equilibrium. At the same time, the payoffs to the players at (S1, P1)
are negative. Still, (S1, P1) is a Nash equilibrium. If players have to choose
between 0 and S1 (or 0 and P1) only, then for the scrounger, s = S1 will be
better than s = 0 no matter what the producer’s action (because s = 0 means
no gain and while s = S1 adds a cost, this is either compensated by the gain of
the resource if p = 0 or is relatively small if p = P1, since α < 1, i.e. the fights
are costly to start but inexpensive to continue). For similar reasons, once the
scrounger invests s = S1 into the fight, the producer prefers p = P1 over p = 0
as α < 1 and thus the fights are costly to start but inexpensive to continue.
For an analysis of the case when α = 0, i.e. when all fights are equally costly,
see Sykes and Rychtář (in press). There, if an individual decides to fight, it
should fight with the maximal aggression. For v < 1, the game is a variant of
the Stag Hunt game (Skyrms, 2004) and for v > 1, is a Prisoner’s Dilemma
(see e.g. Broom and Rychtář, 2013). When v < 1, both (S2, P2) and (0; 0) are
Nash equilibria; and when v > 1, (S2, P2) is the only Nash equilibrium.

4.3.2 Small S1 and P1

When S1 and P1 are both small compared to v, they can effectively be treated
as 0 and none of the equilibria 1-7 occur. The situation when S1 = P1 =
0 is considered in detail in Sykes (2015). The only remaining equilibria are(

1
2

(
v
2α

) 1
α , 12

(
v
2α

) 1
α

)
, (f(P2), P2), (S2, f(S2)) and (S2, P2). Once α and v are

fixed, there is no overlap between these equilibria and always exactly one holds
(see Table 1). The situation for α = 2 and α = 0.5 is shown in Figure 8 (the
situation for other α is analogous).

4.3.3 Increasing strength

Figure 9 shows how increasing the strength of an animal affects its strategy
and payoffs. Increasing the upper limit allows the affected individual to invest
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Fig. 8 Regions of existence of equilibria as v = 1, S1 = 0.01, P1 = 0.01 and S2 and P2 vary.
The regions are similar for all α’s, here a) α = 2 and b) α = 0.5.
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Fig. 9 Nash equilibria and payoffs relative to v (i.e. (Us(s∗, p∗)/v for the scrounger and
(Up(s∗, p∗)/v for the producer) when S1 = 0.2, P1 = 0.2, P2 = 1 S2 ∈ {0.5, 1, 1.5}. a) α = 4
or b) α = 0.5. When α > 1, higher value of S2 corresponds to higher investment level and
payoff to the scrounger and lower investment and payoff to the producer. When α < 1,
higher value of S2 corresponds to higher investment level to both scrounger and producer,
and higher payoff to the producer.

more in the fight and the individual also does it when v is large enough. When
α > 1 (investing a little is cheap but increasing the investment is eventually
costly), investing more also yields a higher payoff. When α < 1 (investing a
little is expensive but investing more is relatively cheap compared to the initial
investment), the situation is more interesting as then even the other individual
invests more.
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4.4 A comparison with the results of Broom et al (2015)

In Broom et al (2015) the scrounger made an initial investment, to which the
producer responded. This led to very different results to that in the current
paper where decisions are simultaneous.

For sufficiently high values of the bounds on available effort, one or other
individual was forced to concede. For a concave function with α < 1 the
scrounger will not challenge and thus the producer obtains the reward with no
investment level at all (for any non-zero level the optimal producer investment
is sufficiently large). For a convex function with α > 1 then the scrounger will
make a sufficient level of investment to force the producer to concede. Only
when α = 1 could there be non-zero levels of investment.

For sufficiently low values of the upper bounds on effort (Broom et al (2015)
did not consider lower bounds), the outcome depended significantly on which
individual had the higher upper bound. Both individuals would invest, but at
most one of these would be at an intermediate level. The individual with the
higher upper bound would generally invest at a higher level, and thus win the
resource with higher probability. Results in this case are similar to those in
the current paper.

We note that in general the intermediate strategies available in the cur-
rent paper, where both individuals invest but not at maximum or minimum
level are not present in Broom et al (2015), and so the simultaneous nature of
the game here has a big effect. This in fact mirrors the general contrast be-
tween simultaneous and sequential games (Maynard Smith, 1982; McNamara
et al, 2006) including the most basic of all evolutionary games, matrix games.
In matrix games mixed strategies occur only for simultaneously play Selten
(1980), and this can be thought of as an analogous result to that regarding
intermediate levels of investment here (though as noted above, for sequential
games with low maximum threshold, it was possible for one of the individuals
to invest at an intermediate level). Thus this type of relationship may hold for
a great variety of games.

5 Discussion

In this paper we have built on our previous work Broom et al (2015) considering
a producer scrounger competition over resources, where the participants decide
the level of effort that they put into contesting the resource. The larger the
effort the larger the chance of winning the resource, but also the larger the cost.
Models of this type have also been considered in economics, see for example
?Skaperdas (1992); Baye et al (2012). A feature of our model is the existence of
limits to the available effort, which also feature in such models, such as Che and
Gale (1997); Roberson (2006). In our previous work decisions were sequential,
with the scrounger choosing an attacking strategy, followed by a defensive one
from the producer. In the current paper, the individuals make their decisions
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simultaneously. We have both analysed this situation, and then compared it
to the previous model to identify key areas of similarity and difference.

The game is governed by a number of model parameters. For example,
there is both a minimum level of effort required (at least to have any effect
in the contest) and a maximum level available, and these can differ between
the players, S1, S2 for the scrounger and P1, P2 for the producer. We have
assumed that all model parameters are known to both players, including the
minimum and maximum levels of their opponent, i.e. we have a game with
perfect information (note that we have also considered related models with
imperfect information in Broom et al (2013); Broom and Rychtář (2016b)).
This is of course reasonable if all individuals are identical, or an opponent has
been previously encountered. Otherwise, an individual would have to gauge an
opponent’s ability from appearance or behaviour; this may at least imply that
there should be some error involved in making the assessment of the ability of
a stranger (Dugatkin, 1997; Dugatkin and Dugatkin, 2007; Kura et al, 2015).
As shown in Figure 9, different S2 not only yields different behaviour of the
Scrounger, but also different behaviour of the Producer. Thus, not knowing
the opponent’s strength would potentially influence the strategies.

We have found the complete set of pure Nash equilibria for our model,
which are summarised in Table 1. We find in particular that there are always at
most two such equilibria, with sometimes there being none. When the bounds
on the available effort for the two players are sufficiently wide, so that the
minimum values P1 and S1 are low and the maximum values P2 and S2 are
high when compared to the reward, then both individuals choose the same
intermediate level of investment. When this is not the case the asymmetries
between the players comes into play, meaning that different values of reward
can have a surprising effect on the strategies and rewards received for the
two players. For example in Figure 3 b) both chosen strategies jump (from
zero to their minimum non-zero level) and hence the payoffs also jump, and
an increase in reward value can actually lead to a lower payoff for one of
the participants. The results here are sometimes very different from those in
Broom et al (2015) when sequential decisions occurred. For example, when
bounds on the available effort in that paper were wide then there was never a
contest between the protagonists.

A question arises then, about whether simultaneous or sequential decisions
are most realistic, and indeed if sequential, which individual should choose
first. This was discussed in Broom et al (2015). In general, it is probably
more realistic to consider any interaction as an extended contest where both
individuals make a sequence of choices, and this would be a natural way to
extend the current work. Such a situation is considered in a related scenario
in Broom and Rychtář (2016a), where it is shown that provided that reward
values and contest durations are fixed (except when one individual concedes)
and known, the single decision approximation of simpler models like those
considered here can be good.

When would our model be useful in real situations? As mentioned in the
Introduction, situations of territorial defence where territories are large as in
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Hamilton and Dill (2003b) for the subtropical reef fish Kyphosus cornelii are
a natural type of situation to consider for models with simultaneous decision-
making. Here taller vegetation means a more valuable territory leading to
more kleptoparasitic behaviour. Another interesting possibility is that of the
archerfish Toxotes chatareus as investigated in Davis and Dill (2012). Here fish
shoot down small prey such as crickets with jets of water, but other fish can
try to steal the prey item. Here the shooting fish can be regarded as the owner,
and both fish have to move to acquire the target; the greater the energy they
put into their attempt to take the prey, the greater the chance they have to
acquire it. To properly use our model in a real situation, however, we need
some way of inferring the level of energy used in an actual contest, and as
observed by Hack (1998), this is hard to do and not very often attempted.

There are cases where we do have good energetic measurements however,
including in the work of Hack (1998) themselves. Here house crickets Acheta
domesticus L. compete in contests for females. In this paper, contests in-
volved a range of different fighting strategies, and the energetic investment
of the crickets was estimated using levels of their oxygen consumption. The
authors observed that different fighting strategies required different levels of
energy, and that energy expenditure was an important consideration in strat-
egy choice. A similas situation involves contests between male sierra dome
spiders Neriene litigiosa as in deCarvalho et al (2004). In this paper, spiders
of varying ages (the number of days since sexual maturation) and sizes com-
pete against other males for female spiders. These contests are long, and can
be thought to comprise three main stages; display, ritualised wrestling and
real fights. The level of energy used was measured using the carbon dioxide
production of the spiders. This was observed to go up with the stages, with a
particarly big jump between the first and second stages. This could be mod-
elled as a complex sequential contest (containing some simultaneous choices),
but as in Broom and Rychtář (2016a) might be well approximated by a single
choice of energy investment, with low investment indicating concession before
later stages. The authors observed that older spiders generally used less energy
and larger spiders generally used more energy, so that there is likely (but not
necessarily) an asymmetry of ability of asssessment of reward values amongst
the spiders.

As mentioned above, energetic expenditure is not often measured in real
contests, so can we apply our model in cases where it is not? In Goubault et al
(2007) the parasitoid wasp Goniozus nephantidis female wasps lay their eggs
within host (in this work the caterpillar of the rice moth Corcyra cephalonica).
These in turn can be parasitised by other wasps, and so female wasps defend
the caterpillar, and so fights between defender and attacker can occur. Here
the value of the caterpillar to the defender changes with time, as the eggs are
laid in the hosts and then hatch into larvae, but no other attributes are likely
to change between these early and later contests. In particular before eggs
are laid the host has no offspring to defend, and after hatching larvae are at
relatively low risk, but eggs can be destroyed by intruders. It was observed in
Goubault et al (2007) that for contests at the egg stage, the defender was more
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likely to win than at the other stages. Thus while an energetic measurement
has not been made, a differential of investment can be inferred by the win
probability. We note that in this example the attacker and defender will value
the resource differently except for when no eggs have been laid by the defender,
so our model with its current assumptions willl not directly be able to explain
this differential assessment. It will still be applicable to the problem when no
eggs have been lain, where differences in intruder and owner size, or the size of
the defended caterpillar, can be considered. In general in all of the considered
examples, we see that energetic investment will vary markedly depending upon
a number of factors. These can be properties of the individual such as their
size and age, but also extrinsic factors such as the value of the resource. Thus
we argue that energetic aspects are an important factor to consider when
modelling animal contests.

A potential future development would be to introduce heterogeneity within
the population in the parameters. For instance, individuals may value the re-
source differently, depending upon information they have about the resource
(differences in assessment) as considered in Broom et al (2013). Alternatively,
they both may know all about the resource but still value it differently, e.g.
because of hunger levels (Broom et al, 2014). Similarly individuals may know
their own bounds upon investment but not those of their opponents as dis-
cussed previously, and they may then need to estimate these based upon past
observations of the distribution of values within the population and/or cues
from the specific opponent.

In general animals need to make trade-offs between the energy they allocate
to different activities, and thus the kind of investment decisions made in this
paper are likely to be important in many scenarios. We contend that, for this
reason, such energetic considerations should be considered in a large range of
evolutionary models.
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07378S. J. Rychtář was supported by the Simons Foundation grant 245400.

References

Barnard C (1984) Producers and scroungers: strategies of exploitation and
parasitism. Springer

Barnard C, Sibly R (1981) Producers and scroungers: a general model and its
application to captive flocks of house sparrows. Animal Behaviour 29(2):543–
550

Baye MR, Kovenock D, de Vries CG (2012) Contests with rank-order spillovers.
Economic Theory 51(2):315–350

Broom M, Ruxton G (2003) Evolutionarily stable kleptoparasitism: conse-
quences of different prey types. Behavioral Ecology 14(1):23



Effect of cost structure on fighting behaviour 23
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Appendix

Here we consider alternative ways of representing some of the results from
the main body of the paper. Table 2 summarises the precise conditions on
S1, S2, P1, P2 under which a given equilibrium type can occur for some
values of v. Most of the conditions easily follow from the facts that the in-
tervals described in Table 1 must be non-empty. The additional condition
for the equilibrium (S2, P1) (and (S1, P2)) follows from (7). For equilibrium
(S1, f(S1) (and similarly for equilibrium (f(P1), P1)) and α < 1 the condition

αSα1(
1−(1−α)1/α

)α+1 ≤ 2α(2S1)α is always satisfied, since (1−α)1/α < 1
2 ; the con-

dition
αSα1(

1−(1−α)1/α
)α+1 ≤ α

S1

(
S1 + P2

)α+1
simplifies to S1

P2
≤ 1−(1−α)1/α

(1−α)1/α . For

equilibrium (S1, P1) the fact that the intervals in Table 1 are non-empty follows
from (7) (and also interchanging by S1 and P1). Further, these intervals have
non-empty interior if and only if S1+P1

S1

(
(S1+P1)α−Pα1

)
≤ α

S1
(S1+P1)α+1 and

S1+P1

P1

(
(S1 + P1)α − Sα1

)
≤ α

P1
(S1 + P1)α+1, which simplifies to the condition

in Table 2. Finally, for equilibrium (S1, 0) we can use (7) in case α ≥ 1. From
Table 2 we immediately obtain Table 3 and the necessary conditions shown in
Table 4.

Now by comparing the conditions in various tables we can see why none
of the equilibria when both players invest non-zero in the fights (equilibria
numbered 3–11) ever occur together. This is summarised in Table 5.
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Table 2 Conditions for all types of equilibria. Here, we give conditions on parameters S1,
S2, P1, and P2 under which equilibria are present for some value of v.

#. Equilibrium Conditions on S1, S2, P1, P2

1 (0, 0) always possible

2 (S1, 0)
for α ≥ 1 always possible, for α < 1 if and only if

P1
S1

≥ c > 0, where (1 + c)α = 1 + c
1+c

3 (S1, P1)
for α ≥ 1 always possible, for α < 1 if and only if

(1−α)1/α

1−(1−α)1/α
≤ P1

S1
≤ 1−(1−α)1/α

(1−α)1/α

4 (S1, f(S1)) P1 ≤ S1 and moreover
S1
P2

≤ 1−(1−α)1/α

(1−α)1/α
if α < 1

5 (f(P1), P1) S1 ≤ P1 and moreover
P1
S2

≤ 1−(1−α)1/α

(1−α)1/α
if α < 1

6 (S1, P2) P2 ≤ S1

7 (S2, P1) S2 ≤ P1

8
(

1
2

(
v
2α

) 1
α , 1

2

(
v
2α

) 1
α

)
P1 ≤ S2 and S1 ≤ P2

9 (f(P2), P2) P2 ≤ S2

10 (S2, f(S2)) S2 ≤ P2

11 (S2, P2) always possible

Table 3 Possible equilibria related to relative positions of S1, S2, P1, P2. ‘•’ means that
in this case the equilibrium is always possible for some value of v, ‘∗’ means that for α ≥ 1
the equilibrium is always possible for some value of v, while for α < 1 there are certain
additional conditions (to be found in Table 2) that need to be satisfied in order for the
equilibrium to be present.

relations between equilibrium

S1, S2, P1, P2 1 2 3 4 5 6 7 8 9 10 11

S1 < S2 < P1 < P2 • ∗ ∗ ∗ • • •
S1 < P1 < S2 < P2 • ∗ ∗ • • • •
S1 < P1 < P2 < S2 • ∗ ∗ • • • •
P1 < P2 < S1 < S2 • ∗ ∗ ∗ • • •
P1 < S1 < P2 < S2 • ∗ ∗ • • • •
P1 < S1 < S2 < P2 • ∗ ∗ • • • •
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Table 4 Necessary conditions

# Equilibrium necessary condition

3 (S1, P1) v ≤ α
max{S1,P1}

(S1 + P1)α+1 ≤ 2α(S1 + P1)α

4 (S1, f(S1)) v ≤ α
S1

(
S1 + min{S1, P2}

)α+1 ≤ 2α(S1 + P2)α

5 (f(P1), P1) v ≤ α
P1

(
min{S2, P1}+ P1

)α+1 ≤ 2α(S2 + P1)α

8
(

1
2

(
v
2α

) 1
α , 1

2

(
v
2α

) 1
α

)
2α(2 max{S1, P1})α ≤ v ≤ 2α(2 min{S2, P2})α

9 (f(P2), P2) v ≥ α
P2

(
max{S1, P2}+ P2

)α+1 ≥ 2α(S1 + P2)α+1

10 (S2, f(S2)) v ≥ α
S2

(
S2 + max{S2, P1}

)α+1 ≥ 2α(S2 + P1)α+1

11 (S2, P2) v ≥ α
min{S2,P2}

(S2 + P2)α+1 ≥ 2α(S2 + P2)α

Table 5 Reasons why intersection cannot occur

4 5 6 7 8 9 10 11

3 Tbl. 1 Tbl. 1 Tbl. 1 Tbl. 1 Tbl. 4 Tbl. 4 Tbl. 4 Tbl. 4

4 Tbl. 2 Tbl. 1 Tbl. 2 Tbl. 1 Tbl. 4 Tbl. 1 Tbl. 4

5 Tbl. 2 Tbl. 1 Tbl. 1 Tbl. 1 Tbl. 4 Tbl. 4

6 Tbl. 2 Tbl. 2 Tbl. 1 Tbl. 2 Tbl. 1

7 Tbl. 2 Tbl. 2 Tbl. 1 Tbl. 1

8 Tbl. 1 Tbl. 1 Tbl. 4

9 Tbl. 2 Tbl. 1

10 Tbl. 1
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