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Abstract

Hand pose is emerging as an important interface for
human-computer interaction. The problem of hand pose a
estimation from passive stereo inputs has received less
attention in the literature compared to active depth sensors.
This paper seeks to address this gap by presenting a data-
driven method to estimate a hand pose from a stereoscopi
camera input, by introducing a stochastic approach to
propose potential depth solutions to the observed stereo A

capture and evaluate these proposals using two Figure 1:Using an inexpensive _stereo camera RGB images
convolutional neural networks (CNNs). The first CNN, of the hand_ from two_perspectlves are captured_to regress
configured in a Siamese network architecture, evaluatesfor hand point 3D position (a)he proposed technique can
how consistent the proposed depth solution is to theUSE @ stereo rig system to estimate hand articulatiah an
observed stereo capture. The secGNN estimates hand pose (b). We capture training dataset using RGBD, stereo
pose given the proposed depth. Unlike sequential@nd hand gesture detection devices (c).

approaches that reconstruct posem a known depth, our  rig does not project light into the scene, and therefore has
method jointly optimizes the hand pose and depthcomplementary advantages to depth imaging, including less
estimation through Markov-chain Monte Carlo (MCMC) energy consumption. However, hand pose estimation in
sampling. This way, pose estimation can correct for errors this context is a more challenging computer vision problem,
in depth estimation, and vice versa. Experimental resultsone that has received less attention in the literature. We
using an inexpensive stereo camera show that the proposedddress this gap by proposing a novel framework that
system more accurately measures pose better thartombines jointly optimal depth and hand pose estimation in

competing methods. a unified framework using Markov-chain Monte Carlo
(MCMC) sampling and deep learning. Our research is
1. Introduction motivated by the possibility of estimating articulation with

The problem of tracking articulated objects has attractedtn€ inPut of stereo cameras from an egocentric, stereoscopic
increasing attention in the figlof computer vision, as it Perspective. We are inspired by human vision, which can

provides a natural method of Human Computer Interaction€fficiently discern articulations and perform tracking
(HCI) [9], [10]. Inference of the pose and gesture of the 2Ctivities with passive, binocular input. As our experiments
human hand is an important challenge in this area. ActiveShOW, our approach is compatible with inexpensive stereo
vision approaches for hand pose estimation using depthiSion systems, such as the rig shown in Figure 1, to
sensors such as Leap Motion and Kinect have madd’roduce robust hand pose inference. The proposed

considerable progress in recent years. These camerd§chnique also relies on a robust hand segmentation
actively dissipate electromagnetic waves into the sceneProcedure. We do not address hand segmentation in this

probing how far each point in the field of view is away from Paper as there is a large body of literature on this subject

the imaging device. While active vision techniques provide (S€€: for example, [1], [21]).

good shape information and robustness to clutter, they o

present several limitations, including: large energy 1-1-Contribution

consumption, a poor form factor, less accurate near distance ynlike several approaches to pose estimation from stereo

coverage, and poor outdoor usage. capture that explicitly recover disparity before regressing
In contrast, in this paper we explore the use of passivefor the pose in a sequential manner we present a joint

vision for the estimation of hand pose using a stereovisiongptimization approach thatiisbust against potential errors
system composed of adjacent RGB cameras. Such a camera



in the depth estimation. Thus, this reduces the burden on thby the approach presented in [15]. Here a generative hand
pose estimation framework to be robust against erroneousnodel approach is used to optimize the appropriate hand
depth recovery. The consequence of our approach is that wpose that yields stereo color consistency between the two
iteratively revise for errors in depth proposal. This allows cameras. Like most model-driven approaches in hand pose
for simultaneous correction of proposed depth estimationrecovery, it does not require the tedious procedure of
and the resulting pose estimation to jointly optimize the establishing a robust dataset. However, the approach does
likelihood of the depth and hand pose estimation given therequire an explicit definition of the anatomical size and
stereo input. hand pose constraint for the skinned model. Also, because
Lastly, unlike the work ifi14], which utilizes a state-  of the method’s temporal depeaamty, it is sensitive to the
of-the-art tracking method that is sensitive to erroneousinitialization of the pose. Anothexample is [3]. Here, the
initialization and anatomical harsize as discussed in [17], pose estimation was preceded by first extracting the hand
we propose a semi-generative approach that iscontour in both images in the stereo pair before matching
experimentally proven to work on different sizes and tonespoints along contour in one image to those in the other using
of hand without pre-calibration. dynamic time warping. This allows for the reconstruction
The rest of the paper is structured as follows: the nextof a 3-D contour of the hand, used to establish hand contour
section presents a general survey of related work. Section &acking for subsequent finger tracking. Again, this
presents a detailed description of our methodology whileapproach is sensitive to éhstarting point selection to
Section 4 elaborates on the details of our implementation ofdetermine which pair of points on the contours serve as a
the proposed technique. Experiments and results areseed to subsequent correspondence matching. Nonetheless,

discussed in Section 5 and we conclude in Section 6. this only results in an aggregative tracking of the finger and
pose, not providing a dense estimation of the spatial
2. Related Work position of the other joints of the hand for a complete hand

Unlike active depth camera based input, less work ha&estuRre/ pos;e ezt:\rlnNatlc;]n. b |
been performed on stereo-based passive camera input for, . ecenlt Y, .S” ave become a pri\_/a ent c(;)mputer
hand pose/gesture recognition. Techniques proposed ry'sion tool especially in stereo matching and pose
address stereo based hand pose estimation are large timation from depth Images. The workiin [7], |m_pI(_aments
grouped into two main categories, namely: depth map base _S'_amese hetwork to dlscrlmlna_lte between similar and
and non-depth map. Depth map based methods assume th similar patches from stereo pair. The work of [20] and
the mapping between the stereo input and hand pose i ] present the use of a CNN to regress for a heat map that

: g ; ; : dicates the likelihood that a joint will be at a 3D location.
strongly based on disparity information being a hidden Indi .
variable. This is largely influenced by the recent success intJnllke CNNs, Markov-cham_ Monte _Ca”o (MCMC) has
een an ever-popular machine learning tool. It allows for

robust hand tracking and pose estimation from depth ing i hiah di ional ith
images. These techniques attempt to recover dense or éli]neal;g:;? Igsgtir!r?at}/:r:yoflghe ;I)Toebnz:tl)ﬁirgs os;peslﬁihwsltpacneo
least a semi-dense depth image before applying state of th reviously, MCMC has been used explicitly in data

art depth based pose estimation. An example of this is [2], . ; .
where a robust technique that focuses on depth recovery gffssociation and detection [4], [12], [13] and [16]. Insplred
hand pose is presented, specifically with the aim of Iaterby these references, we apply MCMC to stochastically

using it for hand pose estimation. [14] also proposed using_propose_depth ima_ges that are tested z_igainst observed stereo
recovered disparity for pose estimation. It utilizes an information and prior probability to estimate the hand pose.

Adaptive GMM segmentation [19] to localize the hand skin
region before recovering disparity based on stereo matches3- Méthodology
Using the estimated hand skin region, it refines the disparity In hand pose estimation, we aim to regress for the spatial
image recovered by constraining the disparity from location of the different hand joints given a pair of images
proposed stereo matches. Finally, hand segmentation ifrom a stereo capture of the hand. In this work, we
further applied to the final disparity and [18] is used to track recognize the success of depth data in non-rigid body pose
hand poses based on the recovered disparity image. A kegstimation, hence we aim to egjtlthis as a hidden variable
drawback in this approach is that it assumes that the sterebetween a stereo image input variable and the spatial pose
algorithm  will recover disparity/depth with same output. To this end, we condeplize our problem to jointly
consistency and accuracy. This is not always the casesolving for two variables: the depth image and the spatial
particularly with a low-quality stereo camera like the one pose of hand joints.
used in this paper. An erroneous disparity recovery will
yield a wrong pose. 3.1. Stereo-Depth-Pose

On the other hand, non-depth based approaches, while
still exploiting parallax information, do not attempt to
explicitly extract a depth map of the scene. This is typifie

For a given stereo image patrof a scene of a hand pose,
gt with a depth imagep, we assume that the hand pose
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Figure 2:(a) Bayesian tree model of the relationship between depth, stereo images and hand pose in our proposed model
(c) lllustrates a conventional approach to estimating pose ftareo capture, where the optimum depth is first redolve

and then used to factorizeetlpint probability toidentify the maximizing pose. (b) Our approach on the other stochastically
propose potential depth solution (alongetiblack line) and then we estalblia maximizing pose. This will guarantee
identifying the joint maxnum point (illustrated with the dedot) with enough geth proposals.

induces a depth surface, that in turn induces the detectethe hand pose. However, this does not fully optimize the
stereo image in a Bayesian tree model. See Figure 2a. Oysose-depth joint probability space. This is because it
goal is then reduced to establishing the paséand depth,  assumes that the depth that maximiZesp roincide with
p Yvalues that maximize the posterior distributiont oénd the point (i.e. the pose and depth image) that maximizes in
p given an observed stereo image pair, the pose-depth joint distribution. This is not always the
tYa'hL [ %oeX:Ba pe; case ; Consider Figure 2c, where a hypothetical joint
) Adve distribution betweert and pis presented for a given stereo
Following from our Bayesian tree model, we assume jm,qe pair. The maximum probability is indicated with the
that t and « are conditionally independent, given This e dot. First marginalize alonig for the depth probability,

implies
e 4 . e .. . MCMC | propose
and 2ieatp; L 2:e p;2:t p; ) Sampmis- ——»| Depth  pose Estimation
2ietap L 2 p:a A SimilarityI Net
. ) 1
From Bayes’ theorem, we can infer that l Net e
o, 2:tap *;2:9; P(S,H|D | Stereo
2:eta B LZTpa :4 _______ Capture ¢
and that given Eq. 3 2and Eg. 4 we have the D e e Pose Prior
e p 2:t&p;
2:tape; L%pé Figuve;3:An illustration of our MGAC proposal approach.
s A, The probability of tb proposed depth and the recowkre
{\rlgte 2:tap; L:t2p;2:p,then from Eq. 5 we have pose is used to inform the next depth proposal.
. .20 p 2t p;2:ip; 2:p; L A, 2:té& po identify p‘{analogoustoresolving
2:tape; k 2 .- for & robust depth from a given a stereo image palr asin Eq.
and that Eq. 1 can be represented as 8). t Uis then determined by maximizin@:t pY;
t 04 LbL f” %o X& p 2t p;2:p;a :i’gustrated with the red dotted line (analogous to Eq 9).
’ ote how the optimized maximum does not coincide with

The posterior joint probablhty of and pyields avery high  the joint maximum. Secondly, it assumes that the depth
dimensional space. An intuitive solution to this joint image resolved from the stereo image is fully correct or else
probability will be to first determine the depth imagaV even more robust and complex pose estimation from depth
that best describes the observed stereo image Pair, techniques will be required to handle erroneous depth
PUL f 7 %Reef 15 TH recovery; Inspired by [4] we take a different approach. We
search for the optimunp Yalong the manifold described by

- P
g .
before usingp “to resolve for the c_orrespondlng pose, the opt{'r_numt for all potential depth images, as in

tU L f " %OzthgJZ p a y pU L f ” %O%Afﬁ p;’é Sr,
This is the approach of several papers on hand pose Svhere P
estimation from stereo capture, including [2], [3] and [14]. 5 -fzt 0:2:p;% 55
A . ’

Here the aim was to first establish a robust depth image
given a stereo image capture tbah then be used to predict and in turn compute Y usmg Eq.9. Note the effect of this
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Figui ¢ wouutiuic ur tvu wiviv uotus (u) w ornicon veuvurn woou wo w oiMilarity measure between two potentially matchin
square patches of pixels, (b) illustrates the structure used for discriminatively regressing for pose given a depth image.

has shown in Figure 2b, where the manifold is illustrated 2ke+@ L %-K'(Q{U%k-g?ééﬁ) ) ‘su:

with the black line. Thus, we iteratively travel through the \\here o - g window based matching cost function that
high dimensional space of the depth and the pose, bbivesameasure of affinity and

proposing a depth and evaluating for the Eq. 6 in search for 10 T A
a maximum. cUJEh L (Li@: B @ Akl [[@>H5] 4 SV
E S
3.2.Probability of observed steo image given proposed Here | sand | ¢ are the projection matrices of the left and
depth right stereo camera pair andand S are the relative

textrinsic matrix and vectorespectively — established for
the stereo camera using [6]. We represéfitg as a
Siamese network, as in [7]. The first subnet consists of a

. N pair of layers, each composed of convolution followed by
depth values of all the superpixels that lie within the hand RelLU, as shown in Figure 43his is followed by the P-

region. He_nceforth, we will refdo this vectoms the depth Distance layer that computes the square distance of each
configuration vector. For a proposed depth image, we Navee,y e vector in one of the pair of subnet to the other.
A A

. . i Finally followed by four fully connected (fc) and then
2+ p; L Z°% PN 2kpo@L | H K Cw@ k < st@ReLU layers, and then a fully connected then sigmoid layer.
\ \ The output of the sigmoid layer is the similarity score,
where there are, hand superpixels. We model the 9% & Hence the probability of the observed stereo image,
probability of a stereo image pair given the depth Ehé e given a proposed depth configuratior®:¢ p; is
superpixel, 2 k* v@as the re-projection affinity of the modelled as the similarity of the disparity correspondence
proposed@ For a proposed depth, we use the intrinsic andresolved from the proposed depth.
extrinsic parameters of the stereo rig, to re-project pixels in N -
the reference stereo image plane onto the corresponding-3-Probability of pose conditioned on depth
image plane, before computing affinity. We quantify the  The second component is the probability of the pose,

quality of a proposed depth based on how re-projectedgiven depth,p. Note that the ultimatéask is to establish
superpixel matches the origiralperpixel. Hence, we have 6 where we redefine it as

that for stereo image pair with superpixefin the left }
7 ALDItL f "% <&t p;=p ;4 ISW;
A t

image with a centroid pixel positiorkl'yland a proposed ¢ ,ch that2 -t L 7 is the probability of unique pose’
depth @ 4 based on the hand pose prior distribution. Hence, we apply
a discriminative model that resolves for pogegiven p.

To efficiently propose a depth image, first we segmen
the reference stereo imadeto superpixels using SLIC [5].
We represent a hand depth image with a veQarf the

1 The reference stereo image is one of the two images in the pair suctother image. Hence a resulting disparity image registers perfectly with the
that each pixel in the reference image, we seek a correspondence in theeference stereo image.



We then assume that the discriminatively resolved pBse, focal lengths of the stereo rig. The prior of over depth at all

is the pose that maximizes the posteripr, %o P& p; superpixels in the scene is d@led with a Gaussian, with
t

. , , . a mean as the estimated general distarlaed an arbitrary
and that2 :t L &;is the maximum posterior probability, i § Ao
5

-tf $2:t p;. The discriminative model used here is also a standard deviation}, asin 2: p L ;& Ag—= A . .

CNN. We refer to this CNN as the pose-estimation network. *
This CNN takes a single channel depth image (frqm the3.5. Metropolis-Hastings Algorithm
proposed depth configuration) and outputs a U -
dimensional vector that represents the 3D spatial Metropolis- Hastings Algorithm
coordinates of all joints that describe a hand pose. So, in Taput +-

effect, for a given depth image, the pose-estimation network Output: t ¥

computes a single poséy is the product of the probability  jnitjaize p, t 4 L =N<f 52kt 9% 0a
of the estimated pose (based on the pose p#ort ) and !
the probability of the given depth image (based on the depth

Algorithm: Joint Depth and Pose Estimation using the

Let pUL p*a 'Lt %4

image prior, 2 :p); Both priors are described in the SE,I;F;GE f 7’;;
following subsection. The structure of the pose-estimation | samplep™ Mp™p¥:;
network is illustrated in Figure 4b. This consists of six if HKQ O HK G pp:U:: then
convolutional layers (each followed with a ReLU and three | ps L pv t 05 | = NG 52kt P59
also with a Pooling layer) followed by four fully connected else i
layers (each followed with a ReLU layer except the last). PGS | il 08 | gl
The output of the final fully connected indicates the joint end
positions. 2:t 05405 o p2:t YpUe; then
| pUL p:l}s;; tOL t G5,

3.4. Prior over Depth and Pose end

end

Pose Let Zdenote the hand pose vector ina U -
dimensional spac¥. To establish a pose prior over the

hand, we add a constraint that resolved joint conﬂguranonCarIQ We iteratively propose a new depth configuratioh,
should be a member of a subspage ? V. We establish a o . R D
conditioned on the previous proposa\] : pa ‘pi We

criterion for fa_based on the components that spans theimplement this distribution by randomly perturbing the
poses in our prior dataset. Applying principal component -- :

¥ U+ H ‘U
analysis (PCA) on the prior dataset of potential hand posester:emenés gfl.tthe G;et';th VeCtlﬁ that dezc(rjlbegf] ‘ Hteér;;:e
the 0 most significant components were establisheq, L € probability of the newly proposed depth vectsris

>¢4 & gowhere 0 ' u U -We then apply a constraint conditioned on the previous depth proposal & We then

that a newly resolved posé 'should be represented by a €Valuate for the acceptance ratigwhere

linear combination of the established componéfitF £ N UkbaBo L IE 2p a rt' K .
AS =« 3 Where Z/and =denote the mean pose of all joint 2k E at+eo
configurations in the prior dataset and a scalar valueand t " L« f25 t4& p'Note that we ignore the ratio of
respectively. To this end, we established the probability of o

a resolved pos¢€ &as

To achieve an informed framework for proposing depth
images (configuration), we exploit Markov-chain Monte

the probability of proposing a particulgs " given p:U,?
M : P4 H: and the reverse, as these are equal and hence

20t L Z L ATPETZ cahdel out. If the acceptance ratio is higher tiEmsample
where 5 . between 0 and 1, the proposed depth configuration and the
L UlF A, correspeRding maximizing pose are considered as a

where  &adenotes theffnorm and g” is the pseudo-  potential candidate for sdlon. Hence the higher the
inverse of theg. $Uis then the least square estimation to the probability of the newly proposed depth configuration
coefficients of the components that yieldsinder a linear  (relative to the previous progal) the more likely it would
combination. We then use the exponentiated Euclideanpe accepted as a potential solution. We evaluate all potential
distance between this linear combination of componentssp|utions by maximizing for Eq. 6. See above for the
and Z"as a measure of prior probability. In effect, a 3D joint pseudo-code of the Metropolis-Hastings Algorithm. The
configuration (pose) that is like those in the dataset will beeffect from this is that we evaluate for the depth
more accurately mapped ondand re-mapped back. configuration that is most consistent with the observed

Depth: Using the hand region segmentation, the stereo capture and that yields the more probable pose, from
Euclidean distance between the mean hand pixel position ity sample set with a distribution that is consistent with the

both images of the stereo pair is used to estimate the genergblution. This is because the MCMC samples the depth
distance of the hand to the camera, using the baseline and
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Fi'gure 5:Evaluating the significance of the window size and the number of components used for spanning the prior pose
space. (a) The graph illustratéise percentage of joint popeediction with a margin of error, G for different window sizes.

(b) Shows the percentage of correctly predicted joasition as different numbef components are used.

configuration based on the same criteria, i.e. the depth thab. Experiment and Results

are more consistent with the stereo capture and that yields /o present a proof of concept by evaluating the

more probable pose are proposed more. performance of the proposed technique. The approach was

i _ validated experimentally, presenting both qualitative
4. Implementation details (Figure 7) and quantitative (Figure 6a) results. Four main
Both the pose-estimaticand similarity networks were comparisons were made, these include: pose estimation
implemented using the VLFeat MatConvNet [8] and trained prediction made from single shot depth recovery,
on a NVIDIA Titan X GPU with 6GB memory. estimation made without our pose prior; estimation made
Similarity Network : This CNN was trained with the using proposal in [2]; and estimation made using depth
learning rate of 0.001. We ran 10 epochs, reducing theacquired using active RGBD camera sensor. The results
learning rate by 10% every epoch. The decay weight andvere quantitatively appraised for accuracy by computing
momentum was set as 0.0005 and 0.09 respectively. Likehe percentage of correctly predicted joint position,
[7],.we train t.he.simi.larity network to map a pa.ir of window Ag ,c<dg* 'A,:where ™1 and ™ are the ground truth
regions, O g+; ag:- P from the left and right stereo . . i e )
pair to a cost,? For each superpixel, a square window and the predicted 3D jdirposition of all joints, Lin the

region centered on its centroid pixel is considered. We basd€Sting dataset; ( <is-a function that returns 1 faueinput
this on a hinge loss) =T : r & C.EE .2, where G 2 and and O otherwise; antll is the to total number of joints

2 are the margin, output of the CNN from a non-matching evaluated (across aII5 t~he frames). We also computed the
input window patch pair and the output of the CNN from a mean distance errof, A;.c ™ F fMto quantitatively
matching input window patch pair. We establish matching evaluate the performance of the test.

pair windows by reprojection based on the camera

parameters of the stereo cameras and the ground truth depth1. Dataset

at the superpixel. Weet the value ofCto r a.t
Pose-Estimation Network The pose-estimation network
has a significantly greater number of weights due to the

To establish a database of strong registration between the
triplet of data: stereo, depth and pose, acquisition was
larger input image. This explains the need of the poolingcamed out on the stereo camera, a RGBD camera, and an

layers absent in the similarity network. We train this CNN ©ff-the-shelf hand pose detector. The RGBD and stereo
with a learning rate of 0.00001 for 150 epochs. DecayCameras were almost adjacently positioned with the pose
weight and momentum were set as 0.005 and Ologdetector positioned perpendicularly as shown in Figure 1c.

respectively. We train under a mean squared error betweelySiNg camera calibration [6], depth data from an RGBD
the output vector and the ground truth pose vector. sensor was registered to the left image of the RGB pair. It

The prediction phase of the entire framework for a frame ofsuffices that the spatial position of the hand pose detector
stereo images under 200 MCMC proposals will took 360 relative to the stereo camera is unchanged during capture of
seconds. See Figure 3 for the entire framework. Herelraining data. To train the similarity network, a binary class

proposed depth is evaluated with the Similarity Network dafaset was to be created with matching pairs of image
and simultaneously used to recover pose using the poskatches (from the left and right stereo image) considered as

Estimation Framework that is evaluated against the Posé POSitive class and non-matching considered otherwise. In
prior. the case of the pose-estimation network.
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Figure 6:A baseline comparison of our approach. (a) The graph illustrates the percentage of accurately predicted joint pose
prediction (within a margin of error), for our approach in comparison to thgleishot depth estimation and to GMM bdise

prior. (b) Bar chart showing the mean joint position error per finger for our approach, the work proposed in [2] and RGBD
camera based pose estimation.

Data was captured from 12 participants (12,000 stereoFigure 5b illustrates the inease in the percentage of
pairs in total) of different skin tone, hand size and gender.accurate joint prediction as the number of components
Data from two participants was reserved for testing, and theincreases, however this jrovement in prediction
remaining data (from the other ten participants) was usedperformance stops after 10 to 18 of the most significant
for training in a cross validation manner. SLIC components have been used.
segmentation was applied to all reference stereo images,As well as the parameter evaluation, two baseline
producing approximately 300 superpixels per image. Notecomparisons were made. The first was predicting the pose
that only a fraction of these 300 superpixels are hand regiorusing a single shot depth estimation, and the second was
superpixels. The amount of hand superpixels (rangingpredicting pose without the pose prior.
approximately from 30 to 60 per image capture) depends oringle-shot depth recoveryfor a given stereo capture, we
the distance from camera and the size of the hand. All in allevaluate all potential matching pixels along the epipolar
about 540,000 patches where used in training the similarityline on the corresponding stereo pair under the Similarity
network. Each hand pose is represented by 20 joints i.eNetwork and apply a greedy search approach to establish a
- L trThese included the wtjsthe thumb (fingertip,  disparity image. We then apply the pose-estimation
distal and intermediate); the index, middle, ring and pinky network to directly estimate for the pose. Figure 6a
finger (each with a fingertip, distal, intermediate and validates our hypothesis presented in Section 3.1. The

proximal joint). superiority of our jointly optimal, iterative depth proposal
is apparent here, particularly at lower error thresholds. The
5.2.Baseline Comparison ability to continuously reevahte the depth solution whilst

resolving for pose contributes to this performance. In fact,
there is a 389.8% more correctly predicted joint positions
(within a 35mm error margin) when our approach is taken

To optimize the performance of our proposed technique
we experimented with two significant parameters. These

includes the window size (of stereo comparison) andin comparison to the single shot approach. Although this

_?ﬁmb?ré)f compogetnts u_sed :ﬁ store p?tsr? prior 'tnf?rmat'onsuperiority diminishes as the error threshold increases, our
€ window size determines the size o tne INput SIEreo palfyq 440 approach produces a more accurate hand pose
regions that is fed into the similarity network for

. dsub tv. th ber of th iaht stimation from stereo capture. The qualitative results in
tcr?mpar!lso_r; an tsu iecl]:uen );: € ntém ero e_&/ve|tg SO igure 7 (4 row) corroborates this result, as better pose
€ simijanty network. -rom Figure 5, one can iden ify a estimation is achieved with our approach in comparison —
gradual improvement in the accuracy as the size of the

i . .~ “particularly in the first, fourth and fifth columns.
window reduces. 41x41, 31x31 and 21x21 window sizes L PP
yielded a 18.23%, 35.54%nd 65.218% of accurately GMM prior : Another component of our derivation is the

dicted ioint i ithi f 35 pose prior. We evaluate the effectiveness of our PCA based
pre |cte_ IJOI'T'h'p?SI 'gntw' mh an er_ro(; ot Tﬂ'xapproach by comparing it against a GMM (Gaussian
respectively. This trend stops when a window sSize of . Mixture Model) based approach. For this we apply an
11 window is applied, resulting in 13% accurate predictions

(see Figure 5a). A second parameter was the number o xpectation maximization to establishia Udimensional
components used. Recall from Eq. 16 and 17 that from th MM model that represents the probability of a pose (as in

- 11]). We experiment to establish the optimum component.
u U cemponents only) are used. The significance oftheet D xpert \ pamu b

. S We present the performance of this approach in Figure 6a.
number of components used, is also presented in Figure 5. P P 'S app n Fgu



Figure 7:Qualitative results of pose estimation using real steaguiwred poses. The reference image of the stereo pair is
shown in the 1st row. The results from our full technique are presented it tbev2The 3' row shows the pose estimation
result from using our method but with a GMM pose prior whileov shows result from using the single-shot CNN.

Again, results show the significance of the PCA basedpose-estimation network. Figure 6b presents the evaluative
model, with our approach producii§9.6% more correctly  comparison. Compared to our approach, the RGBD based
predicted joint positions (within a 35mm error margin). pose prediction was relatively more accurate in predicting
This is largely owed to the first identifying the highly thumb, the index and ring finger joints. This is due to large
discriminating components in the pose subspace beforevariance in their 3D position across the training and testing
establishing a prior model. This superiority is shown in dataset. Across all five fingers, the mean joint position error
Figure 7 (3 row), particularly in te first, third and sixth  of estimated pose from the RGBD depth image is 21.99mm,
columns. Our PCA based approach better constraints for ahis is only 9.304mm lower than the mean joint position

more realistic hand pose. error of our technique (30.802mm). Considering the low-
quality nature of the stereo camera used the proposed
5.3.Comparison against [2] approach exhibits robustness against inconsistency and

. . . . noise in stereo capture to arient that it is on par with pose
To further validate our work against published literature estimation made from an active depth sensor. This is

we evaluate performance of our work to the work prOposedsignificant, has it shows potential of overcoming the

ir?[zj' Cf‘s tiﬂtrocél.ucetql in Sgctioq 2, [ZI] r?grejsebs for drobu_st r'iirawbacks of RGBD discussed in Section 1 without a
and depth estimation using eigen leal node based varia ignificant drop in the accuracy of pose estimation.

of a regression forest. The paper motivates its approach
with depth recovery specifically for hand pose estimation. 6. Conclusion
To evaluate this, we applied the pose-estimation network to™"
directly regress for pose from the recovered depth using the In this work, we present a novel approach to pose
approach in [2]. We present, the performance in Figure 6bestimation from stereo capture by proposing a MCMC-
Again, like the single shot approach this approach performsCNN approach of joint optimization. We have shown
significantly less than our joint optimization approach. On e€xperimentally, that our joint optimization approach
average our approach preforms 29.55% better than th@utperforms the conventional single shot depth estimation
proposal in [2] (29.80 mm to 42.32mm error). This approach. For future work, we aim to propose a closed form
corroborates the significance of jointly optimizing for both solution to the estimation of the depth configuration by
pose and depth. The single shot approach assumes a higgstablishing a parametric relationship between the depth
quality depth prediction and will yield a poor result when configuration and the stereo cost. This will allow for the
the preceding depth estimation is poor. parallelizing the CNN execution in a single run to achieve
a real-time pose estimation.

5.4.Comparison against Active Depth Sensor
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To evaluate the significance of the work done in the
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RGBD camera. Again, we apply pose estimation using the
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