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Abstract12

This paper further develops a new way of modelling evolutionary game mod-13

els with an emphasis on ecological realism, concerned with how ecological factors14

determine payo¤s in evolutionary games. Our paper is focused on the impact of15

strategically neutral growth limiting factors and background �tness components16

on game dynamics and the form of the stability conditions for the rest points17

constituted by the intersections of the frequency and density nullclines. It is18

shown that for the density dependent case, that at the stationary state, the19

turnover coe¢ cients (numbers of newborns per single dead adult) are equal for20

all strategies. In addition, the paper contains a derivation of the EESS (eco-21

evolutionarily stable states) conditions, describing evolutionary stability under22

limited population growth. We show that evolutionary stability depends on the23

local geometry (slopes) of the intersecting nullclines. The paper contains exam-24

ples showing that density dependence induces behaviour which is not compatible25

with purely frequency dependent static game theoretic ESS stability conditions.26

We show that with the addition of density dependence, stable states can become27

unstable and unstable states can be stabilised. The stability or instability of28

the rest points can be explained by a mechanism of eco-evolutionary feedback.29

1 Introduction30

Current developments in evolutionary biology emphasize the role of relationships31

between selection mechanisms and ecological factors (Schoener 2011, Morris32
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2011, Pelletier.et al. 2009). This perspective is very interesting from the point33

of view of formal modelling, which can contribute to this research program not34

only by quantitative predictions, but also by rigorous conceptualization of the35

analyzed mechanisms. Thus, this direction should also be considered in the36

development of modelling approaches such as evolutionary game theory. Recent37

developments in this �eld, focused on the realistic modelling of the turnover of38

individuals (i.e. the dynamics of the replacement of the dying adult individuals39

by newly introduced juveniles), can be useful in pursuing this goal. In this study40

we will analyze the interplay between selection dynamics of strategy frequencies41

and the ecological dynamics shaping the population size. In addition we will42

investigate the relationships between game theoretic equilibrium conditions and43

nullclines of the selection and ecological dynamics.44

In the classical approach to evolutionary game theory (Maynard Smith 1982,

Hofbauer and Sigmund 1988, 1998), a well-mixed population with clonal repro-

duction and no mutation evolves under natural selection. The strategies are

heritable phenotypic traits or di¤erent behavioral patterns and payo¤ functions

describing their �tness. The merits and limitations of such an approach are

discussed in Maynard Smith (1982) (for interesting general work based upon

similar principles but with an in�nite strategy set, see for example Gorban,

2007; Meszena et al., 2006; Oesschler and Riedel, 2001). An abstract ��tness�

is expressed as an in�nitesimal growth rate r and described in unde�ned �units�,

which are the currency in which evolutionary �costs�and �bene�ts�are counted.

The basic model of the game dynamics of k competing strategies are replicator
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dynamics, de�ned on the k�1 dimensional simplex. Then qi = ni=
P

j nj (ni is

the number of carriers of the i-th strategy) is the frequency of the i-th strategy

and ri(q) is its payo¤ function:

_qi = qi

0@ri(q)�X
j

rj(q)

1A for i = 1; : : : ; k � 1: (1)

In the classical approach to evolutionary game modelling there is no explicit45

analysis of the impact of limitations of the population size. In more complex46

approaches (Cressman 1992, Cressman et al 2001, Cressman and Garay 2003,47

Argasinski 2006) density dependence has been taken into consideration. The48

speci�c case of selectively neutral density dependence, which means that the49

growth suppression acts on all strategies in the same way, was analyzed in50

Argasinski and Koz÷owski (2008). It was shown there that the classical approach51

(1) can be problematic, when growth limitation, related to the logistic equation,52

is implemented. The dynamics stop when the carrying capacity is reached. This53

is caused by the fact that both birth and death rates are suppressed, leading54

to a population of immortal individuals. This problem can be solved by using55

the assumption that only the birth rate is suppressed by juvenile recruitment56

survival, which leads to a generalization of the replicator dynamics completed57

by the equation for the population size (Argasinski and Broom, 2012). In this58

approach payo¤s are described explicitly as demographic vital rates (mortality59

and fertility), not as an abstract �tness. Thus assume that Wi(q) is the fertility60

function, suppressed by the density dependent juvenile recruitment function61

(1 � n=K) (where n =
P

j nj and K is the carrying capacity describing the62

maximal population load, Hui, 2006), and di(q) = 1�si(q) is the adult mortality.63
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This leads to the following:64

_qi = qi

240@Wi(q)�
X
j

Wj(q)

1A�1� n

K

�
�

0@di(q)�X
j

dj(q)

1A35 for i = 1; : : : ; k � 1:(2)

_n = n

0@�1� n

K

�X
j

Wj(q)�
X
j

dj(q)

1A ; (3)

65

where the bracketed term from (1) splits into two brackets describing di¤er-66

ences in fertilities and mortalities. The replicator system (2) is completed by67

equation (3) describing the changes of the population size caused by selection of68

the strategies. A similar method was applied in a number of papers (Hauert et69

al., 2006; Hauert et al., 2008; Argasinski and Koz÷owski, 2008; Zhang and Hui,70

2011; Argasinski and Broom, 2012; Huang et al., 2015; Gokhale and Hauert,71

2016). In this approach population size does not converge to an arbitrary car-72

rying capacity as in many models (for example Cressman and Krivan, 2010;73

Krivan, 2013) but to a dynamic equilibrium between mortality and fertility74

(this is often called an emergent carrying capacity, Bowers et al., 2003; Sieber75

et al., 2014). The general selective properties of this approach were presented in76

Argasinski and Broom (2013), where the simpli�ed version of (2,3) with payo¤s77

as constants was analyzed. It was shown there that when the population reaches78

the close neighbourhood of the population size equilibrium (nullcline of the equa-79

tions for n), then newborns form the pool of candidates from which individuals80

replacing the dead adults in their nest sites will be drawn. This mechanism81

was termed the "nest site lottery". This process promotes the strategies that82
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maximize the number of newborns replacing each single dying adult (termed83

"turnover coe¢ cient"), however among strategies maximizing this quantity it is84

pro�table to maximize the mortality (the number of dead adults) and thus also85

the number of newborns replacing them. Therefore, we have a two stage �tness86

measure.87

The previous paper, Argasinski and Broom (2012), was focused on the de-88

scription of the above approach using demographic parameters, mortality as the89

probability of death (or equivalently survival) and fertility as per capita number90

of o¤spring. This allows for a description of the abstract and unclear parame-91

ters such as ��tness�or �growth rate�by clear and measurable parameters. In92

addition, the new approach is focused on the detailed description of the struc-93

ture of cause-e¤ect chains underlying the particular interactions. For example,94

the modelled interaction described by the game theoretic structure can be com-95

posed of several mortality and fertility stages following each other. This aspect96

can be illustrated by the simplest case of a single pre-reproductive mortality97

stage preceding the fertility stage. Then only survivors of the interaction can98

reproduce, which should be incorporated into the payo¤ functions. Thus the99

fertility payo¤s Wi(q) will be replaced by the mortality-fertility trade-o¤ func-100

tion Vi(q) =
P

j qjsi(ej)Wi(ej) (where ej is the vector describing the j-th pure101

strategy) describing the reproductive success of the survivors. The new concep-102

tual framework was applied to the classical Hawk-Dove game to illustrate the103

advantages over the classical approach.104
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The general framework was clari�ed in a second paper (Argasinski and105

Broom, submitted) focused on the derivation of the game theoretic model from106

the general population dynamics model also describing factors other than the107

modelled type of interaction. For example individuals playing the Hawk-Dove108

game during the mating con�ict (the modelled focal interaction) can also be109

killed by predators (background interactions without relation to the strategies110

in the focal game). This leads to a model of a population of individuals playing111

di¤erent types of games describing di¤erent interactions occurring at di¤erent112

rates (see Appendix 1 for more details). Thus, by analogy with chemical kinetics113

(Upadhyay, 2006), the game theoretic structure is equivalent to stoichiometric114

coe¢ cients describing the outcomes of a single reaction between particles (in our115

case, interactions between individuals) and the rate of occurrence is equivalent116

to the reaction rate. The new framework focuses on births and deaths (described117

by separate payo¤ functions) as the aggregated outcomes of the physical inter-118

actions between individuals and the elements of the environment. This is why119

it was described as the �event-based approach� in the previous papers. This120

approach is focused on the development of the mechanistic interpretations of the121

theoretical notions which was emphasized by Geritz and Kisdi (2012). However,122

in game theoretic analysis we are interested in one particular type of interac-123

tion referred as a focal game (or a few chosen types a¤ected by an analyzed124

phenotypic trait in a more general case) while the aggregated outcomes of the125

other games will constitute the background �tness. In e¤ect (3) should be com-126

pleted by the background fertility � (1� n=K) and the background mortality127
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	 (see Appendix 1 for details). In addition, the�nest site lottery�operates not128

only on the demographic outcomes of the modelled game, but on outcomes of129

all interactions, which means that the aggregated fertility outcomes of events130

constituting the background �tness (other games played by individuals) are also131

the subject of this mechanism.132

The values of the background payo¤s can seriously a¤ect the game dynam-133

ics as shown in Argasinski and Broom (submitted). In Argasinski and Broom134

(2012) it was also shown that under the in�uence of neutral density dependence,135

the behaviour of the system is di¤erent from that in the model with unlimited136

growth. The main di¤erence is that in the model with unlimited growth there137

are only equations describing the evolution of strategy frequencies, while in the138

density dependent model there is an additional equation describing the size of139

the population and fertilities are a¤ected by juvenile mortality described by140

logistic suppression. In e¤ect, in the density dependent model, the stable fre-141

quency becomes a function of n describing the nullcline constituting the manifold142

of game theoretic Nash equilibria (population states with equal growth rates for143

all strategies). In addition, the equation for the population size leads to another144

nullcline being a function of the population composition and is a¤ected by back-145

ground payo¤s. This nullcline has a very important biological meaning since it146

describes the ecological equilibria, conditional on the current strategic compo-147

sition. In the game theoretic literature it is often referred as the stationary148

density surface (Cressman et al., 2001; Cressman and Garay, 2003a; Cressman149

and Garay, 2003b). Thus, the global stationary states are intersections of these150
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nullclines, which can be stable or unstable.151

The density and frequency nullclines describing the ecological and game152

theoretic equilibria are important for the mechanistic interpretation of the phe-153

nomenon in terms of feedbacks. New phenomena can emerge, for example the154

existence of a stable pure Hawk solution in addition to the stable mixed equilib-155

rium (Argasinski and Broom, 2012). The additional stable rest point is caused156

by neutral density dependence. This paper contains a general analysis of system157

stability and a mechanistic explanation of the interplay between the conver-158

gence to the selection equilibrium describing the stable population composition159

(described by the frequency nullcline) and the convergence to the ecological160

equilibrium describing the stable population size (described by the density null-161

cline). The study shows when the stability is fully determined by the behaviour162

along the nullclines and the problem can be reduced to the static game theo-163

retic analysis limited to simple algebraic inequalities, and when the full dynamic164

model involving di¤erential equations should be applied.165

2 Results166

2.1 Selectively neutral density dependence and the con-167

cept of eco-evolutionary feedback168

Now let us focus on the impact of selectively neutral density dependence act-169

ing as juvenile mortality. The Hawk-Dove example presented in Argasinski and170
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Broom (2012) is a case where there is a single equation for strategy frequen-171

cies, and the space of the population composition is the unit interval. We are172

interested in the rest points of the system and their stability. Since we have a173

system of two equations, one on q and one on n, we can expect two nullclines174

obtained by calculation of the zero points of the equations.175

2.2 General form of the analyzed models176

Argasinski and Broom (2012) contains the derivation of both attracting null-177

clines for frequency, and density equations (described below) for the Hawk-Dove178

example, and the calculation of their intersections. However, a rigorous stabil-179

ity analysis was limited to the case when the system is in ecological equilibrium180

(Theorem 2 of that paper). In this paper we carry out the analysis of the gen-181

eral stability conditions free from this restriction, �nd some surprising results,182

and demonstrate that the previous analysis is insu¢ cient to fully explain the183

behaviour of the system in some cases.184

In this section we start from the general dynamical system for two strategies185

from Argasinski and Broom (2012). Assume that q = (q1; 1�q1) is the vector of186

frequencies describing the strategic composition of the population. Then Vi(q)187

and si(q) = 1 � di(q) describe the fertility and adult survival payo¤s related188

to the focal interactions, being the subject of game theoretical analysis. The189

logistic coe¢ cient
�
1� n

K

�
describes the density dependent juvenile survival190

and background fertility � and mortality 	 describe the impact of other factors191

(such as other games involving other strategies or phenotypic traits). This leads192
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to the following general set of equations:193

_q1 = q1

0@(V1(q)�X
j

qjVj(q))
�
1� n

K

�
+ (s1(q)�

X
j

qjsj(q))

1A ; (4)

_n = n

  
�+

X
i

qiVi(q)

!�
1� n

K

�
+
X
i

qisi(q)� 1�	
!
; (5)

see Appendix 1 for a detailed derivation and description of possible speci�c

modelling approaches that can be considered with the above general frame-

work). Then ~q(n) is the nullcline of equation (4), ~n(q) is the nullcline of equa-

tion (5) and their intersection is the point (n̂; q̂). To analyse the underlying

dynamics, the above system can be presented in the most general form with-

out the distinction between focal interactions, described by game payo¤s, and

the background fertility and mortality rates. Then the system (4,5) can be

denoted in terms of general birth and death rates, B1(q) = V1(q) + � � 0

and M1(q) = 1 � s1(q) + 	 � 0 (since fecundities and mortalities are always

non-negative) describing the demographic outcomes of all interactions (includ-

ing focal game payo¤s and background payo¤s � and 	 respectively). Then

�B(q) = qB1(q) + (1 � q)B2(q) � 0 and �M(q) = qM1(q) + (1 � q)M2(q) � 0

are the mean general fecundity and mortality, respectively. This leads to the

system:

_q1 = g(n; q) = q1

��
B1(q)� �B(q)

� �
1� n

K

�
�
�
M1(q)� �M(q)

��
; (6)

_n = f(n; q) = n
�
�B(q)

�
1� n

K

�
� �M(q)

�
; (7)
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where equation (6) is written focusing on the �rst strategy; an analogous equa-194

tion would denote the frequency of the second strategy. We will also use the195

auxiliary terms (as we see in the associated appendices), ru(q) = �B(q)� �M(q)196

which is the rate of unsuppressed growth and L = �B(q)= �M(q) which is the197

turnover coe¢ cient.198

2.3 Properties of the stationary points related to the turnover199

of individuals200

In many models ~q(n) and ~n(q) de�ned as the respective nullclines will exist (in201

some cases they will be attracting nullclines). Expressing q as a function of n202

(according to the implicit function theorem), the nullcline ~q(n) is de�ned by203

the value of q for which g(n; q) = 0 (the right-hand side of equation (6) is 0204

for any given n). It is possible that there is more than one such solution, and205

so more than one such nullcline. Similarly, expressing n as a function of q for206

f(n; q) = 0, the nullcline ~n(q) is de�ned by the value of n for which the right-207

hand side of equation (7) is 0 for any given q. The nullclines, representing the208

equilibria of interplaying processes (strategic selection and convergence to the209

ecological equilibrium) will play important roles in the derivation of the static210

game theoretic conditions (the inequalities for payo¤s of the strategies that211

should be satis�ed for evolutionary stability). Those conditions will extend the212

classical ESS concept to the ecological concept. In addition, on the nullcline213

representing the equilibria of one process, the dynamics is determined by the214

opposite process, for example on the density nullcline the dynamics is driven215

12



by game dynamics only. The question arises, when can the behaviour of the216

complicated dynamical system be described by a set of algebraic inequalities?217

Now let us analyze the properties of the stationary points of systems of218

this type. In classical evolutionary game theory, at the stationary points (a219

Nash equilibria) there is equality of �tness among all strategies present in the220

population; we note that this property becomes trivial after the addition of221

density dependence since all growth rates are equal to zero at the stationary222

states. The new framework presented here is de�ned with respect to fertility223

and mortality separately. Thus the question arises: is there a characterization224

of the stationary points in the new theory equivalent to the equality of �tness225

in classical theory? Here the notion of the turnover coe¢ cient Bi(q)=Mi(q),226

describing the number of newborn candidates replacing a single dead individual,227

should be recalled. The name �turnover coe¢ cient�was introduced, and the228

properties of this term were analyzed, in Argasinski and Broom (2013). Similar229

notions can be found in older papers, for example in Rosenzweig and MacArthur230

(1963) and Cheng (1981), and an analogous notion describing the ratio of energy231

allocated to reproduction to mortality can be found in papers related to life232

history theory (Taylor and Williams, 1984; Koz÷owski, 1992 and 1996; Werner233

and Anholt, 1993; Perrin and Sibly, 1993; for an overview see Koz÷owski, 2006).234

The turnover coe¢ cient can be useful for the characterization of the stationary235

points of the dynamics even in the general case of k strategies (not only two as236

in the other results in this paper). This is summarized by Theorem 1 below.237
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Theorem 1238

Any intersection of the nullclines is an equilibrium point, and at such an239

intersection:240

a) The turnover coe¢ cients of all strategies are equal:

Bi(q)

Mi(q)
=
Bj(q)

Mj(q)
=

�B(q)
�M(q)

: (8)

b) The focal game-speci�c demographic payo¤s Vi(q) and si(q) satisfy the241

following condition242

Vi(q)
�M(q)
�B(q)

� (1� si(q)) = Vj(q)
�M(q)
�B(q)

� (1� sj(q)) : (9)

243

For a proof see Appendix 2.244

Condition b) can be interpreted as equality of the suppressed Malthusian245

growth rates related to the focal game (and one divided by the population246

average turnover coe¢ cient �M(q)= �B(q) = (1 � �s(q) + 	)=( �V (q) + �) is the247

density dependent juvenile recruitment survival probability). Note that this248

property should be satis�ed in general for any number of strategies.249

Corollary 1250

If the focal game-speci�c turnover coe¢ cients satisfy

Vi(q)

(1� si(q))
=

Vj(q)

(1� sj(q))
=

�B(q)
�M(q)

; (10)

then the relationship from point b) is satis�ed (but not necessarily vice versa).251
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Thus the condition of equality of the turnover coe¢ cients can be extended on252

the focal game payo¤ functions, but it is not general. We can imagine stationary253

points where point b) from Theorem 1 is satis�ed but there are no equality of254

the focal game turnover coe¢ cients. A question arises about the stability of255

the stationary points where all strategies have equal turnover coe¢ cient. For256

the general case this can be very complex, thus we start from the basic models257

and focus on the stability of the stationary states for two competing strategies.258

Consider the phase space q � n, consisting of all possible values of q and n. On259

the nullclines ~q(n) and ~n(q) the right-hand side of the equations (6) and (7)260

respectively equals zero, and these nullclines divide the phase space into regions261

of growth and decline for q and n. When the right-hand side of equation (6) is262

negative we have that q > ~q (n) is the region of decline for q.263

We note that in the method of static game theoretic analysis presented in264

Argasinski and Broom (2012), the attractor population size ~n(q) was substi-265

tuted into the right hand side of equation (6). Substitution of ~n(q) into ~q (n)266

leads to the inequality q < (>)~q (~n) describing the regions of growth (decline)267

of q lying on the density nullcline ~n(q). In Argasinski and Broom (2012) the268

inequality q � ~q (~n) has the form of a quadratic equation (see Theorem 2 and269

Appendix 5 there). Zeros of this equation are intersections of the density and270

frequency attracting nullclines. Thus under the assumption of ecological equi-271

librium, this method shows which intersection is stable and unstable. This is272

a rigorous analysis but it is strictly limited to the attracting density nullcline.273

The question arises, when can this reasoning be extended to the neighbourhood274
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of the attracting density nullcline? There are relationships between the density275

and frequency nullclines, but these cannot necessarily be extrapolated to the276

general neighbourhood of their intersections. This is summarized by technical277

Lemma 1 below, where we assume the standard notation for partial derivatives278

gq = @g=@q, gn = @g=@n, fq = @f=@q and fn = @f=@n of the right hand sides279

of equations (6,7).280

Lemma 1281

Assume that the attracting density nullcline and frequency nullcline exist282

and they intersect. Then:283

a) if gq(n; ~q(n)) < 0 (the frequency nullcline is an attractor of the frequency284

dynamics) then if the intersection is stable (unstable) on the density nullcline,285

it is stable (unstable) on the frequency nullcline.286

b) if gq(n; ~q(n)) > 0 (the frequency nullcline is a repeller of the frequency287

dynamics) then if the intersection is stable (unstable) on the density nullcline,288

it is unstable (stable) on the frequency nullcline.289

For a proof see Appendix 3.290

Thus in the case when the frequency nullcline is the attractor of the frequency291

dynamics, which implies that in the density independent case it will be a stable292

rest point, stability on the attracting density nullcline can be extrapolated to the293

attracting frequency nullcline. This property can be useful for the derivation294

of the static conditions for Eco-Evolutionary stability. Part b) of Lemma 1295

shows that the general situation is more complicated. It shows that in the296
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case of an unstable frequency nullcline the selection process and the ecological297

process will always act antagonistically. If one process will lead to stabilization298

of the rest point the second process will act towards destabilization. Thus299

we need some additional criteria describing this antagonistic relationship. The300

potential complexity of behaviour will be shown by numerical examples in the301

next section.302

2.4 Numerical examples and their analysis303

This section contains numerical simulations of the updated Hawk-Dove game304

(52,53) (see Appendix 4 for details) to show the dynamics induced by the305

eco-evolutionary feedback mechanism. For simplicity we set the background306

fertility � to be equal to zero. In Theorem 2 in Argasinski and Broom (2012)307

the local stability of intersections on the stable density nullcline for the Hawk-308

Dove game was analyzed. However the trajectories of the population away from309

this nullcline prior to convergence are also interesting and will have ecological310

interpretations. In Argasinski and Broom (2012) numerical simulations showed311

the interplay between selection dynamics and the dynamics of the population312

size. It was shown that ecological dynamics can seriously a¤ect the rules of313

the game while frequency dynamics determine the population size. This was314

mechanistically explained in that paper by the impact of density dependent315

juvenile mortality. In this section we will focus on the relationship between316

the trajectories, population size and the geometry of the attracting nullclines317

~q(n) and ~n(q), to reveal new details of this process which were not shown in318
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Argasinski and Broom (2012).319

FIGURE 1 HERE320

FIGURE 2 HERE321

FIGURE 3 HERE322

FIGURE 4 HERE323

In Argasinski and Broom (2012) results of the numerical simulations em-324

phasized the role of the intersections of both nullclines. In this paper we want325

to show the trajectories prior to convergence. To emphasize the role of both326

nullclines, in Figures 1-4, model parameters are chosen to set both intersections327

at values of frequencies q close to 0 and 1. This allows us to maximize the area328

falling between the nullclines which are very close to each other in the cases329

when intersections are relatively close (see for example Figure 4). Some of the330

numerical simulations support the intuition that the dynamics converge to the331

close neighbourhood of the attracting density nullcline and then trace the equi-332

librium size value (Figure 1). In this case the assumption from Argasinski and333

Broom (2012) of the population taking the stable size for a given frequency is334

justi�ed.335

However, this happens when both nullclines are placed at relatively high336

densities. At lower densities the trajectory does not reach a strict neighbour-337

hood of the attracting density nullcline (Figure 2), but converges to a surface338

lying between the frequency and density nullclines. At very low densities the339

trajectories converge to the attracting nullcline which is closer to the frequency340
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attracting nullcline (Figure 3). We note that this e¤ect is suppressed by pop-341

ulation growth. In some cases the attracting nullcline is located in the close342

neighbourhood of the frequency attracting nullcline and traces it nearly to the343

equilibrium (Figure 4). Thus, the assumption that frequency selection occurs344

on the attracting density nullcline can sometimes be seriously wrong. In the345

general case the geometry of both nullclines plays an important role in the dy-346

namics and what happens in the region limited by those surfaces is crucial. At347

higher densities there is a stronger convergence towards the attracting density348

nullcline while at lower densities there is a stronger attraction towards the fre-349

quency attracting nullcline. Therefore, the ecological equilibrium assumption is350

a simpli�cation of the full problem. In addition, on all �gures we can observe351

the clearly visible convergence of the trajectories to the unique invariant man-352

ifold. However, the behaviour on these manifolds seems to be compatible with353

the projection of the vector �eld on the nullcline ~n(q) (and also by Lemma 1354

on the nullcline ~q(n)). This suggests that the stability of the intersection can355

be described by a simple set of algebraic equations, which will constitute the356

Eco-Evolutionary static analysis.357

Note that in the above examples the attracting frequency nullcline represents358

the set of game theoretic Nash equilibria, conditional on the actual ecological359

conditions represented by juvenile mortality, determined by population size.360

However, we have two types of intersection representing the stationary points.361

One is stable, thus it is compatible with the underlying purely game theoretic362

notions, while the second is unstable. This means that a point that is a stable363
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equilibrium in the density independent case can be destabilized by ecological364

factors. However, we can imagine the opposite situation, where the intersection365

of the repelling frequency nullcline (representing the set of invasion barriers con-366

ditional on the actual population size) can be stabilized by the impact of density367

dependence. This is illustrated by the following phenomenological example:368

Example 1: the stabilization of a stationary point by density de-369

pendent pressure in case of the repelling frequency nullcline.370

Assume that there are two strategies, where the functions

B1(q) =

�
2

3
q2 +

2

3
q

�
and M1(q) =

�
7

9
� q

3

�
are the fertility and mortality of the �rst strategy, while

B2(q) =
2

3
q2 and M2(q) =

�
4

9
� q

3

�
are those of the second. This leads to the following replicator equation (see

Appendix 5 for detailed derivation):

_q =
q

3
(1� q) ((2q � 1)) ; (11)

where q = 1=2 is the unstable rest point (invasion barrier). However when we371

extend this model to the density dependent case, the situation is di¤erent. We372

obtain:373

_q =
q

3
(1� q) (2q(1� n=K)� 1) ; (12)

_n =
4

3
n

�
q2(1� n=K)� 1

3

�
: (13)

Calculation of the frequency and density nullclines gives:374

~q =
1

2(1� n=K) and ~n =
�
1� 1

3q2

�
K.375

376
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Thus on the density nullcline juvenile mortality is 1� ~n=K = 1=3q2, leading377

to the stationary state q̂ = 2=3 and the respective population size n̂ = K=4378

(juvenile mortality is 1 � n̂=K = 3=4). This example clearly shows that the379

frequency nullcline need not be attracting for the stability of the respective in-380

tersection with the attracting density nullcline to hold (see Figure 5).381

FIGURE 5 HERE382

In this case there is no convergence of the trajectories to the unique manifold.383

Figure 5 shows that in the neighbourhood of the nullclines there is a spiral at-384

traction to the intersection. However, below the nullclines there is a huge region385

of extinction and convergence to the frequency 0. This pattern is caused by the386

fact that at low densities pressure from the frequency dynamics is stronger than387

that from the density dynamics. Thus at low population sizes, the frequency388

nullcline acts as the invasion barrier as in the case of unlimited growth. How-389

ever, this is caused by the decrease of the population size induced by the density390

dynamics. This leads to an emergence of the additional boundary between the391

basins of attraction. This boundary cannot be justi�ed by any existing condition392

for evolutionary stability. Thus the dynamics can produce patterns that cannot393

be classi�ed by known static ESS notions, and in this case the full analysis of394

the dynamic model should be carried out.395
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2.5 General stability conditions396

The examples presented above suggest the necessity of a general stability analy-

sis. This will enable extrapolation of the stability analysis of the Hawk-Dove

example from Argasinski and Broom (2012) to the general neighbourhood of

the intersection, not limited to the attracting density nullcline. Coordinates

of the intersection are (n̂; q̂). Stability along the attracting density nullcline is

described by the directional derivative (a total derivative expressed in terms of

our four partial derivatives)

dg(~n(q); q)

dq
= gq(n̂; q̂)� gn(n̂; q̂)

fq(n̂; q̂)

fn(n̂; q̂)
: (14)

397

Below, by application of standard linearization methods we will derive the398

general stability conditions for intersections of the nullclines:399

Theorem 2400

If for the system described by equations (6) and (7), nullclines ~q(n) and ~n(q)401

exist, then:402

The intersection is stable if the following EESS (Eco-Evolutionarily Stable

State) conditions are satis�ed:

a)

gq(n̂; q̂) < jfn(n̂; q̂)j ; (15)

b)

dg(~n(q); q)

dq
< 0: (16)
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403

For a proof see Appendix 6.404

A question arises about the interpretation of the above stability conditions.405

Condition a) means that attraction to the density nullcline is stronger than406

repellence from the frequency nullcline. This means that in the antagonistic407

relationship between selection and the ecological process indicated by point b)408

of Lemma 1, the stabilizing ecological process should be stronger. If the null-409

cline ~q(n) is attracting (which means that it consists of stable Nash equilibria)410

then condition a) is satis�ed automatically. Condition b) is equivalent to sta-411

bility along the density nullcline ~n(q). Thus for the attracting nullcline ~q(n)412

the stability of the global equilibrium is equivalent to the behaviour along the413

nullcline ~n(q). This justi�es the static ESS analysis based on the substitution of414

the ecological equilibrium ~n(q) to the dynamics and the analysis of signs of the415

right hand sides of the q equations as in Theorem 2 in Argasinski and Broom416

(2012). Note that, according to Lemma 1, condition b) implies instability on417

the repelling nullcline ~q(n), representing the game theoretic invasion barriers.418

However, in this case, if the attraction towards nullcline ~n(q) is stronger than419

the repellence from nullcline ~q(n), then the intersection can be stable despite420

this. Note that for the intersection of the repelling frequency nullcline and den-421

sity nullcline from Example 1, both conditions are satis�ed (see Appendix 7422

for the detailed calculations). According to Lemma 1, satisfying condition b)423

implies attraction towards the intersection along the attracting frequency null-424
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cline ~q(n) and repellence if the frequency nullcline ~q(n) is repelling. Example425

1 supports the results from Lemma 1. The projection of the �ow orthogonal426

to the density nullcline (see arrows on Figure 6) shows that it will be stable,427

while on the frequency nullcline it will be unstable. However the general spiral428

dynamics cannot be reduced to convergence along one of the nullclines.429

Note that the �ow is horizontal on the frequency nullcline and vertical on the

density nullcline. Thus the orthogonal projection of the �ow is determined by

the slope of the respective nullcline. We shall assume that in the neighbourhood

of the intersection functions g and f are locally invertible, so that there is a 1-

1 correspondence between n and q, at least in the vicinity of a root. This

will be true for essentially any biological system, as situations where this is

not so, corresponding to nullclines slopes with zero or in�nite gradient, are

examples of so-called non-generic games, see e.g. Broom and Rychtar, 2013).

This means that both stability conditions can be interpreted in terms of slopes

of the nullclines. The slope of the frequency nullcline is

Uq =
dg(g�1(0; q̂); q̂)

dq
; (17)

and the slope of the size nullcline is

Un =
df(f�1(0; q̂); q̂)

dq
: (18)

Then the above conditions are equivalent to the following lemma:430

Lemma 2431
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Provided that the inverses from equations (17) and (18) exist, Condition432

a) from Theorem 2 is clearly satis�ed when gq(n̂; q̂) � 0. For gq(n̂; q̂) > 0, we433

require the following condition to be satis�ed:434

gn(n̂; q̂) is negative (positive) and :

Uq < (>)
n̂

q̂
�
B1(q̂)= �B(q̂)� 1

� : (19)

435

Condition b) is satis�ed when gn(n̂; q̂) is negative (positive) and:436

Un > (<)Uq: (20)

437

For a proof see Appendix 8.438

Note that the right hand side of the condition (19) depends only upon the439

fertility stage; the mortality payo¤s are not present there.440

2.6 Game theoretic notions revealed by dynamic stability441

conditions442

Now let us take the game theoretic perspective and analyze the above statements443

from the strategic point of view. To do this we should describe the above444

conditions in terms of general payo¤ functions explicitly and then we should445

extract the focal game payo¤s from the background payo¤s in the conditions446

obtained. The following notion known from economics is useful:447
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De�nition 1: The semi-elasticity of the function f(x) at point x is

df(x)=dx

f(x)
; (21)

which describes the change in f(x) scaled by its absolute value.448

This concept can be generalized to the case of convex combination of func-449

tions
P
qifi(x), as follows.450

De�nition 2: The partial semi-elasticity of the function fi(x) with respect

to
P
qifi(x) at point x is

dfi(x)=dxP
qifi(x)

; (22)

which describes the equivalent scaled change in
P
qifi(x) caused by the451

component fi(x).452

Now we can derive the general stability conditions for the dynamics in the453

form (6,7) expressed in terms of general demographic payo¤s. This is done in454

the following theorem455

Theorem 3456

Condition a) has the form:

q̂

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!
<

�B(q̂)
�M(q̂)

� 1; (23)

where
�B(q̂)
�M(q̂)

�1 describes the reproductive surplus, following De�nition 1,
�B0(q̂)
�B(q̂)

457

is the semi-elasticity of �B and following De�nition 2,
B01(q̂)
�B(q̂)

is the partial semi-458

elasticity of �B with respect to B1 (for mortalities M1(q̂) and �M(q̂) we have459

analogous notions).460
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Condition b) is satis�ed when the semielasticities in payo¤s satisfy the fol-

lowing condition:

�
B01(q̂)

B1(q̂)
�
�B0(q̂)
�B(q̂)

�
�
�
M 0
1(q̂)

M1(q̂)
�
�M 0(q̂)
�M(q̂)

�
< 0: (24)

where
B01(q̂)

B1(q̂)
is the semi-elasticity of B1 (similarly for M1).461

For a proof see Appendix 9.462

Note that both conditions resemble the bracket structure of the right hand

side of the replicator equations, or rather derivatives of it. The di¤erence is

that both conditions are expressed in terms of semi-elasticities and partial semi-

elasticities instead of standard derivatives of payo¤ functions. The above con-

ditions are not expressed with respect to the focal games payo¤s. Thus they

should be extracted from general payo¤s B1(q̂) and M1(q̂). In e¤ect we obtain:

B1(q) = V1 +� � 0 and M1(q) = 1� s1 +	, so that inequalities (23) and (24)

become

q̂

 �
V 01(q̂)� �V 0(q̂)

�
�V (q̂) + �

+
(s01(q̂)� �s0(q̂))
1� �s(q̂) + 	

!
<

�V (q̂) + �

1� �s(q̂) + 	 � 1 (25)

and

�
V 01(q̂)

V1(q̂) + �
�

�V 0(q̂)
�V (q̂) + �

�
+

�
s01(q̂)

1� s1(q̂) + 	
� �s0(q̂)

1� �s(q̂) + 	

�
< 0: (26)

Since the background payo¤s � and 	 do not depend on the traits under463

consideration they should not depend on the frequency of the strategies in the464

focal games. In e¤ect they vanish from the derivatives of the general growth465

rates B andM . However they are still present in the stability conditions. Thus,466
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the stability in the particular focal type of interaction is determined by the467

impact of other activities. Since � = �WB , 	 = �mB where � describes the468

average number of background events between two focal events, and WB and469

mB are average background events fertility and mortality, parameters � and470

	 have a clear interpretation in the purely static ESS models too. This result471

can be important for the research on animal personalities (Dall et al., 2004;472

Wolf et al., 2007; Wolf and Weissing, 2010; Wolf and Weissing, 2012; Wolf and473

McNamara, 2012).474

The above results seriously alter our understanding of the self-regulation475

mechanism in evolving populations showing the role of density dependent growth476

limiting factors. They also suggest the relationship between the ESS approach477

and some concepts already present in the debate on evolutionary ecology. We478

can mechanistically interpret the stable and unstable intersections in terms479

of eco-evolutionary feedback (Post and Palkovacs, 2009; Kokko and López-480

Sepulcre, 2007).481

In the game theoretic framework this concept can be found in Argasin-482

ski and Koz÷owski (2008), Zhang and Hui (2011) and Argasinski and Broom483

(2012). How does this mechanism work? Perturbation in q (described by484

�q) induces convergence towards the respective stable size ~n(q̂ + �q) lying485

on the attracting density nullcline ~n(q) which determines the respective fre-486

quency attractor ~q(~n(q̂ + �q)) on the frequency attracting nullcline ~q(n). If487

j~q(~n(q̂ +�q))� q̂j < j�qj then negative feedback is induced in a sense that dy-488
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namics chase ~q(~n(q̂+�q)) towards q̂. In e¤ect q̂ is stable. On the other hand, if489

j~q(~n(q̂ +�q))� q̂j > j�qj then a positive feedback is induced and the attractor490

escapes from q̂. In e¤ect q̂ is unstable. See Figure 6 for an illustration.491

FIGURE 6 HERE492

3 Discussion493

The results presented in this paper show the importance of the impact of growth494

limiting factors on selection mechanisms. Using strategically neutral density de-495

pendence, the results introduced in Argasinski and Broom (2012) and developed496

in Argasinski and Broom (submitted) have been clari�ed and completed by rig-497

orous stability conditions. We have proved that in the case when both the498

frequency and density nullclines are attracting, results on the local stability of499

the nullcline intersections on the attracting density nullcline can be extended500

to the attracting frequency nullcline and vice versa (Lemma 1). In addition,501

instead of equality of growth rates at the stable points, under the in�uence of502

density dependence we have equality of the turnover coe¢ cients (the number of503

newborn candidates produced per single dead adult individual) as was shown504

by Theorem 1.505

Theorem 2 shows the stability conditions. It shows that the stability along506

the attracting density nullcline can be extrapolated to the neighbourhood of507

the intersection (Theorem 2 point b). Those conditions show that stability de-508
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pends on the condition similar to the classical ESS notions but expressed in509

absolute value changes in mortalities and fertilities (Theorem 3). In addition,510

the stability is determined by the geometry of both nullclines (Lemma 2). It511

is shown that the dynamics can be attracted by the intersection even in the512

case when the frequency nullcline is repelling. This can happen when attrac-513

tion toward the density nullcline is stronger than repellence from the frequency514

nullcline. Numerical simulations show a variety of behaviours. Some of these515

are against intuition based upon the dynamics concentrated on frequencies oc-516

curring on the attracting density nullcline. At low densities there is a stronger517

attraction towards the attracting frequency nullcline. This is caused by the fact518

that at high densities di¤erences in fertility are suppressed by density depen-519

dent juvenile mortality described by the logistic suppression coe¢ cient, while520

at low densities the impact of fertility on the overall dynamics is signi�cant.521

Thus both nullclines are important for the dynamics. In particular, the case of522

convergence to the intersection of the repelling frequency nullcline (which will523

be an invasion barrier in the case with unlimited growth) with the attracting524

density nullcline is surprising. In addition, this intriguing pattern coexists with525

a region of extinction that cannot be easily shown by purely static analysis.526

The phenomenon of stability and instability of the intersections can be mech-527

anistically explained by the idea of eco-evolutionary feedbacks, a concept already528

known in the literature (Post and Palkovacs, 2009; Kokko and López-Sepulcre,529

2007). The stability or instability of the particular stationary frequency is530

caused by a shift of the frequency attractor conditional on a corresponding531
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correction of the density attractor. This density attractor is conditional on532

the perturbation of the frequency, which closes the feedback loop. This is re-533

lated to the fact that in the framework presented in this paper outcomes of534

interactions, described by mortality and fertility, are entries of the �nest site535

lottery�mechanism, when the trajectory reaches a close neighbourhood of the536

density nullcline. Thus on the density nullcline all newborns introduced to the537

environment form a pool of candidates from which individuals that substitute538

dead adults in their nest sites will be randomly drawn. This mechanism in-539

duces the frequency dependent selection consisting of two stages. At the �rst540

stage the strategies maximizing the turnover coe¢ cient (number of newborns541

produced per single dead adult within a short time interval) are selected. Then542

every perturbation of the population state (a size decrease caused by natural543

disaster or invasion of a signi�cant number of suboptimal mutants) leads to an544

increase of the frequency of the strategy with maximal mortality among those545

with maximal turnover coe¢ cient. This mechanism was analyzed in Argasinski546

and Broom (2013). Note that the framework analyzed in this paper collapses to547

the system analyzed in Argasinski and Broom (2013) under the assumption that548

all mortality and fertility payo¤s are constants. The nest site lottery mechanism549

was analyzed only for the case when the population is in the neighbourhood of550

the density nullcline. Thus it is an interesting open question how this mecha-551

nism works in states far from the density nullcline. It is likely that when there552

is a shortage of free nest sites the population is subject to a similar mechanism.553

This fraction increases with convergence to the density attracting nullcline and554
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covers all newborns when the trajectory reaches this nullcline. The importance555

of the generalization of the nest site lottery mechanism is supported by results556

from this paper.557

Our results show an example of the mechanism shaping the ecology of the558

population according to the aggregated outcomes of particular individual in-559

teractions of di¤erent types. This point of view relies on and provides detailed560

theoretical justi�cation for the classical ideas proposed by ×omnicki (1988), that561

ecological and evolutionary reasoning should be based at the level of individuals.562

Another important aspect of our work is the emphasis on the key role of growth563

limiting factors in selection mechanisms. This is an important contribution to564

current developments in evolutionary theory focused on the relationships be-565

tween selection processes and ecological factors (Schoener, 2011; Morris, 2011;566

Pelletier.et al., 2009). The mechanism of the eco-evolutionary feedback shown567

in this paper is a good example of the impact of ecological factors, such as568

growth limitation, on the outcomes of the selection process. The importance569

of growth limiting mechanisms implies that future research should investigate570

more detailed mechanistic models of these factors, since the current literature571

is dominated by the phenomenological logistic approach, which was also used572

in this paper. Another important direction of research indicated by the results573

presented in this paper is the generalization of the eco-evolutionary stability574

conditions to the multidimensional case, describing the competition between575

more than two strategies. It is likely that signi�cant complexity will arise from576

these generalizations, which in turn could reveal novel ecological predictions.577
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Table 1: Important symbols.700
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n population size

qi frequency of the i-th strategy

K carrying capacity (maximal environmental load)

Wi(q) fertility payo¤ of the i-th strategy

si(q) prereproductive survival payo¤ function of the i-th strategy

Vi =
P

j qjsi(ej)Wi(ej) mortality-fertility trade-o¤ function (example of fertility payo¤)

�1 rate of occurrence (intensity) of the game event

�2 rate of occurrence of the background event

WB average background event fertility

mB = 1� bB average background event mortality

� = �2=�1 average number of background events between two focal events

� = �WB rate of the average background fertility

	 = �mB rate of background mortality

g(n; q) Function describing the right hand side of the frequency equation

f(n; q) Function describing the right hand side of the population size equation

V1(q) General fertility payo¤ related to the focal events of the �rst strategy

s1(q) General survival payo¤ related to the focal events of the �rst strategy

B1(q) = V1 +� General fertility factor of all events of the �rst strategy

M1(q) = 1� s1 +	 General mortality factor of all events of the �rst strategy

�B(q) = qB1 + (1� q)B2 Average fertility factor

�M(q) = qM1 + (1� q)M2 Average mortality factor

ru(q) = �B(q)� �M(q) Rate of the unsuppressed growth

S Hawk-Dove example survival payo¤ matrix

F =WP Hawk-Dove example fertility payo¤ matrix

d = 1� s probability of death during a contest in a Hawk-Dove game

~q(n) frequency nullcline

~n(q) density nullcline

701
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Appendix 1702

This section contains some details from Argasinski and Broom (2012) and Ar-703

gasinski and Broom (submitted). Wi(q) is the focal game fertility payo¤ function704

of the i-th strategy, si(q) is the pre-reproductive mortality payo¤ function of the705

i-th strategy. Further, Vi(q) =
P

j qjsi(ej)Wi(ej) is the mortality-fertility trade-706

o¤ function for the case when si andWi are frequency dependent, although more707

complicated functions are also possible (Argasinski and Broom, 2012). In Ar-708

gasinski and Broom (2012) the classical approach to the background �tness was709

generalized to the case of two demographic payo¤ functions. It was described710

by the phenomenological elements of the payo¤s (additive fertility and mul-711

tiplicative post-reproductive mortality), which a¤ect the dynamics. However,712

in this paper we will use an alternative approach from Argasinski and Broom713

(submitted) which has clear mechanistic interpretation and better describes the714

distribution of the background interactions in time. Assume that the modelled715

interaction described by the game theoretic structure occurs at intensity �1.716

Other events shaping the fertility and mortality occur at the separate intensity717

�2 and during the average background event WB newborns are produced and718

adult individuals die with probability mB . This leads to the following general719

growth equations:720

_ni = ni�1Vi(q)
�
1� n

K

�
�ni�1(1� si(q)) +ni�2WB

�
1� n

K

�
�ni�2mB (27)

721
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= ni�1

�
Vi(q)

�
1� n

K

�
� (1� si(q)) +

�2
�1
WB

�
1� n

K

�
� �2
�1
mB

�
: (28)

722

Then by change of timescale ~t = t�1 and substitution using � =
�2
�1
WB and723

	 =
�2
�1
mB , we obtain:724

_ni = ni

h
Vi(q)

�
1� n

K

�
� (1� si(q)) + �

�
1� n

K

�
�	

i
; (29)

which leads to the general system of equations (4,5) and to the nullcline for

population size:

�n(q) = K

�
1� 	+ 1�

P
i qisi(q)

� +
P

i qiVi(q)

�
: (30)

It is attracting since the right hand side of (5) is a decreasing function725

of n. Thus the game theoretic stage can be very complex, since payo¤s in a726

modelled game Vi and si can have a structure describing several causal stages727

of the interaction (as was shown in Argasinski and Broom 2012). However728

all models of the basic and extended types can be presented in the following729

simpli�ed general form, which are equations (4) and (5) where Vi(q) and si(q)730

describe potentially complicated fertility and mortality payo¤s related to the731

focal interactions. This allows us to keep a distinction between focal game and732

background payo¤s.733
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Appendix 2734

Proof of Theorem 1:735

Assume a generalized n-dimensional version of system (6,7), where we have736

n individual strategies and the frequency dynamics de�ned on n�1 dimensional737

strategy simplex is completed by the following single equation for the population738

size:739

dn

dt
= f(n; q) = n

�
�B(q)

�
1� n

K

�
� �M(q)

�
: (31)

The bracketed term in equation (31) equals zero when

�
1� n

K

�
=

�M(q)
�B(q)

; (32)

which leads to

~n =

�
1�

�M(q)
�B(q)

�
K: (33)

Here we substitute this expression into equation (6), when the right hand740

side becomes741

dqi
dt

= qi

��
Bi(q)� �B(q)

�� �M(q)
�B(q)

�
�
�
Mi(q)� �M(q)

��
(34)

= qi �M(q)

�
Bi(q)
�B(q)

� Mi(q)
�M(q)

�
: (35)

Thus at the intersection of the nullclines the bracketed term from equation

(35) should be equal to zero. This is satis�ed when

Bi(q)

Mi(q)
=

�B(q)
�M(q)

; (36)

which means that the turnover coe¢ cients of all strategies should be equal.742

Thus point a) is proved.743
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Now focus on the role of the outcomes of the focal game. Then equality of

the turnover coe¢ cients can be described as

Vi(q) + �

1� si(q) + 	
=

Vj(q) + �

1� sj(q) + 	
=

�B(q)
�M(q)

: (37)

Assume auxiliary notation di(q) = 1� si(q). This implies that when Vi(q)�744

Vj(q) = xV and di(q)� dj(q) = xs, we have745

Vi(q) + �

di(q) + 	
=

Vi(q) + xV +�

di(q) + xs +	
) (38)

Vi(q) + �

di(q) + 	
xs = xV : (39)

Thus from (37) and (39) we have

Vi(q)� Vj(q) =
�B(q)
�M(q)

(di(q)� dj(q)) (40)

leading to the following general condition which can be interpreted as equal-

ity of focal game speci�c suppressed Malthusian growth rates:

Vi(q)
�M(q)
�B(q)

� di(q) = Vj(q)
�M(q)
�B(q)

� dj(q): (41)

This is the proof of point b).746

Appendix 3747

Proof of Lemma 1:748

Assume that the dynamics is limited to the frequency attracting nullcline.

If we substitute the equilibrium of the size equation into the frequency equation

then the derivative of the right side of the frequency equation can be presented
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as the directional derivative along the vector (
d~n

dq
; 1) tangent to the attracting

density nullcline. Since f : (n; q)! z is the function assigning the value of the

derivative z to each pair (n; q) describing the population state, then the inverse

function f�1 : (z; q)! n assigns size n to the respective pair (z; q) and can be

denoted as n(z; q). On the nullcline ~n(q) we have z = 0, and thus we obtain the

derivative
d~n

dq
in the following way. Since along the nullcline f(~n(q); q) = 0 the

derivative of it will also be equal to zero, leading to:

df(~n(q); q)

dq
= fq + fn

d~n(q)

dq
= 0) (42)

d~n(q)

dq
= � fq

fn
: (43)

Therefore, for the intersection point it will describe the derivative of the attract-

ing density nullcline ~n (a level set with z = 0). Thus the directional derivative

mentioned above can be presented as:

dg(~n(q); q)

dq
= gq � gn

fq
fn
: (44)

If we assume that the dynamics is limited to the attracting density nullcline,

then by analogous derivation we can obtain:

df(n; ~q(n))

dn
= fn � fq

gn
gq
: (45)

Note that the former derivative is just the latter multiplied by
gq
fn
. Since749

fn is always negative, the sign of this factor is determined by the sign of gq.750

Thus if gq < 0 (the frequency nullcline is attracting) then if the intersection751

is stable (unstable) on the density nullcline then it is stable (unstable) on the752

frequency nullcline. However, if gq > 0 (the frequency nullcline is repelling)753
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then if the intersection is stable (unstable) on the density nullcline then it is754

unstable (stable) on the frequency nullcline.755

Appendix 4756

A Hawk-Dove example was used to illustrate the above, using the payo¤matrices

S (the mortality payo¤) and P , where the fertility matrix is F =WP , as follows

S =

0BBBBBB@
H D

H s 1

D 1 1

1CCCCCCA ; P =

0BBBBBB@
H D

H 0:5 1

D 0 0:5

1CCCCCCA ;
757

758

where s < 1 is the survival probability of a �ght between Hawks, and the

fertility matrix containing the expected number of newborns W produced from

the interaction. When we substitute the above matrix payo¤s into equations

(4) and (5) as the general fertility payo¤ V (v; q) = vS � PqT and the pre-

reproductive survival payo¤ s(v; q) = vSqT respectively (where � is elementwise

multiplication of matrix entries) leading to strategy payo¤s Vi(v; q) = eiS �PqT

and si(v; q) = eiSqT . In e¤ect we obtain the following system:

_qh = qh

��
1� n

K

�
W
�
e1S � PqT � qS � PqT

�
+ (e1Sq

T � qSqT )
�

(46)

and

_n = n
��
�+ qS � PqTW

� �
1� n

K

�
+ qSqT � 1�	

�
; (47)
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where the matrix operations are as follows (Argasinski Broom 2012):759

e1Sq
T = sqh + 1� qh = qh(s� 1) + 1; (48)

e1S � PqT = 0:5sqh + 1� qh; (49)

qSqT = qh (qh(s� 1) + 1) + (1� qh) = 1� q2h(1� s); (50)

qS � PqT = qh (0:5sqh + 1� qh) + 0:5(1� qh)2 = 0:5
�
1� q2h(1� s)

�
:(51)

After calculations and the substitution d = 1 � s the following equations

were obtained

_qh = qh (1� qh)
�
0:5W (1� qhd)

�
1� n

K

�
� qhd

�
; (52)

_n = n
��
�+

�
1� q2hd

�
0:5W

� �
1� n

K

�
� q2hd�	

�
: (53)

Two rest points of this system are qh = 0 and 1. A nontrivial rest point,760

which becomes the attracting nullcline for the density dependent case, (for de-761

tailed calculation see Argasinski and Broom, submitted) is given by762

~qh(n) =
0:5W

�
1� n

K

�
d
�
0:5W

�
1� n

K

�
+ 1
� : (54)

There is a stable population size at either ~n = 0 or the following positive rest

point which is conditional on the actual hawk strategy frequency (describing

the attracting nullcline parametrized by qh)

~n(qh) = K

 
1�

1 + 	�
�
1� q2hd

�
�+ 0:5W (1� q2hd)

!
: (55)

The intersections of the above nullclines constitute the rest-points of the763

system. For the above Hawk-Dove game there are two intersections. If it exists,764

the �rst one is the stable mixed equilibrium which has the form765
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q̂h = (1 + 	)�
r
(1 + 	)

2 � 4	
d
; (56)

and the second (unstable) intersection is an invasion barrier for a stable pure766

Hawk equilibrium (where qh converges to Hawk if and only if qh > �qh),767

�qh = (1 + 	) +

r
(1 + 	)

2 � 4	
d
: (57)

Appendix 5768

Let us derive the replicator equations for Example 1. For the density indepen-769

dent case we have the following Malthusian growth rates770

ru1 (q) = B1(q)�M1(q) =
2

3
q2 + q � 7

9
;771

ru2 (q) = B2(q)�M2(q) =
2

3
q2 +

q

3
� 4
9
:772

This leads to the following replicator equation:773

_q = q(1� q)(ru1 (q)� ru2 (q)) =
q

3
(1� q) (2q � 1)774

where q = 1=2 is the unstable rest point (invasion barrier). However when we775

extend this model to the density dependent case, the situation is di¤erent. Then776

the density dependent Malthusian growth rates are:777

r1(q; n) =

�
2

3
q2 +

2

3
q

�
(1� n=K)�

�
7

9
� q

3

�
;778

r2(q; n) =
2

3
q2(1� n=K)�

�
4

9
� q

3

�
:779

This leads to the replicator dynamics:780

_q = q(1� q)(r1 � r2) =
q

3
(1� q) (2q(1� n=K)� 1) :781

47



Further we obtain the following equation for the mean payo¤782

r = qr1 + (1� q)r2 =
4

3
q2(1� n=K)� 4

9
;783

leading to the di¤erential equation for the population size:784

_n = nr =
4

3
n

�
q2(1� n=K)� 1

3

�
:

785

After calculation of the frequency and density nullclines we obtain:786

~q =
1

2(1� n=K) and ~n =
�
1� 1

3q2

�
K.787

788

Thus on the density nullcline juvenile mortality is 1 � n=K = 1=3q2. The789

intersection of the nullclines satis�es the equation q =
3q2

2
. The stationary790

state is thus q̂ = 2=3 and respective population size n̂ =
K

4
(juvenile mortality791

is 1� n̂=K =
3

4
).792

Appendix 6793

Here we prove Theorem 2: in particular giving a derivation of general formulae794

for conditions a) and b) from the theorem.795

We consider the system in equations (6) and (7). Standard linearization

techniques can be applied. At the critical points n̂; q̂ we have f(n̂; q̂) = g(n̂; q̂) =

0. We need to consider each of the derivatives of f and g with respect to each

of q and n at the critical points, and in particular the Jacobian matrix0BB@ fn(n̂; q̂) fq(n̂; q̂)

gn(n̂; q̂) gq(n̂; q̂)

1CCA
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and its eigenvalues. The eigenvalues of the Jacobian are found as follows.796

fn(n̂; q̂)� � fq(n̂; q̂)

gn(n̂; q̂) gq(n̂; q̂)� �
= �2 +A�+ Z (58)

where A = �(fn(n̂; q̂) + gq(n̂; q̂)) (which leads to the condition from point b)797

and Z = fn(n̂; q̂)gq(n̂; q̂)� fq(n̂; q̂)gn(n̂; q̂). Thus:798

�1;2 =
�A�

p
A2 � 4Z
2

:

For stability we need either two negative eigenvalues or two complex eigen-799

values with negative real parts. This occurs when A > 0 and Z > 0.800

The condition Z > 0 is just condition b) from Theorem 2 and can be pre-801

sented in the form802

fn(n̂; q̂)

�
gq(n̂; q̂)� gn(n̂; q̂)

fq(n̂; q̂)

fn(n̂; q̂)

�
> 0:803

Thus it is a product of fn(n̂; q̂) < 0 and the directional derivative along804

the attracting density nullcline
dg(~n(q); q)

dq
(see equation (44)) from Appendix805

3. Thus the condition b) is satis�ed when this derivative is negative, i.e. the806

intersection is an attractor on the density nullcline (and, by Lemma 1, on the807

frequency attracting nullcline). This constitutes point b).808

The condition A > 0 occurs if fn(n̂; q̂) + gq(n̂; q̂) < 0. The �rst of these809

two terms is negative; the second of these being negative is the condition for810

stability in density independent models. Thus, for example, the Hawk-Dove811
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game which has a mixed ESS for its density independent version (the classical812

game) automatically satis�es this condition. However, the condition A > 0 can813

be satis�ed even in the case when the frequency nullcline is repelling, which814

implies gq(n̂; q̂) > 0. Then this condition leads to gq(n̂; q̂) < jfn(n̂; q̂)j , since815

fn(n̂; q̂) is negative, which is condition a) from Theorem 2. Thus our conditions816

A > 0 and Z > 0 are precisely those from Theorem 2 as required.817

Appendix 7818

Below we will analyze stability in Example 1. The respective derivatives are:819

gq(q; n) =
1

3

�
(4q � 6q2)(1� n=K)� (1� 2q)

�
;820

gn(q; n) =
�2q2(1� q)

3K
;821

fq(q; n) =
4

3
(2qn(1� n=K)) ;822

fn(q; n) =
4

3

�
q2 (1� 2n=K)� 1

3

�
:823

After substitution of the rest points, we obtain:824

gq(q̂; n̂) =
1

9
> 0;825

gn(q̂; n̂) = �
8

81K
;826

fq(q̂; n̂) =
K

3
;827

fn(q̂; n̂) =
4

3

�
2

9
� 1
3

�
= � 4

27
.828

Now the stability conditions a) A = �(fn(n̂; q̂) + gq(n̂; q̂)) > 0 and b)829

gq(n̂; q̂)� gn(n̂; q̂)
fq(n̂; q̂)

fn(n̂; q̂)
< 0 from Theorem 2 should be checked.830
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a) �
�
� 4

27
+
3

27

�
=
1

27
> 0;831

b)
1

9
+

8

81K

�
�27K
12

�
= �1

9
< 0:832

Thus in the density dependent case the intersection of the invasion barrier833

and the attracting density nullcline is stable.834

Appendix 8835

Proof of Lemma 2:836

The four derivatives, necessary for the following work, are given by the following837

expressions:838

fn(n; q) = �B(q)

�
1� 2n

K

�
� �M(q);839

fq(n; q) = n
�
�B0(q)

�
1� n

K

�
� �M 0(q)

�
;840

gn(n; q) =
�q
�
B1(q)� �B(q)

�
K

;841

gq(n; q) =
��
B1(q)� �B(q)

� �
1� n

K

�
�
�
M1(q)� �M(q)

��
842

+q
��
B01(q)� �B0(q)

� �
1� n

K

�
�
�
M 0
1(q)� �M 0(q)

��
;843

where B0i(q) is the derivative of Bi(q) w.r.t q, and similarly M
0
i(q) is the844

derivative ofMi(q) w.r.t q, for i = 1; 2 and for the non-indexed averaged payo¤s.845

846
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For stability we require (Condition A from Appendix 6) that

fn(n̂; q̂) + gq(n̂; q̂) < 0: (59)

On the density nullcline fn(n̂; q̂) < 0 thus for gq(n̂; q̂) � 0 the condition (59)

is always satis�ed. For gq(n̂; q̂) > 0 we require gq(n̂; q̂) < �fn(n̂; q̂). Dividing

(59) by �gn(n̂; q̂) we have the following conditions, when gn(n̂; q̂) is negative

(positive),

� gq(n̂; q̂)
gn(n̂; q̂)

< (>)
fn(n̂; q̂)

gn(n̂; q̂)
: (60)

This leads to:847

fn(n̂; q̂)

gn(n̂; q̂)
=

�B(q̂)

�
1� 2n̂

K

�
� �M(q̂)

�q̂
�
B1(q̂)� �B(q̂)

�
=K

=
�B(q̂)n̂

q̂
�
B1(q̂)� �B(q̂)

� = n̂

q̂
=
�
B1(q̂)= �B(q̂)� 1

�
since we know that �B(q̂)

�
1� n̂

K

�
� �M(q̂) = 0 meaning the original denom-

inator reduces to � n̂
K
�B(q̂). This leads to the condition

dg(g�1(0; q̂); q̂)

dq
< (>)

n̂

q̂
=
�
B1(q̂)= �B(q̂)� 1

�
; (61)

leading to condition a).848

Condition Z > 0 is satis�ed when gn(n̂; q̂) is negative (positive) if

� fq(n̂; q̂)
fn(n̂; q̂)

> (<)� gq(n̂; q̂)

gn(n̂; q̂)

which is equivalent to

df(f�1(0; q̂); q̂)

dq
> (<)

dg(g�1(0; q̂); q̂)

dq
(62)

(this is possible when there is a 1-1 correspondence between n and q, at least849

in the vicinity of a root).850

52



Appendix 9851

Proof of Theorem 3:852

Here we give a derivation of the detailed form of the formulae A and Z leading853

to the stability conditions expressed in terms of the payo¤ functions.854

The necessary derivatives are given in Appendix 8. After substitution of the855

stationary points q̂ and n̂ =
�
1�

�M(q̂)
�B(q̂)

�
K, we have856

fn(n̂; q̂) = �ru(q̂);857

fq(n̂; q̂) =

�
1�

�M(q̂)
�B(q̂)

�
K

�
�B0(q̂)

� �M(q̂)
�B(q̂)

�
� �M 0(q̂)

�
858

= �M(q̂)

�
1�

�M(q̂)
�B(q̂)

�
K

� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

�
;859

gn(n̂; q̂) =
�q̂
�
B1(q̂)� �B(q̂)

�
K

;860

gq(n̂; q̂) = q̂

��
B01(q̂)� �B0(q̂)

�� �M(q̂)
�B(q̂)

�
�
�
M 0
1(q̂)� �M 0(q̂)

��
861

= q̂ �M(q̂)

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!
;862

since the �rst bracketed term equals zero.863

Let us calculate concrete forms of conditions A and Z:864

Condition A:865

A = �
 
�M(q̂)� �B(q̂) + q̂ �M(q̂)

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!!
=866

= �B(q̂)� �M(q̂)

 
1 + q̂

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!!
:867
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Then A > 0 when

�B(q̂)
�M(q̂)

� 1 > q̂
 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!
: (63)

Condition Z:868

Z = fn(n̂; q̂)gq(n̂; q̂)� fq(n̂; q̂)gn(n̂; q̂))869

Z = �
�
1�

�M(q̂)
�B(q̂)

�
�B(q̂)q̂ �M(q̂)

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!
870

+ �M(q̂)

�
1�

�M(q̂)
�B(q̂)

�� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

�
q̂
�
B1(q̂)� �B(q̂)

�
=871

= �M(q̂)q̂

�
1�

�M(q̂)
�B(q̂)

�"� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

��
B1(q̂)� �B(q̂)

�
� �B(q̂)

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

872

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!#
:873

Thus Z > 0 if874

� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

� �
B1(q̂)� �B(q̂)

�
�B(q̂)

>

 �
B01(q̂)� �B0(q̂)

�
�B(q̂)

�
�
M 0
1(q̂)� �M 0(q̂)

�
�M(q̂)

!
)875

� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

� �
B1(q̂)� �B(q̂)

�
�B(q̂)

>

�
B01(q̂)
�B(q̂)

� M
0
1(q̂)
�M(q̂)

�
�
� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

�
)876

� �B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

�
>

�
B01(q̂)

B1(q̂)
� M 0

1(q̂)
�B(q̂)

�M(q̂)B1(q̂)

�
:877

From equality of the turnover coe¢ cients at the rest point we have that878

L = B1(q̂)=M1(q̂) = �B(q̂)= �M(q̂): This leads to
�B(q̂)

�M(q̂)B1(q̂)
=

L

B1(q̂)
=

1

M1(q̂)
:879

Thus formula Z can be presented as:880

�B0(q̂)
�B(q̂)

�
�M 0(q̂)
�M(q̂)

>
B01(q̂)

B1(q̂)
� M

0
1(q̂)

M1(q̂)
881
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In e¤ect we obtain the classical condition but expressed in terms of semi-882

elasticities:883

�
B01(q̂)

B1(q̂)
�
�B0(q̂)
�B(q̂)

�
�
�
M 0
1(q̂)

M1(q̂)
�
�M 0(q̂)
�M(q̂)

�
< 0: (64)

884

End of proof.885

55



FIGURE CAPTIONS886

Figure 1: The dynamics of a Hawk-Dove population. Initial conditions887

(qh(0) = 0:02; n(0) = 250), (qh(0) = 0:3; n(0) = 200) and (qh(0) = 0:7; n(0) = 300).888

Model parameters: W = 7, d = 0:5, 	 = 0:01. The trajectories converge to a889

nullcline lying in the very close neighbourhood of the attracting density null-890

cline and follows it converging to the mixed equilibrium q̂h = 0:0202. The Hawk891

invasion barrier is �qh = 0:9897. Thus in a stable mixed equilibrium there is ap-892

proximately one Hawk per 50 Doves and Hawks can take over a population if893

their number exceeds 100 per single Dove. The general �ow is indicated by the894

arrows. Note that the orthogonal projection of the arrows lying on both null-895

clines will show the direction, along the respective nullcline, towards the stable896

intersection. This illustrates point a) from Lemma 1.897

Figure 2: The dynamics of a Hawk-Dove population. Initial conditions898

(qh(0) = 0:02; n(0) = 147), (qh(0) = 0:3; n(0) = 147) and (qh(0) = 0:6; n(0) = 147).899

Model parameters: W = 7, d = 0:8, 	 = 0:06. At lower densities conver-900

gence to the attracting density nullcline is not strong. The frequency attracting901

nullcline is passed by the trajectories which converge to the attracting surface902

placed between the density and frequency nullclines. The mixed equilibrium is903

q̂h = 0:0762, while the Hawk invasion barrier is �qh = 0:9837. The �ow indicated904

by the arrows, as in the previous �gure, supports the predictions from point a)905

of Lemma 1.906

Figure 3: The dynamics of a Hawk-Dove population. Initial conditions907
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(qh(0) = 0:02; n(0) = 147), (qh(0) = 0:3; n(0) = 147) and (qh(0) = 0:89; n(0) = 147).908

Model parameters: W = 0:8, d = 0:5, 	 = 0:01. In this case, the attracting909

nullcline lies close to the frequency nullcline at low densities but becomes closer910

to the density nullcline with an increase of the population size. At the beginning911

the trajectories pass the attracting density nullcline and converge to the stable912

surface in the neighbourhood of the attracting frequency nullcline, but then913

the trajectory leaves it slowly converging to the density nullcline. The mixed914

equilibrium is q̂h = 0:0202, while the Hawk invasion barrier is �qh = 0:9897: The915

�ow indicated by the arrows, as in the previous �gures, supports the predictions916

from point a) of Lemma 1.917

Figure 4: The dynamics of a Hawk-Dove population. Initial conditions918

(qh(0) = 0:2; n(0) = 20), (qh(0) = 0:87; n(0) = 2000) and (qh(0) = 0:9; n(0) = 450).919

Model parameters: W = 3, d = 0:9, 	 = 0:4. In this case the attracting null-920

cline lies in the very close neighbourhood of the attracting frequency nullcline921

and follows it almost to the mixed equilibrium q̂h = 0:4865. The Hawk invasion922

barrier is �qh = 0:9134. The �ow indicated by the arrows, as in the previous923

�gures, supports the predictions from point a) of Lemma 1.924

Figure 5: Trajectories of example 1, with an repelling frequency nullcline925

(evolutionarily unstable state for purely frequency dependent approach). In926

this case there are two basins of attraction: one is the intersection of the null-927

clines (the trajectory converges spirally) and the second is a region of extinction928

(convergence to n = 0 and q = 0). The border between the basins of attraction929
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was calculated numerically. Note that in this case, the orthogonal projection930

of the �ow (indicated by the arrows) on the density nullcline shows a direction931

towards the stable intersection while the projection on the repelling frequency932

nullcline shows the opposite direction This illustrates point b) from Lemma 1.933

Figure 6: Presentation of the eco-evolutionary feedback mechanism. Posi-934

tive or negative feedback, caused by frequency perturbation �q, is induced by935

the position of the density and frequency attractors ~n(q̂+�q) and ~q(~n(q̂+�q))936

towards the stationary point (intersection) q̂; n̂. Note that we consider a continu-937

ous system and not a sequential discrete system, and this �gure is an illustration938

only. Other �gures show that at relatively high densities attraction towards the939

attracting density nullcline is much stronger than attraction towards the at-940

tracting frequency nullcline.941
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