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ABSTRACT 

Two methods are proposed to find the maximum likelihood parameter 
estimates of a number of software reliability models. On the basis of the 
results from analysing 7 sets of real data, these methods are found to be 
both efficient and reliable. 

The simple approach of adapting software reliability predictions by 
Keiller and Littlewood (1984) can produce improved predictions, but at the 
same time, introduces a lot of internal noise into the adapted predictions. 
This is due to the fact that the adaptor is a joined-up function. 

An alternative adaptive procedure, which involves the 
parametric spline adaptor, can produce at least as Jtood adapted 
without the predictions being contaminated by internal noise 
simple approach. 

use of a 
predictions 
as in the 

Miller and Sofer (1986a) proposed a method for estimating the failure 
rate of a program non-parametrically. Here, these non-parametric rates 
are used to produce reliability predictions and their quality is analysed 
and compared with the parametric predictions. 
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CHAPTER 1 

INTRODUCTION 

Complex sottware sY8tem8 contain desiarn error8 which mayor may not 

manife8t them8elve8 by cau8ing failures durin" execution. A failure occur8 

when there i8 a di8crepancy between the output of the program and ita 

specification. When this happens, an attempt will usually be made to 

identify the 80urce of the failure and remove it. This process of 

debuarging, if succes8ful, would lead to an improvement in the reliability of 

the pro"ram. The main objective ot this work is to measure the reliability 

of 80ft ware system8 underaroinar debuar"nar. This would be of interest to a 

software developer who want8 to know whether a pro"ram is reliable 

enouarh for marketinar or more development effort is needed before reachin" 

that sta"e. It i8 al80 of interest to a user who wants to know whether the 

reliability of a proarram has reached the level required for hi8 particular 

application. This is of particular importance if the software would be 

u8ed to control or monitor system8 where an operational failure would have 

disastrou8 consequences. 

Software reliability evaluation methodoloaies developed up to the 

present are built on the foundation t.hat t.he underlyina proces8 aovernina 

the failure behaviour of a soft.ware is random. An account. for t.he 

randomness in software failure. i. ariven by Laprie (1984). While software 

reliability modellera miarht disaaree on t.he sources of such randomnes., 

there i. ,eneral acceptance t.hat t.he reliability of a pro,ram can only be 

meaninafully represented in terms of probability. The definition which is 
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commonly used is for the operational reliability of a pro.ram. which is the 

probability of successful execution of the program without failure for a 

specified len.th of time in a specified environment. 

Here we will concentrate on data of the form tl .tz'."'~ of execution 

times between successive failures of a pro_ram under.oin. debu •• in •• and 

methods which utilise this information to predict the unobserved random 

quantities Ti+l'Ti+z.... • 

estimating the current 

In particular, we focus our attention on 

reliability, i.e. characteristics of the random 

variables Ti+l; other unobserved quantities can be dealt with in a similar 

way. Note that this estimation problem is one ot prediction because it 

concerns the unobaerved quantity Ti+l. In principle, what we need ia the 

probability distribution of the random variable Ti+l' and the problem ia 

effectively solved if we can accurately eaUmate this diatribution. 

In order to achieve the above objective, a prediction ayatem bas to be 

uaed. Such a ayatem will allow us to predict the future (Ti+l) from the 

paat (ts ,tz ..... t.t). It conaiata of the followin.: 

1. A mathematical model detailin. tbe behaviour ot the random 

variable (T1 ,Tz , ... ,Ti) for all i, conditional on IIOme unknown 

parametera. 

2. A atatiatical interence procedure tor eaUmatin, tbese unknown 

parametera uain. observed data. 

3. A prediction procedure combinin. (1) and (2) to allow ua to 

predict. 
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A 8urvey by Dale and Harris (1981) has shown that there are now more 

than 40 software reliability model8 in exi8tence. Many such model8 with a 

particular choice of (2) and (3) forms a prediction 8Y8tem which could be 

used for the purpo8e of reliability mea8urement. 

However, not merely do we want to have a probabilistic profile of the 

unobserved time to failure, we want one which i8 close to reality. In 

order to achieve this, it is e8sential to have a ,ood model (1) in the 

prediction syst.em and at the same time, parts (2) and (3) are also of vital 

importance. Viewed from this antle, the usual discussion of competint 

8Oft.ware reliability models becomes inadequate. We should, instead, be 

comparing the relative merits of different prediction systems rather than 

just. the model alone: the auccess or failure of a prediction system is a 

result of (1), (2) and (3) jointly. 

As far a8 selectint a model is concerned, it is not possible to decide, a 

priori, the best model in any ,iven context. Althou,h one miMht ar,ue 

that some models are more suitable because of their realistic assumption8, 

this still leaves us those which we cannot reject on the ,rounds of bein. 

unreali8tic. Indeed, the knowled,e in t.his .. pect of software en,ineerint 

is so imperfect that it is not possible to identity the best model ,iven all 

t.he characteristica of t.he 80ftware concerned. Our approach is to employ 

many prediction systema simultaneously and to aelect t.he best prediction on 

the basis of the paat predictive quality of each individual 8Y8tem on t.he 

IlctuaL!l_ata s~Ly.nder investWation. 
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A common characterstic shared by the majority of 80ftware reliability 

models is that it is very hard to carry out a full Bayesian analysis on the 

unknown paramet.ers. The method of maximum likelihood is usually used in 

part (2). By this method, a set ot parameter values has to be determined 

such that the likelihood function ia maximised. In practice, this 

constitutes the bulk of the numerical work that haa to be done in the 

whole prediction process. The amount of work involved varies trom model 

to model. In a few cases, it is small because the problem is 

straight-forward and can be 80lved easUy, but in t.he remaining cases, it. is 

considerable because the maximisation is by no means t.rivial and can only 

be done by numerical search. With our multi-prediction systems 

approach, in particular, the requirement on computing re80urces can be a 

problem. In view of this, t.here is a definite need to develop efficient 

numerical algorithms in order to save computing time. 

Chapter 2 describes two numerical algorit.hms tor unconstrained 

optimisation. These methods are chosen lor t.heir efficiency and well 

proven success with many practical problems. 

Chapter 3 outlines the actual implementation of t.hese al,corithms to 7 of 

t.he 9 80ftware reliability models included in thil Itudy. Difficulties 

encountered in analysing real data .ts make it necelaary to refine thele 

algorithms. Full details of t.he numerical experience in analysing 7 real 

data sets are .iven. 
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Having obtained the parameter estimates, the respective prediction 

systems can proceed to predict. Our next step is to analyse the 

predictive quality of each of these prediction systems. In Chapter 4 we 

present the tools that would be used to evaluate t.he predictive 

performance, namely, the u- and y-plot procedures, the prequential 

likelihood, and the median plot. 

An important by-product of our analysis of predictive quality is that 

the u-plot can be used to recalibrate our future predictions. Keiller and 

Littlewood (1984) have reported acme auccess, on the basis of the u-plot 

and y-plot criteria when they adapt future predictiona by joinin. up the 

u-plot and use it aa the calibration curve. However, when we invesU,ate 

further uain. prequential likelihood aa the criterion of aucceas, the 

adapted predictionl are not always an improvement. The di ... reement 

with the other criteria ateml from the fact that the adapUve curve il a 

joined-up function, and it can be resolved by usin, a amooth funcUon 

instead. 

The amooth function we have uaed ia a ~metric apline. In Chapter 

5, the parametric spline is defined in terms of B-aplinea, and a numerically 

atable and efficient method for ita determination ia described. Extenaive 

analYles are also ,iven when we apply this method of adapUn, to 9 models 

and 7 eets of data. 

One of the atron,eat criticiams of software reliability modela ia that 

they are hi.hly parameterised. Miller and Sofer (l986a) proposed a 
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non-parametric approach to estimate the failure rate of a program. In 

Chapter 6 we shall analyse the quality of the predictions based on rates 

estimated by this non-parametric method and exponential failure time 

distribution. These predictions are adapted usin~ our parametric spline 

adaptor and we compare all the re8ults including those in Chapter 5. An 

alternative non-parametric rate e8timation procedure is ~iven in Appendix 

2. 

The final Chapter is devoted to discussions and future research 

possibilities. thus concludin~ this thesis. 
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CHAPTER 2 

TWO METHODS FOR UNCONSTRAINED MINIMISATION 

2.1. INTRODUCTION 

In this Chapter we shall describe two numerical optimisation methods 

for the efficient determination of the maximum likelihood estimate (MLE) of 

the unknown parameters in the software reliability models included in this 

study. Both methods are for unconstrained optimisation. The first is for 

optimising functions in one variable. This method, which is due to Gill and 

Murray (1974), uses the value of the objective function only. The second 

is for functions in more than one variable and is also due to Gill and 

Murray (1972a, 1972b); extensive result.s on BOIvin, man, telt functions and 

an Algol implementation can be found in the cited publicat.ions. Unlike the 

univariate optimisation met.hod, the latter requires both t.he gradient. and 

the value of t.he objective function. This is because the multivariate 

problems are more difficult., at least in the cases considered here. Wit.h the 

ext.ra gradient. information the problem can be solved much more efficiently. 

The implementation details of t.hese techniques are in Chapter 3. 

2.2. THE NEED OF AN BFFIOIBNT ALGORITHM FOR PAJW(BTBR BSTIMATION 

Alt.hou,h all t.he three componentl in a prediction 1,Item are important 

to the prediction process as a whole, the attention .0 far bein, ,iven to 

various aspects concernin, the related problem in the .taUIUcal interence 

mi,ht ,ive the imprellion that it is ulually' .imple and It.rai,ht-forward. 

However, in our experience, t.hil il far from bein, the cale. 
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We believe that a user of any software reliability models should adopt. a 

Bayesian inference procedure. This involves updat.in, the prior 

distribution, via the likelihood of the data, to arrive at. the posterior 

distribution of the parameters. This poat.erior diatribution is then uaed to 

,enerate a predictive diat.ribution. A ,ood account of this approach in 

the context of conventional atatiatical problema i& ,iven in the book by 

Aitchison and Dunsmore (1975). 

In practice, it is often not possible to carry out a full Bayeaian 

analysis with moat models and the method of maximum likelihood (ML) ia 

commonly uaed instead. When the maximum of the likelihood function 

cannot be found analytically, aa ia usually the caae, numerical optimiaation 

technique has to be employed. The sequential nature in which the 

inference has to be repeated means that the requirement on computer time 

can be subatantial, if an inefficient numerical al.orithm ia bein, uaed. 

Thia would be compounded if one were to uae many prediction aystems 

simultaneously in order to select the most appropriate one. 

With the advancement of micro-computer technolo,y, it ia now poaaible 

for a personal computer to carry out mathematical calculations wit.h 

accuracy comparable to that of a mainframe computer. Therefore, a atep 

towards alleviatin, the computer resource problem ia to implement t.he 

analysis pro,ram on a personal computer. Thia ia obvioualy much more 

affordable even if t.he personal computer baa to be dedicated ent.irely tor 

t.his sole purpose. Bowever, it. doea mean t.hat. we become even more 

dependent. on the availabilit.y of a faat. aI.orit.hm. Por eample, if one 



- 9 -

were to carry out a simulation study on the performance of aeveral 

prediction ayatema, the waatage in uaing an inefficient method will preclude 

the analyaia of more replica tea. 

Hencefort.h, we shall only addreaa the problem of minimiaation. The 

equivalent. maximisation problem merely involvea a change of aign in the 

objective function. f(x) will be uaed to denote the objective evaluated at 

x. The variable x ia either a acalar or a vector depending on whether the 

problem ia univariate or multi-variate. In the latter, ,(x) ia uaed to 

denote the vector of partial derivativea of the objective and G(x) denotea 

the Heaaian matrix. 

2.3. THE UNIVARIATE MINIMISATION METHOD 

Thia ia a hybrid technique which combines two univariate minimisation 

methods, succeaaive quadratic approximation and function-comparison, in 

auch a way that it ia haa the apeed of the former and the reliability of the 

latter. Like moat univariate minimisation method., it utilises the concept 

of an intervauf uncertainty, i.e. an interval [a,b], which while the 

minimum is known to lie within it, we are uncertain a. to where exactly it 

ia. The value of auch an interval derive. from the fact that any esUmate 

lying within it will not be more than the len,th of the interval away from 

the true minimum. If the function i. unimodal this minimum is ,lobal 

otherwise it can also be a local minimum. 
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Given an initial interval of uncertainty, different methods adopt 

different atrate.ries to pro.rreasively reduce the aize of this interval until 

it is sufficiently amall. To illuatrate how this ia done iteratively, we .rive 

an example where only function valuea are involved. Let [a, b) be the 

current interval of uncertainty, x is the best point yet, w the previous x 

value and v is the hi.rhest point of the three. The labellin.r of wand v 

bas no ai.rnificance here but it. would be necessary to do ao in the method 

we propose. Fi.rure 2.1. ahows how they are confi.rurated. 

v 
a 

x 

Fiaure 2.1. 

w 
b 

A univariate minimisation alaorit.hm will t.hen predict a point uc[a.b] at. 

which the objective will be evaluated. How u ia determined will depend on 

the method beina uaed. It thia ia u, and f(u,) ia hi,her t.han f(x), t.hen 

t.he lower bound, a, ia moved to point u,. If t.hia point ia Uz and f(uz) i. 

lower than f(x), t.hen t.he lower bound, a, ia moved to x and x to uz. In 

either case, wand v will be re-arranaed accordinaly before enterina the 
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next iteration. and the length of the interval is reduced while the minimum 

remains bracketed. 

Popular function-comparison methods like the Fibonacci 8ftarch and the 

Golden Section search (see Jacoby et aI, 1972, or most introductory 

textbooks on numerical optimisation for further details of these methods) 

are reliable, but because t.hey do not lake into consideration the quantity 

by which the objective chan.es within the interval, t.hey are inefficient. 

To overcome this, methods based on successive polynomial approximation 

were developed. This claaa of methods involves repeated fiUin. of 

polynomials to approximate the function and to use the minimum of the 

fitted curve to predict the minimum of the objective. In the case where 

only function values are available, a quadratic function is used. When the 

,radient ia alao available, a cubic function i. used instead. 

The stationary point of a quadratic pas.in, throu,h the points (x,f(x», 

(w,f(w)) and (v,f(v)) is ,iven by x + p/q where: 

p = * [(w-x)Z(f(v)-f(x» - (v-x)Z(f(w)-f(x»] (2.3.1a) 

q = • 2[(v-x)(f(w)-f(x» - (w-x)(f(v)-I(x»] (2.3.1b) 

The equation of the .lope of a cubic passin, throu,h the pointe 

(x,f(x», (w,f(w» with derivatives f'(x) and f'(w) respectively, is .iven b1: 

f' (u) 2u uZ 
= f'(x) - (w-x) (f'(x)~) + (w-x)z(f'(x)+f'(w)+2n), 
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where 

The root of f leu) = 0 corresponding to a minimum of the fitt.ed cubic 

can be expressed as x + p/q, where: 

p = :l: (w - x) [f' (x) - Y - 1'\1 (2.3.2a) 

q = ~[f' (w ) - f' (x) + 2y] (2.3.2b) 

with 

y = sign(w - x)[1'\2 - f' (x)f '(w) '14 (2.3.2c) 

These formulae are commonly available in the literature on numerical 

optimisation. 

With a ,ood starting point, this method can be very efficient, especially 

when it is near the minimum and the objective is well approximated by a 

quadratic or cubic. However, if the startin, value ts not sufficiently close 

to the minimum, it can be unreliable. The common situation causin, 

difficulty is when one of the function values uaed for the curve fitUn, is 

very lar,e compared to the rest. On applyin, (2.3.1) or (2.3.2), the 

predicted minimum will tend to be very close to t.he amall value. Since 

one point has to be discarded at each iteration, it one inaiata on uain, aets 

of points which bracket the minimum for t.he curve tittin" i.e. interpolation 
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only, the larae value will be retained for a while before it ia bein. 

di8carded, thu8 810win, down the aearch con8iderably. Indeed, a natural 

alternative ia to diacard the hiah point since it is likely to be the least 

useful in future approximations. Unfortunately, the new point8 which 

re8ult will not nece8sarily bracket t.he minimum and in t.his situation t.he 

predicted minimum uBina (2.3.1) or (2.3.2) cannot be t.ru8ted, becau8e it is 

bein, extrapolated. 

The diBadvantaaea of theae methods when used alone can be effectively 

eliminated by cambinina them toaether. We will focu8 our attention on 

The ba8ic st.rateay here i8 to retain 

the lowest function value8 obtained 80 far for fUtina the quadratic, and 

when we are in an extrapolaUna position, a bound i8 set up to ufe,uard 

the reliability of the predicted minimum. 

Fi.ure 2.2. is a typical situation in practice wit.h (atb] bein, the 

current. int.erval of uncertainty. The minimum point predicted by the 

quadratic throu,h x, wand v will be obviou8ly unreliable because it is 

f(v) 

d --+1+4 --+--__ 
2 1 

v w x m 
a Fi,ure 2.2. b 
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extrapola ting. A possible aafeguard is to build an artificial bound m 

within the interval [a,b] such that the predicted point cannot exceed m. 

The artificial bound being used here is defined as follows: 

where 

and 

or 

/l(a - x) 
m = 

{

X + 

x + /lCb - x) 

fJ:::: !UC-d 1/ d2 )U 

5/ 11 CO.1 - d 2/d 1 ) 

d2 = b - x 

dz = a - x 

} 

} 

if w > x 

if w < x 

if Idd<ld21 

if Idd)ld21 

if w < x 

if w > x 

(2.3.38) 

(2.3.3b) 

(2.3.3c) 

An account supporting the UBe of the above as an artificial bound in the 

hybrid method can be found in the ori.inal paper (Gill and Murray, 1974). 

This technique which combines (2.3.1) and (2.3.3) waa termed the 
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safe,uarded Quadratic univariate minimisation method. From now on a 

step defined by (2.3.3) will be referred to as a compari80n step becau8e 

one can devi8e a univariate function-comparison minimisation al&,orithm 

using (2.3.3) only. 

The tolerance for the purpo8e of terminating the search i8 a function 

of the relative error C' and the absolute error T. This function is defined 

as: 

tol(x) : C'lxl + T 

and the al,orithm is said to have conver,ed to the minimum if max (x-a.b-x) 

<. 2tol(x). The two scalars C' and T will depend on the accuracy of the 

computer bein, used. A suitable choice is to set C' and T to ~t/z when 

the computation is carried out on a computer with t-bit wordlen,th. 

With practical problems, we are often '-norant even about the 

approximate location of the minimum. If we were to specify an interval of 

uncertainty throu,h &,uessin" this would most certainly lead to an 

overstatement of the initial interval 80 that we can be sure that it brackets 

the minimum. In our pro,ram, we set t.he init.ial step-size to be 

O.llxl+lOOtol(x), where x is t.he startin, value. This step is t.hen taken. 

If the new point is hi,her t.han t.he startin, point t.hen all subsequent 

step a will be taken in t.he opposite direction. ot.herwise we will continue to 

take positive steps. The size of each subsequent step ... 4 tilDe. the 

previous step. The lower (if positive step) or upper (it ne,aUve step) 

bound of t.he half-opened interval is updated every iterat.ion. Thi. 
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continues until a higher point is located in which case we have bracketed 

the minimum and the safeguarded quadratic minimisation algorithm is used 

to shrink this interval until it satisfies the termination condition. 

Because of rounding error in the computation of f(x), apurious modes 

can be int.roduced even if they are not. present in the function. This can 

be dealt with by prohibiting the evaluation of the objective at points which 

are less than some amall diatance apart.. In algorithmic terms, this means 

we have to make sure that the predicted point ia at leaat a diBtance of 

tol(x) away from x, a and b. This iB the reason why in definition (2.3.3) 

the aituation of w = x iB excluded. However, there is a need to modify 

(2.3.3c) Blightly. Since the point predicted by a comparison step ia alwaYB 

in d2 , therefore, if d2 <. tol(x) we must interchange d 1 and dz , and the 

larger half of the interval can then be reduced rapidly. 

If we merely keep the predicted point a distance of tol(x) from points 

x, wand v, thiB could lead to many ateps of aize tol(x) being taken. A8 a 

precaution against this, a comparison atep i8 laken whenever lei <. tol(x), 

where e ia the st.ep taken in the laat-but-one iteration. A comparison atep 

ia a180 taken if I pI q I <. HI e I, this is to enaure that the interval will at 

least be halved in every two iterations. To avoid comparison atepa in 

auccession, which is possible if e ia ama11 and the laat atep was a 

comparison atep, e is eet to be max( I dil. I dzl) whenever a comparison atep 

ia taken. All theae modificationa can be found in the oriainal paper. 

Most of which were first au"ested b7 Brent (1973) in hia .t.eplen,th 

al,orithm which combinea polynomial approximation with Golden Sect.ion. 
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2.4. THE MULTI-VARIATE MINIMISATION METHOD 

This is the modified Newton's method by Gill and Murray (1972a, 1972b). 

In the k th iteration, this method performs the followin. three main steps: 

1) Det.ermine a descent. direction vector, p(k). 

2) Find a scalar cx(k), known as the steplen,th, such 

that f(x(k) + a(k)p(k» < f(x(k». 

3) Perform the descent., i.e. set x(k+l) = x(k) + a(k)p(k>' 

The Buperscript in bracket.s is used to denote t.he iteration number. 

The basic difference bet.ween this method and the clasaical Newton'a method 

lies merely in (1). 

Accordin. to the clasBical Newton'. method, t.he descent direction p(k) 

iB obtained by .alvin,: 

(2.4.1) 

where .(x(k» is the vector of part.ial derivativea of f and G(z(k» ia t.he 

Hessian matrix both at point x(k). If t.he Heaaian matrix G(x(k») ia poaitive 

definite, i.e. all the ei.envalueB of G(x(k» are poaitive, t.he direction p(k) 

will have the property that the correapondin. ateple~t.h cxCk) muat be 

poaitive. This can be .hown by look in. at. t.he directional derivative of f 

in the direction of p (k), which ia: 

(2.4.2) 
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where p(k)T denotes the transpose of vector p(k). Because of (2.4.1), the 

right hand side of (2.4.2) can be written as: 

(2.4.3) 

which is always negative if G(x(k) is positive definite and not all the 

element.s of p(k) are zero. Therefore, a positive step in the direction p(k) 

must lead to a decrease in the objective. 

When G is positive definite, a numerically .table method of aolvin, 

(2.4.1) is first to factorize G(x(k» by the method of Cholesky into the form: 

where L (k) is a lower-trian,ular matrix with unit dia,onal elements and 

n(k) i8 a diaional matrix. Then find vector y from: 

by forward substitution, vector z from: 

and finally p(k) from: 

L(k)T p(k) = z 
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by backward substitution. The factorization of G(x(k» can be done usin, 

the method of Martin et al (1965). Their method haa n major .tepa, where 

n is the number of variables, durin, each of which a column of L(k) and a 

dia,onal element of n(k) are determined. Let 'ij' lij and d j denote the 

ijth elements and jjth element of G(x(k». L(k), and n(k) respectively. The 

jth step of the decomposition is ,iven by: 

and 

I· . lJ 

(2.4.4a) 

i=j+l ••••• D (2.4.4b) 

It is advantageous to work with the auxiliary quantitiea cij defined by: 

and (2.4.4) becomes: 

(2.4.5a) 

and 

i=j+l ••••• D (2.4.5b) 

The numerical .tability of this factorization method han,. on the positive 

definitene.. of the matrix G: when thia ia the caae. .11 \he dla,onala of 

D(k) are positive. When it is indefinite, or ain,ular, i.e. one or more of 

it. e~envalues i. Ie.. than or equal to zero, the factorization ia no lon,er 

numerically atable even if the factor. exi.t. In practice. a poaitive 

definite and yet very ill-condiUoned matrix can become indefinite because 
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the factorization is carried out in finite arithmetic. In either situation, 

the direction p(k) obtained throu,h (2.4.1) will not necessarily be a descent 

or 'downhill' direction because (2.4.3) is not always ne,ative. 

The modified Newton's method adopts a more aophiaticated factorization 

technique in which, when the matrix G(x(k) is sufficiently positive definite 

(within the accuracy of the computer), the factors are identical to those by 

Cholesky's method, otherwise the factors are the Cholesky decomposition of 

a positive definite matrix: 

O(k) = G(x(k»+ E(k) 

where E(k) is a diagonal matrix with positive or zero elements. These 

elements are determined as the decomposition takes place such that the 

factors of a(k) satisfy the following: 

1) each diagonal ela.ent of O(k) is alway. (reater than a 

machine dependent small constant. which can be .et to 

2-t when the computer has t-bit wordlen,th, and 

2) the ela.enta of L(k)fi(k)H are bounded by a constant • 

where: 

The original paper by Gill and Murray (19728) ha. the fuD detail. on the 

decomposition method and the rationale behind choo.in, the conatanta in 

(1) and (2). 
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When we use the modified Newton's method we are determining the 

March direction p(k) not by (2.4.1) but by: 

(2.4.6) 

which is only equivalent to (2.4.1) if E(k) is a zero matrix, i.e. when G(x(k» 

is sufficiently positive definite. Unlike (2.4.3), 

_p(k)T G(k) p(k) (2.4.7) 

will always be negative irrespective of whether G(x(k» is positive definite. 

This means we will always have a deacent direction which is determined in 

a numerically at.able way. 

The aearch direction will continuously be found by the use of (2.4.6) 

until 

and E(k) ia non-zero, where tol ia a small positive scalar. This means we 

are in the vicinity of a .. ddle point rather t.han a minimum. Since a 

.. ddle point has the property that U.(x(k)Uz = o. (2.4.6) cannot be used to 

,enerate any useful direction and an alternative is needed. Gill and 

Murray (1972b) used t.he fo11owin, strate,y. 

from: 

t(k)Ty :; ej 

They .alved t.he vector y 

where e j is the jth column of an (nxn) identit.y mat.rix and j is an index 
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such that: 

doCk) - Bo(k) J doCk) - B.(k) 
J J ~ 1 1 i =l, ... ,n 

with Bj(k) denoting the jth diagonal ela.ent of B(k). Note that d· (k) -J 

E i k ) is negative. The alternative search direction is defined as: 

if Ug(x(k)lI z ;. 0 

otherwise 

The reason for defining the alternative search direction a8 above is that 

t.his will be a descent direction even if 1I.(x(k)U2 = 0, because under this 

sit.uation the directional derivative of f in the direction p(k) is equals to: 

= dJ.(k) - B·(k) - f pJCk)Br(k) < 0 
J r=J+l 

where Pr(k) denotes the rth element of p(k). 

The search terminates it 1I.(x(k»lIz ( tol and E(k) is a Ara matrix, Le. 

G(x (k» i8 sufficiently positive definite. 

The work involved in pravidin. analytical aecond derivative in our 

multi-variate problems i8 quite substantial. Therefore t.he Bessian matrix 

G(x(k» i8 approximated by finite differencin. the derivatives as sUI,.sted 
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by the original authors. First we form the (nxn) unsymmetric matrix 

Q(k) whose jth column qik ) is given by forward differencinat at. i.e.: 

where h is the finite difference interval. 

then ,iven by: 

G(x(k» = (Q(k) + Q(k)T)/2 

In our program h is cho8en to be 10-8 • 

The 8ymmetric approximation is 

The oriatinal author8 8uatate8ted 

2-t / 2 but they a180 found t.he performance of the alatorithm almo.t invariant 

amonatst reasonable choices of h. 

There remain8 to describe how the ateplenatth CC<k) i. determined in 

each iteration. There are broadly t.wo de8cent. .t.rat.eaies, optimal and 

non-optimal. In an optimal de8cent method the .tep ie taken to the 

minimum in the descent direction. In a non-optimal de.cent met.hod the 

.tep i8 taken whenever there ia a .ufficient decrea.e in the objective but 

not nece8sarily the minimum in that direction. The non-optimal de.cent 

.trate.y when applied with care i8 u8ually more efficient. 

u8ed here i8 prop08ed by Gill and Murray (1974). 

The alatorithm 

The ba8ic philosophy of the .t.eplen,th alaorithm bein, uaed i. to 

proceed to compute t.he minimum of f(x(k) + ocp(k») in « uainat a 

safeatuarded polynomial approximation minimisat.ion method and terminate. 

the .earch when the function value at the new point i. Jud,ed to be 

.ufficiently lower than the current value. 
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Since we have both the function and .radient value available, cubic is 

used in the polynomial approximation. The basic strateacies are identical to 

those in the quadratic CBse described in section 2.3. However, in the 

cubic case only 2 points x and w will be held at each iteration and x will 

coincide either with a or b. Therefore in order to use t.he 88me definit.ion 

(2.3.3) for m in a comparison step, (2.3.3c) has to be modified to t.he 

following: 

e -x d -2 - a - x 
if w < x 
if w > x. 

(2.4.8) 

The additional strategy of taking a comparison .tep whenever t.he predicted 

.tep lies outside [a,b], lei , tol(x) or Ip/ql ) Hlel applies. Here t.he 

absolute error T in t.he definition of tol(x) haa to be adjust.ed by t.he 

division of IIp(k) 112 , 

While the m defined by (2.3.3a), (2.3.3b) and (2.4.10) can be used in t.he 

comparison st.ep, it is not optimal when x and w bracket the minimum, i.e. x 

and w coincide either with a and b or b and a. The optimal function 

comparison step in this case i. bisection, i.e. m = (a+b)/2. 

The minimisation will continue until we find an a such that: 

and (2.4.9) 
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where ,,(0 ( " ( 1) is a prescribed constant. If at this point: 

(2.4.10) 

then the steplen"th cx(k) = CL Otherwise let s be the first member of the 

aequence (H) j} auch that «II aatisfies: 

(2.4.11) 

and the steplen,th cx(k) = CIs. Condition (2.4.9) ia to enaure that the 

objective is decreased sufficiently. Note that when" = 0 condition (2.4.9) 

is equivalent to requirin, the minimum alon, p(k) to be found. Condition 

(2.4.10) is to prevent the aituation aa depicted in Fi"ure 2.3, in which case 

the halvin, atrate,y will guarantee a more saU.factory value for cx(k>. 

In addition, an upper bound ~ ia impoaed on ex. If t.he beat. point. 

obtained by the minimisation algorithm ia ~ and t.he directional derivative 

p(k)T,(x(k) + >.p(k» i. ne,ative, we will proceed to teat. condition (2.4.10) 

even if (2.4.9) is not saUsfied. 

a a 

'l,ura 2.3. 
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In our programs we have chosen " to be 0.4 80 that t.he minimum along 

p(k) is rarely found, and IJ : 10-4 to avoid halving the ateplen,t.h 

unnecessarily. 
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CHAPTER 3 

IMPLEMENTATIQN OF THE MINIMISATION METHODS AND NUMERICAL RESULTS 

3.1. INTRODUCTION 

There are altogether 9 prediction systems included in this study. One 

of t.hem has a Bayesian inference procedure and the remainin, 8 use 

maximum likelihood. Of these 8 systems only one has a model with a 

likelihood function which can be maximised analytically, the rest can only 

be optimized using numerical techniques. 

A section is devot.ed to each prediction system. When applicable, we 

first. investigate the possibility of reducing the number of parameters in 

the model so that the search can be performed in a space of lower 

dimension. Since some or all of the parameters are constrained (for 

example, the parameter must be positive or hiager than a fixed number, 

etc.), the next step is to transform the constrained problem into an 

unconst.rained one which is usuallY easier to solve. Althou,h the Bayesian 

system does not rely on the methods described in Chapter 2 for its 

parameter estimation, a numerical al,orithm is needed for the determination 

of its predicted median. Two methods for this purpose will be presented 

in the correspond in, section. 

The prediction systems were coded and tested on '1 eets of real data. 

6 of these data set,a come from Muaa (1979) and the remainin, one from 
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British Aerospace. The results provide us with considerable insight into 

the behaviour of the ML parameter estimate in each model. 

Previously, the Jelinski and Moranda model (1972) was most studied and 

best understood. Littlewood and Verrall (1981) have shown that the MLE 

of the initial number of faults in the program according to the Jelinski and 

Moranda model can be infinite if a certain condition in the data is not met. 

A detailed proof can also be found in Joe and Reid (1985) and Moek 

(l983b). This "excursion to infinity" behaviour of the MLE was observed 

to be present in all the models. Obviously we cannot achieve the value of 

infinity on a computer but the parameters can usume value of ma,nitude 

which is so big that computation carried out in this ran,e is beyond the 

accuracy of the machine. We will prove in the case of the Gael and 

Okumoto model (1979) that the likelihood function ia unimodal and also 

obtain the condition under which the MLE of one of the parameter. is at 

infinity. Details are given in Appendix 1. 

Unfortunately similar proofs cannot be found for the remainin, models, 

therefore we adopt the strate,y of .ettin, bound. on the parameter. 

instead. This means the technique. described in Chapter 2 will have to 

be modified into methods of ~jnimi~!iQn .uJ;>Ject to bo,=,nd~.~_ vat:~"les. 

This problem haa been investi,ated by Gill and Murray (1976). 

We also found that the multi-variate problems can be very unevenly 

scaled, i.e. the contours of the function are packed much cloaer to,ether in 

some directions, cRusin, the ateplen,th al,orithm to fail. A atratel" ia 

incorporated into the multi-variate al,orith~ to overcome t.hia difficult.y. 
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The result of applying the final programs to all 7 sets of data are given in 

the last section. 

3.2. THE JELINSKI AND MaRANDA SYSTEM (JM) 

The model used here is developed by Jelinski and Moranda (1972) and 

can justifiably claim to be the first software reliability model. It assumes 

that there are initially N bugs in the pro«ram each of which causes the 

program to fail according to a Poisson process with constant rate ., and 

the bug will be removed from the pro,ram once it causes a failure. 

Maximum likelihood is used to estimate the unknown parameters N :. i and 

4> > o. 

On observing i failures the likelihood function is: 

i . -(N-j+l)~ . 
f(t1, ... ,ti/N,4» =.n (N-J+l)te J 

J=l 
(3.2.1) 

and the natural 10« of this is: 

One can maximise (3.2.2) in two parameters Nand • and eliminate • by 

expressing it a8 a function of N. This is done by differentiatin« (3.2.2) 

with respect to (w.r.t) • and equatin« to zero which yields: 

i 

• = i 
(3.2.3) 

,t (N- j+l ) t j 
J=l 

Substitutin« (3.2.3) into (3.2.2) we «et: 
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i 
= t log(N-j+l) + ilogi 
j=l 

-ilog L~l(N-j+l)tj] -i 

and N can be obtained by maximising (3.2.4) then. from(3.2.3). 

(3.2.4) 

It is clear from (3.2.3) that if N :. i then. > 0, therefore we only have 

to ensure that the constraint on N is satisfied. By letting x 2 = N-i and 

expressing (3.2.4) in terms of x, the above constained problem is 

transformed into an unconstrained maximisation problem in x. The 

objective function is: 

i = t log(xz+i-j+i) + ilogi 
j=l 

-ilog(,~ (xZ+i-j+i)t ,1 - i 
J=l JJ 

(3.2.5) 

Littlewood and Verrall (1981) have shown that the MLE of N is infinity 

if 

i i 
t (j-l) t ' t t J, j=l J j=l 

--------- , --~----
i i 
t (j-l) 

j=l 

in which case • = 0 and the MLE of ). = N. is: 

.. i ). = ~~ 
i 
t t· 

j=l J 

Joe and Reid (1985) further proved t.hat N = i it: 

1 i 
-- t T' 
Ti j=l J 

(3.2.6) 

(3.2.7) 

(3.2.8) 
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and 
A i 

CI> = -----.:;--- (3.2.9) 
i 
"r (i - j+1 ) t J" 
J=l 

where TJ" is the total elapsed time before the jth failure, i.e. Tj = t tg. 
g= 1 

Conditions (3.2.6) and (3.2.8) are tested before the numerical search. If 

8 test is failed the MLE of the parameters wil1 be set according to (3.2.7) 

or (3.2.9) and no further search is needed. 

3.3. THE BAYESIAN JELINSKI AND MORANDA SYSTEM (BJM) 

The model used here is essentially the aame as JM in that t.he failure 

rate of the program depletes by an amount. of • whenever a failure occurs. 

The only difference is that the initial failure ). i. not necessarily an 

integer multiple of •• This modification was introduced to ease t.he 

inference, full details can be found in the paper by Littlewood and Sofer 

(1981 ). 

In the calculation of the post.erior and prediction distribution, the 

quantit.es {aj,i} are required. These are the x coefficient.s in t.he foUowin, 

product: 

i n (x-j) 
j=l 

i l-J = t a' . x 
j=o J,l 

and are defined by t.he following recurrence relationship: 

8' • J,l for j ) 1 

with 

80,1 = 1, a l ,l = 1 and Bo,i = 1 Y i 

(3.3.1) 

(3.3.28) 

(3.3.2b) 
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To delay overflow in computing the a's when i is big, we define: 

o 0 _ (i-j)! o. 

a*J 1 - 0, aJ 1 
I 1. , (3.3.3) 

and use a* in the calculation instead. A similar recurrence relationship 

for a* o. can be obtained through (3.3.2) where: J,l 

a* 0 0 = 
(i-j)! 

iSj-l,i-l + (i-J) ! 
J,l . , . , aj,i-l 1- 1. 

= a*j-l,i-l + 
(i-J) 

a*j,i-l i 
(3.3.4a) 

with 
(3.3.4b) 

Although the computation involved are complicated, they are all in 

finite closed form and will not take more time than t.he numerical search for 

MLE. However, if we want the predicted median, ~+1' we would have to 

solve: 

(3.3.5) 

.. 
where F i+l is extremely complicated and does not have an analytical inverse 

function. Once again we have to rely on a numerical procedure. 

A classical numerical problem is to find t.he zero of a function (St.oer 

and Bulirsch, 1980). To find the median, we define a univariate function: 

h(t) = Fi+1{t) - 0.5 (3.3.6) 

then we find t such that h(t) = 0 and our required .adian 8i+1 i. equal to 

I. We propose the following two .ethoda for Bolving h(t) = 0 nu.erically. 
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11) Newton's Method 

This method is iterative and terminates when IIh(t(k) )1/2 <. tol, 

where tol is a pre-assigned small positive constant. If this condition is 

not satisfied, we calculate: 

and set: 

t = t(k) _ h(t(k» 
h'(t(k» 

... 
t(k+l) _ {t 

- t (k) /2 

(3.3.7a) 

if t > 0 (3.3.7b) 

The derivative of h, which is the predictive density fi+1' is also 
... 

required in this method. The alternative in (3.3.7b) when t becomes 

negative is necessary because the function Fi+l' hence h, is only 

defined for positive values of t. 

2. Secant Method 

The ordinary Secant method involves fitting a straight line 

passing through the 2 points: (t(k-l),h(t(k-l») and 

This line will cut the t-axis at point: 

'" 
t(k-l)h(t(k»-t(k)h(t(k-l)} 

t = 
h(t(k}) - h(t(k-l}} 

(3.3.8) 

Then t(k+l) = i and the aearch terminatea it IIh(t(k+l) >112 ( tol, where 

tol is a pre-assigned amall poaitive constant. Otherwiae, the point 

t(k-l) is diacarded and t.he proceaa repeated with the two pointa t(k+l) 

and t(k). In our application it. would be necesaary to define t(k+l) as 

in (3.3.7b) with i defined by (3.3.8) because t.(k+l) cannot be ne,ative. 

In this method, only one evaluation of h i8 required per iteration 

except for the first where two function valuea are required. 
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Newlon's method has a higher rat.e of converaence which means it will 

need a smaller number of iterations to satisfy the termination condition. 

The Secant method is not very reliable if the starting value ia far from the 

IIOlution. But with a good startina value, it can be faster than NeWlon's 

method because in this particular application the computation involved for a 

function value or a aradient is roughly equal, therefore the effort per 

iteration, except the first, of the Secant method is rouahly half that of the 

Newlon's method. In our program we have uaed Newlon'a method for the 

calculation of the predicted lower quartile, median and upper quartile. 

3.4. THE _'@_~~--ffiD OKUMOTO SYSTEM (00) 

The model here is due to Goel and Okumoto (1979). It is a 

non-homogeneous Poisson process (NHPP) with a rate function defined as: 

(3.4.1) 

where T is the total elapsed time, i.e. the total execution time aince the 

beginnina of execution of the proaram. This model can alao be obtained 

by anowina the parameter N in JM model to be distributed .s a PoiallOn 

variate with mean IL 

On obaervina i failure. the likelihood function is: 

(3.4.2) 

where Tj i. the total elapsed ti.e to the jth failure, i.e. Tj = t ti' 
i=l 
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and the log likelihood is: 

(3.4.3) 

At the maximum we can express ~ in terms of • by differentiatin~ (3.4.3) 

w.r.t. ~ and equating to zero. This yields: 

i 
~:: --=---

l-e~i 

and when substitut.ed into (3.4.3) gives: 

R(t 1 , ••• ti/.) = -i + ilogi - ilog[l-e-~i) 
i 

+ ilo~ - •. E TJ' J::l 

(3.4.4) 

(3.4.5) 

Therefore • can be obtained by maximising (3.4.5) over • > 0 and it from 

(3.4.4). To transform this problem into an unconst.rained one, we define 

x2 :: • - ~ (3.4.6) 

here € is 2-t when t-bit wordlength is used by the computer for the 

calculations. We can now express (3.4.5) in terms of x which is: 

ft(t t·/x) - -1' + 1'10g1' - l'log[1 _ e-<X
2
+e)Ti] 

JI 1' ••• '1 -

i 
+ ilog(x2+~) - (x2+~) t T' 

j=l J 

.. 

(3.4.7) 

and optimise this over x for •• The reason for the additional term c in 

(3.4.6) is to avoid numerical difficulty in the log term in (3.4.7) when x2 

becomes too small. Note that;" ... when ... 0 because of (3.4.4) which is 

very similar to the behaviour of N in JM model. 

In fact it can be .hown that the likelihood (3.4.5) ill a concave 

function, and such a function haa the property that t.here can only be one 
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A A 

maximum. Furthermore, this maximum occurs at 4> = 0, which implies ,., = -, 

if: 

Ti 1 i 
-2 <'-1" E T" 

j= 1 J 
(3.4.8) 

The proof of the above is given in Appendix 1. Condition (3.4.8) is the 

Laplace test for trend in the T'S (see Cox and Lewis, 1965). 

Intuitively, the above condition cuts the total elapsed time interval into 

2 halves. If the average of the elapsed t.ime lies in the ri,ht-hand half, 

this means failures tend to occur late, which is in conflict with t.he arowt.h 

situation where failures will tend to occur more frequently at the be,innina 

of execution. When (3.4.8) is t.rue the rate function >'(T) ~ >. with: 

A i 
>. = 

T" 1 
(3.4.9) 

i.e. when t.here is no evidence of growt.h in the data, the model behaves 

exactly as a Poisson process with a constant rate. Condition (3.4.8) is 

incorporated into our program, while the definition of :lit in (3.4.6) remains 

as an ext.ra precaution. 

3.5. THE MYSA AND OKUMOTO SYSTEM (MO) 

The model in this prediction syst.em was developed by Musa and 

Okumoto (1984). This is essentially an NHPP with a rate function: 

'= >'(T) = f3 + T 

where T is the total elapsed time. 

(3.5.I) 
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After i failures have occurred, the likelihood function is: 

i '= (fJ+T ° ) '= 
f(t 1 , ••• , ti/'=tfJ) =.n __ ... J_-=-_ 

J=1 (Ill . )'=+1 ,...+TJ - 1 

(3.5.2) 

where Tj = ~ Tit To = Ot and the log likelihood can be Bimplified into: 
i= 1 

i ( t l' ... , ti/~, fJ) 
Ti i = ilog~ - ~log(l+ a-) -.r 10g{(J+TJo) 
,... J=1 (3.5.3) 

For the purpose of maximising (3.5.3), the parameter ~ can be 

eliminated from the log likelihood by differentiating (3.5.3) w.r.t. '= and 

equating to zero. This gives: 

i 
~ = --~--~ To 

10g(1 + ...!) 
fJ 

and when substituted into (3.5.3) gives: 

(3.5.4) 

T' i = ilogi - i - ilog[log(l+ a!)] - t 10g(fJ + T
t
') 

,... j=1 3.5.5) 

Since fJ > 0, we define: 

x2=fJ-£ (3.5.6) 

... 
where £ = 2-t for a t-bit machine and fJ can be obtained by maximi.ing: 

Ti i = ilogi - i - ilog[log(l + ()] - t 10g(x2 + C + TJ') 
xZ+c) j=l 

(3.5.7) 

over x. After which i can be obtained through (3.5.4). 
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3.6. THE DUANE SYSTEM (DU) 

The model here has been studied by Duane (1964) and Crow (1977) and 

is again an NHPP which has a rate function defined as: 

(3.6.1) 

When S < 1, the rate function is decreasing in T, it is constant when S = 1 

and increasing when S > 1. This is the only model of those included in 

this study which has a likelihood function that can be maximised 

analytically. 

After i failures, the likelihood function is: 

and the log likelihood: 

i 
n 

j=l 

S-l 
T' J (3.6.2) 

(3.6.3) 

The MLE of ). and S is obtained by ditferentiatin. (3.6.3) w.r.t. >. and ~ 

respectively, and equating to zero. This .ives: 

and 

i .. 
S 

T' 1 

.. i 
~ = ------~---------

i 
ilogr· - t log(TJ') 

1 j=l 

(3.6.4&) 

(3.6.4b) 

From (3.6.4&) it is clear that the constraint on ). being positive is 

automatically satisfied. 
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3.7. THE LITTLEWOOD SYSTEM (L) 

The model here is due to Littlewood (1981). It assumes that the 

inter-failure times are independent exponentials with rate which initially is 

the Bum of N independent and identically distributed (iid) Gamma variates 

with parameters ex and fJ, and N is reduced by 1 every time a failure 

occurred. 

On observing i failures the likelihood function is: 

(N- j+ 1 )oc(1J+T' j_' )OC(N-i+l) 
(~ + Tj)OC(N-i+l)+l 

(3.7.1) 

with T'j defined as in MO, and the log likelihood can be simplified into: 

i i 
= r log(N-j+l) - (1+oc) r log(~ + TJ') 

j=l j=l 

+ iloga + ~Iogp - (N - i)oclog(~ + 1'i) (3.7.2) 

For the purpose of maximising the above, oc can be expressed in terms of N 

and ~ by differentiating (3.7.2) w.r.t. oc and equating to zero. This yields: 

i 
oc = ----------~~---------------------

i 
,I: log(~+Tj) + (N - i)log(~ + 1'i) - Nlog~ 
J=l 

(3.7.3) 

which when substituted into (3.7.2) .ive.: 

i i 
i(tl, ••• tti/Nt~) =.r log(N-j-l) - t 10g(~1'J') - i + ilogi 

J=l j=l 

(3.7.4) 
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Furthermore, we define: 

x~ = N - i (3.7.58) 

and 

(3.7.5b) 

in order to transform the problem into unconst.rained minimisation in the 

two dimensional space of xl and x2. 

3.8. THE LITTLEWOOD NHPP SYSTEM (LNHPP) 

The model here can be obtained by lettin~ N in the L model have a 

Poisson distribution with mean "'. Miller (1986) called it the Pareto NHPP 

and Moek (1983a) inve8ti~ated the MLE of ita parameter •. The likelihood 

function aft.er i failures is: 

(3.8.1) 

the 10, of which is: 

i = ilog", + ilog« + Gilog. - (1+«) t 10g(~TJ') 
j=l 

(3.8.2) 
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Differentiating (3.8.2) w.r.t. IJ and equating to zero gives: 

i 
log(l - ~) 

ex = ---~:......-
/3 

log( f3+T.) 
J 

(3.8.3) 

The reason for eliminating ex instead of IJ is that oc is usually many 

orders of magnitude smaller than IJ and (J, therefore minimisin. in (oc,/J) 

space can be more difficult than in (IJ,(J) space because the former will be 

very poorly scaled. We further define: 

x~ = IJ - i - £ (3.8.4a) 

and 

x~ =/3-£ (3.8.4b) 

and perform unconstrained minimisation in (Xl ,x2) space for ;., and 21. 
.. 
0: iB 

then obtained from (3.8.3). 

3.9. THE LITTLEWOOD AND VERRALL SYSTEM (LV) 

The model in this sYBtem waB formulated by Littlewood and Verrall 

(1973). They aSBume the inter-failure times to be independent exponentialB 

and the jth has a failure rate which is a Gamma variate with parameters 

Growth or deterioration in reliability will depend on whether ",(j) 

iB increasing or decreasin. with j. Here we have used: 

(3.9.18) 
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with 

~1 + ~2 > 0 and ~1 + i~2 > 0 (3.9.1b) 

where is the current number of total failures. 

On observing failures the likelihood function is: 

i ~(j) CIC 
f ( t 1 I ••• , t i /a ,.., ( j » = n -.;....:...;~---

j=l (..,(j)+tj)CIC+l 
(3.9.2) 

and the log likelihood is: 

i i 
= iloga + a I: lo~(j) - (l + ex) ,I: log(~( j )+t J') 

j=l J=l 
(3.9.3) 

For t.he purpose of maximisini (3.9.3) ex can be eliminat.ed from the 

above by differentiating (3.9.3) w.r.t. 0: and equaling to zero. This lives: 

i 
0: = ----------~------------ (3.9.4) 

and the maximisation is now in the space of $1 and fJz. To remove the 

const.raints (3.9.1b) we consider: 

and 

Clearly ~(j) can be expressed in terms of "'1 and "'2 as: 

'I'(j} 

(3.9.5a) 

(3.9.5b) 

(3.9.6) 
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By defining: 

xf = ~1 - E (3.9.7a) 

and 

x~ = ~2 - E (3.9.7b) 

we can now maximise in the unconstrained (xl,x2) space by substituting 

(3.9.4), (3.9.6) into (3.9.3) with ~1 and ~2 defined by (3.9.7a) and (3.9.7b). 

The model here is almost identical to LV model (Keiller et aI, 1983). 

In this case the jth inter-failure time is exponential with rate which is a 

Gamma variate with parameters (~(j),#I), i.e. the arowth or deterioration in 

reliability is reflected through the shape parameter a rather than the Beale 

parameter #I. 

The likelihood after i failures is: 

= ni 'II (j ) #I'll (j ) 
f(t1,···ti~(i).#I) w(') 

j=1 (#I+t.)T J +1 
J 

and the log of which is: 

i 
- ,r [~(j)+l]lo'(~tJ') 

J=l 

(3.10.1) 

(3.10.2) 
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Here 'JI(j) is defined as: 

'JI( j ) 
1 = j<l2 ~+ 

(3.10.3a) 

with 
1 > 0 and + 

1 > 0 
OC1+<x 2 oc 1 ja2 

(3.10.3b) 

In order to reduce the dimension of the minimisation problem and to remove 

the constrains on the variables we define: 

and 

'JI(j) can now be defined in terms of )' 1 and )'2 as: 

Substituting (3.10.5) into (3.10.2) rives: 

i 
- t log(lJ+tJ·) 

j=1 

_ t 10gr(~-j) (j-l)] 
j=l [(1-1) + )'2 (i-I) 

(3.10.4a) 

(3.10.4b) 

(3.10.5) 

(3.10.6) 
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By differentiating (3.10.6) w.r.l. >'1 and equating to zero, we have: 

i (3.10.7) 

Finally, we define: 

(3.10.8a) 

and 

x~ = ~ - E: (3.10.8b) 

and cX
1

, cX2 and ~ can be obtained by first substituting (3.10.7) into (3.10.6), 

t.his function is then maximised over the unconstrained (xl ,X2) Bpace 

t.hrough definitions (3.10.8a) and (3.l0.8b). 

3.11. IMPLEMENTATION AND MODIFICATIONS 

The safeguarded quadratic approximation minimisation al.orithm (SQAMA) 

and the modified Newton's algorithm (MNA) described in Chapter 2 were 

coded as subroutines in Fortran 77 on an IBM PC-AT. The model 

programs used one or the other subroutine for the optimisation. 7 Bet.s of 

data have been used to test the performance of t.heBe al,orit.h.B. The 7 

8ets of data are System 1, Syst.em 2, System 3, System 4, SYBtem 6 and 

System SS3 from Musa (1979) and BAe data from British Aerospace. These 

data are listed in Appendix 3. The results of t.hese test.s provided us 
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with considerable insight into the behaviour of the MLE of the paramet.ers 

in each model. Furthermore, it is on the basis of the difficulties we have 

encountered during these test.s t.hat we incorporate certain chan.res to our 

original minimisation algorithms to make them more efficient for the more 

difficult problems. We begin by lookin.r at the univariate problems first. 

JM and GO model programs performed very well across all 7 data 8ets. 

However a potential difficulty exists in GO which is partly ori.rinated from 

t.he data it.self. 

There are often no dimensions ,iven for aoftware reliability data. 

They usually come as a sequence of numbera which mi,ht have already 

been scaled in some way which is convenient for recordin, and aecurity. 

Therefore, the magnitudes of two sets of data can be very different, even 

if the programs are equally reliable, just because the data have been 

aealed differently. For example, it is fairly obvioua that the ma,nitude of 

the failure times in System SS3 is bi,ger than that of Sy.tem 1, but if one 

multiplies the inter-failure times in Syatem SS3 by a factor of 10-' t they 

would not look so dissimilar in magnitude anymore. Some but not all of 

the parameter8 in a software reliability model are aeale invariant, i.e. the 

magnitude of the parameter does not chan.re when a po.Uive aeale ia 

applied to the data. Therefore the ma,nitude of t.hoae which are variant 

to aeale will depend on the acale of the data. 

Reeall t.hat in the caae ot GO model t.he minimiaation variable ia x = 

*,.,..: which is usually very amall. Alao recall that the aearch will 

terminate if max[ b-x,x-a) ( 2tol(x) wit.h tol(x) = c I x I +T a. defined in 

aection 2.3. This choice ot tol(x) ia aaUsfactory for I x I ) 1 but becomes 
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unsatisfactory when I x I is very small because T will then act as a lower 

bound on lol(x). In the extreme situation where i is of. the Ame 

magnitude as T, the termination condition will cease to have any effect on 

the accuracy of i, hence i. Merely Betting smaller valueB for £ and T will 

lead us beyond the accuracy of the computer. 

One way to get round this problem is to optimise in '" rather than •• 

Alternatively, we can scale the data such that Itl"'1. We have adopted the 

Becond strategy because scaling the data proved to be uBeful also in other 

model programs for a different reason. 

In the case of GO model, if a poBitive factor a is applied to the data, 

the magnitude of the new • parameter will become ./a. The method we 

have used to determine the scale factor s is dynamic. Let the factor uaed 

in the stage i minimisation be 8j and we obtained ~, the factor for stage 

(i+l) is given by: 

(3.11.1) 

with the value of s for the first minimisation arbitrarily chosen to be the 

reciprocal of the lotal elapsed time up to when t.he analyais atarts. The 

effect of using thiB scaling st.rategy is that not only ia t.he accuracy of • 

safeguarded, the efficiency of t.he minimiaation doea not auffer aa a reault. 

This is because the atarting value, which is • for t.he previoua atage, ia 

usually very close to the minimum. the value of which ia under our control 

via scalin,. 

In the caBe of JM model. the parameter N is acale invariant and the 
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program is already efficient.. Therefore, scaling the data serves no 

purpose and is not incorporated in the program. 

Although the parameter fJ in MO model is variant to scale, if the data is 

mult.iplied by s > 0 the new fJ value will become afJ, the size of which is 

usually bigger than 1 and therefore does not suffer the same accuracy 

problem as in GO model. But it has a problem of the opposite nature. 

When we analysed the data seta usin& MO, we observed that the run of 

/3 from stage to stage within a set of data is usually amooth if the 

corresponding samples of inter-failure times showed evidence of reliability 

,rowth. Otherwise, the magnitude of iI can fluctuate quite Bubatantially 

and assumes a value which is so bi, that computation is no lon,er 

accurate. 

Recall that the rate function of this NHPP is: 

).( T) = fJ~T 

and the MLE of e is given by: 

.. i e = T' 
10g(1 + 2.) 

II 

where Ti ia the total elapsed time at the {lh tailure. If • ia very bi" l: 

will also be very big becauae of the above relationahip. Lookin, at t.he 

rate function of t.hia model, if we let. ~ .. • and fJ .. • while F./fJ .. ~, t.his 

NHPP becomes a Poisson proceaa wit.h rate ~. Thia ia analo,oua to the 

ait.uation of N ... , ... 0 in JM model, or 1.1 .. •• • .. 0 in GO model when t.he 

data ahows no ai,n of reliabilit.y ,rowth. Unfortunately, we have not been 

able to prove reaulta similar to those in the case of JM and GO eo that we 
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can know when e .. • and ~ .. • and can avoid the numerical search. Here 

it is not only a matter of economising, but the value of ;. can be· so bill 

that the numerical overflowing and underflowing will either render the 

result of the search useless or cause the prollram execution to fail. 

In the absence of such a test condition, the strategy we have adopted 

is to restrict the size of the parameter /3 80 that we can stay clear from 

these numerical difficulties. This approach is further supported by the 

empirical observation that if the size of ~ is restrictd when it becomes too 

big, the detailed predictions that results from usin, the restricted value 

are not affected to any significant extent. Therefore, it seems that in 

these situations, the exact value of i or t is no lon,er si,nificant, but: 

will be the single quantity of importance. 

To choose a suitable upper bound on j for a ,iven data set is not. an 

obvious matter because the ma,nitude of ~ can be bi. for two reasons: no 

evidence of reliability ,rowt.h in the data or the observed inter-failure 

times are large because of their scale. Therefore a suitable choice for one 

data set does not imply its suitability for use in another. We su"est 

t.hat. the upper bound should be determined on the buis of a trial run 

performed on a subset of the data. In the trial run we .. t • lar,er than 

expected value for the upper bound and then run the model pro,ram for a 

few sta,es. The result of this run is usually a sufficient. aide for 

selectin, a suitable value to restrict. the size. ot ;.. It will only taU it the 

data shows no growth at each successive sta,e bein, tested. In this 
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case, we can use the Laplace test to find a trial run sub-sample which 

shows the presence of reliability growth before we try again. 

Having set an upper bound is only part of the preliminary work, the 

magnitude of ~ can still be unsatisfactorily large for the purpose of 

computation. In order to enhance the numerical accuracy, it i8 necessary 

to scale the data so that the scaled ii remains within the desired range for 

computation. The result from the trial run is again useful for the 

purpose of choosing the scale factor s. As a general rule, we choo8e 8 80 

that the 8c~l~~ upper bound of ii is not greater than 107 when 64-bit 

dou ble precision variables are being used in the computation. For 

example, if the trial run shows that .... 107 • we can .et the upper bound 

at 1010 and s can be chosen as lOs, which means the scaled ;. ... 102 and 

the !~~J~~ upper bound is 101 • 

The 8tarting value of the search must now be within the .et bound •• 

The usual choice is the minimum of the previous stage. But if this is 

equal to the upper bound value, it would not be a uti.factory choice. 

Therefore, we built in an option in the MO model program .uch that it ;. i. 

,reater than a pre-assigned value. this pre-a •• igned value will be u.ed 

in8tead of iJ as the starting value for the minimisation in the next .tage. 

The 8ettin, of upper bound on the minimisation variable mean. that the 

univariate search method has to be modified. Gill and Murray (1974) in 

their original paper sug,ested a method which can be uaed lor unimodal 

functions. While likelihood functions are usually well behaved. we are not 

entirely sure that the likelihood of MO model is unimodal. therelore we 
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adopt the following strategy instead. This method is applicable to 

problems with upper and lower bounds. The example we have used is for 

upper bound, the lower bound case. can be dealt with similarly. 

In the process of findin~ the init.ial interval of uncertainty [a,b], if the 

best. point yet happens to be on the upper bound, we set b to be the 

upper bound and update a to the previous x value. Fi~ure 3.1 shows how 

the points are configured. 

v w 
a Fiaure 3.1 

upper bound 

f x) 

x 
b 

The SQAMA i. then used to reduce t.his interval [a,b]. It ia clear from 

Fhture 3.1 that the use of thia al,orithm would only lead to a aequence of 

comparison st.eps. However, point x coincides with b in t.his aituation (x 

will coincide with a if it would have been a lower bound) and definition 

(2.3.3c) cannot be used without modification to obtain the d, and dz 

required in definina a compariaon atep. We propoae t.hat the 

corre8pondin, value of d, which is auppoaed to be aet to (x-a) in (2.3.3c), 

be aet to -to1(x) instead, if x=a. Similar I)" the d which ia auppoaed to be 

aet to (b-x) in (2.3.3c) be aet to to1(x) instead. it x=b. Nole t.hal x can 

only coincide wilh eilher a or b at anyone lime, t.heretore only one of t.he 
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d's will be 0 and hence be changed. By doing so, d 2 will always be set 

to the full interval [a,b] and the comparison step will be defined within it. 

The use of this strategy means that the objective will be evaluated at a 

few points, which are progressively closer to x, before we decide x is the 

bounded minimum. The number of such evaluations is usually smtlll and in 

return we can be more confident that x is the minimum point within the 

initial interval ra,bl. 

This modified version of SQAMA is used by the final version of JM, GO 

and MO model programs. In all cases, the lower bound is set to be t.he 

minus of the upper bound which obviously can also be set to 0, but the 

larger range does not affect the efficiency of the pro,rams. The upper 

bound in the case of JM and GO is usually set to an arbitrary bi, value 

because it IS basically redundant. The scalin, of data is done 

automatically in the case of GO model while no .caling is used in the JM 

model program. The alternative slarting value option ill not used in either, 

but the minimisation algorithm automatically checks and ensures t.hat the 

starting value is away from the bounds. In the case of MO the modified 

minimisation algorithm, the scaling of the data and t.he alternative startin. 

strategy are all contributive factors for the efficient determination of 

trustworthy MLE of the model paramet.ers. 

When we analyse the dala with the remainin, 4 models, we find that 

the LV and KL model programs performed very efficiently, but. 1es8 .0 in 

the case of Land LNHPP. This is due to the MLE of the paramet.ers in L 

and LNHPP being frequently very large. When this happens, the 

convergence crit.eria in the search algorithm are usually not sallsfied, 
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resulting in a failure in the MNA. This behaviour was also observed to be 

present in the MLE of LV and KL model but only infrequently among the 

data sets we have analysed. 

Miller (1986) has studied the behaviour of Land LNHPP (called the 

Pareto NHPP by Miller) model when their parameters take on various 

limiting values. In the case of L model. using an obvious notation: 

Lt L(N.o:.l3) .. f«)(~.I3) 1 
N-teo .0: .... 0 I 

Ncx .... ~ I 
I 
I 

Lt L(N.o:.l3) .. JM(N.t) I 
ex~.f3.t- ~ (3.11.2) 

CX/fM) I 
I 

and I 
Lt L(N.o:.l3) .. HPP(>.) I 

N-too • f3.t- I 
Ncx/fi-t). J 

where HPP(A) represents the homogeneous Poisson procellS with rate A, the 

rest correspond to the various models and their respective parameters. 

Similarly, in the case of LNHPP, 

Lt LNHPP(~.ex.JJ) .. MO(~.JJ) 1 
,.,....0:....0 I 
J,IX~ I 

I 
Lt LNHPP(~,ex.JJ) .. GO{~.t) I 

ex ........ • (3.11.3) 
0:1 ... I 

I 
and I 

Lt LNHPP(~.ex.JJ) .. IIPP()'} I ,.,... ..... I 
IISIfJ-+A J 
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It is illuminating to compare the rate function of the models in the L 

family. The HPP is the only member with a constant rate, t.he others all 

have a rate function which is decreasing either with the number of failures 

occurred so far (JM model) or the elapsed time (MO model) or both (L 

model). Therefore, one can distinguish between these models by the 

different ~guctur~ of reliability growth each model represents. From this 

viewpoint, the observed behaviour of the ML parameter estimate in this 

model is merely reflecting the structure of reliability growth which is 

present in the data. Therefore, if the likelihood of JM model i8 maximised 
.. 

when N = • and f3 in MO is very big for a particular set of data, we can 

certainly expect Nand iJ in L model to take very large values when we 

apply it to the same data. 

The behaviour of the ML parameter estimate in LNHPP model is identical 

to L, but in the case of LV and KL, though we believe it i. also related to 

certain structure in the failure data, they are not as well understood. 

Whatever the underlying cause of this behaviour in t.he MLE may be, 

the prime concern here is to find an efficient way of obtaining the MLE of 

these models. Since each individual likelihood function is far too 

complicated for the purpose of obtaining conditions on data under which 

the various parameters in a model attain their possible limits, we opted for 

the same strategy as used in MO model, i.e. set upper bound on t.he model 

parameters. 

Gill and Murray (1976) have outlined a method, which is based on t.he 

MNA, for solving minimisation problems subject to bounds on variables. 

Because there are only 2 variables in our problems here, we have used a 
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simpler approach which will ~f?~ be applicable to problems with more than 2 

variables. The following extra steps form a shell on the MNA and have to 

be performed every iteration. 

1. For each of the two variables check whether it is a fixed or free 

variable. A fixed variable is one which hits the upper bound and has 

a negative gradient component or one which hits the lower bound and 

has a positive gradient component, otherwise it is a free variable. 

2. If both variables are free, the search uses a usual MNA iteration. 

3. If both variables are fixed or if one variable is fixed and t.he 

absolute value of the gradient component correspondin, to the free 

variable is less t.han a pre-assigned small positive constant, tol, the 

search will terminate and the current point is the bounded minimum. 

4. When one variable is fixed but the size of the ,radient component 

of the free variable is not smaller than tol, an accurate line search will 

be performed in the direction of the free variable. If this line search 

fails to locate a lower point then the al,orithm cannot find a bounded 

minimum which satisfies t.he termination condition and the search can 

either be terminated or restart at another point in the feasible re,ion. 

Otherwise the search returns to step 1. 

The above extra steps can be easily added to the UNA pro, ram. The 

only alteration required within the basic MNA is in the settin, of the upper 

bound ~ in the steplen,th algorithm. ~ waB chosen arbitrarily as 10. in 
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the unconstrained situation. Now it will be set to the largest possible 

step along the descent direction p(k) so that a bound is not crossed. 

Model 
parameters 

Minimisation 
Variables 

L 

N,cx,/3 

LNHPP LV 

,."cx,/3 

IL 

~ (j) = ___ 1 ___ _ 
,fJ 

CXl+j~ 

I cxl+«2 
Xl=.· - C 

cx1+iocZ 

Table 3.1. Relationship between the ~el parameters and the 
minimisation variables Xl and xz. i is the aample 
size and € = 2- t on at-bit wordlength ca.puter 

Recall that the minimisation variables in each caae are not neceasarily 

the model parameters. Table 3.1 aerves as a reminder ot the relationahip 

between the minimisation variables and the respective model parametera. In 

our pro.rams, upper bounds are eet on xl and xl inatead ot the model 

parameters. 

To find suitable upper bounds for xi and xl is aaain not t.rivial. In 

t.he case of LV and KL, the proaram will uaually analYH the data without 

much difficulty, we can set some bia values for t.he boundar and lower t.hem 

to more suitable values only if t.he MLE at different .taae. make excuraions 

to very large values. 
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.. 
For Land LNHPP model, t.he bound on /J can be Bel to t.he bound used 

for ~ in MO model because of the limiting relationship bet.ween them. The 

other variable xl in t.hese t.wo models is invariant to Bcale. It. has a 

physical interpretat.ion as the number of bugs still remaining in the 

program, the upper bound of which can be Bet lo a value judged t.o be too 

big for any practical program, e.g. 106 • 

In all cases, the Bcaling option is included so that we can control the 

size of t.he variables which are variant. to Bcale, to be wit.hin the ranare 

suitable for computation. Also included is the option of Btartin, the 

search at a pre-assigned point. if the previous MLE i. jud,ed to be too 

close to the bound. 

From our preliminary tests we also observed that very occaBionally, 

when MLE were behaving normally, i.e. not exceptionally bi" the Bteplen,th 

algorithm failed to locate a lower point, and because the current. point did 

not satisfy t.he t.ermination conditions, the MNA failed aa a reBult.. But if 

we perturb this point slightly, a converged Bolution can uBually be found 

very near to the point at which difficult.y firat arOBe. When we 

investigate this in detail we find that the problemB we are tryin, to aolve 

can be extremely unevenly acaled. Geometrically, thia meana t.he contours 

of the two dimensional surface are hi,hIy elon,ated. When analytical 

HesBian G(x (k)) is available, the Bcalin, of the problem will not affect the 

performance of the modified Newton'B al,orit.hm. But in our caBe, Bince 

the HesBian is bein, approximated by forward differencin, t.he ,radient, 

the approximation error will have an effect on t.he performance of t.he 

al,orit.hm. In one particular case we found the ratio of t.he ,radient 
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components to be 104 , with the smaller element being less t.han t.he set 

tolerance of 10-7, at. t.he point where. t.he st.eplen.cth al.corit.hm failed. It is 

clear that differencin.c Quantit.ies of such order of ma.nitudes can 

int.roduce considerable error into the approximat.ed G(x(k». The effect of 

t.he error in G(x(k» can t.hen cause the resulting p(k) not to point. at t.he 

minimum. Recall t.hat in t.he steplength algorit.hm, a new point must. be at 

least a distance of t.ol away from any previously used points to avoid 

artificial modes. Therefore the steplength algorithm can still fail even 

thou.ch p(k) is a descent direction, if the situation is as depicted in Fhcure 

3.2. In Figure 3.2, p represents the direction towards the minimum and 

p(k) is the MNA search direction. When the contours are highly elon,ated 

and the current point is situated as in Fi.ure 3.2, the an,le between the 

two search directions, a, does not even have to be big to cause the 

st.eplen.cth algorithm to fail. 

I I I 
I I I P 

I I I 
I , I I I I (k) 

I I / 
p 

I I I 
I I / 

I '/ 
I (.I 

I 
I 

I 

I 
\ , 
'-"" 

Fi,ure 3.2. 
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One possible solution is to use a more accurate G(x(k». We have tried 

using central difference instead of forward difference. This method 

requires twice as many .radient evaluations than the forward difference 

method but the approximation is usually more reliable. However, if this 

method were to be used throughout the search, the extra .radient 

evaluations are not justified because the difficulty with the .teplength 

algorithm only arises infrequently. When it does occur, there is no 

guarantee that we can overcome it just by using a more accurate estimate 

of C;(x(k». In view of the above, we have adopted the followin. strategy 

instead. 

Whenever the steplength algorit.hm fails to locate a lower point, we 

perform an accurate line search in the direction of the steepest descent. 

This direction is simply: 

_g(x(k»/lIg(x(k»1I 2 

and is a guaranteed descent direction which can be obtained eaeily. 

Another advantage of using this eearch direction is that when one .radient 

component is significantly bi.ger than the other, a. in the caee we have 

quoted above, the search will then be mainly in the variable with the 

bigger gradient. If this .earch produces a lower point then we continue 

with the steps in a usual iteration. Otherwi.e, we reject the critical point 

and start the MNA .earch at a perturbed point in the vicinity. The 

perturbation in the ith variable, is arbitrarily choBen to be: 

for i = l,Z (3.11.4) 
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where gi (x( k» and Xi (k) is the ith component of the .radient and the 

variable respectively. When the perturbed component lies outside its 

bounds, the sign of the perturbation defined by (3.11.4) ia chan.ed. The 

rejected point and its function value is stored so that if the search failed 

later for another reason at a different point, the point with the lowest 

function value will be returned. This strategy has proved to be effective 

in the cases we have tested. A converged solution was found either in 

the steepest descent search or roughly after 2 to 3 further iterations if a 

new point in the vicinity had to be chosen. 

The results are summarised in two main tablea. Table 3.2 is for JM, 

GO and MO models which used the univariate search al.orithm. Table 3.4 is 

for L, LNHPP, LV and KL models. All these pro.rams were implemented on 

an IBM PC-AT and double precision variables with 64-bit wordlen.th were 

used in all the computations. 

We have not timed the runa because it would be machine dependent. 

Instead we will report ft, which ia the average number of function 

evaluations per stage in the case of Table 3.2 or the avera,e effort per 

Ita Ie for Table 3.4, for each of the data .ets. Effort i. defined here a. 

either a function or a ,radient evaluation because they involve rou,hly t.he 

lame amount of computation. 

For the models in Table 3.2, the option of set tin, upper bound on t.he 
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System 1 System 2 System 3 System 4 System 6 System SS3 BAe 

(101) (41 ) (28) (40) (53) (188) (127) 

3M xB 10e 10e lOe 10e 10· 10· 10' 

fi 11.4 11.8 13.6 12.4 13.2 12.8 12.8 

(€=T=10-· ) 

GO xB 10e 10e 10e 10e 10· 10e 10· 

n 10.7 11.0 14.0 11.4 14.2 11.8 12.7 

(€=T=10-9 ) 

XB 10' 10 7 107 10 7 10' 1010* 10' 

Xs 10· 106 106 10· 10' 10' 10' 

S 10- 3 10- 3 1<,3 10-4 10- 2 10-· 10-4 

Ii 10.5 n.8 12.8 n.3 12.7 12.6 11.2 

(€=T=lO-' ) 

Table 3.2. Summary of the values used for the parameters in the 
minimisation algorithm 

(xB = upper bound of x2 where x is the .ini.isBtion variable. 
Xs = upper bound on the square of the starting value of x, 

s = scale factor applied to data, 
£ = relative error and 
T = absolute error used in defining 

to1(x) = £lxl+T for use in search ter.ination) 
and the associated average number of function evaluations per state ft. 
The number below the data name is the total number of stages. 
If the upper bound was reached during any stage, it is followed by a *. 
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minimisation variable is only effective in MO model. Out of the 7 data 

sets, this option was required only for System SS3. Table 3.3 ahows how 
.. 

iJ fluctuates in this case over a range of atages. The upper bound on (J 

in this case was set to be 1010. 

stage i 
.. 
(J x 10-8 

128 1. 9401 

129 6.8663 

130 100.0000 

131 100.0000 

132 5.3996 

133 100.0000 

137 100.0000 

138 3.7539 

139 3.8847 

140 8.7773 

141 100.0000 

Table 3.3. MLE of _ in Me .ode} for Syatem SS3 data. 
Upper bound OD • is 1010• 

On the basis of the reaults in Table 3.2, it ia clear that the method we 

propose for obtaining the MLE of the parameters in theae 3 modela ia very 

efficient indeed. The highest average number of function evaluaUona per 

atage ia 14. 

In the case of those· models in Table 3.4, it i. alllO clear that the 

modified Newlon'. method is efficient in BOivin. the parameter •• Umat.ion 
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System 1 System 2 System 3 SYBtem 4 System 6 System SS3 BAe 
(101 ) (41) (28) (40) (53) (l88) (127) 

L xB1 1 10'* 
~ 10' 10'* 10'* 10'* 10'* 10'* 

XB2 J 1010* 

xB11 108 

~ 106 106 106 108 108 10· 
XS 2J 109 

s 10- 3 HJ 3 10-2 10-2 10-1 10-5 10-3 

ii 59.9 47.4 84.5 149.8 236.7 63.9 150.9 

LNHPP xB11 10'* 
~ 10'* 10'* 10'* 10'* 10'* 10'* 

XB2 J 1010* 

xS11 10· 
~ 108 108 10' 10· 10· 10' 

XS2J 10· 

B 10-3 10- 3 10-2 10-2 10-1 10-' 10-1 

Ii 55.4 59.8 53.0 90.6 61.7 53.2 109.3 

LV xB11 106 * 
~ 108 10' 10· 10· 10· 10' 

XB2J 108* 

xS 11 106 

10' ~ 10' 10' 10' 10' 10' 
XS 2J 10' 

• 10-3 10-4 10-3 10-2 10-2 10-· 10-4 

Ii 26.5 74.3 21.8 21.1 18.4 16.2 18.0 

KL XB11 
10'* 10'* 10· 10' ~ 10'* 10' 10· 

XB2J 

xal 1 
108 10' 10' 10· la' 10· 10' ~ 

X.2J 

• 10-3 10-3 10-' 10-1 10-2 10-· 10-4 

Ii 59.0 26.8 22.0 41.2 19.4 22.8 19.4 

-
Table 3.4 .Summary of the value used for the para.eter. in the ainiailation algorithm 

(xB = upper bound on xf where Xi il the ith co.ponent of the .iniaiaation variable, 
Xs = upper bound on the Iquare of the startinl value of Xi-
a = acale factor applied to data, 
C = T = 2.5xIO- IO for calculating tol(u) in the Iteplen,th algoritb. and the 

aini.iaation il said to have converged at x if IIg(xHlz < 10-7 and the 
associated average effort per stage ft. 

If at least one of the bounds wal reached at any Itage, it il followed by a •• 
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problem in LV and KL model, but less so in the case of Land LNHPP. 

However, the algorithm is not the cause of this worse performance. 

The main reason for the large amount of effort involved in Land 

LNHPP is because the program was constructed to continue searching until 

it finds a point which converges (satisfies the termination condition) or 

terminates if the maximum effort allowed, which is 300, is exhausted. 

Should the algorithm fail before the maximum effort allowed is exceeded, the 

search will restart in another point in the vicinity. Therefore the final 

point is either a converged solution or the best point yet within the total 

effort spent. Thus, when there is a large proportion of non-converging 

stages in a data set, the average number of effort will tend to be high. 

Had a lower figure been used as the maximum allowed, the average figures 

in Table 3.4 will come down in the case of Land LNHPP. However, t.he 

risk of using a low value for the maximum allowed is that the accuracy of 

the solution to more difficult problems could be affected. 

Another reason is the large fluctuation which is present in the MLE of 

the parameters in these models, noticeably in L. The followin, examples 

are chosen to illustrate the extent of fluctuation exhibited by the MLE in 

each model. The first is L on System 1 data over sta,es 81 to 103, ,iven 

in Table 3.5. 

The column of n is the effort required for that .ta,e. When the 

algorithm did not conver,e, it is followed by a *. The upper bound on 

(N-i) and fJ were set to be 10'. It is spectacular how the parameter 

estimates fluctuate from sta,e to stage. By this behaviour, L model was 
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System l(L) 

A A .. 
10-4 Stage i N ex /3 x n 

81 hl0' 0.4529xl0-s 0.4218 44 

82 1x10' 0.4639x10-s 0.4386 24 

83 0.1058xl0' 0.3996xlO- 4 0.3769 16 

84 0.4504xl0' 0.9141xl0-s 0.3605 26 

85 95 0.6569xl0 3 0.7665xl0 3 302* 

86 95 0.3883xl0 3 0.4514xl0 3 302* 

87 96 0.6054xl0 3 0.7216xl0 3 304* 

88 97 0.2683xl0 3 0.3262xl0 3 304* 

89 285547 0.1394xl0-3 0.3409 212 

90 679705 0.5842xlO- 4 0.3396 22 

91 698491 0.5711xl0-4 0.3423 18 

92 108 0.3435xl01 0.4425xl01 136 

93 98 0.8095xl03 0.9993xl03 302* 

94 99 0.1631xl03 0.2061x103 302* 

95 105 0.4552xl01 0.5734xl01 62 

96 125 0.1236xl01 0.1691x101 38 

97 166 0.5170 0.8586 36 

98 145 0.7345 1.1064 26 

99 168 0.5050 0.8495 28 

100 167 0.5124 0.8586 52 

101 322 0.1655 0.4845 40 

102 0.5572xl0' 0.6949xl0-s 0.3261 128 

103 lxlO' 0.3967xlO-1 0.3408 40 

Table 3.5. MLE of the unknown parameters in L for Systea 1 data 
over a selected range. 
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~ ~ 

switched between MO (when N ... 107 ), JM (when fJ ... 107 ) and itself. When 

this happens a larger effort is required because the starting value is not a 

good guess of the minimum anymore. 

Over the same range, the MLE of LNHPP does not behave as violent.ly 

as in the case of L, it only does the following switches as shown in Table 

3.6. 

Slstem 1 {LNHPP) 

.. 
ilxl0-4 Stage i '-I ex n 

90 lx10' 0.3970xl0- 5 0.3395 52 

91 1xl0 7 0.3989x10-& 0.3422 36 

92 lx10 7 0.3783xl0-& 0.3122 40 

93 0.7633xl0' 0.4682xl0- 3 0.2823 78 

94 0.2063x10 3 0.3017 0.5659 130 

95 0.1615sxl0 4 0.2330xl0- 1 0.3122 84 

96 1x10 7 0.3661x10-& 0.2823 106 

97 lxl0 7 0.3741xl0-1 0.5659 44 

Table 3.6. MLE of the unknown parueters in LNHPP for System 1 data 
over a selected range. 

However, it does not mean that it is incapable of behavin, like L. Table 

3.7 is a range of sta,es when LNHPP was applied to BAe data. 

The upper bound option was only used for LV in analysing Syst.em 2 

data. Table 3.8 shows the Budden chan,e in the ma,nitude of the MLE 

which took place between Bta,ee 42 and 43. 



Stage 

100 

101 

102 

103 

104 

105 

120 

121 

122 

i 
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BAe (LNHPP) 

... ... 
IJ ex 

1x10' 0.3381x10-4 

1xl0' 0.1566x10- 4 

0.9492xl0' 0.1467xl0- 4 

bl0' 0.1403xl0- 4 

0.1777xl03 0.1056xl0-4 

0.1877xl03 0.1506xl04 

0.1894x103 0.1034xl04 

0.2078xl03 0.9840xl01 

lxl0' 0.1318xl0- 4 

i!x1O-4 

0.1342x101 

0.5522 

0.4782 

0.4824 

0.6521xl03 

lxl0' 

0.9681x103 

0.7330xl01 
0.4477 

n 

130 

44 

70 

46 

304* 

124 

302* 

110 
290 

Table 3.7. MLE of the unknown parameters in LNHPP for BAe data 
over a selected range. 

System 2 (LV) 

... ... .. 
Stage i ex fJ 1 fJz n 

40 0.6080x10 4 0.7241x10· 0.2759x10· 96 

41 0.5933x104 0.7406x10· 0.2594x10' 64 

42 0.6138x10 4 0.7192x10· 0.2808x10' 54 

43 0.2137x10 2 0.1941x104 0.1130x104 62 

44 0.1417xl02 0.1441x104 0.6975x103 54 

45 0.1032x102 0.1182x104 0.4693x104 48 

Table 3.8. MLE of the unknown parameters in LV for System 2 data 
over 8 selected range. 
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Prior to stage 43, the ~(i) values were all on the upper bound. The 

change in the parameter estimate for KL also occurred between stages 42 

and 43. This is shown in Table 3.9. 

System 2 (KL) 

... ... 
Stage i <Xl <X2 /3 n 

40 0.1207x10-4 0.4421x10-& 1)(10' 26 

41 0.2833)(10- 3 0.933lxlO-4 0.4538)(10' 36 

42 0.1l89)(Hr 4 0.4462)(10-& 1)(10' 80 

43 0.1398)(10- 1 0.5485)(10-2 0.7967)(104 40 

44 0.1841)(10- 1 0.6125)(10-2 0.6629x104 20 

45 0.2434)(10- 1 0.6797xlO-1 0.5512)(104 20 

Table 3.9. MLE of the unknown parameters in KL for System 2 data 
over a selected range. 

The switching behaviour of the ML parameter estimate in all these 

models is because at each stage, the inference procedure selects a 

structure of reliability ,rowth, permitted by the model bein, used, to best 

fit the data. On observing the next inter-failure time, the parameter. 

have to be re-estimated on the basis of all the data now available. 

Certain asepcts of the data might have changed as a result of includin, 

this extra data point. For example, the enlar,ed data Bet mi,ht now fail 

the test for finile N in JM, in which case N will Jump from Borne finite 

value to • from one stage to the next. Thus, this fluctuating behaviour in 

the ML parameter estimates is in response to the chan,e in certain 

characteristic of the data from one stage to another. 
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We have compared the estimates obtained from our programs with those 

obtained using the programs coded by Abdel-Ghaly for his thesis (1986). 

His programs used the NeIder-Mead Simplex search (NeIder and Mead,1965) 

for the ML parameter estimation. This non-gradient minimisation is known 

to be robust and is easy to implement but is extremely inefficient. We 

found, however, that our programs succeeded in locating estimates with 

lower objective function value which were missed by the other programs. 

In fact in the estimates obtained from the NeIder-Mead programs, the 

switching behaviour was not detected and the algorithms simply terminated 

incorrectly. 

As for efficiency, it is difficult to compare between the bi-variate 

minimisation models because we have used a minimisation method which 

requires gradient, but those in Table 3.2 are undoubtedly betler. 

However, Abdel-Ghaly's programs were not constructed with the intention 

that they should be efficient, so it would not be a fair baBis for 

comparison. Nonetheless, we can safely conclude that our methods are 

efficient when the corresponding problem is relatively easy to Bolve and 

reliable when it is difficult. 
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CHAPTER 4 

MEASUREMENT AND ANALYSIS OF THE PREDICTIVE QUALITY 

OF ORDINARY AND ADAPTIVE PREDICTION SYSTEMS 

4.1. INTRODUCTION 

In this Chapt.er we shall first look at ways of measuring t.he aucceas of 

a prediction ayatem in performing its task of prediction. The idea behind 

most of these predictive quality measurement procedures is to compare the 

actual predictions made in the past wit.h t.he act.ual out.comea when they 

become available later. The current techniques are by no means complete, 

but jointly they can provide us with a lot of useful information on the paat 

performance of a prediction system when uaed on a particular data Bet. 

With this information at hand, it may help us to decide whether or not 

to trust the future predictions on the Bame program from t.he prediction 

Bystem in question. When more t.han one Byet.em ie being uaed 

Bimultaneously on a Bin.le data 8et, it would be even more important. to be 

able to identify t.he better ones. After all, how can we Juetify ueing one 

BYBtem inatead of another if we cannot Bhow that there are advantages in 

doing 80? 

The methods t.hat we Bhall pre8ent. here are only a Bubaet of t.h08e 

reported in Abdel-Ghaly et. al (1986), but they are 8ufficiently informative 

for our current purposes, 
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The idea of adapting future predictions on the basis of past prediction 

error in software reliability context is due to Keiller and LittlewOOd (1984). 

They have reported encouraging results in their paper on the basis of two 

predictive quality measurement procedures only. When we analyse the 

results using a new measurement tool, the preguential likelihood, we 

obtained conflicting conclusions. After further inveatiaations, we have 

identified the cause and the details are given in the following. 

4.2. MEASURING PREDICTIVE QUALITY 

So far we have been dealina with the estimation of the unknown 

parameters. The next step is to incorporate the reault from the inference 

into the prediction phase. 

For a Bayesian system, the predictive distribution for Ti+1 will be its 

posterior diatribution conditional on the data ~ , ••• ,t;. For a maximum 

likelihood system, the ML estimate of t.he unknown parameters baaed on 

data t 1,00.ti will be substituted into the diatribution of Ti+l as if they were 

the true parameters. The cumulative distribution 'unction (cdf) of Ti+1 ia: 

(4.2.1) 

The estimate of which, based on t"t2, ••• ,ti' is our predictive distribution 

F i+' (t). 
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Once we have obtained Fi+1(t), we can calculate quantities which are of 

interest to reliability measurement. The common statistics for current 

reliability are the mean or median time to the next failure, the rate of 

occurrence of failures (ROCOF), etc. Naturally, it is important to know 

whether these predictions are in good accord with reality. Therefore, our 

next task is to examine the closeness of the predictions to reality. As 

these statistics are derived from Fi+1(t), a good estimate of the latter 

which is close to the true Fi+l (t) will enable us to have good related 

estimates of any kind. Hence we shall focus our attention on examining 

the closeness of Fi+1(t) and Fi+l(t). 

The obvious difficulty in analysing the closeness of FH1 (t) and Fi+1 (t), 

which is also shared by other statistics we have mentioned, ariaes from our 

never knowing what the truth is, even at a later stage. In fact. all we 

will ever observe is the single realisation of Ti+1 when the program next 

fails, and we must base all our analyais of the predictive capability of a 

prediction system on these pairs (Fi+1 (t). ~+1)' 

Consider the transformations: 

for i) io (4.2.2) 

which is the estimated cdf at t.he act.ual observed failure time, and 10 is t.he 

initial stale at which we beain reliability prediction. If each Fi+l (t.) ia 

identical to the corresponding Fi+l (t) generating the obaervaUon l{+l' then 

according to formal theory. the u's would be realisations of independent 

and identically distributed (iid) Uniform (O.l) (U(O,l) random variables 
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(Rosenblatt, 1952, and Dawid 1984a). Consequently, our task of examininiC 

the closeness of Fi+1(t) and Fi+l(t) can be reduced to one of examining 

whether the sequence of u's is behaving like a random aample from U(O,l). 

If it does not, it must cast doubts on the suitability of the prediction 

system in question for the given data. 

Amongst many possible ways of examinin« the uniformity of a sequence 

of (0,1) random variables, here we will use the following two probability 

plotting procedures. 

4.2.1. The u-plot Procedure 

ASBume t.hat we have n u values lenerated at n successive sta,e •• 

Each of these u's is obtained via a transformation aB defined by (4.2.2). 

If they are really observations from U(O,l) random variables, their aample 

cd! should be close to the 45· line. The sample edt here is the step 

function which is defined on (0,1) and increases by lIn at each of the n 

order statistics of the u's. 

The two-sided Kolmogorov-Smirnov (KS) distance is used to si«nily 

departure of the sample cdf trom the line of unit slope. This distance is 

simply the greatest vertical distance between the sample cdf and the 45· 

line. Significance levels for the statistic can be found in Kendall and 

Stuart (1977) or Miller (1956). 

Intuitively, thia procedure aima at examinin, whether there ia any 

biasednea. in the u'a. If the KS distance ia ailnificant., it. would BUlleat. 
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that the u's are biased and would not have come from the uniform 

distribution. This would in turn imply the unsuitability of the underlying 

prediction system to be used for the particular data set. It is important 

to bear in mind that we are not merely trying to establish the success or 

failure of the model concerned, but rather of the prediction system 8S a 

whole. 

However, the order in which the u's are realised will be lost in the 

process of constructing the sample cdf. Thus we can, for example, have 

a situation where the first half of the unordered u's are biased towards 

low values and the latter half is reversely biased, and when they are 

combined together they look perfectly uniform. In this situation, the 

u-plot will not be able to detect the presence of such trend in t.he u's. 

The y-plot procedure, however, can prevent this kind of behaviour in the 

u's ,oing undetected. 

4.2.2. The l-plot Procedure 

The foundation of this procedure is that if the u's are indeed the 

realisations of iid U(O,l) random variables, the transformations: 

i=l ••••• n (4.2.2.1) 

will t.hen be realiaations of a aequence of n iid unit exponentials. When 

these x's are normalised by defining: 

i=l ••••• n (4.2.2.2) 
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the sequence of y's will be the order statistics of the realisations of n iid 

U(O,l) random variables. 

If trend is present in the Y'B, the X'B will no longer be realisations of 

n iid unit exponentialB, thus resulting in the y's being non-uniform (Cox 

and Lewis, 1966). 

The y-plot procedure compares the sample cdf of the y's with the line 

of unit slope. The KS distance is again used to ai,nify departure from 

the 45' line. 

4.2.3. The Preguential Likelihood 

Miller (1983) in private communication has pointed out that: 

" ••• a good u-plot reflects unbiased ness or bein, well-calibrated and a 

good y-plot reflects a ,ood fit of trend. But there ia a third aspect 

to quality of predictions: how noisy is the predictor? Two different 

predictors could both have very ,ood u-plots and y-plota but differ 

significantly in quality because of noise". 

To illustrate this point further, he constructed the followin. example: 

He aBsumed that the unconditional distribution ot Ti+l is exponential 

with rate >-j+l. Furthermore, thia rate is estimated as: 

(4.2.3.1) 
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Therefore, the predictive cdr is: 

A 

Fi+1(t) 
-~i-+ 1 t 

= 1 - e 
2t -

= 1 - e ti-l+ t i (4.2.3.2) 

It can be shown that: 

A ( ) j u] = log(1-u)[log{1-u)-4] 
Pr[Fi+l Ti+l' [2 - log(l-u)]2 (4.2.3.3) 

for u£(O,l), which is the expected u-plot of this prediction 8ystem if the 

underlying assumptions of the predictor are true for the data. As it i8 

not uniform, we can adapt using (4.2.3.3) and the adaptor i8: 

A log(l-u) [log(l-u)-4] 
Gi+l (u) = [2 - log (l-u) J2 (4.2.3.4) 

This means the adapted predictive cdf F*i+l (t) will have ~+1 and 'i+1 aa 

defined in (4.2.3.4) and (4.2.3.2) respectiVely, and can be simplified into: 

for t > 0 (4.2.3.5) 

It can be shown that: 

which means the u-plot should be very aood. Note that in the above the 

original predictor is beina adapted. Detaila on adaptive modelling are 

~ven in the next Section. 

I In practical situationa, even though the underlyina assumptiona of thia 

\ predictor are unrealistic, we can still expect the u-plol to be lood because 

I 



\ 

\ 
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of the way it is constructed; the trend is estimated using very local 

information, therefore the y-plot should also be ,ood. But it is fairly 

obvious that there is considerable noise in this prediction system -

successive predictors can fluctuate a ,reat deal. 

Table 4.1. shows the u- and y- plot distances and their corresponding 

significance level for the various prediction systems, and the predictor by 

Miller, when applied to System I data. The significance level of the 

distances is denoted by one of the letters from A to E. The ran,e of 

values they represent are as follows: 

A - above 20% 1 
I 

B - between 20% - 10% I 
I 

c - between 10' - 5' ~ (4.2.3.6) 
I 

D - between 5% - l' I 
I 

B - below 1% J 

Therefore, in the case of JM model, the u-plot ia ai,nificant at IX, GO is 

significant at 5% but not at 1 X and MO ia not si,nificant even at lOX. 

As we can aee from Table 4.1, MO, LNHPP and t.he Miller prediction 

system have the best u-plot and ,,-plot diatances. The noise which is 

present in the last prediction system haa ,one undetected. Therefore, we 

must look for some means of measurin, the variability or noise of a 

prediction system. 
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u-plot y-plot -log PL 

distance distance 

lM . 1874E . 1202C 770.253 

8lM .1702E .11618 770.694 

GO • 1525D . 1245C 768.568 

t«> .0805A .0642A 761.393 

DU . 1590D .0931A 765.299 

L .10898 .0732A 762.975 

LNHPP .0805A .0643A 761.439 

LV .1437D .10998 764.868 

IL . 1378D • 115GB 765.066 

Miller .0757A .0686A 790.802 

Table 4.1. u-plot and y-plot IS distances and log prequential 
likelihood of the respective prediction systems for Musa's 
System 1 data. Total number of predictions is 101 in all cases 

In a series of important papers Dawid (1982. 1984a. 1984b) dealt. wit.h 

various t.heoretical issues concerning the validity of forecasting systems. 

In particular, he int.roduced the idea of prequential likelihood (PL) which 

can be used to investi.ate t.he relative plausibility of t.he predictions 

emanating from t.wo or more different systems. 

The definition of PL is as follows. The predictive probability density 

function (pdf) of the random variable T i+l is: 

(4.2.3.7) 

. After a sequence of n predictions beginning at .tale lot the prequential 

likelihood ia: 

(4.2.3.8) 
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When there are two Buch Bystems A and B, a comparison bet.ween t.hem can 

be made via their prequential likelihood ratio: 

(4.2.3.9) 

Dawid Bhows that. if PLRn ... as n ... , prediction system B is discredited 

in favour of A, and when PLRn .. 0 as n .. ., prediction system A is 

discredit.ed in favour of B. 

To ,et. an intuitive feel for the behaviour of the prequential likelihood, 

we consider t.he followin, example. Let us assume, tor t.he sake of 

simplicity, t.hal we are trying to predict a aequence of iid random 

variable a , i.e. Fi+l (t.) = F(t.) and fi+1 (l) = t(l) V i. The ext.ension to our 

non-stationary case is t.rivial. 

Fi"ure 4.1 depict.s a aeQuence of predictive denaitiea and t.he true 

density. The predictive densitiea are all biased towarda t.he left relative 

to t.he true densit.y. Observations which will tend to taU within the body 

of t.he t.rue diatribution, will tend to lie in the riaht. hand tail of t.he 

predictive densitiea. Thus the prequential likelihood will tend to be amall. 

true 
-, 

1/ '\ 

/ \ 

Fi.ure 4.1 

\ , 
" "-

" 
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Anot.her situat.ion, depict.ed in Figure 4.2, is when t.he predictive 

densit.ies exhibit. a lot. of variation, i.e. they are very noisy, but on. average 

they are roughly unbiased. Here again t.he observations will tend to fall 

in the body of the true dist.ribution which corresponds to the tails of the 

predictive densities and t.he prequential likelihood will again tend to be 

small. Thus t.he prequential likelihood can in principle detect predictors 

which are either too noisy or biased or both. 

f· l. true - .... 
" " I \ 

/ \ 
\ 

\ 

Fiaure 4.2 

\ 
\ 

'-

Returning to the example of Miller'. prediction system, the -101 of the 

prequenUal likelihood of t.he respective predicUon systems ia .iven in the 

.at column of Table 4.1. While t.he PL confirms t.he superiorit.y of YO and 

LNHPP for this data, it also pointe out. the short.cominl in t.he Miller 

predictor. The PLR of NO a.ainst Miller is e2.. Even BJM. which has the 

lowest PL, a,ainet Miller is e20• Thus in all case., it i. hi.rhly probable 

t.hat the Miller syst.em is discredited. 
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Another situation which can occur in t.he cont.ext. of 8Oft.ware reliabilit.y 

is that, while t.he predictors are smoot.h, t.he true distributions fluctuat.e for 

different values of i due, for example, to bad fixes. In this case t.he 

observations will tend to fall in the body of the noisy yet true 

dist.ribut.ions which correspond to the tails of the predictors, and again we 

can expect the prequential likelihood to det.ect. it.. 

Alt.hough prequential likelihood is a ,lobal measure of predictive 

quality, it does not mean we can rely on the PL alone because ,iven the 

PL of a set of predictions is worse than another, we cannot separate out 

which of bias, noise or wrong trend ia responsible for t.his worse PL. 

Wit.h t.he u-plot. and y-plot. procedures, we can ,ain insi,ht into what. is 

objectively wrong wit.h these predict.ions. 

If two Bayesian syst.ems are bein, compared, the PLR can be the 

~eri.9r oJids_ ra~\Q of one system against the other (Abdel-Ghaly et ai, 

1986). Although we are not always dealin, with Bayesian s,.stem., odd. 

ratio 88ems to be a useful interpretation of the PLR, and we can always 

bear this inf9!:..J;l1al interpretation in mind. 

In practical situationa we would not know the location of the true 

distributions. Therefore, when we have more than one sequence of 

predictors, we can take the sequence with the hi.hest prequential 

likelihood as bein, the closest to the truth. Other predictive distributions 

which are significantly different can then be judged as being too noisy or 

too smooth or biaBed. 
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4.2.4. Median Plots 

For t.he purpose of comparing the location of different predictive 

distributions and their respective variability over different sta.ea, it. ia 

informat.ive to plot the predict.ed medians against atage i for each 

prediction system. The predicted median ~+1 ia the t value which 

corresponds to the 50~ point in t.he predictive cdf, i.e. 

(4.2.4.1) 

4.2.5. Su.D~ 

To aummarise, we shall use the u-plot procedure to check the 

unbiased ness of the u's and the y-plot procedure to check if they are 

trend free. The prequential likelihood and prequential likelihood ratio 

shall be used to compare ,lobally the relative plaUsibility of different. 

prediction systems. The predicted medians shall be plotted to provide 

informat.ion on the variability or noise of the predictive distributions. This 

will be the basis we adopt for the assessment of predictive quality of 

different prediction syslems. 

4.3. THE u-PLOT AND ADAPTIVE MODELLING 

Apart from detectin. the exislence of bias in the u's, t.he u-plot has 

one further useful feature. Suppose we have a prediction s,.stem which is 

consistently optimistic relative to reality. The actual observationa will 
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tend to be smaller than expected according to this predict.ion system. 

Consequently, the sequence of u's which result.s from a number of such 

predictions will have a high proportion of small u values. The sample cdf 

of such a set. of u's will lie predominantly above the 45' line. 

In the opposite situation when the system is pessimistic, the set of u's 

will have a high proportion of big u values. The u-plot of these u's will 

lie predominantly below the 45' line. 

Applying this observation in reverse, we can deduce whether a 

prediction system is pessimistic or optimistic for a particular data set by 

inspecting whet.her the u-plot. is predominantly below or above the line of 

unit slope. This kind of bias, i.e. simple optimism or peasimism, is only 

used as an example and the u-plot could pick up other consiat.ent 

departures from reality. 

Keiller and Littlewood (1984) utilised this idea further and constructed 

a aeneral adaptive procedure which allows current predictions to be 

improved in the light of past predictive behaviour of the system. Their 

method aims at improvina the future predictions of a prediction system 

which has a ,ood y-plot but poor u-plol. In other words, t.he met.hod 

should work best when we are reasonably confident that the t.rend 

(reliability arowlh) in t.he data is being captured by the system, but. t.here 

is still considerable biased ness. 

The rationale of this adaptive approach is aa followa. In theory, U 
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one knows the true cdt Fi+1 (t), one can always express this as a function 

of the estimated predictive cdf, i.e.: 

(4.3.1) 

The role of ~+1 can be viewed as correcting the estimated cdt Fi+l (t). If 

Fi+1(t) is indeed the true cdl, then Gi+l would lrimply be the line 01 unit 

.lope. 

It is conceivable that the estimated cdf is wrong only in bein, biaaed, 

in this caae Gj+1 will recalibrate the predictive cdl. Aa we have Juat 

established that the u-plot contains information on the nature of biaaednea. 

which ia present in a prediction ayatem, thia information could then be 

used to recalibrate future prediction by the same .Y8tem on the as.umption 

that this bias is expected to peraiat. To inaiat on having a good y-plot 

aims to ensure that any non-uniformity in the u-plot ia only due to 

bia.edneaa and not wrong trend. 

The ad~p.~(L pre4ict~ve edf ia defined aa: 

(4.3.2) 

where Gi+l ia the eatimated calibration curve for stage i baaed on the u's 

obtained from paat predictiona prior to the present stage. Thia i. 

repeated with a new G being conatructed at each .tage. Note that thia 

adaptive prediction method forma a genuine prediction system becauae it 

only uaes paat data to predict. 
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Keiller and Littlewood (1984) auggested the following t.wo ways of 
.. 

constructing the G functions. 

Method 1. Here G is essentially the u-plot of the u'a obtained 

prior to the current atage. In order that thia function be continuous 

and the adpated predictions are unique. the vertical increment ia 

1/ (n+l) inat.ead of 1/ n at each of the n u values, and G ia the function 

which int.erpolat.es this modified u-plot. In other worda, G ia the 

jQ~ned up aample cdf of the u's with at.ep hei,ht 1/ (n+l)' 

.. 
Met.hod 2. The G function here is conatructed in the aame way as 

in Met.hod 1, but. the u's are calculated uain, the moat recently 

estimat.ed model parameters. Therefore. at ata,e i of a ML ayatem, the 

first. atep is to estimate the model parameters usin, data ~ , ••• ,t,. 

These parameters are then substituted into the cdf'a of the paat ata,ea 

to recalculate the u'a. In other worda, the u'a are hein, retrodicted. 

G will then be conatructed aa in Method 1 with theae new u's. 

The authors reported encoura,in, reaulta on t.he basia of the KS 

distancea of the u-plot and y-plot when theae two methods were applied to 

a aelection of prediction ayatems and real data aeta. Another feature in 

their result.s ia that the second method of adapUn, ia not performin, aa 

well aa the firat method. 

Thia ia hardly aurpriain, becauae the G function obtained by the 

aecond method does not contain the actual predict.ive error which t.he 

ayatem has made in the paat. In fact., none of t.he u'a uaed for t.he 
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estimation of G is genuinely predictive because all these u's were 

constructed using data which at least partly would not be available if they 

were in a predictive position. For example, the parameters in Uj (j > 0) 

were estimated using data t 1 •••• t
io

+
j

• which if it were genuinely predictive 

it could only have used data t 1t ••• t, +' 
10 J-l 

.. 
One might be inclined to think that the G obtained via Method 2 should 

be superior because the parameters are estimated on the basis of more 

data. However, this is not necessarily the case, at least for some of the 

models, because the behaviour of their ML parameter estimates are not 

known. With those models which specify a finite number of failures, the 

usual asymptotic properties of MLE will not apply because of the existence 

of a finite ceiling on the total population. Finite sample properties of 

these model parameter estimates are invariably difficult to obtain even for 

the simplest model. Hence we shall concentrate on the application of 

Method 1 only. 

4.4. _ THE ANALYSIS OF PREDICTIVE QUALITY OF ADAPTIVE 

PRE~I~rIO~ SYSTE~§ 

In the previous section we have discussed how to construct an 

adaptive predictor. For reasons aiven there. we will only consider 

adapting with G functions constructed usin, Met.hod 1. Since Gi+t is 

constructed on t.he basis of past data tt , •••• lj only, it. is t.herefore a ,enuine 

prediction system. This means we can assess the performance of a 

8equence of adapted predictions using the techniques we have discussed in 

seclion 4.2. 
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Keiller and Littlewood (1984) have reported results on the basis of the 

u-plot and y-plot distances only. We shall present the results of our 

wider choice of prediction systems and an extra data set. Table 4.2 

summarises the total number of data points, the stage at which analysis of 

predictive quality starts (io)' the number of u's in the analysis of 

predictive performance (n) and the number of u's in the first adaptor 

G. +1,(nO). Therefore, for each of the data sets. the parameter estimation 
10 

begins at stage (io-no) and actual predictions by the adaptive systems only 

start at stage ic. 

For the purpose of analysing the predictive quality of an adaptive 

system, we use the u- and y-plot procedures on the set of u*'s defined 

by: 

* "'* Uj=F.+.(t.+.) 
10 J 10 J 

j= 1 •••• , n (4.4.1) 

The prequential likelihood contribution trom stage i ) io, which is the 

adapted predictive pdf evaluated at the observed failure time tj+1' is: 

for i=io •••• ,io+n-l 
(4.4.2) 

where « is the derivative of G. Note the PL tor stage i is the product ot 

the raw PL and the gradient of G at the value of u detined by the raw 

prediction system for stage i. The PL after n predictions will simply be: 

with each ot the i"s as defined by (4.4.2). 
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DATA Total no. Stage at Total no. Number of u's 
of failures which of in the first 

analysis predictions ~daptor 
starts ( 0 ) (n) Gi +1 (no) 

0 

System 1 136 50 86 15 

System 2 54 23 31 10 

System 3 38 20 18 10 

System 4 53 23 30 10 

System 6 73 35 38 15 

System SS3 278 105 173 15 

BAe 207 95 112 15 

Table 4.2. Summary of the total number of failures, i o' 
n and number of uts in the first adaptor. 



- 89 -

If we want to examine the improvement over the raw predictor broup:ht 

about by this adaptive procedure, we can calculate the PLR of t.he adapted 

aliC'ainst raw predictions which is: 

(4.4.4) 

which is simply the product of the gradient of the successive G functions 

at the correspondinp: u value liC'iven rise by the raw system. 

The predicted median of the adapted distribution is obtained by 

solvin${: 

(4.4.5) 

which presents no difficulties. 

Table 4.3 contain", the u- and y-plot KS distances for the 9 prediction 

systems before and after * adapting using Method 1. The corresponding 

level of significance is given by (4.2.3.6). These results are not identical 

to those of Keiller and Littlewood because the ranges over which 

predictions were made in each data set were different. There is clear 

evidem:e that the adapting procedure does improve the results from the 

raw predictors, in some cases quite considerably, for example, System 6 and 

SS3 data. Only on one occasion does t.he u*-plot have a marginally worse 

KS distance, but this is still not significant at 10%. Note also t.hat t.he 

y-distance in this particular case is very poor indeed, which suggests that 

the trend in the data is not bein~ captured in the first place. Thus the 

u-plot, hence a, wilJ contain error information which is not only due to 

biased ness alone. 
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DATA JM BJM GO MO OU L LNHPP LV KL 
(n) 

u .2049E .1871E . 1773E .0982A .15670 . 1123A .0982A .15040 .14570 
Sys.1 u* . 1188R . 1226B .1341C .0499A .0752A .0499A .0499A .0894A .0901A 
(86) y . 1156B . 1148B . 1190B .0795A .1029A .0904A .0793A . 1148B . 1173B 

y* .1018A .1016A .1076A .0775A .0808A .0893A .0768A .0901A .0916A 

u .26040 .2325C .2181C .1518A .2317C . 1554A .1518A . 238BO .2219C 
Sys.2 u* .1637A . 1666A .1736A . 1423A . 1337A .1401A .1617A .1332A . 1115A 
(31 ) y . 1858A . 1853A . 19B9B . 1898B . 1620A . 1772A . 1743A . 1325A .1451A 

y* . 1500A .1511A .1581A . 1909B .1812A .2045B . 1476A . 1747A . 18BOB 

u .703BE .33540 .2705B .1877A .35560 . 2556B .1531A . 4260E . 3908E 
Sys.3 u* .32940 . 2696B .2730B .1121A . 1333A . 1590A .1059A .2070A .2009A 
OB) y .6BOBE . 3900E . 4445E .2234A .2012A .3075C . 2430A . 1112A . 1135A 

y* .34360 .31930 .2841C . 1874A . 2113A . 1839A .2006A . 1576A .1303A 

u . 1711A .21B5C . 1328A . 1143A .1415A . 1712A .1211A . 1955B .2014R 
Sys.4 u* . 1259A .1B54A . 1627A . 1805A • 1975B . 1253A . 1805A .2156B • 1994B 
(30) y .4647E . 1399A . 1989B .3418E . 4887E .27090 .26950 .24200 .2010B 

y* . 2110B . 1535A . 1440A . 2360C • 4567E . 1838A .2002B . 1754A • 1495A 

u . 2924E .3010E .2812E . 2845E . 2856E . 2853E . 2845E . 1658A .1731B 
Sys.6 u* .0821A .0803A .0786A .0639A .0846A .0923A .1030A . 1248A .0925A 
(38) y . 3969E . 3486E . 3870E .4017E .4010E • 3978E .4026E .2020e .2069C 

y* .23730 .24050 .242]0 .25730 .23660 .24040 .2501D .2066C .21600 

u .2717E .2713E . 2705E . 2645E . 2596E • 2717E . 2704E . 2382R • 2372E 
SS3 u* .0982C .10420 .0978C .10570 .11220 .0987e .0997C .0864B .10430 
(73) y . 1273E . 1379E . 1263E . 1435E • 1835E . 1291E • 1300E .0346A .0500A 

y* .0577A .0664A .0579A .0631A .0968e .0561A .0558A .0415A .0596A 

u .0775A .0726A .0697A .0713A .12700 .0763A .0655A .1039B . 1151e 
BAe u* .0623A .0626A .0613A .0876A • 1126B .0617A .0636A .10l6B .0931A 
( 112) y .0890A .0787A .0906A .0793A .0744A .0873A .0790A .0673A .0687A 

y* .0753A .0689A .0763A .0711A .0682A .0743A .0728A .0765A .0818A 

Table 4.3. Kolmogorov-Smirnov distance of the u-plot and y-plot of the 
respective prediction systems before and after * adapting 
(joined-up function adaptor). 
See (4.2.3.6) for the corresponding significance level. 
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A surprising feature is the improvement in the y-plot KS distances. 

In most cases there is marginal improvement in the y-plot after adapting. 

Only two adapted predictors have marginally poorer y*-plot on System 2 

data. The most significant improvement is on System SS3 data. 

Table 4.4 gives the -log prequential likelihood of the raw systems for 

each set of data. In the cases of JM and L model on System 3 and 4 

data, t.he - 10 log prequential likelihood is due to the occurrence of the 
A 

event that at some stage i, N equals the number of failures seen, i. 

According to these two models, it means that the program should be free of 

any faults. But it promptly failed after executinlt for a period of ti+1' 

Therefore, according to these prediction systems an impossible event which 

has zero measure has occurred, thus the prequential likelihood immediately 

goes to zero. 

The prequential likelihood is unforgiving in reacting to this kind of 

behaviour in a prediction syst.em, because once the PL is zero it will 

remain at zero no matter how good or bad the other predictions are. Such 

a system is simply totally rejected. After all, it is not desirable to use a 

prediction system which assigns zero probability to an event which 

promptly occurs at a later stage. By having a zero PL, not only are we 

reminded of the occurrence of this event in the past, we are also 

constantly warned that this might happen again in the future • 

.. 
In fact, whenever N = i, where i is the number of failures occurred, 

the predictive cdf in these predictive systems will be: 

o < t <. 
t = • (4.4.6) 
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DATA JM BJM GO MO DU L LNHPP LV KL 
(n) 

Sys.1 
(86) 668.944 669.147 667.267 660.061 663.715 661.664 660.107 663.348 663.2]2 

Sys.2 
(31) 286.183 285.546 284.313 279.918 283.425 282.010 280.532 281.882 282.244 

Sys.3 
(18) .., 173.779 172.848 164.140 169.089 .., 165.365 170.955 169.367 

Sys.4 
(30) .., 233.69] 239.356 242.512 253.617 .., 241. 838 233.390 232.233 

Sys.6 
(38) 210.007 204.807 208.211 207.407 203.618 209.659 207.587 191. 395 191.554 

SS3 
(173) 2300.37 2298.09 2300.12 2301.12 2303.07 2300.47 2300.49 2263.79 2267.31 

BAe 
( 112) 637.352 636.835 637.419 637.265 641.053 637.566 637.572 637.969 638.694 

Table 4.4. -log prequential likelihood of the respective prediction systems. 

DATA JM* BJM* GO* MO* DU* L* LNHPP* LV* KL* 
(n) 

Sys.1 
(86) 680.743 693.229 693.978 690.742 689.099 682.513 690.044 685.545 688.851 

Sys.2 
(31) 292.269 291.094 288.235 287.037 289.994 288.623 287.127 285.069 287.203 

Sys.3 
(18) .., 179.596 177.455 172.803 168.808 .., 173.382 168.985 175.417 

Sys.4 
(30) .., 243.954 254.317 252.966 258.466 .., 254.092 244.884 244.789 

Sys.6 
(38) 208.735 205.540 207.166 203.425 211.886 207.996 207.406 200.758 202.255 

SS3 
(173) 2274.06 2266.05 2271. 95 2268.83 2281.41 2267.57 2270.89 2274.62 2288.64 

BAe 
(112) 674.711 681.492 676.400 676.652 682.754 677.950 667.049 671.112 672.455 

Table 4.5. -log prequentia1 likelihood of the respective adpated 
(joined-up function adaptor) prediction systems. 
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which means the adapted probability for any finite failure time is equal to 

the value of ~+ 1 at the origin. When N = i has happened for previous 
A 

value(s) of i, it would mean that there is a discrete component to Gi+1 at 

the origin. Thus the adapting procedure might seem to be able to correct 

the raw prediction, but in reality the adapted predictor is just as 

practically useless as before: it has probability ~+1 (0) for any finite 

failure time and probability (l-Gi+1 (0» at infinity. Merely looking at the 

u-plot and u *-plot could be very misleading. As an example, Figure 4.3 

shows the u-plot for JM on System 3 data before and after adapting. 

(These are line printer plots and only provide an approximate picture to 

the true plots). 

.. 
When there is a discrete component to G at point 0, it means the 

derivative at 0 will be infinite. Since the PL of the adapted prediction is 

now the product (4.4.2) with a term beina zero, it will also be O. 

However, there are zero failure times in aome of Musa's data, for 

example, System 1 data. In this case, it means that there will be a discrete 

component to a, due to these zero failure times which will aive rise to 

repeated zero u values. Because the raw PL is non-zero in this case, the 

PL of the adapted predictor will also be infinite. This implies that all 

other prediction systems, except those also with infinite PL, are inferior. 

This behaviour in the PL is due to our mixing discrete and continuous 

probabilities in the adapted predictive cdt. The PL aa defined ia for 

continuous random variables and utilises the pdf which is the derivative 
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of the cdf and is a continuous function. For discrete random variables, 

the PL is defined in terms of the probability mass function which is a 

discrete function obtained by differencing, instead of differentiating, the 

cdf at consecutive points in the domain. This is essentially a conceptual 

confusion which can be avoided if G is constrained to be a function without 

a discrete component. 

Table 4.5 is the -log prequential likelihood of the adpated predictions 

on the various data sets. The gradient of G at 0 is taken to be the 

gradient at 0+ in order to avoid the situation mentioned above. Adapted 

predictions for System SS3 have in most cases better prequential likelihood 

value than raw predictions. The improvement in System 6 data is only 

negligible in those cases which are better. In aU other cases the 

a~~p~d ___ pr~dict.i(;ms __ h!ly_e __ WQ~~~ prequential likelihood than the raw 

predictio!lJ~-! 

This is counter-intuitive. Take System 1 data for example. The KS 

distance of u *-plots have al1 been improved by the adapting process which 

means the new predictions are not as biased as before. The KS distances 

of the y*-plots are all very good, which means the trend in the data is 

being captured. 

than before. 

The adapted predicted medians are in closer agreement 

Table 4.6 gives the predicted medians by the various raw prediction 

ayatems at selected atages. We can clearly aee that the firat three 

ayatems are always predicting high values, the last two ayatems are always 
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predicting low values and the rest are in the middle. The disagreement is 

profound between the highest and the lowest predictions, especially at the 

later stages. 

Table 4.7 gives the predicted medians by the adaptive systems. As we 

can see there are hardly any differences among all of them up to stage 80. 

Subsequent disagreement is much less severe than before adapting, and 

there is close agreement amongst the last six adaptive systems. Yet even 

in the presence of all this evidence, the prequential likelihood insists on 

the superiority of the raw predictions. 

Since both bias and trend are good in the adpated predictions, can it 

be the case that a lot of noise was somehow introduced into the adaptive 

systems? If this is true, as the raw predictive cdf and the adapted 

predictive cdf are related only via the G function, it must be the source of 

all this extra noise in the new system. 

Successive G functions are different only because of an extra u beinlt 

included in the basis for constructing the lalter. Therefore, it should be 

fairly slow changing over different stages, particularly when there are 

many u's in the basis already, and should not fluctuate in any substantial 

way. 

A possibility is when the number of u's used in the basis for 

constructing G is small, the effect of an extra u would be larger and thus 

causing fluctuations in the early stages. If this is the sole reason, all we 



- 97 -

Stage i JM BJM GO MO DU L LNHPP LV KL 

60 344 331 316 302 230 302 302 242 247 

70 377 372 357 336 255 336 336 274 281 

80 460 449 433 385 288 385 385 318 334 

90 900 873 841 577 40] 577 577 418 428 

100 1729 1676 1615 854 563 1032 854 534 538 

110 1502 1452 1408 906 595 906 906 570 575 

120 1320 1250 1217 931 613 931 931 613 621 

130 2314 2197 2137 1242 793 1242 1242 662 668 

Table 4.6. Predicted median for System 1 data at selected stages 
by respective prediction systems. 

St.age i JM* BJM* GO* MO* DU* L* LNHPP* LV* KL* 

60 265 268 273 250 249 250 250 255 252 

70 298 301 308 279 276 279 279 296 299 

80 363 363 374 330 318 326 326 340 342 

90 763 763 809 627 568 515 627 558 553 

100 1467 1461 1529 974 868 921 974 740 715 

110 1155 1171 1202 965 886 778 955 790 767 

120 994 982 993 952 899 791 896 848 817 

130 1732 1684 1722 1195 1124 1051 1190 894 890 

Table 4.7. Predicted median for System 1 data at selected stages 
by respective adapted (joined-up function adaptor) 
prediction systems. 
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A 

have to do is to start with a reasonable number of u's for constructin~ G 

and we should see better PL from the adapted aystems. It is easy to 

check from Tables 4.8 and 4.9 that it is again not possible to obtain better 

PL just by atarting at a later stage. Hence, we must conclude that this 

cannot be the aole reason for the extra noiae in the new systems. 

The other kind of noise which could possibly be present is internal to 
A 

the G function. If we examine closer how a G function ia constructed, it 

will become apparent where all the unwarranted noise is coming from. 

A 

Since ~+1 is a joined-up function, its derivative gi+1 at the joint of 

two lines with different alopes is discontinuous. This means f*i+l is also 

discontinuous over its domain because: 

(4.4.7) 

Figure 4.4 is the plot of G278 for adapting LV on Musa'a Syatem SS3 data 

which has 188 u's values. This might look rather smooth but if we look at 

Figure 4.5 which is the derivative of G278' we see how 'spiky' it ia. In 

fact the larger the number of U'8, the more spiky • become8, in which 

case, the adapted predictive den8ity for the failure time i8 also becommin~ 

more di8continuous. As there is no apparent reaaon why the pdf of Ti+l 

should be di8continuou8 in such a fashion, the PL points out this flaw in 

the adaptive 8Y8tems. 

In the caae of SY8tem SS3 data, the gain from correcting the bias in 
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Stage i JM BJM GO MO DU L LNHPP LV KL 

60 73.580 73.409 73.022 72.542 71. 294 72.542 72.542 71. 639 71. 924 
70 143.593 143.494 142.882 142.120 140.635 142.120 142.120 141.101 141.574 

80 215.410 215.669 214.769 213.895 212.639 213.895 213.895 213.255 213.766 

90 294.487 295.140 294.006 292.918 293.344 293.562 292.918 293.318 293.582 

100 377.702 378.464 377.060 374.652 376.638 376.173 374.698 376.443 376.759 

110 458.548 459.042 457.444 452.562 453.751 454.146 452.608 453.482 453.851 

120 537.944 538.225 536.437 529.442 528.924 531. 025 529.488 528.654 529.025 

130 624.160 624.203 622.444 615.300 617.282 616.883 615.347 616.350 616.536 

135 668.944 669.147 667.267 660.061 663.715 661.644 660.107 663.348 663.212 

Table 4.8. -log prequentia1 likelihood of the respective prediction 

system at selected stages of System 1 data. 

Stage i JM* BJM* GO* MO* DU* L* LNHPP* LV* KL* 

60 77.294 77.356 76.910 73.951 74.835 73.951 73.921 75.453 75.556 

70 149.269 149.529 150.038 146.572 147.803 146.573 146.550 147.957 148.457 

80 222.968 220.555 222.620 222.541 223.647 222.541 222.538 219.722 219.785 

90 305.369 303.411 303.540 302.641 306.581 304.624 302.643 303.878 304.616 

100 389.930 392.141 392.086 389.896 388.443 390.513 389.557 389.894 387.019 

110 471. 203 474.660 474.846 474.166 471.135 471.378 472.768 470.041 468.941 

120 550.554 558.058 558.855 555.166 549.723 550.056 554.483 549.851 548.909 

130 639.199 649.416 663.298 644.162 641.162 637.016 643.466 638.591 639.184 

135 680.743 693.229 693.978 690.742 689.099 682.513 690.044 685.545 688.851 

Table 4.9. -log prequential likelihood of the adpated (joined-up function adaptor) 
prediction systems at selected stages of System 1 data. 
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the predictions is more than sufficient to compensate for the introduction 

of this internal noise, hence better PL is observed in most of the adaptive 

systems. Apparently this is not the case in most other situations. 

The obvious solution is to use a smooth adapting function OJ which is 

the subject of the next Chapter. 
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CHAPTER 5 

THE DETERMINATION OF THE PARAMETRIC SPLINE ADAPTOR 

AND THE ANALYSIS OF THE RESULTS OF THEIR APPLICATION 

5.1. INTRODUCTION 

In this Chapter, we shall present 

constructing a smooth adapting function G. 

a non-parametric method of 

The function we have used is 

a ~ametri~~ine consisting of two suitably constrained least-squares 

~u t;>j~_Jl..l21iJ1es. 

Two representations of a cubic apline will be .iven. The firat is the 

redundant representation which has a clear phyaical interpretation. The 

second is the B-spline representation which is not aa obvioua as the firat 

but has many advanta_es in practical applicationa. With the uae ot the 

B-apline representation, it ia poaaible to tit an over-conatrained 

least-square cubic spline efficiently and in a numerically atable way. 

The parametric apline adaptor ia then uaed to adapt those caaes 

reported in Chapter 4. Detailed results are .iven in the last aection. 
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5.2. THE SMOOTH ADAPTIVE CURVE 

We have established in the previous Chapter that it is desirable to 
.. 

have a smooth adapting function G. We shall look at the properties which 

such a smooth function must possess: 

.. 
1) G is a function defined on (0,1) and the range of which 

is also (0,1), i.e.: 

G (0,1) .. (0,1) 

2) The derivative of a must be positive for all values 

within its domain, i.e.: 

G'(u) > 0 YUf:(O,I) 

3) a(o) = 0 and a(l) = 1 

The above conditions are automatically aaUafied by the cdf of a random 

variable defined on the interval (0,1). Thia ia hardly aurpriainlt aince the 

u-plot is just the sample cdf of the u'a. Therefore one could view the 

problem as one of obtaininlt a amooth estimate of the cdf of a random 

variable defined on (0,1), based on a finite random sample. 

A possibility is to choose a parametric family of distributions and use 

the u's as data to e8timate the unknown parametera. Rowever, the family 

of di8tribution8 muat be for a random variable which is defined on a finite 
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interval, otherwise a transformation on the variable would be required. 

Once the domain of the distribution is a finite interval, it would be an easy 

matter to make this interval into (0,1). 

An example of such a family is the Beta distribution with two 

parameters. It has a pdf: 

_ y(cx + fj) 
feu) - y(cx) y(~) 

for cx,~ > ° and Uf:(O,l). y(x) is the Gamma function which is defined as: 

.. 
Y(x) = J 

o 
X-I -u u e du for X > 0 

Although the ahape of this distribution ia relatively flexible among 

parametric distributiona, it might still be unable to give a cloae fit to the 

shape of the joined-up adapting curve. 

adaptor. 

See Fhru~e 4.4 for one such 

Another more serioua difficulty in uaing a Beta distribution, which ia 

alao true tor many parametric diatributions, is in the evaluation of the cdf 

at a given point. Thia can usually be done only by numerical 

approximations and can be very difficult with certain valuea ot oc and fj. 

Thia meana we will have difficultiea calculating the u'a or the predicted 

mediana. 

In view of the above, we can add the following two extra requirements 

on the. smooth G function. 

4) The function muat be flexible enough to tit very 

different ahapea. 
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5) It must be easy to compute the derivative and the 

value of G at any point in the interval (0,1). 

Because most parametric distributions will have difficulty in satisfying 

conditions (4) and (5), we have not pursued the use of parametric 

distributions any further. Instead, we have chosen to use a parametric 

spline which is composed of two suitably constrained least-squares cubic 

splines. 

A parametric spline is based on the following parametric representation. 

Take a &,eneral dependent variable y, say, with x bein&' the independent 

variable. Let the function f define their relationship, i.e.: 

y = f(x) 

If we introduce a parameter p such that: 

x = x(p) 

we can also express y in terms of p: 

y = y(p) 

Then we will have a parametric representation of x and 7 in terms of p 

(x(p),Y(p». When x(p) and yep) are splines, the re.ultin&, function i •• 

parametric .pline. 
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The parametric spline is widely used in computer "raphics and 

computer aided design. The main reason for its use in the context of 

adaptive modelling is because of its flexibility. The .hape in Figure 4.4 

can easily be reproduced by a paramet.ric .pline. 

Epst.ein (1976) has supported the use of the cumulative chord joining 

up the discret.e data point.s as the parameter. If (Xi,Yi) for i = I, ••• , r, 

denote the r pairs of data to which we want to fit the parametric spline, 

the cumulative chord is: 

i=l, ••. ,r 
(5.2.1) 

with Po = 0, Xo = 0 and Yo = O. In our application, Xi is the ith order 

statistic of the u's and Yi is the hei"ht of G at Xi' 

convenience, used the normalised cumulative chord: 

However, we have, for 

Pi 
Pi = --,

Pr 
i=l, .•. ,r (5.2.2) 

so that both parametric functions will have domain [0,1]. 

Having introduced the parameter p, we now have two _roups of data: 

To each "roup of data we .hall fit a 

least-.quares cubic spline. This .pline function is con.trained .uch that 

conditions (1) to (3) in .ection 5.2 are .. Usfied. It i. clear that if the px 

.pline and the py .pline both .. ti.fy condition. (1) to (3) the re.ultin" xy 

function will aleo .. Usty these condition •• 

It mi"ht seem to be a waste of effort to use a parametric .pline 
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because we could have simply used one instead of two such constrained 

least-squares spline for the xy function. Practical results, however, have 

shown that the shape of the G can be very fast changing. If we were to 

simply fit a cubic spline, we would have to use many knots, hence 

increasing the dimension of the problem (to be explained later), in order 

that the cubic spline could reproduce such characteristics in the adapting 

function. But the parametric spline can do so with fewer number of knots 

being used. Furthermore, the introduction of the parameter p helps to 

smooth out local oscillations in the data and as a result the parametric 

spline does not oscillate as much as the joined-up G function. 

5.3. THE REDUNP~T-REP8ESENTATION AND THE LEAST-SQUARES SOLUTION 

OF THL.gONSTRAINED CUBIC SPLINE 

Since the parametric spline is made up of two cubic splines defined on 

[0,1], we shall derive in this section the redundant representation of a 

cubic spline on the interval [0,1]. Other variants of this representation 

could . be found in Ahlberg et al (1967). 

In order to define a cubic spline over the interval, it is necesaary to 

choose a knot sequence: 

o = >'0 < >'1 ••••••• < >'m < >'m+1 = 1 (5.3.1) 

where m is the number of jl1~rjQJ" knots in the sequence. This knot 
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sequence a]so defines (m+l) sub-interva]s in [0,1 J. The choice of knots 

will affect the fitted spline function. We shall discuss knot placement in 

more detai] as we proceed. 

Let Z j and w j denote the function value and the second derivative of 

the spline at the jth knot, for j=o,l ••• m+l. We can definll the cubic spline 

in terms of these 2(m+2) quantities in the following way. 

The property of a cubic spline is that it is continuous up to its second 

derivative over the entire [0,1] interval, and between two successive knots 

it is a cubic. Let Sk(p) be the cubic spline between the knots >-k-l and 

Because Sk(p) is a cubic for P£[>-k-l'>-k], this implies 

that the second derivative must be a straight line, i.e.: 

(5.3.2) 

where hk is the kth interknot spacing: 

k=l, ••• ,m+l (5.3.3) 

Integrating (5.3.2) gives: 

(5.3.4) 

and integrating again gives: 

(5.3.5) 

where ak. and bk are constants of inte,ration. 
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Now Sk()'k-l) = Zk-l, so from (5.3.5) we have: 

Similarly, Sk()'k) = zk and from (5.3.5) we have: 

Zk hk bk 
ak = hk - 6" wk - hk 

Combining (5.3.5) with (5.3.6) and (5.3.7) gives: 

If we utilise 
, 

S k+1 (). k), we have: 

hk 

+ 
(p-Ak-1 ) 

Il)( 

the continuity 

(hk + hk+1) 
- wk-l + 
6 3 

of derivative 

hk 
Wk + - Wk+1 

6 

k= 1, ••• ,11+1 

condition, 

for k=l, ..• ,. 

(5.3.6) 

(5.3.7) 

(5.3.8) 

, 
i.e. Sk(Ak) = 

(5.3.9) 

which forms m constraints on the z's and the w'a. Thia ia t.he reason why 

this representation is called redynd~n1- becauae instead of requiring 2(m+z) 

variablea, we only need (m+4) variables to uniquely define t.he cubic apline 

for a given knot aequence. 
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If we have data (Pi'Yi) for i=l, ••• ,r, to which we want to fit a 

least-squares cubic spline, the problem is to find the unknowns (w j'Z j) for 

j=o, ••• , m+1, which minimise the residual sum of squares and also satisfy t.he 

m equations defined by (5.3.9). Note that if there are m interior knots in 

the knot sequence, there will be (m+4) independent variables, t.herefore t.he 

maximum number of interior knot.s must. not be greater than (r-4). Thus, 

t.he larger t.he number of knots being used, t.he higher is the dimension of 

t.he minimisation problem. In fact, there are restrictions on the position of 

the knots such t.hat t.he least-square solution is unique (Cox, 1975, Cox and 

Hayes, 1973). For our purpose, we will ensure that there is at least one 

data point between any two knots. 

Corresponding to each Pi' let Yi denote the fitted value of Yi given by 

(5.3.8). Therefore the r vector of fitted value;' can be written as: 

y = Aw + Bz (5.3.10) 

where wand Z are the (m+z) vector of wk and zk respectively, A and B 

are the (rx(m+z» matrix of coefficients of wand Z respectively. The 

constraint equation (5.3.9) can also be written as: 

Cw = Dz (5.3.11) 

where C and D are the (mx(m+z» matrix of the coefficients of wand z 

given by (5.3.9). 

It there are no further constraints on the spline function, the 

least-squares problem has linear constraints and is: 
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min Hlly - ylli subject to Cw = Dz 
w,Z 

(5.3.12) 

We can write down the Lagrangian: 

T T = H(Aw + Bz - y) (Aw + Bz - y) - ~ (Cw - Dz) (5.3.13) 

where ~ is the m vector of Lagrange multipliers. By differentiating w.r.t. 

W, z and ~ and equating to zero, we get the following system of equations: 

-c D 

-cT 

DT 

o .. 

w 

y = 

o .. 

which we can solve tor the unknowns w, z and ~. 

(5.3.14) 

However, in our 

application, it is necessary that the least-squares apline ahould aatisfy 

conditions (1) to (3) of section 5.2. 

To impose condition (3) presents no problem because these are linear 

equality constraints and we simply have to include: 

Zo = 0 and z m+ 1 = 1 (5.3.16) 

in the equality constraints of (5.3.9). 

Condition (1) is automatically observed U (2) and (3) are jointly 

aatisfied because condition (2) will enaure the function to be monotonically 

increasing, thus the function is a one-to-one map with range [0,1]. 



- 112 -

To impose condition (2) causes considerable difficulty because thiR 

condition cannot be expressed in terms of a finite number of linear 

equations (Cox and Jones, 1985). To see this, we look at interval [>'k-l,),k] 

in more detail. 

Now Sk(P) is a quadratic over thiH interval [),k-l,),k] and condition (2) 

can be separated into two parts: 

a) These two 

requirements can be expressed as two linear inequality constraints and 

can be handled without great difficulty. 

b) The minimum of Sk(p), if it is within [Ak_l,Ak], must also be 

positive. This requirement, however, cannot be expressed as a linear 

inequality of the variables and cannot be imposed easily. 

We have previously used the NeIder-Mead simplex search method 

(NeIder and Mead, 1962) to solve this non-linear inequality constrained 

least-squares problem, whenever the least-squares solution violates 

conditions (a) or (b) within any sub-intervals. This method is very heavy 

in computational terms whenever the search is invoked and is not a 

practical way of determininJ( such a constrained cubic spline function. 

However, if we use the B-spline representation instead of the redundant 

representation of the cubic spline, we can find a practical solution to the 

spline fitting problem very efficiently. 
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5.4. THE B-SPLINE REPRESENTATION OF THE CUBIC SPLINE 

Just as polynomials can be expressed as a linear combination of certain 

basis polynomials, such as Chebyshev, it is possible to express a spline in 

terms of a basis - the B-spline basis. We will show by usin~ the B-spline 

representation, we can derive a numerically stable and efficient method for 

obtaining a pr~(~!.jQf!1 solution to the constrained cubic spline fitting 

problem. Our discussion here is specifically related to our problem only, 

more detailed and general discussions on various aspects of B-splines and 

their applications could be found in Cox (1975). 

In order to define the B-spline basis for a cubic spline, it is necessary 

to extend the knot sequence to include 3 extra exterior knots at either end 

of the interval [0,1]. Therefore, the new knot sequence is: 

(5.4.1) 

The reason for the above choice of exterior knots will become apparent 

later. 

Given a knot sequence the normalised B-splines satisfy the following 

recurrence relation: 

with 
for D > 1 

if pC[~k-l'~k) 
otherwiae 

(5.4.2a) 

(5.4.2b) 
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where n is the order of the B-spline, which is 4 in the case of cubic 

B-splines. In order to define the B-spJines on the entire interval [0,1 J. 

we have to extend the last sub-interval to be closed on the right hand 

side aR well, which means: 

N1 • m+ 1 (p) = {oj if p£[).m' ).m+1] 
otherwise 

(5.4.2c) 

Curry and Schoenberg (1966) has shown that the normalised B-splines 

defined by (5.4.2) for k=1, ..• ,m+n, form a basis for splines of order n over 

the interval with which the knot sequence ().o'''''>-m+1) is prescribed. 

Thus if S(p) is such a spline, it has the B-spline representation: 

m+n 
S(p) = E cJ'Nn,J'(p) 

j=1 

where the c' 's are the B-spline coefficients • .J 

In the case of a cubk spline over the interval [0,1], this means the 

spline function S(p) can be defined as: 

m+4 
S(p) = E c J'N4 'J'(p) 

j=1 
pe[O.}] (5.4.3) 

From (5.4.2), it is clear that N4 'j(p) is non-zero if the value of p falls 

within the interval (). j_ .. ,>- j) for j=l, ... ,m+l. Therefore, if P£[).k-l,).k) for 

k=l •••• ,m or P£[).k-l,).k] for k=m+l, N .. ,k(p), ••• ,N .. ,k+3(P) will be the only 4 

non-zero normalised B-splines. Thus: 

k+3 
S(p) =.E cJ·N .. J'(p) (5.4.4) 

J=k • 

when p lie within the kth sub-interval [>-k-l'>-k) with the last [>-m'>-m+1] 

also closed on the right hand side. 
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The r vector of fitled values y can now be writlen as: 

y = Nc (5.4.5) 

where N is the (rx(m+4» matrix of non-zero normalised B-splines 

corresponding to the data vector p and c is the (m+4) vector of B-apline 

coefficients. The least squares fitting problem ia to: 

min " y - YlI~ c 

which is simply: 

min liNe - Ylli e 
(5.4.6) 

Note that (5.4.6) ia much aimpler compared to the leaat-square problem 

(5.3.12) when the redundant representation is bein. used. Furthermore, 

because of (5.4.4), the non-zero element. of the matrix N have a band 

structure with bandwidth 4. This structure can be taken advanta.e of 

! when solving the least squares problem (5.4.6). Details of how this is 

• done are .iven in the next section. 

Recall that our cubic spline has to be constrained to pass throu.h the 

! points (0,0) and (1,1). If we use the recurrence relation of the normalised 

i B-splinea (5.4.2) and (5.4.4) to evaluate S(O) alld S(1) we will find that: 

and 
S(O) = cl 

SO) = Com+4 
) (5.4.7) 

because the exterior knots at both ends of the interval [0,1] are chosen to 
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be coincidental. The advantage of this choice of exterior knots is now 

apparent: condition (3) of section 5.2, i.e. S(O)=O and S(1)=1 will then be 

requiring: 

Cl = 0 and Cm+4 = 1 (5.4.8) 

which is only a pair of simple equality constraints. 

As for the positivity requirement on the derivative of the spline within 

the entire interval, it is still not possible to express it in a finite number 

of linear equations. Hanson (1979) has suggested solving the least-squares 

problem by imposing the positive derivative constraint at a finite number 

of points within the interval. This set of points is built-up iteratively 

until the spline has positive derivative over the entire interval. Apart 

from a brief description similar to the one we have just given, Hanson has 

not disclosed further algorithmic details on how this could be done. On 

the surface of his suggestion, we do not envisage much practical value in 

his approach because there is too much vagueness in how the set of points 

could be updated in each iteration, and it is doubtful if the constrained 

solution obtained in this way is optimal. 

One of the properties of the B-.pline representation is that the 

derivative of the cubic spline can be expressed in a way similar to that of 

the spline in terms of the c ls, By differentiatin.r (6.4.3) it can readily be 

shown that: 

.-+3 
S'(p) = Ee·(l) Na,J(p) 

J=l J 
pe[O,l] (6.4.9a) 



with 

Cj+l - Cj 

:: 3 >- j - >- j-3 
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j=-l, •.• ,m-+ 3 (5.4. 9b) 

in the cubic caHe. Bec:ause there can only be 3 non-zero normalised 

B-splines 

derivative S' (p) will only be a product sum of these three terms. Note 

also that the derivative at 0 is simply cl (1) and at 1 is Cm+3 (1), again as a 

result of our using coincidental exterior knots. 

Furthermore, the derivative satisfies locally the following: 

min c . ( 1) (. s' (p) <. max c' ( 1 ) 
J J 

when p€r>-k-l,>-k), the min and max are taken over j=k, k+l, k+2 (Cox, 1975). 

Therefore, if we ensure that all the c}l )'s are positive, it would guarantee 

the positivity of the derivative over the entire interval. 

are linear in the B-spline coefficients, this requirement can be translated 

into imposing (m+3) linear inequality constraints on the least-squares 

problem (5.4.6). 

Now the 9p.liJllally _~..Ql)s~r~iJ]~_d problem will have two linear inequality 

constraints at the end points of the interval, i.e. cl (1) > 0 and Cm+3 (1) > O. 

But within the interval the inequality constraints are not linear in the Cj's. 

Furthermore, all the C·(l)'S 
J ' 

except the first and the last, do not 

necessarily have to be positive in order that the derivative is positive over 

the interior of the interval. To insist on all the C j (1) 's being positive 

might over-coD-strain the fitted spline. The derivative of the two 

constrained splines might look like those in Figure 5.1. 
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~derivative of the optimally-constrained spline 

---
,/ p 

region of very small derivative 

Fi,ure 5.1. 

However, in our application thiB is not. a disadvanta,e because the 

: optimally const.rained spline mi,ht. entail a re,ion with ver;y amall derivative 

:like that. of Figure 5.1. This corresponds to a ahoulder in the cubic 

apline. Wit.h t.he over-conBt.rained spline, the preaence of such a re.ion ia 

unlikely, t.hus t.he spline will tend to be smoother. A by-product of uain. 

the over-const.rained spline ia that we can avoid havin. very small 

'prequential likelihood if t.he spline in Fi.ure 5.1 is the py function, or 

very bit prequential likelihood if it. ia the px function. 

In privat.e communication, Cox (1986) haa alao recommended the 

l)ver-conat.rained spline as the moat practical solution to fittin, monotonic 

,plines wit.h order .reater than 3. 
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5.5. MEl'~9_D29R _TtI~ __ D~TE~MINATION OF THE 
OVE~-CONST~INED CUBIC SPLINE 

The least-squares problem which we have to solve is: 

min IINc - YII~ c 

subject to the equality constraints: 

Cm-t 4 = 1 

and the inequality constraints: 

where A is the ((m+4 )x(m+3)) matrix with elements: 

3 i=j ).._).. :3 
J J-

a' . = 3 lJ 
i=j+ 1 ).._).. :3 

J r 
0 otherwise 

for j=1, .. ,m+3 and Q is a (m+3) vector of zeros. 

(5.5.1a) 

(5.5.1b) 

(5.5.1c) 

(5.5.1d) 

which is the (m+3) vector of Cj(l) 's, and the J1.h column of A is made up of 

the non-zero coefficients defining c/ 1 ) as given in (5.4.9b). 

The approach we shall adopt to solve (5.5.1) consists of t.wo slages: 

(1) The sub-problem (5.5.1a) subject to (5.5.1b) is solved and c* is 

used to denote the solution. 

(2) If all the inequality constraints in (5.5.Ic) are satisfied, i.e.: 
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then the solution to the constrained least-squares problem (5.5.1), 

c, is equal to c*. Should any of (5.5.lc) not be satisfied, we 

will find an adjustment vector G* such that the constrained 

solution: 

The au b-problem corresponding to the first stage can be solved by the 

orthogonal triangularization of N. Here we shall only «ive an outline of 

the principles involved. Further details could be found in Cox (1975, 1980) 

and an Algol implementation could be found in Cox and Hayes (1973). 

Suppose Q is an orthogonal (rxr) matrix such that: 

QTQ = I 

and 
(5.5.2) 

where R is an upper-triangular matrix whose order is identical to the rank 

of N. (This is one of the criteria .overnin. the choice of the m interior 

knots: the rank of N must be full, i.e. (m+4), in order that the B-spline 

coefficients can be uniquely determined. The condition on the position of 

a knot sequence which will guarantee N to have full rank and methods to 

deal with rank deficiency could be found in Cox (1975, 1982). Here we 

shall insist upon having at least one data point within any two 

non-coincidental knots, which is more than sufficient to ,uarantee N to 

have full rank). 

We can write: 

e = Nc - y (5.5.3a) 
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and let 

(5.5.3b) 

Furthermore, we shall separate the vector 8 into 8 1 and 82 such that 81 

has (m+4) and 82 has (r-m-4) elements. Then: 

e = QT [RC - 81] (5.5.4) 
- 8 2 

which means: 

(5.5.5) 

because of the orthogonality of Q. It is clear from (5.5.5) that eT e is 

minimised if: 

or 
Rc = 8 1 (5.5.6) 

and the residual sum of squares is aimply 118zIII. Since N has full rank, R 

is «m+4)x(m+4» and upper-trian,ular which means c can be solved easily 

by back-substitutions. 

To impose the constraints (5.5.1b), we note that: 

e = He - y = N [ ~ I -y 

= N~ + N~4 - Y (5.5.7) 

where ~T = (Ca,C3, ... ,Cm+3)' N ia the (rx(m+Z» matrix composed of the 

second to the (m+3)th columna of Nand Nm+4 ia the (m+4)th column of N. 

Therefore we have: 
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e = Nc - y (5.5.8) 

~ ~ 

where y = y - Nm+4 and c can be determined by the orthogonal 

triangularization of N just as before. Thus the solution of the first stage 

sub-problem is: 

(5.5.9B) 

with 
(5.5.9b) 

.... 
where R comes from the factorization: 

(5.5.9c) 

.... 
and 8 1 from: 

[ ~812 ] 
QTy = _ (5.5.9d) 

~ ~ 

The dimension of R is «m+2)x(m+2» and 8, is a (m+2) vector. From now 

on we shall drop the ~ and all matrices and vectors will correspond to the 

constrained situation of (5.5.7) to (5.5.9). 

The factorization of N is performed via repeated use of Givens rotation 

matrix which is: 

i j 
1 • • 

• 1 . . 
• i ·c S 

Qij = '1 
• 1 

j -s c --I • 
-I 
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where C and S denote cose and Sine, respectively, and e is chosen such 

that the jith element of the matrix: 

is zero. It is easy to verify that. the appropriate values of C and S are 

given by: 

where 

C = n' ·/h 11 

s = n" /h J1 

2 
h = (n" + Jl 

(5.5.10) 

2 
n .. )H 
Jl 

and n" lJ denotes the ijth element of N. Here we assumed n" .. 0, which J1 

ensures that h is non-zero. If n ji is already zero then no rotation is 

needed. 

The effect of multiplying the Givens matrix onto N is that the: 

ith row of N' : C x(ith row of N) + S x (jth row of N) 

jth row of N' = C x(jth row of N) - S x (ith row of N) 

with the ji th element being reduced to zero, i.e.: 

n" = h', 11 n" = 0 Jl (5.5.10a) 
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, 

n~k = C nik + S njk I 
njk = -S nik + C njk 

k=i+l, •.• ,n (5.5.10b) 

Since there are 4 multiplications in (5.5.l0b) it is termed the 1 

By using a series of Qij matrices, we can triangularize N into the 

required form: 

The advantage of this method is that the conditioning of the matrix N is 

not worsened in the factorization process because of the use of ortho,onal 

matrices. This method is unconditional stable (Wilkinson, 1963) and, most 

importantly, we can take advantage of the band structure in Nand 

economize considerably on the amount of work required for the 

The matrix N corresponding to our constrained Bub-problem has the 

following structure: 



xxx 

xxx 
xxxx 

xxx x 
xxxx 

xxxx 
N = xxxx 
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xxxx 

xxxx 
xxxx 

xxxx 
xxx 

xxx 

(5.5.11) 

with x denoting a non-zero element. As a result, R would have the 

following structure: 

R = 

xxx x 
xxxx 

xxxx 

xXxx 
xxx 
xx 
x 

(5.5.12) 

The rows of N are rotated into R, successively. To show how this is 

done, we use the following pictorial illustration which Cox (1980) has used. 

In each of these diagrams, (5.5.13) and (5.5.14), t.he first block represents 

the situation immediately before the reduction process. 
Each subsequent 

block illustrates Rand t.he row ot N immediately atter u's leading element 

has been reduced to zero using a Givens rotation matrix. The 
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corresponding elements of 8 1 and yare to the right in each block. In 

each case a previously established zero is represented by a period, a zero 

element that has just been created is denoted by 0, an element which is 

affected by the rotation is defined by m and a non-zero element which is 

unaffected during the last rotation is denoted by x. (5.5.13) shows how a 

4 elemented row of N is reduced to zeros sequentially. A 3-elemented row 

is processed in t.he same way. 

xxxx X IDIDIDI1 II xxxx X xxxx x xxxx x 
xxx x xxx x amo m xxx x xxx x 
xx x xx x xx X BII II xxx (5.5.13) 

x x x x x x x X II. 
xxxx X ODDDDl II .0. • •• Om II • •• 0 II 

The corresponding element of y is rotated into 8 1 by the same sequence of 

Givens rotations. During the reduction process, if the element of R 

corresponding to the non-zero leading element of the row of N is zero, the 

two rows are swapped, including the corresponding 8 1 element and the y 

element, and we continue to process the next row of N. This situation is 

depicted in (5.5.14) when the third row of N is being processed. We have 

assumed that this is also the first 4-elemented row in N, i.e. P3~[>'l').2)' 

xxx. x --II xxxx X xxxx x 
xx. x xx. X .... xxx x . . . . . . •• (5.5.14) . . • . 

xxxx X 0.. .. .o..m .. ..00 0 

Because of the band structure of N, it means that there will be no 

more than 4 rotations required for the reduction of each row of N. 

Furthermore, the constraints cl = 0 and c m+4 = 1 can be incorporated 
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without extra effort being required to obtain the constrained solution to 

this sub-problem. The residual sum of squares is simply the cumulated 

value of the square of the rotat.ed y element.s (now bein, elements of 82) 

corresponding to those situations of (5.5.13), but excludin, those of (5.5.14) 

where a row swapped is involved. 

Once N is triangularized, c* can be det.ermined easily by 

back-substitutions. The next step is to check whether: 

(5.5.15) 

If condition (5.5.15) is satisfied then the solution to the constrained 

least-squares problem (5.5.1) is ~ = ct. Otherwise, it would be necessary 

to invoke the second stage process which involves 'indin, a vector $* such 

that ~ = c* + $*. Not.e that since the first and the last B-spline 

coefficients are already fixed, the correspondin, elements of $* must be 

zero. Therefore, returning to the'" notation used earlier, we have: 

o 

$ = (5.5.16a) 

o 

and 

(5.5.16b) 

where $* has (m+2) elements. 
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Before we begin discussing how ~* can be found, there are two 

preliminary adjust.ments which we shall make. Firstly, we shall rewrite 

the inequality constrains (5.5.1c) into: 

(5.5.17) 

where d is a (m+3) vector with elements equal to some small constant E. 

We have chosen E to be 10-8 • The effect of replacing (5.5.1c) by (5.5.17) 

is that we shall restrict the Cj(l)'s, hence the derivative of the cubic 

spline, to be bigger than € rather than zero. Since the derivative, if it 

exists, of a function wit.h t.he parametric representation of (x(p),y(p») is: 

dy = !!l , dx 
dx dp dp (5.5.18) 

Thus by setting a lower bound on the derivative of the respective splines, 

we have avoided possible division by too small a value or havin, too small 

a derivative when combining two such functions to form the parametric 

spline. 

Secondly, we have to find the A matrix and d vector correspond in, to 
... 

t.he variable vector c. It is easy to see that: 

l ~ ) ... l~.;~ 1 AT = AT~ + ~ d (5.5.19) 

which can be expressed as: 

... 
AT~ 

... 
) d (5.5.20) 

where A is composed of the 2nd to the (m+2)th row of A and the (m+3)th 
... 

element of dis: 
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(£ - 3 >-m) >-ut+3 -

We can now formally specify the second stage aub-problem as: 

- - -
m!n HIIR~ - ell1~ subject to AT~ ~ d (5.5.21) 

c 

The lIe211~ term is left out because it is just a constant. Again we shall 

drop the ... notation and all the matrices and vectors mentioned below will 

correspond to the situation of (5.5.21). 

The method we have used to aolve the quadratic programming problem 

is iterative. It requires solving a series of aub-problema of the form: 

min HIiRc - ell1~ subject to ATc = d 
c 

A 

(5.5.22) 

A A 

where A ia ((m+2)xt) and d ia a t vector for t < (m+3)' A ia compoaed of 

the columns of A corresponding to the t active conatrainta in (5.5.22): the 

jth constraint ia said to be active if Cj(l) = ~. 

solved in the following way. 

First we define the Lagrangian: 

where ). ia the t vector of Lalfranlfe multipliers. 

This au b-problem is 

(5.5.23) 

Differentiatinlf (5.5.23) 

w.r.t. the cj's and equating to zero yields the followinlf aet of equations: 

(5.5.24) 
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Differentiating (5.5.23) w.r.t. the ). j'S and equating to zero yields another 

set of equations: 

A = d (5.5.25) 

One way of obtaining the solution of (5.5.24) and (5.5.25), c' and).' is 

to solve: 

(5.5.26) 

This approach, however, does not take advantage of the triangular 

structure of R and also requires the inversion of a «m+2+t)x(m+2+t» 

matrix. However, the method we have used, as su"ested by Cox (1975), 

takes full advantage of the structure of R and the unknowns are found in 

an efficient and numerically stable way. 

Clearly, we can express the vector of solution c 8S: 

c'= c* + ~' (5.5.27) 

where ~' can be viewed as an adjustment vector to the solution of the 

first sta,e sub-problem. If we substitute c = c* + G into (5.6.24) and 

(5.5.25) we shall have: 

(5.5.28a) 

and 

(5.5.28b) 
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Since 

therefore (5.5.28) becomes: 

.. 
=/V. (5.5.29a) 

and 

(5.5.29b) 

where d' = d - ATc*· 

From (5.5.29a), 

(5.5.30) 

which when substituted into (5.5.29b) ,ives: 

(5.5.31) 

To solve (5.5.31) for).', we first find the «m+z)xt) matrix V from: 

RTV = A (5.5.32) 
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because: 

Therefore, in terms of V, (5.5.31) is: 

yTy>.. = d' (5.5.33) 

The matrix V is then triangularised: 

by the multiplication of the orthogonal matrix QvT and (5.5.33) becomes: 

(5.5.34) 

The vector>" can DOW be found by forward-substitutioDs: 

(5.5.35a) 

for vector u and then by back-substitutions: 

Ry>" = u (5.5.35b) 
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Once )" is found, G' can be solved from (5.5.29a) again by forward- and 

back-substitutions. 

The amount of work involved in finding $' for each sub-problem (or 

each iteration) might seem to be very heavy by this approach. However, 

we have adopted an updating technique by Gill et al (1972) which only 

changes one column of A in every iteration, thus V does not have to be 

recalculated from the beginning in each iteration and the triangularization 

of which only requires little extra effort. 

trivial forward- and back-substitutions. 

The remaining work all involves 

This updating technique utilises the property that if: 

c = ! ~'l 
i.e. the solution to the Quadratic programming problem defined by (5.5.21) 

has been found, then )" correspondinsr to the t' active constraints are all 

positive and there is no violation of the inactive constraints. Should the 

j th constraint be violated, i.e. c j (1) < c we .hall .et that constraint to be 

active by includina the jth column of A into A and the correBpondin. 

element of d into a and Bolve for the new ~. and "'. 

Let A j denote the jth column of A. The next .tep in addin, a 

constraint is to find the corresponding enlarged V matrix. If Aj i. always 

the last column of the new A, then the new V matrix will also have an extra 

new (t+l) column with the rest of the columna unchan,ed. 

column of V is .iven by: 

ThiB new 
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by forward-substitutions. 

- 134 -

(5.5.36) 

Once the new V mat.rix is determined, we shall have to triangularize it. 

Let. QV(k-l)T be the ort.hogonal mat.rix for the triangularization of the old V 

mat.rix, V(k-l), where t.he superscript. in brackets is used to denote the 

it.erat.ion number and the present. iteration is k. 

onto V (k) we shall have: 

where: 

-- rvo(k-l) U

z

] Q V (k-l ) T V ( k ) 

.. 

) (t+l) 

) (m+l-t) 

If we multiply Qv(k-l)T 

(5.5.378) 

(5.5.37b) 

All we have to do now is to rotate the vector z into a vector of zeros and: 

(5.5.38) 

where G is the product of the sequence of Givens rotation matrices 

required for the reduction. (5.5.39) is a pictorial illustration when t=3 

and m=&. The charactera used here bear the same meanin. aa those in 

(5.5.13) and (5.5.14). 
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xxx~ xxxx xxxx xxxx 
xxx xxx xxx xxx 

xx u xx xx xx 
m m .. (5.5.39) 

:}Z 
0 
x 0 
x x 0 

The QV(k-l) matrix is also updated in the process and stored for use in 

the next iteration. Once Rv(k) is found, we can proceed to determine )" 

and ~'. 

At the end of an iteration if none of the inactive constraints are 

violated, but a Lagrange multiplier is ne~ative, we shall release this 

constraint in the next iteration. To release a previously active 

constraints, we have to delete a column in A, hence a column in V and the 

corresponding element in d. The effect on RV when a column of V is 

being deleted is that Rv is no lon~er upper trian~ular. Again we shall 

use a series of Givens rotations to triangularize RV' (5.5.40) illustrates 

how the trian,ularization is performed when t=s and the constraint 

corresponding to the second column of A is being deleted. 

xxxx xxxx xxxx xxxx 
xxx .am xxx xxx 
xxx 0- • lID .xx (5.5.40) 

xx xx Om •• 
x x x 0 

A,ain Qy is also updated and stored tor use in the next iteration. 

Should there be more than one violation of the constraints, the one 

with the bi, ,est violation will be set active. Similarly, if there are more 

than one Lagrange multiplier being negative, the constraint with the most 
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negative multiplier wi11 be released. This will be repeat.ed unt.il we find 

the b', such that c' does not violate the constraints and the Lagrange 

multipliers).' are all positive. Then b* : b' and: 

(5.5.41 ) 

which IS the solution to the constrained least-squares problem (5.5.1). 

The whole fitting procedures were coded into 12 Fortran 77 subroutines 

on an IBM PC-AT. In t.he next section, we shall report the results of 

using parametric splines to adapt our predictions syst.ems. 

5.S. QUALIT_~ OF THE PREDICTIONS BY PARAMETRIC SPLINE 

AP.APTIVE PREDICTION SYSTEMS 

Here in t.his section, we shall present the result.s of adapting our 9 

predict.ion syst.ems on 7 data sets usinJj( parametric spline adaptors. The 

number of interior knots (m) we have used is 3 in all the following 

examples, i.e. 4 sub-intervals within [0,1]. This number was first chosen 

arbitrarily in our experimental fit, using the NeIder-Mead search method, of 

an optimally constrained least-squares spline. Results of this have been 

published in Chan (1986). Therefore, when we adopt the over-const.rained 

version, we have chosen to use the same number of knots 80 that we can 

compare the effect of over-constraining the least-squares splines. 
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These 3 interior knots are placed within (0,1) such that a roughly 

equal number of data points are distributed in each of the 4 sub-intervals. 

The reason for doing this is that if the data points are very unevenly 

distributed amongst the sub-intervals, the fitted spline might fail to 

capture the shape characteristic in a sub-interval with many data, and 

oscillates excessively in a sub-interval with few data points. 

Considerable effort has been devoted to devising knot placement 

strategies in fitting spline functions (see Cox, 1982, for BOme suggestions). 

Here we shall contend that the results we have achieved could possibly be 

improved upon, if another strategy for knot placement is used. 

On the basis of our results, we found that it has negligible effect on 

the predictions when the splines of the parametric spline adaptor are 

over-constrained. This is partly due to the fact that introducing the 

parameter p has a smoothing effect on the raw data, which makes it less 

likely for the constituent functions to oscillate within [0,1] and have 

negative gradient. 

Table 5.1 summarizes the u-plot and y-plot KS distances before and 

after adapting the same examples used in Chapter 4 with a parametric 

spline adaptor. Comparing the distances bere with those by using a 

joined-up adaptor .iven in Table 4.3, we can aee that they are very similar 

in terms of their significance levels. In the case of JM, the spline 

adaptor has worse u*- and y*-plot distances for System 3 data. We have 

already commented on the fact that on this data set, JM has N equal to the 

num ber of failures Been at various atagea. The joined-up adaptor 
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DATA 3M BJM GO MO DU L LNHPP LV KL 
(n) 

u .2049E . 1871E . 1773E .0982A .15670 .1l23A .0982A .15040 .14570 
Sys.l u* . 1168B .1197B . 1277B .0511A .0794A .0507A .0526A .1027A .1053A 
(86) y . 1156B . 1148B . 1190B .0795A .1029A .0904A .0793A • 1148B . 1173B 

y* . 1109A . 1126A .1l02A .0852A .0762A .0715A .0853A .0878A .0916A 

u .26040 • 2325C .2181C . 1518A .2317C . 1554A .1518A .23880 .2219C 
Sys.2 u* . 1595A . 1665A • 1747A . 1488A .1421A • 1428A .1561A . 1305A . 1203A 
(31) y . 1858A . 1853A . 1989B . 1898B .1620A • 1772A .1743A • 1325A .1451A 

y* . 1635A .1514A . 1629A . 1865A • 1877B .2087B .1551A • 1867A . 1947B 

u .7038E .33540 . 2705B .1877 A .35560 . 2556B .1531A . 4260E • 3908E 
Sys.3 u* . 6939E . 2522B .2701B .1067A • 1347A • 1949A .1067A .2058A • 1847A 
(18) y . 6808E . 3900E . 4445E • 2234A .2012A .3075C .2430A .1112A .1135A 

y* .6473E .31080 .31010 • 1882A .1987A .2015A • 1963A • 1628A . 1497A 

u .1711A .2185C . 1328A .1143A .1415A .1712A .1211A • 1955B .2014B 
Sys.4 u* . 1333A .1576A .1551A • 1466A • 1905B .1333A .1362A • 2199C .2162B 
(30) y . 4647E .1399A . 1989B .3418E . 4887E .27090 .26950 .24200 .2010B 

y* • 4487E . 1249A . 1788A . 4766E . 4691E • 4480E • 4580E .2093B • 1747A 

u • 2924E .3010E .2812E • 2845E • 2856E • 2853E • 2845E .1658A .17318 
Sys.6 u* .0787A .0806A .0850A .0819A .1039A .0812A .0840A .1531A .1210A 
(38) y . 3969E . 3486E • 3870E .4017E .4010E • 3978E .4026E .2020C .2069C 

y* .2708E .25490 .4241E . 281BE .3010E .2715E • 2764E .2063C .2120C 

u .2717E . 2713E • 2705E . 2645E • 2596E .2717E • 2704E • 2382E • 2372E 
SS3 u* .0820B .0822B .0782A .0901S .09168 .08598 .0846B .08348 • lOOse 
(173) y . 1273E . 1379E .1263E . 1435E .1835E .1291E • 1300E .0346A .0500A 

y* .0573A .0693A .0560A .0632A .101SC .0571A .0557A .0352A .0452A 

u .0775A .0726A .0697A .0713A .1270D .0769A .0655A .1039B .ll51C 
BAe. u* .0731A .0809A .0728A .0826A .0974A .0730A .0707A .0853A .0812A 
( 112) y .0890A .0787A .0906A .0793A .0744A .0873A .0790A .0673A .0687A 

y* .0725A .0680A .0733A .0690A .0656A .0717A .0704A .0671A .0721A 

Table 5.l. Ko1mogorov-Smirnov distance of the u-p1ot and y-plot of the respective 
prediction systems before and after * adapting (parametric spline 
adaptor). See (4.2.3.6) for the corresponding significance level. 
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accumulates a discrete component at the origin and adapts a zero u to that 

value. Thus u* will have a non-zero value which will help the u*-plot to 

become more uniform but the corresponding predictor is practically useless. 
A 

The parametric spline G function, however, is constrained to be zero at the 

origin, therefore u* will be zero whenever u is zero. Hence, the u*- and 

y *-plot KS distances corresponding to the 8pline adaptor are not beUer 

than those of the joined-up adaptor because of the presence of this group 

of zeros. This is also the case for System 4 data. 

In the case of L, since N=i occurred 3 times between stages 25 and 27 

amongst the 28 predictions on System 3 data, the difference in the KS 

distances is not as apparent as in the case of JM*- , which has 12 

occurrences of N=i amongst the 28 predictions on the same data. But with 

System 4 data, the y*-plot KS distance of the 8pline adapted predictions i8 

much worse than the corresponding distance of the prediction from a 

joined-up adaptor. 

In the majority of cases, the two adapting methods have produced very 

similar u*- and y*-plot KS distance8, with the exception of System 6 and 

SS3 data where the spline adaptor ha8 produced even better re8ults. 

Thus on the basis of these distances, the spline adaptor 8eem8 to be at 

least as capable of adapting predictions .s the joined-up adaptor, and i8 

more reliable when a situation like JM on SY8tem 3 data occur8. 

Furthermore, by uBing the spline adaptor we no longer have to concern 

ourselves with having infinite prequen1.ial likelihood when there are zero 

failure times in the data, which will be the case if a joined-up adaptor is 

used. 
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The use of the parametric spline has also removed the internal noise 

which is present in a joined-up adaptor. Corresponding to t.he example 

,iven in Chapter 4, i.e. t.he joined-up G function for LV* on System SS3 

data and its derivative in Figure 4.2 and Figure 4.3, the parametric spline 

adaptor for the same situation is ,iven in Fi,ure 5.2 and its derivative in 

Figure 5.3. We can clearly see the shape of G in Figure 4.2 being 

reproduced by the spline without unwarranted oscillation in the middle 

section. The shape of the derivative in Figure 5.3 will be difficult for most 

approximating polynomials or functions to reproduce. Since the parametric 

spline is made up of two cubic splines, it encompasses a much wider class 

of functions and has a unique combination of flexibility and smoothness. 

In Chapter 4 we have ,iven, in Tables 4.6 and 4.8, the predicted 

median and the prequential likelihood of the raw predictors at selected 

stages of System 1 data. We shall now make use of t.his information and 

perform a detailed analysis on the effect of our spline adaptive procedure 

on this data set. 

From Table 5.2 we can clearly see that the ma,nitude of predicted 

medians from the spline adaptor are very close to those from the joined-up 

adaptor (Table 4.7). When compared with the raw medians in Table 4.6, we 

can see that the adapt.ed medians are in closer a,reement than before. It 

is more informative for the purpose of comparison to plot the raw and 

adapted medians a,ainst. the sta,e number i. These plots are ,rouped 

under Appendix 4 for ease of comparison here and with the results in the 

next Chapter. 
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Stage i JM* BJM* GO* MO* DU* L* LNHPP* LV* KL* 

60 259 259 264 250 250 250 250 255 252 

70 321 327 334 309 305 309 309 296 299 

80 383 385 394 349 342 349 349 340 342 

90 799 797 812 59:~ 537 557 593 558 553 

100 1482 1484 1509 934 824 1003 927 740 715 

}]o 116H 1175 119fi 937 840 853 930 790 767 

120 968 95G 972 919 838 852 913 848 817 

]30 1641 1611 1638 1188 1058 lll0 1181 894 890 

Table 5.2. Predicted median for System 1 data at selected stages 
by respective adapted (parametric spline adaptor) 
prediction systems. 

Stap;e i JM* BJM* GO* MO* nu* L* LNHPP* LV* KI,* 

60 74.155 73.874 74.083 72.820 72.386 72.820 72.820 72.490 72.318 

70 142.571 142.383 142.364 141. 364 140.875 141. 365 141. 364 140.812 140.687 

80 2l6.185 215.896 216.015 214.564 213.785 214.564 214.564 213.847 213.626 

90 293.965 293.910 293.915 293.585 293.218 293.084 293.585 293.380 293.282 

100 375.727 375.652 375.702 374.648 374.690 375.327 374.726 375.653 376.114 

110 454.340 454.367 454.563 451.552 451.466 451.552 451.628 452.615 453.167 

120 531.869 532.076 532.311 528.334 527.460 528.150 528.430 528.163 528.625 

130 616.966 617.547 617.604 613.415 612.998 612.771 613.475 614.067 614.789 

135 662.644 663.210 663.298 658.489 658.035 657.867 658.535 659.846 660.642 

Table 5.3. -log prequential likelihood of the adapted 
(parametric spline adaptor) prediction systems 
at selected stages. 
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In Plot A4.1a, we have the raw predicted medians for System 1 data 

from the 9 different raw prediction systems. We can clearly see that after 

stage 80 there is wide disagreement amongst several groups of raw 

predict.ions. Roughly we have JM, BJM, GO consistently predicting very 

large values, DU, LV and KL consistently predicting very low values and 

the remaining syst.ems predicting values in-between. Incidentally, the 

u-plot of t.he first 3 systems lies entirely above the 45· line and the u-plot. 

of t.he last 3 systems lies predominantly below the 45· line. Thus there is 

evidence thst the first 3 systems are optimistic and the last 3 are 

pessimist.ic. 

I t is also clear from the median plot that after stage 80 the medians 

from JM, BJM, GO and L (not aft.er stage 100 in the last case) become more 

noisy t.han t.hose from LNHPP and MO, and even more 80 than those from 

DU, LV and KL. 

Inspecting the PL of the ra~ predictions at selected stages «iven in 

Table 4.8 in the previous Chapt.er, it seems that LNHPP and MO are most 

likely to be the closest. to the truth (these predictions are almost identical 

because LNHPP behaved like MO nearly t.hroughout t.he entire sequence of 

predictions). The closeness here is in the sense of the whole distribution 

rather t.han just t.he median. The median is only a point in the 

dist.ribution and two different dist.ributions could have identical medians, 

but differ in ot.her distributional aspects, for example in the spread of t.he 

distribution. 
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In Plot A4.1b we can see the predicted medians of LV*, KL* and DU* 

have all been adjusted upwards and are now in much closer agreement with 

LNHPP* and MO* than before. The predicted medians of JM*, BJM* and 

GO* after stage 80 are still bigger than the others, but. they have all been 

adjust.ed downwards by the adapting process. Evidence exists in the 

u*-plot to support the observation that JM*, BJM* and Got- are still 

opt.imistic, although less seriously than their raw counterparts. Figure 5.4 

is the u-plots of JM predictions on System 1 data before and after 

adapting. We can see that the raw u-plot. lies entirely above the line of 

unit slope. The u *-plot is still exhibiting this behaviour but is not as 

severe as before. 

The switching behaviour of L between JM, MO and itself between stages 

80 and 100 is still very visible in the predicted medians of L*. It i. also 

visible that the predicted medians of MO* and LNHPP* are more noisy than 

before. The introduction of some noiae into the adaptive system is the 

cost we have to pay for having to estimate the G. 

The prequential likelihood of the adapted prediction at selected stages 

are ,iven in Table 5.3. If we compare these with the raw PL in Table 4.8, 

we can see that in PL terms, all the adapted predictions are better than 

before. It is alao fair to say that on the basis of PL, there is little to 

chooae between the last 6 adaptive systema for this data _to The first 3 

adaptive Byst.ems have nearly identical and poorer PL. Thus confirmin, 

our observation earlier from the median plot and u*-plot t.hat these 

predictions are still optimistic for this data. 
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Among the 6 better systems L* has the best PL. But from the median 

plot, L * has very nosiy predicted medians especially between stages 80 to 

100. If we check through the PL of L* given in Table 5.3, we can see 

that prior to stage 100, the PL of L* is indeed worse than those of DU*, 

MO* and LNHPP* because of the extra noise. This means L * has gained 

more than the lost ground in the last 35 predictions. This is confirmed in 

the median plot, where the L* predictions after stage 100 are indeed much 

less noisy than before, because the raw L predictions have switched to 

those of MO. 

Thus we conclude that this method of adapting has improved the 

quality and accuracy of some of the raw predictions on System 1 data. In 

the case of good raw predictions like those from MO and LNHPP, this 

adapting process has not worsened the quality of these predictions to any 

appreciable extent. The price we have to pay for adapting these 

predictions, i.e. the introduction of noise into the predictors, is either 

insignificant or being out-weighed by the gain from correctin, the bias. 

The next set of results which we shall analyae is on System 2 data. 

From Table 4.4, the raw predictions from MO have the best PL. This is 

closely followed by LNHPP because their predictions are a,ain identical 

except for those between stages 27 to 35. 

A4.2a too. 

This is clearly visible from Plot 

The behaviour of the predicted medians here ia similar to those in 

System I data. We can see from the median plot that DU, LV and KL 

predictions are small compared to the others. They all have au-plot 
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which lies mostly below the 45· line, thus they are pessimistic for this 

data. JM, BJM and GO predictions are usually relat.ively big and all of 

them have a u-plot which lies entirely above the 45· line, hence they are 

optimistic. The predicted medians from MO and LNHPP lie in between 

these two groups, while the medians of L swit.ched between its limit.s. On 

the basis of the PL, it seems most likely that the MO predictions are 

closest to the trut.h. 

The PL of the adapt.ed predictions in Table 5.4 confirmed this 

observation because DU· has the best PL amongst all the adapted 

predictions and it is clear from Plot A4.2b t.hat its predict.ed medians are 

indeed very close to those of MO's. The predicted medians of MO* have 

become noisier but their locations have not been changed by any 

substantial amount. 

Aft.er stage 35, the adapted medians are in closer agreement than 

before. We can see from Plot A4.2a and Plot A4.2b, that the optimistic 

predictions have been effectively adapted downwards and the pessimistic 

ones being adapted upwards. Before ataae 35, the adapted medians of 

optimistic systems like JM, BJM and GO have all been adapted yp-w!lrds. 

This behaviour is very difficult to avoid because we have to estimate the 

adapting function on the basis of the past u values. Samplin, nuctuation 

in the u's could lead to a wrona G being estimated, especially when there 

are relatively few u's available. 

when more u's become available. 

Therefore it ia eafer to start adaptin, 

Unfortunately there t. limitation to this 

strate,y in practice because the len,th of the data mi,ht not permit U8 to 

do 80. 
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DATA (n) JM* BJM* GO* MO* DU* L* LNHPP* LV* KL* 

Sys.1 
663.298 658.489 (86) 662.264 663.210 658.035 657.867 658.535 659.846 660.642 

Sys.2 
(31) 282.137 283.786 284.635 279.330 278.943 280.247 281.210 279.959 281.042 

Sys.3 
(18) 00 175.099 174.463 166.624 165.604 00 167.892 164.890 166.727 

Sys.4 
238. 16E; 241. 809 242.592 235.982 (30) 00 251.467 244.770 238.672 

Sys.6 
(38) 200.288 196.536 200.223 198.885 197.797 199.380 199.241 194.352 193.943 

SS3 
(173) 2210.49 2211. 47 2210.43 2210.69 2213.09 2211. 21 2211. 03 2214.06 2216.80 

BAe 
(112 ) 644.116 643.596 644.290 643.457 643.189 644.208 644.042 643.459 643.761 

Table 5.4. -log prequential likelihood of the respective adapted 
(parametric spline adaptor) prediction systems. 
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A common feature in those cases where adapting has improved the 

predictions is that they all have good y-plot and poor u-plot.. For MO and 

LNHPP, adapting has not brought about any improvement because their 

u-plots are already very good in the first place. In the latter case, the 

PL has even gone slightly worse. Nonet.heless, the adapting procedure 

does improve some of the predictions on this data set, especially at. the 

later stages and has brought them into closer agreement. 

Looking at the u-plot and y-plot KS distances of System 3 data in 

Table 5.1 one would immediately expect nu, LV and KL to be the most 

suitable candidates for adapting. Indeed, the PL of these adapted 

predictions are all better than before. The raw YO and LNHPP predictions 

are very good in the first place and adapting them has led to worse PL . 
.. 

In the cases of JM and L we have N=i occurring to both of them and 

adapting cannot change the degenerate nature of these raw predictions. 

In the remaining cases of 8JM and GO, their y-plots are very poor which 

means the trend in the data has not been captured adequately by these 

raw predictions. In fact the y-plot.s are slightly reverse s-shaped: t.he 

early section of the plot lies above and the later Rction lie. below the 45' 

line. This means the early u's are consistently amaller than t.he lat.er 

one •• Therefore, the u-plots are non-uniform not only becau.e of being 

biased, but also because of an ill-captured trend, and adapting cannot be 

expected to improve these predictions. 

From the median plots - Plot A,4.3a and Plot. A4.3b - we can aee that 

the raw predicted medians corresponding to JM, 8JM, GO and L are 

extremely noisy. Adapting has little effect on the predicted medians from 
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these systems. It is clear that the predicted medians from MO* and 

LNHPP* are more noisy than before and their PL's have become worse. 

The predicted medians from DU*, LV*, and KL*, however, are nearer to 

those from MO, and all of these 4 sets of predictions have very ·close PL 

values. Therefore, we conclude that these 4 sets of predictions are most 

likely to be closest to the truth for this data set. In the other cases, the 

raw predictions are either degenerate or have trend in the y-plots, which 

cannot be improved upon by adapting. 

For System 4 data, we can see from Table 4.1 that the y-plot distance 

of most of the raw predictions are poor. Even in the case of BJM and GO 

where the distance is insignificant, the y-plots have clear visible trend. 

Figure 5.5 contains the y-plots of these two sets of predictions. We can 

clearly see that the y-plot in either case is broken at two points: one 

near the middle and one near the end. This is alllO very clear from the 

predicted medians in Plot A4.4a. Furthermore, the y-plota are .li,htly 

reverse s-shaped. 

Given these observations, we cannot expect the adaptin, procedure to 

be able to improve upon these predictions. Indeed, the u*-plot distance 

is even worse than before for DU* and LV'. In the case of Got, althou,h 

the u*-plot is better, the PL has deteriorated, which must be due to the 

systematic bias in the raw predictions. The only case where there i. a 

,ain in PL is DU', but this PL value is .till very much lower than tho.e of 

LV and KL. Incidentally, LV' and KL* have noiser predicted medians 

which are of similar ma,nitude to the raw medians. Thi. accounts for the 

worse PL after LV and KL are adapted. Thus we conclude that our 
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adapting approach cannot improve the worse raw predictions for this data 

because t.hey t.hemselves are not. only being biased. It. seems that the 

exponential failure time is unsuitable for this data set. The Pareto 

dist.ribut.ion of LV and KL, which has more likelihood for extreme values, 

seems to be much better. 

On checking the y-plot distances of the raw predictions on System 6 

data, one might think immediately that this would be like the previous 

example because all the y-plot distances are very poor. But if we examine 

the y-plots in more detail, we will find that the poor y-plot. is due to a 

very large observation t69 (refer to Appendix 3 for a listing of the data). 

This cause of a poor y-plot is quite different from the systematic bias 

we have seen in the previous data set. Let us consider the example of 

adapting the predictions with a reverse s-shaped y-plot. First of all, we 

shall assume that the predictions are optimistic at· the early sta,es and 

pessimistic later. Therefore, durin, the early sta,es the G function will 

lie mostly above the 45' line because of the optmistic (small) u's seen so 

far. When the change in systematic bias occurs, the G will be of the 

wron, shape until there are sufficient pessimistic (bi,) u's to influence G 

to be below the 45' line. It i. conceivable that G might still be wron, at 

the end of the prediction sequence because the u's simply avera,ed out 

and to,ether they look perfectly uniform. Aa a result, the adapted 

predictions are clearly wrong. This situation ta observed in System 4 

data where the u-plots are all very .ood but the 7-plots have visible 

trend. 
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Therefore our approach of estimating G in the light of past u's would 

work best when the G funct.ions from stage to staae are stationary, i.e. the 

shape of G should not vary from one stage to another. Should the G's be 

non-stationary, the fact that we know its shape is chanaina does not 

enable us to estimate it, because of the lack of information concerning its 

new shape. Thus in practice, our requirement of a aood y-plot is not 

strictly to have a non-significant KS distance, but an absence of trend in 

the y-plot itself. If this is accompanied by a steady shaped and 

non-uniform u-plot, we can expect the adaptive procedure to improve the 

raw predictions. 

In the case of System 6, where the poor y-plot is caused by an 

exceptionally larae inter-failure time, the effect on the shape of the u-plot 

might not be significant. In this particular case, the effect of this data 

on the shape of the adaptor is further diminished because this larae value 

is very near the end of the data stream, which means there are already 

quit.e a number of u's in the basis for the estimation of G. 

If we refer to the u*-plot KS distances in Table 5.1, we will find all 

the distances are now dramaticaly improved to be non-sianificant even at 

20%, the y*-plot distances are still poor in general, may be except LV and 

KL and their adapted predictions, because of the large inter-failure time, 

t ••. 

The PL has agreed with the KS distances that the adapted predictions 

are better except for LV and XL, which have the best PL amon,st all raw 

and adapted predictions. Although the PL of LV* and XL* are worse than 
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their raw counterparts, they are still the best amongst all adapted 

predictions. The u *-plot for LV· and KL* are mainly above the 45' line 

which indicates that these adapted predictions are optimistic tor this data. 

This plus the extra noise, which is evident in the median plot (Plot A4.5b), 

in the adapted predictions is responsible tor the deterioration in the PL 

after adapting. As for the other adapted predictions, we can see from 

Plot A4.5a and Plot A4.5b that they are now in remarkable agreement with 

the raw predicted medians of LV and KL. Once again, the adapting 

procedure has improved the biased predictions for this data. 

The next data set we shall analyse is System SS3 which is also the 

biggest data set in our study. The u-plot and y-plot distances are very 

poor for the first seven sets of raw predictions. The y-plot for the last 

two sequences of predictions are very ,ood, but their u-plots are poor. 

The predicted medians in Plot A4.6a revealed extreme disa,reement 

between these two ,roups of predictors. The fir.t ,roup has extremely 

large median values and those from the latter ,roup are much .maller. 

Examining the ahape of the u-plots shows that the fir.t .roup of 

predictions are ye.r.Y optmistic and the latter pessimistic alt.hou,h to a 

lesser ext.ent. 

Plot A4.6b .hows the adapted medians. It i. very clear that the 

pessimistic predictions are adapted upwards, at the cost of much more 

noise in the new medians, and the optimistic one. are adapted downwards 

considerably, also at a cost of havin, more noise in "he new median. .s 
evident in the median plot. However, there ia now much closer a,reement 

amon, these adapted predictions than before. 
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The u*-plot and y*-plot distances have improved all round. The gain 

in PL is most significant in the first ,roup of predictors all of which has a 

prequential likelihood ratio of around e90 against their raw count.erpart.s 

over these 173 predictions. The ,ain by LV* and KL* is appreciable but 

less substantial than the first group of predictors. In fact, the PL of LV* 

and KL * turned out to be worse than the others, most likely caused by the 

extra noise being introduced as evident in the adapted median plot. But 

still it is incredible that their PL should be so close after 173 predictions. 

To demonstrate the extent of bias in these predictions bein, removed, 

Figure 5.6 and Figure 5.7 are the u-plots for JM and LV before and after 

adapting. We can see in both cases that the shape of the u-plot has been 

dramatically changed and both u*-plots are much more uniform than before. 

Thus we conclude that the adapting procedure has been very successful in 

improving the preditions on this data set. 

Finally, we shall look at the effect of adapting the BAe data. The 

u-plot and y-plot distances for this data are all ,ood, may be with the 

exception of the u-plot of DU. Therefore, we cannot expect to ,ain much 

by adapting, at least in the cases of JM, BJM, GO, MO, Land LNHPP. 

Another reason for not expecting to ,ain any thin, by adaptin, is that the 

PL for all these raw predictions are incredibly close after 112 predictions, 

and we have yet to succeed in improving upon a set of predictions with 

,ood u-plot and y-plot and relatively ,ood PL by adaptin,. 

Althou,h the u*-plot distances showed improvement in the cases of DU t 

LV and KL, the PL re,istered no ,ain for any of the adapted 
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predictions. If we compare the predicted medians in Plot A4.7a and Plot 

A4.7b, we can see that the adapted medians, although in closer agreement 

now, are also noiser than before. The magnitudes of t.he medians have not 

been changed in any significant way, but t.hose of DU*, LV* and KL* have 

fluctuated above their raw predictions. Thus we conclude that since the 

bias in the raw predictions here is not serious, adapting has increased t.he 

noise and produced worse (more noisy) predictions. But in ret.urn we now 

have remarkable agreement amongst all the adapted predictions, as evident 

in Plot A4.7b. 
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CHAPTER 6 

SOFTWARE RELIABILITY PREDICTION SYSTEMS WITH NON-PARAMETRIC RATE 

ESTIMATES AND THE ANALYSIS OF THEIR PERFORMANCE 

6.1. INTRODUCTION 

A major criticism of conventional software reliability models is that they 

are highly parameterized. The evolution of the failure rate of a pro,ram 

is highly structured through the modelling assumptions underlying the 

model being used. 

Miller (1986) found that the rate function of most existin, software 

reliability models has the complete montonicity property. Based on this 

observation, Miller and Sofer (1986a) formulated a non-parametric approach 

to estimate the failure rate of a pro,ram. Their basic assumption is that 

the failure rate should be completely monotone up to a specified order d. 

They found that the resultin, problem of least-squares re,ression under 

order restrictions warrants a careful method of solution because the 

constraint matrix is very ill-conditioned (Miller and Sofer, 1986b). 

They have investigated the performance of their method and a number 

of exponential models based on data simulated from t.he latter (Miller and 

Sofer, 1986a). Here we shall use t.he non-parametric rate. e.timated by 

their method to make predictions on t.he 7 real data .. t... The.e 

predictions are then adapted wit.h our parametric .pline adaptor. The 

quality of t.hese predictions are analysed and compared with t.hose obtained 

in the previous Chapter. Another non-parametric approach to e.Umate 
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the failure rate is formulated in Appendix 2. Constraints based on 

empirical observation of the evolution of the failure rate of a program 

undergoing debugging can also be imposed. 

6.2. ESTIMATION OF THE COMPLETELY MONOTONE RATES 

Let N(i) denote the number of failures observed in [O,i] and M(i) = 

ErN (i) ] be the expected number. The rate function of the failure process 

is defined as: 

d 
rei) = ctr M(T) for T) 0 (6.2.1) 

Note that i is the elapsed time. 

The rate function is said to be completely monotone if and only if it 

posaeasea derivatea of all order (j ) 0) and 

(-I)j ~. rei) > 0 
d,-J 

for T > 0 (6.2.2) 

Miller (1986) has found that the rate functions of wide cla •• es of 

exponent.ial models (includin, all t.he exponential modela we have u.ed) 

poaaeas thia complete monotone property. A detailed expoaition can be 

found in hia ori,inal paper. On t.he baaia of t.hia obaervation, t.he 

complete monotone requirement ia being imposed on the non-parametric 

eatimate of the failure rate of a pro.ram. 
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Instead of using a completely monotone function, they have formulated 

the problem in terms of a completely monotone sequence. Thili means that 

the resulting rate function is piecewise constant. We shall briefly go 

through how this is done. 

Consider a set of software failure data which consists of n failures in 

The elapsed time at the ith failure is denoted by Ti with To = 0. [O,T]. 

[O,T] is then separated into k equal intervals: let As = T/k and iii = iAs 

for i = O,T, •.• ,k. 

Now the function corresponding to a completely monotone sequence of 

rates {ri} defined over the partition of [0, -] in steps of As will be of the 

form: 

for i = 1,2, ••••• 

with the set of ri'a satiafyin,: 

for i ) j+l 

and j ) 0 

where Aj is the jth backward difference operator. 

and 

/Jr' 1 for j > 1 

(6.2.3) 

(6.2.4) 

(6.2.5) 



- 162 -

The estimation problem is to find a sequence of rate estimates {ri} 

which in some sense best fits the available data and also aatisfies the 

constraints (6.2.4). 

In practice, the number of future intervals is restricted to t (rather 

than .) and the order of the difference constraints j is restricted to d 

(rather than .). Thus the constraints (6.2.4) become: 

for k + t ~ i ~ j + 1 (6.2.6) 
and d ~ j ~ 0 

The rates are estimated as follows: 

1. The expected number of failures is constructed as a continuous 

function on the basis of the data: 

if Ti' T , Ti+l 
for i = O, ••• n-l 

if Tn < T , T. 

Note that there is half a failure being accounted for should the period 

[O,T] not end with a failure. 

2. For each of the k intervals, t.he raw data i. defined as: 

i = l.I ••••• k (6.2.7) 

3. The fitted rates {ri} minimise the weighted sum of squared 

deviations which is: 
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k 
D(r,i-) = E w·(r· - ri)2 

i= 1 1 1 

subject to the constraints in (6.2.6) with specified values of I and d. 

6.3. PREDICTIO~ SYSTEMS WITH MONOTONE RATE ESTIMATES 

Miller and Sofer (1986a) compare the estimated with the actual rates 

because the data are being simulated and the truth is known. In our 

case, such a direct. comparison is not possible because the true atate of 

nature underlying any of the real data aets is not. known to us. Our 

approach is to define a prediction syst.em which utilises the non-parametric 

rate estimates to predict the current reliability of the proaram. just as the 

prediction syst.ems in the last Chapt.er. The quality of theae predictions 

are then analysed using the techniques of Chapter 4. This provides us 

with aome indication concernina the practical value of auch non-parametric 

estimates. 

The 3 components of such a prediction aystem are: 

1. At stage i, after we have seen i failures. we assume t.he t.ime to 

the next failure of the program to be exponentially diatributed. 

2. The data available up to and includina the ith failure will be uaed 

to estimate a completely monotone rate aequence with difference 

constraintaof order d (=1.2.3 and 4). 
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3. The kth member of the sequence eatimated in (2) ia taken aa the 

rate of the failure time distribution in (1) to make predictiona. 

Although the success of such a prediction syatem will be a joint effort 

of all components rather than just (2) alone, it ill doubtful that the 

predictions emanating from such a lIystem could be of ,ood quality when 

the estimated rates are wrong. Thus the analysis of the quality of these 

. predictions should be a good guide to the quality of the rate eatimates tor 

a ,iven data set. The analysis could also be viewed as simply forming a 

basis of comparison between theae new predictions and those in the 

previous Chapter. 

We are grateful to Miller and Sofer for providing us with the 80ftware 

for estimating the rates in our examples. For each of the 7 data lIets, a 

sequence of predictions is ,enerated for each of I to 4 orders of difference 

constraints. We shall use dDIF to denote the prediction system with 

exponent.ial failure times and completely monotone rate estimates subject to 

d difference constraints. At each llta,e the number of intervals k is 30 

which means t.he dimension of the least-squares problem is always 30. The 

number of intervals into t.he fut.ure t is always fixed at 5 and unit weicht.1I 

are used. 

6.4. ANALYSIS OF THE QUALITY OF THE PRBDICTIONS 

USING MONOTONE RATE ESTIMATES 

The first. 8et. of results we shall look at i8 on System 1 data. From 

Table 6.1 the KS distances of the u-plot. for 2DIF, 3DIF and 4DIF are all 
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Data (n) IDIF 2DIF 3DIF 4DIF 

u .1689D .0870A .0784A .0821A 
Sys.l u* .07l5A .0601A .0764A .0780A 

(86) y .0939A . 1144B .1243B .1251B 
y* .0815A .11658 .1346C . 1360C 

u .1392A . 1220A .1l84A .12l5A 
Sys.2 u* .1222A .1446A .1394A .1392A 
(31) y .1417A .1783A . 1956B . 1960B 

y* .1652A .2192C . 2382D . 2372C 

u . 1542A .1978A .1904A • 1747A 
Sys.3 u* .090lA .OB9IA .0919A .0919A 
(18) y .1968A . 1848A . 1753A . 1818A 

y* .1744A . 1650A .1531A . 1552A 

u . 1446A . 1245A .1527A .1521A 
Sys.4 u* . 1606A . 1694A .1180A .1068A 
(30) y .5028E .4352E .4291E .4307E 

y* . 4674E .4493E . 4402E .4421E 

u . 3308E .2774E • 2769E . 2769E 
Sys.6 u* .0993A .0922A .I06IA .1012A 
(38) y .3164E .4007E .4009E .4028E 

y* . 2259D .4311E .4313E . 4311F. 

u .2771E .2612E . 2632E . 2632E 
SS3 u* .0698A .0899S .0908B .0882B 
(173) y .1223D . 1777E .1796E .1780E 

y* .0657A .0977C .0988C .0978C 

u .1614E .0891A .0670A .0651A 
BAc. u* .1060B .0732A .0685A .D689A 
( 112) y .0625A .0831A .0955A .0951A 

y* .0461A .0772A .0818A .081SA 

Table 6.1. Kolmogorov-Smirnov distance of the u-plot and y-plot 
of the exponential monotone rate prediction systems 
before and after * adapting (parametric spline adaptor). 
See (4.2.3.6) for the corresponding significance level. 
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very ~ood and their y-plot distances are also Irood. But the u-plot 

distance for IDIF is rather poor and the plot itself lies entirely above the 

45· line, which indicates that these predictions are optimistic for this data. 

Incidentally, this coincides with the result of the simulation study by 

Miller and Sofer (1986a) that the current failure rate estimate with 1 

difference constraints has large negative bias. 

The PL in Table 6.2 also suggests that the predictions from lDIF are 

inferior to those from the other 3 prediction systems. Since the y-plot in 

the case of lDIF is very Irood, we can use our parametric spline adaptin, 

procedure to improve these predictions. The y-plot distances .how that. 

2DIF captures the trend beUer than the hi,her difference predictions, 

which explains its slightly better PL. 

Indeed, the KS distances of the u'-plot have improved in all 4 cases. 

The most significant improvement being lDIF: from D to A. The PL in 

Table 6.3. agrees that the predictions of lDIF* are better than those from 

lDIF, but they are still not better than the predictions from 2DIF, 3DIF or 

4DIF. 

The reason for this will be apparent if we refer to the raw medians 

plotted in Plot A4.1c. From the median plot, we can .ee that the IDIF 

predicted medians are extremely noisy. Each of the peak. corre.pond. to 

s .mall estimated rate in the predictive distribution. We have already 

established that the predictions are optimistic. But this optimism i. also 

because of the current failure rate estimated with 1 difference constraints 

is highly affected by the last data point. 
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Data (n) 1DIF 2DIF 3DIF 4DIF 

Sys.l (86) 668.907 661.425 662.233 662.601 

Sys.2 (31) 279.498 282.102 281.834 282.136 

Sys.3 (18) 164.739 165.832 166.929 167.001 

Sys.4 (30) 245.590 249.413 308.927 281. 357 

Sys.6 (38) 207.685 206.312 206.617 206.864 

SS3 (173) 2298.23 2306.31 2306.97 2306.95 

BAe (112 ) 642.590 638.912 639.115 639.018 

Table 6.2. -log prequential likelihood of the prediction systems 
with monotone failure rate and exponential failure time 
distribution. 

Data (n) IDIF* 2DIF* 3DIF* 4DIF* 

Sys.1 (86) 664.599 658.714 661.509 661.812 

Sys.2 (31) 280.346 282.716 283.403 283.439 

Sys.3 (18) 167.792 167.542 167.470 168.313 

Sys.4 (30) 250.392 250.937 309.769 282.012 

Sys.6 (38) 195.304 199.207 198.508 198.399 

SS3 (173) 2211.27 2213.75 2214.19 2214.00 

BAe (112) 645.417 643.987 645.009 644.969 

Table 6.3. -log prequentia1 likelihood of the ,dap-te~ 
(parametric spline adaptor) exponential .onotone rate 
prediction systems. 
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The least-squares monotone rate estimation subject to I difference 

constraints is identical to isotonic regression (Barlow et aI, 1972), which has 

been applied to estimating system reliability by Campbell and Ott (1979). 

There is a simple algorithm for fitting these rates: they are the slopes of 

the smallest concave envelope (least concave majorant, Barlow et aI, 1972) of 

the graph of the cumulative sum of rit.a against Bj, where ri' t.a and iii 

are as defined in section 6.2. Because this cumulative sum is a st.ep 

function, the envelope will be made up of a series of straight lines with 

positive but successively decreasing slopes. If the last data ~ happens 

to be relat.ively small, then the corresponding piece of straight line in the 

envlope is likely to be flat, which means the current failure rate will also 

be small. When; k is not relatively small, the corresponding piece of 

straight line in the envelope might be joining up more than 1 interval, 

thus the current failure rate might be smoothed and no longer be too 

small. As a resuIl, we see the peaks in the median plot corresponding to 

the first situation which we have described above. 

This kind of bias is not consistent in the sense we have described in 

the last Chapter because between two peaks the estimated rates might not 

be as optimistic. Thus, even though the u-plot of IDIF lies entirely above 

the 45' line and the medians of IDIF* are being adapted downwards, as 

evident in Plot A4.1d, there is still considerable noise in them. Hence the 

PL is worse than the other less noisy predictions. 

Note that by imposing 1 more difference constraint the raw medians are 

much smoother than those of IDIF. This is clearly visible in Plot A4.1c. 

Another feature which is al80 apparent in Plot A4.lc is that t.he predicted 

medians of lDIF, 3DIF and 4DIF are very close, which implies t.hat t.he 

estimated failure rate in each of these cases is also close. 
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This again coincides with the result of the simulation study of Miller 

and Sofer (1986a) that for data simulated from moderate growth models, the 

estimates are not improved as the order of the difference restrictions 

increases beyond 2. 

The PL of 2DIF* has shown improvement over the raw 2DIF predictions. 

Indeed, the u*-plot distance is even smaller than before even though the 

u-plot is already very good. We can see from Plot A4.1d that the medians 

of 2DIF* are adapted slightly upwards. 

For the remaining two sets of adapted predictions the improvement in 

PL is small, probably due to the trend in these adapted predictions being 

marginally worse than before as evident in their y*-plot distances. 

If we compare these non-parametric predictions with those in the 

previous Chapters (Tables 4.3, 5.1 and 5.3) we will find that L* has the 

smallest u*- and r-plot distances and the hi,hest PL. Mo* hal the 2nd 

best distances and PL, which is followed very closely by LNHPpt in 3rd 

place with 2DIF* in 4th. The differences between their PL's are small. 

All of them have very ,ood u-plot distances, but 2DIF* hal a sU,htly 

worse y-plot distance with a aignificance level of between 10 and 20X. If 

we examine Plots A4.1b and A4.1d, the worse y*-plot in t.he case of 2DIF* il 

probably due to the predictions between stages 100 to around 127: t.he 

predicted medians from 2DIF* are noticeably smaller than t.hose for the 3 

bet.ter syst.ems. 

On comparing the median plots of the raw prediction systems, Plots 

A4.1a and A.4.1c, we observed the followin, featurea: 
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a) The predicted medians from DIF's with 2 or more difference 

constraints which are bigger than the medians of MO, behaved very 

similarly to the median~ from L. 

b) The predicted medians from DIF's with 2 or more difference 

constraintli; are nearly always bounded above by those from JM and 

below by those from DU. 

From Plot A4.la we can clearly see a space between the predicted 

medians of MO and DU. We postulate that if we would have used a 

prediction system with a Generalised Power Law NHPP (Miller, 1986) which 

has a rate function: 

X( T) = XS ({3 + T) S-l (6.4.1) 

the predicted medians for this data from this prediction system (GP) will lie 

between those from MO and DU because: 

Lt G (X,G,/3) ~ DU (X,G) 
/3-+0 

Lt G(X,G,/3) ~ MO (e,/3) 
X~. s..o 
X~~ (6.4.2) 

and 

Lt G(X,G,{3) ~ HPP (X) 
G-tl 

in an obvious notation. 
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We conjecture that the predicted medians from GP which are between 

those from MO and DU will be very close to those from 2DIF, 3DIF and 4DIF 

which lie below the medians from MO; specifically after stage 100 of this 

data sel. 

If this is indeed the case, it would provide more support tor this 

non-parametric approach from the point of view of model flexibility because 

by using 1 such prediction system (with d ) Z) we are in effect using a 

meta-system consisting of 5 systems, namely JM(GO), L(LNHPP), MO, GP and 

DU. 

However, from a prediction point of view, a prediction aYBtem with a 

more flexible model does not guarantee to produce better predictions. For 

this particular data Bet MO and LNHPP are better than 2DIF on the baBiB of 

PL; although 2DIF has a Bmaller u-plot distance, the 7-plot distance is 

smaller in the case of MO and LNHPP. 

Nonetheless, if we can achieve hi,h flexibility wit.h relatively relaxed 

assumptions, it is certainly an advantage. 

approach deserves further investigation. 

This type of non-parametric 

The next set of results we shall look at is for System 2 data. On the 

basis of the u-plot distances in Table 6.1, the predictions from the 

non-parametric rate prediction systems are all very lood. From Plot A4.2c 

we can see that the predicted medians from 2DIF J 3DIF and 4DIF are very 

cloBe indeed. ThOBe medianB from IDIF are ali,hUy biller than the othera 

up to stage 28 and become much biller and noiaier after atale 41. 
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However, the PL in Table 6.2 while confirming that 201F, 30lF and 40IF 

are indeed similar, suggests that lDIF is belter than the others. If we 

refer to Appendix 3 for the listing of the data, we will find that the 

inter-failure times are occasionally very lar.e, for example, t.3 and those 

near the end of the data. This could be the main reason why even 

though the predictions from lOIF are noisier than the others, its PL is still 

belter because it captured the trend in the data better than the others. 

This is evident from the y-plot distances where lDIF's is the amallest 

amongst all 4. However, it seems that lDIF is performin. better here by 

coincidence: its known optimistic bias is associated with an increase in the 

t's. 

Because t.he u-plot.s are already .ood, it 8eems unlikely that theae 

predictions can be improved to any appreciable extent., if at all, by 

adapting. In fact by adapUn. these predictions, the reaultin. u*-plot 

distances have .one worse in all but one case. In the case of IDIF*, the 

u*-plot distance is smaller than that of IDIF but t.he ,.a-plot diatance is 

worse, and as a result the PL of IDIF* is al,-hUy worse t.han t.he PL of 

lDIF. In all the remainin. cases both the ,.a-plot diatance and the PL 

have worsened. A possible reason for no improvement here is that the 

raw predictions are noisy in the firat place which cannot be improved 

simply by adapting. 

If we compare these predictions with those in the previoua Chapter we 

will find, on the basis of PL, that DU* is t.he beat.. tollowed by MO* wit.h 

lDIF in 3rd place. The differences bet.ween these PL'. are very .mall 

indeed. However, on the baais of the u- and '1- plot IS di.tance •• lDIF 
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is the best. The worst PL in the case of lDIF is probably caused by the 

noise in ita predictions which we can clearly see by comparing the medians 

in Plots A4.2b and A.4.2c. 

Finally, if we compare Plot A4.2a with Plot A4.2c, we will find that the 

medians from dDIF with d ) 2 are aaain bounded by those from JM and DU. 

This time the DIF medians are close to those from LNHPP which are areater 

than the MO medians. Their PL are also very close. 

Plot A4.3c shows that the predicted medians for System 3 data are in 

close aareement amongst the 4 non-parametric rate prediction systems. The 

u- and y-plot distances are very good in all cases. Accordina to the PL, 

lDIF has produced the best predictions for this data set. 

Since the u-plots are already very .ood, we cannot expect to improve 

these predictions further by adaptin,. Althou,h the u*- and y*-plot 

dist.ances are even betler after we have adapted these prediction., the PL 

disagrees that they are better than before. If we check the median plota 

we can see quite clearly that the adapted medians are more noisy than 

before: the peaks are more pronounced in all cases. Once a,ain the 

non-parametric rate prediction systems are performina well on this data set 

and adapting does not improve the raw predictions. 

We have aeen in the previous Chapter that some prediction systems 

performed rather poorly on this data sel (JM, L). We can see from Plot 

A4.3a that the predicted medians from a number of prediction systema are 

extremely noisy. Surprisin,ly, however, the predicted medians from the 
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non-parametric rate prediction systems are not as noiBY, they are in fact 

behaving similar to thoBe from LNHPP. Overall, the predictions with the 

best PL for this data set are from MO, closely followed by IDIF and Lv*. 

The noise in the lDIF predictions is probably the reason why its pL iB not 

better than MO's even though it has better u- and y-plot KS distances. 

In the previous Chapter, when we analyse the predictions on System 4 

data, we have found trend to be present in the y-plots of the parametric 

prediction systems with exponential failure time distribution. This 

situation is similar with the predictions from the non-parametric rate 

prediction systems here. We can see from Table 6.1 that the u-plot 

distances are all very good, but the y-plot distances are all extremely 

poor. 

The PL for 3DIF is particularly poor because its estimated current 

failure rate at stage 51 is extremely small after seeing the exceptionally 

lar6{e inter-failure time t51. 4DIF behaved similarly at stage 51 but not aa 

extreme as 3DIF, hence the PL is better than 3DIF yet noticeably worse 

than IDIF and 2DIF. 

Under these circumstances, we cannot expect to be able to improve 

theae predictions by adapting. Indeed, the PL in Table 6.3 confirms our 

belief: the PL of IDIF* and 2DIF* are worM than before. Overall, the 

best predictions for this data 8et come from LV and XL with the Pareto 

'failure time distribution. 
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From Table 6.1 we can see that the u- and y-plot distances for the 

predictions of System 6 data are all very poor. We have already 

commented on the cause of these poor y-p)ots in the previous Chapter: 

this is due to an exceptionally larae inter-failure time t.9 • The u-p)ot in 

all cases lies entirely above the 45' line. The level of aignificance in all 

the u-plot distances indicates that the optimistic bias is very .evere. 

After these predictions have been adapted, we find the u*-plots to 

have improved considerably in all cases. The y*-plots are .till poor 

because of the larae inter-failure time t.t. 

The PL's in Table 6.2 and 6.3 suggest that all the adapted predictions 

have improved over their raw counterparts, of which lDIF* has improved 

most significantly and has the highest PL amonast all 4 seta of adapted 

predictions. 

Comparing Plot A4.5c with Plot A4.5d, we can .ee t.hat. all t.he adapted 

medians are being adapted downwards. The medians from lDIP' are .t.ill 

the noi8ie8t amongst the adapted medians, although the range of values ia 

smaller than those from lDIF. 

If we compare the raw medians here with t.ho.e in the previoua 

Chapter, we will find t.hat the predictiona from dDIF wit.h d ) 2 are again 

behavin, very similarly to t.hose from LNHPP. After t.hey have been 

adapted, we can aee from Plota A4.5b and A4.5d t.hat. t.he median. from 

dDIF' with d ) 2 are incredibly close to t.he median. from t.hoae adapted 

parametric prediction aystems with exponential failure time di.tribut.ion. 

This agreement is also observed in t.heir PL's. 
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Of all the predictions being made on this data set, those trom LV and 

KL are still the best in PL terms. IDIF* haa the 3rd hiarhest PL, the 

noise in its predictions has reflected the noise in this data. Again the 

Pareto distribution in LV and KL seems to be most suitable tor data with 

exceptionally large or small values. 

For System SS3 data, the u-plot distances in Table 6.1 are poor for all 

the predictions. The PL's in Table 6.2 prefer the IDIF predictions for this 

data set, probably because of its better trend capturing as evident in the 

y-plot distances. The good performance of IDIF here seems to be again 

coincidental and similar to the situation of System 2 data: its optimistic bias 

is matched by an increase in the t's. We can see from Plots A4.6a and 

A4.6c that after stage 220 there is a rapid increase in all the predicted 

medians. 

The u-plot for IDIF lies entirely above the line of unit slope and is 

extremely non-uniform. The u-plots in the other cases 

predominantly above the 45· line and are very non-uniform. 

seems adapting can improve these predictions. 

also lie 

Thus it 

Indeed we see quite dramatic improvement in an the adapted 

predictions. The u*- and y*-plot distances are improved in all cases, the 

best being lDIF* which are now insignificant even at 20X. 

Plot A4.Sc reveals that there is remarkably little difference amongst t.he 

raw medians before stage 220. Those from IDIF are much bigger and 

noisier after this stage. After t.hey have been adapted, we can see from 
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Plot A4.6d that all the medians are now smaller than before. ThoBe from 

lDIF* are Btin noisier and bigger than the other adapted medians after 

stage 220, but BeemB to be leBs seriously 80 than before. 

According to the PL in Table 6.3, IDIF' is the best with the other 

adapt.ed predictions trailing closely behind. 

through adapting is very substantial in all 

The improvement. in PL 

cases. The PLR of lDIF* 

against IDIF in nearly e87, which clearly rejects IDIF tor this data set. 

In t.he previous Chapt.er, we have achieved very similar improvement by 

adapting the parametric predictions on this data set. Poolin« all the 

result.s together, we find that. the PL of lDlF' is very close to those better 

predictions of JM*, 00*, MO*, L*, and LNHPP*, while the PL of dDIF* with 

d ~ 2 is close to those of DU* and LV*. 

If we compare the raw medians in Plot A4.6a and Plot A4.6c, they are 

not as closely behaving as in the previously analysed data aeta. We can 

Bee from the raw medians that the trend is decreesin. before ata.e 220. 

In the case of lDIF, we can see its predicted medians are quite different 

from the other raw medians depicted in Plot A4.6a. But after they have 

been adapted, the 101F* medians are incredibly cloae to the medians from 

those adapted parametric systems with very aimilar PL. 

Finally, we shall investigate the performance of the non-parametric rate 

prediction systems on BAe data. The u- and y-plot KS diatancea in Table 

6.1 are very «ood for dDIF with d ) 2. The u-plot for 1DIP ia very poor 

and lies entirely above the 45' line, which aeems to be a aood candidat.e 

for adapting. 
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Indeed the KS distance of the u*-plot for lDIF* has improved. 

However, the PL's in Table 6.2 and 6.3 dismiss any improvement through 

adapting in all 4 cases. It is not aurprising that the PL should register 

no gain if we adapt predictions which are already good. But in the case 

of lDIF, we would expect the adapted predictions to be betler. 

If we refer to Plot A4.7c for the lDIF medians, we will find that they 

are extremely noisy and 'spiky' like those in System 1 data. Although the 

location of the lDIF* medians is in close agreement with that of the better 

predictions, they are even more noisy than the raw medians, as we can see 

from Plot A4.7 d. Thus the PL becomes smaller because the predictions 

from lDIF* are very noisy. 

In the previous Chapter, we also find that the raw parametric 

predictions are generally ,ood and cannot be improved further by 

adapting. When we compare the raw medians in Plot A4.7a and Plot A4.7c, 

we find that the medians from dDIF with d ) 2 are not behavin, cloaely to 

those from L or LNHPP, even thou,h they seem to be once a,ain bounded 

by the JM and DU medians. The DIF medians are visibly more noiay and 

this extra noise is likely to be the reason why the PL for dDIF with d ) 2 

are worse than the PL of the raw parametric prediction ayatems with the 

only exception of DU. 

Aa for the adapted predictions, we can aee from Plota A4.7b and A.47d 

that the mediana from dDIF* (d ) 2) are now very close to thoBe from the 

adapted paramet.ric prediction aystema. 

remarkable agreement. 

Furthermore, their PL'. also .how 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES 

7.1. SUMMARY ~D CONCLUSIONS 

We have presented two numerical methods for the minimisation of 

univariate and bivariate functions with bound restrictions on the variables. 

According to the numerical results we have obtained, these methods have 

proved to be both efficient and reliable for determinin, the maximum 

likelihood estimate of the unknown parameters in the 7 software reliability 

models in this study. 

The success of our methods is also due to the two preliminary .teps 

which we have taken: 

1. Reduce the number of variables in the minimisation problem and 

optimise over a lower dimensional space. 

2. Transform the variables in the minimisation problem 80 as to remove 

their constraints. We believe that the square tran.formation we have used 

in our examples might also have contributed to the efficiency of our 

methods because the shape of the objective function after such a 

transformation will be more curved and hence more suited to the 

minimisation methods. 
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These parameters are then used in the respective predictive 

distributions to predict the current reliability of a pro.ram. We argued 

that since our aim is to predict, the only sensible way of assessing our 

8uccess is by a direct analysis of the quality of these predictions. 

This is done by using: 

1. The prequential likelihood as a global measure of the goodness of 

the predictions. 

2. The u-plot procedure to check the biasedness in the predictions. 

3. The y-plot procedure to check whet.her the predictions have 

captured the trend in the data adequately. 

4. The predicted median plot to indicate the level of noise in the 

predictions. 

Our ability to measure the quality of the predictions alBa enables us to 

make use of the information concernin. past prediction error to correct the 

future predictions on the Bame data. A naive approach baaed on a 

joined-up adaptor can produce .ood probability predictions but at the aame 

time introduces a lot of internal noise into the adapted predictors. Aa a 

reault, we are unable touae PL to analyae the auccea. of the adaptive 

procedure. 
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By using a smooth adaptor, based on a parametric spline, we have 

avoided the introduction of internal noise into t.he adapt.ed predictors and 

are able to assess the effect of adapting. This is done by analysing the 

quality of the predictions before and after adaptin~, and comparin, the 

results of the analyses. 

On the basis of our 7 data sets and 9 different predictions systems we 

conclude that: 

1. Adapting is most effective if the bias is consistent. 

2. In order to have improved adapted predictions, it is not necessary 

to have a ,ood y-plot to ensure that trend in the data is well 

captured. We have encountered situations where the y-plot is poor, 

maybe due to one or two exceptionally large observations, but their 

adapted predictions are improved. However, we must make sure that 

the bias is fairly stationary and there is no systematic trend in the 

y-plot which could be due to a reveraal in the nature of the bias. 

3. The y-plot might also be improved as a result of the improvement 

in the adapted predictions. 

4. The adapted predictions are invariably more noisy than the raw 

predictions - the price we have to pay for havin, to estimate the 

adaptor from the data. 
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5. Predictions which are already very good would usually not gain 

by adapting mainly because of the induced noise. But there are a few 

cases in which we have observed a slight improvement in the 

prequentia) likelihood even when the raw predictions are already very 

good. 

We then use the completely monotone rate estimates wit.h 1 to 4 

difference constraints and assume the failure times to be exponentially 

distributed to predict. We applied these 4 prediction systems to our 7 

data sets and adapted all these predictions. We observed that: 

1. The predictions from lDIF are usually noisier than the others and 

they are usually optimistic. 

2. The predictions from 3DIF and 4DIF are u8ually very similar. 

3. On data sets with occasional exceptionally large data points, IDIF 

or its adapted version, IDIF*, is usually best in PL terms. 

4. When the raw predictions are very noisy as well as bein, biased, 

adapting might not be able to improve them. 

When we compare these predictions with tho.e in which a parametric 

model is used, we find that: 

1. The predictions from DIF with 2 or more difference const.raint.s 

can be very similar to those based on parametric model. wit.h 

exponential failure times. 
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2. In none of the cases we have looked at are the predictions from 

DIF (raw or adapted) best, although the best set of DIF predictions 

(raw or adapted) is usually close to the overall best (raw or adapted). 

In practice, a user can choose the prediction with the best past 

predictive analysis results for his/her use. 

7.2. FUTURE RES~ARCH POSSIBILITIES 

This study is based on 7 sets of real data. The problem with usin, 

real data is that the underlying true state of nature ia not known, thua it 

is very difficult to fully understand and interpret the results. Our 

predictive quality measurement tools can help us up to a point but are far 

from perfect. Therefore, we ahould or,anise a Iar,e scale simulation 

study in order to fully appreciate the performance of the different 

parametric and non-parametric prediction systems; the capability of our 

adaptive procedure in correcting biased predictions; the aituationa and 

conditions in which adapting will succeed or fail; the effect of the 

introduction of noise in the use of adapted predictions. 

So far we have been analyain, continuous data. The other t.ype of 

data which is usually easier to collect conaists of non-overIappin, intervals 

of execution times and count ot failures observed within each interval: the 

discrete data. 

Abdel-Ghaly (1986) haa implemented a number of prediction system. for 

this type of data. The unknown parameters in the respective model. are 

estimated uain, maximum likelihood. The optimisation involved ia done by 
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the NeIder-Mead simplex search which is very inefficient. We can most 

certainly improve the efficiency by using the same methods we have used 

for the continuous cases. It may also be possible to extend the adaptive 

idea to this type of data. 

As for the predictive quality measurement tools, the theoretical 

justification for the u- and y-plot procedures to be used for discrete 

predictions is lacking. Their use in the discrete case is empirically 

motivated: they do provide the correct information. Therefore, more 

effort is needed to find suitable and effective measurement tools for 

discrete data. The search for predictive quality measurements is by no 

means restricted only to discrete data, more measurement procedures are 

also needed for continuous data. After all, it is very important to be able 

to measure what we have or have not achieved in our predictions, 

otherwise, we cannot justify any alternative or modification method like 

adapting. 

The approach usin, non-parametric rate esUmates seems to be 

,eneratin, predictions which are noisier than the better parametric 

predictions, but usually manage well in capturin, trend. Based on the 

results of our study, it does aeem that this approach can generate 

plausible predictions. It has the further advantage that the assumptions 

are more relaxed. It might be possible to reduce the noise in these 

predictions, perhaps at the cost of more bias or worse trend capturin,. 

Maybe the formulation in Appendix 2 can ,enerate less noisy rates because 

all the inter-failure times are uaed. Or maybe too much smoothing would 

be involved. The performance of such a non-parametric formulation 

should repay investigation. 
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Amongst all the data we have analysed there are aiutations where the 

PL for two or more sets of predictions are very similar and yet the 

predictions are still dissimilar. It might be possible to combine these 

predictions to form a meta-prediction in BOrne optimal way. It is 

conceivable that in doing so we can improve further the quality of the 

predictions. We have previously attempted to combine predictions using 

the past PL, but have not obtained consistent results (Abdel-Ghaly et aI, 

1985). This is also a topic which deserves more investigation. 
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APPENDIX 1 

UNIQUENESS AND CONDITION FOR FINITE MAXIMUM LIKELIHOOD 

PARAMETER ESTIMATE IN THE GOEL AND OKUMOTO MODEL 
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APPENDIX 1 

UNIQUENESS AND CONDITION FOR FINITE MAXIMUM LIKELIHOOD 
PARAMETER ESTIMATE IN THE GOEL AND OKUMOTO MODEL 

We shall prove that the likelihood function of the Goal and Okumoto 

model has one unique maximum and this maximum is at finite IJ and ex 

provided that: 

Ti I i 
-2 >-1' LT' j=l J 

(Al.I) 

where Tj is the total elapsed time as at the jth failure and i is the total 

number of failures observed. If (A1.I) is not satisfied, then the maximum 

of the likelihood is at finite ~ = ,. and infinite IJ. 

In section 3.4. we have established that the MLE of • can be obtained 

by maximising: 

(Al.2) 

.. 
over • > 0 and IJ is given by: 

.. 
We will show that J is st_dgtly--.£Q..~~.' which is a necesaary and 

aufficient condition for ita maximum to be unique. Note that the reverse 

ia not true - a function with a unique maximum is nol neceasarily strictly 

concave. 
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A function is strictly concave if its second derivative is always 

negative. The second derivative of (Al.2) is: 

(Al.4 ) 

which can be factorized into: 

(Al. 5) 

The sign of a2R/a4>2 is the same as the sign of the last term in (Al.5) 

because the remainin~ terms are both positive for • > o. 

Now 

t 
.-r. 
-~ 

'-. .-rje 2 
Sl&&& -CIrr' 

I-e 1 

2 
!!i 

z 

(
4rT. .,.. I = sign 21 - sinh( 21) 

By the MacLaurin's series: 

X3 x& 
sinh(x) = X + 3! + 5! + •••••• 

{aZi} :. sign a.2 

(Al.6) 

(Al.7) 
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which is clearly -ve 'ttl ~ > O. This means (A1.2) is strictly concave tor 

• > 0, hence the likelihood function can have only one maximum. 

Since the MLE of IJ is given by: 

.. i 
IJ = ~--

~i 
l-e 

(Al. 8) 

it will be infinite if • = o. To investigate the behaviour of the likelihood 

function at • = 0, we use the reparameterization of >. = ,.,.. The 10' 

likelihood in terms of (>"~) is: 

= nlog>. - • ~ T' - ~h _e....-r
i 

] 
j=l J • 

(Al. 9) 

Expanding e~i by the use of MacLaurin's series, (AI.9) becomes: 

i >.( (.,-.)2 (.,-.)2] = n10g>. - • [ T' - _.,-. _ 1 + 1 + 0(.3) 
j=l J • 1 2! 3! 

( 3) denotes the terms of order .3. where 0 • Obviously: 

(A1.l0) 

(A1.11) 

which is the log likelihood of the homogeneous Poisson process. 

It is clear that if a amall feasible step is taken trom (>',0), tor V>. > 0, 

in the direction of ., the effect on i will be determined by the first order 

term in (AI.IO): 

>'1 i 
- -I: T' 

2 j=l J (A.1.12) 
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If (A1.12) is positive at the current value of ~, then a small feasible 

(positive) step in • will increase the value of ~, otherwise, such a step will 

lead to a decrease. When (Al.12) is equal to zero, the second order term 

is: 

(Al.13) 

which is always negative. If the latter situation is true, the maximum of ~ 

will be eq ual to: 

which yields: 

Because of the uniqueness of the maximum, it suffices to check the Bi,n of 

i A 

(Al.12) only at (T7'0) in order to decide whether ~ is finite or not. 
1 

Hence if, 

Ti 1 i 
-2 '-1' E T' 

j=l J 
(Al.l4) 

then ~ = -, t = 0, and i = ~,' otherwise ~ and t will both be finite. 
1 
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APPENDIX 2 

NON-~A~METRIC APPROACH TO ESTIMATE 

FAILURE RATES OF A PROGRAM UNDERGOING DEBUGGING 
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APPENDIX 2 

A NON-PARAMETRIC APPROACH TO ESTIMATE THE FAILURE RATES 

OF A PROGRAM UNDERGOING DEBUGGING 

We shall outline a non-parametric method for determining the failure 

rates of a program on the basis of past inter-failure time data t 1 , ... ,tn• 

Our aim is to estimate these rates such that the trend in the data is 

adequately captured. We shall do this by minimising the y-plot 

Kolmogorov-Smirnov Distance of {rjtjl subject to some suitable constraints 

being imposed on the rj's. 

Since {r jt jl is a sequence, the corresponding y-plot will be a step 

function which means there are two distances to consider: 

i 
1: r·t· 

j=l J J 
n+(r) max i = - -1 <. i <. n n 

1: r·t· n 
j=l J J 

(A2.1) 

and 

i 
1: r·t· 

j=1 J J 
(i-I) n-(r) max = 

1 <. i <. n n 
1: r·t· n 

j=1 J J 

(A2.2) 

Here we shall only deal with n+(r), the case of lJ(r) can be dealt with in a 

similar way. 
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In order to transform (A2.1) and (A2.2) to be linear in the variables, 

rj, we impose the following equality constraint: 

n 
1: rjtj = n 

j=l 
Thus our estimation problem can be written as: 

min [1 max 

n I i I ] <. i <- I: r·t· r j=l J J 

subject to: 
n 
I: r·t· = n 

j=l J J 

and 
r' J ) 0 1 <- j , n 

(A2.3) 

(A2.4) 

which is a classical Loo fit problem in the n variables (Barrodale and Young, 

1966) and can be transformed into a linear programming problem in the 

following way. 

Let {r/} denote the solution to the above problem, and d* denote the 

minimum positive distance, i.e. 

with 
n 
E r·*t· = n 

j=l J J 

I i ,max r r.t. 
1 ( i (n j=l J J it 

(A2.5a) 

(A2.5b) 

Note that (A2.5a) is true for all non-negative {rj} which satisfies 
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If we let d be the positive distance corresponding to a set of rj's then 

clearly: 

i 

) 
r r·t· - i + d ~ 0 

j=l J J 

and 1 <. i <. n (A2.6) 
i r r·t· - i - d <. 0 

j=l J J 

because d must be greater than or equal to all the positive deviations and 

-d must be less than or equal to all the negative deviations. Therefore, 

problem (A2.4) can now be solved by minimising d subject. to the 

constraints in (A2.4) and (A2.6) with d ~ 0, which is a linear programming 

problem in (n+1) posit.ive variables, d, ri, ... ,rn• 

In the context of reliability growth, the failure rate of a program 

should be decreasing with the number of bugs found. Thus we mhrht 

want to impose the following constraints on the r /s: 

(A2.7) 

Furthermore, we can reasonably expect early fixes would contribute 

more towards improving the reliability of the program, thus we can impose 

the following constraints to reflect this: 

Arj = rj - rj-i <. 0 

~2rj = 6rj - ~rj-l <. 0 
} (A2.8) 

These constraints, in the same spirit as those of Miller and Sofer (1986a,b), 

specify that the failure rates are decreasing (or non-increasing) with j and 

the amount of decrease is progressively smaller. 
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Therefore, we can impose further linear constraints onto the basic 

problem and solve it using a linear programming package. 
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APPENDIX 3 

LISTING OF THE SOFTWARE RELIABILITY DATA 



3. 
9. 

138. 
88. 

325. 
180. 
36. 
6~5 . 
97. 

193. 
1.48. 
19::::; . 

o. 
54·3 .. 

44. 
52(i' • 

445. 
860 .. 
724. 

1 ;:; II 

3(). 

1247. 
729. 
12:::: N 

75. 
1071. 
1045. 
4116 .. 
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Muss's System 1 Data 
(read left to right) 

30. 113. 
...... 91-..:=.. 

50. 77. 
670. 120. 

55. 24·2. 
10. 1146. 
4. o. 

1 7f:.;. 58. ,.... I..,. 
..::'0''':'. 452. 

6. 79. 
2L ,......,.'":'" ,.;:, . ..: .. _ .... 

:23f.:ill 31. 
2:::::2" 33() .. 

10 .. 16. 
129. 810. 
281- 160. 
29(~ • 1755., 
on-:·· 

I C) ,,';' • 707. 
l'j7 ,. ... ..,. 

..:.:., . ..:,..::. '.':' " 293<). 
26:1, • 1800. 
143. 108. 
943. 700. 

1897. 447. 
990. 948. 
482 .. 5509. 
371.. 790. 
648. 5485. 

81- 115. 
112. 15. 
24. 108. 
26. 114. 
68. 422. 

600. 15. 
EJ. 227. 

457. 300. 
255. 197. 
816. 1351. 
134. 357. 
36<Y. 748. 
365" 1222. 
529. 379. 
290. 300. 
828. 1011. 

1064. 1783. 
33. 868. 

1461. 843. 
865. 1435. 

o. 3110. 
875. 245. 
386. 446. 

1082. "" --. 
100. 10. 

6150. 3321. 
1160. 1864. 
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~~8~5 II 

2-75. 
5() .. 

638. 
1215. 
6900. 

135. 
180. 
3()(). 

2750. 
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Musa's System 2 Data 
(read left to right) 

22:2. 280. 
570. 610. 
3tJ() II 800. 
6tlO. 15()7. 
293. 1212. 

27l.5. 3551. 
33()() • 1.510. 

661. 50. 
.q·2:25. 15600 • 
9021 • 2519. 
6675. 6945. 

290. 290. 
3c>5. 390. 

1210. 407. 
625. 912. 
612. 675. 
800. 3910. 
195. 1956. 
729. 900. 

o. o. 
6890. 3348. 
7899. 



115. 
136" 

=i() .. 

7E38. 
15" 

834. 
10571. 
11696. 
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Musa"s System 3 Data 
(read left to right) 

O. 83. 
1077. 15. 

7111 606. 
r"\'"', ...... 
...:: . ...::...:: ... 7'·' -. 
39(). 1863. 

3400. 6. 
563. 2770. 

6724. 2546. 

178. 194. 
15. 92. 

1189. 40. 
615. 589. 

1337. 4508. 
4561. 3186. 
652. 5593. 



r= 
..J. 
r:: . 
.... ,1'" 

147. 
92", 

183. 
29b. 
308. 

2462. 
o. 

716. 
14b37. 
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Musa's System 4 Data 
(read left to right) 

73., 141. 
28" 138. 

1.98. 22. 
5:~() " 1424. 

10. 115. 
23.5. 116. 
279. 140. 
104-. 2178. 
64:). 887. 
c) OIL O. 

18740. 1526. 

491. 5. 
478. 325. 

56. 424. 
0. 92. 

17. 284. 
283. 50. 
678. 183. 
285. 17l. 
149. 469. 
774. 256. 



" "_" .. 
52. 

4. 
265" 

1:2 ~ 
43" 
"' .... 
~ ... :'" 
... .., 
..J..: ... 

43. 
16. ..,. 

"-' . .... ..., 
'::"1 . 

C' 
..J. 

86. 
4· • 
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Musa's System 6 Data 
(read left to right) 

1. 4. 59. 
'" 25. .. . 
1- 30. 
6. ..,. 

"_ .... 
3l:> • 38. 

236" 121. 
L 672. 
8. 1. 
:I.. 4. 

70 .. 60. 
169 • 29. 

2·1. 27 • 
36. 74. 

221. 6. 
437. 66. 

32. 8. .... 
...:.. . 3 • 

21 • 196. 
8. t. 
1. 74. 

18. 9. 
189. 83. 
41- 7. ... 

..J. 1. 
2. .... ...:... 

88. 55. 
140. " ..... _, .. 

40 • 2. 
891. 23. 



107400. 
26100. 
18780. 

120. 
2100. 

478620. 
2220. 
1320. 

520320. 
8820. 
1080. 

473340. 
120. 
360. 

70800. 
188040. 
206640. 
472080. 
576612. 

73740. 
2340. 

180. 
5100. 

420. 
180. 

273000. 
148680. 
77040. 
70800. 

296796. 
480. 

398580. 
540. 

349320. 
589980. 

900. 
87840. 

158640. 
5700. 

65460. 
505680. 

6240. 
7200. 

480. 
907140. 

66000. 
327600. 

960. 
71640. 

597900. 
123030. 
498360. 

1328400. 
680760. 
468180. 
322110. 
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Musa's System SS3 Data 
(read left to right) 
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British Aerospace Data 
(read left to right) 

10. 4. 
4" 9l. 
1. 4. 

49. 44. 
l.. 30. 

103. 224. 
9. ? .o- • 

170. 129. 
t::" c:-... / . ...J • 

121. 23. 
21 M 4· • 

165. 14. 
138. 95. 

-:rr.::-
''':'"...1" 89. 
15u 19. 
41- 210. 
66. 9. 
12 .. 159. 
21- 18. 
4c)" 17. 

160. 66. 
c>2 .. 239. 
95. 240. 

tj' " 146. 
25" 11l. 

c) • 193. 
26u 30. 
78. 39. 

128. 34. 
349" 274. 
114. 39. 
l08. 38. 
80. 239. 

152 .. 63. 
46. 152. 
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6. 212. 

1.72. 21-
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APPENDIX 4 

MEDIAN PLOTS 
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