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PARALLELOTOPE TILINGS AND
q-DECOMPOSITION NUMBERS

JOSEPH CHUANG, HYOHE MIYACHI, AND KAI MENG TAN

Abstract. We provide closed formulas for a large subset of the canonical basis vectors of the

Fock space representation of Uq(ŝle). These formulas arise from parallelotopes which assemble

to form polytopal complexes. The subgraphs of the Ext1-quivers of v-Schur algebras at complex

e-th roots of unity generated by simple modules corresponding to these canonical basis vectors

are given by the 1-skeletons of the polytopal complexes.
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1. Introduction

Fix an integer e ≥ 2. Leclerc and Thibon [LT] associate to any pair of partitions λ, µ of

the same size a polynomial dλµ(q), defined as a change of basis coefficient in a Fock space

representation of the quantised enveloping algebra Uq(ŝle). The dλµ(q) were originally called

q-decomposition numbers because upon evaluation at q = 1 they are decomposition numbers

of v-Schur algebras with the parameter v taken to be a primitive e-th root of unity in a field

of characteristic zero [A1, VV]. In fact the dλµ(q) may be interpreted, before specialisation at

q = 1, as certain parabolic affine Kazhdan-Lusztig polynomials [VV], or alternatively as graded

decomposition numbers of graded versions of these v-Schur algebras [BK, A2, SW].

In this paper we show that if the partitions λ and µ are generic, in a sense we make precise

below, then either dλµ(q) = 0 or dλµ(q) = qn for some n ≥ 0, and that these generic q-

decomposition numbers are governed by configurations of parallelotopes. Such configurations

first appeared in the representation theory of symmetric groups and Schur algebras as (two-

dimensional) parallelogram tilings in the work of Erdmann and Martin [EM] and of Peach

[Pe]. Inspired by [Pe], Turner considered certain higher dimensional parallelotope tilings as

data to define algebras with favourable homological properties, and conjectured a structural

relationship between these ‘Cubist algebras’ and blocks of symmetric group algebras over fields

of positive characteristic [Tu, §13]. His prediction is known to be true for weight 2 blocks

(and 2-dimensional tilings) [CT, §11]; the general case remains open. In this paper we define

parallelotope tilings relevant to Turner’s conjecture for blocks of arbitrary weight, in terms of

the combinatorics of partitions, and prove a numerical analogue of the conjecture.

James [J] conjectured that the decomposition numbers of a v-Schur algebra of degree n with

quantum characteristic e over a field of positive characteristic p coincide with those of the

corresponding v-Schur algebra over a field of characteristic zero, as long as e > n/p; a more

general version predicts that the same is true for all weight w blocks of v-Schur algebras when

e > w. Williamson [Wi] found counterexamples to the (original) conjecture of James, but they

do not involve the generic partitions we study. That leaves open the question of whether James’s

conjecture, in its block form, is true for generic decomposition numbers. If one could establish

a version of the conjecture of Turner mentioned above, for v-Schur algebras in characteristic

zero, along the lines of [CT], making use of the derived equivalences established in [CR] and in

[Tu], a similar argument would then apply to v-Schur algebras in positive characteristic as well,

and James’s conjecture for generic partitions would follow. The proofs of our results involve

the analysis of mutations of tilings (see Figure 5) underlying these derived equivalences.

In order to state our results, we recall some standard combinatorics of partitions. To a

partition λ = (λ1, λ2, . . . ), we associate its Young diagram

[λ] =
{

(i, j) ∈ Z2 | 1 ≤ j ≤ λi
}
.

We will draw Young diagrams with (i − 1, j + 1) placed northeast of (i, j). Given two finite

subsets X, Y ⊆ Z2, we say that X is northeast of Y if

max{j − i | (i, j) ∈ X} > max{j − i | (i, j) ∈ Y }.



PARALLELOTOPE TILINGS AND q-DECOMPOSITION NUMBERS 3

Figure 1. Example construction of λH .
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A rimhook of λ is a nonempty subset H ⊆ [λ] of the form

H = H(i,j) = {(i′, j′) ∈ [λ] | i′ ≥ i, j′ ≥ j and (i′ + 1, j′ + 1) /∈ [λ]} .

We have [µ] = [λ] \ H for a partition µ; we say that µ is obtained by unwrapping H from λ,

and that λ is obtained by wrapping H onto µ.

Let Hooke(λ) be the set of rimhooks of λ of size divisible by e. Given H ∈ Hooke(λ), define

a partition λH as follows. The partition ν obtained by unwrapping H from λ can be produced

by successively unwrapping rimhooks H1, . . . , H l of size e. Then λH is obtained from ν by

successively wrapping on rimhooks H̃ l, . . . , H̃1 of size e, where H̃ i is taken to be minimally

northeast of H i. The definition of λH is problematic for two reasons: the decomposition of H

into a sequence H1, . . . , H l may not be unique, and the H̃ i may not exist. Nevertheless we have

the following special case of our main result, Theorem 4.7.

Theorem 1.1. Let λ be a generic partition (defined below). Then for all H ∈ Hooke(λ), λH is

well-defined, and dλ,λH (q) = q.

Example 1.2. Let e = 4, and let λ = (5, 5, 4, 2, 2, 2, 1, 1). There is a unique H ∈ Hooke(λ)

such that |H| = 12. Then λH = (6, 5, 5, 2, 2, 2), obtained by successively unwrapping H1 =

{(1, 5), (2, 5), (2, 4), (3, 4)}, H2 = {(6, 2), (6, 1), (7, 1), (8, 1)} andH3 = {(3, 3), (3, 2), (4, 2), (5, 2)},
and then wrapping H̃3 = {(2, 4), (3, 4), (3, 3), (3, 2)}, H̃2 = {(4, 2), (5, 2), (6, 2), (6, 1)} and

H̃1 = {(1, 6), (1, 5), (2, 5), (3, 5)}. See Figure 1. The roles of H1 and H2 can be swapped,

but that does not affect the result λH . For this example, it is known (via a computer calcula-

tion using the Lascoux-Leclerc-Thibon algorithm [LLT, §6.2]) that indeed dλ,λH (q) = q, even

though Theorem 1.1 does not apply, as λ is not generic.

The statement of our main result requires the notion of blocks of partitions. The e-weight of

a partition λ is defined as w = |Hooke(λ)|. A partition obtained by unwrapping H ∈ Hooke(λ)

from λ has e-weight w−(|H| /e). So by succesively unwrapping rimhooks (of size divisible by e)

we obtain a partition κ of e-weight 0, called the e-core of λ, such that |λ| = |κ|+we. Moreover
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κ does not depend on which rimhooks are chosen to be unwrapped. A block is defined to be a

set of partitions sharing the same e-weight and e-core. It is known that dλµ(q) 6= 0 only if λ and

µ are in the same block [LLT, Theorem 6.8]. Denote by Bgen the subset of generic partitions in

a block B. The cardinality of the sets B and Bgen depends only on w and e, and the proportion

|Bgen| / |B| of generic partitions in a block, keeping w fixed, tends to 1 as e tends to infinity (see

Remark 4.8), so the following theorem describes ‘almost all’ q-decomposition numbers when

e� w.

Theorem 1.3. Let B be a block of partitions of e-weight w. There exists a map z : Bgen → Zw
such that for all λ, µ ∈ Bgen,

dλµ(q) =

{
q|Ω| if z(µ)− z(λ) =

∑
H∈Ω(z(λH)− z(λ)) for some Ω ⊆ Hooke(λ);

0 otherwise.

The w-dimensional parallelotopes

Π(λ)R =

z(λ) +
∑

H∈Hooke(λ)

aH(z(λH)− z(λ))

∣∣∣∣ 0 ≤ aH ≤ 1

 ⊂ Rw

are the w-cells of a polytopal complex in Rw, i.e. the intersection of any two parallelotopes is

either empty or a common face.

Moreover, given λ, µ ∈ Bgen, there is a non-split extension of L(λ) by L(µ) (simple modules

of the v-Schur algebra in characteristic zero) if and only if z(λ) and z(µ) are adjacent vertices

of the polytopal complex, in which case Ext1(L(λ), L(µ)) is one-dimensional, and either µ = λH
for some H ∈ Hooke(λ) or λ = µH for some H ∈ Hooke(µ).

We next explain what it means for a partition to be generic and define the map z appearing

in Theorem 1.3. In the body of this paper, z(λ) is defined for an arbitrary partition λ. The

alternative description we provide here is valid for any λ satisfying the following condition: for

all H ∈ Hooke(λ), any inductive decomposition of H into a sequence H1, . . . , H l of rimhooks of

size e ends with the same rimhook H last. In fact this condition is equivalent to requiring that λ

is a hook-quotient partition, i.e. that every component of the e-quotient of λ is a hook partition

(see Section 2.2 and Definition 4.1 for the relevant definitions). For such a partition λ, each

H ∈ Hooke(λ) gives a distinct H last; write Hooke(λ) = {H1, . . . , Hw} so that H last
i+1 is northeast

of H last
i . Define zi to be the width of H last

i , or one less than the width if the northeast-most

node of H last
i is the last node in its row of [λ]. We say that λ is m-increasing if zi+1 − zi ≥ m

for all i ∈ {0, . . . , w − 1}, and that λ is generic if it is 10-increasing and zw ≤ e− 2. The map

z : Bgen → Zw appearing in Theorem 1.3 is given by z(λ) = (z1, . . . , zw). If λ is generic and

H ∈ Hooke(λ), then λH and z(λH) are well-defined, even if λH is not necessarily generic.

Finally we mention that the vectors εH = z(λH) − z(λ) generating Π(λ)R in the statement

of Theorem 1.3 can be defined alternatively in a simple fashion directly from λ, rather than

through λH and z, c.f. Definition 4.2. In fact, for any hook-quotient partition λ and any

Hi ∈ Hooke(λ), the set Ei of e-rimhooks appearing in all inductive decompositions of Hi into
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Figure 2. Example calculation of z(λ).

H last
1

H last
2

H last
3

H last
4 H last

5

rimhooks of size e is fixed, and we can define εHi = ei − ej, where Ei ( Ej and j is chosen

(necessarily uniquely) to minimize |Ej|, and εHi = ei if no such j exists. Here ei means the i-th

standard basis vector in Zw.

Example 1.4. Let e = 4 and λ = (5, 5, 4, 2, 2, 2, 1, 1), a partition with 4-core (2) and 4-weight

5. Even though λ is not generic, H last is well-defined for all H ∈ Hooke(λ), so we can determine

z(λ) following the recipe described above. In Figure 2, we depict the five rimhooks Hi of λ of

size divisible by e in order, and indicate the corresponding rimhooks H last
i , of widths 2, 1, 2, 3, 2,

respectively. The northeast-most node of H last
i is the last node in its row when i = 1, 4, 5. Thus

z(λ) = (1, 1, 2, 2, 1).

We have seen in Example 1.2 that λH3 = (6, 5, 5, 2, 2, 2). It is easy to work out λH5 =

(6, 5, 3, 2, 2, 2, 1, 1) as well. We also leave it to the reader to check that z(λH3) = (1, 1, 3, 2, 1)

and z(λH5) = (1, 1, 1, 2, 2). Let µ = (6, 5, 4, 2, 2, 2, 1), a partition in the same block as λ. Then

z(µ) = (1, 1, 2, 2, 2), so that z(µ)− z(λ) = (z(λH3)− z(λ))+(z(λH5)− z(λ)). Using the Lascoux-

Leclerc-Thibon algorithm, one finds that dλµ(q) = q2, in accord with Theorem 1.3, even though,

strictly speaking, that theorem does not apply, as λ is not generic.

Example 1.5. Any block of e-weight 2 contains e(e+3)/2 partitions, of which (e−10)(e−11)/2

are generic. In Figure 3 the tiling associated to the block B of 17-weight 2 with 17-core

(5, 3, 1) is depicted. The label of each vertex in the figure is z(λ) of a partition λ ∈ Bgen, and

the parallelogram Π(λ)R is ‘generated’ by the arrows emanating from that vertex. Note that

each edge between labelled vertices carries an arrow, in agreement with the last statement in

Theorem 1.3.

Example 1.6. Any block of e-weight 3 contains in total e(e+ 1)(e+ 8)/6 partitions, of which

(e − 21)(e − 20)(e − 19)/6 are generic. In Figure 4 the tiling associated to the block B of

25-weight 3 with 25-core (15, 114) is depicted. To locate the tiling in R3, the coordinates of

some vertices (not all of the form z(λ) with λ ∈ Bgen) are indicated. The 20 parallelepipeds in

the tiling fall into 7 distinct translation classes.
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Figure 3. Tiling associated to the block of 17-weight 2 with 17-core (5, 3, 1).

(0, 10)

(0, 11)

(1, 11)

(0, 12)

(1, 12)

(2, 12)

(0, 13)

(1, 13)

(2, 13)

(3, 13)

(0, 14)

(1, 14)

(2, 14)

(3, 14)

(4, 14)

(0, 15)

(1, 15)

(2, 15)

(3, 15)

(4, 15)

(5, 15)

In Figure 5 the tiling associated to B is shown to the left of that associated to the block B̃

of 25-weight 3 with 25-core (15, 113), with which B forms a so-called Scopes [3 : 1]-pair, c.f.

Section 2.3.

In fact, the statements that we prove in the main body of this paper, Theorem 4.7, Corollary

8.6 and Theorem 8.9, are stronger than those in Theorem 1.3, in that they hold for larger

classes of partitions. For example Theorem 4.7 determines dλµ(q) for arbitrary partitions λ and

4-increasing partitions µ; in other words, it fully determines the canonical basis vectors of the

Fock space labelled by 4-increasing partitions.

While we have described our results using the combinatorics of Young diagrams in this

introduction, it is actually easier to formulate and prove them using the combinatorics of the

abacus. This is the approach that we follow in the body, and the results can then be stated in

full strength.

We now indicate the contents and layout of this paper. In the next section, we introduce the

notations that we shall use and remind the reader of some background material, concluding

with a description of an action of the Weyl group W of ŝle on the set of partitions, obtained

by identifying the latter with the crystal basis of the Fock space representation. It seems

to be a difficult problem to determine in a simple manner whether two given partitions are

in the same orbit of this action. Nevertheless, in Section 3, we define a new labelling for

partitions, extending the map z briefly introduced in this section, and prove that it indexes

certain W-orbits of partitions, including all orbits of generic partitions. In Section 4, we define

the parallelotopes of hook-quotient partitions and state our main theorem (Theorem 4.7) on
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Figure 4. Tiling associated to the block of 25-weight 3 with 25-core (15, 114).

x

y

z

(3, 12, 21)(3, 13, 21)

(2, 11, 21)

(1, 11, 21)

(1, 10, 20) (1, 9, 20)

(0, 10, 20)

(0, 10, 21)

(4, 14, 23) (4, 13, 23)

(1, 14, 23)

(0, 14, 23)

(0, 13, 24) (0, 9, 24)

Figure 5. Comparison of tilings associated to two blocks forming a Scopes pair.

q-decomposition numbers. In Section 5, we show how to obtain from λ any partition µ lying

in the parallelotope of λ by successive applications of the procedure λ 7→ λH described in this

introduction. Armed with this key result, we then proceed to prove Theorem 4.7 in Section 6,

by an explicit inductive construction of the canonical basis vectors that we need. In Section 7,

we show that the parallelotopes that we have described in this introduction can be obtained

in a natural way as the projections of hypercubes lying in higher dimensional spaces, and we

reformulate Theorem 4.7 in terms of hypercubes associated to partitions. In the following
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section we prove that the parallelotopes (and hypercubes) of the partitions concerned assemble

to form tilings with nice properties and prove in particular Corollary 8.6 and Theorem 8.9.

We conclude in Section 9 with a short investigation into the effect of the Mullineux-Kleshchev

involution for e-regular partitions on our map z, and provide an alternative algorithm for this

involution for the e-regular partitions that we have been concerned with, which is likely to be

more efficient than Mullineux’s or Kleshchev’s algorithms when the e-weights of the partitions

are small compared to their sizes.

2. Preliminaries

In this section, we set up the notations that we shall use, and remind the reader of the

background that we shall need. As before, we fix an integer e ≥ 2.

2.1. Notations. Throughout, we use the following notations:

(1) For a, b ∈ Z,

[a, b] = {x ∈ Z | a ≤ x ≤ b};
(a, b] = {x ∈ Z | a < x ≤ b};
[a, b) = {x ∈ Z | a ≤ x < b};
(a, b) = {x ∈ Z | a < x < b}.

(2) We write a ≡e b to mean e | (a− b), and a ≥e b to mean a ≡e b and a ≥ b (with obvious

extensions to a >e b, a ≤e b and a <e b).

(3) Given a subset Ω ∈ Rn, and m ∈ Z, we let

Ω≥m = {(x1, . . . , xn) ∈ Ω | xi+1 − xi ≥ m for all i ∈ [1, n)}

be the set of m-increasing elements of Ω.

(4) Given a subset Ω ∈ Zn, we denote by ΩR the convex hull of Ω in Rn.

(5) We denote by 1p the indicator function taking the value 1 if p is true and 0 otherwise.

2.2. Partitions, β-numbers, abacus, blocks. A partition λ = (λ1, λ2, . . . ) is a weakly de-

creasing sequence of non-negative integers which are eventually zero. We identify λ with its

finite subsequence (λ1, λ2, . . . , λl) when λl+1 = 0. In particular, (0, 0, . . . ) may be denoted as

(0) or ∅. The size of λ is |λ| =
∑

i λi. Write P for the set of all partitions.

To each λ, recall its associated its Young diagram [λ] = {(i, j) | j ∈ [1, λi]}, whose elements

are called nodes. The e-residue of a node (i, j) is the residue class of j − i modulo e. If the

e-residue of (i, j) is r, then we also call (i, j) an r-node. If removing (i, j) from [λ] produces the

Young diagram [µ] of another partition µ, we call (i, j) a removable node of λ and an addable

node of µ.

Given a partition λ = (λ1, λ2, . . .), let

β(λ) = {λ1 − 1, λ2 − 2, . . .} ⊆ Z
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be the infinite set of β-numbers associated to λ. Following [JK, §2.7], consider an abacus with e

infinite vertical runners labelled 0, 1, . . . , e− 1 from left to right, with positions labelled by the

integers increasing from left to right and top to bottom, so that runner r contains the integers

congruent to r modulo e. We represent λ on the abacus by placing a bead at each position

corresponding to a β-number of λ, leaving the other positions unoccupied. We note that the

i-th bead at position λi − i lies on runner r if and only if the rightmost node (i, λi) of row i of

[λ] has e-residue r.

One can easily read off the partition λ from its abacus display: if the occupied positions on the

abacus display are b1, b2, . . . , arranged in descending order, then λi = |{x ∈ Z \ β(λ) | x < bi}|,
the number of unoccupied positions before bi.

The partition λ′ conjugate to λ is defined by (i, j) ∈ [λ′] ⇐⇒ (j, i) ∈ [λ], or, equivalently,

by x ∈ β(λ′) ⇐⇒ −x /∈ β(λ).

Moving a bead from a position x of the abacus display of λ to an unoccupied position y

(x > y) corresponds to removing a rimhook of size x − y from (the Young diagram of) λ. In

particular moving a bead on runner r to its unoccupied preceding position (on runner r − 1)

corresponds to removing a removable r-node from λ. We call such beads removable. Similarly,

moving a bead on runner r−1 to its unoccupied succeeding position (on runner r) corresponds

to adding an addable r-node to λ. We call such beads addable.

A removable bead at position x on runner a is normal if and only if reading the abacus below

position x, there are at least as many removable beads on runner a than addable beads on

runner a− 1. Formally, x ∈ β(λ) is normal if and only if

|{x <e t ≤e y | t ∈ β(λ), t− 1 /∈ β(λ)}| ≥ |{x <e t ≤e y | t /∈ β(λ), t− 1 ∈ β(λ)}|

for all y >e x.

When we slide the beads in the abacus display of λ as high up their respective runners as

possible, we obtain (the abacus display of) its e-core.

For each b ∈ Z let

wtλ(b) = |{x <e b | x /∈ β(λ)}|

be the number of unoccupied positions above b in its runner. This is the e-weight of b when

b ∈ β(λ). Let

wλ =
∑
b∈β(λ)

wtλ(b).

We call wλ the e-weight of λ; this is the usual notion of the e-weight of a partition: the number

of e-hooks (i.e. rimhooks of size e) removed in succession from the Young diagram of λ to reach

its e-core.

We now describe how the set P of partitions decomposes as a disjoint union of blocks, de-

pending on e. The e-quotient of a partition λ is an e-tuple (λ(0), . . . , λ(e−1)) of partitions, where

each λ(r) is the partition read off from runner r of the abacus display of λ; thus the parts of

λ(r) are the various wtλ(b) for b ∈ β(λ) with b ≡e r. Given an e-core partition κ and w ∈ Z≥0,

the block Bκ,w is defined to be the set of partitions with e-core κ and e-weight w. Taking
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e-quotients gives a bijection between Bκ,w and the set of e-tuples (λ(0), . . . , λ(e−1)) of partitions

such that
∑e−1

i=0 |λ(i)| = w.

We call Bκ,w a Rouquier block if the abacus display of its e-core κ has at least w−1 removable

beads (and no addable beads) on runner a, for all a ∈ [1, e). It is clear that there exists at

least one Rouquier block (in fact, infinitely many) of any w ∈ Z≥0.

2.3. Fock space representation of Uq(ŝle). Let q be an indeterminate. The quantum affine

algebra Uq(ŝle) is a unital C(q)-algebra generated by {Ei, Fi, Ki, K
−1
i | i ∈ [0, e)} subject to

certain relations which we do not need here (interested readers may refer to [L] for more details).

Its Fock space representation F :=
⊕

λ∈P C(q)λ has the set P of all partitions as its basis as

a C(q)-vector space [H, MM]. For our purposes, we only require the action of Ei and Fi on F ,

which we shall now describe.

Let λ be a partition and let i be a residue class modulo e. Let C ⊆ β(λ) be a set of addable

beads of λ on runner i− 1, and write C+ for {c+ 1 | c ∈ C}. Let µ be the partition such that

β(µ) = β(λ)∪C+ \C. We call C an addable i-β-subset of λ and C+ a removable i-β-subset of

µ. Define

NE(λ, µ) =
∑

y∈β(λ):
y removable

|{b ∈ C+ | b >e y}| −
∑

x∈β(µ):
x addable

|{c ∈ C | c >e x}|,

NF (λ, µ) =
∑

x∈β(µ):
x addable

|{c ∈ C | c <e x}| −
∑

y∈β(λ):
y removable

|{b ∈ C+ | b <e y}|.

Then, for k ∈ Z+, we have

E
(k)
i (µ) =

∑
λ

qNE(λ,µ)λ,

F
(k)
i (λ) =

∑
µ

qNF (λ,µ)µ,

where the first sum runs over all λ with β(λ) = β(µ) ∪ C \ C+ for some removable i-β-subset

C+ of µ with |C+| = k, and the second sum runs over all µ with β(µ) = β(λ)∪C+ \C for some

addable i-β-subset C of λ with |C| = k. Here, and hereafter, E
(k)
i = 1

[k]q !
Ek
i and F

(k)
i = 1

[k]q !
F k
i ,

where [k]q! = [k]q[k − 1]q · · · [1]q and [i]q = q−i+1 + q−i+3 + · · · + qi−3 + qi−1 ∈ Z[q, q−1] for all

i ∈ Z+. The action of E
(k)
i and F

(k)
i is of course determined by that of Ei and Fi; nonetheless

we will find it convenient to use directly the formulae for their action given above.

In [LT], Leclerc and Thibon defined a bar involution x 7→ x on F , which satisfies a(q)x+ y =

a(q−1)x+ y, Ei(x) = Ei(x) and Fi(x) = Fi(x) for all a(q) ∈ C(q), x, y ∈ F and i ∈ [0, e). They

proved the existence of another distinguished basis {G(λ) | λ ∈ P} of F , called the canonical

basis, that has the following characterization:

G(λ)− λ ∈
∑
µ∈P

qZ[q]µ, G(λ) = G(λ).
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Let 〈−,−〉 be the symmetric bilinear form on F with respect to which P is orthonormal. For

λ, µ ∈ P , define dλµ(q) ∈ C(q) by

dλµ(q) = 〈G(µ), λ〉.

The dλµ(q) are now commonly known as q-decomposition numbers, and they enjoy many re-

markable properties. We shall only need the following one: if dλµ(q) 6= 0, then λ and µ are in

the same block.

Let A be the subring of C(q) consisting of functions without pole at q = 0, and let FA be

the A-lattice in F generated by all λ ∈ P . Then (the image of) P in FA/qFA is a crystal basis

[MM], so Kashiwara’s operators Ẽi and F̃i act on P ∪ {0}. A combinatorial description of the

action of Ẽi and F̃i is given in [MM] (see also [LLT]); for our purposes we need only that of

Ẽi. Let λ ∈ P . If the abacus of λ has no normal removable beads on runner i, then Ẽi(λ) = 0.

Otherwise Ẽi(λ) is the partition whose abacus is obtained by moving the top normal bead on

runner i to its preceding position on runner i− 1.

According to Kashiwara [Ka], an induced action of the Weyl groupW of ŝle, a Coxeter group

of type A
(1)
e−1, on the crystal basis, and therefore on P , is obtained. Denote the simple reflections

of W by s0, s1, . . . , se−1. The action of si on λ ∈ P , whose e-core κ has k removable beads on

runner i for some k ∈ Z≥0 and has no addable beads on runner i−1, is given by si(λ) = Ẽk
i (λ);

in other words si(λ) is obtained by moving the top k normal removable beads on runner i to

their preceding positions on runner i− 1. Similarly, si(λ) = F̃ k
i (λ) if κ has k addable beads on

runner i − 1 for some k ∈ Z≥0 and has no removable beads on runner i. Note that the e-core

of si(λ) is si(κ), and the e-weight of si(λ) is equal to the e-weight of λ. Consequently for any

w ≥ 0, we have an induced transitive action of W on the set of blocks of e-weight w, given by

si(Bκ,w) = Bsi(κ),w. In the terminology of Scopes [S, Definition 2.1], the blocks B = Bκ,w and

B̃ = si(B) = Bsi(κ),w are said to form a [w : k]-pair. Every W-orbit of partitions of e-weight w

contains a single partition in each block of e-weight w.

The action of Uq(ŝle) on F induces another action of W on P , in which si acts by swapping

runners i−1 and i of the abacus, i.e. moving all removable beads on runner i to their preceding

positions on runner i− 1 and all addable beads on runner i− 1 to their succeeding positions on

runner i. We do not make explicit use of this more common, combinatorially simpler action,

the orbits of which are determined by the e-weight and e-quotient (up to an easily specified

permutation of its components). Thus when we speak of a W-action on P , we always mean

the crystal action described in the preceding paragraph.

3. A new labelling for partitions

We introduce some combinatorics of partitions based on James’s abacus, and show that they

can be used to identify certain W-orbits on the set of partitions.
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3.1. Bead movements. Let λ be a partition of e-weight wλ. Define

A(λ) : =
{

(b; q) | b ∈ β(λ), b−q
e
∈ [0, wtλ(b))

}
= {(b; b− ie) | b ∈ β(λ), i ∈ [0, wtλ(b))}.

We regard this wλ-element set as the set of bead movements needed to reduce λ to its e-core.

Here (b; q) represents the ( b−q
e

+ 1)-th movement of the bead that is originally positioned at b;

the movement starts at q and ends at q−e. Each bead movement corresponds to a rimhook of λ

of size divisible by e, and thus A(λ) corresponds naturally and bijectively with the set Hooke(λ)

introduced in Section 1. We call (b; b) the initial bead movement of b, and (b; b− (wtλ(b)− 1)e)

the final bead movement of b. If j is a residue class modulo e, write A(j)(λ) for the set of bead

movements in runner j, i.e. A(j)(λ) = {(b; q) ∈ A(λ) | q ≡e j}.
Totally order A(λ) by the reverse lexicographical order, i.e. (b; q) < (b′; q′) if and only if

q < q′ or both q = q′ and b < b′. So the bead movements are ordered according to their starting

positions, and those with the same starting positions are ordered according to the original

positions of the associated beads.

We now investigate the induced effect of a simple reflection sa ∈ W on A(λ). The image

λ̃ = sa(λ) of λ has the same e-weight, and hence the same number of bead movements. It is

clear that A(j)(λ) = A(j)(λ̃) for all j 6= a, a− 1. Interchanging the roles of λ and λ̃ if necessary,

we may assume that λ has more, say k > 0 more, removable a-nodes than addable a-nodes.

Then λ has k + l normal beads on runner a of its abacus display, for some l ≥ 0, and λ̃ is

obtained by moving the top k normal beads across into runner a− 1.

Let Bλ = β(λ) \ β(λ̃). Then {b − 1 | b ∈ Bλ} = β(λ̃) \ β(λ), and wtλ(b) − wtλ̃(b − 1) = l

for all b ∈ Bλ. We now describe the change in the bead movements when λ becomes λ̃. Let

b ∈ Bλ, w = wtλ(b) and w̃ = wtλ̃(b− 1). Define

B>b := {c ∈ β(λ̃) | c >e b}, B>b−1 := {c′ ∈ β(λ) | c′ >e b− 1}.

Then |B>b| − |B>b−1| = l = w − w̃. Let

B>b = {c1 < · · · < cr}, B>b−1 = {c′1 < · · · < c′r−l}.

Then r ≥ l = w−w̃. Firstly on runner a, since the bead at position b is moved (to b−1), we lose

the bead movements {(b; b− ie) | i ∈ [0, w)}, while the e-weight of each bead at cj (j ∈ [1, r])

increases by 1 because of this move, and so we gain the bead movements {(cj; b+(j−w)e) | j ∈
[1, r]} (since the bead at b, which could be moved to b−we when obtaining the e-core, is now

missing, the bead at c1 can now move to this position, the one at c2 can move to b+ (1−w)e,

etc). On the other hand, on runner a−1, the new bead at position b−1 has e-weight w̃ = w− l,
and so we gain the bead movements {(b− 1; b− 1− ie) | i ∈ [0, w̃)}, while the e-weight of each

bead at c′j (j ∈ [1, r − l]) decreases by 1 because of this new bead, and so we lose the bead

movements {(c′j; b− 1 + (j − w̃)e) | j ∈ [1, r − l]}.
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Summarising, let Γb and ∆b be the sets of bead movements gained and lost when going from

λ to λ̃, that are associated to the bead b ∈ Bλ. Then

Γb = {(cj; b+ (j − w)e) | j ∈ [1, r]} ∪ {(b− 1; b− 1− ie) | i ∈ [0, w̃)};
∆b = {(b; b− ie) | i ∈ [0, w)} ∪ {(c′j; b− 1 + (j − w̃)e) | j ∈ [1, r − l]}

It is straightforward to verify that φb : ∆b → Γb, defined by

φb(b; b− ie) =

{
(cw−i; b− ie), if max{0, w − r} ≤ i < w,

(b− 1; b− 1− ie), if 0 ≤ i < w − r;

φb(c
′
j; b− 1 + (j − w̃)e) =

{
(b− 1; b− 1 + (j − w̃)e), if 1 ≤ j ≤ min{r − l, w̃},
(cj+l; b+ (j − w̃)e), if w̃ < j ≤ r − l;

is a bijection. Gluing φb together for each b ∈ Bλ then produces a bijection between A(λ)\A(λ̃)

and A(λ̃) \ A(λ), which we extend to a bijection φ from A(λ) to A(λ̃) by taking φ to be the

identity on A(λ) ∩ A(λ̃).

Example 3.1. In this example, we let e = 2, λ = (10, 9, 8, 8, 8, 6, 6, 5, 3, 3, 1, 0, . . .) and a = 1,

and follow the notation above. We have β(λ) = (9, 7, 5, 4, 3, 0,−1,−3,−6,−7,−10,−12,−13, . . .),

so λ is a partition of 2-weight 32, with 4 normal beads on runner 1, at positions −3, 3, 7

and 9. We have k = 2 = l, β(λ̃) = (9, 7, 5, 4, 2, 0,−1,−4,−6,−7,−10,−12,−13, . . .) and

λ̃ = (10, 9, 8, 8, 7, 6, 6, 4, 3, 3, 1, 0, . . .).

−14 −14−13 −13

−12 −12−11 −11

−10 −10−9 −9

−8 −8−7 −7

−6 −6−5 −5

−4 −4−3 −3

−2 −2−1 −1

0 01 1

2 23 3

4 45 5

6 67 7

8 89 9

10 1011 11

λ: λ̃:
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We have Bλ = {−3, 3}. We consider first B>−3 = {−1, 5, 7, 9}, B>−4 = {0, 4}. Hence

φ(−3;−7) = (−1;−7), φ(−3;−5) = (5;−5), φ(−3;−3) = (7;−3),

φ(0;−4) = (−4;−4),

φ(4;−2) = (9;−1).

Next, B>3 = {5, 7, 9} and B>2 = {4}. Thus

φ(3;−3) = (5;−3), φ(3;−1) = (7;−1), φ(3; 1) = (9; 1), φ(3; 3) = (2; 2)

φ(4; 0) = (2; 0).

Note that (5;−1) ∈ A(λ) ∩ A(λ̃). Thus

φ(5;−1) = (5;−1) < (9;−1) = φ(4;−2),

showing that φ is not order-preserving, since (4;−2) < (5;−1).

Using the bijection φ, we can deduce that the order-preserving bijection between A(λ) and

A(λ̃) has some desirable properties.

Lemma 3.2. Let λ be a partition, and let λ̃ = sa(λ). The order-preserving bijection A(λ)
∼→

A(λ̃) : (b; q) 7→ (b′; q′) satisfies (b′; q′) = (b; q) whenever (b; q) ∈ A(j)(λ) with j 6= a− 1, a and

q′ =

{
q or q + 1, if (b; q) ∈ A(a−1)(λ);

q or q − 1, if (b; q) ∈ A(a)(λ).

Furthermore, if q′ 6= q, then there exists a b̂ ∈ β(λ) \ β(λ̃) with b̂ ≡e a such that either
b̂−q
e
∈ [0, wtλ(b̂)−N) or q′−b̂

e
∈ (0, N − wtλ(b̂)], where N = |{x ∈ β(λ̃) | x >e b̂}|.

Proof. Clearly, A(j)(λ) = A(j)(λ̃) for j 6= a, a − 1. Furthermore, from the bijection φ defined

above, we see that, for each q ∈ Z with q ≡e a, the total number of bead movements of λ̃

starting at q and q − 1 equals that of λ. Since the order on the bead movements takes into

account the starting positions first, the first assertion thus follows.

For the second assertion, if q′ 6= q, then the number of bead movements of λ starting at q

is not equal to that of λ̃, so that necessarily φ(b̄; q) = (b̃; q′) or φ(b̃; q′) = (b̄; q) for some b̄, b̃.

Examining the definition of φ then proves the assertion. �

3.2. Armlengths of bead movements. Let S be a subset of Z. Define the function zS : Z→
[0, e] by

zS(x) = |(x− e, x] \ S|
for all x ∈ Z.

Let λ be a partition. We write zλ for zβ(λ), and for each (b; q) ∈ A(λ), we define z(b; q) := zλ(q).

Thus z(b; q), in terms of the abacus display of λ, is the number of unoccupied positions ‘passed’

by the bead movement from q to q − e, where the starting position, if unoccupied, is included

in the count (but the ending position, occupied or not, is never included in the count). If (b; q)

corresponds to the rimhook H of size divisible by e, then z(b; q) is the width of H last, or one
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less the width of H last if the northeast-most node of H last is the last node in its row in [λ] (see

Section 1). This explains why z(b; q) may be considered as the ‘armlength’ of (b; q). Note that

z(b; q) depends only on q and not on b.

Let λ be a partition of e-weight w. List the elements of A(λ) in ascending order with respect

to the total order on A(λ): (b1; q1) < (b2; q2) < · · · < (bw; qw). Define

z(λ) := (z(b1; q1), . . . , z(bw; qw)) ∈ [0, e]w.

This definition extends that used in Section 1. Note that, necessarily, bw = qw, so that

z(bw; qw) 6= e.

Example 3.3 (Rouquier blocks). Let us consider a partition λ lying in a Rouquier block of

e-weight w (see the end of Section 2.2 for the definition). Using [CK, Lemma 4], we deduce that

for each (b; q) ∈ A(λ) with q ≡e a, we have z(b; q) = a if q ∈ β(λ) and z(b; q) = a + 1 if q /∈ β.

Furthermore the bead movements in runner a always precede those in runner a+ 1 in the total

order on A(λ). It follows that the components of z(λ) are weakly increasing if and only if the

p-quotient of λ has the form ((1w0), . . . , (1we−1)), in which case z(λ) = (0w0 , . . . , (e− 1)we−1).

Let λ be a partition and let sa(λ) = λ̃, where sa is a simple reflection of the affine Weyl

group W . We shall prove a sufficient condition for z(λ) = z(λ̃). We begin with the following

lemma:

Lemma 3.4. Let λ be a partition whose abacus display has more removable beads than addable

beads on runner a, and let sa(λ) = λ̃. If there exists q ∈ β(λ) with q ≡e a such that q−e /∈ β(λ)

and (b; q − 1) ∈ A(λ) for some b, then the same holds for λ̃ (possibly for a different q).

In pictorial terms, the above lemma asserts that if the abacus display of λ has the following

bead configuration on runners a and a − 1, then so does that of λ̃. (Here, and hereafter, a

Figure 6. Bead configuration

q − e

q

dash-outlined circle indicates a position that may or may not be occupied by a bead.)

Proof. Suppose that there exists q ∈ β(λ) with q ≡e a such that q−e /∈ β(λ) and (b; q−1) ∈ A(λ)

for some b ∈ β(λ) with b ≥e q − 1. We claim that the sets

B = {q ≤e b̄ ≤e b+ 1 | b̄ ∈ β(λ̃)},

C = {c <e q − 1 | c /∈ β(λ̃)}
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are non-empty. If q ∈ β(λ̃), then q ∈ B. On the other hand, if q /∈ β(λ̃), then the bead of β(λ)

at q is normal and b >e q − 1. The existence of a bead of β(λ) at b with b >e q − 1 shows that

there is some bead of β(λ) at q′ with q <e q
′ ≤e b+ 1 which is not normal, so that q′ ∈ B. For

C, clearly q−1−e ∈ C if q−1−e /∈ β(λ). If q−1−e ∈ β(λ), then the bead of β(λ) at q−e−1

is addable, so that either λ has no removable bead at q̃ for all q̃ <e q, or λ has a removable but

not normal bead at q̃ for some q̃ <e q. In the former case, since (b; q − 1) ∈ A(λ), there exists

c <e q − 1 such that c /∈ β(λ), and hence c /∈ β(λ̃) so that c ∈ C. In the latter case, q̃ − 1 ∈ C.

Let q̃ = min(B). Then q̃ ∈ β(λ̃) and q̃ − e /∈ β(λ̃). Let b̃ = min{b̂ ∈ β(λ̃) | b̂ ≥e q̃ − 1} (this

set is nonempty since it contains b). As q̃ − 1 ≥e q − 1 >e c /∈ β(λ̃) for any c ∈ C, we have

(b̃; q̃ − 1) ∈ A(λ̃). �

Proposition 3.5. Let λ be a partition whose abacus display has more removable beads than

addable beads on runner a, and let sa(λ) = λ̃. Suppose that the abacus display of λ does not

have the bead configuration of Figure 6 on its runners a and a− 1. Then z(λ) = z(λ̃).

Proof. If the abacus display of λ has the same number of removable beads as addable beads

on runner a, then sa(λ) = λ, and so the statement is trivially true. If λ̃ has more removable

beads than addable beads on runner a, then its abacus display also does not have the bead

configuration of Figure 6 on its runners a and a−1, by Lemma 3.4. As such, we may assume, by

interchanging λ and λ̃ if necessary, that λ has more removable beads, say k more, than addable

beads on runner a. Let X and Y be the top unoccupied and bottom occupied positions on

runner a− 1 of the abacus of λ respectively. Then all the bead movements of λ on this runner

have starting positions amongst X + e,X + 2e, . . . , Y , and each of these positions is a starting

position of some bead movement of λ. We note that it is possible for X >e Y , in which case

there is no bead movement on this runner at all. Let Z = min{b ≥e X+ 1 | b /∈ β(λ)}. Then to

avoid the undesired bead configuration, any position V with Z ≤e V ≤e Y + 1 is unoccupied;

see Figure 7. Note that it is possible for Z >e Y + 1.

Recall that λ̃ is obtained from λ by moving the top k of the k + l normal removable beads

across from runner a into runner a− 1. For convenience’s sake call these k beads supernormal.

We claim first that if λ has a supernormal bead at position W ≤ Y +1, then wtλ̃(W −1) = 0.

Indeed, we must have X < W < Z. Since there are no addable beads on runner a− 1 between

X and Z − e, all removable beads on runner a between X and W must be normal, and hence

supernormal, since the bead at W is. Thus wtλ̃(W − 1) = 0.

Note also that the number of unoccupied positions < Z on runner a is at most l, for otherwise

there would be more than k + l normal removable beads on runner a.

Each bead movement (b; q) ∈ A(λ) corresponds to (b′; q′) ∈ A(λ̃) via the order-preserving

bijection. We need to show that z := z(b; q) and z′ := z(b′; q′) are equal. This is clear if

q 6≡e a, a− 1 (in which case, q = q′ by Lemma 3.2). We have four other cases to consider:

Case 1. q ≡e q′ ≡e a: Then q = q′, and since the total number of beads in positions q−1

and q of λ and of λ̃ is always the same, we have z = z′.
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Figure 7. An example of an abacus configuration avoiding Figure 6

X

Z

Z + e

Y Y + 1

Case 2. q ≡e a, q′ ≡e a− 1: By Lemma 3.2, there exists a supernormal bead at b̂ such

that b̂−q
e
∈ [0, wtλ(b̂)−N), where N = |{x ∈ β(λ̃) | x >e b̂}|. Since

wtλ(b̂) = |{x <e b̂ | x /∈ β(λ)}| = |{q ≤e x <e b̂ | x /∈ β(λ)}|+ wtλ(q) ≤
b̂− q
e

+ wtλ(q),

we see that wtλ(q) ≥ wtλ(b̂) − b̂−q
e
> N . But wtλ(Z) ≤ l, and l ≤ N (as the l normal

but not supernormal beads on runner a of β(λ) lie below the supernormal ones (which

include the bead at b̂)). Thus q >e Z. Now if Z <e q ≤e Y + 1, then both q and q − e
are unoccupied, and so z = z′. Otherwise q >e max(Y + 1, Z), in which case q − 1 is

unoccupied, and any bead of λ at position q or q − e must be supernormal (since the

bead at position b̂ is supernormal and b̂ ≥e q). Here again we check easily that z = z′.

Case 3. q, q′ ≡e a− 1: Then q = q′. Note that λ cannot have any supernormal bead at

any position W with q + 1− e ≤e W ≤e b+ 1, for then wtλ̃(W − 1) = 0, contradicting

(b′; q′) = (b′; q) ∈ A(λ̃). It follows that λ and λ̃ have the same bead configuration at

positions q and q + 1− e, and therefore that z = z′.

Case 4. q ≡e a− 1, q′ ≡e a: By Lemma 3.2, q′ = q + 1, and λ has a supernormal bead

at b̂ with q′−b̂
e
∈ (0, N − wtλ(b̂)], where N = |{x ∈ β(λ̃) | x >e b̂}|. Thus Y ≥e q =

q′ − 1 >e b̂− 1 ≥e X, so that wtλ̃(b̂− 1) = 0 by our claim above, and hence wtλ(b̂) = l.

This implies that N − l = N − wtλ(b̂) > 0. We deduce that there are N − l beads of

λ on runner a below b̂ which are not normal. Since these are not normal, they are at
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positions less than Y , and thus strictly less than Z. This shows that

Z − b̂
e

> N − l = N − wtλ(b̂) ≥
q′ − b̂
e

.

Thus Z >e q
′. Since q′ − e ≥ b̂ ≥ X, it follows that the positions at q′ − e and q′ are

occupied by beads of λ, and thus, regardless of whether these beads are supernormal,

we have z = z′.

�

The following example illustrates the necessity of the hypothesis in Proposition 3.5 on avoid-

ing the configuration in Figure 6.

Example 3.6. Let e = 3, λ = (5, 3, 3) and λ̃ = s1(λ) = (4, 3, 3). Then z(λ) = (2, 1, 2) 6=
(2, 1, 1) = z(λ̃).

−6 −5 −4

−3 −2 −1

0 1 2

3 4 5

Abacus display of λ

−6 −5 −4

−3 −2 −1

0 1 2

3 4 5

Abacus display of λ̃

3.3. The 0-increasing W-orbits. We now present the main result of this section, showing

that certain orbits of the action of the affine Weyl group W on the set of partitions of e-weight

w are parametrised by w-tuples of integers, through the function z. In preparation we make

the following definitions, using some of the notational conventions introduced in § 2.1.

Definition 3.7. Let m be a non-negative integer.

(1) A partition λ (of e-weight w) is said to be m-increasing if z(λ) = (z1, . . . , zw) is m-

increasing, i.e. if zi+1 − zi ≥ m for all i ∈ [1, w).

(2) Set

U := [0, e− 1]w ⊂ Zw,
so that

U≥m = {(z1, . . . , zw) ∈ Zw | 0 ≤ zi ≤ e− 1 and zi+1 − zi ≥ m for all i ∈ [1, w)} ,

and in particular

U≥0 = {(z1, . . . , zw) ∈ Zw | 0 ≤ z1 ≤ · · · ≤ zw ≤ e− 1} .

Lemma 3.8. Let λ be a 0-increasing partition of e-weight w. Then the bead configuration of

Figure 6 cannot occur anywhere on the abacus display of λ.

Proof. Suppose that q ∈ β(λ) and q − e /∈ β(λ), so that (q; q) ∈ A(λ). Then (b; q − 1) /∈ A(λ)

for any b, for then z(b; q − 1) = z(q; q) + 1, contradicting z(λ) ∈ U≥0. �
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Theorem 3.9.

(1) Let B be a block of e-weight w. We have a bijection

{0-increasing partitions in B} ∼→ U≥0

λ 7→ z(λ)

(2) Let λ and µ be partitions of e-weight w, and suppose that λ is 0-increasing. Then λ and

µ are in the same W-orbit if and only if z(λ) = z(µ).

Proof. Let B be a block of e-weight w, and let w ∈ W . Let B̃ = w(B). Let the subsets of

0-increasing partitions in B and B̃ be denoted by B≥0 and B̃≥0 respectively. By Proposition 3.5

and Lemma 3.8, we have z(λ) = z(w(λ)) for all 0-increasing λ in B. In particular w(B≥0) ⊆ B̃≥0,

and therefore w(B≥0) = B̃≥0, as the same argument applies to B = w−1(B̃).

The first assertion of the theorem is true for a Rouquier block B of e-weight w; see Exam-

ple 3.3. The above considerations then imply that it holds also for any block of e-weight w, by

the transitivity of the W-action. The second assertion also follows immediately.

�

Example 3.10. Let e = 2. The set of all 0-increasing partitions consists of the following

‘nearly triangular partitions with tail’: let

λ(m, s, t, j) = (m,m− 1, . . . , ŝ, . . . , t̂, . . . , 2, 1, 12j),

a partition of m(m+1)
2
−s− t+2j. Here m, s, t, j range over all integers such that m ≥ s > t ≥ 1

and j ≥ 0, and ŝ and t̂ indicate the omission of s and t as parts.

The partition λ(m, s, t, j) has 2-core (r, r − 1, . . . , 1), where

r =
∣∣m− 2s+ 2t+ 1

2

∣∣− 1
2
,

2-weight

w = (m− s)(s− t) + t(s− t− 1) + j

and 2-quotient given by

λ(m, s, t, j)(i) =

{
((s− t)m−s) if m+ i is odd,

(ts−t−1, 1j) if m+ i is even,

for i ∈ {0, 1}. It is easily verified that z(λ(m, s, t, j)) = (0j, 1w−j) ∈ U≥0.

Moreover, all 0-increasing partitions are obtained this way: given integers r, w, j with r ≥ 0

and w ≥ j ≥ 0, there is a unique representation

w − j = n(n+ r) + cn+ d, (n ≥ 0, c ∈ {0, 1}, d ∈ [0, n− 1 + c(r + 1)]),

and we take

m = 2n+ r + 1 + c, s = 2n+ r + 1 + c− d and t = n+ c(r + 1)− d.
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Remark 3.11. (Rouquier blocks) We do not expect a complete description of the 0-increasing

partitions for e > 2 analogous to that given in Example 3.10. However the situation is com-

pletely manageable if we restrict to partitions in Rouquier blocks. Indeed, in Example 3.3,

we saw that given z = (0w0 , . . . , (e − 1)we−1) ∈ U≥0, it is easy to describe the partition λ in a

Rouquier block (of e-weight w = w0 + · · · + we−1) such that z(λ) = z, as the partition with

e-quotient ((1w0), . . . , (1we−1)). So the 0-increasing partitions in Rouquier blocks are precisely

those whose e-quotients consist entirely of 1-column partitions. Moreover, for m ≥ 1, a parti-

tion λ in a Rouquier block is m-increasing if and only if each component λ(i) of the e-quotient

of λ is either ∅ or (1), with λ(i) = λ(j) = (1) only if i = j or |i− j| ≥ m.

Example 3.12. (Principal blocks) Let us consider the blocks at the opposite extreme to

Rouquier blocks, namely the blocks with empty e-core. Given w ≥ 1 and 0 ≤ a1 < · · · <
aw ≤ e − 1, denote by 〈a1, . . . , aw〉 the partition (of e-weight w) and empty e-core whose e-

quotient is (1) in its ai-th component, for each i ∈ [1, w], and ∅ in all other components; these

partitions include the ‘general vertices’ and ‘p-general vertices’ considered in [MR] and [FM].

Let z = (z1, . . . , zw) ∈ U≥0. If w − 1 ≤ z1 and zw ≤ e− w, then we have

z(〈z1 − w + 1, z2 − w + 3, . . . , zw + w − 1〉) = z.

It seems difficult to describe explicitly the (0-increasing) partition λ with empty e-core such

that z(λ) = z in general. In preparation for one further example in which it is possible, given

w ≥ 2 and 0 ≤ a1 < · · · < aw−1 ≤ e−1 and 1 ≤ j ≤ w−1, let 〈a1, . . . , aj−1, a
(2)
j , aj+1, . . . , aw〉 be

the partition (of e-weight w and empty e-core) whose e-quotient is (2) in the aj-th coordinate,

(1) in the ai-th component, for each i ∈ [1, w]\{j}, and ∅ in all other components; amongst these

are the ‘semi-general vertices’ considered in [FM]. Then if w−1 ≤ z1 and zw−1 ≤ e−w+1 ≤ zw,

we have

z(〈z1−w+1, z2−w+3, . . . , zj−1−w+2j−1, (zj−w+2j)(2), zj+1−w+2j+2, . . . , zw−1+w−2〉) = z,

where j = e− zw ∈ [1, w − 1].

We conclude with one final example in principal blocks. Given w ∈ Z+, there exist unique

n ∈ Z+ and r ∈ [0, n) such that w = n(n+1)
2
− r. Let e ≥ n, and

ν(w) = (ne− r, (n− 1)e− r, . . . , (r + 1)e− r, (r − 1)e+ n− r, (r − 2)e+ n− r, . . . , n− r),

the partition of we with empty e-core and e-quotient

((0), . . . , (0), (r + 1), (r + 2), . . . , (n), (0), (1), . . . , (r − 1)).

Then it is easy to check that z(ν(w)) = (e − 1, . . . , e − 1). The appearance of the triangular

numbers n(n+1)
2

suggests the difficulty of inverting the map λ 7→ z(λ) in general.

3.4. The 1-increasing partitions. We end this section with an analysis of 1-increasing par-

titions in Lemma 3.14, preceded by an easy and useful lemma on which it depends.

Lemma 3.13. Let S ⊆ Z, and let x, y ∈ Z with x < y.

(1) If zS(x) < zS(y), then there exists t ∈ (x, y] such that t /∈ S and t− e ∈ S.
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(2) If zS(x) > zS(y), then there exists t ∈ (x, y] such that t ∈ S and t− e /∈ S.

(3) If zS(x) = zS(y), then either t ∈ S ⇔ t − e ∈ S for all t ∈ (x, y], or there exist

t, t′ ∈ (x, y] such that t /∈ S and t− e ∈ S, and t′ ∈ S and t′ − e /∈ S.

Proof. We have zS(y)− zS(x) =
∑y

t=x+1(zS(t)− zS(t− 1)) and

zS(t)− zS(t− 1) =


1, if t /∈ S and t− e ∈ S;

−1, if t ∈ S and t− e /∈ S;

0, otherwise.

The lemma follows immediately. �

Recall that a partition λ is called a hook if and only if λ2 ≤ 1. Thus, the empty partition is

a hook, and any nonempty hook is uniquely expressible as (x, 1y) with x ∈ Z+ and y ∈ Z≥0.

Lemma 3.14. Let λ be a 1-increasing partition, with e-quotient (λ(0), . . . , λ(e−1)).

(1) Each λ(j) is a hook.

(2) Suppose that the abacus display of λ has more removable beads than addable beads on

runner j. Then there is at most one addable bead on runner j − 1. Furthermore, if

λ(j−1), λ(j) 6= ∅, then there is such an addable bead only when the bottom bead on runner

j − 1 is at the preceding position of the least unoccupied position on runner j.

(3) Suppose that the abacus display of λ has more addable beads than removable beads on

runner j. Then there is at most one removable bead on runner j. Furthermore, if

λ(j−1), λ(j) 6= ∅, then there is such a removable bead only when the bottom bead on

runner j is at the succeeding position of the least unoccupied position on runner j − 1.

Proof.

(1) Let x = max{b ∈ β(λ) | b ≡e j}, and y = max{b ∈ β(λ) | b <e x}. Then wtλ(x) =
x−y
e
− 1 + wtλ(y). If λ

(j)
2 ≥ 2, then wtλ(y) ≥ 2, so that x−y

e
≤ wtλ(x)− 1. Consequently,

(x; y), (y; y) ∈ A(λ), and clearly z(x; y) = z(y; y). But λ is 1-increasing and hence the

components of z(λ) should be distinct, a contradiction.

(2) By part (1), λ(j) and λ(j−1) are hooks (or empty). It is then easy to see that λ has

at most one addable bead on runner j − 1 if λ(j−1) or λ(j) = ∅. To deal with the

remaining case, we first observe the following fact about 1-increasing partitions: If

(b; q), (b′; q − 1) ∈ A(λ) for some q ≡e j and b, b′ ∈ β(λ), then z(b′; q − 1) < z(b; q) since

λ is 1-increasing, so that q /∈ β(λ) and q − e ∈ β(λ) by Lemma 3.13(1). The following

summarises this in pictorial terms:

=⇒
q − 1 q q − 1 q
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Now suppose that λ(j−1) and λ(j) are both non-empty. Let

Mj := max{x ≡e j | x ∈ β(λ)},
mj := min{y ≡e j | y /∈ β(λ)},
qj := Mj − wtλ(Mj)e.

and similarly define Mj−1,mj−1, qj−1. Then qj >e qj−1 + 1 as λ has more removable

beads than addable beads on runner j. Thus

(3.1)
Mj−1 − (qj − 1)

e
<
Mj−1 − qj−1

e
= wtλ(Mj−1).

Since λ(j) is non-empty, we have qj ≥e mj. It suffices to show that Mj−1 ≤e mj − 1.

This can be easily seen if qj = mj: otherwise Mj−1 >e mj − 1 = qj − 1, and thus

Mj−1 ≥e qj+e−1, so that, from (3.1) above, (Mj−1; qj+e−1) ∈ A(λ); but we also have

(Mj; qj + e) ∈ A(λ), contradicting the bead configuration above (as qj = mj /∈ β(λ)).

If qj >e mj, then, for any mj <e q ≤e qj, we have q ∈ β(λ) since λ(j) is a hook, and

hence (q; q) ∈ A(λ), so that (Mj−1; q − 1) /∈ A(λ) by the bead configuration above;

in particular Mj−1 6= q − 1. In addition, we must have Mj−1 <e qj − 1, as otherwise

(Mj−1; qj − 1) ∈ A(λ) by (3.1). Thus Mj−1 ≤e mj − 1, and our proof is complete.

(3) This is entirely analogous to part (2).

�

4. Parallelotopes and q-decomposition numbers

In this section we state our main result, which gives a complete description of q-decomposition

numbers dλµ(q) when µ is 4-increasing.

Definition 4.1. Let λ be a partition with e-quotient (λ(0), . . . , λ(e−1)). We say that λ is a

hook-quotient partition if λ(j) is a hook for all j ∈ [0, e).

Note that if λ(j) is a nonempty hook (x, 1y), then

A(j)(λ) = {(b; b− ie) | i ∈ [0, x)} ∪ {(b− ie; b− ie) | i ∈ [x, x+ y)},

where b = max{c ∈ β(λ) | c ≡e j}. In particular, every hook-quotient partition has the

desirable property that its bead movements have distinct starting positions.

By Lemma 3.14(1), all 1-increasing partitions are hook-quotient partitions.

Let {ei | 1 ≤ i ≤ w} be the standard basis of Zw, so that any z = (z1, . . . , zw) ∈ Zw may be

written as z =
∑w

i=1 ziei.

Definition 4.2. Let λ be a hook-quotient partition of e-weight w. We define the λ-modified

basis vectors ελi ∈ Zw as follows. Let A(λ) = {(b1; q1) < · · · < (bw; qw)}. Let j be a residue class

modulo e, and suppose that {i ∈ [1, w] | qi ≡e j} = {i1 < · · · < ir}. Let l = min{s | bis = bir},
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that is, (bil ; qil) is the final bead movement associated to the bottom bead on runner j of the

abacus display of λ. Define

ελiγ :=


eiγ − eiγ+1 , if γ < l;

eiγ , if γ = l;

eiγ − eiγ−1 , if γ > l.

We do this for all residue classes j modulo e.

It is clear that ελ1 , . . . , ε
λ
w form another basis of Zw.

Example 4.3. Let λ be a hook-quotient partition and suppose that λ(j) = (4, 1, 1). The bead

movements on runner j and the corresponding modified basis vectors are depicted as arrows in

Figure 8.

Figure 8. Bead movements in a runner of a hook-quotient partition

—

—

—

—

—

—

...

...

ελi3 = ei3

ελi4 = ei4 − ei3

ελi5 = ei5 − ei4

ελi6 = ei6 − ei5

ελi2 = ei2 − ei3

ελi1 = ei1 − ei2

For each runner with nonzero e-weight, only one basis vector is unmodified; it corresponds to

the final bead movement of the bottom bead of the runner. In the figure this bead movement

is represented by a red arrow.

Definition 4.4. Let λ be a hook-quotient partition of e-weight w.

(1) For a subset Γ of [1, w], define

ελΓ =
∑
a∈Γ

ελa ∈ Zw
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(where ελ∅ is of course to be read as 0.)

(2) Define the parallelotopes Π0(λ) and Π(λ) of λ, anchored at 0 and z(λ) respectively, by

Π0(λ) =
{
ελΓ | Γ ⊆ [1, w]

}
,

Π(λ) = z(λ) + Π0(λ) =
{
z(λ) + ελΓ | Γ ⊆ [1, w]

}
;

they are subsets of Zw, each of cardinality 2w.

(3) If z(µ) = z(λ) + ελΓ ∈ Π(λ), define dλ(µ) = |Γ|.

The following important observation is an easy consequence of the definition of the modified

basis vectors ελi .

Lemma 4.5. Let λ be a hook-quotient partition of e-weight w, and let (z1, . . . , zw) ∈ Π0(λ).

Then −2 ≤ zi ≤ 1 for all i ∈ [1, w].

Lemma 4.6. Let λ be a hook-quotient partition of e-weight w, and let z1, z2 ∈ Zw. Suppose

that z1 − z2 ∈ Π0(λ). Then for any m ∈ Z,

(1) if z1 is m-increasing, then z2 is (m− 3)-increasing.

(2) if z2 is m-increasing, then z1 is (m− 3)-increasing.

In particular, given a partition µ such that z(µ) ∈ Π(λ), if one of λ and µ is m-increasing, then

the other is (m− 3)-increasing.

Proof. Let z1 = (a1, . . . , aw) and z2 = (b1, . . . , bw). Then −2 ≤ ai − bi ≤ 1 for all i ∈ [1, w], by

Lemma 4.5. Thus bi − 2 ≤ ai ≤ bi + 1 for any i ∈ [1, w], so that (bi − bi−1)− 3 ≤ ai − ai−1 ≤
(bi − bi−1) + 3. The lemma thus follows. �

The following is the main theorem of this paper.

Theorem 4.7. Let λ and µ be partitions of e-weight w with the same e-core. Suppose that µ

is 4-increasing. Then

dλµ(q) =

{
qdλ(µ), if λ is a hook-quotient partition and z(µ) ∈ Π(λ);

0, otherwise.

Remark 4.8. Theorem 4.7 determines ‘most’ of the columns of the q-decomposition matrix

of blocks of e-weight w as e tends to infinity, in the sense that the proportion of partitions in

blocks of e-weight w that are 4-increasing tends to 1. In fact, the latter is true of m-increasing

partitions, for any m, as we now demonstrate.

Let B be a block of e-weight w. Given a sequence c1, . . . , cl of positive integers summing

to w, a sequence j1, . . . , jl of integers such that 0 ≤ j1 < · · · < jl ≤ e − 1 and a sequence of

partitions ν1, . . . , νl such that |νγ| = |cγ|, there is a unique partition λ ∈ B whose e-quotient

(λ(0), . . . , λ(e−1)) satisfies

λ(j) =

{
νγ, if j = jγ for some γ ∈ [1, l];

∅, otherwise.
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Moreover all partitions in B arise uniquely in this way. Hence

|B| =
∑

(c1,...,cl)�w

(
e

l

) l∏
i=1

p(ci),

where the sum is taken over the set of sequences (c1, . . . , cl) described above and p(ci) denotes

the number of partitions of ci. Each term in the sum satisfies l ≤ w, with equality if and only

if (c1, . . . , cw) = (1, . . . , 1). It follows that |B| is a polynomial in e of degree w with leading

coefficient 1/w!. On the other hand, by Theorem 3.9(1), for any nonnegative integer m, the

number of m-increasing partitions in B is

|U≥m| =
(
e− (m− 1)(w − 1)

w

)
,

a polynomial in e with the same properties. Our claim follows. We remark that the claim is

easily seen to be true also for the set of generic partitions in B as defined in Section 1.

Remark 4.9. Suppose that µ is a 4-increasing partition, λ is a hook-quotient partition and

z(µ) ∈ Π(λ). Then λ is 1-increasing, by Lemma 4.6. On the other hand, any 1-increasing

partition is a hook-quotient partition by Lemma 3.14(1) as mentioned earlier. Thus the phrase

‘λ is a hook-quotient partition’ in Theorem 4.7 may be replaced by ‘λ is a 1-increasing partition’.

Example 4.10. Let e = 10, and let λ = (16, 8, 113) and µ = (17, 7, 24, 15), two partitions in

the same block of e-weight w = 3. Then z(λ) = (0, 7, 8) and z(µ) = (1, 5, 9), so that λ is

1-increasing and µ is 4-increasing. Then the modified basis vectors associated to (the hook-

quotient partition) λ are ελ1 = e1−e2, ελ2 = e2 and ελ3 = e3−e2. So z(µ) = z(λ)+ελ1 +ελ3 ∈ Π(λ),

and so dλµ(q) = q2, by Theorem 4.7. Note that µ is 4-increasing but λ is not 2-increasing.

Example 4.11 (Rouquier blocks). Fix a Rouquier block B of e-weight w. We now prove

Theorem 4.7 for partitions λ and µ in B; this serves as the base case of our inductive argument

to prove the result in general. In fact we show that the formula for dλµ(q) holds in B under

the assumption, weaker than that in the statement of the theorem, that µ is a 0-increasing

partition.

Let us recall the closed formulas for q-decomposition numbers in B obtained by Leclerc and

the second author in [LM]. They prove that, given λ, µ ∈ B,

(4.1) dλµ(q) = qδ(λ,µ)
∑

α0,...,αe

β0,...,βe−1

∏
0≤j≤e−1

cµ
(j)

αjβj
cλ

(j)

βj(αj+1)′ ,

where λ and µ have e-quotients (λ(0), λ(1), . . . , λ(e−1)) and (µ(0), µ(1), . . . , µ(e−1)) respectively, the

sum runs over all partitions α0, . . . , αe, β0, . . . , βe−1 satisfying

(4.2) |αi| =
i−1∑
j=0

(|λ(j)| − |µ(j)|), |βi| = |µ(i)|+
i−1∑
j=0

(|µ(j)| − |λ(j)|)
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and

δ(λ, µ) =
e−2∑
j=0

(e− 1− j)(|λ(j)| − |µ(j)|).

Here cρστ is the Littlewood-Richardson coefficient associated to partitions ρ, σ and τ satisfying

|ρ| = |σ|+ |τ |.
Let µ be a 0-increasing partition in B. We have seen in Example 3.3 that the e-quotient of µ

is ((1w0), . . . , (1we−1)), where wi is the number of times i appears as a component of z(µ). Let

λ be an arbitrary partition in B, with e-quotient (λ(0), . . . , λ(e−1)). Let α0, . . . , αe, β0, . . . , βe−1

be partitions satisfying (4.2). Thus |αi| = ai and |βi| = bi, where ai =
∑i−1

j=0(|λ(j)| − wj) and

bi = wi +
∑i−1

j=0(wj − |λ(j)|). By the Littlewood-Richardson rule, we have

c
(1wi )

αiβi
=

{
1, if αi = (1ai) and βi = (1bi)

0, otherwise,

and

cλ
(i)

(1bi ),(ai+1) =

{
1, if λ(i) ∈ {(ai+1, 1

bi), (ai+1 + 1, 1bi−1)},
0, otherwise.

So by (4.1), we see that dλµ(q) = 0 unless λ is a hook-quotient partition. Now assume that

the e-quotient (λ(0), . . . , λ(e−1)) of λ has the form λ(i) = (xi, 1
yi), where xi = 0 only if yi = 0,

for all i ∈ [0, e). For each i ∈ [0, e), put ci = xi − ai+1. We note for later use that ci =

xi −
∑i

j=1(|λ(j)| − wj), and hence

(4.3) wi = ci − ci−1 + yi + xi−1

for all i ∈ [0, e), where c−1 = x−1 = 0. By (4.1) we have

(4.4) dλµ(q) =

{
q
∑e−1
j=0(xj−cj) if 0 ≤ cj ≤ min(1, xj) for all j ∈ [0, e);

0 otherwise.

We now turn to the description of the parallelotopes associated to hook-quotient partitions

in B. Let x ∈ Z+ and y ∈ Z≥0. Define zx,y := (0y, 1x−1, 0) ∈ Zx+y, and

εx,yi :=


ei − ei+1, if i ∈ [1, y],

ei, if i = y + 1,

ei − ei−1, if i ∈ [y + 2, x+ y],

for each i ∈ [1, x+ y]. Write εx,yΓ =
∑

i∈Γ ε
x,y
i for any subset Γ ⊆ [1, x+ y], and define

Πx,y
0 := {εx,yΓ | Γ ⊆ [1, x+ y]} ⊆ Zx+y.

It is easy to see that Πx,y := zx,y + Πx,y
0 contains precisely two 0-increasing elements, namely

zx,y + εx,y[y+1, x+y] = (0y, 1x) and zx,y + εx,y[y+2, x+y] = (0y+1, 1x−1), corresponding to subsets of size x

and x− 1 respectively.
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Consider again the hook-quotient partition λ in B, with e-quotient given by λ(i) = (xi, 1
yi)

(where xi = 0 only if yi = 0) for all i ∈ [0, e). Then we have

z(λ) = (0x0+y0 , . . . , (e− 1)xe−1+ye−1) + (zx0,y0 , . . . , zxe−1,ye−1),

Π0(λ) = Πx0,y0

0 × · · · × Π
xe−1,ye−1

0 ,

where zxi,yi and Πxi,yi
0 are to be left out in the respective expressions of z(λ) and Π0(λ) if xi = 0.

Thus the 0-increasing elements of Π(λ) = z(λ) + Π0(λ) have the following form:

(0x0+y0 , . . . , (e− 1)xe−1+ye−1) + (εxi,yi[y0+1+c′0,x0+y0], . . . , ε
xe−1,ye−1

[ye−1+1+c′e−1,xe+1+ye−1])

= (0x0+y0 , . . . , (e− 1)xe−1+ye−1) + ((0y0+c′0 , 1x0−c′0), . . . , (0ye−1+c′e−1 , 1xe−1−c′e−1))

= (0y0+c′0 , 1x0−c′0+y1+c′1 , . . . , (e− 1)xe−2−c′e−2+ye−1+c′e−1 , exe−1−c′e−1)

where c′i ∈ [0,min(xi, 1)] for all i ∈ [0, e). Hence, given a 0-increasing partition µ in B with

z(µ) = (0w0 , . . . , (e − 1)we−1), we have z(µ) ∈ Π(λ) if and only if there exist c′i ∈ [0,min(xi, 1)]

for all i ∈ [0, e) such that wj = xj−1 − c′j−1 + yj + c′j for all j ∈ [0, e) (where x−1 = c′−1 = 0,

which will force xe−1 = c′e−1), in which case dλ(µ) =
∑

0≤j≤i xj − c′j. We conclude from this,

and (4.3) and (4.4), that

dλµ(q) =

{
qdλ(µ), if z(µ) ∈ Π(λ);

0, otherwise.

Hence Theorem 4.7 holds for Rouquier blocks, even under the less stringent hypothesis that µ

is 0-increasing.

Remark 4.12. (Principal blocks) Martin and Russell [MR] and Fayers and Martin [FM] de-

scribed part of the Ext1-quiver for principal blocks of symmetric groups. Their general vertices

[MR], p-general vertices [FM] and semi-general vertices [FM] are examples of 1-increasing par-

titions. To be more precise, let λ be a partition with empty p-core and p-weight w, and let

z(λ) = (z1, . . . , zw). Then λ is a general vertex if and only if w ≤ z1 < · · · < zw ≤ p− w − 1. It

is a p-general vertex if and only if w ≤ z1 < · · · < zw = p−w. It is a semi-general vertex if and

only if w − 1 ≤ z1 < · · · < zw−1 ≤ p− w and zw = p− w + h for some h ∈ [1, w − 1], such that

zh 6= zh−1 + 1 when h > 1 while z1 6= w − 1 when h = 1.

The main theorems of [MR] and [FM] take the following form. Let λ be a general vertex, a

p-general vertex or a semi-general vertex; in particular λ is a p-regular partition with empty p-

core. Then the set of (p-regular) partitions µ for which Ext1(Dλ, Dµ) 6= 0 is described explicitly,

and it is shown that for any such µ, Ext1(Dλ, Dµ) is 1-dimensional, and either [Sλ : Dµ] 6= 0

or [Sµ : Dλ] 6= 0; here Sλ is the Specht module associated to λ and Dλ is its unique simple

quotient. Any such µ is one of the partitions appearing in Example 3.12, hence both a hook-

quotient partition and 0-increasing, and it is easy to check that either z(µ) = z(λ) + ελi for some

i ∈ [1, w] or z(λ) = z(µ) + εµi for some i ∈ [1, w] (cf. Theorem 8.9).

Remark 4.13. Example 4.11 and Remark 4.12 (as well as Remark 9.5, as we shall see) de-

scribe situations in which the formula for dλµ(q) in Theorem 4.7 holds even though µ is not
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4-increasing. In fact, we do not know of any example of a hook-quotient partition λ and

a 0-increasing partition µ in the same block for which the formula is incorrect. Indeed, for

e = 2, it is not difficult to compute the canonical basis vector G(µ) for 0-increasing partitions

µ from the description of such partitions given in Example 3.10 and verify directly that The-

orem 4.7 holds for any hook-quotient partition λ and 0-increasing partition µ. On the other

hand, despite what Example 4.11 may suggest, it is possible to have dλµ(q) 6= 0 for a non-

hook-quotient partition λ and a 0-increasing partition µ. For example, for e = 3, the partition

λ = (5, 3, 2, 1, 1) has e-quotient (∅, ∅, (2, 2), ∅) and the partition µ = (6, 3, 2, 1) is 0-increasing,

with z(µ) = (1, 1, 2, 2), but dλµ(q) = q + q3. The formula can also fail for a hook-quotient

partition λ and a non-0-increasing partition µ. For example, in a Rouquier block of 2-weight

2 (i.e. e = 2), when µ = (5) (so that z(µ) = (2, 1)), we have d(3,2),µ(q) = 0 even though

z(µ) ∈ Π((3, 2)) = {z((3, 2)) = (1, 1), (1, 2), (2, 0), (2, 1)}, while d(3,1,1),µ(q) = q even though

z(µ) /∈ Π((3, 1, 1)) = {z((3, 1, 1)) = (1, 2), (2, 2), (1, 3), (2, 3)}.

Remark 4.14. Let λ be a hook-quotient partition in a block B of e-weight w. It is possible

for Π(λ) to contain a 4-increasing element that is not of the form z(µ) for any partition µ ∈ B.

It is easy to see that this is true of z ∈ Π(λ) if and only if the last coordinate of z is e, if and

only if the last coordinate of z(λ) is e − 1 and z = z(λ) + ελΓ for some Γ ⊆ [1, w] containing

w. It is nevertheless still possible to understand such z ∈ Π(λ) using the idea of runner

addition/removal [JM, F2]. To an arbitrary partition λ in B, let λ+ be the partition obtained

by adding a ‘full’ runner; the partitions thus obtained lie in a common block B+ of (e + 1)-

weight w. More precisely, λ+ can be defined as follows: for all r ∈ Z and s ∈ [0, e], we have

r(e+ 1) + s ∈ β(λ+) if and only if s 6= e and (r+ |λ|)e+ s ∈ β(λ), or s = e and r < |λ| e. Then

z(λ) = z(λ+), λ is a hook-quotient partition if and only if λ+ is, and ελi = ελ
+

i for all i ∈ [1, w],

so that Π(λ) = Π(λ+). Thus Theorem 4.7 is consistent with Theorem 3.1 of [F2], which states

that deλµ(q) = de+1
λ+µ+(q) for all λ, µ ∈ B, and additionally, every 4-increasing element of Π(λ)

may be interpreted as z(ν) for a partition ν in B+, giving a q-decomposition number dλ+ν(q)

for B+.

5. Moving along a parallelotope

Before we tackle the proof of Theorem 4.7, we explain in this section how to explicitly obtain

partitions appearing in a parallelotope Π(λ) in terms of the hook-quotient partition λ, side-

stepping the difficulty of inverting the map z. Our results culminate in a description, in terms

of certain ‘bead operations’, which will be essential for the proof of Theorem 4.7.

The aforementioned bead operations may be of independent interest. For example, they may

be used to compute the image of the Mullineux map of e-regular partitions in some cases, and

should be more efficient than the one generalising the original algorithm proposed by Mullineux

[M] when w is small compared to e; this application is detailed in Section 9.

We begin by defining the bead operations that we shall use.
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Definition 5.1. Let S ⊆ Z and x ∈ Z. Define bS(x) and Bx(S) as follows:

bS(x) := min{a | a > x, a /∈ S, a− e ∈ S}, Bx(S) := S ∪ {bS(x)} \ {bS(x)− e}.

On the abacus, Bx(S) is obtained from S by sliding one bead one position down its runner

into an unoccupied position, where the unoccupied position is chosen to be as near to x as

possible while being greater than x. We note that bS(x) as well as Bx(S) is defined if and only

if x− e < max(S).

We have two basic lemmas arising from the above definition.

Lemma 5.2. Let S ⊆ Z, and let x ∈ Z with x − e < max(S), so that a := bS(x) is defined.

Then one of the following holds:

(1) t ∈ S ⇔ t− e ∈ S for all t ∈ (x, a);

(2) there exists s ∈ (x, a) such that s ∈ S, s− e /∈ S and zS(x) > zS(s).

In particular, if S = β(σ) for some partition σ, and zσ(x) ≤ z(b; q) for all (b; q) ∈ A(σ) with

q ∈ (x, a), then t ∈ S ⇔ t− e ∈ S for all t ∈ (x, a).

Proof. If the first statement does not hold, then by the definition of bS(x) = a, there exists s ∈
(x, a) such that s ∈ S and s−e /∈ S. Choose s to be the least such. Then t ∈ S ⇐⇒ t−e ∈ S
for all t ∈ (x, s), and it follows from Lemma 3.13 that zS(x) > zS(s).

For the last assertion, if statement (2) holds, then s ∈ (x, a) satisfies (s; s) ∈ A(σ) and

zσ(x) > zσ(s) = z(s; s), contradicting the hypothesis. Thus statement (1) must hold. �

Lemma 5.3. Let S := β(σ) for some partition σ, and let x ∈ Z. Suppose that a := bS(x) ≤ x+e

and let T := Bx(S) = S ∪ {a} \ {a− e}.
(1) If zS(x+ e) ≤ z(b; q) for all (b; q) ∈ A(σ) with q ∈ (x+ e, a+ e], then bT (x+ e) ≤ a+ e.

(2) If zS(x− e) ≤ z(b; q) for all (b; q) ∈ A(σ) with q ∈ (x− e, a− e], then bT (x− e) ≤ a− e.

Proof.

(1) Since a ∈ T , if a + e /∈ T , then clearly by definition bT (x + e) ≤ a + e. On the other

hand, if a + e ∈ T , then a + e ∈ S, and a /∈ S, so that (a + e; a + e) ∈ A(σ). Thus

zS(x + e) ≤ z(a + e; a + e) = zS(a + e), so that there exists s + e ∈ (x + e, a + e)

such that s ∈ S and s + e /∈ S by Lemma 3.13(1). As s ∈ T and s + e /∈ T , we have

bT (x+ e) ≤ s+ e < a+ e.

(2) Since a− e /∈ T , if a− 2e ∈ T then bT (x− e) ≤ a− e by definition. On the other hand,

if a − 2e /∈ T , then a − 2e /∈ S, while a − e ∈ S, so that (a − e; a − e) ∈ A(σ). Thus

zS(x− e) ≤ z(a− e; a− e) = zS(a− e), so that there exists s− e ∈ (x− e, a− e) such

that s − 2e ∈ S and s − e /∈ S by Lemma 3.13(1). As s − 2e ∈ T and s − e /∈ T , we

have bT (x− e) ≤ s− e < a− e.
�

The next technical lemma is an important one, laying the foundation for us to describe µ

when z(µ) is a λ-modified basis vector away from z(λ).
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Lemma 5.4. Let S = β(σ) for some partition σ and let x ∈ Z, k ∈ Z+, l ∈ Z≥0. Suppose that:

(I) (A) zS(x) < zS(x+ e), or

(B) l = 0, x /∈ S, x− e ∈ S and x− e < max(S);

(II) zS(x) ≤ z(b; q) whenever (b; q) ∈ A(σ) and q > x, with the inequality being strict if

q ∈ (x, x+ e];

(III) zS(x+ ie) ≤ z(b; q) for all (b; q) ∈ A(σ) with q ∈ (x+ ie, x+ (i+ 1)e] and i ∈ (−k, l].
Define Si, for i ∈ [0, k + l], recursively as follows: S0 := S and Si := Bx+f(i)e(Si−1), where

f : [1, k + l]→ (−k, l] is the bijection defined by

f(i) :=

{
1− i, if i ∈ [1, k];

i− k, if i ∈ (k, k + l].

For each i ∈ [1, k + l], let di := bSi−1
(x+ f(i)e), so that Si = Si−1 ∪ {di} \ {di − e}.

(1) Then di ∈ (x+ f(i)e, x+ (f(i) + 1)e] for all i, except possibly when i = 1 and condition

(IB) holds but not condition (IA). Also,

di+1 ≤ di − e for all i ∈ [1, k);

dk+1 ≤ d1 + e;

di+1 ≤ di + e for all i ∈ (k, k + l).

(2) If s ∈ (x+ f(i)e, di), then s ∈ S if and only if s− e ∈ S.

(3) Let (b; q) ∈ A(σ). Then

q /∈
k⋃
i=1

(x+ (f(i)− 1)e, di − e) ∪
k+l⋃

i=k+1

(x+ (f(i) + 1)e, di + e) ∪ (x, d1) ∪ (x+ e, d1 + e)

(4) For i ∈ {1} ∪ (k, k + l], write dimax = max{dj | dj ≥e di}. For y ∈ Z, define

g(y) :=


di, if y = di − e and i ∈ [2, k];

dimax , if y = di − e and i /∈ [2, k];

y, otherwise.

Write ν for the partition such that β(ν) = Sk+l. Then the map g̃ : A(σ)→ A(ν) defined

by (b; q) 7→ (g(b); q) is well-defined, injective and order-preserving, and

A(ν) \ g̃(A(σ)) = {(g(di − e); di) | i ∈ [1, k + l]}.

(5) Keep the notations in (4). Let (b; q) ∈ A(σ). Then

zν(g̃(b; q)) =


zσ(b; q) + 1, if q ∈ (x− ke, x− (k − 1)e];

zσ(b; q)− 1, if q ∈ (x+ le, x+ (l + 1)e];

zσ(b; q), otherwise.
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In addition,

zν((g(di − e); di)) =


zS(x+ f(i)e)− 1, if k < i = k + l,

zS(x+ f(i)e) + 1, if i = 1 ≤ l,

zS(x+ f(i)e), otherwise,

for all (g(di − e); di) ∈ A(ν) \ g̃(A(σ)).

In Figure 9, Lemma 5.4 is illustrated for k = 4 and l = 5, with bead operations pictured on

the abacus of σ, on the left, and the ‘extra’ bead movements (g(di − e); di) of ν shown on its

abacus, on the right.

Figure 9. Illustration of Lemma 5.4
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Proof.

(1) Note that condition (IA) ensures that d1 ≤ x + e by Lemma 3.13, and the remaining

assertions then follow from Condition (III) and Lemma 5.3. If condition (IA) does not

hold, then condition (IB) holds and guarantees that d1 is defined and d2 ≤ x when

k ≥ 2; the remaining assertions again follow from Condition (III) and Lemma 5.3(2).

(2) This follows from part (1), conditions (II) and (III), and Lemma 5.2.

(3) Suppose first σ has a bead movement starting at a position q with q ∈ (x, d1). Let

q′ = min{y | x < y ≤e q}. Then q′ ∈ (x, x + e]. Furthermore, by part (2), q ∈ S if

and only if q′ ∈ S, so that (b′; q′) ∈ A(σ) for some b′ ∈ S. By condition (II), we have

zS(x) < z(b′; q′), so that there exists s ∈ (x, q′] such that s /∈ S and s−e ∈ S by Lemma

3.13(1). Thus, x < s ≤ q′ ≤ q1 < d1, contradicting the definition of d1.

We now prove by induction that σ has no bead movement whose starting position

lies in the open interval (x + f(i)e, di) for all i ∈ [1, k + l], for which we’ve just seen
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the base case of i = 1. For i ∈ [2, k], we have f(i) = 1 − i. By part (2), for any

b′ ∈ (x + (2 − i)e, di−1), we have b′ ∈ S if and only if b′ − e ∈ S. This implies that

σ has a bead movement starting at b′ − e only if it has a bead movement starting at

b′. By induction hypothesis, σ has no bead movement whose starting position lies in

(x + (2− i)e, di−1), and hence σ has no bead movement whose starting position lies in

(x+ (1− i)e, di−1− e). Since di−1− e ≥ di by part (1), we conclude that σ has no bead

movement whose starting position lies in (x + f(i)e, di). An analogous argument also

applies for i ∈ (k, k + l].

Finally we show that σ has no bead movement whose starting position lies in the

open interval (x + (f(i) ± 1)e, di ± e) for all i ∈ [1, k + l]. Once again, this holds

because by part (2), any bead movement in this interval will imply a bead movement

in (x+ f(i)e, di), contradicting what we have shown above.

Thus, for all (b; q) ∈ A(σ), we have

q /∈
k+l⋃
i=1

⋃
ε∈{0,±1}

(x+ (f(i) + ε)e, di + εe).

Part (3) now follows, using part (1).

(4) This is straightforward, and may be proved by, say, induction on k + l and using parts

(1) and (3).

(5) By part (1), we have

Sk+l = ((S \ {di − e | i ∈ [1, k]}) ∪ {di | i ∈ [1, k + l]}) \ {di − e | i ∈ (k, k + l]}.

Thus zS(q) = zSk+l
(q) if q < mini{di−e} (= dk−e) or q−e ≥ maxi{di}

(
=

{
dk+l if l > 0

d1 if l = 0

)
.

For q ∈ [dk − e, x− (k − 1)e], we have Sk+l ∩ (q − e, q] = (S ∩ (q − e, q]) \ {dk − e}
by part (1). Thus zSk+l

(q) = zS(q) + 1.

For q ∈ (x − ie, x − (i − 1)e] for some i ∈ [1, k), we have, since f(i) = 1 − i, q ∈
[di−e, x−(i−1)e] by part (3), so that di ≤ x+(f(i)+1)e even when i = 1 and Condition

(IA) does not hold. Consequently, Sk+l∩ (q− e, q] = ((S ∩ (q− e, q])\{di− e})∪{di+1}
by part (1), and hence zSk+l

(q) = zS(q).

For q ∈ (x, x + e], we have q ∈ [d1, x + e] by part (3), and hence d1 ≤ x + e. Thus

Sk+l∩(q−e, q] = (S∩(q−e, q])∪{d1}\{dk+1−e} by part (1). So, zSk+l
(q) = zS(q)−δl0.

For q ∈ (x+ e, x+ 2e], we have q ∈ [d1 + e, x+ 2e] by part (3), and hence d1 ≤ x+ e.

Thus Sk+l ∩ (q − e, q] = (S ∩ (q − e, q]) ∪ {dk+1} \ {dk+2 − e} by part (1), and so,

zSk+l
(q) = zS(q)− δl1.

For q ∈ (x+ je, x+ (j + 1)e] for some j ∈ [2, l], we have, since f(k + j − 1) = j − 1,

q ∈ [dk+j−1 + e, x + (j + 1)e] by part (3), so that Sk+l ∩ (q − e, q] = (S ∩ (q − e, q]) ∪
{dk+j} \ {dk+j+1 − e} by part (1). Thus zSk+l

(q) = zS(q)− δjl.
If q > x+ (l+ 1)e, then q > d1 + e if l = 0 and q > dk+l + e if l > 0 by part (3). Thus

q > maxi{di}+ e. This proves the first assertion completely.
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For the second assertion, let h : (di−e, di]→ (x+(f(i)−1)e, x+f(i)e] be the bijection

satisfying h(y) ≡e y for all y ∈ (di−e, di]. From part (2), we see that y ∈ S∩(di−e, di)
if and only if h(y) ∈ S. Thus,

zS(di) = |(di − e, di] \ S| = |{h(y) | y ∈ (di − e, di) \ S}|+ 1di /∈S

= zS(x+ f(i)e)− 1h(di)/∈S + 1di /∈S.

We consider three different cases:

i ∈ [2, k]: In this case, h(di) = di − e ∈ S and di ∈ Sk+l, so that

(di − e, di] \ S = ((di − e, di] \ Sk+l) ∪ ({di} \ S)

by part (1). Thus

zS(x+ f(i)e) + 1di /∈S = zS(di) = zSk+l
(di) + 1di /∈S,

giving zS(x+ f(i)e) = zSk+l
(di).

i ∈ (k, k + l]: In this case, h(di) = di − e /∈ Sk+l and di /∈ S. Also

(di − e, di] \ Sk+l = ((di − e, di] \ (S ∪ {di−1, di} \ {di+1 − e})

by part (1), where di−1 is to be read as d1 when i = k + 1. Thus,

zS(x+ f(i)e)− 1di−e/∈S + 1 = zS(di) = zSk+l
(di) + 1di−1>di−e + δi,k+l.

Since di−1 > di − e if and only if di − e ∈ S, we get

zS(x+ f(i)e) = zSk+l
(di) + δi,k+l.

i = 1: Clearly, d1 /∈ S. Also since d1 − e ∈ S, we have h(d1) ∈ S by part (2). If

d1− e > x (only if l = 0), then (d1− e, d1] \ Sk+l = (d1− e, d1] \ (S ∪ {d1}). Thus,

zS(x) + 1 = zS(d1) = zSk+l
(d1) + 1.

If d1− e ≤ x, then (d1− e, d1] \ Sk+l = (d1− e, d1] \ (S ∪ {d1} \ {dk+1− e}). Thus,

zS(x) + 1 = zS(d1) = zSk+l
(d1) + δl0.

This yields zSk+l
(d1) = zS(x) + 1− δl0 always, regardless of the value of d1.

�

Definition 5.5. For x, k, l ∈ Z with k > 0 and l ≥ 0, define

Bk,l
x := (Bx+le ◦Bx+(l−1)e ◦ · · · ◦Bx+e) ◦ (Bx−(k−1)e ◦Bx−(k−2)e ◦ · · · ◦Bx).

Using the notation just introduced, Sk+l in Lemma 5.4 can be written as Bk,l
x (S).

Definition 5.6. Let λ be a hook-quotient partition with e-weight w, with A(λ) = {(b1; q1) <

(b2; q2) < · · · < (bw; qw)}. We define a partial order �λ on [1, w] as follows: i �λ j if and only

if bi ≡e bj, and either i ≥ j ≥ m or i ≤ j ≤ m, where (bm; qm) is the final bead movement of

the bottom bead on the runner.

In addition, we write i �λ j for i �λ j and i 6= j.
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Remark 5.7. Let λ be a hook-quotient partition. If A(λ) = {(b1; q1) < (b2; q2) < · · · <
(bw; qw)}, and {i ∈ [1, w] | qi ≡e a} = {i1 < i2 < · · · < iv}, with (bim ; qim) being the final bead

movement of the bottom bead on runner a, then

i1 �λ i2 �λ · · · �λ im,
iv �λ iv−1 �λ · · · �λ im.

In addition, ij 6�λ r and r 6�λ ij for all other r and any j.

Using Lemma 5.4, we can now describe how to obtain the partition µ from the hook-quotient

partition λ when z(µ) is 0-increasing and one λ-modified basis vector away from z(λ).

Proposition 5.8. Let λ be a hook-quotient partition with e-weight w. Let r ∈ [1, w] and

suppose that z(λ) + ελr = z(µ) for a 0-increasing partition µ lying in the same block as λ.

For each i ∈ [1, w], let (bi; qi) (resp. (b′i; q
′
i)) be the i-th bead movement of λ (resp. µ). Let

gr = max{x <e qr | x /∈ β(λ)}, and let σ be the partition obtained from λ by moving the bead

at br to gr, i.e.

β(σ) = β(λ) ∪ {gr} \ {br}.
Then β(µ) = Bk,l

qr (β(σ)), where k = qr−gr
e

and l = br−qr
e

.

In particular,

(1) qt = q′t if and only if t 6�λ r, in which case ελt = εµt if µ is a hook-quotient partition;

(2) if s �λ r, then

(a) q′s ∈ (qs, qs + e], except possibly when r = s and (br; qr) = (qr; qr) is the initial bead

movement of the bottom bead of that runner of λ;

(b) α ∈ β(σ) ⇐⇒ α− e ∈ β(σ) for all α ∈ (qs, q
′
s);

(3) if t �λ s �λ r, then q′t − qt ≤ q′s − qs;
(4) if q′s = qs + e, then (br; qr) = (qr; qr) is the only bead movement of the bottom bead of

that runner of λ, and qr 6≡e q′r > qr + e;

(5) writing Gµ
λ =

⋃
s�λr ((qs, q

′
s) ∪ (qs − e, q′s − e)), we have

(a) x ∈ β(σ) ∩Gµ
λ if and only if y ∈ β(σ) for all y ∈ Gµ

λ with y ≡e x;

(b) qt, qt − e /∈ Gµ
λ for all t 6�λ r.

Proof. Suppose that (br; qr) lies in runner a. Note first that

{qs | s �λ r, qs ≤ qr} = {qr − ie | i ∈ [0, k)},
{qs | s �λ r, qs > qr} = {qr + ie | i ∈ [1, l]},

so that {qr + ie | i ∈ (−k, l]} = {qs | s �λ r}. We consider the following cases separately:

Case 1: (br; qr) is a non-final bead movement of the bottom bead of runner a.

Case 2: (br; qr) is a (and the unique) bead movement of a non-bottom bead of runner a.

Case 3: (br; qr) is the final bead movement of the bottom bead of runner a.

All cases are proved similarly by applying Lemma 5.4. We shall only show the details for Case

3.
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In this case, A(λ) = A(σ) ∪ A(a)(λ) (disjoint union). In addition, for x ∈ Z, we have

zσ(x) = zλ(x) + 1x∈[br, br+e) − 1x∈[gr, gr+e).

We show that the conditions in Lemma 5.4 hold with x = qr (and k = qr−gr
e

and l = br−qr
e

).

Since z(µ) = z(λ) + ελr = z(λ) + er and µ is 0-increasing, we have

zλ(qi) + δir ≤ zλ(qj) + δjr

whenever i < j (equivalently, qi < qj). Thus, when in addition i �λ r, we have

zσ(qi) = zλ(qi) + δqi,br ≤ zλ(qj) + δjr − δir + δqi,br

= zσ(qj) + δjr − δir + δqi,br − 1qj∈[br, br+e).

In particular, zσ(qi) > zσ(qj) only if j = r or qi = br. Since A(a)(σ) = ∅, we see that condition

(III) holds. Putting i = r, we see that condition (II) holds, and condition (IA) also holds when

l > 0 (so that qr + e = qs for some s). On the other hand, if l = 0, then qr = br /∈ β(σ) while

qr − e ∈ β(σ). Furthermore, zλ(qr) = mr − 1 ≤ e− 2, where z(µ) = (m1, . . . ,mw), so that there

exists y ∈ (qr− e, qr)∩ β(λ). Hence y ∈ β(σ) and so qr− e < max(β(σ)). Thus, condition (IB)

holds.

Let β(ν) = Bk,l
qr (β(σ)). Then by Lemma 5.4(5) and using the notations there, we have

zν(g̃(b; q)) = zσ(b; q) + 1q∈(qr−ke, qr−(k−1)e] − 1q∈(qr+le, qr+(l+1)e]

= zσ(b; q) + 1q∈(gr, gr+e] − 1q∈(br, br+e]

= zλ(b; q)

for all (b; q) ∈ A(σ) = A(λ) \ A(a)(λ), and, for each i ∈ [1, k + l],

zν(g(di − e); di) = zσ(qr + f(i)e)− 1i=k+l>k + 1i=1≤l

= zλ(qsi) + 1qsi∈[br, br+e) − 1i=k+l>k + 1i=1≤l

= zλ(qsi) + δi1

where si �λ r such that qsi = qr +f(i)e. By Lemma 5.4(1,3), for any (bt; qt) ∈ A(λ)\A(a)(λ) =

A(σ), we have qt /∈ (qsi , di) for all i ∈ [1, k + l], so that (bt; qt) is the t-th bead movement

of ν, and that (g(di − e); di) is the si-th bead movement of ν for each i ∈ [1, k + l]. Thus,

z(ν) = z(λ) + es1 = z(λ) + er = z(µ), and hence ν = µ by Theorem 3.9.

Now we briefly describe how to obtain the remaining assertions. We have already shown

the first assertion of part (1) above, and the second assertion follows from the fact that εµs
depends only on whether b′s is the bottom bead on that runner, and if so, whether q′s is its final

bead movement, and the answers to these questions are affirmative if and only if the respective

answers to the same questions about bs and qs are affirmative.

Part (2) follows from Lemma 5.4(1,2,3) and the fact that condition (IA) in Lemma 5.4 holds

whenever l > 0.

Part (3) follows from Lemma 5.4(1).
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For part (4), if q′s = qs + e, then we must have d1 ≥ qr + e by Lemma 5.4(1). This forces

l = 0, as otherwise condition (IA)—zσ(qr) < zσ(qr + e)—holds, so that d1 = bβ(σ)(qr) < qr + e

by Lemma 3.13(1), since qr /∈ β(σ). Let cr = max{x ≥e qr | x < d1}. By part (2b), we

see that u ∈ β(σ) if and only if u − e ∈ β(σ) for all u ∈ (qr, d1). Since qr /∈ β(σ), we have

qr + e, qr + 2e, . . . , cr /∈ β(σ). Hence d1 − e 6= cr. Consequently, q′r = d1 > qr + e and r 6= s, so

that, by part (2a), (br; qr) = (qr; qr) is the initial bead movement of the bottom bead of that

runner. Since s �λ r, this forces (qr; qr) to be the only bead movement of the bottom bead of

that runner.

Part (5) follows from Lemma 5.4(1,2,3). �

Figure 10. Illustration of Proposition 5.8
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Example 5.9. Let e = 12 and λ = (67, 62, 57, 49, 44, 43, 382, 36, 35, 32, 302, 29, 28, 25, 232, 22,

21, 18, 173, 16, 15, 14, 13, 123, 11, 10, 82, 75, 62, 52, 45, 311, 211, 113). Then wt(λ) = 19 and z(λ) =

(0, 1, 1, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 10, 10, 10). The 12 bead movements on runner 0 of the aba-

cus of λ are shown on the abaci in Figure 10 as straight upward-facing arrows. Proposition 5.8

is illustrated there in three cases, each involving a modified basis vector corresponding to a cir-

cled bead movement. In the notation of the proposition, for r = 8 we have (b8; q8) = (60;−12),

g8 = −24, k = 1 and l = 6; the adjustment needed to obtain σ from λ is indicated by the long

curved upward-pointed arrow in the bottom half of the lefthand abacus, and the ensuing bead

operations by curved downward-pointing arrows. When r = 3, we have (b3; q3) = (−48;−48),

g3 = −84, k = 3 and l = 0; see the dashed arrows in the top half of the lefthand abacus.

Finally, for r = 6, we have (b6; q6) = (60;−24), g6 = −84, k = 5 and l = 7; this case is depicted

on the abacus on the right. The set Gµ
λ corresponds to the shaded regions in the figure.
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Remark 5.10. Note that our description of µ in Proposition 5.8 when z(µ) = z(λ) + ελr shows

that µ = λHr , where Hr is the rimhook of λ of size divisible by e that is associated to the r-th

bead movement (br; qr) of λ (see Section 1). Thus, ελr = z(λH)− z(λ), and so Theorem 1.1 and

the first part of Theorem 1.3 are special cases of Theorem 4.7.

We next address how to obtain the partition µ from a hook-quotient partition λ when z(µ) is

more than one λ-modified basis vector away from z(λ). The following lemma effectively allows

us to obtain µ from λ by adding one modified basis vector at a time when µ is 4-increasing.

Lemma 5.11. Let λ be a hook-quotient partition of e-weight w. Let µ be a 4-increasing partition

lying in the same block as λ. Suppose that z(µ) = z(λ) + ελΓ, for some non-empty Γ ⊆ [1, w].

Let r be maximal in Γ with respect to �λ. Then there exists a 1-increasing partition ν lying in

the same block as λ such that

(1) z(λ) + ελr = z(ν),

(2) ενs = ελs for all s ∈ Γ \ {r},
(3) z(µ) = z(ν) + ενΓ\{r}.

Proof. Let z(λ)+ελr = z = (z1, . . . , zw). Then z(µ)−z = ελΓ\{r} ∈ Π0(λ), so that z is 1-increasing

by Lemma 4.6(1). Note that if z(µ) = (a1, . . . , aw) and z(λ) = (b1, . . . , bw), then zw ≤ aw ≤ e−1

and z1 ≥ b1 ≥ 0, so that by Theorem 3.9, there exists a partition ν lying in the same block as

λ such that z(ν) = z. Thus ν is 1-increasing and hence a hook-quotient partition by Lemma

3.14(1). By Proposition 5.8(1) and the maximality of r in Γ, we have ελs = ενs for all s ∈ Γ\{r}.
Thus

z(µ) = z(λ) + ελΓ = z(ν) + ελΓ\{r} = z(ν) + ενΓ\{r}.

�

Remark 5.12. Given a hook-quotient partition λ and a 4-increasing partition µ with z(µ) =

z(λ)+ελΓ, by iterating Lemma 5.11, we can recursively find a sequence ν0, ν1, . . . , ν |Γ| of partitions

with ν0 = λ, ν |Γ| = µ, and z(νi) = z(νi−1)+ εν
i−1

γi
for all i ∈ [1, |Γ|], where γi ∈ Γ\{γ1, . . . , γi−1}

is maximal with respect to �νi−1 . Using Proposition 5.8, we may compute each νi in turn, and

obtain µ in |Γ| steps.

To extend this algorithm to a more general setting, allowing µ to be merely 0-increasing,

the main obstruction is that the intermediate partitions ν1, . . . , ν |Γ|−1 may not be 0-increasing

or hook-quotient. When the intermediate partitions have these desired properties, then the

algorithm will indeed produce the correct µ.

As an example, take e = 4 and λ = (7, 3, 3, 2, 2, 1), the partition with 4-core (2) and 4-

quotient ((1), ∅, (2, 1), ∅). Then z(λ) = (1, 1, 2, 3) and the modified basis vectors corresponding

to λ are ελ1 = e1−e3, ελ2 = e2, ελ3 = e3 and ελ4 = e4−e3. The 0-increasing partition µ in the same

block for which z(µ) = (1, 2, 3, 3) = z(λ)+ελ2 +ελ3 can be computed using the algorithm described

above, via the intermediate partition ν in the same block for which z(ν) = (1, 1, 3, 3) = z(λ)+ελ3 ;

two applications of Proposition 5.8 yield ν = (9, 3, 2, 2, 2), with 4-quotient ((3), ∅, ∅, (1)), and

µ = (10, 4, 2, 1, 1), with 4-quotient (∅, (2), (1), (1)). On the other hand one cannot arrive at µ
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using the algorithm via the partition ρ in the same block for which z(ρ) = (1, 2, 2, 3) = z(λ)+ελ2 ,

since one finds that ρ = (7, 4, 4, 1, 1, 1), with 4-quotient (∅, ∅, (2, 2), ∅), is not a hook-quotient

partition. Incidentally, it is indeed true that dλµ(q) = q2, even though µ is not 4-increasing and

hence does not satisfy the hypotheses of Theorem 4.7.

See also Remark 9.6 for a general situation in which this algorithm is useful.

We end this section with the following technical result, required to prove Corollary 5.14:

when the abacus of a hook-quotient partition has no removable bead on runner a, this property

is inherited by the partitions in its sub-parallelotope generated by its modified basis vectors

corresponding to bead movements starting in runner a and a− 1.

Lemma 5.13. Let λ be a 1-increasing partition and µ a 0-increasing partition lying in the same

block. Suppose that

• z(µ) = z(λ) + ελr ;

• λ has no removable bead on runner a;

• the r-th bead movement of λ lies in runner a or a− 1.

Then µ has no removable bead on runner a.

Proof. Let y = max{b ∈ β(λ) | b ≡e a}. We claim that s ∈ β(λ) for all s ≤e y−1. If t ∈ β(λ) for

all t ≤e y, this is obvious, since λ has no removable bead on runner a. Otherwise (y; y) ∈ A(λ),

which implies that λ, being 1-increasing, does not have a bead movement starting at y− 1, but

y− 1 ∈ β(λ) since λ has no removable bead on runner a, and hence wtλ(y− 1) = 0, and so the

claim holds in this other case as well.

Let (br; qr) be the r-th bead movement of λ, and adopt the notations of Proposition 5.8 and

Lemma 5.4. In addition, let y′ = max{b ∈ β(µ) | b ≡e a}.
If qr ≡e a− 1, then gr > y by the claim above. Thus by Proposition 5.8, y′ = y and s ∈ β(µ)

for all s ≤e y − 1. So in this case µ has no removable bead on runner a.

Suppose instead that qr ≡e a. By Proposition 5.8, we have y′ ≤ y, with equality only if

br = qr. If (br; qr) is the only bead movement of λ on runner a, then l = 0, k = 1, y′ = y − e
and d1 > y, so that s ∈ β(µ) for all s ≤e y − 1 − e. Hence µ has no removable bead on

runner a in this case. So we may assume that λ has a least two bead movements on runner

a, so that (y; y), (y; y − e) ∈ A(λ), where y is either y or y − e. Since λ is 1-increasing, we

have zλ(y) > zλ(y − e), and therefore, by Lemma 3.13, that there exists s ∈ (y − e, y] \ β(λ) =

(y − e, y − 2] \ β(λ) such that s− e ∈ β(λ). It follows from Lemma 5.4 that di 6= y − 1 for any

i, and therefore that s ∈ β(µ) for all s ≤e y − 1− e.
Hence we are reduced to the case where y′ = y and dj = y − 1 + e for some j, for otherwise

µ has no removable bead on runner a. If qr <e y, then di < qr + e ≤e y for all i by Proposition

5.8(2a), a contradiction. So the only situation left to consider is br = qr = y, with l = 0 and

k ≥ 2. We must have d1 = y − 1 + e and therefore y − 1 − e ∈ S1 and y − 1 /∈ S1. It follows

that di ≤ y − 1 for all i > 1, and therefore that y′ < y, a contradiction. �

Corollary 5.14. Let Γ ⊆ [1, w]. Let λ be a partition of e-weight w whose abacus display has

no removable bead on runner a, and suppose that for all s ∈ Γ, the s-th bead movement of λ
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lies in runner a or a − 1. If z(λ) + ελΓ = z(µ) for some 4-increasing partition µ lying in the

same block as λ, then the abacus display of µ has no removable bead on runner a.

Proof. Note first that λ is 1-increasing by Lemma 4.6. We prove by induction on |Γ|, with

|Γ| = 0 being trivial. For |Γ| > 0, let r ∈ Γ be maximal with respect to �λ. By Lemma 5.11,

z(λ) + ελr = z(ν) for some 1-increasing partition ν lying in the same block as λ (and µ), with

z(µ) = z(ν) + ενΓ\{r}. Furthermore, by Proposition 5.8(1), the s-th bead movement of ν lies in

runner a or a− 1 for all s ∈ Γ\{r}. By Lemma 5.13 we see that the abacus display of ν has no

removable bead on runner a, and hence by induction the abacus display of µ has no removable

bead on runner a. �

6. Proof of the Main Theorem

This section is dedicated to proving the following proposition, from which the our main

theorem follows easily.

Proposition 6.1. Let B be a block of e-weight w and suppose that the abacus display of the

corresponding e-core has at least one removable bead on runner a. If Theorem 4.7 holds for B

and for all blocks of e-weight strictly less than w, then it also holds for sa(B).

Proof of Theorem 4.7 using Proposition 6.1. We induct on the e-weight w of the block B. If

w = 0, then the theorem clearly holds for B. Otherwise, assume the theorem is true for all

blocks of e-weight strictly less than w. By [F1, Lemma 3.1] (see also [ST, Lemma 2.16]), there

exists a sequence B0, B1, . . . , Bn = B of blocks of e-weight w, such that B0 is a Rouquier block

and Bi+1 = sai(Bi) for some ai, for all i ∈ [0, n− 1], and that the abacus display of the e-core

of Bi has at least one removable bead on runner ai. Since Theorem 4.7 is true for all Rouquier

blocks (see Example 4.11), it follows by Proposition 6.1 that it holds for B. �

6.1. Setup. Let B be as in the statement of Proposition 6.1. We write B = Bκ,w for some e-

core κ whose abacus has k > 0 removable beads on runner a. Let B̃ = sa(B), so that B̃ = Bκ̃,w,

where κ̃ = sa(κ); the blocks B and B̃ form a Scopes [w : k]-pair.

Let B̌ = Bκ̌,w̄ be the block of e-weight w̄ := w − k − 1 whose e-core κ̌ is obtained from κ̃ by

moving the bottom bead on runner a to the top unoccupied position on runner a−1. Similarly

let B̂ = Bκ̂,w̄ be the block of e-weight w̄ whose e-core is obtained from κ by moving the bottom

bead on runner a − 1 to top occupied position on runner a. Then B̌ = sa(B̂), and B̂ and B̌

form a Scopes [w̄ : k + 2]-pair.

The following easy lemma singles out a class of well-behaved partitions in B and B̃. From

now on, we write E and F for Ea and Fa.

Lemma 6.2. The following statements about a partition λ in B and λ̃ = sa(λ) in B̃ are

equivalent:

(1) F (λ) = 0;

(2) E(k)(λ) = λ̃;

(3) F (k)(λ̃) = λ;
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(4) E(λ̃) = 0.

Definition 6.3. A partition λ ∈ B or a partition λ̃ ∈ B̃ is called non-exceptional if it satisfies

the equivalent conditions in Lemma 6.2. Otherwise it is called exceptional.

Lemma 6.4. The rule λ 7→ λ̃ = sa(λ) gives a bijection between the non-exceptional partitions in

B and those in B̃. It restricts to a bijection between the non-exceptional 0-increasing partitions

of B and B̃, and for these partitions z(λ) = z(λ̃). The map also restricts to a bijection between

the non-exceptional hook-quotient partitions of B and B̃. Furthermore, for a 0-increasing hook-

quotient non-exceptional λ in B, we have ελi = ελ̃i for all i ∈ [1, w] and Π(λ) = Π(λ̃).

Proof. The first statement is an immediate consequence of Lemma 6.2. The statement about

non-exceptional 0-increasing partitions follows from Theorem 3.9. For the statement about

non-exceptional hook-quotient partitions, note that the e-quotient of λ̃ is obtained from that of

λ by swapping its a-th and (a− 1)-st components. When λ in B is 0-increasing, hook-quotient

and non-exceptional, then using Lemma 3.8 and Figure 7, we deduce that there does not exist

q ≡e a such that (b; q), (b′; q − 1) ∈ A(λ), and consequently, ελi = ελ̃i for all i ∈ [1, w] and

Π(λ) = Π(λ̃). �

We now turn attention to exceptional partitions and begin with the following key observation.

Lemma 6.5.

(1) Suppose that λ ∈ B is exceptional and 1-increasing. Then

(a) 〈F (λ), λ̂〉 6= 0 for a unique partition λ̂ in B̂, and F (λ̂) = 0;

(b) 〈E(k+1)(λ), λ̌〉 6= 0 for a unique partition λ̌ in B̌, and E(λ̌) = 0.

(2) Let µ be a 4-increasing partition in B. If Theorem 4.7 holds for µ, then E(k+2)(G(µ)) = 0

and F (2)(G(µ)) = 0.

Proof. When λ is exceptional, we have F (λ) 6= 0. Thus λ has at least one addable bead on

runner a− 1. Hence by Lemma 3.14(2), it has exactly one addable bead on runner a− 1, and

hence exactly k + 1 removable beads on runner a, since its e-core κ has k removable beads on

runner a. Part (1) thus follows.

Let µ be as in part (2), and suppose that λ is a partition such that dλµ(q) 6= 0. By Lemma 4.6

and the assumption that Theorem 4.7 holds for µ we know that λ is 1-increasing. Whether or

not λ is exceptional we deduce by the first part that E(k+2)(λ) = 0 and F (2)(λ) = 0. So part

(2) is proved. �

Fix λ̌ ∈ B̌ such that E(λ̌) = 0. Then λ̌ has exactly k+ 2 addable beads on runner a− 1 and

no removable bead on runner a. Let C = {c0, . . . , ck+1} ⊆ β(λ̌) be the set of addable beads of

λ̌ on runner a− 1, with c0 < · · · < ck+1. Then we have

F (k+2)(λ̌) = λ̂, F (k+1)(λ̌) =
k+1∑
j=0

qjλj and F (λ̌) =
k+1∑
j=0

qjλ̃j,
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where λ̂ ∈ B̂, λj ∈ B and λ̃j ∈ B̃ are the partitions such that

β(λ̂) = β(λ̌) ∪ {c+ 1 | c ∈ C} \ C,

β(λj) = β(λ̂) ∪ {cj} \ {cj + 1},

β(λ̃j) = β(λ̌) ∪ {ck+1−j + 1} \ {ck+1−j}.

It is easy to see that for any j ∈ [0, k + 1], λj is exceptional. In fact even though it may not

necessarily be 1-increasing, it satisfies the consequence of Lemma 6.5(1a). We say that the set

λ = {λj | j ∈ [0, k + 1]} ∪ {λ̃j | j ∈ [0, k + 1]} is an exceptional family, generated by λ̌. Each

such family has the leading exceptional partitions λ0 ∈ B and λ̃0 ∈ B̃. We have

sa(λ
0) = Ẽk(λ0) = λ̃0,

sa(λ
j) = Ẽk(λj) = λ̃k+2−j (j ∈ [1, k + 1]).

Also, for any j ∈ [0, k + 1], we have

(6.1) E(k)(λj) =

k−j∑
i=0

qi+j−kλ̃i +
k+1∑

i=k−j+2

qi+j−k−2λ̃i.

6.2. Hook-quotient exceptional families.

Lemma 6.6. Let λ be an exceptional family, generated by λ̌ ∈ B̌. The following statements

are equivalent:

(1) The (a− 1)-th and a-th components of the e-quotient of λ̌ is of the form ((x), (1y)).

(2) The (a− 1)-th and a-th components of the e-quotients of λj and λ̃j are hooks for all j.

Proof. Suppose that (1) holds. Let ξ = {b ∈ β(λ̌) | b ≡e a − 1}. Then ξ − ie /∈ β(λ̌) for all

i ∈ [1, x] while ξ − γe ∈ β(λ̌) for all γ > x. Since λ̌ has no removable bead on runner a and

k + 2 addable beads on runner a − 1, the latter addable beads are at ξ − (x + y + k + 1)e,

ξ− (x+ i)e (i ∈ [1, k]) and ξ. Thus the (a− 1)-th and a-th components of the e-quotient of λj

is 
(∅, (x+ 1, 1y+k)), if j = 0;

((x+ k + 1, 1y), ∅), if j = k + 1;

((j, 1y), (x+ 1, 1k−j)), if j ∈ [1, k].

Similarly, the (a− 1)-th and a-th components of the e-quotient of λ̃j is
(∅, (x+ k + 1, 1y)), if j = 0;

((x+ 1, 1y+k), ∅), if j = k + 1;

((x+ 1, 1j−1), (k + 1− j, 1y)), if j ∈ [1, k].

See Example 6.8 below.

Conversely suppose that (2) holds. First note that the partition λ̃0 ∈ B is obtained from λ̌

by moving the bottom of the k + 2 (≥ 3) addable beads on runner a− 1 from its position b to
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b + 1. It follows that wtλ̃0(b + 1) ≥ 2. Since the a-th component of the e-quotient of λ̃0 is a

hook, we deduce that the bottom bead on runner a of λ̃0 is at b+ 1, and that the a-component

of the e-quotient of λ̌ has the form (1y). Next, we consider λ̃k+1 ∈ B, obtained from λ̌ by

moving the top of the k + 2 (≥ 3) addable beads on runner a− 1 from its position c to c + 1.

Since the (a− 1)-th component of the e-quotient of λ̃k+1 is a hook, we deduce that wtλ̌(c) = 0

and that the (a− 1)-th component of the e-quotient of λ̌ has the form (x). �

Definition 6.7. An exceptional family in which every member is a hook-quotient partition is

called a hook-quotient exceptional family.

By Lemma 6.6, an exceptional family generated by λ̌ ∈ B̌ is a hook-quotient exceptional

family if and only if λ̌(i) is a hook for all i ∈ [0, e), and λ̌(a−1) = (x) and λ̌(a) = (1y) for some

x, y ∈ Z≥0, where (λ̌(0), . . . , λ̌(e−1)) is the e-quotient of λ̌.

Example 6.8. A hook-quotient exceptional family with k = 3 is depicted in Figure 11. We

show the abacus configuration of runners a−1 and a of all its members, together with the bead

movements in those runners.

Figure 11. A hook-quotient exceptional family.
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Lemma 6.9. Let λ̃ ∈ B̃ be an exceptional partition, and suppose that λ̃ is 1-increasing. Then

λ̃ belongs to a hook-quotient exceptional family λ.

Proof. By Lemma 3.14(1,3), λ̃ is a hook-quotient partition and has exactly one removable bead

on runner a (and k + 1 addable beads on runner a − 1. In addition, denote the partition

obtained from λ̃ by moving the unique removable bead on runner a to its preceding unoccupied

position as λ̌, the (a−1)-th and a-th components of the e-quotient of λ̌ has the form ((x), (1y)).

Clearly, λ̌ is hook-quotient, and E(λ̌) = 0. Thus it follows from Lemma 6.6 that λ̌ generates a

hook-quotient exceptional family λ and that λ̃ belongs to λ. �
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Definition 6.10. Define y = min{x ≡e a | x /∈ β(κ̃)} (where κ̃ is the e-core of B̃). Define the

subset R of Z as follows:

R = {y + γe | γ ∈ [0, k]} ∪ {y− 1 + γe | γ ∈ [0, k]}.

The subset R is illustrated in Figure 11 as the region in the abacus enclosed by the dash-

outlined rectangular boxes.

We record some straightforward properties of hook-quotient exceptional families that will be

useful to us.

Lemma 6.11. Let λ be a hook-quotient exceptional family, generated by λ̌.

(1) For λ̃j (j ∈ [0, k + 1]): Let x ∈ R with x ≡e a, say x = y + γe, where γ ∈ [0, k].

(a) λ̃j has a bead movement starting at x or x− 1, but not both. More precisely, it has

a bead movement at x if γ < k + 1 − j, and at x− 1 if γ ≥ k + 1 − j. This is its

ĩλ,γ-th bead movement, where ĩλ,γ is dependent of λ and γ but independent of j.

Furthermore,

ĩλ,0 ≺λ̃j ĩλ,1 ≺λ̃j · · · ≺λ̃j ĩλ,k−j,

ĩλ,k ≺λ̃j ĩλ,k−1 ≺λ̃j · · · ≺λ̃j ĩλ,k+1−j.

(b) If γ 6= k, then λ̃j has a bead at x or x − 1, but not both. More precisely, λ̃j has a

bead at x− 1 if γ 6= k − j, and at x if γ = k − j.
(c) If γ = k, then λ̃j has no bead at x if j > 0 and no bead at x− 1 if j = 0.

(2) For λ̌:

(a) We have x /∈ β(λ̌) for all x ≥e y and |{x <e y | x /∈ β(λ̌)}| = 1.

(b) We have x ∈ β(λ̌) for all x <e y− 1 + ke and |{x ≥e y− 1 + ke | x ∈ β(λ̌)}| = 1.

(c) λ̌ has no bead movements starting at any x ∈ R.

There are of course statements analogous to Lemma 6.11 about λj ∈ B and λ̂ ∈ B̂ as well. In

fact, the iλ,γ for λj (in the analogue of Lemma 6.11(1a)) equals ĩλ,γ. This leads to the following

definition:

Definition 6.12. Let λ be a hook-quotient exceptional family. Define the subsets Int(λ) and

Ext(λ) of [1, w] as follows:

Int(λ) = {i0, i1, . . . , ik},
Ext(λ) = [1, w] \ Int(λ),

where iγ = ĩλ,γ of Lemma 6.11(1a) for all γ ∈ [0, k].

We call Int(λ) and Ext(λ) the sets of internal and external coordinates of the family λ

respectively.

Remark 6.13. Whenever we write Int(λ) = {i0, . . . , ik}, we always assume that i0 < i1 <

· · · < ik in the natural order of integers, so that the iγ-th bead movement of every λ̃j and every

λj starts at either y + γe or y− 1 + γe.
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Let λ be a hook-quotient exceptional family with Int(λ) = {i0, . . . , ik}. Define ηλ0 , η
λ
1 , . . . , η

λ
k+1 ∈

Zw as follows:

ηλ0 = −ei0 , ηλ1 = ei0 − ei1 , . . . , ηλk = eik−1
− eik , ηλk+1 = eik .

The sum of these k + 2 vectors is zero, and any k + 1 of them form a basis of the Z-span of

{eij | j ∈ [0, k]}. For any subset J of [0, k + 1], write ηλJ for
∑

j∈J η
λ
j . Then ηλJ = ηλJ ′ for two

distinct subsets J and J ′ of [0, k + 1] if and only if {J, J ′} = {∅, [0, k + 1]}.
The following lemma is straightforward, and can be easily verified.

Lemma 6.14. Let λ be a hook-quotient exceptional family, with Int(λ) = {i0, . . . , ik}.
(1) We have

z(λ0) = z(λ̃0),

z(λj) = z(λ0)− eij−1
= z(λ0) + ηλ[0,j) (j ∈ [1, k + 1]),

z(λ̃j) = z(λ̃0)− eik+1−j = z(λ̃0)− ηλ(k+1−j,k+1] (j ∈ [1, k + 1]).

In particular, z(λj) = z(λ̃k+2−j) for all j ∈ [1, k + 1].

(2) For any x ∈ Ext(λ), ελx is constant for all λ ∈ λ; denote the common value by ελx , and

further write ελX for
∑

x∈X ε
λ
x whenever X ⊆ Ext(λ).

(3) We have

ελ
j

iγ =

{
−ηλγ if γ < j,

ηλγ+1 if γ ≥ j,
and ελ̃

j

iγ =

{
−ηλγ if γ < k + 1− j,
ηλγ+1 if γ ≥ k + 1− j.

In particular, Π0(λj) = Π0(λ̃k+1−j).

(4) Let z ∈ Zw. Then z ∈ Π0(λj) (= Π0(λ̃k+1−j) by part (3)) if and only if

z = −ηλI<j + ηλI>j + ελX

for some I<j ⊆ [0, j), I>j ⊆ (j, k + 1] and X ⊆ Ext(λ).

(5) Let

Π(λ) =
{
z(λ0) + ηλJ + ελX | J ⊆ [0, k + 1], X ⊆ Ext(λ)

}
.

Then the cardinality of Π(λ) is 2w−k−1
(
2k+2 − 1

)
and

k+1⋃
j=0

Π(λj) = Π(λ) =
k+1⋃
j=0

Π(λ̃j).

Definition 6.15. Let λ be a hook-quotient exceptional family. Denote by ξλ : [1, w̄]→ Z the

unique order-preserving injection whose image is Ext(λ), and write ζλ : Ext(λ)→ [1, w̄] for its

left inverse.

In addition, let πλ : Zw → Zw̄ be the Z-linear map defined by

πλ(er) =

{
eζλ(r), if r ∈ Ext(λ);

0, otherwise.
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Thus πλ(a1, . . . , aw) = (aξλ(1), . . . , aξλ(w̄)).

Clearly, the following statements, about two hook-quotient exceptional families λ and σ, are

equivalent:

(i) Int(λ) = Int(σ).

(ii) Ext(λ) = Ext(σ).

(iii) ξλ = ξσ.

(iv) πλ = πσ.

Lemma 6.16. Let λ be a hook-quotient exceptional family, and let j ∈ [0, k + 1].

(1) If i ∈ Int(λ) and x ∈ Ext(λ), then i 6�λ̃j x.

(2) We have πλ(z(λ̃j)) = z(λ̌); in particular, λ̌ is at least as increasing as λ̃j.

(3) We have

πλ(ελ̃
j

r ) =

{
ελ̌ζλ(r), if r ∈ Ext(λ),

0, otherwise;

(4) For all s, t ∈ Ext(λ), we have ζλ(s) �λ̌ ζλ(t) if and only if s �λ̃j t.

Proof. Part (1) is clear. The other assertions can be easily checked when j 6= 0, k+ 1, as in this

case A(λ̌) = {(b; q) ∈ A(λ̃j) | q /∈ R}. The only non-trivial part is the image under πλ of ελ̃
j

r

when ελ̃
j

r = er − es with r ∈ Ext(λ) and s ∈ Int(λ). In this instance, the r-th bead movement

of λ̃j starts at either y − e or y + (k + 1)e − 1, and the s-th bead movement of λ̃j is the final

bead movement of the bottom bead on runner a or a− 1, starting at y or y− 1 + ke. In either

case, this r-th bead movement becomes the final bead movement of the bottom bead on that

runner when the unique removable bead of λ̃j on runner a is moved to its preceding empty

position on runner a − 1 to obtain λ̌. Thus πλ(ελ̃
j

r ) = er = ελ̌ζλ(r). Subsequently, we can easily

obtain the assertions for j = 0, k + 1 by comparing them to those for, say, j = 1. �

The next lemma shows that, under certain conditions, the change of bead movements when

getting from a partition in B̌ that generates a hook-quotient exceptional family to a partition

one modified basis vector away, do not ‘cross’ the region R.

Lemma 6.17. Let λ̌, µ̌ ∈ B̌, and r ∈ [1, w̄]. Suppose that:

• λ̌ is a hook-quotient partition,

• z(µ̌) = z(λ̌) + ελ̌r ,

• λ̌ generates a hook-quotient exceptional family λ,

• z(λ̃c) + ελξλ(r) is 1-increasing for some c ∈ [0, k + 1].

For each s ∈ [1, w̄], let (bs; qs) (resp. (b′s; q
′
s)) be the s-th bead movement of λ̌ (resp. µ̌). Then

(
⋃w̄
s=1[qs, q

′
s]) ∩R = ∅.

Proof. Let z(λ̃c) + ελ̃
c

ξλ(r) = (m1, . . . ,mw). Then

z(µ̌) = z(λ̌) + ελ̌r = πλ(z(λ̃c) + ελ̃
c

ξλ(r)) = πλ(m1, . . . ,mw) = (mξλ(1), . . . ,mξλ(w̄))

by Lemma 6.16(2,3), so that zµ̌(q′i) = mξλ(i).
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Let X :=
⋃w̄
s=1[qs, q

′
s]. Assume for the sake of contradiction that there exists x ∈ X ∩ R,

say x ∈ [qt, q
′
t] ∩ R. Since qt /∈ R by Lemma 6.11(2c), we have qt < x ≤ q′t, so that t �λ̌ r by

Proposition 5.8(1), and hence ξλ(t) �λ̃c ξλ(r) by Lemma 6.16(4). Also, qt 6≡e a− 1 by Lemma

6.11(2b). Thus, by replacing x with x− 1 if necessary, we may assume that x ≡e a− 1.

By Lemmas 6.11(2(a,b)) and 3.13 and Proposition 5.8(2b), we have

zλ̌(x) = zλ̌(qt) + 1x=y−1+ke/∈β(λ̌),

zλ̌(x+ 1) = zλ̌(x) + 1x−e+1=y−e∈β(λ̌).

Let λ̃c be obtained by moving the bead of λ̌ at cλ to cλ+1, so that β(λ̃c) = β(λ̌)∪{cλ+1}\{cλ}.
Thus,

zλ̃c(x) = zλ̌(x) + δx,cλ − δx,cλ+e

= zλ̌(qt) + δx,cλ − δx,cλ+e + 1x=y−1+ke/∈β(λ̌)

= zλ̃c(qt) + δx,cλ − δx,cλ+e + 1x=y−1+ke/∈β(λ̌).

Similarly, zλ̃c(x+ 1) = zλ̃c(qt) + 1x−e+1=y−e∈β(λ̌) + 1x=y−1+ke/∈β(λ̌). By Lemma 6.11(1a), λ̃c has a

bead movement starting at x or x + 1, but not both; let this bead movement be the j-th one,

starting at x̄. Then j ∈ Int(λ), and j > ξλ(t) since the ξλ(t)-th bead movement of λ̃c starts at

qt which is less than x. Thus, from the definition mj, we get

mj ≤ zλ̃c(x̄) + δj,ξλ(r) = zλ̃c(x̄)

= zλ̃c(qt) + δx̄,cλ − δx̄,cλ+e + 1x=y−1+ke/∈β(λ̌) + 1x̄−e=y−e∈β(λ̌)

≤ zλ̃c(qt) + 1x=y−1+ke/∈β(λ̌) + 1x̄−e=y−e∈β(λ̌)

= mξλ(t) − δξλ(t),ξλ(r) + 1x=y−1+ke/∈β(λ̌) + 1x̄−e=y−e∈β(λ̌)

= mξλ(t) − δtr + 1x=y−1+ke/∈β(λ̌) + 1x̄−e=y−e∈β(λ̌),

where the third line follows since x̄ 6= cλ by Lemma 6.11(1a), while the fourth line follows

since ξλ(t) �λ̃c ξλ(r) as noted earlier. Since (m1, . . . ,mw) is 1-increasing (and j < ξλ(t)),

this implies that t 6= r, and one of the following two mutually exclusive events must occur:

x = y−1+ke /∈ β(λ̌) or x̄−e = y−e ∈ β(λ̌). From this, we also conclude that y−1+γe /∈ X∩R
for all γ ∈ [1, k).

Let t− be maximal with respect to �λ̌ subject to t �λ̌ t− �λ̌ r. Then qt − qt− ∈ {±e}. By

Proposition 5.8(3), q′t− − qt− ≥ q′t − qt, and so qt < x ≤ q′t implies that

qt− = qt − (qt − qt−) < x− (qt − qt−) ≤ q′t − (qt − qt−) ≤ q′t− .

Thus x − (qt − qt−) ∈ (qt− , q
′
t− ] ⊆ X. Since y − 1 + γe /∈ X ∩ R for all γ ∈ [1, k), this shows

that qt− = qt + e if x = y− 1 + ke, and qt− = qt − e if x = y− 1.

Suppose first that x = y − 1 + ke /∈ β(λ̌) (and hence qt− = qt + e). By Lemma 6.11(2b), λ̌

has a bead movement, say its u-th one, starting at x+ e, which is the final bead movement of

the bottom bead on runner a − 1. Since qr ≡e qt 6≡e a − 1 ≡e x + e = qu, we have u 6�λ̌ r,
and so q′u = qu by Proposition 5.8(1). Since qu = x + e = x − (qt − qt−) ∈ (qt− , q

′
t− ], we also
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have qu = q′t− by Proposition 5.8(5b). Thus mξλ(u) = zµ̌(q′u) = zµ̌(qu) = zµ̌(q′t−) = mξλ(t−),

contradicting (m1, . . . ,mw) being 1-increasing.

Now suppose that x̄−e = y−e ∈ β(λ̌). Then x = y−1 and hence qt− = qt−e as noted earlier.

By Lemma 6.11(2a), λ̌ has a bead movement (y− e; y− e), which is the only bead movement of

the bottom bead on runner a. If this is its v-th bead movement, then v is minimal with respect

to �λ̌. If v �λ̌ r, then r = v, and so qt− = qt + e since t �λ̌ t− �λ̌ v, a contradiction. Thus

v 6�λ̌ r and so q′v = qv by Proposition 5.8(1). Since y−e−1 = x−e = x− (qt− qt−) ∈ (qt− , q
′
t− ],

and q′t− 6= y− e− 1 by Proposition 5.8 (as y− e− 1 ∈ β(λ̌) by Lemma 6.11(2b) and qr ≤e qt−),

we have qv = y − e = x − e + 1 ∈ (qt− , q
′
t− ]. Thus qv = q′t− by Proposition 5.8(5b), and hence

mξλ(v) = zµ̌(q′v) = zµ̌(qv) = zµ̌(q′t−) = mξλ(t−), contradicting (m1, . . . ,mw) being 1-increasing.

This completes the proof. �

We also have some sort of a converse to Lemma 6.17.

Lemma 6.18. Let λ̌, µ̌ ∈ B̌, and r ∈ [1, w̄]. Suppose that:

• λ̌ is a hook-quotient partition,

• z(µ̌) = z(λ̌) + ελ̌r ,

• µ̌ generates a hook-quotient exceptional family µ,

• z(µ̃c) for some c ∈ [0, k + 1] is 1-increasing.

For each s ∈ [1, w̄], let (bs; qs) (resp. (b′s; q
′
s)) be the s-th bead movement of λ̌ (resp. µ̌). Then

(
⋃w̄
s=1[qs, q

′
s]) ∩R = ∅.

Proof. Let z(µ̃c) = (m1, . . . ,mw). Then z(µ̌) = (mξµ(1), . . . ,mξµ(w̄)) by Lemma 6.16(2), so that

zµ̌(q′s) = mξµ(s) for all s ∈ [1, w̄].

Let T = {s ∈ [1, w̄] | [qs, q
′
s] ∩ R 6= ∅}. Suppose for the sake of contradiction that T 6= ∅.

Take t ∈ T , and let xt := max([qt, q
′
t] ∩R). Since q′t /∈ R by Lemma 6.11(2c), we have xt ≡e a

and qt ≤ xt < q′t, so that t �λ̌ r by Proposition 5.8(1). Also, by Lemma 6.11(2a), q′t 6≡e a.

By Lemma 6.11(1a), µ̃c has a bead movement starting at x̄t, where x̄t ∈ {xt, xt− 1}, and let

this bead movement be its jt-th one. Then jt < ξµ(t), since x̄t < q′t. Let cµ ∈ β(µ̌) be such

that β(µ̃c) = β(µ̌) ∪ {cµ + 1} \ {cµ}. By Lemma 6.11(1(a,b)), we see that x̄t 6= cµ. Thus

mjt = zµ̃c(x̄t) = zµ̌(x̄t)− δx̄t,cµ+e

= zµ̌(xt)− 1x̄t+1−e=y−e∈β(µ̌) − δx̄t,cµ+e

= zµ̌(q′t)− (

q′t∑
a=xt+1

Jµ̌(a))− 1x̄t+1−e=y−e∈β(µ̌) − δx̄t,cµ+e

= mξµ(t) − (

q′t∑
a=xt+1

Jµ̌(a))− 1x̄t+1−e=y−e∈β(µ̌) − δx̄t,cµ+e

where the second line follows from Lemma 6.11(2a), and

Jµ̌(a) = zµ̌(a)− zµ̌(a− 1) = 1a/∈β(µ̌), a−e∈β(µ̌) − 1a∈β(µ̌), a−e/∈β(µ̌).
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We claim that
∑q′t

a=xt+1 Jµ̌(a) = |Nt| − 1, where

Nt = {s �λ̌ t | qs − qt ∈ {±e}, q′s + (qt − qs) ∈ (xt, q
′
t]}.

By Proposition 5.8(2b), we see that Jσ̌(a) = 0 for all a ∈ (xt, q
′
t), where β(σ̌) = β(λ̌)∪{gr}\{br}

and gr = max{g <e qr | g /∈ β(λ̌)}, so that Jµ̌(a) 6= 0 for a ∈ (xt, q
′
t] only if a ∈ {q′s−e, q′s, q′s+e}

for some s �λ̌ r. Using Proposition 5.8(2a), we deduce that

{s �λ̌ r | {q′s − e, q′s, q′s + e} ∩ (xt, q
′
t] 6= ∅} ⊆ {s �λ̌ r | qs ∈ {qt − e, qt, qt + e}} = {t−, t, t+},

where qt− = qt−e and qt+ = qt+e (if t− or t+ does not exist, then treat any expression involving

it as vacuous), and so Jµ̌(a) 6= 0 for a ∈ (xt, q
′
t] only if a ∈ {q′t− + e, q′t, q

′
t− e, q′t+ − e}. We have

the following three cases:

(i) t+ exists and t �λ̌ t+;

(ii) t− exists and t �λ̌ t−;

(iii) t± �λ̌ t.
We shall only verify the claim when (i) holds, the others being similar. In this case, q′t, q

′
t− ∈

β(µ̌), and q′t − e ∈ β(µ̌) if and only if (t− exists and) q′t − e = q′t− if and only if (t− exists

and) q′t− + e ∈ β(µ̌). By Proposition 5.8(2a,3), q′t ∈ (qt, qt + e] and q′t − qt ≤ q′t+ − qt+ . Thus

q′t − e ≤ qt ≤ xt, and q′t+ − e ≥ q′t, so that q′t − e /∈ (xt, q
′
t] while q′t+ − e ∈ (xt, q

′
t] if and only if

q′t+ − e = q′t. Consequently,

Jµ̌(q′t− + e) =

{
1, if q′t 6= q′t− + e;

0, otherwise,
and Jµ̌(q′t) =

{
0, if q′t− = q′t − e;
−1, otherwise.

Therefore
∑q′t

a=xt+1 J(a, µ̌) = 1q′t−
+e∈(xt,q′t]

− 1, and the claim is verified in this case.

Assuming the claim, we have

(6.2) mξλ(t) −mjt = |Nt| − 1 + 1x̄t+1−e=y−e∈β(µ̌) + δx̄t,cµ+e > 0,

since (m1, . . . ,mw) is 1-increasing (and jt < ξλ(t)). Note that 1x̄t+1−e=y−e∈β(µ̌) + δx̄t,cµ+e ≤ 1

(as x̄t + 1 = y implies that x̄t 6= cµ + e); thus Nt 6= ∅.
Now, we assume that t is maximal with respect to�λ in T , and let s ∈ Nt. Then q′s+(qt−qs) >

xt, so that qs ≤ xt + (qs − qt) < q′s. Thus if xt + (qs − qt) ∈ R, then s ∈ T , contradicting the

maximality of t. Hence xt+ (qs− qt) /∈ R. This implies, since qs− qt ∈ {±e}, that either xt = y

and xt + (qs − qt) = y− e, or xt = y + ke and xt + (qs − qt) = y + (k + 1)e.

In the former case, we have y ∈ [qt, q
′
t) and y − e ∈ [qs, q

′
s). Since y /∈ β(µ̌) while y − e or

y − 2e ∈ β(µ̌) by Lemma 6.11(2a), this forces y = qt and y − e = qs by Proposition 5.8(2b).

But |{x ∈ β(λ̌) | x ≥e y − e}| ≤ 1 since λ̌ is a hook-quotient partition (and x /∈ β(κ̌) for all

x ≥e y− e). Thus the two bead movements of λ̌ starting at qs = y− e and qt = y both belong

to the bottom bead on runner a (i.e. bs = bt), so that t �λ̌ s, a contradiction.

In the latter case, we have y + ke ∈ [qt, q
′
t) and y + (k + 1)e = [qs, q

′
s). Similar arguments as

before but applied to runner a− 1 will show that qt ≥ y + ke− 1 and qt 6= y + ke− 1, forcing

qt = y + ke and qs = y + (k + 1)e. Thus, by considering the e-core κ̌ of λ̌, the bottom bead of
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λ̌ on runner a must have bead movements starting at y, y + e, . . . , y + (k + 1)e, which µ̌ does

not have by Lemma 6.11(2a). This shows that this bead is at br, and qr ≤e y, by Proposition

5.8(1). Now, Nt = {s}, and so (6.2) forces cµ = x̄t − e = y + (k − 1)e− 1. Let t1 be such that

qt1 = y+(k−1)e; then t �λ̌ t1 �λ̌ r. Since qt1 ∈ [qt1 , q
′
t1

], we have t1 ∈ T , and x̄t1 = y+(k−1)e

since cµ = y + (k − 1)e. Replacing t by t1 in (6.2), we get, since Nt1 = {t}, mξµ(t1) −mjt1
= 0,

contradicting µ̃c is 1-increasing. �

Under the hypotheses of Lemmas 6.17 or 6.18, we have that one of the partitions generates

a hook-quotient exceptional family if and only if the other one does, with the same external

coordinates:

Corollary 6.19. Let λ̌, µ̌ ∈ B̌ and r ∈ [1, w̄]. Suppose that one of the hypotheses in Lemmas

6.17 and 6.18 hold. Then both λ̌ and µ̌ generate exceptional families, denoted λ and µ, with

Ext(λ) = Ext(µ). Furthermore, z(µ̃j) = z(λ̃j) + ελξλ(r) for all j ∈ [0, k + 1].

Proof. By Lemmas 6.17 and 6.18, we have

(6.3)

(
w̄⋃
s=1

[qs, q
′
s]

)
∩R = ∅

where (bs; qs) (resp. (b′s; q
′
s)) is the s-th bead movement of λ̌ (resp. µ̌). As the hypotheses of

Lemmas 6.17 and 6.18 ensure µ̌ is 1-increasing, it follows that if one of λ̌ and µ̌ generate a

hook-quotient exceptional family, so will the other, with Ext(λ) = Ext(µ), by Lemmas 6.6 and

6.11(2).

For the last assertion, it suffices to show that z(µ̃0) = z(λ̃0) + ελξλ(r), since if this holds, then

z(µ̃j) = z(µ̃0)− eik+1−j = z(λ̃0)− eik+1−j + ελξλ(r) = z(λ̃j) + ελξλ(r)

for all j ∈ [1, k + 1] by Lemma 6.14(1), where Int(λ) = {i0, . . . , ik} = Int(µ).

Let (b̃i; q̃i) (resp. (b̃′i; q̃
′
i)) be the i-th bead movement of λ̃0 (resp. µ̃0). We need to show that

(6.4) zµ̃0(q̃′i) = zλ̃0(q̃i) + δi,ξλ(r) − δi,(ξλ(r))− ,

where (ξλ(r))− = max�λ̃0{n ∈ [1, w] | n ≺λ̃0 ξλ(r)}.
By Lemma 6.16,

zµ̃0(q̃′ξµ(s)) = zµ̌(q′s) = zλ̌(qs) + δsr − δs,r− = zλ̃0(q̃ξλ(s)) + δξλ(s),ξλ(r) − δξλ(s),ξλ(r−)

for all s ∈ [1, w̄], where r− = max�λ̌{t ∈ [1, w̄] | t ≺λ̌ r}. Thus, (6.4) holds for all i ∈ Ext(λ),

except possibly when i = ξλ(r−) 6= (ξλ(r))−. But as ξλ(r−) 6= (ξλ(r))− only when r− is

undefined and (ξλ(r))− ∈ Int(λ), (6.4) indeed holds for all i ∈ Ext(λ).

It remains to consider when i = iγ ∈ Int(λ) = Int(µ). Let qγ = q̃iγ . Then qγ = q̃′iγ = y + γe

by Lemma 6.11(1a). We have

zµ̃0(qγ) = zµ̌(qγ) = zλ̌(qγ)− 1gr∈(qγ−e, qγ ] + 1br∈(qγ−e, qγ ] + nγ

= zλ̃0(qγ)− 1gr∈(qγ−e, qγ ] + 1br∈(qγ−e, qγ ] + nγ,
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where gr = max{x <e qr | x /∈ β(λ̌)}, nγ = |N−γ | − |Nγ| and

Nγ = {s �λ̌ r | q′s ∈ (qγ − e, qγ]},
N−γ = {s �λ̌ r | q′s − e ∈ (qγ − e, qγ]}.

We note the following:

(i) s ∈ N−γ if and only if s �λ̌ r and qs ∈ (qγ, qγ + e− 2]: this is clear by (6.3) for γ < k,

and follows from the fact that q′s ≤ y+ (k+ 1)e− 1 by (Lemma 6.11(2) and Proposition

5.8(5)) for γ = k.

(ii) s ∈ Nγ if and only if s �λ̌ r and qs ∈ (qγ − e− δγ,0, qγ): this is clear by (6.3) for γ > 0,

and follows from the fact that qs ≥ y − e (by Proposition 5.8(5) and Lemma 6.11(2))

when γ = 0.

(iii) |N j
γ |, |N j−

γ | ≤ 1: this follows from (i) and (ii), since the difference of two distinct qs’s is

a non-zero multiple of e.

Since s �λ̌ r if and only if gr <e qs ≤e br, we thus have

nγ =


1, if |Nγ| = 0, |N−γ | = 1

−1, if |Nγ| = 1, |N−γ | = 0

0, otherwise

= 1gr∈(qγ−e, qγ−2] − 1br∈(qγ−e−δγ,0, qγ).

Hence,

zµ̃0(qγ) = zλ̃0(qγ)− 1gr∈(qγ−e, qγ ] + 1br∈(qγ−e, qγ ] + nγ

= zλ̃0(qγ)− 1γ=k,gr=y+ke − 1γ=0,br=y−e

by Lemma 6.11(2). But iγ = (ξλ(r))− if and only if either (γ = 0 and br = y − e) or (γ = k

and gr = y− 1 + ke). Consequently, zµ̃0(qγ) = zλ̃0(qγ)− δiγ ,(ξλ(r))− , as desired. �

The next proposition allows us to travel along the ‘external’ modified basis vectors first before

the ‘internal’ ones to get to a partition lying in the parallelotope of a member of an exceptional

family.

Proposition 6.20. Let µ̃ ∈ B̃ be a 4-increasing partition, and let λ̃ ∈ B̃ be an exceptional

hook-quotient partition. Suppose that z(µ̃) = z(λ̃) + ελ̃Γ ∈ Π(λ̃) for some Γ ⊆ [1, w].

(1) Then λ̃ belongs to a hook-quotient exceptional family λ, say λ̃ = λ̃j.

(2) There exists a partition σ̌ ∈ B̌ such that πλ(z(µ̃)) = z(σ̌).

(3) The partition σ̌ generates a hook-quotient exceptional family σ, which satisfies

• Ext(σ) = Ext(λ);

• z(µ̃) = z(σ̃j) + εσ̃
j

I where I = Γ ∩ Int(λ);

• z(σ̌) = z(λ̌) + ελ̌ζλ(X) where X = Γ ∩ Ext(λ).

In particular, dλ̃j(µ̃) = dσ̃j(µ̃) + dλ̌(σ̌).

Proof. By Lemma 4.6, λ̃ is 1-increasing. Thus λ̃ belongs to a hook-quotient exceptional family

λ by Lemma 6.9. This proves part (1).
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For part (2) and (3) we argue by induction on n = |X| (where X = Γ ∩ Ext(λ)). This is

clear for n = 0, with σ = λ. For n > 0, choose r ∈ X maximal with respect to �λ̃j . Then, r is

maximal in Γ with respect to �λ̃j by Lemma 6.16(1). Thus, by Lemma 5.11, z(λ̃j) + ελ̃
j

r = z(ν̃)

for some 1-increasing partition ν̃ in B̃, and z(µ̃) = z(ν̃) + εν̃Γ\{r} ∈ Π(ν̃). By Theorem 3.9, there

exists a unique ν̌ ∈ B̌ such that z(ν̌) = πλ(z(ν̃)). Then,

z(ν̌) = πλ(z(ν̃)) = πλ(z(λ̃j) + ελ̃
j

r ) = z(λ̌) + ελ̌ζλ(r)

by Lemma 6.16(2,3). Consequently, by Lemma 6.17, ν̌ generates an exceptional family ν with

Ext(ν) = Ext(λ) and ν̃ = ν̃j. By induction, there exists a hook-quotient exceptional family σ

with Ext(σ) = Ext(ν) = Ext(λ) with z(σ̌) = πν(z(µ̃)) = πλ(z(µ̃)), satisfying

z(µ̃) = z(σ̃j) + εσ̃
j

I′ ,

z(σ̌) = z(ν̌) + εν̌ζν(X′),

where

I ′ = (Γ \ {r}) ∩ Int(ν) = Γ ∩ Int(λ) = I,

X ′ = (Γ \ {r}) ∩ Ext(ν) = (Γ ∩ Ext(λ)) \ {r} = X \ {r}.

Our choice of r ensures that for any x ∈ X ′, we have x 6�λ̃j r so that ζλ(x) 6�λ̌ ζλ(r) by Lemma

6.16(4), and hence, εν̌ζν(x) = ελ̌ζν(x) = ελ̌ζλ(x) by Proposition 5.8(1). Thus

z(σ̌) = z(ν̌) + εν̌ζν(X′) = (z(λ̌) + ελ̌ζλ(r)) + ελ̌ζλ(X′) = z(λ̌) + ελ̌ζλ(X).

�

We have a converse to Proposition 6.20.

Proposition 6.21. Let σ be a hook-quotient exceptional family, λ̌ ∈ B̌ be a hook-quotient

partition, µ̃ ∈ B̃ be 4-increasing. Suppose that

z(µ̃) = z(σ̃j) + εσ̃
j

I ,

z(σ̌) = z(λ̌) + ελ̌X

for some j, I ⊆ Int(λ) and X ⊆ [1, w̄]. Then λ̌ generates a hook-quotient exceptional family λ

with Ext(λ) = Ext(σ), and

z(µ̃) = z(λ̃j) + ελ̃
j

I + ελξλ(X).

In particular, dλ̃j(µ̃) = dσ̃j(µ̃) + dλ̌(σ̌).

Proof. We note first that z(σ̌) = πσ(z(σ̃j)) = πσ(z(µ̃)) by Lemma 6.16(2,3). Hence σ̌ is 4-

increasing.

We prove by induction on n = |X|. This is clear for n = 0. For n > 0, choose r ∈ X

maximal with respect to �λ̌. By Lemma 5.11, since σ̌ is 4-increasing, we have z(λ̌) + ελ̌r = z(ν̌)
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for some 1-increasing partition ν̌ in B̌, and z(σ̌) = z(ν̌) + εν̌X\{r}. By induction, ν̌ generates a

hook-quotient exceptional family ν with Ext(ν) = Ext(σ), and

z(µ̃) = z(ν̃j) + εν̃
j

I + ενξν(X\{r}).

Thus ν̃j is 1-increasing by Lemma 4.6, so that by Lemma 6.18, λ̌ generates a hook-quotient

exceptional family λ with Ext(λ) = Ext(ν) = Ext(σ), and z(λ̃j) + ελξλ(r) = z(ν̃j). Our choice of

r ensures that, for any x ∈ X \{r}, we have x 6�λ̌ r, so that ξλ(x) 6�λ̃j ξλ(r) by Lemma 6.16(4),

and hence ελξλ(x) = ενξλ(x) = ενξν(x) by Proposition 5.8(1). In addition, since Int(λ) = Int(ν), we

have ελ̃
j

i = εν̃
j

i for all i ∈ Int(λ). Thus,

z(µ̃) = z(ν̃j) + εν̃
j

I + ενξν(X\{r})

= (z(λ̃j) + ελξλ(r)) + ελ̃
j

I + ελξλ(X\{r})

= z(λ̃j) + ελ̃
j

I + ελξλ(X).

�

Next, we study the following question: when does an exceptional partition lie in the ‘internal’

parallelotope of a member of an hook-quotient exceptional family?

Lemma 6.22. Let λ be a hook-quotient exceptional family with Int(λ) = {i0, i1, . . . , ik}. Sup-

pose that z(µ̃) = z(λ̃j) + ελ̃
j

iγ for some 1-increasing partition µ̃ ∈ B̃, 1-increasing λ̃j ∈ λ and

γ ∈ [0, k]. The following statements are equivalent:

(1) j ≥ 1 and γ = k + 1− j.
(2) j ≥ 1 and µ̃ = λ̃j−1.

(3) µ̃ is exceptional.

Proof. Since z(λ̃j−1) − z(λ̃j) = eik+1−j − eik+2−j = ηλk+2−j = ελ̃
j

ik+1−j
(where eik+2−j = 0 when

j = 1) by Lemma 6.14(1,3), we see that (1) and (2) are equivalent. Trivially, (2) implies

(3). So suppose that (3) holds. Then µ̃ belongs to a hook-quotient exceptional family µ by

Lemma 6.9. For each i ∈ [1, w], let (bi; qi) (resp. (b′i; q
′
i)) be the i-th bead movement of λ̃j

(resp. µ̃). Then β(µ̃) = Bk,l
qr (β(σ̃)) where k = br−qr

e
, l = qr−gr

e
, β(σ̃) = β(λ̃j) ∪ {gr} \ {br}

and gr = max{x <e qr | x /∈ β(λ̃j)} by Proposition 5.8. By Lemma 6.11(1a), we have

qiγ = y + γe− 1γ≥k+1−j for all γ ∈ [0, k].

Suppose first that γ ≤ k − j. Then qiγ = y + γe ≡e a. If γ ≥ 1, then qs ≥e qiγ , and hence

q′s > qr ≥e qiγ , for all s �λ̃j iγ, so that q′r /∈ {y + γe, y− 1 + γe} for all r ∈ [1, w], contradicting

Lemma 6.11(1a) for µ̃. On the other hand, if γ = 0, so that qi0 = y, then since (bi0 ; qi0) is

the final bead movement of the bottom bead on runner a of λ̃j, we have ελ̃
j

i0
= ei0 , so that

z(µ̃) = z(λ̃j) + ei0 and hence zµ̃(q′r) = zλ̃j(qr) + δr,i0 for all r ∈ [1, w]. Since µ̃ is 1-increasing, we

have 1 ≤ zµ̃(q′i1) − zµ̃(q′i0) = zλ̃j(qi1) − zλ̃j(qi0) − 1, so that zλ̃j(qi1) − zλ̃j(qi0) ≥ 2. This implies

that there exist x1, x2 ∈ (qi0 , qi1 ] \ β(λ̃j), x1 < x2, such that x1 − e, x2 − e ∈ β(λ̃j). Since

qi1 ∈ {y + e, y + e − 1}, and |{y, y − 1} ∩ β(λ̃j)| = 1 by Lemma 6.11(1b), this shows in fact

x1 ∈ (qi0 , y+e−2], so that q′i0 = bβ(σ̃)(qi0) ≤ x1 and hence q′i0−qi0 ≤ x1−qi0 ≤ e−2. Together
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with Proposition 5.8(3), this shows that q′r /∈ {y, y− 1} for all r ∈ [1, w], contradicting Lemma

6.11(1a) for µ̃.

Now suppose that γ ≥ k+2− j, so that qiγ , qiγ−1 ≡e a−1 and iγ−1 �λ̃j iγ. Then qiγ +1−e /∈
β(λ̃j) by Lemma 6.11(1b), so that q′iγ > qiγ + 1. Since zλ̃j(qik−1

) < zλ̃j(qik) as λ̃j is 1-increasing,

there exists x ∈ (qiγ−1 , qiγ ] \ β(λ̃j) with x− e ∈ β(λ̃j). If x < qiγ , then q′iγ−1
≤ x < qiγ . On the

other hand, if x = qiγ , then qiγ /∈ β(λ̃j), and so q′iγ−1
< qiγ−1 + e = qiγ by Proposition 5.8(4,2a).

Either way, we get q′iγ−1
< qiγ , and so q′r /∈ {qiγ , qiγ + 1} for all r ∈ [1, w], contradicting Lemma

6.11(1a) for µ̃.

Thus, γ = k + 1− j, and hence j ≥ 1, so that (1) holds, and we are done. �

Lemma 6.23. Let µ̃ ∈ B̃ be a 4-increasing partition, and suppose that z(µ̃) = z(λ̃j) + ελ̃
j

I for

some member λ̃j of a hook-quotient exceptional family λ and I ⊆ Int(λ) = {i0, i1, . . . , ik}. The

following statements are equivalent:

(1) j ≥ |I| and I = {iγ | γ ∈ [k + 1− j, k − j + |I|]}.
(2) j ≥ |I| and µ̃ = λ̃j−|I|.

(3) µ̃ is exceptional.

Proof. Note first that z(λ̃j) + ελ̃
j

ik+1−j
= z(λ̃j−1) always (see proof of Lemma 6.22). Therefore

if ik+1−j ∈ I, then z(µ̃) − z(λ̃j−1) = ελ̃
j

I\{ik+1−j}, so that λ̃j−1 is 1-increasing by Lemma 4.6. As

ik+1−j is maximal in Int(λ) with respect to �λ̃j by Lemma 6.11(1e), we have ελ̃
j

iγ = ελ̃
j−1

iγ for all

γ 6= k + 1− j by Proposition 5.8(1). Thus

(6.5) z(µ̃) = z(λ̃j) + ελ̃
j

I = z(λ̃j−1) + ελ̃
j

I\{ik+1−j} = z(λ̃j−1) + ελ̃
j−1

I\{ik+1−j}.

We prove by induction on |I|, with the base case of |I| = 1 following from Lemmas 6.22 and

4.6. Suppose then that |I| > 1.

Suppose that (1) holds. Then we deduce from (6.5) that (2) holds, by induction.

Clearly (2) implies (3).

Suppose that (3) holds. If ik+1−j /∈ I, then let r ∈ I be maximal with respect to �λ̃j . By

Lemma 5.11, there exists a 1-increasing partition ν̃ such that z(ν̃) = z(λ̃j) + ελ̃
j

r and z(µ̃) =

z(ν̃) + εν̃I\{r}. In addition, for each i ∈ I \ {r}, the i-th bead movement of λ̃j starts at the same

position as that of ν̃ by Proposition 5.8(1). By Lemma 6.22, ν̃ is not exceptional and hence

has no removable bead on runner a. By Corollary 5.14, µ̃ has no removable bead on runner a,

and hence is not exceptional, a contradiction. Thus ik+1−j ∈ I, and we deduce from (6.5) that

(1) holds, by induction. �

6.3. Inductive construction of canonical basis. With all the preliminary lemmas in place,

we are now able to prove that Theorem 4.7 holds by explicitly constructing the canonical basis

vector G(µ̃) in the Fock space given G(µ) and the canonical basis in blocks of smaller e-weight.

We begin with the case of µ being a leading member of a hook-quotient exceptional family in

B̃.
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Proposition 6.24. Let µ be a hook-quotient exceptional family, and suppose that µ̃0 is 4-

increasing. If Theorem 4.7 holds for µ̌, µ̂ and µ0, then it holds for µ̃0.

Proof. We have

F (G(µ̌)) = F

(∑
λ̌

dλ̌µ̌(q)λ̌

)
=

∑
λ̌:z(µ̌)∈Π(λ̌)

qdλ̌(µ̌) F (λ̌) =
∑

λ:z(µ̌)∈Π(λ̌)

k+1∑
j=0

qdλ̌(µ̌)+j λ̃j,

where the final equality follows from Proposition 6.21 (with µ̃ = µ̃0 and σ = µ). Thus,

F (G(µ̌))− µ̃ ∈
⊕

λ̃ qZ[q] λ̃. As F (G(µ̌)) = F (G(µ̌)) = F (G(µ̌)), we see that F (G(µ̌)) = G(µ̃).

Since

dλ̃j(λ̃
0) = j = dµ̃j(µ̃

0)

by Lemma 6.14(1,3), we see from Proposition 6.21 that

dλ̌(µ̌) + j = dλ̃j(µ̃
0).

Thus we conclude that dλ̃µ̃0(q) 6= 0 if and only if λ̃ belongs to some hook-quotient exceptional

family λ with z(µ̌) ∈ Π(λ̌), in which case dλ̃µ̃0(q) = qdλ̃(µ̃0). Hence, it remains to show that λ̃

belongs to some hook-quotient exceptional family λ with z(µ̌) ∈ Π(λ̌) if and only if z(µ̃0) ∈ Π(λ̃).

The forward implication follows from Proposition 6.21 (with µ̃ = µ̃0 and σ = µ). For the

converse, we show first that λ̃ is exceptional when z(µ̃0) ∈ Π(λ̃). Suppose on the contrary that

λ̃ is not exceptional and z(µ̃0) ∈ Π(λ̃). Then z(µ0) = z(µ̃0) ∈ Π(λ̃) = Π(λ) by Lemmas 6.4 and

6.14(1). Since the main theorem holds for G(µ0), we have dλµ0(q) 6= 0. But, arguing as above,

we have G(µ0) = EG(µ̂). Thus 〈G(µ̂), F (λ)〉 6= 0, and hence F (λ) 6= 0, so that λ, and hence

λ̃, is exceptional, a contradiction. Thus, λ̃ is exceptional, and applying Proposition 6.20, we

see that λ̃ is a member of a hook-quotient exceptional family λ and that there exists another

hook-quotient exceptional family σ with z(σ̌) ∈ Π(λ̌) such that z(µ̃0) = z(σ̃j) + εσ̃
j

I for some

j ∈ [0, k + 1] and I ⊆ Int(σ). By Lemma 6.23, we have µ = σ, so that z(µ̌) = z(σ̌) ∈ Π(λ̌),

completing our proof. �

We are thus left with the case when µ is not one of the leading members of exceptional hook-

quotient families. The next lemma tells us that it is also not in the ‘external’ parallelotopes of

the latter.

Lemma 6.25. Let µ ∈ B be a 4-increasing partition, and let λ be a hook-quotient exceptional

family. If z(µ)− z(λ0) = ελX for some X ⊆ Ext(λ) , then µ = µ0 for a hook-quotient exceptional

family µ with Ext(λ) = Ext(µ).

Proof. Let µ̃ ∈ B̃ be such that z(µ̃) = z(µ). Then

z(µ̃)− z(λ̃0) = z(µ)− z(λ0) = ελX

by Lemma 6.14(1). Applying Proposition 6.20, we see that z(µ) = z(µ̃) = z(σ̃0) = z(σ0), where

σ is the hook-quotient exceptional family with z(σ̌) = πλ(z(µ̃)) and Ext(σ) = Ext(λ). Thus

µ = σ0 by Theorem 3.9(1). �
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Notwithstanding Lemma 6.25, when µ is not one of the leading members of hook-quotient

exceptional families, it may still be in the parallelotope of a member of some hook-quotient

exceptional family. With this in mind, the next lemma looks at Π(λ) of a hook-quotient

exceptional family, which by Lemma 6.14(5) is the union of parallelotopes of its members.

Lemma 6.26. Let λ be a hook-quotient exceptional family. Suppose that z ∈ Π(λ), say

z = z(λ0) + ηλJ + ελX .

where J ⊆ [0, k + 1] and X ⊆ Ext(λ)

(1) For a ∈ [0, k + 1], write J c<a = {j /∈ J | j < a} and J>a = {j ∈ J | j > a}. Let

j ∈ [0, k + 1].

(a) If j /∈ J , then

z = z(λj)− ηλJc<j + ηλJ>j + ελX ∈ Π(λj).

Conversely, if J 6= [0, k + 1] and j ∈ J , then z /∈ Π(λj).

(b) If k + 1− j ∈ J , then

z = z(λ̃j)− ηλJc<k+1−j
+ ηλJ>k+1−j

+ ελX ∈ Π(λ̃j).

Conversely, if J 6= ∅ and k + 1− j /∈ J , then z /∈ Π(λ̃j).

(2) If J is non-empty and proper (as a subset of [0, k + 1]), then the following three sets

determine each other:

• J
• {j ∈ [0, k + 1] | z ∈ Π(λj)}
• {j ∈ [0, k + 1] | z ∈ Π(λ̃j)}

Furthermore, the cardinalities of the first and third sets are equal, while the sum of the

cardinalities of the last two sets is k + 2.

Proof. For part (1a), since z(λ0) = z(λj) + eij = z(λj)− ηλ[0, j) by Lemma 6.14(1,3), we have

z = z(λj)− ηλ[0, j)\J + ηλJ\[0, j) + ελX .

Clearly, [0, j) \ J = J c<j. If j /∈ J , then J \ [0, j) = J>j, so that z ∈ Π(λj) by Lemma 6.14(4).

For the converse, if j ∈ J , then since ηλj = −
∑

r∈[0, k+1]\{j} η
λ
r , we see that, the coefficient of ηλj′ ,

for any j′ /∈ J , when z − z(λj) is expressed in terms of the basis {ηλγ , ελx | γ 6= j, x ∈ Ext(λ)}
is −1 if j′ > j and −2 if j′ < j. Hence z /∈ Π(λj) if such a j′ exists by Lemma 6.14(4).

Part (1b) is similar, and part (2) follows immediately from part (1). �

Definition 6.27. Let λ be a hook-quotient exceptional family. For µ ∈ B, define

nλ,µ = |{j ∈ [0, k + 1] | z(µ) ∈ Π(λj)}|.

By Lemma 6.14(5), nλ,µ > 0 if and only if there exist a unique J ( [0, k + 1] and a unique

X ⊆ Ext(λ) such that

z(µ) = z(λ0) + ηλJ + ελX .

We write sλ,µ for |X| when this happens, and say that µ is sλ,µ-separated from λ.
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Remark 6.28. When nλ,µ > 0, with z(µ) = z(λ0) + ηλJ + ελX , we have nλ,µ = k + 2 − |J | by

Lemma 6.26(1a).

Proposition 6.29. Suppose that µ ∈ B is 4-increasing and µ 6= σ0 for any hook-quotient

exceptional family σ. Let λ be a hook-quotient exceptional family such that nλ,µ > 0. If

Theorem 4.7 holds for µ, then for any j ∈ [0, k + 1] we have

〈E(k)(G(µ))− qsλ,µ [nλ,µ − 1]qF (λ̌), λ̃j〉 =

{
qdλ̃j (µ̃), if z(µ̃) ∈ Π(λ̃j);

0, otherwise.

Proof. There exist J ⊆ [0, k + 1] and (unique) X ⊆ Ext(λ) such that

z(µ) = z(λ0) + ηλJ + ελX .

Since µ 6= σ0 for any hook-quotient exceptional family σ, we see that ηλJ 6= 0 by Lemma 6.25,

so that ∅ 6= J ( [0, k + 1] (and hence J is unique too). Working modulo partitions not in the

exceptional family λ, we have, since Theorem 4.7 holds for µ,

G(µ) ≡
∑

i∈[0, k+1]:
z(µ)∈Π(λi)

qdλi (µ)λi =
∑

i∈[0, k+1]\J

q|J
c
<i|+|J>i|+sλ,µλi

by Lemma 6.26(1a) (and using the notations there).

Using formula (6.1) we deduce that

〈E(k)(G(µ)), λ̃j〉 =
∑

i∈[0, k+1−j)\J

qsλ,µ+c(i)+j−k +
∑

i∈(k+1−j, k+1]\J

qsλ,µ+c(i)+j−k−2,

where c(i) = i+ |J c<i|+ |J>i|. Observe that

c(0) = |J>0| = k + 1− nλ,µ + 10/∈J ,

c(k + 1) = k + 1 + |J c<k+1| = k + nλ,µ + 1k+1∈J .

Moreover, for i ∈ [1, k+1], we have c(i+1)−c(i) = 1i/∈J +1i+1/∈J . Thus if [0, k+1]\J = {a1 <

a2 < · · · < ak+2−|J |}, then c(a1) = k + 2 − nλ,µ, c(as+1) = c(as) + 2 for all s ∈ [1, k + 1 − |J |],
and c(ak+2−|J |) = k + nλ,µ. Consequently,

〈E(k)(G(µ)), λ̃j〉 =

{
qsλ,µ+j[nλ,µ − 1]q, if k + 1− j /∈ J ;

qsλ,µ+j[nλ,µ − 1]q + qsλ,µ+c(k+1−j)+j−k−1, if k + 1− j ∈ J.

The desired result now follows, since F (λ̌) =
∑k+1

j=0 q
jλ̃j, and

sλ,µ + c(k + 1− j) + j − k − 1 = sλ,µ + |J c<k+1−j|+ |J>k+1−j|
= dλ̃j(µ)

by Lemma 6.26(1b). �
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Lemma 6.30. Suppose that µ ∈ B is 4-increasing and is 0-separated from a hook-quotient

exceptional family ν. Then z(ν̌) = πν(z(µ)). In particular, ν̌ (and ν̂) are 4-increasing.

If in addition nλ,µ > 0 for another hook-quotient exceptional family λ, then either ξν = ξλ
or z(ν̌) /∈ Π(λ̌).

Proof. The first part follows from Lemma 6.16(2,3).

When nλ,µ > 0, then using Lemma 6.16(2,3), we get πλ(z(µ)) ∈ Π(λ̌). Let

z(µ) = (m1, . . . ,mw), and z(λ̌) = (l1, . . . , lw̄).

Then

πλ(z(µ)) = (mξλ(1), . . . ,mξλ(w̄)),

z(ν̌) = πν(z(µ)) = (mξν(1), . . . ,mξν(w̄)).

If ξλ 6= ξν , say ξλ(a) 6= ξν(a), then |mξλ(a) −mξν(a)| ≥ 4 since µ is 4-increasing. Thus,

mξν(a) − la = (mξν(a) −mξλ(a)) + (mξλ(a) − la)

{
≥ 3, if mξν(a) > mξλ(a);

≤ −2, if mξν(a) < mξλ(a)

by Lemma 4.5 (since (mξλ(1), . . . ,mξλ(w̄)) = πλ(z(µ)) ∈ Π(λ̌)). Consequently, by Lemma 4.5

again, z(ν̌) = πν(z(µ)) = (mξν(1), . . . ,mξν(w̄)) /∈ Π(λ̌). �

Corollary 6.31. Suppose that µ ∈ B is 4-increasing, and nλ,µ > 0 for a hook-quotient excep-

tional family λ. Then there is a unique hook-quotient exceptional family σ from which µ is

0-separated and which satisfies z(σ̌) ∈ Π(λ̌), namely that with z(σ̌) = πλ(z(µ)).

Proof. Since nλ,µ > 0, we have z(µ) ∈ Π(λj) for some j. Let µ̃ ∈ B̃ be such that z(µ̃) = z(µ).

Then z(µ̃) ∈ Π(λ̃j
′
) for some j′ ∈ [0, k + 1] by Lemma 6.14(5). By Proposition 6.20, the

partition σ̌ ∈ B̌ satisfying z(σ̌) = πλ(z(µ̃)) generates a hook-quotient exceptional family σ

from which µ is 0-separated, and z(σ̌) ∈ Π(λ̌).

Let ν be an(other) hook-quotient exceptional family from which µ is 0-separated. Then

πν(z(µ)) = z(ν̌) by Lemma 6.30. In addition, if z(ν̌) ∈ Π(λ̌), then ξν = ξλ by Lemma 6.30, so

that

z(ν̌) = πν(z(µ)) = πλ(z(µ)) = z(σ̌).

Thus σ̌ = ν̌ by Theorem 3.9(1) and hence σ = ν. �

Proposition 6.32. Let µ ∈ B be a 4-increasing partition. Assume that Theorem 4.7 holds for

µ and all 4-increasing λ̌ ∈ B̌. Then∑
λ:

nλ,µ>0

qsλ,µ [nλ,µ − 1]q λ̌ =
∑
σ:

sσ,µ=0

[nσ,µ − 1]q G(σ̌).
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Proof. By Lemma 6.30, whenever sσ,µ = 0, we have σ̌ to be 4-increasing, so that we may apply

Theorem 4.7 to σ̌ to get

G(σ̌) =
∑
λ̌∈B̌:

z(σ̌)∈Π(λ̌)

qdλ̌(σ̌) λ̌.

Thus, ∑
σ:

sσ,µ=0

[nσ,µ − 1]q G(σ̌) =
∑
σ:

sσ,µ=0

[nσ,µ − 1]q
∑
λ̌∈B̌:

z(σ̌)∈Π(λ̌)

qdλ̌(σ̌) λ̌.

Let µ̃ ∈ B̃ be such that z(µ̃) = z(µ). By Proposition 6.21, we see that each λ̌ in the sum

generates a hook-quotient exceptional family λ with Ext(λ) = Ext(σ) and sλ,µ = dλ̌(σ̌), and

{j | z(µ̃) ∈ Π(σ̃j)} ⊆ {j | z(µ̃) ∈ Π(λ̃j)}. By Proposition 6.20, since πλ(z(µ̃)) = πσ(z(µ̃)) =

z(σ̌), we also have {j | z(µ) ∈ Π(λ̃j)} ⊆ {j | z(µ) ∈ Π(σ̃j)}. Thus nσ,µ = nλ,µ by Lemma

6.26(2), so that∑
σ:

sσ,µ=0

[nσ,µ − 1]q G(σ̌) =
∑
σ:

sσ,µ=0

∑
λ:

z(σ̌)∈Π(λ̌)
nλ,µ>0

[nλ,µ − 1]q q
sλ,µ λ̌ =

∑
λ:

nλ,µ>0

∑
σ:

sσ,µ=0

z(σ̌)∈Π(λ̌)

[nλ,µ − 1]q q
sλ,µ λ̌

To complete the proof, it remains to show that for each hook-quotient exceptional family λ with

nλ,µ > 0, there exists a unique hook-quotient exceptional family σ from which µ is 0-separated

and which satisfies z(σ̌) ∈ Π(λ̌), but this is precisely the content of Corollary 6.31. �

Corollary 6.33. Let µ̃ ∈ B̃ be 4-increasing, and suppose that µ̃ 6= λ̃0 for any hook-quotient

exceptional family λ. Let µ ∈ B with z(µ) = z(µ̃). If Theorem 4.7 holds for µ and λ̌ for any

hook-quotient exceptional family λ, then

G(µ̃) = E(k)(G(µ))−
∑

σ: sσ,µ=0

[nσ,µ − 1]q F (G(σ̌))

and Theorem 4.7 holds for µ̃.

Proof. Since E(k)(G(µ)) −
∑

σ: sσ,µ=0[nσ,µ − 1]q F (G(σ̌)) is bar-invariant, while the asserted

formula H(µ̃) for G(µ̃) by Theorem 4.7 satisfies H(µ̃)− µ̃ ∈
⊕

λ̃ qZ[q]λ̃, it suffices to show that

E(k)(G(µ))−
∑

σ: sσ,µ=0[nσ,µ − 1]q F (G(σ̌)) = H(µ̃) i.e.

〈E(k)(G(µ))−
∑

σ: sσ,µ=0

[nσ,µ − 1]q F (G(σ̌)), λ̃〉 =

{
qdλ̃(µ̃), if z(µ̃) ∈ Π(λ̃);

0, otherwise.

When λ̃ is a member of a hook-quotient exceptional family λ, the above equality follows from

Propositions 6.29 and 6.32.

When λ̃ is exceptional but not a member of any hook-quotient exceptional family, then

z(µ̃) /∈ Π(λ̃) by Proposition 6.20(1). On the other hand, since Theorem 4.7 holds for G(µ), we

see that G(µ) is a Z[q, q−1]-linear combination of partitions which are either non-exceptional or

members of hook-quotient exceptional families by Lemma 6.5(2), so that the same is true for

E(k)(G(µ)). In addition, since Theorem 4.7 holds for G(σ̌), we see that G(σ̌), with sσ,µ = 0, is
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a Z[q, q−1]-linear combination of partitions which generates hook-quotient exceptional families

by Proposition 6.21, so that F (G(σ̌)) is a Z[q, q−1]-linear combination of partitions belonging

to hook-quotient exceptional families. Thus E(k)(G(µ)) −
∑

σ: sσ,µ=0[nσ,µ − 1]q F (G(σ̌)) is a

Z[q, q−1]-linear combination of partitions which are either non-exceptional or members of hook-

quotient exceptional families. This shows that the above equality also holds for exceptional λ̃

which is not a member of any hook-quotient exceptional family.

Finally when λ̃ is non-exceptional, let λ ∈ B such that z(λ) = z(λ̃). Then E(k)(λ) = λ̃ and

F (k)(λ̃) = λ, so that 〈E(k)(µ), λ̃〉 = 0 for all µ ∈ B with µ 6= λ. Thus,

〈E(k)(G(µ))−
∑

σ: sσ,µ=0

[nσ,µ − 1]q F (G(σ̌)), λ̃〉 = dλµ(q) =

{
qdλ(µ), if z(µ) ∈ Π(λ);

0, otherwise.

Now z(µ) ∈ Π(λ) only if λ is 1-increasing by Lemma 4.6, and hence ελi = ελ̃i for all i ∈ [1, w] by

Lemma 6.4, so that Π(λ) = Π(λ̃) and dλ(µ) = dλ̃(µ). The same conclusion is also true when

z(µ̃) ∈ Π(λ̃). Thus z(µ) ∈ Π(λ) if and only if z(µ̃) ∈ Π(λ̃), in which case dλ(µ) = dλ̃(µ̃). Hence

〈E(k)(G(µ))−
∑

σ: sσ,µ=0

[nσ,µ − 1]q F (G(σ̌)), λ̃〉 =

{
qdλ̃(µ̃), if z(µ̃) ∈ Π(λ̃);

0, otherwise.

�

We can now prove Proposition 6.1, thereby completing the proof of Theorem 4.7.

Proof of Proposition 6.1. This follows immediately from Proposition 6.24 and Corollary 6.33.

�

7. Hypercubes

In this section we reformulate Theorem 4.7, replacing w-parallelotopes in Zw by w-hypercubes

in Zw(w+1)/2. One advantage of this point of view is that the powers of q appearing in the

q-decomposition numbers can be understood in terms of the natural box metric in the larger

lattice, which is independent of the partitions in question. We will also use this reinterpretation

in terms of hypercubes in Section 8 to show that the parallelotopes have nice intersections.

Recall that {ei | 1 ≤ i ≤ Zw} is the standard basis for Zw. Formally define additional linearly

independent vectors eij for 1 ≤ i < j ≤ w, so that

Ẑw :=
⊕

1≤i≤w

Zei ⊕
⊕

1≤i<j≤w

Zeij

is a free Z-lattice of rank w(w + 1)/2. Let p : Ẑw → Zw be the linear map given by p(ei) = ei
and p(eij) = ei − ej.

Let λ be a partition of e-weight w, and write A(λ) = {(b1; q1), . . . , (bw; qw)}. Firstly we define

a lift of z(λ) to Ẑw. For 1 ≤ i < j ≤ w, let

κλij =

{
1, if qi > qj − e, or both qi = qj − e and bi = bj;

0, otherwise.
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We define

ẑ(λ) = z(λ) +
∑

1≤i<j≤w

κλij(−ei + ej + eij) ∈ Ẑw.

Clearly p(ẑ(λ)) = z(λ).

Suppose now that λ is a hook-quotient partition. We lift Π(λ) to a w-hypercube in Ẑw. We

first define the lifted λ-modified basis vectors

ε̂λi =


ei if ελi = ei;

eij if ελi = ei − ej for some i < j;

−eji if ελi = ei − ej for some j < i.

For a subset Γ of [1, w], let

ε̂λΓ =
∑
a∈Γ

ε̂λa ∈ Ẑw,

and define the hypercubes C0(λ) and C(λ) of λ, anchored at 0 and ẑ(λ) respectively, by

C0(λ) =
{
ε̂λΓ | Γ ⊆ [1, w]

}
,

C(λ) = ẑ(λ) + C0(λ) =
{
ẑ(λ) + ε̂λΓ | Γ ⊆ [1, w]

}
;

they are subsets of Ẑw, each of cardinality 2w. It is clear from the definitions that p(ε̂λΓ) = ελΓ,

and therefore that p sends C(λ) bijectively onto Π(λ).

Define the box norm ‖ · ‖ in Ẑw by ‖
∑
ciei +

∑
cijeij‖ =

∑
|ci|+

∑
|cij|, so that ‖ε̂λΓ‖ = |Γ|.

Proposition 7.1. Let λ and µ be partitions of e-weight w with the same e-core, and suppose

that µ is 4-increasing. For any Γ ∈ [1, w], we have z(µ) = z(λ)+ελΓ if and only if ẑ(µ) = ẑ(λ)+ε̂λΓ.

In particular, if µ ∈ Π(λ), then dλ(µ) = ‖ẑ(µ)− ẑ(λ)‖.

Proof. We show only that z(µ) = z(λ) + ελΓ implies ẑ(µ) = ẑ(λ) + ε̂λΓ; the converse is trivial by

applying the projection map p. By induction on |Γ|, and using Lemma 5.11, we are reduced

to proving the following statement: if λ is a hook-quotient partition and µ is a 1-increasing

partition in the same block such that z(µ) = z(λ) + ελi for some i ∈ [1, w], then ẑ(µ) = ẑ(λ) + ε̂λi .

Since

p(ẑ(λ) + ε̂λi ) = z(λ) + ελi = z(µ),

and ker(p) is spanned by {ers− er + es | 1 ≤ r < s ≤ w}, it suffices to show that the coefficient

of ers in ẑ(µ) and in ẑ(λ) + ε̂λi are equal for all 1 ≤ r < s ≤ w, or equivalently,

κµrs − κλrs =


1, if ελi = er − es;

−1, if ελi = es − er;

0, otherwise.

This is a straightforward, albeit tedious, verification using Proposition 5.8(1,2,3,5), and our

proposition follows. �

In the light of Proposition 7.1, Theorem 4.7 may be restated as follows.
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Theorem 7.2. Suppose λ and µ are partitions of e-weight w with the same e-core. Then if µ

is 4-increasing we have

dλµ(q) =

{
q‖ẑ(µ)−ẑ(λ)‖, if ẑ(µ) ∈ C(λ);

0, otherwise.

We conclude this section with an analysis of the hypercubes of partitions in hook-quotient

exceptional families, required in the proof of Lemma 8.7. As before, let B and B̃ be two blocks

of e-weight w forming a [w : k]-pair, and let λ be a hook-quotient exceptional family with

respect to this pair, with Int(λ) = {i0, i1, . . . , ik}.
Define

η̂λ0 = −ei0 , η̂λ1 = ei0,i1 , . . . , η̂λk = eik−1,ik , η̂λk+1 = eik .

For each J ⊆ [0, k + 1], write η̂λJ for
∑

j∈J η̂
λ
j .

The following is a cubic analogue of Lemma 6.14.

Lemma 7.3.

(1) We have

ẑ(λ0) = ẑ(λ̃0)− η̂λ[0,k+1],

ẑ(λj) = ẑ(λ0) + η̂λ[0,j) (j ∈ [1, k + 1]),

ẑ(λ̃j) = ẑ(λ̃0)− η̂λ(k+1−j,k+1] = ẑ(λ0) + η̂λ[0,k+1−j] (j ∈ [1, k + 1]).

(2) For any x ∈ Ext(λ), ε̂λx is constant for all λ ∈ λ; denote the common vector by ε̂λx .

(3) We have

ε̂λ
j

iγ = ε̂λ̃
k+1−j

iγ =

{
−η̂λγ if γ < j;

η̂λγ+1 if γ ≥ j.

In particular, C0(λj) = C0(λ̃k+1−j).

(4) Let z ∈ Ẑw. Then z ∈ C0(λj) (= C0(λ̃k+1−j) by part (3)) if and only if

z = −η̂λI<j + η̂λI>j + ε̂λX

for some I<j ⊆ [0, j), I>j ⊆ (j, k + 1] and X ⊆ Ext(λ).

(5) We have

C(λj) = {ẑ(λ0) + η̂λJ + ε̂λX | j /∈ J, X ⊆ Ext(λ)};

C(λ̃k+1−j) = {ẑ(λ0) + η̂λJ + ε̂λX | j ∈ J, X ⊆ Ext(λ)}.

8. Tilings

In this section we show that the parallelotopes Π(λ) associated to hook-quotient partitions

in a block B of weight w assemble to form ‘tilings’ of a subset of Zw with nice properties. We

also prove a geometric analogue: the real convex hulls Π(λ)R tile a region of Rw.

We continue to denote by Ω≥m the set of m-increasing elements in a subset Ω ⊂ Zw or, more

generally, in a subset Ω ⊂ Rw. We extend this convention to subsets Ω ⊂ R̂w, defining Ω≥m
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as the set of elements in Ω that map to m-increasing elements of Rw under the linear map

p : R̂w → Rw defined by p(ei) = ei and p(eij) = ei − ej.

We start with the discrete parallelotopes. Set

U+ := [0, e]w ⊂ Zw,

so that

U+
≥m = {(z1, . . . , zw) ∈ Zw | 0 ≤ zi ≤ e and zi+1 − zi ≥ m for all admissible i}

for any nonnegative integer m. It was explained in Remark 4.14 that U+
≥m may be understood

as the set of z-labels taken by m-increasing partitions in a block of (e+ 1)-weight w. It is also,

at least when m ≥ 4, the subset of Zw tiled by (appropriate truncations of) the parallelotopes

associated to any block of e-weight w, as the following result shows.

Proposition 8.1. Let B be a block of e-weight w. Then⋃
λ∈B

Π(λ)≥4 = U+
≥4,

where the union is taken over all hook-quotient partitions in B.

When e is large in comparison to w, most of the parallelotopes appearing in the union in

Proposition 8.1 are untruncated, since Π(λ)≥4 = Π(λ) for all 7-increasing partitions λ, by

Lemma 4.6. The same lemma implies that Π(λ)≥4 is nonempty only if λ is 1-increasing, so the

union may just as well be taken over only the 1-increasing partitions in B.

Proof. We proceed using the inductive setup described at the beginning of Section 6. Suppose

that B is a Rouquier block. Then for any 1-increasing partition λ in B, we have ελi = ei for

all i ∈ [1, w], and the result is immediate. Next, suppose that the statement of the proposition

holds for a block B of weight w, and let B̃ = sa(B). By Lemma 6.9, any 1-increasing partition

in B̃ is either non-exceptional or belongs to a hook-quotient exceptional family. The statement

thus follows directly from Lemma 6.4 and Lemma 6.14(5). �

By a face of a parallelotope Π(λ) we mean a subset of the form

F = FΓ0,Γ1 =
{
z(λ) + ελΓ | Γ1 ⊆ Γ ⊆ [1, w] \ Γ0

}
,

where Γ0 and Γ1 are disjoint subsets of [1, w], or the empty set.

Proposition 8.2. Let λ and µ be hook-quotient partitions in B. Then Π(λ)≥4∩Π(µ)≥4 = F≥4,

where F is a common face of Π(λ) and Π(µ). In particular, if either λ or µ is 7-increasing,

then Π(λ) and Π(µ) intersect in a common face.

We can define a face of a hypercube C(λ) analogously to that for Π(λ), or, more simply, as

the intersection of C(λ) with (a translate of) a coordinate hyperplane of Ẑw. In contrast to the

situation for parallelotopes, it is clear that any two hypercubes C(λ) and C(µ) intersect in a

common face. Thus Proposition 8.2 is a consequence of the following lemma.



PARALLELOTOPE TILINGS AND q-DECOMPOSITION NUMBERS 63

Lemma 8.3. Let B be a block of e-weight w. The projection map p : Ẑw → Zw maps
⋃
λC(λ)≥4

bijectively onto U+
≥4, where λ runs over all hook-quotient partitions in B.

Proof. Clearly, p maps
⋃
λC(λ)≥4 onto U+

≥4, as p maps each C(λ)≥4 onto Π(λ)≥4. Let λ, µ

be hook-quotient partitions in B and suppose that p(a) = p(b) for some a ∈ C(λ)≥4 and

b ∈ C(µ)≥4.

Suppose that p(a) ∈ U≥4, so that p(a) = z(ν) for a partition ν in B. We have that ν is

4-increasing, and z(ν) ∈ p(C(λ)) ∩ p(C(µ)) = Π(λ) ∩ Π(µ). By Proposition 7.1, we thus have

ẑ(ν) ∈ C(λ) ∩ C(µ). Since p maps C(λ) bijectively onto Π(λ), and p(a) = z(ν) = p(ẑ(ν)), we

must have a = ẑ(ν). Similarly, b = ẑ(ν), and hence a = b.

To handle the general case, consider the embedding B ↪→ B+ : λ 7→ λ+ of B into a block

B+ of (e + 1)-weight w, as described in Remark 4.14. It is easy to check that ẑ(λ) = ẑ(λ+),

and ελi = ελ
+

i for all i ∈ [1, w], so that C(λ) = C(λ+). Applying the special case considered

in the previous paragraph to the block B+, we obtain the desired conclusion that p maps⋃
λ∈B C(λ)≥4 =

⋃
λ∈B C(λ+)≥4 bijectively onto U+

≥4, since the latter is the set of values taken

by z(ν) as ν ranges over 4-increasing partitions in B+. �

We next formulate and prove real analogues of Propositions 8.1 and 8.2. To that end, we

define various tiles and regions. For any hook-quotient partition λ of e-weight w, define the

solid parallelotope Π(λ)R as the convex hull of Π(λ) in Rw, and the solid hypercube C(λ)R as

the convex hull of C(λ) in R̂w, so that

Π(λ)R =

{
z(λ) +

w∑
i=1

aiε
λ
i

∣∣∣∣ 0 ≤ ai ≤ 1 for all i ∈ [1, w]

}
⊂ Rw

and

C(λ)R =

{
ẑ(λ) +

w∑
i=1

aiε̂
λ
i

∣∣∣∣ 0 ≤ ai ≤ 1 for all i ∈ [1, w]

}
⊂ R̂w.

We additionally define the half-open solid parallelotope

Π(λ)hR =

{
z(λ) +

w∑
i=1

aiε
λ
i

∣∣∣∣ 0 ≤ ai < 1 for all i ∈ [1, w]

}
⊂ Rw.

Turning to regions, we define U+R
= {x ∈ R | 0 ≤ x ≤ e}w and U+hR = {x ∈ R | 0 ≤ x < e}w,

so that

U+R
≥m = {(z1, . . . , zw) ∈ Rw | 0 ≤ zi ≤ e and zi+1 − zi ≥ m for all admissible i},

U+hR
≥m = {(z1, . . . , zw) ∈ Rw | 0 ≤ zi < e and zi+1 − zi ≥ m for all admissible i}

for any nonnegative integer m.
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Proposition 8.4. Let B be a block of e-weight w. Then∐
λ∈B

Π(λ)hR≥4 = U+hR
≥4,⋃

λ∈B

Π(λ)R≥4 = U+R
≥4.

Both unions, the first of which is disjoint, are taken over all hook-quotient partitions in B.

As is the case with Proposition 8.1, the unions here may be taken over just the 1-increasing

partitions in B, by the obvious real analogue of Lemma 4.6. Furthermore Π(λ)R≥4 = Π(λ)R and

Π(λ)hR≥4 = Π(λ)hR as long as λ is 7-increasing.

Proof. We prove the first equality; the second then follows by taking closures in Rw. The

argument mirrors the proof of Proposition 8.1. Let B be a Rouquier block of weight w. We

have seen that for any 1-increasing partition λ in B, we have ελi = ei for all i ∈ [1, w]. In

particular Π(λ)hR is contained in U+hR. Conversely, let x = (x1, . . . , xw) be a 4-increasing

element of U+hR. Then there is a unique 1-increasing partition λ in B such that x ∈ Π(λ)hR,

namely the unique partition λ in B such that z(λ) = (bx1c, . . . , bxwc).
Now suppose the theorem holds for a block B of weight w, and let B̃ = sa(B). Any 1-

increasing partition λ̃ ∈ B̃ is either nonexceptional or belongs to a hook-quotient exceptional

family. If the former is true, we have Π(λ)hR = Π(λ̃)
hR

, where λ = sa(λ̃). To complete the

proof we establish the following analogue of Lemma 6.14(5): For any hook-quotient exceptional

family λ, we have

(8.1)
k+1∐
i=0

Π(λi)
hR

=
k+1∐
i=0

Π(λ̃i)
hR
,

where both unions are disjoint.

Let

Π(λ)hR := z(λ0) +


k+1∑
j=0

ajη
λ
j +

∑
i∈Ext(λ)

biε
λ
i

∣∣∣∣ 0 ≤ aj, bi ≤ 1, with (aj, aj′) 6= (0, 1) if j < j′

 .

The closure of Π(λ)hR in Rw is the convex hull of the set Π(λ) defined in Lemma 6.14. The

expression of an element of Π(λ)hR is unique up to replacing aj by aj + c for all j ∈ [0, k + 1],

for some c ∈ R. In particular for each element there is a unique minimal expression with aj = 0

for some j and a unique maximal expression with aj = 1 for some j. It is straightforward to

deduce from Lemma 6.14 the following: for each j ∈ [1, w], we have that Π(λj)
hR

is the subset

of Π(λ)hR consisting of elements whose minimal expression satisfies min{j′ | aj′ = 0} = j,

and likewise Π(λ̃i)
hR

is the subset consisting of elements whose maximal expression satisfies

max{j′ | aj′ = 1} = k + 1− j. It follows that both of the unions in (8.1) are disjoint and equal

to Π(λ)hR. �
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Proposition 8.5. Let λ and µ be hook-quotient partitions in B. Then Π(λ)R≥7∩Π(µ)R≥7 = F≥7,

where F is a common face of Π(λ)R and Π(µ)R. In particular, if either λ or µ is 10-increasing,

then Π(λ) and Π(µ) intersect in a common face.

It is clear what we mean by a face of Π(λ)R or of C(λ)R, as both are real polytopes in an

obvious way. Before we prove Proposition 8.5, we note the following corollary. See, e.g. [Z,

8.1], for background on polytopal complexes.

Corollary 8.6. The solid parallelotopes Π(λ)R, as λ ranges over all 10-increasing partitions in

B, are the w-cells of a pure polytopal complex in Rw.

As in the discrete case, any two hypercubes C(λ)R and C(µ)R in R̂w clearly intersect in

a common face. Thus Proposition 8.5 is a consequence of the following lemma. The proof

depends on Lemma 8.3, but due to the nature of the argument, works only for 7-increasing

points.

Lemma 8.7. Let B be a block of e-weight w. The projection map p : R̂w → Rw maps
⋃
λC(λ)R≥7

bijectively onto U+R
≥7, where λ runs over all hook-quotient partitions in B.

Proof. By Example 3.3, for any 1-increasing partition λ in a Rouquier block (of e-weight w),

we have z(λ) = ẑ(λ), and ελi = ei, and hence ε̂λi = ei, for all i ∈ [1, w]. Thus p, when restricted

to C(λ), is the identity map. This shows that the lemma holds when B is the Rouquier block.

To complete the proof, it suffices to show that if B and B̃ are blocks of e-weight w forming

a [w : k]-pair, and the lemma holds for B, then it holds for B̃. To this end, consider first a (0-

increasing) non-exceptional hook-quotient partition λ in B, associated with the non-exceptional

hook-quotient partition λ̃ in B̃. Then ελi = ελ̃i for all i ∈ [1, w] by Lemma 6.4. It is also easy

to check that ẑ(λ) = ẑ(λ̃), so that C(λ) = C(λ̃), and hence C(λ)R = C(λ̃)
R
. Next let λ be a

hook-quotient exceptional family. By Lemma 7.3(5),

C(λ)RB :=
k+1⋃
j=0

C(λj)
R

=

ẑ(λ0) +
k+1∑
γ=0

aγ η̂
λ
γ +

∑
x∈Ext(λ)

bxε
λ
x

∣∣∣∣ 0 ≤ aγ, bx ≤ 1 ∀γ, x, aγ = 0 for some γ

 ,

C(λ)R
B̃

:=
k+1⋃
j=0

C(λ̃j)
R

=

ẑ(λ0) +
k+1∑
γ=0

aγ η̂
λ
γ +

∑
x∈Ext(λ)

bxε
λ
x

∣∣∣∣ 0 ≤ aγ, bx ≤ 1 ∀γ, x, aγ = 1 for some γ

 .

For each x = ẑ(λ0) +
∑k+1

γ=0 aγ η̂
λ
γ +

∑
x∈Ext(λ) bxε

λ
x ∈ C(λ)RB, define fλ(x) to be x + (1 −

xmax)
∑k+1

γ=0 η̂
λ
γ , where xmax = max{aγ | γ ∈ [0, k + 1]}. Then fλ is a bijection from C(λ)RB to

C(λ)R
B̃

, satisfying p(fλ(x)) = p(x) for all x ∈ C(λ)RB. In particular, for any m ∈ Z, we have

x ∈ (C(λ)RB)≥m if and only if fλ(x) ∈ (C(λ)R
B̃

)≥m.

Let f :
⋃
λ∈B C(λ)R≥7 →

⋃
λ̃∈B̃ C(λ̃)

R
≥7 be defined as follows:

f(x) =

{
x, if x ∈ C(λ)R for some non-exceptional hook-quotient partition λ in B;

fλ(x), if x ∈ C(λ)RB for some hook-quotient exceptional family λ.
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We claim that f is a well-defined function. For this, we only need to consider the case where

x ∈ C(λ)RB for some hook-quotient exceptional family λ, with Int(λ) = {i0, . . . , ik} say, and

fλ(x) 6= x. In this case, xmax 6= 1, so that

x = ẑ(λ0) +
k+1∑
γ=0

aγ η̂
λ
γ +

∑
x∈Ext(λ)

bxε̂
λ
x

with aγ < 1 for all γ. Let

y = ẑ(λ0) +
∑

x∈Ext(λ)

bbxcε̂λx .

Then p(y) = z(λ0) +
∑

x∈Ext(λ)bbxcελx ∈ Π(λ0), and is 4-increasing by (the real analogues of)

Lemmas 4.5 and 4.6. By considering the block B+ of (e+1)-weight w introduced in Remark 4.14

if necessary and arguing as in the proof of Lemma 8.3, we may assume that p(y) = z(ν) for

a partition ν in B; in fact, by Lemma 6.25, ν = ν0, the leading member of a hook-quotient

exceptional family ν with Int(λ) = Int(ν). By Proposition 7.1, we have ẑ(ν0) = y. Note also

that ẑ(ν0) = y ∈ C(µ) for any hook-quotient partition µ in B satisfying C(µ)R 3 x.

Suppose for the sake of contradiction that x ∈ C(µ)R for some non-exceptional partition µ

in B. Then y ∈ C(µ) = C(µ̃), where µ̃ is the partition in B̃ associated to µ, we thus have

ẑ(ν̃0),y ∈
⋃
ρ̃∈B̃ C(ρ̃)≥4. But ẑ(ν̃0) 6= ẑ(ν0) = y by Lemma 7.3(1) while p(ẑ(ν̃0)) = z(ν̃0) =

z(ν0) = p(y) by Lemma 6.14(1), contradicting Lemma 8.3.

Now, if x ∈ C(µ)RB for another hook-quotient exceptional family µ, say

x = ẑ(µ0) +
k+1∑
γ=0

a′γ η̂
µ
γ +

∑
x∈Ext(µ)

b′xε̂
µ
x ∈ C(µj)

R
,

then ẑ(ν0) ∈ C(µj) and hence z(ν0) ∈ Π(µj), say z(ν0) = z(µj) + εµ
j

Γ . By (the B-analogue of)

Proposition 6.20, z(ν0) = z(σj) + εσΓ∩Int(σ) for some hook-quotient exceptional family σ with

Int(σ) = Int(µ) and z(σ̌) = z(µ̌) + εµ̌ζµ(Γ∩Ext(µ)). But by (the B-analogue of) Lemma 6.23, we

must then have ν0 = σ0; in particular

Int(λ) = Int(ν) = Int(σ) = Int(µ) = {i0, . . . , ik}.

In addition Γ ∩ Int(µ) = Γ ∩ Int(σ) = {i0, . . . , ij−1}. Consequently,

z(ν0) = z(µj) + εµ
j

Γ = z(µj) + εµ
j

{i0,...,ij−1} + εµΓ∩Ext(µ) = z(µ0) + εµΓ∩Ext(µ),

and so

(8.2) ẑ(λ0) +
∑

x∈Ext(λ)

bbxcε̂λx = y = ẑ(ν0) = ẑ(µ0) + ε̂µΓ∩Ext(µ)

by Proposition 7.1.
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Let χ be the projection from
⊕w

i=1 Rei ⊕
⊕

1≤i<j≤w Reij onto Rei0 ⊕ Reik ⊕
⊕k

γ=1 Reiγ−1,iγ ,

along the span of the other standard basis vectors. Then

χ(ẑ(λ0)) +
k+1∑
γ=0

aγη
λ
γ = χ(x) = χ(ẑ(µ0)) +

k+1∑
γ=0

a′γη
µ
γ .

By applying χ to (8.2), we get χ(ẑ(λ0)) = χ(ẑ(ν0)) = χ(ẑ(µ0). Combining the two equations,

we get aγ = a′γ for all γ. Hence fλ(x) = fµ(x). This proves our claim that f is well-defined.

To complete our proof, note first that f is clearly surjective, and suppose that p(ã) = p(b̃)

for some ã, b̃ ∈
⋃
λ̃∈B̃ C(λ̃)

R
≥7. Then ã = f(a) and b̃ = f(b) for some a,b ∈

⋃
λ∈B C(λ)R≥7.

Then

p(a) = (p ◦ f)(a) = p(f(a)) = p(ã) = p(b̃) = p(f(b)) = (p ◦ f)(b) = p(b),

so that a = b since the lemma holds for B, and hence ã = f(a) = f(b) = b̃, and our proof is

complete. �

Lemma 8.8. Let λ and µ be 4-increasing partitions with e-weight w lying in the same block,

and suppose that ‖ẑ(λ) − ẑ(µ)‖ = 1. Then there exists i ∈ [1, w] such that z(µ) = z(λ) + ελi or

z(λ) = z(µ) + εµi .

Proof. By interchanging λ and µ if necessary, we may assume that ẑ(µ)− ẑ(λ) = ei or eij. Then

z(µ)− z(λ) = p(ẑ(µ)− ẑ(λ)) = ei or ei − ej. Let z = 1
2
(z(λ) + z(µ)). Then z ∈ U+hR

≥4, so that,

by Proposition 8.4, z = z(ν) +
∑w

i=1 aiε
ν
i for some 1-increasing partition ν, with 0 ≤ ai < 1 for

all i ∈ [1, w]. Note that both ei and ei − ej are of the form ενΓ − εν∆ where Γ and ∆ are disjoint

subsets of [1, w]. Thus

z(ν) +
w∑
i=1

aiε
ν
i = z = z(λ) +

1

2
(z(µ)− z(λ)) = z(λ) +

1

2
(ενΓ − εν∆),

so that
1

2
(ενΓ − εν∆)−

w∑
i=1

aiε
ν
i = z(ν)− z(λ) ∈ Zw =

w⊕
i=1

Zενi ,

and hence

ai =

{
1
2
, if i ∈ Γ ∪∆;

0, otherwise.

In other words,
∑w

i=1 aiε
ν
i = 1

2
(ενΓ + εν∆). Thus,

z(λ) = z(ν) + εν∆,(8.3)

z(µ) = z(ν) + ενΓ,(8.4)

and hence

ẑ(λ) = ẑ(ν) + ε̂ν∆,

ẑ(µ) = ẑ(ν) + ε̂νΓ
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by Proposition 7.1. This yields

1 = ‖ẑ(λ)− ẑ(µ)‖ = ‖ε̂ν∆ − ε̂νΓ‖ = |Γ|+ |∆|.

Hence one of Γ and ∆ is empty, while the other is a singleton set. Substituting this into (8.3)

and (8.4) and using Theorem 3.9(1), the lemma follows. �

We deduce that the full subgraph of the Ext1-quiver of a block of a v-Schur algebra in char-

acteristic 0 generated by the simple modules labelled by 4-increasing partitions is determined

by the map ẑ, in a particularly easy way.

Theorem 8.9. Let λ and µ be 4-increasing partitions with e-weight w lying in the same block.

Let L(λ) and L(µ) be the corresponding simple modules of (a block of) a v-Schur algebra over

a field of characteristic zero in which v is a primitive e-th root of unity [DJ]. The following

statements are equivalent:

(1) Ext1(L(λ), L(µ)) 6= 0.

(2) Ext1(L(λ), L(µ)) is one-dimensional.

(3) dλµ(q) = q or dµλ(q) = q.

(4) There exists i ∈ [1, w] such that z(µ) = z(λ) + ελi or z(λ) = z(µ) + εµi .

(5) ‖ẑ(λ)− ẑ(µ)‖ = 1.

Proof. The q-decomposition numbers are the graded decomposition numbers of graded versions

of the v-Schur algebras at primitive e-th roots of unity in fields of characteristic zero [A2, SW].

Moreover, these graded v-Schur algebras are standard Koszul algebras [We]; it follows from the

general theory of this class of algebras that (1)—(3) are equivalent [ADL]. Statements (3) and

(4) are equivalent by Theorem 4.7, while (4) and (5) are equivalent by Proposition 7.1 and

Lemma 8.8. �

9. The Mullineux-Kleshchev involution

In this section we prove that the Mullineux-Kleshchev involution on e-regular partitions

translates via λ 7→ z(λ) to very simply defined involutions on Zw, w ≥ 0, as long as λ is

0-increasing.

Recall that a partition λ = (λ1, λ2, . . . ) is called e-regular if there does not exist i such that

λi = λi+1 = · · · = λi+e−1 6= 0. Put

U reg := [1, e− 1]w ⊂ Zw,

so that

U reg
≥0 = {(z1, . . . , zw) ∈ Zw | 1 ≤ z1 ≤ · · · ≤ zw ≤ e− 1)}.

Proposition 9.1.

(1) Let λ be a partition of e-weight w, and let z(λ) = (z1, . . . , zw). Then λ is e-regular if

and only if zi > 0 for all i ∈ [1, w].

(2) The set of e-regular 0-increasing partitions in any block of e-weight w is in bijection

with U reg
≥0 via λ 7→ z(λ).
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Proof. Let A(λ) = {(b1, q1), . . . , (bw, qw)}, ordered as usual. Suppose that zi = 0. Then {qi +

e−1, . . . , qi−1, qi} ⊂ β(λ) and r /∈ β(λ) for some r <e qi, and hence λ is e-singular. Conversely,

suppose that λ is e-singular. There exists r < s such that r /∈ β(λ) and s, s+ 1, . . . , s+ e− 1 ∈
β(λ). We can in fact assume that s = r + 1, and then we find bi = qi = r + e and zi = 0 for

some i ∈ [1, w]. This completes the proof of the first assertion. The second then follows, c.f.

Theorem 3.9. �

Recall the Mullineux-Kleshchev involution λ 7→ λ∗ on the set of e-regular partitions (see, for

example, [LLT, §7]); it preserves e-weights and conjugates e-cores. There are at least two ways

of calculating λ∗ from λ, the original description of Mullineux [M] and the later reinterpretation

of Kleshchev [Kl], both of which may be formulated as being given by a series of ‘bead moves’

on the abacus. The maximum number of moves required to carry out either algorithm grows

linearly with |λ|, insensitive to the e-weight of λ.

Consider the involution

∗ : Zw → Zw; (z1, . . . , zw) 7→ (e− zw, . . . , e− z1).

It restricts to an involution of U reg
≥0 , and more generally to an involution of U reg

≥m and of U+
≥m for

all m ∈ Z.

Proposition 9.2. Let λ be a 0-increasing e-regular partition of e-weight w. Then z(λ∗) = z(λ)∗.

Proof. Suppose first that λ lies in a Rouquier block. We may write z(λ) as (1w1 , . . . , (e−1)we−1),

by Proposition 9.1(1). Then λ has e-quotient (∅, (1w1), . . . , (1we−1)) by Example 3.3. Thus λ∗

has e-quotient (∅, (1we−1), (1we−2), . . . , (1w1)) by [Pa, Theorem 2.1] (see also [Ta, Proposition

3.7]). Using Example 3.3 again, we see that z(λ∗) = (1we−1 , 2we−2 , . . . , (e− 1)w1), and thus the

claim is verified. For the general case, we use the fact that the Mullineux-Kleshchev involution

intertwines the action of Kashiwara’s operators Ẽa and F̃a on the set of e-regular partitions

with that of Ẽe−1−a and F̃e−1−a [Kl], and hence the induced action of the simple reflection sa
of the affine Weyl group W with that of se−1−a. If the proposition holds for a 0-increasing

e-regular partition λ, so that in particular λ∗ is 0-increasing, then z(sa(λ)∗) = z(se−1−a(λ
∗)) =

z(λ∗) = z(λ)∗ = z(sa(λ))∗, by Theorem 3.9, so it holds for sa(λ) as well. Since every W-orbit

contains a partition in a Rouquier block, we are done. �

Next we turn our attention to parallelotopes.

Proposition 9.3. Let λ be a hook-quotient partition of e-weight w. Then the conjugate partition

λ′ is a hook-quotient partition, and Π(λ′) = Π(λ)∗. More precisely, for any Γ ⊆ [1, w], we have

z(λ′) + ελ
′

Γ′ = (z(λ) + ελΓ)∗, where Γ′ = {i ∈ [1, w] | w + 1− i /∈ Γ}.

Proof. We first write the β-numbers, e-quotient, bead movements, z and modified basis vectors

associated to the conjugate partition λ′ in terms of those of λ. We have β(λ′) = {x | 1 − x /∈
β(λ)}. Thus runner a of the abacus of λ′ is obtained from runner e−1−a of λ by turning it upside

down and interchanging occupied and unoccupied positions. In particular the components of
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e-quotients are related by the formula λ′(a) = (λ(e−1−a))′, for a ∈ [0, e − 1], so that λ′ is a

hook-quotient partition if and only if λ is.

Let λ be a hook-quotient partition, and let q1 < · · · < qw and q′1 < · · · < q′w be the starting

positions of the bead movements of λ and λ′, respectively. Note that for any partition µ, x ∈ Z
is a starting position of some bead movement of µ if and only if there exist x+, x− ∈ Z such

that x ≤e x+ ∈ β(µ) and x >e x
− /∈ β(µ), if and only if there exist y+, y− ∈ R (y± = 1− x∓)

such that 1 − x ≥e y− /∈ β(µ′) and 1 − x <e y
+ ∈ β(µ′), if and only if 1 − x + e is a starting

position of some bead movement of µ′. It follows that q′i = 1−qw+1−i+e). Next, writing z(λ) =

(z1, . . . , zw) and z(λ′) = (z′1, . . . , z
′
w), we have, for all i ∈ [1, w], zi = |{x ∈ (qi − e, qi] | x /∈ β(λ)}|

and z′w+1−i = ||{x ∈ (q′w+1−i − e, q′w+1−i] | x /∈ β(λ)} = |{x ∈ [qi − e, qi) | x ∈ β(λ)}|. Hence

zi + z′w+1−i = e− 1qi∈β(λ) + 1qi−e∈β(λ). Now

ελ[1,w] =
∑

i∈[1,w]: qi∈β(λ)
and qi−e/∈β(λ)

ei −
∑

i∈[1,w]: qi /∈β(λ)
and qi−e∈β(λ)

ei

=
w∑
i=1

(
1qi∈β(λ) − 1qi−e∈β(λ)

)
ei

=
w∑
i=1

(
e− zi − z′w+1−i

)
ei

= z(λ′)∗ − z(λ).

This completes the proof when Γ = [1, w]. The general case follows from the following obser-

vation: for all i, j ∈ [1, w], we have ελi = ei if and only if ελ
′
w+1−i = ew+1−i and ελi = ei − ej if

and only if ελ
′
w+1−i = ew+1−i − ew+1−j. �

Corollary 9.4. Let λ be a hook-quotient partition and µ an e-regular 0-increasing partition in

the same block of e-weight w. Then z(µ) ∈ Π(λ) if and only if z(µ∗) ∈ Π(λ′), and if so, then

dλ(µ) + dλ′(µ
∗) = w.

Remark 9.5. Theorem 9.4 of [LLT] states that for any pair of partitions λ, µ in a block of

weight w, with µ e-regular,

(9.1) dλ′µ∗(q) = qwdλµ(q−1).

Through Corollary 9.4, we see that the statement of Theorem 4.7 is compatible with Equa-

tion (9.1) for any hook-quotient partition λ and 0-increasing e-regular partition µ, even though

the theorem is established only when µ is 4-increasing. On the other hand, since for any hook-

quotient partition λ it is always the case that dλλ(q) = 1 and z(λ) ∈ Π(λ) with dλ(λ) = 0, the

formula in the statement of Theorem 4.7 correctly computes dλ′,λ∗(q) = qw for any 0-increasing

hook-quotient partition λ.

Remark 9.6. As an important special case of Propositions 9.2 and 9.3, we have z(λ∗) = z(λ′)+

ελ
′

[1,w] for any 0-increasing hook-quotient partition of weight w. If λ (and hence λ∗) is 4-increasing,

we can thus efficiently compute its Mullineux-Kleshchev image λ∗ by first conjugating λ and
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then applying a sequence of bead operations, as described in Remark 5.12. In fact, as mentioned

in that remark, even when λ is merely 0-increasing, it may still be possible to find λ∗ in this

way. The maximum number of bead operations required to carry out this procedure grows

quadratically in w, independently of |λ| and of e, and is thus more efficient than either Mullineux

or Kleshchev’s algorithms when w is small compared to |λ|.

Remark 9.7. The obvious analogues of the results of this section with z, ε and Π replaced by

ẑ, ε̂ and C hold true with respect to the involution

∗ : Ẑw → Ẑw;
∑

ziei +
∑

zijeij 7→
∑

(e− zw+1−i)ei +
∑

zw+1−j,w+1−ieij

extending that on Zw defined above.
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