
              

City, University of London Institutional Repository

Citation: Riaz, A., Asad, M., Alonso, E. & Slabaugh, G. G. (2018). Fusion of fMRI and Non-

Imaging Data for ADHD Classification. Computerized Medical Imaging and Graphics, 65, 
pp. 115-128. doi: 10.1016/j.compmedimag.2017.10.002 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/18419/

Link to published version: https://doi.org/10.1016/j.compmedimag.2017.10.002

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Fusion of fMRI and Non-Imaging Data for ADHD
Classification

Atif Riaz, Muhammad Asad, Eduardo Alonso, Greg Slabaugh

City, University of London

Abstract

Resting state fMRI has emerged as a popular neuroimaging method for automated

recognition and classification of different brain disorders. Attention Deficit

Hyperactivity Disorder (ADHD) is one of the most common brain disorders

affecting young children, yet its underlying mechanism is not completely understood

and its diagnosis is mainly dependent on behavior analysis. This paper addresses

the problem of classification of ADHD based on resting state fMRI and proposes

a machine learning framework with integration of non-imaging data with imaging

data to investigate functional connectivity alterations between ADHD and control

subjects (not diagnosed with ADHD). Our aim is to apply computational techniques

to (1) automatically classify a subject as ADHD or control, (2) identify differences

in functional connectivity of these two groups and (3) evaluate the importance

of fusing non-imaging with imaging data for classification. In the first stage

of our framework, we determine the functional connectivity of brain regions by

grouping brain activity using clustering algorithms. Next, we employ Elastic Net

based feature selection to select the most discriminant features from the dense

functional brain network and integrate non-imaging data. Finally, a Support

Vector Machine classifier is trained to classify ADHD subjects vs. control. The

proposed framework was evaluated on a public ADHD-200 dataset, and our

results suggests that fusion of non-imaging data improves the performance of

the framework. Classification results outperform the state-of-the-art on some

subsets of the data.
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Non-imaging data

1. Introduction

The human brain can be envisioned as a large and complicated network

efficiently controlling the complex systems of the body. While coordinating

bodily function, the brain regions continuously share information, and regions

exhibiting temporal correlation are assumed to be functionally connected. Recently,5

analysis of functional connectivity of brain regions has gained much research

focus as it is assumed that the connectivity plays a key role in cognitive processes

of the brain [1]. Compared with other neuroimaging techniques like Positron

Emission Tomography (PET) and electroencephalogram (EEG), functional MRI

(fMRI) is considered most suitable towards determining functional connectivity10

[2].

Research studies have shown that brain disorders such as Alzheimer's disease,

epilepsy, ADHD can alter the functional connectivity of the brain network

[3]. Accurate identification of the altered functional connectivity induced by

a particular disorder is considered an important task that may highlight the15

underlying mechanism of the disorder. Recently, resting state fMRI has emerged

as a promising neuroimaging tool to investigate functional activity of brain

regions [4, 5, 6, 7, 8, 9]. In particular, fMRI has been employed to identify the

connectivity alterations induced by disorders such as epilepsy [4, 5], schizophrenia

[6, 7], ADHD [8, 9] and many more.20

ADHD is one of the most common neurodevelopmental and mental disorders

found in young children, affecting 5-10% of children [8], contributing to lifetime

impairment [10], poor quality of life [11] and a long time burden on affected

families [10, 11]. Like many other brain disorders, the mechanism underlying

ADHD is still not completely understood [8]. ADHD has received significant25

research focus, including studies employing Machine Learning on fMRI to investigate

functional connectivity alterations in ADHD [12, 13, 8, 3, 14].

Garcia et al. [12] proposed a functional-anatomical discriminative region
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model for identification of the discriminant features and pattern classification

of ADHD. In the study, Independent Component Analysis (ICA) was applied30

to extract the brain functional networks. Similarly, Tabas et al. [14] proposed a

variant of ICA to characterize the differences between a healthy control and an

ADHD group. This study used 20 independent components and combined ICA

and a spatial variant of the Fisher's linear discriminant towards characterizing

the differences between the two groups. ICA-based methods need no prior35

information about the spatial or temporal patterns of source signals, and therefore

are considered to be well suited for fMRI study. ICA-based approaches have

shown success in the classification tasks, however, there are certain possible

limitations to these methods. First, the independent components are often

perceived as difficult to understand [1]. ICA is based on the assumption of40

components (signal sources) independence, whether spatially or temporally.

Violation of the assumption may degrade the performance. Also, selection of

the number of independent components and threshold value for the independent

component maps might emerge as a drawback [2].

Dey et al. [8] proposed attributed graph distance measures for classification45

of ADHD. In [8] authors modeled the brain network as a graph and represented

each node of the network as a set of attributes which was termed as the signature

of a node. Correlation was applied for functional network construction and only

positive correlation values were employed for constructing the network. Also, a

threshold was applied on correlation values. The threshold value was arbitrarily50

chosen and different values were employed for different imaging datasets. Similarly

Siqueira et al. [3] investigated different graph based measures to assess discriminative

power of the measures.

Regional Homogeneity (ReHo) of brain activity is one of the common measures

used for classification. It estimates how much a voxel functional activity is55

homologous with its neighbor voxels. In [15], authors extracted ReHo maps

and applied the combination of the Principal Component Analysis (PCA) and

Fisher Discriminative Analysis (FDA) for ADHD classification on a data set

containing only 20 subjects. Some other studies [16, 17, 18] have also applied
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the ReHo feature on the ADHD-200 data set for classification. While ReHo can60

measure the local spatial homogeneity of the voxel, it ignores the comparison

of the activities of the spatially disconnected regions, a characteristic that may

provide the global insight of the functional activity.

Correlation is a popular method to calculate function connectivity and different

correlation methods have been employed to compute the functional connectivity65

of the brain. Dai et al. [19] segmented the brain into 351 ROIs using template

provided by Craddock et al. [20] and calculated functional connectivity by

Pearson’s correlation. Bohland et al. [21] applied the Automated Anatomical

Labeling (AAL) atlas [22] to segment the brain into 116 ROIs and computed

functional connectivity using three correlation variants: Pearson’s correlation,70

sparse regularized inverse covariance and Patel’s Kappa. Eloyan et al. [23]

extracted five ROIs belonging to the motor network with 264 voxels as nodes

and computed functional connectivity through Pearson’s correlation coefficient

which was used for classification. Similarly Cheng et al. [16] employed Pearson’s

correlation and partial correlation to calculate functional connectivity on 9075

brain regions extracted from the AAL template [22]. Multiple measures including

ReHo, functional connectivity and Fractional Amplitude of Low-frequency Fluctuation

(fALFF) were employed for classification.

The studies show encouraging results, and demonstrate that machine learning

techniques hold promise for the analysis of neuroimaging data. Most of the80

studies rely on correlation based approaches for calculation of functional connectivity.

However, correlation based approach does not characterize the network structure

of brain regions, i.e., whether two brain regions belong to the same functional

cluster or not [24], also network obtained by correlation is quite dense which

may degrade the performance of classifier [24, 4].85

Clustering is another popular approach for evaluation of functional connectivity.

Studies have shown that a clustering based approach is more sophisticated as

compared to correlation based approaches as the network obtained by clustering

is sparse [5, 2]. To the best of our knowledge, clustering has not been previously

applied on the ADHD-200 dataset for functional connectivity analysis. Different90
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clustering approaches can be applied to determine functional connectivity. Zhang

et al. [24] applied k-means clustering to calculate functional connectivity. However,

in k-means, random initialization of clusters and a priori information of the

number of clusters may emerge as a major drawback, as in the case of fMRI the

number of clusters is not known. Hierarchical clustering can also be applied for95

functional connectivity calculation [25] but selection of thresholding or number

of clusters may emerge as a drawback of these methods. In this paper we propose

a hybrid clustering approach that determines the number of clusters from the

data itself.

In this paper, our motivation is to study functional connectivity alterations100

induced by ADHD. However, unlike previous work that relies on the imaging

data alone, in this paper we bring together two types of features, namely

non-imaging and imaging features to form a single feature vector used for

classification of individuals as ADHD or control (non-ADHD). Our framework

is comprised of multiple stages. In the first stage, the functional connectivity105

between brain regions is determined using the Affinity Propagation (AP) clustering

algorithm [26]. Instead of requiring a number of clusters in advance, AP takes

a measure of similarity between data points and the initial preference for each

point for being cluster centroid. We propose a novel method to find these cluster

centroids through a matrix derived from the Density Peaks (DP) algorithm110

by Rodriguez and Laio [27]. Next, we select discriminant features through

Elastic Net (EN), which combines variable shrinkage with grouped selection of

variables. Finally, we employ a Support Vector Machine (SVM) classifier to

classify between control and ADHD. We demonstrate that the integration of

non-imaging data in our framework improves the performance.115

This work makes several contributions. First, we propose a novel method to

initialize the AP clustering algorithm by employing the Density Peaks approach.

Second, we demonstrate the importance of non-imaging data for classification of

control vs. ADHD based on the functional connectivity between brain regions.

We perform anatomical analysis of our results, and observe that the Frontal and120

Parietal (pre motor) lobes have the largest number of functional connectivity
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alterations for all the tested datasets. In addition, our experimental results

outperform the previous state-of-the-art for three test datasets of the publicly

available ADHD 200 data.

It should be noted that the preliminary version of this work was published in125

[28]. Compared to the earlier version of this manuscript, we have extended our

work by: 1) performing additional experimental results, 2) exploring the impact

of different non-imaging measures towards classification in terms of ROC curves

and 3) performing anatomical analysis of our results. In this paper, we have

applied our framework on ADHD data only, however, the proposed method can130

also be applied to other neurological disorders like schizophrenia and epilepsy.

The rest of the paper is structured as follows. We present an overview of the

fMRI data used in this work and preprocessing steps in Section 2. Our proposed

method, including functional connectivity calculation, dataset balancing, feature

selection, fusion of non-imaging data and classification, is detailed in Section 3.135

Section 4 presents the experimental validation and results. Anatomical analysis

is discussed in Section 4. Section 5 concludes the paper.

2. Data

The resting state fMRI data used in this study is from the NeuroBureau

ADHD-200 competition [29]. The data consists of resting state functional140

MRI data as well as different phenotypic information (non-imaging data) for

each subject. There was a global competition held for classification of ADHD

subjects, and the consortium has provided training and an independent test

dataset for each imaging site. Eight different imaging sites contributed to

compile the dataset, for this study we used datasets from four sites: Kennedy145

Krieger Institute (KKI), NeuroImage (NI), New York University Medical Center

(NYU) and Peking University (Peking). All sites have a different number of

subjects. Also, the imaging sites have different scan parameters and equipment,

which makes the dataset complex as well as diverse. For all of our experiments,

we used the preprocessed data released for the competition. The preprocessing150
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is performed using AFNI [30] and FSL [31] tools on Athena computer clusters

at the Virginia Tech advance research computing center. The preprocessing

steps include: removing of first four time points, slice time correction, motion

correction (first image taken as the reference), registration on 4 × 4 × 4 voxel

resolution using the Montreal Neurological Institute (MNI) space, filtration155

(band pass filter 0.009Hz < f < 0.08Hz) and smoothing using 6mm FWHM

Gaussian filter. Interested readers may refer to the competition website for

further details of data and preprocessing [32].

After preprocessing all images, the brain is segmented into 90 regions using

the Automated Anatomical Labeling [22] atlas. We have integrated non-imaging160

data (age, gender, verbal IQ, performance IQ and Full4 IQ) for all sites except

from NeuroImage, for which the data was missing.

3. Methods

Our framework consists of the following modules: functional connectivity

calculation, feature selection, fusion of non-imaging data and classification. A165

block diagram of the methodological framework is presented in Figure 1 and

described below.

3.1. Dataset balancing

Dataset imbalance is a critical problem in the majority of biomedical imaging

applications including neuroimaging. The imbalanced datasets may degrade170

the performance of a classifier by introducing imbalanced learning, which may

impact over focus on the majority class. One approach to counter this problem

might be to perform random oversampling of the minority class subjects or

randomly under sampling the majority class to create balanced training datasets,

but these strategies may yield suboptimal performance [33]. Instead of these175

strategies, we apply Synthetic Minority Over-sampling Technique (SMOTE)

[34] to produce synthetic minority samples. Consider IAεI, where I is the set of

individual subjects and IA represents the minority subjects. For each individual
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Figure 1: Flowchart of methodology. In the first step, functional connectivity is calculated for

both training and testing datasets. For imbalanced datasets, SMOTE is applied on training

datasets only. The next step is feature selection where discriminant features from training

dataset are calculated which are used for classification. Following this, the selected features are

fused with non-imaging data. Finally, the fused feature set is presented to SVM for classifier

training and testing.

subject xiεIA, K-nearest neighbors of xi are calculated. A random subject x̂i

is chosen from these neighbors and an additional minority subject is synthesized180

as

xs = xi + (x̂i − xi)× r. (1)
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xs is a synthetic subject and r is random number such that rε[0, 1]. In our

work, we applied SMOTE on training data as shown in Figure 1. SMOTE is

not required for the testing dataset.

3.2. Functional Connectivity185

Functional connectivity can be defined as the temporal correlation between

spatially apart brain regions and can be estimated by correlation of temporal

signals [3, 8], as well as clustering [4]. We propose a hybrid framework which

employs Affinity Propagation (AP) clustering [26] and the Density Peaks (DP)

algorithm [27] for functional connectivity estimation. Specifically, we employ the190

AP clustering for grouping of brain regions in to clusters. The AP clustering

takes real valued similarities between brain regions as input, where the similarity

s(i, j) indicates how well the region j is suited for the centroid for the region i.

Typically, negative Euclidean distance is employed as similarity measure [26].

One of the most appealing properties of AP clustering is that it does not require195

a number of clusters in advance. Rather it takes a real valued number s(i, i)

as input for each region i so that the regions with larger values of s(i, i) are

more likely to be selected as centroids. These values are referred as preferences

[26]. AP clustering is a message passing algorithm where each data point is

simultaneously considered as potential centroid as well as being part of any200

cluster. Messages are passed between all data points until robust clusters and

their centroids emerge. There are two kinds of messages passed between data

points, namely responsibility and availability messages where each message is

associated with a different kind of competition. The responsibility message

r(i, j) is sent from the region i to a potential centroid candidate j, reflecting the205

accumulated strength for how well suited region j is to serve as cluster centroid

for region i, taking into consideration all other potential centroids for region

i. The availability message a(i, j) is sent from a candidate centroid j to region

i, and reflects the accumulated strength for how well suited it would be for

region i to select region j as its centroid, considering the support from all other210

regions that region j should be a centroid. Availability messages for all regions
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are initialized as

a(i, j) = 0, (2)

and responsibility can be calculated as

r(i, j) = S(i, j)−max
j′ 6=j
{a(i, j′) + S(i, j′)}. (3)

where S in Equation 3 is the similarity measure between brain regions as

discussed above. For any two regions i and j with temporal dimensions k =215

{1, 2, ...t}, the similarity measure S is initialized as

S(i, j) = −

√√√√ t∑
k=1

(ik − jk)2

σ2
k

, (4)

where σk is the standard deviation. A higher similarity value between regions i

and j reveals the fact that region j is more suitable as centroid for i.

For the initial iteration, with availabilities being zero, responsibility r(i, j)

is set to the input similarity S(i, j) between region i and region j as its centroid220

minus the largest of the similarities between region i and other candidate centroids.

In later iterations, when some regions are associated with other centroids, their

availabilities will drop to negative values using the equation below. These

negative availabilities will effectively remove the corresponding candidate centroids

from the competition. With the responsibility updates, candidate centroid225

compete for ownership of a region, the availability update below combines

evidence from data whether each candidate centroid would effectively emerge a

good centroid

a(i, j) = min{0, r(j, j) +
∑

i′,i′ 6={i,j}

max{0, r(i′, j)}}, (5)

The “self-availability” a(j, j) is updated differently as

a(j, j) =
∑

i′,i′ 6={j}

max{0, r(i′, j)}, (6)
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Figure 2: Illustration of the AP clustering for two-dimensional data points, where negative

Euclidean distance was used to measure similarity. The color of each point represents the

current evidence that it is a cluster center (centroid). The darkness of the arrow from point

i to point j represents the strength of the message that point i belongs to centroid point j.

Initially, the strength of messages is weak and there are no clusters. After some iterations,

the strength of the messages increases and finally, robust clusters emerge.

The working of AP clustering for two-dimensional points is illustrated in230

Figure 2 where it is shown that after some iterations, the strength of the

messages increases for certain points and their corresponding clusters and their

centroids emerge.

Instead of requiring an initial guess for a number of clusters, the AP clustering

algorithm requires a preference value p assigned to each region as the initial235

probability of being a cluster centroid. The number of identified clusters is

influenced by the preference value, but also emerges from the message passing

procedure [26],[4]. As a common practice, all data points are considered equally

suitable as centroids, thus the preference value is set to a common value. The

number of clusters produced is affected by this value. The shared value could240

be the median of the similarities (moderate number of clusters produced) or

their minimum (small number of clusters produced) [26]. However, instead of
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initializing with a common value, we propose a novel data driven method to

initialize the preference value. We propose to estimate this initial strength for

each region as being cluster centroid by taking support from the Density Peaks245

(DP) algorithm [27]. The DP algorithm proposes that the cluster center can be

identified as the points that have higher local density within its neighbor points

and are at larger distance from other higher density points. The density ρi of a

region i is defined as [27]

ρi =

N∑
j=1

f(di,j − dc), (7)

where dc is a cut off distance, di,j = −S(i, j) and f is250

f(x) =

 1, if x <0,

0, otherwise,
(8)

δi is defined as the minimum distance between the region i and any other

region with higher density which is calculated as

δi = min
j:ρj>ρi

di,j . (9)

The measure ρδ approximates strength of a region being as a centroid [27].

We use the measure ρδ for each region to scale for N regions and use as

preference for each respective region. Consider γ = ρδ, we initialize preference255

value as

p(i) =
γi −min{γ1, ...γN}

max{γ1...γN} −min{γ1...γN}
× (N − 1) + c, (10)

where N is the number of brain regions (N = 90), c is empirically chosen so

that when γi was minimal, the preference value for the region as N/6, which

is a small non-zero number that gives enough local support for initialization of

the AP clustering algorithm.260

After initializing p, the availability and responsibility messages are updated

iteratively. When updating these messages in each iteration, a damping update

is applied to each message to avoid possible numerical oscillations. For a
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particular iteration m, the damping update is applied as

am(i, j) = (1− λ)am(i, j) + (λ)am−1(i, j), (11)

rm(i, j) = (1− λ)rm(i, j) + (λ)rm−1(i, j), (12)

where we initialize λ = 0.5 as suggested by [26]. The message passing iterations265

were terminated based upon either i) the maximum number of iterations (I)

reached or ii) the centroids remained unchanged for consecutive C iterations.

In this work, we use I = 1500 and C = 100. We can combine the availability

and responsibility messages during iterations to determine the centroids and

their points. For any region i, we find region j that maximize a(i, j) + r(i, j)270

and identify the association of region i as

Association(i) =

 centroid , if i =j ,

i is a member of centroid j, otherwise.
(13)

From the AP clustering algorithm results, we construct a matrix M as

M(i, j) =

 1, if i and j are in the same cluster,

0, otherwise.
(14)

The cutoff distance dc in Equation 7 impacts clustering by varying the

preference value computed in Equation 10, yielding different clustering results.

Reference [27] proposed this cutoff distance to be around 2%. The optimal275

number of clusters is data dependent, and critically, not known in advance.

Rather than fixing a set number of clusters (as in popular clustering algorithms

like k-means), we instead select the number in a data-driven fashion by adjusting

this cutoff distance. For a given cutoff distance, the clustering algorithm will

produce a clustering of the data. We apply the clustering algorithm multiple280

times to produce a total of K matrices (each matrix denoted as M), one for each

clustering. To achieve this, the cutoff distance is varied sequentially, between

2% and 8% inclusive, of the neighbours to produce the multiple clusterings.

After these multiple runs of clustering, we calculate a functional connectivity

(FC) matrix as285

13



FC(i, j) =
1

K

K∑
l=1

Ml(i, j), (15)

where K = 7. The FC and M matrices are visualized in Figure 3. The FC

matrix represents the functional connectivity of a subject, such that each entry

in FC(i, j) may be considered as an estimate of probability that the ith and jth

regions belong to the same functional connectivity. The functional connectivity

matrix is employed in feature selection as described in next section.290

3.3. Discriminant feature selection

The constructed functional connectivity matrix from Equation 15 has a high

dimensionality of 4005 (90 × 89/2) unique features. The high dimension of

the matrix may degrade the performance of a classifier (the well known “curse

of dimensionality” problem). Also, a small number of functional connectivity295

features might be altered by ADHD as compared to all functional connectivity

features. We are interested to identify only those altered features, therefore,

there is a need to select the discriminant features.

The FC matrix constructed in the earlier step represents the functional

connectivity of the whole brain regions and may contain highly correlated features300

as they may belong to the brain networks. We investigate Elastic Net (EN)

based feature selection [13] for extracting discriminant features. The most

appealing property of EN is that it encourages grouped selection of features

which makes it well suitable in this domain. EN is an embedded based feature

selection algorithm that takes advantages of both the lasso and ridge regressions305

by combining their penalties in one single solution. Similar to the lasso regression,

the L1 penalty is employed to enable variable selection and continuous shrinkage,

and similar to the ridge regression, the L2 penalty is employed to encourage

grouped selection of features. If y is the label vector for subjects, yiε{l1, l2, ...ln},

lkε{1, 2} for k = {1, 2, ...n} and X = {FC1, FC2, ...FCn}, the cost function to310

be minimized by the Elastic Net is

L(λ1, λ2, β) = (||y −Xβ||)2 + λ1(||β||)1 + λ2||β||2, (16)
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(a) FC Matrix

(b) M1 (c) M2 (d) M3

(e) M4 (f) M5 (g) M6

(h) M7

Figure 3: Visualization of FC and M matrices. M1 to M7 are calculated from Equation 14

and FC is calculated from Equation 15. FC matrix represents the functional connectivity of a

subject where values closer to 1 represents high functional connectivity between corresponding

regions and values closer to 0 represents no or very low functional connectivity.

15



where

(||β||)1 =

n∑
j=1

|βj |, (17)

and

(||β||)2 =

n∑
j=1

(βj)
2, (18)

where λ1 and λ2 are weights of the terms forming the penalty function, and

β coefficients are calculated through model fitting. If we denote α as315

α =
λ1

λ1 + λ2
, (19)

than equation 16 can be written as

L(α, β) = (||y −Xβ||)2 + α(||β||)1 + (1− α)||β||2, (20)

where αε[0, 1] and the function α(||β||)1 + (1− α)||β||2 is called the elastic net

penalty which is a combination of the ridge and lasso regression. The parameter

α controls the combination of both where α = 1 represents lasso regression and

α close to 0 approaches the ridge regression. Typically, multiple iterations of320

EN are run in a cross validation setup and mean-squared error is recorded for

each iteration. At the end of EN, the fixed number of features or the features

related to minimum error are returned. In this work, we use α = 0.1 as we

are interested in selecting grouped features from sparse FC matrix. Multiple

iterations of EN are run until i) max iterations (iter = 100) is reached or ii)325

all β coefficients are converged to zero. By minimizing the cost function L in

Equation 20, we extract the features with non zero β coefficients relating to

minimum cross validation error employing the training set. We did not selected

fix number of features from EN as i) in the case of fMRI, the optimum number

of features is not known and ii) as our method was applied on different data330

sets, it was not possible to fix the number of selected features.

Next, we concatenated the EN selected features with non-imaging features to

construct a combined feature set for training the classifier. It should be noted

that the EN feature selection was applied on the imaging features only and
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was not applied on the non-imaging data. The description of the non-imaging335

features will appear in next section. The combined feature set is employed for

classification, as described in the next subsection.

3.4. Classification

The final step in our study is the classification where we employ a Support

Vector Machine (SVM) [35] classifier to evaluate the discriminative ability of the340

selected features from the previous steps. SVM is a popular machine learning

classification algorithm and has achieved good performance in a number of

neuroimaging studies (e.g., [4]). During the training phase of the classifier, it

is presented with labeled training data (for healthy control and ADHD subjects).

During this phase, SVM seeks an optimum boundary with a maximum separating345

margin between the two classes (healthy control and ADHD). The boundary is

defined by a linear combination of the predictor variables. The learned SVM

model is then employed in the testing phase by presenting unseen testing data

(without labels of subjects). The SVM classifier predicts the label (control

or ADHD) for each test subject. Consider y is the label vector for subjects,350

yiε(l1, l2, ...ln), lkε{1, 2} for i = {1, 2, ...n} and X = {x1, x2, ...xm} is our

combined feature vector. The decision function of SVM is given by [36]

f(x) = sign

(
n∑
i=1

(yiλ
∗
iΦ(x,xi)) + b∗

)
, (21)

where b∗εR, Φ is a kernel function, and λ∗i is constrained as: 0 ≤ λ∗i ≤ C1 for

yi = 1 and 0 ≤ λ∗i ≤ C2 for yi = 2 where C1 and C2 are penalties for class 1

and 2 respectively. We use C1 = 1 and C2 = 1 here. For all our results, we used355

Matlab (R2016a) implementation of SVM with linear kernel.

4. Experimentation and results

The proposed framework was evaluated on the dataset provided by the

ADHD-200 consortium [29], and contains four categories of subjects: Controls,

ADHD-Combined, ADHD-Hyperactive/Impulsive, and ADHD-inattentive. Here360
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we propose a binary classification problem: Controls vs. ADHD, by combining

all ADHD subtypes in one category, since we want to investigate alterations

and classification between the Control and the ADHD subjects. The number of

subjects in the training dataset of each imaging site is presented in Table 1. We

conducted experiments on the i) training dataset alone and the ii) training and365

test datasets. For evaluation of the ADHD-200 consortium dataset, we selected

the features using Elastic Net from the training data for each individual site and

the selected features were integrated with the non-imaging data for training the

SVM classifier. The non-imaging features explored in our work are comprised of

age, gender, verbal IQ, performance IQ and full4 IQ. Datasets from two imaging370

sites (Peking and KKI) were highly imbalanced with the majority of class being

the control subjects. To avoid imbalance learning in our model, we applied

SMOTE on the Peking and KKI datasets as described earlier. It should be

noted that the data generated by SMOTE was employed only for training the

classifier and not for classifier testing in our framework. Also the parameters of375

our framework are held constant for all the imaging sites datasets which includes

parameters for SMOTE and SVM, however, our framework is trained separately

on individual experiment.

Table 1: Number of the Control and the ADHD subjects for four imaging sites in the training

dataset.

Imaging site Total subjects Control subjects ADHD subjects

NI 48 23 25

KKI 83 61 22

Peking 85 61 24

NYU 226 98 118

4.1. Results on the Training Dataset

For evaluation of the training dataset we employed leave-one-out (LOO)380

cross validation on the individual imaging site and results are presented in Figure
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4 where the highest accuracy of 86.7% was achieved on the KKI dataset.

Figure 4: Results on training dataset. Classification Accuracy, Sensitivity and Specificity

attained for four imaging sites namely Kennedy Krieger Institute (KKI), NeuroImage (NI),

New York University Medical Center (NYU) and Peking University (Peking). Highest

classification is achieved on KKI dataset, which is 86.75%.

In order to compare with the state-of-the-art, we compared these results

with a recently published study on the same dataset. The study [8] also applied

LOO validation on the training dataset. The comparison is presented in Table385

2. The table shows that our methodology has improved results as compared

to Dey et al. [8] in three imaging sites. We also computed our results without

non-imaging data and results are compared in Table 3. The table show that

except KKI, our method shows good performance as compared to the published

study.390

4.1.1. Results on the Test Dataset

In this experiment, our framework was trained on the training dataset provided

for each imaging site. The trained SVM classifier was tested with the independent

test data provided for each individual site. In order to compare with the
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Table 2: Comparison of leave-one-out (LOO) results on training dataset. Our proposed

methods was able to achieve higher classification accuracy in three datasets as compared to

Dey et al.[8].

Dey et al.[8] Results Our methodology

Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

KKI 100% 9.5% 75.6% 90.1% 77.2% 86.7%

NI 68.1% 58.8% 64.1% 73.9% 72.0% 72.9%

NYU – – – 39.8% 63.5% 52.7%

Peking 96.6% 21.1% 61.2% 88.5% 79.1% 85.8%

state-of-the-art, results attained by our framework were compared with the395

competition team results (reported from NITRC) and the highest accuracy

achieved by teams for individual imaging sites (data from [12]). The results

are presented in Table 4. Low accuracy for the NI dataset might be due to the

fewer number of available subjects in this dataset.

In order to explore the impact of the non-imaging data towards classification400

results in our framework, we computed and compared the results with the fusing

non-imaging data with imaging data and without integrating the non-imaging

data. The results are presented in Table 5. It can be seen from the results

that integration of the non-imaging data provides better classification results for

Peking and NYU as compared to results without the non-imaging data. In order405

to evaluate generalization capability of our method we computed the cross-site

validation accuracy results. We trained our model on the combined training data

set of three imaging sites (KKI, PI and NYU). We did not evaluate NI for this

experiment because non-imaging data was not available. The trained framework

was evaluated on each individual imaging site and results are presented in410

Table 6. This is a challenging experiment as the ADHD-200 data set is very

heterogeneous. However, the results show that our method was able to attain

a comparable accuracy to that attained by training on individual imaging site.

Next, we calculated ROC curves for: i) imaging data only and ii) fusing
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Table 3: Comparison of leave-one-out (LOO) results of Dey et al.[8] with our methodology. We

calculated our results with i) fusing imaging + non-imaging data and ii) without non-imaging

data. (Non-imaging data for NI was not available).

Name
Accuracy of Dey et

al.[8]

Accuracy of fused

imaging +

non-imaging data

Accuracy without

non-imaging data

KKI 75.6% 86.7% 67.4%

NI 64.1% – 72.9%

NYU – 52.7% 25.4%

Peking 61.2% 85.8% 85.3%

Table 4: Comparison of our results with average results of competition teams and highest

accuracy achieved for individual site. The highest accuracy for NI was not reported by [12].

Our proposed method was able to achieve higher accuracy than average accuracy of the

competition results for three imaging sites.

Name
Average

accuracy

Highest

accuracy

Our

accuracy

Number of imaging

features

Peking 51.0% 58% 64.7% 733

KKI 43.1% 81% 81.8% 820

NYU 32.3% 56% 60.9% 230

NI 56.9% – 44.0% 346

imaging and non-imaging data for Peking and NYU datasets and results are415

presented in Figure 5. It is clear from the Area Under the Curve (AUC) values

that fusion of non-imaging measures yields better results (for Peking, AUC for

imaging data only=0.61 and AUC for imaging + non-imaging data=0.69, and

for NYU, AUC for imaging data only=0.60 and for imaging + non-imaging

data=0.74). In order to study the impact of different non-imaging measures420

towards classification, we calculated ROC curves for Peking and NYU datasets
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Table 5: Comparison of the accuracy results with fusing imaging + non-imaging data and

without non-imaging data. The results show that fusing non-imaging data with imaging data

provides better accuracy for two imaging sites (Peking and NYU).

Name
Accuracy with fused imaging +

non-imaging data

Accuracy without

non-imaging data

Peking 64.7% 58.8%

KKI 81.8% 81.8%

NYU 60.9% 24.3%

Table 6: Comparison of accuracies of i) trained and tested on each individual imaging site ii)

trained once on combined training data set and tested individually for three imaging sites.

Test data

set

Accuracy when

trained on each

individual imaging site

Accuracy when

trained on a combined

training data set

Peking 64.7% 60.7%

KKI 81.8% 81.8%

NYU 60.9% 56.1%
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(a) Peking dataset (b) NYU dataset

Figure 5: ROC curves for Peking and NYU for: i) fusing non-imaging and Imaging and ii)

Imaging only. For Peking AUC with imaging data is 0.61 and with non-imaging + imaging

it is 0.69, and for NYU, AUC is increased from 0.60 to 0.74 with fusion of non-imaging data

which shows that fusion of non-imaging data yields better performance.

by categorizing the non-imaging data in the two groups: i) IQ levels and ii) age

and gender. The results are presented in Figure 6. The ROC curves in the figure

compares the results of combining these non-imaging measures with imaging

data. The ROC curves for non-imaging + imaging for both imaging sites show425

better performance as compared to other curves for both imaging sites which

shows that fusion of all the non-imaging measures yield better performance.

Finally, in order to evaluate our proposed novel methodology to initialize

the AP clustering algorithm as discussed in the previous section, we computed

and compared our results with standard AP clustering results. The comparison430

is presented in the Table 7. It should be noted that in this comparison all other

parameters are held same for calculation of both results. The accuracy achieved

by our proposed methodology is higher as compared to accuracy achieved by

AP clustering for all four imaging sites.
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(a) Peking dataset (b) NYU dataset

Figure 6: ROC curves for different non-imaging measures for Peking and NYU. For both

datasets, the ROC curves for: i) IQ + Imaging ii) (Age+ Gender) + Imaging iii) All

Non-imaging measures + Imaging and iv) Imaging only, are shown. For both imaging sites,

ROC curves for non-imaging + imaging (shown by red color) show better performance as

compared to all other three curves, which shows that fusion of all non-imaging measures

yields better performance for both datasets.

5. Anatomical analysis435

Finally, we performed anatomical analysis of selected features of our framework

for all four imaging sites. Selected features for each individual imaging site in

our framework represent the altered functional connectivity between Control

and ADHD subjects. We discuss our findings in terms of: i) hemispheric analysis

and ii) Lobe analysis, which are explained below.440

5.1. Hemispheric analysis

The human brain is segmented in two hemispheres: the left hemisphere

and the right hemisphere. We analysed our selected features with respect to

both hemispheres and results are presented in Figure 7. For the analysis, each

region was mapped to a particular hemisphere. The figure suggests that for445

all four imaging sites, the inter hemispheric functional connectivity is altered

the most as compared to individual hemispheres. For Peking and KKI, the

inter hemispheric alterations constitute 49.7% and 49.3% respectively. While
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Table 7: Comparison of our proposed methodology with the AP clustering method for four

imaging sites. The accuracy achieved by our proposed methodology is higher as compared to

accuracy achieved by AP clustering for all four imaging sites.

Name AP clustering Proposed methodology

Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

Peking 81.4% 33.3% 58.8% 92.6% 33.3% 64.7%

KKI 87.5% 33.3% 72.7% 75.0% 100.0% 81.8%

NYU 41.6% 62.0% 56.1% 41.6% 68.9% 60.9%

NI 7.1% 63.6% 32.0% 42.8% 45.4 44.0%

the number of alterations belonging to left and right hemispheres are quite close

to each other. The results suggest that the functional connectivity between the450

two hemispheres might be impaired by ADHD.

Figure 7: Functional connectivity alterations with respect to brain hemispheres. The results

show that for all four imaging sites, majority of functional connectivity alterations belong to

inter hemispheric brain connections.
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(a) Peking dataset (b) KKI dataset

(c) NI dataset (d) NYU dataset

Figure 8: Functional connectivity alterations in terms of intra lobe alterations. Brain lobe

groups are segmented by Salvador et al. [25] which are: (Lobe 1) Medial temporal lobe, (Lobe

2) Subcortical lobe, (Lobe 3) Occipital lobe, ( Lobe 4) Frontal lobe, (Lobe 5) Temporal lobe,

and (Lobe 6) Parietal (pre) motor lobe. For all four imaging sites, the Frontal lobe is affected

the most as compared to other lobes.

5.2. Lobe analysis

Next, we discuss our findings in terms of groups of brain lobes suggested by

Salvador et al. [25]. The study identified six brain lobes namely: (i) Medial

temporal lobe, (ii) Subcortical lobe, and the four standard neocortical lobes455

which are (iii) Occipital lobe, (iv) Frontal lobe, (v) Temporal lobe, and (vi)

Parietal (pre) motor lobe. We studied intra lobe alterations for each imaging site

by mapping the brain regions to a particular lobe and the results are presented

in Figure 8. The results in Figure 8 suggest that in all four imaging sites, the

Frontal lobe is affected the most as compared to all other lobes, followed by the460

Parietal (pre) motor lobe.

Similarly, we studied functional connectivity alterations in terms of inter lobe
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alterations for all lobes in individual imaging sites and results are presented in

Figure 9. The results suggest that the functional connectivity of the Frontal

lobe and the Parietal (pre) motor lobe is affected the most. Results of the inter465

and intra lobe alterations from the Figures 8 and 9 suggest that in ADHD,

Frontal and Parietal (pre) motor lobes are affected the most, in terms of inter

and intra lobe functional connectivity alterations. The Frontal lobe is associated

with a number of critical brain functions such as attention, executive functions

(involved with purposeful, goal-directed behavior), memory, affect and mood470

[37]. With the alterations in the Frontal lobe, these associated brain functions

might be impaired in ADHD subjects. Parietal (pre) motor is known to be

associated with movement intention and motor awareness [38]. With the alterations

in Parietal (pre) motor, abnormal body activities might be observed.

Finally, we visualize the functional connectivity anomalies in terms of these475

six brain lobes for two imaging sites i.e. NI and NYU. The results are presented

in Figure 10 and Figure 11 respectively. It is clear from the figures that Parietal

(pre) motor and Frontal lobes are affected the most as they contain more altered

functional connections as compared to other lobes in both imaging sites.

6. Conclusions480

In this paper we have addressed the problem of identification of discriminant

features between Control and ADHD subjects for classification based upon fMRI

data. Classification of neuroimaging data is considered a difficult task due to

the high dimensionality of data. We have proposed a machine learning based

framework for this problem and evaluated our method on four training and485

test datasets provided by NITRC. Our framework introduces a novel method

for estimation of functional connectivity between brain regions. The brain

is a complex network where a number of brain regions might show coherent

activity. Therefore, discriminant features might be highly correlated with each

other. Here, we employed Elastic Net for feature selection that encourages490

grouped feature selection. In this work, we have evaluated the importance of
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(a) Peking dataset (b) KKI dataset

(c) NI dataset (d) NYU dataset

Figure 9: Functional connectivity alterations in terms of inter lobe alterations. Brain lobe

groups are segmented by [25] which are: (Lobe 1) Medial temporal lobe, (Lobe 2) Subcortical

lobe, (Lobe 3) Occipital lobe, (Lobe 4) Frontal lobe, (Lobe 5) Temporal lobe, and (Lobe 6)

Parietal (pre) motor lobe. For all imaging sites, the Frontal and Parietal (pre) motor lobes

are affected the most.

non-imaging data by fusing it with the selected features. Our results show

that Elastic Net based feature selection integrated with non-imaging data may

provide an important feature selection strategy. Our selected features and SVM

classifier were able to outperform the state-of-the-art in classification accuracy495

on data from three institutions. Our results also suggest that in ADHD, inter

hemispheric functional connectivity is altered the most as compared to alterations

belonging to the individual hemispheres which suggest that in ADHD coordination

between the lobes is affected. Our results suggest that the Frontal and Parietal

(pre) motor lobes are impaired the most by ADHD. In our future work we500

will explore the detailed clinical interpretation of the functional connectivity

alterations produced in our framework, particularly in light of the non-imaging
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(a) Functional connectivity alterations in NI dataset.

(b) Inter Lobe functional connectivity alterations in

NI dataset.

(c) Intra Lobe functional connectivity alterations in

NI dataset.

Figure 10: Visualization of functional connectivity alterations in NI dataset.
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(a) Functional connectivity alterations in NYU dataset.

(b) Inter Lobe functional connectivity alterations in

NYU dataset.

(c) Intra Lobe functional connectivity alterations in

NYU dataset.

Figure 11: Visualization of functional connectivity alterations in NYU dataset.
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