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Abstract
Smoothed Particle Hydrodynamics (SPH) method has a good adaptability for the simulation of free surface flow problems. There are two
forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH). Compared with the former one, ISPH method
performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping
length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix
for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally
used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using
which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for
large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank
sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.
Copyright © 2016 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With the development of numerical methods, meshless
particle methods get the robust advantage for breaking waves
and their interaction with marine structures in naval archi-
tecture and ocean engineering. There are many different
meshfree methods, such as Smoothed Particle Hydrodynamics
(SPH) method (Monaghan, 1994), Moving Particle Semi-
implicit (MPS) method (Koshizuka and Oka, 1996; Zhang
et al., 2006; Khayyer and Gotoh, 2011), Meshless Local
Petrov-Gelerkin (MLPG) method (Ma and Zhou, 2009) and so
on. SPH is arguably one of most often-used meshfree methods
and has been widely applied in marine and ocean engineering
(Oger et al., 2007; Xu et al., 2009; Lind et al., 2012; Rafiee
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et al., 2012; Colagrossi and Landrini, 2003; Liu and Liu,
2006; Schwaiger, 2008; Ferrand et al., 2013; Zheng et al,
2014). There are two SPH schemes. One is weakly
compressible SPH and the other is incompressible SPH
(ISPH). The latter one is based on the time project method and
need to solve the Poisson equation, which also meets the
problems of large sparse matrix solution. There are many
applications of ISPH method for water wave simulations
(Rafiee et al., 2012; Lind et al., 2012; Xu et al., 2009; Shao
and Lo Edmond, 2003; Shao et al., 2006; Shao, 2009) as it
performs betters in many cases.

The principle of ISPH is to solve the partial differential
equation for the pressure through the projection method. The
project method was firstly implemented to the SPH method by
Cummins and Rudman (1999). Many researchers have also
improved and modified the projection method to make it more
accurate and efficient. Compared to WCSPH, ISPH is a typi-
cally implicit by dealing with the pressure and velocity as
roduction and hosting by Elsevier B.V. This is an open access article under the
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primitive variables. WCSPH can be easy to program (Shadloo
et al., 2012) and it is more widely used at present. However,
some researcher (Hu and Adams, 2007; Xu et al., 2009; Zheng
et al., 2014) suggested that ISPH was more accurate especially
in the pressure representation. The reason is that when
handling fluid flow with larger Reynolds number (typically
>100), the standard WCSPH method has be found to suffer
from large density variations. Hu and Adams (2007), Ellero
et al. (2007) and Zheng et al. (2014) pointed out that
WCSPH was computationally less efficient than ISPH in the
case of fluids with different numerical cases.

With the improvement of ISPH method, some key numer-
ical technologies are applied. Xu et al. (2009) and Lind et al.
(2012) introduced a fick shift method to avoid the particle
pattern distribution. Bonet and Lok (1999), Khayyer et al.
(2008) proposed a corrected kernel formulation of the pres-
sure gradient calculation, which can improve the accuracy of
first derivative computing. In order to improve the pressure
distribution, Zhang et al. (2006) introduced a combined source
term for Poisson equation, further more Khayyer and Gotoh
(2011) introduced an error-compensating terms for source
term to improve the accuracy. According to the low accuracy
of Laplace operator, Schwaiger (2008) and Khayyer and
Gotoh (2011) give different forms for second order particle
approximation, which are helpful methods to remedy the low
accuracy for second order derivative. In order to avoid the
second order calculation, Ma and Zhou (2009) and Zheng
et al. (2014) introduces the Rankine source solution to
decrease the second order of the derivatives in pressure Pois-
son equation. The transformed Poisson equation does not
include any derivative of the functions to be solved. Using the
new formulation, one just needs to approximate the functions
themselves during discretization, instead of approximating
their second order derivatives as in the other incompressible
SPH, which is abbreviated as ISPH_R in this paper.

Ultimately, all incompressible SPH methods need to solve
sparse linear system in pressure Poisson equation. Solving
large sparse matrix systems is of great significance, which can
meet great challenge even in mesh base method. In many
practical applications, the coefficient matrix might be ill-
conditioned and challenging for iterative methods. Since one
of the main bottlenecks in the process of solving such linear
systems is always high computational cost. In addition, the
solution of linear system requires more simulation time when
numerical models are large and highly heterogeneous. The
coefficient matrices of large-scale sparse linear systems are
nonsingular and they have two distinctive characteristics. The
first one is that the size of linear system is very large. Many of
them have millions of rows. The second one is the matrix from
different discretized form are sparse, and whose patterns are
determined by discretized form and boundary handling con-
ditions. Our goal is to investigate a suitable iterative solver,
which may contain some fast iterative solvers as a
preconditioner.

The ISPH_R also meets the problem of large sparse linear
matrix solution, which is the most expensive part for numerical
calculation. The sparse matrix structure is more complex, as the
neighbor particles are not fixed and can be changed as time
stepping. As there is no paper focused on the comparison of
different iteration solutions especially for ISPH method, this
paper gives a pioneer work for iterative solvers for these particle
methods. Furthermore, with the effects of solid boundary con-
dition, the pressure Poisson equation generated by ISPH is an
unsymmetrical linear matrix. It is very suitable to apply the
iteration method to solve these sparse linear matrixes. One
option of sparse linear matrix solvers is stationary iterative
method, such as Jacobi method, Gauss-Seidel method and the
Successive over-relaxation (SOR) method. While these
methods are simple to derive and implement, convergence is
only guaranteed for a limited class of matrices. Krylov subspace
methods are a strand of most commonly used iterative method.
These techniques of Krylov subspace methods are based on
projection processes, which can be divided to two groups. One
is based on the Lanczos biorthogonalization, like CGS, BiCG,
BiCGstab. Other one is based on the Arnoldi orthogonalization,
like Gram-Schmidt (GS), Modified Gram-Schmidt (MGS),
Modified Gram-Schmidt with reorthogonalization (MGSR),
Householder (HO) and Generalized Minimum Residual
Method (GMRES) (Saad, 2003).

These techniques require the computation of some parame-
ters depending on the spectrum of the matrix. As the Incomplete
Cholesky decomposition Conjugate Gradient (ICCG) method
was first introduced for Poisson equation iteration calculation by
Koshizuka et al. (1999), it is suitable for symmetrical sparse
matrix solution. But the sparsematrixs of ISPHused in this paper
are nonsymmetical sparsematrix, so this method is not included.
Shao and Lo Edmond (2003) introduced a preconditioned con-
jucate gradient (PCG) to solve the pressure Poisson equation
efficiently. Lee et al. (2008) introduced a BI-CGSTABmethod to
solve the linear matrix and without preconditioner. Xu et al.
(2009) solved the linear matrix by using a BI-CGSTAB with a
Jacobi preconditioner. Scale Conjucate Gradient (SCG) method
is applied for pressure calculation (Hori et al., 2011). Liu et al.
(2013) employed a parallel direct sparse solver call PARDISO
(in Intel Math Kernel Library) to solve the pressure Poisson
equation. In order to shown the properties of typical iteration
methods, CGS (Sonneveld, 1989), Bi-CGstab (Van der Vorst,
1992) and GMRES (Saad and Schultz, 1986) are chosen,
which are the most popular methods for large sparse matrix
solution. There aremany different types of CGS, Bi-CGStab and
GMRES (Sonneveld and Van Gijzen, 2009; Sleijpen and
Fokkema, 1993; Saad, 2003; Mittal and Alaurdi, 2003; Vogel,
2007; Fujino, 2002; Spyropoulos et al., 2004), which are in
different ways to making more efficient use of a related infor-
mation. It is better to do further investigation of different typical
CGS, Bi-CGstab or GMRES, but its variable improvement
methods will not be shown at present. Although these iterative
methods are not new for solving Poisson equation, the compar-
ison and their convergent features for ISPH_R method have not
be discussed so far in literature. The results of this paper will also
help us improving the efficiency of computation and forth-
coming parallel computation.

This paper is organized as follows. In Section 2, it in-
troduces the governing equations and mathematical
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formulations of the ISPH_R method. In Section 3, the dis-
cretization of the pressure Poisson equation is introduced,
which includes free surface particle identification and solid
boundary condition. In Section 4, the basic steps of CGS, Bi-
CGstab and GMRES are discussed. In Section 5, comparison
of different iteration methods and analysis are given by still
water simulation, which includes the comparison of iteration
accuracy, CPU time, preconditioner and tolerance effects. The
paper then presents the numerical tests and discussions for
several cases, which includes dam breaking, violent tank
sloshing and solitary wave slamming in Section 6.

2. ISPH methodology

The formulation of the SPH is generally based on the
Lagrangian form of continuity equation and the Naviere-
Stokes equation for compressible flow, which may be written
as

Dr

Dt
þ rV$u¼ 0 ð1Þ

Du

Dt
¼�1

r
Vpþ gþ nV2u ð2Þ

where r is the fluid density, u is the fluid velocity, t is the time,
p is the fluid pressure, g is the gravitational acceleration, and n

is the kinematic viscosity. In the incompressible SPH method,
the fluid density is considered as a constant, and as a result, the
continuity equation can be written as

Dr=Dt ¼ 0 V$u¼ 0 ð3Þ
The computation in the ISPH method is composed of two

basic steps. The first step is a prediction, in which the velocity
field is computed without imposing incompressibility. The
second step is a correction in which incompressibility is
enforced, leading to the Poisson equation for solving pressure.
More details can be found in Shao et al. (2006). Summary will
be given below.

(a) Prediction step

Assuming that velocities and positions of particles at time t
have been found, their velocities and positions at t þ Dt are
first predicted by considering gravitational term and viscous
term in Eq. (2) using the following equations

u* ¼ ut þDu* ð4Þ

Du* ¼
�
gþ nV2u

�
Dt ð5Þ

r* ¼ rt þ u*Dt ð6Þ

where ut and rt are the velocities and positions at time t,
respectively, Dt is the time step, r* and Du* are the predicted
intermediate position and velocity of particles at the new time
step.
(b) Correction step

The velocity changed during the correction step is esti-
mated by

u** ¼�Dt

r
VptþDt ð7Þ

where ptþDt is the pressure at t þ Dt. The velocities and po-
sitions of particles at t þ Dt are then given by

utþDt ¼ u* þ u** ð8Þ

rtþDt ¼ rt þ ut þ utþDt

2
Dt ð9Þ

Combining Eqs. (8) with (3), one obtains the following
equation for pressure

V2ptþDt ¼ rV$u*

Dt
ð10Þ

Similarly, Shao and Lo Edmond (2003) proposed a
projection-based incompressible method to impose density
invariance Eq. (10), which leading to the equation below

V$

�
1

r*
VptþDt

�
¼ r� r*

rDt2
ð11Þ

where r* is the density at the intermediate time step and can be
estimated by r* ¼ PN

j¼1;mjWij. For the incompressible fluids,
the intermediate density is not much different from the spec-
ified fluid density. As indicated by Hu and Adams (2007), Eqs.
(10) and (11) are equivalent and both valid for incompressible
fluids theoretically. They suggested solving the two incom-
pressibility equations simultaneously. The solution of the
density invariant equation (Eq. (11)) was used to adjust the
positions of particles while the solution of the velocity-
divergence-free equation (Eq. (10)) was used to adjust their
velocity. In contrast, Zhang et al. (2006) used the mixed one
given below

V2ptþDt ¼ g
r� r*

Dt2
þ ð1� gÞrV$u*

Dt
ð12Þ

which was also used by Ma and Zhou (2009) for the MLPG_R
method, where g is the artificial value and in the range of 0e1.
According to numerical tests presented in Ma and Zhou (2009)
and also suggested by Zhang et al. (2006), the results for vi-
olent water waves obtained by using Eq. (12) seems to be
better if g is specified a proper small value than those for
g ¼ 0 (velocity-divergence-free equation). g ¼ 0.01 is used
for all numerical tests in this paper.

3. Poisson equation discretization and boundary
conditions

The main difference between the ISPH method and the
ISPH_R method lies in the approach to discretization of the
pressure Poisson equation defined in Eq. (12). In other ISPH
method, the Laplace operator in Eq. (12) is directly
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approximated like in finite different methods. There are
different order schemes available as reviewed and discussed
by Zheng et al. (2014). No matter which scheme is used, there
is always a difficulty with accurately modelling the functions
to be solved, in particular when neighbour particles are
distributed in a disorderly manner. Distribution of particles
always becomes disorderly when modelling violent waves
even they are regularly distributed at the start of simulation.
Therefore, it is obviously advantageous to eliminate use of
direct numerical approximation to second derivatives when
solving the pressure Poisson equation in the ISPH formulation.
Ma and Zhou (2009) have presented a new method. The main
idea of the new approach comes from another meshless
method called as the Meshless Local Petrov-Galerkin Method
based on Rankine Source Solution (MLPG_R), that is refor-
mulating Eq. (12) into another form which does not include
any derivative of pressure and velocity. For this purpose, Eq.
(12) is integrated over a small sub-domain Ui(to be distinctive,
notation of particles for the ISPH_R method is denoted by
capital i or j ) surrounding a particle after multiplication by the
Rankine source solution 4, and then it readsZ
Ui

4V2ptþDtdUi ¼
Z
Ui

�
g
r� r*

Dt2
þ ð1� gÞ r

Dt
V$u*

�
4dUi

ð13Þ

where 4 can be chosen as

4¼ 1

2p
lnðr=RiÞ for 2D cases ð14Þ

that satisfies V24 ¼ 0, in Ui except for the center and 4 ¼ 0,
on vUi, which is the boundary of Ui and Ri is its radius. The
radius is usually smaller than the distance between two par-
ticles. After some mathematical manipulations, Eq. (13) be-
comes the following formZ
vUi

n$ðptþDtV4ÞdS� ðptþDtÞi ¼ g
ri � r*i
Dt2

R2
i

4

þ ð1� gÞ
Z
Ui

r

Dt
u*$V4dU

ð15Þ

which will be applied to each of inner particles. More details
of mathematical manipulations can be found in Ma and Zhou
(2009). It has been noted that the increment of the density r�
r* assumed to a constant within the sub-domain and so equal
to its value at Particle i when Eq. (13) is derived. This may not
cause unacceptable error. Not only because the density should
not change much due to the change in the intermediate posi-
tion of the particle as pointed above, but also because the small
error caused due to the assumption is further reduced by
multiplying the coefficient g that is normally chosen in a range
of 0e0.3, which is taken as 0.1 in this paper. The term may be
evaluated in the same way as that for the second term but such
a way will not improve the accuracy significantly due to the
reasons discussed here.

For the ISPH_R method, with the approximation to pres-
sure, pðriÞz

PN
j¼1FjðrjÞpj, Eq. (15) becomes

A$P¼ B ð16Þ
The entries of A and B are given, respectively, by

Aij ¼

8><
>:

Z
vUI

Fj

�
rj
�
n$V4ds�FiðriÞ for inner nodes

Jij for solid boundary nodes

ð17Þ

Bi ¼

8>>><
>>>:

a
ri � r*i

Dt2
R2
i

4
þ ð1� aÞ

Z
Ui

r

Dt
u!*

$V4dU for inner nodes

r

Dt
n!$

�
u!* � U

!nþ1	
for solid boundary nodes

ð18Þ
where Jij is given below. When forming the above equations,
the pressure at the free surface particles has been imposed to
be zero, which is shown as

p¼ 0 ð19Þ
according to Eq. (17). In Eq. (18), one needs to evaluate the
integrals at each particle over its sub-domain. This potentially
takes significant computational time but the semi-analytical
technique suggested by Ma and Zhou (2009) helps reducing
the costs considerably and it is adopted in this paper.

On solid boundaries, the following conditions should be
satisfied

u$n¼ U$n ð20Þ
and

n$Vp¼ r
�
n$g� n$ _Uþ nn$V2u

� ð21Þ

where nis the unit normal vector of the solid boundaries, g is
the vector of gravitational acceleration, U and _U are the ve-
locity and acceleration of the solid boundaries, respectively.

It is obvious that one must compute the term V2u when
applying this condition in Eq. (21), which needs to estimate
the second order derivative at the rigid boundary. To avoid the
computation of the second order derivative in the equation, Ma
and Zhou (2009) combined Eqs. (5) with (21) and gave an
alternative as follows:

n$Vp¼ r

Dt
n$

�
u* �U

� ð22Þ

This one is used in this paper.
The condition on the free surface is very simple, which is

stated that the pressure of water on its free surface is equal to
the atmospheric pressure, which can be taken as zero as shown



Table 1

CGS.

Step 0 Construct a preconditioner K for a linear equations Ax ¼ b

Step 1 Solve Kxð0Þ ¼ b for xð0Þ

Step 2 Compute rð0Þ ¼ b� Axð0Þ, where r is the residual vector

Step 3 Set Pð0Þ ¼ uð0Þ ¼ KTrð0Þ

Step 4 For n ¼ 0, 1, 2,… carry out the following computations

4.1 Compute aðnÞ ¼ ðrðnÞ; rð0ÞÞ=ðApðnÞ; rð0ÞÞ, qðnÞ ¼ uðnÞ � aðnÞApðnÞ

4.2 ComputedðnÞ ¼ uðnÞ þ qðnÞ, xðnþ1Þ ¼ xðnÞ þ aðnÞdðnÞ

4.3 Compute rðnþ1Þ ¼ rðnÞ � aðnÞApðnÞ

4.4 Check convergence


rðnÞ



2
� RTOL



rð0Þ


2
þ ATOL, if not proceed

4.5 Compute bðnÞ ¼ ðrðnþ1Þ; rð0ÞÞ=ðrðnÞ; rð0ÞÞ,
4.6 Compute uðnþ1Þ ¼ rðnþ1Þ þ aðnÞAdðnÞ,
4.7 Compute pðnþ1Þ ¼ uðnþ1Þ þ bðnÞðqðnÞ þ bðnÞpðnÞÞ

Return to step 4.

Table 2

Bi-CGstab.

Step 0 Construct a preconditioner K for a linear equations Ax ¼ b

Step 1 Solve Kxð0Þ ¼ b for xð0Þ

Step 2 Compute r ð0Þ ¼ b� Axð0Þ, where r is the residual vector

Step 3 Set Pð0Þ ¼ rð0Þ, and rð0Þ(for example, rð0Þ ¼ rð0Þ)
Step 4 Define rð0Þ as the inner product of rð0Þ and rð0Þ, or rð0Þ ¼ ðrð0Þ; rð0ÞÞ
Step 5 For n ¼ 0; 1; 2;/ carry out the following computations

5.1 Solve Kpð0Þ ¼ pðnÞ for p
5.2 Compute VðnÞ ¼ Ap

5.3 Compute aðnÞ ¼ rðnÞ=ðrð0Þ;VðnÞÞ
5.4 Compute sðnÞ ¼ rðnÞ � aðnÞVðnÞ

5.5 Solve KsðnÞ ¼ sðnÞ for sðnÞ

5.6 Compute t ¼ As

5.7 Compute u ðnÞ ¼ ðt; sÞ=ðt; tÞ
5.8 Compute rðnþ1Þ ¼ s� uðnÞt
5.9 Check convergence



rðnÞ


2
� RTOL



rð0Þ


2
þ ATOL, if not proceed

5.10 Compute xðnþ1Þ ¼ xðnÞ þ aðnÞpþ uðnÞs
5.11 Compute rðnþ1Þ ¼ ðrð0Þ; rðnþ1ÞÞ
5.12 Compute bðnÞ ¼ ðrðnþ1Þ=rðnÞÞðaðnÞ=uðnÞÞ
5.13 Set Pðnþ1Þ ¼ rðnÞ þ bðnÞðPðnÞ � uðnÞVðnÞÞ

Return to step 5.

Table 3

GMRES.

Step 0 Construct a preconditioner K for a linear equations Ax ¼ b

Step 1 Solve Kxð0Þ ¼ b for xð0Þ

Step 2 compute r ð0Þ ¼ b� Axð0Þ, b ¼ 

rð0Þ


2
and yð1Þ ¼ rð0Þ=b

Step 3 For n ¼ 0; 1; 2;/ carry out the following computations

3.1 hm;n ¼ ðK�1AyðnÞ; yðmÞÞ; m ¼ 1; 2;/; n

3.2 yðnþ1Þ ¼ K�1AyðnÞ �Pn
m¼1ðhm;n � yðmÞÞ

3.3 hnþ1;n ¼ kynþ1k2
3.4 yðjþ1Þ ¼ yðnþ1Þ=hnþ1;n

Define Hi as the ðiþ 1Þ � i upper Hessenberg matrix whose nonzero en-

tries are coefficients hm;n
Step 4. form an approximate solution xðiÞ ¼ xð0Þ þ VðiÞyðiÞ

where VðiÞ≡½y1 y2/yi�T ;yðiÞ ¼ min
n



be1 �Hiy
ðnÞ



2
and

e1≡ð1 0 /0ÞT
Step 5 Compute rðnÞ ¼ b� AxðnÞ

Step 6 Check convergence


rðnÞ



2
� RTOL



rð0Þ


2
þ ATOL

If not, set xð0Þ ¼ xðnÞ compute rð0Þ ¼ b� Axð0Þb ¼ 

rð0Þ


2
and

vð1Þ ¼ rð0Þ=b, return the step 3.
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in Eq. (19). In the traditional SPH method, this condition is
automatically satisfied as long as the density on the free sur-
face is estimated correctly. However, in the incompressible
SPH method, this condition has to be imposed when solving
the boundary value problem defined above. In order to impose
this condition, one needs to know which particles are on the
free surface. This is not a problem for non-broken water
waves, where the water particles on the free surface at start
always remain on the free surface and does not need to be
identified during simulation. However, for breaking or violent
water waves, the particles on the free surface at start can
become inner particles and inner particles can become the free
surface particles during a simulation. Therefore, the free sur-
face particles have to be identified at every time step after
wave breaking occurs. In this paper free surface particles are
identified by density and three auxiliary functions, as tested by
Zheng et al. (2014). This technique can give significant
improvement on identifying the particles on the free surface. It
is noted nevertheless that a few particles near the free surface
may still be identified as free surface particles but such
incorrect identification may not lead to significant error on
pressure. That is because the pressures of these particles are
very close to the pressure on the free surface. The following
section will focus on the discussion what methods would be
better to solve Eq. (17).

After get the discretized form of Eq. (16), the next work is
focused on how to solve it efficiently, which is also the most
key problem for solving sparse linear matrix. Although this
problem appeared in many meshed based problems and had
done many researches on improving its computation costs and
speed, but it is still in open discussion. It is more difficult in
particle-based method, as the neighbour particles are not fixed
and can be changed with time stepping, elements in each row
may reach 20e30 in 2D cases and 40e60 in 3D cases, which
are more complex than normal mesh-based method. The target
of this paper will give some numerical tests of different typical
iteration methods and some useful advice for utility of
ISPH_R method, which can also be applied to other particle
methods.

4. Different iterative schemes

The particle discretization for Poisson pressure equation
leads to a large, sparse and unsymmetrical system of linear
equations. Iterative schemes are usually employed for solving
such a system. There are many iterative methods available but
the question is open about which one is the better for solving
the linear system associated with ISPH_R method. The main
aim of this paper is to compare three schemes. Biconjugate
Gradient Square (CGS) method (Sonneveld, 1989) is the first
coming Krylov subspace method. Biconjugate Gradient Sta-
bilized (Bi-CGstab) method (Van der Vorst, 1992) is the most
important iterative method for Krylov subspace methods based
Lanczos biorthogonalization. Generalized Minimal Residual
(GMRES) method (Saad and Schultz, 1986) is other typical
Krylov subspace methods based on the Arnoldi orthogonali-
zation. Their calculation efficiency and the convergent rate
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will be examined. For the completeness, the main steps of
three iteration methods are shown briefly in Tables 1e3.

The K of three iterative schemes can be set as Jacobi pre-
conditioner and ILU(0) of the same form. The convergence of
the linear solver is achieved when the iteration number reaches
the maximum iteration number, or

rðnÞ



2
� RTOL



rð0Þ


2
þATOL ð23Þ

where k$k2 is the l2-norm, n and 0 are for i th iteration and the
initial value respectively, the linear solver tolerance
RTOL ¼ 1.0�10�6 and ATOL ¼ 1.0�10�15.
Fig. 1. Calculation domain and its boundary conditions.

Fig. 2. Matrix elements distribution of ISPH_R (* ¼ non-zero element, blank

space ¼ zero element, total particle number ¼ 10*20).

Fig. 3. Pressure distribution by different iteration methods when tolerances error

different iteration methods when x ¼ 0.5 m.
5. Comparison of different iteration methods and
numerical analysis

In order to give the comparison of different iteration
methods in details, this section gives the simple case for p
calculation. Fig. 1 gives the sketch of calculation domain and
it boundary conditions. The initial p ¼ 0, the length of
calculation domain is l ¼ 1.0 m, the height h ¼ 0.5 m, V2p ¼ 0
in inner domain. According to the boundary condition,
p ¼ �gry is obtained by analytical solution. Fig. 2 gives the
numerical matrix elements distribution of ISPH_R.

Fig. 3 (a) gives the pressure distribution of whole calcula-
tion domain by GMRES method when tolerance error
RTOL ¼ 10e�6. Fig. 3 (b) gives the comparison of different
iteration methods for pressure distribution when x ¼ 0.5 m. In
order to show the accuracy of different iteration methods,
Table 4 gives the comparison of different particle numbers in
vertical direction Ny and accuracy comparisons of different
iteration methods. According to the comparison of Table 4, at
the initial stage iteration there are some differences of the
accuracy for different iteration methods. According to the
comparisons of Table 4, GMRES method can get the highest
accuracy among these three iteration methods.

In order to show the iteration steps of different iteration
methods, Table 5 gives the comparison of different iteration
RTOL ¼ 10e�6: a) Total pressure distribution Ny ¼ 40; b) Comparison of

Table 5

Comparison of iteration steps of different iteration methods and different

preconditioner types Ny ¼ 50.

Preconditioner type CGS

(CPU time)

BiCGStab

(CPU time)

GMRES

(CPU time)

No precondtioner 163 (0.0223 s) 151 (0.0211 s) 107 (0.0194 s)

Jacobi precondtioner 111 (0.0204s ) 101 (0.018 s) 87 (0.0172 s)

ILU(0) preconditioner 56 (0.0189 s) 45 (0.0171 s) 32 (0.0162 s)

Table 4

Comparison of different iteration methods by different particle numbers.

Particle number Ny Analytical results CGS BiCGStab GMRES

30 0.48333 0.48355 0.48359 0.48345

40 0.48750 0.48855 0.48854 0.48777

50 0.49000 0.49026 0.49023 0.49012



Fig. 4. Pressure distribution by different iteration methods when tolerances

error RTOL ¼ 10e�6.

Table 6

Comparison of calculation accuracy of different iteration methods with

different tolerances when Ny ¼ 50.

Tolerence (RTOL) Analytical results 1.0e�5 1.0e�6 1.0e�10 1.0e�15

CGS 0.49000 0.49031 0.49027 0.49026 0.49026

BiCGStab 0.49000 0.49028 0.49026 0.49025 0.49025

GMRES 0.49000 0.49013 0.49012 0.49012 0.49012

Fig. 5. The sketch of dam breaking model.

Fig. 6. Comparison of different iteration methods with experimental result

396 X. Zheng et al. / International Journal of Naval Architecture and Ocean Engineering 9 (2017) 390e403
steps of different iteration methods and different precondi-
tioner when Ny ¼ 50. In order to show the convergence curve
of iterative tolerance, Fig. 4 gives the comparison of conver-
gence tests of different preconditioner for the GMRES as an
example, and RTOL ¼ 10e�6. In Fig. 4 N_iter is the iteration
step number and Err is the value of rðnÞ in Table 3. According
the results of Fig. 4, with the help of suitable preconditioner,
GMRES can get fast convergence speed and less iteration
steps. According to the results of Table 5, GMRES method can
get the least iteration steps. Furthermore, preconditioner is
helpful for decreasing the iteration steps. According to the
comparison of no preconditioner, Jacobi preconditioner and
ILU(0) preconditioner, ILU(0) can get the least iteration steps.
Although many different iteration methods can be set as the
preconditioner, Jacobi and ILU(0) are the most popular and
typical precondtioners. The comparisons of more complex
preconditioner are not included at present, which can be done
in further investigation.

According to the comparisons of CPU time in Table 5,
ILU(0) can get the fastest convergence speed. As the calcu-
lation process of ILU(0) is more difficult than Jacobi pre-
conditioner, so the CPU time of ILU(0) preconditioner is a
litter bit more than the ones of Jacobi compared with the a
large decreasing of iteration steps. In order to show the effects
of RTOL, Table 6 shows the accuracy of different RTOL by
different iteration methods, and in this case the preconditioner
is set as ILU(0). According to the comparison of different
RTOL, when RTOL < 1.0e�6, RTOL does not affect the ac-
curacy of last results obviously. The rules are almost the same
for these three iteration methods. So based on the series
comparison of different iteration methods and different pre-
conditioners, the preconditioner is set as ILU(0) and the
RTOL ¼ 1.0e�6 during the part of numerical tests.

6. Numerical tests and analysis
6.1. Dam breaking
Dam breaking is often used as a benchmark for violent free
surface flow. In this numerical test, a rectangular water column
is confined by bottom, top wall and two vertical walls, as
illustrated in Fig. 5. The width of the water column is l and its
s: (a) wave front on the bottom wall (b) wave height on vertical wall.
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height is h. At the beginning of the computation, the dam is
instantaneously removed and the water collapses and flows out
along a dry horizontal bed. w is the distance between two
vertical walls. There is one pressure sensors p1 on the right
vertical wall, the height of p1 from the bottom is h1. In this
section, all variables and parameters are non-dimensionalised
using h and g, such as t ¼ ~t

ffiffiffiffiffiffiffiffi
g=h

p
unless mentioned otherwise.

Although the case of non-breaking waves is not necessarily
dealt with by the ISPH, it is used here for preliminary vali-
dation of different iteration methods. In the first case,
h ¼ 1.0 m, l/h ¼ 0.5, w/h ¼ 4.5, the water collapses, just flows
out along a dry horizontal bed, and stops before the wave front
hits the right vertical wall. There are some experimental data
for wave front and wave height on left vertical wall (Martin
Fig. 7. Snapshot of wave profile and pressure di

Fig. 9. Comparison of pressure time history of ISPH_R by different iteration m

Comparison of CGS, Bi-CGstab, GMRES and experimental data, N ¼ 100*200.

Fig. 8. Convergence test of wave profiles according to different particle numbers b
and Moyce, 1952). Fig. 6 gives the comparison of wave
fronts and wave heights obtained by three iteration methods
using 100*200 particles. There is very little difference among
three methods. The numerical results of the ISPH_R can get a
good agreement with experimental ones by using the three
iteration schemes. Although it can be found some difference
on this case of wave front, it is as justified by other mesh based
methods, which is shown in Zheng et al. (2014).

The pressure distribution and time histories are then
examined. For the case withh ¼ 1.0 m, l/h ¼ 2.0, w/h ¼ 5.366,
there is a pressure sensor installed on the right vertical wall
and with the height of h1/h ¼ 0.1833. Fig. 7 gives the results of
dam breaking profiles and pressure distribution at different
times. In this case the particle number is 20,000, time stepping
stribution of dam breaking at different time.

ethods: (a) Convergence test of different particle numbers by GMRES; (b)

y GMRES: B N ¼ 40*80, N ¼ 60*120; N ¼ 80*160; N ¼ 100*200.



Fig. 10. Comparison of CPU time for dambreaking simulation by using different iteration methods: (a) CPU-time comparison, (b) Convergence-rate comparison.

Table 7

CPU time comparison for dam breaking simulation.

Particle number 40*80 60*120 80*160 100*200

CPU time(s) GMRES 305.8 709.4 1328.3 2082.2

Bi-CGstab 343.6 804.1 1602.2 2987.7

CGS 375.2 950.2 1910.2 3289.2
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length d~t ¼ 0:008, the iteration method is GMRES as
example. Fig. 8 gives the results of convergence tests on wave
profiles according to different particle numbers. Fig. 9 gives
the comparison results of impact pressure at point p1 by
different iteration methods. Fig. 9 (a) is the convergence tests
Fig. 11. Sketch of sloshing tank.

Fig. 12. Wave profiles and compress distribution of diff
of pressure time histories by different particle numbers by
GMRES method. Fig. 9 (b) is the comparison of numerical
results with experiment data (Colagrossi and Landrini, 2003)
when particle number N ¼ 20,000. There is very little dif-
ference between pressure time histories obtained by these
three iteration methods. The results of pressure time histories
have a good agreement with experimental data.

All codes run on the same computer, the CPU is Xeon E5-
2665, 2.4 GHz, and the RAM is 16.0 GB. Fig. 10 gives the
comparison of CPU time corresponding to the particle
numbers. In this figure, T is the CPU time and N is the
particle number. When the particle number is small, e.g.,
3200, the difference in the results from the three iteration
methods is not very large. With the particle number
increasing, such as 20,000, the CPU time of GMRES is 0.697
of that for the Bi-CGstab and 0.633 of that of the CGS.
According to the results of Fig. 6 (b), in the case of the dam
breaking simulation, the convergent rate of three iteration
methods is between the first order and second order. Table 7
gives the details of CPU time of three iteration methods. It
can be seen that the GMRES can save more CPU time for the
cases with more particles.
erent time by GMRES method when N ¼ 50*250.
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6.2. Violent water sloshing
In this section, violent sloshing flow will be considered.
The geometry of this tank is rectangle with l ¼ 0.6 m, h ¼ 0.5l,
d ¼ 0.4h. The tank motion in sway displacement is given by
Xs ¼ a0ð1� cos UtÞ, where a0 and U are the amplitude and
frequency of excited motion respectively. The parameters for
this case are taken as a0 ¼ 0.05 m and T0 ¼ 2p=U ¼ 1:5 s,
which are the same as those in Kishev et al. (2006) and is
shown in Fig. 11. The behaviors of the ISPH_R method are
further examined by modeling this case. For this purpose,
different numbers of particles are employed with N ¼ 2000,
4500, 8000 and 12,500 respectively. Time step length is
d~t ¼ 0:008. Fig. 12 gives the free surface profiles and pressure
distribution at different time instants by GMRES when
Fig. 13. Convergence test of free surface profile by GMRES method for violent wa

Fig. 14. Comparison of pressure time history of ISPH_R by different iteration m

history by different particle numbers with GMRES method; (b) Comparison of

N ¼ 50*250.

Fig. 15. Comparison of CPU time for violent water sloshing simulation by dif

comparison.
N ¼ 8000. Fig. 13 gives the convergence test of free surface
profile at different time by different particle numbers. Ac-
cording to the comparison, the free surfaces for different
number of particles are the almost same when breaking does
not occur. However when breaking happens, there exists some
differences between the profiles for different particle numbers.
Fig. 14 (a) gives the convergence test of pressure time histories
for different particle numbers with the GMRES method at
Point h1/l ¼ 0.1667 on the left wall. The pressure time his-
tories obtained by different particle numbers do not show
significant differences, though there is some little difference
near wave impact peaks. Fig. 14 (b) shows the comparison of
pressure time histories of experimental data (Kishev et al.,
2006) and numerical results obtained by CGS, BI-CGstab
and GMRES respectively. It is noted that the experimental
ter sloshing: B N ¼ 20*100, N ¼ 30*150; N ¼ 40*200; N ¼ 50*250.

ethods for violent sloshing simulation: (a) Convergence test of pressure time

pressure time history of CGS, Bi-CGstab, GMRES and experimental data,

ferent iteration methods: (a) CPU time comparison, (b) Convergence slope
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pressure time history given in Kishev et al. (2006) did not
show the transient period that must exist and they did not
mention whether it was recorded on the left or on right walls.
To compare our results with their experimental data, the time
for the experimental results in the figure has been adjusted so
that the 3rd pressure peak of the numerical results corresponds
to the first peak in their paper. These figures show that the
results from all the methods have similar patterns to the
experimental one and that the time intervals between two
consecutive impacts are almost the same.

The computer used for running these cases is the same as in
the previous section. Fig. 15 gives the comparison of CPU
time corresponding to the different particle numbers. In the
numerical tests, the CPU time of GMRES is still less than that
of CGS and Bi-CGStab, and the GMRES saves more time for
the cases with large particle numbers again. The convergence
rates of three methods are almost the same, but the values of
the GMRE are always below the ones of CGS and Bi-CGstab.
Table 8 gives the details of CPU time of three iteration
methods for this case.
6.3. Solitary wave slamming
Fig. 17. Snapshots of profile and pressure distribution for solitary wave

slamming of different time: (a) et¼0.0; (b) et¼10.5; (c) et¼18; (d) et¼20.4;

(e)et¼22.5; (f)et¼24.0
This section considers the test of solitary wave slamming.
The interaction between solitary wave and structures are the
topic related to many coastal and ocean engineering. The
solitary wave is often used to represent certain characteristics
of the incident wave. In this section, the ISPH_R method is
applied to the simulation of the solitary wave impact on walls
with a fixed angle. The numerical results will be compared
with the experimental data. Furthermore, the results of
different iterative schemes are also given for CPU efficiency
and precision behavior comparison.

Fig. 16 shows the geometry and setup of simulation on the
cases in the section. On the left end it has a piston wave maker
and on the other end it has a slope beach. In order to make a
solitary wave by a piston wavemaker, the analytical solution for
the wave profile can be derived from the Boussinesq equation,
the displacement of piston of different time is shown as
Table 8

CPU time comparison for violent water sloshing calculation.

Particle number 20*100 30*150 40*200 50*250

CPU time(s) GMRES 564.3 1853.7 3006.2 4534.5

Bi-CGstab 760.2 2511.3 4504.9 7030.6

CGS 910.6 3010.3 5101.2 8103.3

Fig. 16. The model of wave tank
xpðtÞ ¼
ffiffiffiffiffi
4a

3d

r
d
h
tanh

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a=4d3

p
½ct� xðtÞ � l�

o
þ tanh

�
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a=4d3

p 	i
ð24Þ

where xp is piston displacement, a is wave amplitude, d is
water depth and c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðd þ aÞp
is the solitary wave celerity, t is

the non-dimensional time. It should adopt the iterative method to
get the value of xp. In this case, h is the height of whole slope and
h ¼ 1.0 m, wave amplitude a/h ¼ 0.15, water depth d/h ¼ 0.25,
the total tank length is l/h ¼ 10.0, slope angle a ¼ 150�. In the
area of slope beach, a local coordination transformation is used
for solitary wave slamming.

Fig. 18. Convergence test of free surface profile by GMRES method for sol-

itary wave slamming: B N ¼ 9185, N ¼ 16333; N ¼ 25525;

N ¼ 36760.



Fig. 19. Comparison of pressure time history of ISPH_R by different iteration methods for solitary wave slamming.

Fig. 20. Comparison of CPU time for solitary wave slamming by different iteration methods: (a) CPU-time comparison; (b) Convergence-rate comparison.
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for the solid wall handling of a certain angle. Fig. 17 depicts the
results of wave profile and pressure distribution at different time.
The iteration method uses GMRES method as example and
particle number for this case is 36,760, and the time step is
d~t ¼ 0:008. Fig. 18 gives the convergence test of wave elevation
by different particle numbers and the iteration method is
GMRES. There is a pressure sensor fixed on the slope, the height
h1 is the vertical distance from bottom and h1/h¼ 0.05. The same
scale experiment are carried onHEU (Zheng et al., 2015). Fig. 19
gives the comparison of pressure time history at p1 between nu-
merical and experimental results by three iteration methods. The
Table 9

CPU time comparison for solitary wave slamming calculation.

Particle number 9185 16333 25525 36760

CPU time(s) GMRES 2048.2 4449.0 7075.2 10289.9

Bi-CGstab 3232.3 6335.4 9895.7 14189.1

CGS 3638.9 7835.4 10897.9 17188.6
results of the ISPH_R have a quite good agreement with exper-
imental ones. There still exist someoscillations in timehistory for
~t ¼ 22:5 in experimental data, similar behaviors are observed in
the results from three iteration methods. Fig. 20 depicts the
comparison of CPU time for solitary wave slamming simulation
by different iteration methods. The conclusion is very similar to
that in previous section, i.e., the GMRES saves more time for the
cases with large particle numbers and the convergence rates of
both method are almost the same. More details of CPU time for
different iterative methods is shown in Table 9.

7. Conclusions

This paper presents a comparative study of different itera-
tion methods for solving pressure Poisson equation for
incompressible SPH based on Rankine source solution. Three
iteration methods includes CGS, BI-CGstab and GMRES. The
different CPU time and convergence rates are examined. The
numerical test cases include still water test, dam breaking,



402 X. Zheng et al. / International Journal of Naval Architecture and Ocean Engineering 9 (2017) 390e403
violent water sloshing and solitary wave slamming, which are
the typical applications for ocean engineering. The numerical
results are compared with experimental data. From the nu-
merical test results and comparisons, we come to the following
conclusions:

(a) With the help of one of these three linear equation solvers,
incompressible SPH based on Rankine source solution can
give smoothed and reliable pressure distribution.

(b) All iteration methods, CGS, BI-CGstab and GMRES have
the convergence rate of between first order and second
order. The preconditioner is import for different iteration
methods, suitable preconditioner can decrease the iteration
steps obviously. Furthermore, the tolerance of different
iteration schemes can affect the accuracy of last results,
but when RTOL is small enough (like RTOL < 1.0e�6),
the iteration results may not get very improvement
significantly. From the comparison of different iteration
schemes, the CPU time spent by GMRES is about 0.7e0.6
time of that by Bi-CGstab and CGS.

The above conclusions are based on the series code but the
study on the iteration methods in parallel calculation for
ISPH_R method is still ongoing.
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