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Abstract. Application collusion is an emerging threat to Android based
devices. In app collusion, two or more apps collude in some manner to
perform a malicious action that they are unable to do independently.
Detection of colluding apps is a challenging task. Existing commercial
malware detection systems analyse each app separately, hence fail to
detect any joint malicious action performed by multiple apps through
collusion. In this paper, we discuss the current state of research on app
collusion and open challenges to the detection of colluding apps. We
compare existing approaches and present an integrated approach to ef-
fectively detect app collusion.

1 Introduction

Android being the most popular platform for mobile devices is under proliferated
malicious attacks. A recent threat is from app collusion; in which two or more
apps collaborate to perform stealthy malicious operations by elevating their per-
mission landscape using legitimate communication channels. Each app requests
for a limited set of permissions which do not seem dangerous to users. How-
ever, when combined, these permissions have potentials to inflict a number of
malicious attacks. Mobile users are generally unaware of this type of permission
augmentation, they consider each app separately. Hence, their decision to install
apps is thus limited in perspective due to unawareness of permission augmen-
tation [1]. The main contributor of the app collusion is Android’s Inter-Process
Communication (IPC) mechanism. It supports the useful collaboration among
apps for the purpose of resource sharing, however, it also introduces the risk of
app collusion when the app collaboration is done with malicious intention.

Android implements sandbox and permission based access control to protect
resources and sensitive data, however, being open source and developer-friendly
architecture, it facilitates sharing of functionalities across multiple apps. It sup-
ports useful collaboration among apps for the purpose of resource sharing, how-
ever, cyber criminals exploit this to launch distributed malicious attack through
app collusion [2].

Application collusion is possible with Inter Process Communication (IPC),
covert channels or system vulnerabilities. Malicious colluding apps are explicitly
designed by cyber criminals by exploiting different methods such as developing
app with same User ID. Such apps have more chances for a successful collusion
attack. In some cases, mis-configured apps also participate in the collusion attack



Fig. 1. Application Collusion Scenario

with a complete obliviousness of colluding app [3]. One of the collusion scenarios
is illustrated in Figure 1: App ’A’ has no permission to access the Internet,
however it has permissions for camera. Similarly, App ’B’ has no permission for
the camera but can access the Internet. Assuming that the components of both
apps are not protected by any access permission, they could collude to capture
the pictures and upload on a remote server through the Internet.

Until recently, a small scale research is done on app collusion due to non
availability of known samples of colluding apps for analysis [4]. Most of the
existing works focus on identification of covert channels and development of
experimental colluding apps. As a result of this innovative approach, the research
on collusion gained momentum and there are now a few app collusion detection
approaches available each with a limited scope. Despite the growing research
interest, detection of malicious colluding apps has been a challenging task [5].

In this article, we give an overview of app collusion, potential risks and detec-
tion challenges. Aim of this article is to give an overview on the stealthy threat
of app collusion and to repudiate the misconception about app isolation.

2 Android Primer

In Android, all applications are treated as potentially malicious. They are iso-
lated from each other and do not have access to each others’ private data. Each
app runs in its own process and by default, can only access own files. This isola-
tion is enforced with the sandbox, in which each app is assigned with a unique
user identifier (UID) and own Virtual Machine (VM). App developers are re-
quired to sign the apps with a self-certified key. Apps signed with same key
share User IDs and can use same sandbox [6].

Android app comes as .apk file, which contains the byte code, data, resources,
libraries and a manifest file. Manifest file declares the permissions, intents, fea-
tures and components of an app. The components that can be handled by an
app are declared with intent filters.

System resources and user data are protected through permissions. Figure 2
illustrates the communication between apps in a sandbox environment. App 1



can use only those system resources and user data for which it has permissions.
Similarly, app 2 is also limited to use certain resources. Although both apps
have limited permissions to access the resources but through IPC, they are able
to augment their permissions and get over-privileged access to system resources
and user data.

Fig. 2. Inter Process Communication

In this section, we provide an overview of IPC, which is a main facilitator of
app collusion.

2.1 Android Security Architecture

Permission Mechanism. Permissions are used to restrict the access of
system resources and user data on the device. Permissions are organized into
permission groups so that they can be identified clearly with their capabilities
and what resources or data they can use on the device [2]. Prior to installation,
user are presented with a list of permissions. It is mandatory for the users to
approve all the requested permissions as there is no option for the selection. Once
granted, permissions remain valid unless the app is un-installed or updated [6].

There are four protection levels assigned to the permissions depending on the
capabilities and possible security risks. These groups are: Normal, Dangerous,
Signature and Signature or system. Android has a control system to certify if
the app should be granted the permission governed by certain protection level [5].

Shared User ID. Android assigns a unique user ID to each app to ensure
that it runs in its own process and can only access the allocated system re-
sources. Android enforces app isolation by assigned user IDs, however, it also
permits apps to share user IDs if they are developed with the same signature
or certificate [3]. Apps with shared User IDs (shared Userid) can access each
other’s data and can run in same process, thereby limiting the effectiveness of
isolation provided with user ID.



Components. Components are the basic modules that are run by apps or
the system. There are four types of components: Activities, Services, Content
Providers and Broadcast Receivers. Activities provide the user interface, each
screen shown to a user is represented by a single activity. Services implement
functionality of background processes which do not need user interface [4]. Con-
tent Providers provide database for sharing data among applications. Broadcast
Receivers receive the notifications from system and other apps. It also sends
messages to other components (activities or services).

Intents. Intents are messages used to communicate between the compo-
nents of apps. These messages are used to request actions or services from other
application components. Intents declare the intention to perform an operation
[3]. It could be launching of an Activity, broadcasting Intent to any interested
Broadcast Receivers or starting a background Service like music etc.

An intent contains mainly two parts: action and data. Action is the operation
to be performed such as BOOT COMPLETED, ACTION CALL, SMS RECEIVE, ACTION
BATTERY LOW and NEW OUTGOING CALL etc. The data is a piece of information to
operate on, such as a phone number, email address, web link etc.

Intents are of two types: Explicit and Implicit. Explicit intent specifies the
component exclusively by class name. Explicit intents are mostly used by apps
to start their components. Implicit intent does not specify a particular compo-
nent by name. Apps with implicit intent only specify the required action without
specifying particular apps or component [7]. System itself selects the app from
device which can perform the requisite task. Implicit intents are vulnerable to
exploits as they can combine operations of various applications, if they are not
handled properly.

Sandboxing. Sandboxing isolates an app from other apps and system re-
sources. Each app has a unique identifier and has access to the allocated System
files and resources against the unique identifier. An app can also access files of
othe apps that are declared as readable/wri-teable/executable for others.

Access Control Mechanism. In Android, the access control mechanism
of Linux prevails. It controls access to files by process ownership. Each running
process is assigned a UserID and for each file, access rules are specified. File ac-
cess rules are defined for a user, group and everyone, thus granting permissions
to read, write and execute on file.

Application Signing. Cryptographic signatures are used for verification of
app source and for establishing trust among apps. Developers are required to
sign the app to enable signature based permissions, and to allow apps from the
same developer to share the UserID. A self-signed certificate of the signing key
is enclosed into the app installation package for validation at installation time.



2.2 Covert Communication Channels

A covert channel is a stealthy mechanism to exchange information between
apps in a manner that it cannot be detected [8]. There are two types of covert
channels: Timing and Storage. Timing channels modulate the time spent on exe-
cution of some task or using some resource. Storage channels relate to modifying
the data item such as configuration changes etc. Example of covert channel is
sending user data to a remote server by encoding it as network delays over the
normal network traffic [9]. Figure 3 depicts a covert channel, where a file of
20 bytes containing some data is sent through a normal communication chan-
nel. The file size is a covert information. This information might not be of any
importance to the receiver but significantly valuable for the malicious party.

Covert channel typically exploit the shared resources to read, store and mod-
ify data as a medium for communication between two malicious entities. This
type of information exchange is different from IPC based resource sharing. App
collusion through covert channels is investigated by implementing high through-
put covert channels in [2].

Fig. 3. Overt and covert channel

3 IPC related Attacks

Android security builds upon sandbox, application signing and permission mech-
anism. However, these protections fail if the resource and task sharing procedures
provided through IPC are used with malicious intentions. In this section, we dis-
cuss the IPC related attacks on Android devices.

3.1 Application Collusion Attack

In application collusion attack, two or more apps collude to perform a mali-
cious operation which is broken into small actions [2]. Each of the participating
apps communicate using legitimate communication channels to perform the part
assigned to them. Apps do not need to break any security framework or exploit
the system vulnerabilities for carrying out a collaborative operation [5]. App



collusion helps in malware evasion as the current anti-malware solutions are not
capable of simultaneously analyzing multiple apps.

3.2 Privilege Escalation Attack

In privilege escalation attack, an application with few permissions accesses
components of more privileged application [10].This attack is prevalent in mis-
configured apps mainly from the third party market. The default device appli-
cations of phone, clock and settings were also vulnerable to this attack [11].
Confused deputy attack is a type of privilege escalation attack. A compromised
deputy may potentially transmit the sensitive data to the destination specified
in the spoofed intent. Consider an app which is processing some sensitive infor-
mation like bank details at the time of receipt of spoofed intent. It is likely that
such an information may be passed on to the url or phone number defined in
the malicious intent.

3.3 Intents related Attacks

Explicit and implicit intents may potentially assist in colluding attacks. Al-
though, explicit intents guarantee the success of collusion between apps, implicit
intents can also be intercepted by the malicious apps with matching intent fil-
ters. We discuss some of the known intents related attacks.

Broadcast Theft. A public broadcast sent by application is vulnerable to
interception. As shown in Figure 4, a malicious app ’M’ can passively listen to
the public broadcasts while the actual recipient is also listening. If a malicious re-
ceiver registers itself as a high priority receiver in ordered broadcasts and receives
the broadcast first, it could stop further broadcasting to other legitimate recip-
ients. The ordered broadcasts are serially delivered messages to the recipients
that follow an order according to the priority of receivers. Public and ordered
broadcasts may cause eavesdropping and Denial of Service (DoS) attacks [4].

Fig. 4. Broadcast Theft Attack

Activity Hijacking. If a malicious app registers to receive the implicit in-
tent, it may launch activity hijacking attack on successful interception of intent.
With activity hijacking, a malicious activity can illegally read the data of the
intent before relaying it to the recipient [2]. It can also launch some malicious



activity instead of the actual one. Consider a scenario, in which an activity is
required to notify the user for the completion of certain action. The malicious
user can falsely notify the user for the completion of uncompleted activity like
un-installation of app or transaction completed.

Service Hijacking. If an exported service is not protected with permissions,
it can be intercepted by an illegitimate service, which may connect the requesting
app with a malicious service instead of the actual one [5]. In this attack, the
malicious user hijacks the implicit intent which contains the details of service
and start the malicious service in place of the expected one.

Implicit intents are not guaranteed to be received by the desired recipient
because it does not exclusively specify the recipient. A malicious app can inter-
cept an un-protected intent and access its data by declaring a matching intent
filter [6]. This type of attack may be used for Phishing, Denial of Service (DoS)
and component hijacking attacks are possible with unauthorized intent receipt.

Intent Spoofing. In Intent spoofing attack, the malicious app controls the
unprotected public component of a vulnerable app. It starts performing as the
deputy of the controlling app and carries out the malicious activity on behalf
of the controlling app [3]. This type of attack is also known as Confused deputy
attack as the deputies (victim apps) are unaware of their participation in the
malicious activities. Figure 5 illustrates the confused deputy attack.

A malicious broadcast injection is also possible with spoofed intent when a
broadcast receiver that is registered to receive the system broadcasts trusts an
incoming malicious broadcast as a legitimate one and performs those actions
which need system triggers.

Fig. 5. Attack Scenario: Confused Deputy Attack



4 DETECTION OF COLLUDING APPS: OPEN
CHALLENGES AND POTENTIAL MEASURES

Detection of app collusion is a very complex proposition. There are a number
of challenges in designing a solution to detect the malicious colluding apps and
there remain big question marks over efficacy of such solutions. This is the prime
reason that we don’t have a lot of reliable choices available for such detections.

4.1 Challenges

First challenge in detection is classification of IPC into benign and malicious
groups. Android is an open source platform, which encourages resource sharing
among apps by re-using the components. IPC is mainly used by apps to interact
with different inter and intra components. The main problem is to distinguish
between the benign collaboration and malicious collusion. Such a distinction
is likely to come up with a cost of very high false positives. Keeping the false
positive rate to lowest, is another problem.

Secondly, considering the substantial number of apps available in the Android
market (more than 2 Million apps by Feb 2016), there is a difficulty of analyzing
pairs of apps. It is computationally challenging and cost exorbitant to analyze
all possible pairs of apps to detect the malicious collusion between sets of apps
given the search space. Analysis of all possible app pairs of total of N apps
would require N2 pairs. Similarly, to analyze sets of three colluding apps, it
would require to analyze N3 apps. An eective collusion detection tool must be
capable of isolating potential sets of apps and carrying out further investigations.

Another glaring challenge is the presence of a number of covert channels in the
system. Detection of covert channels is an NP-hard problem as it would require
monitoring of all the possible communication channels [12]. Covert channels
are difficult to detect because they use overt channels for conveying stealthy
information.

Lastly, known malicious colluding apps are not available for analysis. The
non-availability of known samples of colluding apps, makes it difficult to vali-
date the experiment results. Analysis and validation of collusion detection is a
quandary, we need known samples of colluding apps to validate the detection
method, but to find the samples, a reliable detection method is mandatory, which
itself is not available in an authenticated form.

An effective collusion detection system must overcome the aforementioned
challenges and encompasses an integrated solution. The detection of IPC based
collusion have been recently proposed in a few research papers [12], [13], [14], and
[15]. The proposed approaches have a number of limitations and the accuracy and
efficiency of these methods is questionable due to non-availability of universally
accepted dataset of malware colluding apps.

The solution proposed in [12] is to re-design the security model of Android
system to mitigate the risk of collusion. However, this would involve a big cost



and complexity in re-writing the OS components and ensuring their compati-
bility and smooth functioning in conjunction with already available millions of
apps in the Android market.

Another approach [13] is limited to the detection of collusion based on intents
only. It analyzes the interaction of components through intent filters only and
analyzes only two apps at a time. Currently, this approach suffers with a high
false positive rate. It is a memory consuming approach which may not be feasible
for mobile phones keeping in view the limited memory of phones. The extensive
memory consumption may deteriorate the performance of device.

Similarly, [14] is also mainly based on intent messages. This approach faces
the challenges of conventional rule based methods that are prone to evasion with
obfuscation and reflection. Scalability is a major drawback of their approach.

Malware collusion detection tool [15] supports the latest API versions only,
hence analysis of apps developed under earlier versions is not possible. Technical
details of the tool are not available for performance verifications and evalua-
tions. It generates a high number of false alarms mainly due to its reliance over
information flows.

The detection of covert channels is still an under explored research area. [11]
and [16] investigate the identification of covert channels. [11] has a limited scope
of detecting covert channels related to shared resources only such as reading of
the voice volume, change of the screen state and change of vibration settings etc.
Similarly, [16] handles data flows only. However, it is possible to exploit these
approaches for identification of other unknown covert channels.

4.2 Potential Measures

The complexity and challenges of collusion detection merit a hybrid frame-
work. As a result of our analysis, we recommend an integrated approach for
detection of app collusion. We also suggest that a covert channel may not be
detected in isolation, but its existence may be realized whilst analyzing the IPC
related security breaches. We argue that any mobile user downloads a limited
number of apps as opposed to available millions of apps. A user cannot install
millions of apps on a single device, hence, there is no need to analyze the mil-
lions of app pairs or triplets for possible collusion. On the average, a mobile user
installs 20 to 30 apps. A system capable of analyzing 502 or 503 apps is sufficient
for a common mobile user. This solution may also be augmented with a cloud
based analysis engine if the number of concurrently analyzed apps is increased
to 4, 5 or more. Cloud based analysis is an efficient and cost effective approach
for high computational operations. We believe that adopting such an approach is
essentially required to facilitate the identification of sets of colluding apps from
a dataset of millions of apps.

Since permissions and intents facilitate inter and intra-app communication,
analysis of these features has potentials to detect app collusion. Adding shared
user IDs and publicly declared intents is also recommended as the collaborating
apps may use same User IDs to make sure that the attack is successful.



The proposed system is shown in Figure 6. In first stage, apps are analyzed
to identify those which share user IDs as they have more potentials to collude
successfully. In second stage, permissions and intents are extracted and anal-
ysed for source permission, source intent, sink permission and sink intent. A
pairwise communication mapping of apps is generated from the source and sink
permissions and intents. The identified communicating pairs of apps are further
analysed to check if their communication is limited to each other or more apps.
The classifier stage is used to classify the app into colluding or non-colluding
ones and users are notified for possible collusion. In the proposed approach,
permissions and intents are grouped into four categories: source permissions,
source intents, sink permissions and sink intents. Source permissions or intents
are those that initiate some operation, whereas the sink permissions and intents
are those which act upon to complete the required operation [1].

With additional policy refinements, the identified colluding apps can be clas-
sified into benign and malicious apps. This approach may be integrated with the
methodologies proposed in [16] and [11] to monitor the data flow sources and
sinks of IPC and tracking of shared resources. Information flow system proposed
in [16] to monitor the data flow sources and sinks in IPC is a good trade-off in
detecting the covert channels however, it lacks the tracking of shared resources.
Mapping structure of [11] helps in tracking the shared resources used by two
interacting apps.

Fig. 6. Collusion Detection Model

Effective detection of app collusion requires monitoring of IPC and all possi-
ble covert communication channels: shared resources and data flow sources and
sinks. The proposed framework integrated with Taintdroid [16] would be a good
starter towards a comprehensive detection system.



5 RELATED WORK

IPC and intents have not been explored the way permissions have been investi-
gated. Most of the existing IPC based studies focus on finding the IPC related
vulnerabilities. [17] investigated the IPC framework and interaction of system
components. [3] detects the IPC related vulnerabilities. [18] suggested improve-
ment in ComDroid by segregating the communication messages into inter and
intra-applications groups so that the risk of inter-application attacks may be
reduced. [19] characterized Android components and their interaction. They in-
vestigated risks associated with misconfigured intents. [20] examined vulnerable
public component interfaces of apps. [21] generated test scenarios to demonstrate
the ICC vulnerabilities. [22] performs information flow analysis to investigate
the communication exploits. [23] investigated intents related vulnerabilities and
demonstrated how they may be exploited to insert the malicious data. Their ex-
periments found 29 out of a total of 64 investigated apps as vulnerable to intent
related attacks. All of these works focus on finding communication vulnerabili-
ties, and none of them used IPC and intents for malware detection.

6 CONCLUSIONS

The concept of colluding apps has emerged recently. App collusion can cause
irrevocable damage to mobile users. Detection of colluding apps is quite a chal-
lenging task. Some of the challenges are: distinction between the benign and
malicious collaboration, false positive rate, presence of covert channels and con-
current analysis of millions of apps. Existing malware detection system are de-
signed to analyse each app in isolation. There is no commercially available detec-
tion system which can analyse multiple apps concurrently to detect the collusion.

In this paper, we discussed the current state and open challenges to detec-
tion of colluding apps. To address the problem, we have proposed an integrated
approach to detect app collusion. However, the complexity of problem merits a
collaborative large scale investigations to mitigate a very large number of known
and unknown communication channels between apps besides known IPC and
covert channels. Our future work aims to validate the proposed framework on
real colluding apps.
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