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Air Itinerary Shares estimation using Multinomial Logit Models 10 

The main goal of this study is the development of an aggregate air itinerary 11 
market share model. In order to achieve this, multinomial logit models are 12 
applied to distribute the city-pair passenger demand across the available 13 
itineraries. The models are developed at an aggregate level using open-source 14 
booking data for a large group of city-pairs within the US Air Transport System. 15 
Although there is a growing trend in the use of discrete choice models in the 16 
aviation industry, existing air-itinerary share models are mostly focused on 17 
supporting carrier decision-making. Consequently, those studies define itineraries 18 
at a more disaggregate level, using variables describing airlines and time 19 
preferences. In this study, we define itineraries at a more aggregate level, i.e., as a 20 
combination of flight segments between an origin and destination, without further 21 
insight into service preferences. Although results show some potential for this 22 
approach, there are challenges associated with prediction performance and 23 
computational intensity.  24 

Keywords: word; air itinerary shares; discrete choice models; multinomial logit; 25 
aggregation level;   26 

1. Introduction 27 

Good forecasts of future demand for air traffic as well as good forecasts of how airlines 28 

are likely to serve this demand are essential to enable supply to adapt to growth in 29 

demand. While the majority of existing research focuses on improving air travel 30 

demand models, there is a growing interest in developing better itinerary share models 31 

than those that already exist. Itinerary share models can be crucial to support airline 32 

network planning and scheduling since important decisions on resources allocation and 33 

pricing are made based on itinerary demand. These decisions are essential as airlines 34 

plan their operations, purchase equipment and make strategic decisions. Airport 35 

authorities also benefit from good forecasts, given the long timescales associated with 36 

airport development and capacity expansion. Improving the accuracy of itinerary share 37 
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models is therefore a powerful tool for airline and airport authority planning and 38 

decision making, translating into more efficient operations, improved revenue 39 

management and increase profitability. Consequently, for the past 15 years, efforts have 40 

focused on developing this type of model, shifting away from the Quality of Service 41 

indices (QSI) used during the period when the industry was regulated, and/or more 42 

simplistic approaches – such as time-series and simplistic probability models based on 43 

historical trends – (Garrow, 2010). In contrast, discrete choice models model demand by 44 

capturing how individuals make decisions and trade-offs among airports, airlines, price, 45 

level of service and other factors that define the air passenger journey.  46 

Most of the current research centres on developing innovative approaches using 47 

such discrete choice modelling. These approaches, which aim to model competition and 48 

customer behaviour to determine air-travel itinerary shares (also known as demand 49 

assignment models), are expected to more accurately predict air travel demand. While 50 

most of the discrete choice models applied in urban transport are built using 51 

disaggregate data and include information about the individual making the decision – 52 

i.e. the passenger –; in air transport, data disaggregation as well as data accessibility are 53 

limiting factors. The need to quickly adapt to changes in demand makes flexibility 54 

crucial for carriers and other stakeholders in the industry. For this reason, most of the 55 

models built to support decision-making rely on booking data, which is generally 56 

proprietary. Furthermore, airlines do not typically record much of the passenger data 57 

that is relevant to passenger decision making, such as age, gender and income. This data 58 

is not typically available, except for a small subset of passengers through surveys, 59 

which are time consuming and costly to complete.  60 

Most of the early studies on demand assignment for air travel focus on studying 61 

the distribution of demand across one single dimension, i.e. only focusing on modelling 62 
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passenger choice in terms of one single criteria, such as airport-choice or airline choice. 63 

These early models were mostly applied to analyse air travellers’ choice within multi-64 

airport cities or regions – i.e., airport choice models (Hansen, 1995; Windle & Dreesner, 65 

1995) – or across airlines – airline choice models (Proussaloglou & Koppelman, 1995) 66 

–. Although the former is the most widely studied topic in discrete choice modelling 67 

within air transport, and has given a deeper understanding to the relationship between 68 

airport attributes and airport market share, a more aggregated assignment of air travel 69 

volume is also needed. Only a few studies present approaches for itinerary market share 70 

estimation across multiple dimensions (i.e., modelling a passenger's simultaneous 71 

choice in terms of multiple criteria, e.g., airline, flight time, fare-class etc.) using 72 

discrete choice modelling. Of those, early models used a multinomial logit (MNL) 73 

approach (Adler, 2001; Coldren et al., 2003; Grosche and Rothlauf, 2007; Atasoy and 74 

Bierlaire, 2012), while more recent models also apply nested logit (NL) models 75 

(Coldren and Koppelman, 2005; Hsiao and Hansen, 2011), mixed multinomial logit 76 

(MMNL) models (Warburg et al., 2006) and other alternatives approaches (Gramming 77 

et al. 2005; Carrier, 2008). The mentioned aggregate passenger-allocation studies can 78 

be classified according to the type of data they are based on: revealed preference data 79 

(RP) or booking data; stated preferences (SP) data or survey data; or a combination of 80 

both. Studies using RP data do not usually provide full insight into passenger choice 81 

behaviour since models are estimated based on real booking data, and no information 82 

regarding other alternatives at the moment of booking is generally available. This 83 

limitation often leads to RP models performing poorly due to the high demand 84 

inelasticity of the booking data used to estimate the model (Garrow, 2010). In contrast, 85 

SP data collected from surveys allows for modelling of new non-existing alternatives, as 86 

well as more accurate estimation of the sensitivity of travellers to characteristics of their 87 
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trips. However, studies using SP data may be subject to bias due to the nature of the 88 

experiment in which the individuals are asked to make hypothetical choices by making 89 

trade-offs among the attributes of the choice set (e.g., level of service, air fare etc.). 90 

Although such surveys provide a customer response to a wider range of choices, 91 

providing a better estimate of how individuals make tradeoffs, they are tailored to the 92 

needs of the survey writer, which limits the natural range of choice sets to only those 93 

that the survery writer is aware of (Garrow , 2010; Louviere et al., 1999). Studies based 94 

on SP data are also often limited to a small range of markets, limiting their application 95 

to a small network set.  96 

Although the models applied in the studies described above are generally 97 

effective for the purposes to which they are applied, they do not allow for an estimation 98 

of how passenger market demand is distributed across the available itineraries at the 99 

most aggregate level, only considering average market air fare and travel time, level of 100 

service and basic airport attributes as inputs. 101 

This paper presents the full air itinerary share model introduced by Busquets et 102 

al. (2016), refined to better capture passenger choice effects, model validation, and 103 

estimated at the most aggregate level possible, linking annual city-pair demand to the 104 

different itineraries available within the entire US Air Transport System (ATS).  105 

The remainder of the paper is structured as follows: The paper’s objectives are 106 

presented in Section 2. The modelling approach is detailed in Section 3, with 107 

information regarding the input variables used to estimate the model. The model is 108 

estimated on one dataset, and validated on another. Section 4 provides information 109 

about these two datasets. Modelling results are presented in Section 5, followed by the 110 

model validation results in Section 6 and a discussion on future work in Section 7. 111 
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2. Objectives 112 

The primary objective of this research is to develop an air itinerary choice model to 113 

directly estimate the distribution of passenger demand across available routes for a 114 

given O-D pair, using only aggregate data describing average air fare and travel time, 115 

level of service and basic airport characteristics. Ultimately, this model will be 116 

combined with models for forecasting air travel demand and air traffic, all within the 117 

same 3-stage framework (described in Busquets et al., (2015)). This framework consists 118 

of the following stages: 119 

(1) Forecast city-pair passenger demand;  120 

(2) Distribute this demand across available itineraries; and  121 

(3) Forecast air traffic as a function of route demand. 122 

This modelling approach is inspired by previous research that focused on 123 

improving the Federal Aviation Administration's (FAA) forecasting methodology and 124 

for which further potential improvements have been identified. The 3-stage framework 125 

is expected to allow for identification of the key drivers of evolution in the US ATS as 126 

well as to predict future air traffic growth within the US ATS. In order to achieve these 127 

objectives, the approach includes three elements beyond that of the existing research:  128 

• The use of data mining techniques to model the US ATS evolution in order to 129 

predict air traffic with improved accuracy and precision levels while maintaining 130 

the simplicity if existing econometrics, gravity and time-series models.  131 

• The consideration of a larger set of explanatory variables than is typically 132 

considered in existing air traffic forecasting approaches. 133 

• Explicitly modelling the distribution of city-pair passenger demand between 134 

itineraries. 135 
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This paper addresses the last of these three elements, which develops the 136 

framework’s stage 2 – to distribute passenger demand across available itineraries. The 137 

approach described in this paper is therefore expected to:  138 

• Highlight the most important factors underlying the air traveller’s choice 139 

behaviour within the domestic US ATS; 140 

• Perform air itinerary share model refinement and verification for the entire US 141 

ATS following previously work (Busquets et al., 2016); and  142 

• Explicitly model the distribution of city-pair passenger demand between 143 

itineraries within the US ATS. 144 

The model presented in this paper is expected to generate better predictions of airport-145 

pair air traffic flows once integrated with the air traffic demand model presented by 146 

Busquets et al., (2015). 147 

3. Approach 148 

Data 149 

Based on the literature review, there are a large number of factors that describe an 150 

itinerary. An itinerary, as defined in this paper, is a flight segment or combination of 151 

flight segments connecting a given city-pair. In this study, itineraries are either non-152 

stop, or one-stop (i.e., a combination of two flight segments involving an aircraft change 153 

during the connection). Considering constraints in data availability and the different 154 

attributes that are considered to contain the most relevant information for an itinerary, 155 

the input variables for the itinerary market share model are chosen as described in Table 156 

1. 157 

 [Table 1] 158 
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The output variable for the model developed in this paper is the market share (Si) 159 

of a given itinerary i. This is defined as the ratio of the demand of the itinerary i (di), to 160 

the total demand for the market served by itinerary i (Dm), as shown in Eq. (1). The total 161 

demand for market m is given by the sum of passengers travelling on all itineraries that 162 

serve that market. 163 

𝑆! =
!!
!!

 (1) 164 

Detailed Forecasting Methodology 165 

Following the work presented by Busquets et al. (2015), which introduced the 3-stage 166 

model described in §2 to forecasting future air traffic levels, this paper focuses on fully 167 

developing its stage 2 – to distribute passenger demand across available itineraries. The 168 

objective of this phase is therefore to transform Origin-Destination (O-D) demand by 169 

city-pair into passenger demand by airport-pair using an air itinerary choice model.  170 

Stage 2 of the 3-stage model described by Busquets et al. (2015) consists of 2 171 

steps: identification of available itineraries estimated using logistic regression 172 

(described in detail in Busquets et al. (2015)), followed by the distribution of the O-D 173 

demand by city-pair obtained from the O-D demand model (stage 1 in the 3-stage model 174 

described by Busquets et al. (2015)) across the available itineraries using a discrete 175 

choice model. The first step is motivated by the scope of this research to improve the 176 

current FAA's forecasting methodology while maintaining the simplicity of current 177 

models and is inspired by a previous research (Kotegawa, 2012). The second step is the 178 

focus of this paper. This air itinerary model allows the flight segment passenger demand 179 

by airport-pair to be estimated, based on the passenger itinerary demand from all O-D 180 

city-pairs. It is not feasible to develop a model for each possible O-D market, so in 181 

order to apply the discrete choice model, the US is divided into five regions, as done by 182 
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Coldren, et al. (2003): four Continental time zones (Central, East, Mountain and West) 183 

and a region for Alaska and Hawaii. This specific O-D market grouping is an attempt to 184 

capture similarities among all city-pairs. The number and nature of these regional 185 

clusters will be modified using clustering techniques in future work. Given these 186 

regions, 18 region-pairs have been defined considering all 16 possible combinations of 187 

the Continental time zones – e.g., Central-Central (C-C), Central-East (C-E), Central-188 

Mountain (C-M), Central-West (C-W), etc., West-Mountain (W-M), West-West (W-W) 189 

–; as well as a region-pair for Alaska and Hawaii to the Continental US and an region-190 

pair for the Continental US to Alaska and Hawaii. For each region-pair, henceforth 191 

referred to as an 'entity', an air itinerary share model is developed.  192 

This attempts to model the aggregate share of all or groups of decision makers - 193 

i.e., air travellers - choosing each alternative as a function of the trip characteristics. In 194 

constrast to existing research, the itinerary share estimation is done at the most 195 

aggregate level, without considering variables specific to the traveller, such as 196 

passenger preferences and perceptions, or variables specific to the service provider, 197 

such as airline operating the given route, departure time or aircraft type, among others. 198 

Instead, only attributes related to average air fare and travel time, level of service and 199 

basic airport characteristics are considered. The focus of the model is to estimate the 200 

distribution of annual passenger market demand among itineraries, which will be used 201 

as one of the input variables in the third stage of the air traffic estimation model 202 

described in §2, per annum.  203 

In order to develop the air itinerary share model, RP data is used, avoiding the 204 

risk of response bias and allowing for the consideration of a much larger network of 205 

city-pairs within the US ATS. The RP data used is 10% ticket survey of booking data 206 

from airlines operating within the US domestic market (BTS-RITA, 2003-2010). The 207 
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city-pairs considered, M, are all within the domestic US ATS and are defined by origin 208 

and destination. The universal choice set, C, is formed for all possible itineraries within 209 

the entire ATS connecting these city pairs. The choice problem is defined for each city-210 

pair, m ϵ M, with the choice set being all the possible itineraries connecting that given 211 

city-pair, represented by Im. Each itinerary i is characterised by a set of attributes such 212 

as level of service, price, time and basic airport characteristics. As a simplification, only 213 

two possible levels of service are considered, non-stop and one-stop flights. For the one-214 

stop flights, the connections available are through one of a set of 24 US hub airports 215 

defined for this study. 216 

The annual share of passenger demand assigned to each itinerary between a 217 

given city-pair is modelled as an aggregate multinomial logit (MNL) function and is 218 

given by Eq. (2) where Si is the passenger share assigned to itinerary i, Vi is the utility 219 

function or value of itinerary i and the summation is over all itineraries for a given city-220 

pair. The utility function (Vi) is a linear function of the explanatory variables and 221 

assumes that each vector of attributes characterizing an alternative can be reduced to a 222 

scalar value, which expresses the attractiveness of each alternative. Consequently, it is 223 

expected that the individual or group of individuals will choose the alternative with the 224 

highest value, maximizing their utility. Equation (3) shows the general expression for 225 

Vi, where Xi is the vector of attributes defining alternative i; and β' represents the 226 

coefficients to be estimated capturing the influence of the corresponding attribute on the 227 

alternative i (Atasoy & Bierlaire, 2012). 228 

𝑆! =
!"#(!!)
!"#(!!)!

 (2) 229 

𝑉! = 𝛽! ∙ 𝑋! = 𝛽! ∙ 𝑋!! + 𝛽! ∙ 𝑋!!+. . .+𝛽! ∙ 𝑋!"  (3) 230 
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Attributes included in the Xi vector are described in Table 1 (§3). Some interactions 231 

between the attributes are accounted for by the model. After evaluating several model 232 

specifications, the interactions that define the utilities considered in this paper were 233 

identified as follows: 234 

• Accessibility: The interaction between airport accessibility information and 235 

multi-airport city information is accounted for (i.e., the masORIG and masDEST 236 

variables). Four possible interactions are possible, two regarding the origin 237 

airport and two regarding the destination airport. However, because coefficients 238 

need to be normalised, the coefficients regarding accessibility for origin and 239 

destination airports within cities that are not multi-airport systems are set to 0.  240 

• From/to hub variables: The interaction between the hub variables (i.e., whether 241 

the itinerary is from and to a hub, only the origin or destination airport is a hub, 242 

or none of the itinerary airports are hubs) and markets that contain at least one 243 

non-stop itinerary is considered. From/to hub variables are normalised by setting 244 

the variable from and to a hub (i.e., the hub2hub variable) to 0. 245 

During the estimation of the model, for each city-pair considered, the utility and 246 

likelihood function are computed, with the latter being used to calculate the final 247 

estimated log likelihood.  248 

Although all 18 air-itinerary share models have been developed, in this paper 249 

estimated results are only presented for six entities (the entities C-M, M-C, C-W, W-C, 250 

M-W and W-M). Due to issues with computational intensity during the estimation 251 

process for some entities, reduced estimation datasets were generated by sampling a 252 

subset of the total number of city-pairs within the given entity. The size of the reduced 253 

estimation datasets was chosen after evaluating preliminary model estimation results 254 
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obtained when considering different estimation dataset sizes. Due to the aggregate 255 

nature of the data used in this study and the fact that this data represents only a 10% 256 

sample of real booking data, limiting assumptions are implicitly included when 257 

estimating the model. For example, some itineraries have a very small probability of 258 

occurring, heavily influencing the results obtained for the model estimated as well as its 259 

performance. Moreover, due to the large number of city-pairs considered in the 260 

estimation data and the large number of coefficients to be estimated, the model 261 

estimation becomes computationally too intensive. For these reasons, the data is 262 

reduced to 10 datasets containing information on 100 randomly chosen city-pairs, which 263 

are then each used to estimate the model, reducing the complexity of the problem. The 264 

final estimated model coefficients are computed as the average of the 10 different 265 

models. The performance of each of the entities’ air itinerary share model is validated 266 

with data not used for the model estimation. Table 2 reports summary statistics for all 267 

the entities. The set of hub airports varies between entities, as some hubs do not make 268 

sense for some entities for geographical reasons. Table 2 shows the busiest flows in the 269 

US ATS network, i.e., the East Coast corridor (East - East entity), the Central corridor 270 

(Central – Central entity) and between the Central region and East Coast (Central-East 271 

and East-Central entities). A total of 17,200 city-pairs and 104,806 itineraries within the 272 

US ATS network are accounted for in the development of the air itinerary share models.  273 

To better understand the results obtained from the air itinerary share model, 274 

indicators such as passenegers’ ‘willingness to pay’ can be computed. Value of time 275 

(VOT) is the willingness of passengers to pay for one hour of travel and is defined by 276 

Eq. (4), which is computed for each given itinerary i. Note that because Travel Fare 277 

Ratio is a function of the average air fare in the market and Travel Time Ratio is a 278 

function of the minimum flight time possible in the market, when computing the utility 279 
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Vi, average air fare (𝑇𝐹) and minimum flight time (TTsh) are also included in the 280 

formulation of VOT. 281 

𝑉𝑂𝑇! =
!!! !!"#$!
!!! !!"#$%!

= !!"#$!!"#$%&'!#(

!!"#$%#&'%(")
∙ !"
!!!!

         (4) 282 

[Table 2]  283 

 284 

Once the itinerary choice model is estimated using the MNL function, Eq. (1) is 285 

applied to compute the market share of passengers on each itinerary. The estimated 286 

passenger demand per itinerary is then used to compute segment demand – i.e., 287 

passenger demand per airport-pair – which will ultimately be used as an input for stage 288 

3 of the 3-stage model described in §2, as described in detail by Busquets et al. (2015). 289 

4. Application 290 

The models described above are applied to a network of 337 airports within the US 291 

ATS, as used in the Aviation Integrated Modelling (AIM) Project (2006). The choice of 292 

the US air transport network is motivated by improving the current FAA's forecasting 293 

methodology, and by the availability of data. The availability of data for the analysis of 294 

air transport systems can be challenging, with the US being one of the few countries to 295 

provide open source data. 296 

The RP data used for this study includes passenger demand data and airfares 297 

extracted from the Airline Origin and Destination Survey (DB1B) (BTS-RITA, 2003-298 

2010), which contains a 10% sample of airline tickets from reporting carriers. Travel 299 

times and costs are also extracted from BTS-RITA (2003-2010). The air itinerary choice 300 

model is estimated using Biogeme (Bierlaire, 2003). Flight delay information is 301 
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obtained from the FAA Aviation System Performance Metrics (ASPM) database (FAA, 302 

2007-2010).  303 

The RP data considered for estimating the model is from 2007, to be in line with 304 

the period considered when estimating the ultimate 3-stage model described by 305 

Busquets et al. (2015). The data used to validate the model is from 2010.  306 

Once the model is estimated, it will be applied in future work to estimate the 307 

itinerary shares in the same network of 337 airports into the future. These results will 308 

then be compared to those of the Terminal Area Forecasts (TAF) produced by the FAA. 309 

5. Model Estimation Results 310 

Parameter estimates for the six air itinerary share models mentioned above are reported 311 

in Table 3 below. From the entities shown, parameters for the C-W and W-C entities are 312 

estimated using 10 different folds of 100 randomly selected city-pairs. The estimated 313 

coefficients are averaged to define the final model coefficients. For the C-M, M-C, M-314 

W and W-M entities, the entire estimation dataset is used to estimate the air itinerary 315 

share model. As Table 2 shows, the C-W and W-C entities have 724 city-pairs and just 316 

over 5,200 itineraries, while the rest of the entities' datasets reported in this paper 317 

contain a much lower number of city-pairs and itineraries, making the estimation 318 

process less computationally intensive.  319 

Model performance is described using the likelihood ratio test and rho-squared 320 

parameter (ρ2). The likelihood ratio test provides an evaluation of the entire estimated 321 

model by evaluating whether it is possible to reject the null hypothesis that a more 322 

restricted model (i.e., a model with zero coefficients) is equal to the estimated one. The 323 

ρ2 metric is an indicator of overall goodness of fit.  324 
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All estimated coefficients are statistically significant at the 95th percentile 325 

confidence level.  326 

The Travel Fare Ratio and Travel Time Ratio coefficients are both of the 327 

expected sign, negative, indicating that fares and travel time are a resistance to travel. In 328 

contrast, some of the coefficients associated with delay at the origin and destination 329 

airports are positive, suggesting a correlation between delay and itinerary attractiveness, 330 

which is unexpected. For entities C-M, M-C, M-W and W-M, the sign of the 331 

coefficients alternates between positive and negative, indicating a positive correlation 332 

between delay and itinerary attractiveness associated with Mountain (M) airports. For 333 

the C-W and W-C entities both delay parameters are positive. These results may be an 334 

indication of airport importance since larger and/or hub airports are expected to have 335 

more passengers and flights, and therefore higher delay. This suggests that passengers 336 

are more inclined to travel to and from large airports, which is likely because of the 337 

increased number of routing alternatives available at these airports.  338 

The coefficients associated with airport accessibility are also positive, with the 339 

exception of the AccessDEmas coeffient for the C-M entity and the AccessORmas 340 

coeffient for the W-C entity. This is opposite to what one would expect since an 341 

increased travel time to/from an airport is a resistance to air travel, and given the 342 

influence on door-to-door travel time, a negative sign would be expected. However, the 343 

coefficients associated with all airport accessibility time variables are small, - with the 344 

exception of the AccessORmas coefficients for the M-C and M-W entities -, indicating 345 

low influence of passenger preferences on itinerary choice.   346 

[Table 3]  347 

 348 
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The estimated Airline Ratio coefficients tend to be in the order of 10e-2 and 349 

positive - with the exception of the coefficient associated with the C-W entity -, 350 

indicating low influence of passenger preference on itinerary choice. Coefficients 351 

associated with level of service are represented by dummy variables in the models and 352 

are characteristics of every entity. These variables show the passengers preference in 353 

terms of level of service and connecting hub choice. Due to the fact that each entity has 354 

a specific set of hubs and different assumptions have been made in building the 355 

connection alternatives, a comparison of the estimated coefficients across entities is not 356 

possible.  357 

For the variables associated with origin and destination hub information (1hub 358 

and no_hub), both coefficients are generally negative, except for the C-W and W-C 359 

entities. One would expect a negative correlation between itinerary attractiveness and 360 

traveling from or to a hub airport (i.e., 1hub=1), and also between itinerary 361 

attractiveness and travelling from and to a non-hub airport (i.e., no_hub=1). In both 362 

cases fewer alternatives would exist than for an itinerary between two hubs. The 363 

positive correlation for entities C-W and W-C may be because these sets of variables 364 

interact only with itineraries belonging to markets in which non-stop options exist, and 365 

itineraries from or/and to a non-hub airport may be associated with lower delay as well 366 

as lower travel fare ratio than itineraries from and to a hub.   367 

Regarding the model performance, both the likelihood ratio test and rho-squared 368 

parameters for the six entities show reasonable goodness of fit. Although all the models 369 

show a likelihood ratio test large enough to reject the null hypothesis that all 370 

coefficients are equal to zero; rho-squared values tend to be largest for those models for 371 

which the entire dataset has been used during estimation. While the C-M, M-C, C-W 372 

and W-C entities have a rho-squared value of about 0.7; the rho-squared values for the 373 
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C-W and W-C entities are lower than 0.6. The same trend is found for the other air 374 

itinerary models estimated. 375 

To further analyze the results and understand the effect that the level of service 376 

has on the willingness to pay, VOT is computed – using Eq. (4) – for an example case. 377 

Table 4 shows the VOT values for the six air itinerary share models presented in this 378 

paper. For each of the entities an example case has been chosen and the corresponding 379 

VOT value has been computed. Considering that VOT values in the literature are 380 

typically under $100/hour (Hsiao & Hansen, 2011; Atasoy & Bierlaire, 2012) several 381 

observations can be highlighted from the results presented in Table 4. While the 382 

estimated VOT for the specified city-pair belonging to the W-M entity is high compared 383 

to the literature (i.e., $144.42/hr), the estimated values for the case examples from the 384 

other entities are well below $100/hr, and therefore comparable to those found in the 385 

literature. This may be because of a lack of differentiation between fare classes, the 386 

level of aggregation of the data used or the differences between the entities’ estimation 387 

datasets. 388 

[Table 4] 389 

6. Model Results Validation 390 

The estimated air itinerary share models are validated using data associated with city-391 

pairs existing in the corresponding entity for the first quarter of 2010. To evaluate the 392 

performance of the model, the market share by itinerary predicted by the model is 393 

compared to the observed market share obtained directly from the DB1B dataset (BTS-394 

RITA, 2003-2010). Absolute errors are averaged across itineraries, shown in Table 5. 395 

Validation results obtained show an average mean absolute error, expressed in terms of 396 

percentage deviation, of 14.2%, ranging from 7.5% for the W-E entity to 27.2% for the 397 
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M-M entity. Most of the percentage errors in itinerary share are lower than those in the 398 

literature (e.g., the model developed by Coldren et al. (2003) for 2010 passenger 399 

itinerary shares has a mean absolute error of 16.6%). Only the percentage errors 400 

accoriated with the M-M entity, the Hawaii & Alaska-US Continental entity and US 401 

Continental-Hawaii & Alaska entity are  larger. The model specifications and data 402 

aggregation, however, differ markedly, so such a direct comparison of model 403 

performance is difficult.  404 

It is believed that the primary differences lie in the fact of the estimation dataset 405 

used to estimate the M-M air itinerary share model has the smallest number of 406 

observations compared to the other entities, as shown in Table 2. The high mean 407 

absolute error values obtained for the Hawaii & Alaska-US Continental entity and the 408 

US Continental-Hawaii & Alaska entity, may be due to the different assumptions 409 

implicit in the datasets. While the rest of the entities contain city-pairs with the same 410 

time-zone difference, these two entities contain a variety of time zones, which may 411 

affect the estimation results. 412 

[Table 5.] 413 

7. Conclusion and Future Work 414 

In this paper a step is made to improve on existing air traffic forecasting methodologies 415 

through a better understanding of the factors driving demand, supply and network 416 

dynamics. In order to achieve this, an aggregate air itinerary share model is presented 417 

that only uses aggregate data, without further insight into service preferences, in 418 

contrast to other models in the literature. Given this aggragate input data, the developed 419 

model attempts to model demand effects and passenger travel decision more accurately 420 

than is possible using other methods. Ultimately, when integrated into a 3-stage model 421 
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for air traffic forecasting, better predictions of airport-pair traffic flows are expected.  422 

An aggregate multinomial logit model is estimated to predict how market 423 

demand is distributed across available itineraries. In an attempt to capture similarities 424 

between city-pairs, eighteen models are developed, each modelling traffic-flow between 425 

two major regions of the US ATS. In this paper, results for six entities are presented (C-426 

M, M-C, C-W, W-C, M-W and W-M entities). Due to computational limitations some 427 

of the models are estimated using a reduced dataset containing information about 100 428 

city-pairs in each of 10 runs. Results obtained from the estimated model show high 429 

goodness of fit. All estimated coefficients are significant at the 95th percentile 430 

confidence level and are generally of the expected sign.  431 

The estimated models are validated by computing the mean absolute error 432 

between the predicted market share and the observed market share. Data for city-pairs 433 

from the 1st quarter of 2010 is used for validation. Validation results show an average 434 

mean absolute error of 14.2%, ranging from 7.5% for the W-E entity to 27.2% for the 435 

M-M entity. In general, the validation results obtained are slightly better than 436 

comparable numbers in the literature (Coldren et al., 2003). However, because of 437 

differences in model specifications and data aggregation, a direct comparison is 438 

difficult. Model evaluation parameters including likelihood ratio test and Rho-squared 439 

show reasonable values, with the likelihood ratio test values large enough to reject the 440 

null hypothesis and the Rho-squared values showing a reasonable goodness of fit. 441 

Estimated VOTs are found to be in line with those in the literature for all the entities, - 442 

i.e. under $100/hr -, with the exception of VOT for the W-M entity. This may be 443 

because of a lack of differentiation between fare classes, the level of aggregation of the 444 

data used or the differences between the entities’ estimation datasets. 445 
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Model estimation results obtained to date look promising, showing that the 446 

application of multinomial logit modelling for air itinerary share estimation at the 447 

aggregate level is possible. However, computational intensity is a significant problem, 448 

requiring the approach to be adjusted to estimate the model with reduced datasets of 100 449 

city-pairs in each of 10 runs. This leads to some issues with the estimated coefficients, 450 

and may reduce model performance. Hence, further work will focus on improving 451 

model estimation results through the use of alternative techniques. Those under 452 

consideration include neural networks using various learning algorithms such as 453 

backpropagation and Levenberg-Marquardt. 454 

In future work the best performing model will be used to estimate the air 455 

itinerary shares between city-pairs, so that passenger demand by airport-pair can be 456 

predicted and ultimately used as one of the input variables for the final stage of the 3-457 

stage model. Additionally, by providing more accurate itinerary shares, this model 458 

could be used to aid the decision making process across multiple stakeholders (e.g. 459 

airlines, airport providers, government’ agencies, etc.). Route network expansion, 460 

equipment purchase or airport expansion are some examples in which its application 461 

could be beneficial. Moreover, subject to adequate model refinement, there is the 462 

potential of a broader model application to include other transport modes as one of the 463 

choice criteria. This would allow for the analysis of, e.g., competition between air and 464 

ground transport over short distances.  465 
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Tables 470 

Table 1. Input variables considered to influence air itinerary market share. 471 

 Variable Name Description  

   

 

  
 Level of service 

 

    LoS  Dummy variable indicating the level of service of the 

itinerary i (non-stop or one-stop) with respect the best 

level of service within its market (either non-stop or 

one-stop with the best connection). 

 

 Travel Time Ratio 𝑇𝑇!!"#$% Ratio between travel time of itinerary i and travel time 

of shortest itinerary in the market sh. 

 

 Travel Fare Ratio 𝑇𝐹!!"#$% Average fare paid on a specific itinerary i divided by 

the market average fare. 

 

 Multi-airport 

system (MAS) 

Origin 

𝑚𝑎𝑠𝑂𝑅𝐼𝐺! Dummy variable indicating whether the Origin airport 

is within a multi-airport system or not. 

 

 Multi-airport 

system (MAS) 

Destination 

𝑚𝑎𝑠𝐷𝐸𝑆𝑇! Dummy variable indicating whether the Destination 

airport is within a multi-airport system or not. 

 

 Origin airport 

average delay 

Dly!"#$ Average departure delay of origin airport for the 

previous year. 

 

 Destination airport 

average delay 

Dly!"#$ Average arrival delay of destination airport for the 

previous year. 

 

 Origin airport 𝐴𝑐𝑐𝑒𝑠𝑠!"#$ Average distance between city center and origin  
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Accessibility airport. 

 Destination airport 

Accessibility 

𝐴𝑐𝑐𝑒𝑠𝑠!"#$ Average distance between city center and destination 

airport. 

 

 Origin and 

destination 

airports are hubs 

ℎ𝑢𝑏2ℎ𝑢𝑏! Dummy variable indicating whether itinerary i is 

between two hub airports. 

 

 Either the origin 

or destination 

airport is a hub 

1ℎ𝑢𝑏! Dummy variable indicating whether itinerary i is from 

or to a hub airport. 

 

 Neither origin nor 

destination 

airports are a hub 

𝑛𝑜_ℎ𝑢𝑏! Dummy variable indicating whether itinerary i is not 

from nor to a hub airport. 

 

 Airlines Ratio 𝐴𝑖𝑟𝑙𝑖𝑛𝑒𝑠𝑅𝑎𝑡𝑖𝑜! Ratio between the number of airlines serving itinerary 

i and the number of airlines serving the shortest 

itinerary sh. 

 

 472 

Table 2. Summary statistics for all entities. 473 

 Origin Region Destination 
Region City-pairs Itineraries N° itineraries 

per city-pair 
N° Hubs 

 

   
 

      Hawaii & Alaska US Continental 438 2,063 19 15  

 US  Continental Hawaii & Alaska 437 2,052 19 15 
 

 Central Central 1,547 6,335 16 11 
 

 Central East 2,562 14,415 27 19 
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 Central Mountain 462 1,867 17 17 
 

 Central West 724 5,216 38 19  

 East Central 2,552 15,150 38 18 
 

 East East 3,520 21,157 27 17  

 East  Mountain 508 2,895 18 20 
 

 East West 867 9,268 87 24 
 

 Mountain Central 463 1,899 15 18  

 Mountain East 527 3,150 24 18 
 

 Mountain Mountain 134 359 5 6 
 

 Mountain West 252 1,230 27 11  

 West Central 724 5,222 38 19 
 

 West East 862 9,274 90 24  

 West Mountain 265 1,313 29 11 
 

 West West 356 1,941 31 9  

 Total  17,200 104,806    

 474 

Table 3. Estimated coefficients for the air itinerary choice model corresponding to 475 

entities C-M, M-C, C-W, W-C, M-W and W-M. 476 

 Variable Name C – M  M – C C – W W – C M – W W - M 

   
 

      Level of Service  
(relevant to every entity) --  -- -- -- -- -- 

 Markets Containing Non-
Stop itineraries:       
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 hub2hub 0.000 0.000 0.000 0.000 0.000 0.000 

 1hub -1.590 -2.090 0.013 0.626 -1.090 -0.846 

 no_hub -1.410 -2.650 0.095 0.928 -1.970 -1.380 

 Airlines Ratio 0.012 0.017 -0.550 0.017 0.010 0.023 

 Travel Fare Ratio (TFRatio) -3.840 -4.080 -0.789 -1.321 -1.970 -0.754 

 Travel Time Ratio (TTRatio) -1.030 -1.020 -0.170 -0.329 -0.844 -1.530 

 𝐷𝑙𝑦!"#$  -0.174 3.950 0.086 0.627 2.010 -0.026 

 𝐷𝑙𝑦!"#$ 2.930 -0.092 0.542 0.227 -0.067 1.110 

 AccessDEmas -0.919 0.020 0.044 0.015 0.002 0.331 

 AccessORmas 0.098 0.864 0.098 -0.001 0.749 0.005 

 LogLikelihood Ratio Test 523,121 435,323 1,030,223 191,252 908,296 906,390 

 Rho-squared (ρ2) 0.724 0.691 0.587 0.559 0.715 0.714 

 *Note: All variables are statistically significant at the 95% confidence level. 
 477 

Table 4. Comparison between Value of Time for the C-M, M-C, C-W, W-C, M-W and 478 

W-M entities. 479 

Entity Origin City Destination City 𝑻𝑭 ($) 𝑻𝑻𝒔𝒉 (𝒉𝒓) 𝑽𝑶𝑻 ($/𝒉𝒓) 

  
 

    
C – M Chicago Denver 137.1 2.51 14.66 

M – C Denver Chicago 136.6 2.24 15.26 

C – W Chicago Reno 183.5 4.04 9.79 

W – C  Reno Chicago 184.3 3.59 12.78 

M – W Denver Los Angeles 150.5 2.17 29.76 

W – M Los Angeles Denver 151.0 2.12 144.42 

 480 
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Table 5. Mean absolute error in itinerary share computed in terms of percentage 481 

deviation. 482 

Origin Region Destination Region Number of 
City-pairs 

Number of 
Itineraries 

Mean absolute 
Error in 

Itinerary Share 
(%) 

  
 

   
Hawaii & Alaska US Continental 422 1,889 22.60 

US  Continental Hawaii & Alaska 435 1,963 24.17 

Central Central 1,490 6,088 13.46 

Central East 2,460 13,457 11.35 

Central Mountain 463 1,931 17.94 

Central West 679 4,814 9.03 

East Central 2,461 13,748 11.14 

East East 3,503 19,487 11.07 

East  Mountain 523 3,066 14.06 

East West 785 7,622 8.63 

Mountain Central 464 1,895 16.69 

Mountain East 517 3,049 14.53 

Mountain Mountain 121 309 27.21 

Mountain West 250 1,130 13.22 

West Central 683 4,868 9.40 

West East 786 7,577 7.49 

West Mountain 262 1,243 11.42 

West West 343 1,653 11.97 

 483 

 484 
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