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Abstract 

When people consider a series of random binary events, such as tossing an unbiased coin and 

recording the sequence of heads (H) and tails (T), they tend to erroneously rate sequences with 

less internal structure or order (such as HTTHT) as more probable than sequences containing 

more structure or order (such as HHHHH). This is traditionally explained as a local 

representativeness effect: Participants assume that the properties of long sequences of random 

outcomes—such as an equal proportion of heads and tails, and little internal structure—should 

also apply to short sequences. However, recent theoretical work has noted that the probability of 

a particular sequence of say, heads and tails of length n, occurring within a larger (>n) sequence 

of coin flips actually differs by sequence, so P(HHHHH) < P(HTTHT). In this alternative 

account, people apply rational norms based on limited experience. We test these accounts. 

Participants in Experiment 1 rated the likelihood of occurrence for all possible strings of 4, 5, and 

6 observations in a sequence of coin flips. Judgments were better explained by representativeness 

in alternation rate, relative proportion of heads and tails, and sequence complexity, than by 

objective probabilities. Experiments 2 and 3 gave similar results using incentivized binary choice 

procedures. Overall the evidence suggests that participants are not sensitive to variation in 

objective probabilities of a sub-sequence occurring; they appear to use heuristics based on several 

distinct forms of representativeness. 

 

Keywords: probability, randomness, gambler’s fallacy, heuristics, biases 
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1. Introduction 

Many of the judgments that humans make are based on the abstraction of patterns in events 

that occur in the world. These patterns can take many forms, such as weather – deciding whether 

to take a coat or an umbrella based on the temperature and rainfall of previous days – the 

behaviour of other individuals – guessing when a co-author is likely to complete a manuscript 

draft based on their previous timeliness – or the behavior of wider groups of people – forecasting 

sales for upcoming months based on figures from recent months. 

One of the challenges of any pattern-detection system, whether human or artificial, is to separate 

signal from noise: to extract, and base predictions on, systematic patterns that appear in the 

environment, and ignore observations that are—to the system at least—random.  If distinguishing 

between regularity (which has predictive value) and randomness (which does not) is a basic 

requirement for making successful predictions about the environment, it is surprising that, in 

higher-level cognition at least, humans are relatively poor at recognizing randomness (for reviews 

see, Nickerson, 2002, 2004; Bar-Hillel & Wagenaar, 1991; Falk & Konold, 1997; for a similar 

overview of randomness production, see Rapaport & Budescu, 1997). 

Most empirical research examining human (mis-) understanding of randomness has used 

equiprobable binary outcomes (see Oskarsson, Van Boven, McClelland, & Hastie, 2009, for a 

review), such as the occurrence of red or black on a roulette wheel (e.g., Ayton & Fischer, 2004), 

or birth order of boys and girls in a particular family (Kahneman & Tversky, 1972). The most 

common scenario is the occurrence of heads and tails when repeatedly tossing a fair, unbiased 

coin (e.g., Caruso, Waytz & Epley, 2010; Kareev, 1992; Diener & Thompson, 1985). Across a 

variety of tasks—including choosing the most random of a set of sequences (e.g. Wagenaar, 

1970), classifying individual sequences as random or non-random (e.g., Lopes & Oden, 1987), 

and prediction of future outcomes of a sequence of coin tosses or roulette wheel spins (e.g., 

Ayton and Fischer, 2004)—participants appear to mischaracterize the outputs of a random 
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generating mechanism.  

The mischaracterizations that people make are similar across different types of task. They 

include (using Hahn & Warren’s, 2009, characterization): (a) a preference for negative recency 

between trials rather than independence, meaning that in binary outcomes there is an expectation 

of an alternation rate between outcomes of greater than .5.; (b) a belief that in short sequences, 

equiprobable outcomes should occur equally often; and (c) a belief that an unstructured or 

unordered appearance indicates that a sequence of outcomes is more random and hence more 

likely to occur from a random process (see, e.g., Wagenaar, 1970; Falk & Konold, 1997). These 

biases lead to participants showing a gambler’s fallacy for random events (e.g., Ayton & Fischer, 

2004), or a hot-hand bias for events under human control (Gilovich, Valone, & Tversky, 1995; 

but see Miller & Sanjurjo, 2014, 2016): Following a run of the same outcome from a random 

process, such as five heads in a row in a coin tossing procedure, participants rate the probability 

of the same outcome occurring again as lower than following other sequences for sequences 

believed to be generated randomly (gambler’s fallacy, showing negative recency), and rate the 

probability as higher for sequences that could be under human control (hot-hand, positive 

recency). Similar effects are seen using continuous outcome measures in forecasting: participants 

make forecasts that reflect an assumption of serial dependence in a time series, when outcomes 

are in fact random (Reimers & Harvey, 2011).  

In one of the most influential studies in randomness perception, Kahneman and Tversky 

(1972) conducted two experiments in which participants estimated the relative frequency of two 

birth orders of boys (B) and girls (G) across families with six children in a city: GBGBBG or 

BGBBBB. Participants judged that there would be far fewer families with BGBBBB than 

GBGBBG, suggesting a more representative 1:1 ratio of boys and girls was more likely. However 

participants also rated BBBGGG as less likely to occur than GBGBBG, suggesting the structure 

of the sequence, as well as the ratio of outcomes, was important. Their account, based on local 
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representativeness (which we discuss below), has been the dominant explanation for human 

judgments of random sequences.  

In this paper, we examine some of the ways in which people mischaracterize randomness. 

Specifically, explanations for deviations from normativity in randomness tasks have traditionally 

taken a heuristics and biases approach (Kahneman & Tversky, 1972). More recent theoretical 

approaches have emphasized the potential for apparent biases to reflect rational judgments in 

situations with limited experience. We discuss these two approaches now. 

1.1. Heuristics and biases account 

The set of arguments that comes from the heuristics and biases literature suggests 

performance can be characterized as the application of a representativeness heuristic to short 

sequences of outcomes. We would expect a random binary sequence of infinite length to a have a 

number of properties: It should contain the same proportion of each outcome; it should have an 

alternation rate of around .5; it should not contain any internal structure that allows it to be 

compressed (these properties are discussed further below). The heuristic account argues that 

people assume that these properties of infinite-length random sequences will also tend to be 

expected to be seen in short, exact strings of random outcomes. If they are not, a string is judged 

to be less random or less likely to be generated by a random process. But in reality they are not: 

for example, in a series of four coin tosses, the chance of tossing four heads in a row (HHHH), 

and HTTH is equal, at one-sixteenth. By misapplying a representativeness heuristic to short, 

exact strings of outcomes, participants would rate unrepresentative-looking outcomes (such as 

HHHH) as being less likely to occur through a random process than are more representative-

looking outcomes (e.g., HTTH).  

The notion of representativeness has, however, been criticized as nebulous and untestable. 

Gigerenzer (1996) argued that many heuristics like representativeness lack theoretical 
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specification, and therefore offer enough flexibility to risk being unfalsifiable, and can between 

them be used to make a post hoc account of almost any experimental finding. Ayton and Fischer 

(2004) noted that representativeness was used to account for both the gambler’s fallacy, and its 

opposite, the hot-hand fallacy. Falk and Konold (1997) also noted that there was no a priori way 

of predicting how representativeness might affect performance on a task, making falsifiable 

predictions difficult. 

Kahneman and Tversky (1972) did make some attempt to define representativeness in 

binary randomness tasks. As noted above, they suggested that the relative proportions of the two 

outcomes might be important. In addition, strings containing more alternations (e.g., HHTHTH, 

which contains four alternations) typically appear more representative of a random generation 

process than strings containing fewer alternations (e.g., HHHHTT, which contains one 

alternation). Strings with relatively few alternations tend to contain long runs of a single outcome 

type, which are heuristically unrepresentative of a random generation process. (Of course, these 

attributes are not independent: High alternation rates tend to have shorter runs, and vice versa. 

See Scholl & Greifeneder, 2011, for an attempt to disambiguate the role of run length and 

alternation rate in longer sequences of outcomes.) 

Finally, a random generation process should produce sequences that are uncompressible; 

that is, that contain no internal structure that allows them to be expressed any more concisely than 

by giving the entire sequence. For example, HHHHHHHHHHHH could be compressed as (H × 

12), or HHTHHTHHTHHT could be compressed as (HHT × 4). In contrast, HTHHTTTHTHHT 

is not so easily compressed. On this basis, Kahneman and Tversky noted that strings of outcomes 

that can be given descriptive short-cuts (e.g., HTHTHT being “HT three times”) appear less 

random. This was more formally codified in Falk and Konold’s (1997) Difficulty Predictor (DP). 

Although DP primarily attempted to capture the subjective difficulty of encoding a sequence of 

outcomes, it is closely related to Kolmogorov complexity (Griffiths & Tenenbaum, 2003; see 
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also Gauvrit Singmann, Soler-Toscano, & Zenil, 2015, for a method of calculating Kolmogorov-

Chaitin complexity for short binary strings. For longer sequences, formal and subjective 

compressibility may diverge due to cognitive limitations.).  As complexity is one way of defining 

the randomness of a sequence, use of DP in judgments could be seen as reflecting the 

misapplication of a norm in which participants make their judgments based on the entropy of a 

sequence, rather than its probability of occurrence.  

The idea that several different properties may contribute to the representativeness of a 

string introduces further degrees of freedom to the heuristic-based account, and renders it 

correspondingly difficult to test. In particular, the relative influence, under an account of local 

representativeness, of proportions, alternations, and compressibility, is something that remains 

untested. Examining the extent to which one kind of representativeness is more important than 

others in guiding randomness performance could help with understanding the representations and 

processes involved, and constrain local representativeness predictions for other situations. This is 

one of the aims of the current experiments. 

1.2. Experiential account 

An alternative set of arguments treats apparent biases in randomness judgments as adaptive 

responses to environmental experience. Several authors have noted that events in the world may 

exhibit negative recency, that is, immediately following an outcome, the same outcome is less 

likely to occur again. For example, after several days of rain, the nature of weather patterns may 

make it less likely that rain will continue the following day (see, e.g., Ayton & Fischer, 2004; 

Pinker, 1997).  

More abstractly, participants may confuse sampling with replacement and sampling without 

replacement (see Fiorina, 1971; Morrison & Ordeshook, 1975, for early discussion of this 

possibility, and Rabin, 2002 for an attempt to model the idea). If I draw beads from an urn 
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containing 10 red and 10 green without replacement, after drawing 4 reds in a row, the 

probability of the next bead being green is greatly increased. Many real-world samples involve 

drawing without replacement, which may encourage more general assumptions of negative 

recency in randomness judgments, either through overgeneralization or through misconstruing 

the experimental environment (Hahn & Warren, 2009; Ayton & Fischer, 2004). 

There is also a set of models that build on counterintuitive properties of random sequences, 

suggesting that erroneous or biased judgments might reflect the (mis-) application of alternative 

norms; that is, accurately representing one’s experience of random sequences, but misapplying 

that experience when asked to make judgments or choices. For example, Kareev (1992) 

demonstrated that participants who were instructed to generate random sequences, tended to 

produce typical sequences with respect to the number of heads and tails they contained. This was 

accounted for by noting that across all 1024 possible sequences of 10 coin flips, 252 contained 

exactly 5 heads, whereas, for example, only 10 contained 9 heads. Thus, the most frequent 

number of heads is 5, and sequences containing exactly 5 heads are most typical of 10-item 

random sequences. Kareev used this observation to account for overalternation biases seen in 

randomness production: If participants generate typical sequences containing 5 heads and 5 tails, 

then these sequences will on average have an alternation rate higher than 50%.  

As another example, Miller and Sanjuro (2016) recently showed that in a short random 

binary sequence of outcomes, the expected proportion of three occurrences of an outcome that 

were then followed by the same outcome again was less than .5 (and of course conversely, the 

proportion of three outcomes followed by the opposite outcome was greater than .5). Thus, 

evidence traditionally seen as supportive of the Hot Hand Fallacy (Gilovich et al., 1985) actually 

suggests that it may not be a fallacy. 

Most significantly, and of most relevance to this paper, Hahn and Warren (2009) have 

developed a theory employing the fact that in a short random binary sequence, some strings of 
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specific outcomes are actually less likely to be observed than others (see Reimers, 2017, for a 

discussion of similarities between this theory and the work of Miller and Sanjurjo, 2016; see also 

Konold, 1995, Nickerson, 2007, and Kareev,1992, for earlier psychologically-motivated work 

relating to this phenomenon, and Feller, 1968 for mathematical background). Hahn and Warren’s 

argument involved considering strings as component parts of longer sequences of events. While it 

is true that the two strings HHTHTT and HHHHTH are equally likely to occur given exactly six 

tosses of a coin, it is not the case that these strings are equally likely to occur at least once in any 

global sequence of finite length n > 6. The argument is presented in detail by Hahn and Warren 

(see also Sun, Tweney & Wang, 2010; Sun and Wang, 2010a , 2010b), and summarized here. For 

this purpose, we use the term string to refer to a relatively short sequence of heads and tails that 

participants might be asked to make a judgment on, and global sequence to refer to a longer 

sequence of heads and tails, generated by tossing a coin, in which that string may appear. For 

example, the string THT (with length k = 3) appears three times in the global sequence 

HTHTTTTHTHT, which has length n = 11. Note that two of the occurrences overlap. 

Figure 1: Raster plot of a sequence of 1,000 simulated coin flips. Vertical lines show where, 

between the first flip on the far left and the last flip on the far right, each of the strings occurred. 

Note that the total number of occurrences of each string is approximately equal. However, 

occurrences of HHHH tend to cluster together. 
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If the global sequence is infinitely long, then any two strings of the same length k will 

occur the same number of times. However, the distribution of these occurrences will not be the 

same for all strings: The string HHHH will tend to cluster. Suppose that HHHH appears at 

position t in the global sequence (where by ‘appears’ we mean ‘is completed’; i.e. the elements at 

positions t – 3, t – 2, t – 1, and t are all H ). Consequently, there is a 50% chance that it will 

appear again at position t + 1 (i.e., if the coin toss on trial t + 1 yields H, then positions t – 2, t – 

1, t, and t + 1 are all H). In contrast, the string HHHT cannot cluster in the same way, because 

there is no way for two occurrences of HHHT to overlap – all different occurrences of this string 

must be entirely separate. To illustrate this, Figure 1 shows a raster plot of a simulated global 

sequence of 1,000 coin flips, with bars marking the points at which each of the strings HHHH 

and HHHT occurred. Since the global sequence (n = 1000) is very long relative to the length of 

each string (k = 4), the total number of occurrences of HHHH and HHHT in the global sequence 

is approximately equal. However, the distribution is very different. Specifically, occurrences of 

HHHT are relatively regular (a ‘steady drip’), whereas occurrences of HHHH tend to occur in 

irregular clusters, with large gaps in between. This results in significant areas of white space in 

the HHHH sequence, where HHHH did not occur for many flips. 

The upshot is that there are many more windows of a given sequence length (n > 4) that do 

not contain the string HHHH than do not contain the string HHHT: In a sequence of length, say, 

20, the probability that the string HHHH does not occur (which we label PGN , standing for 

probability in the Global sequence of Non-occurrence, following Sun et al.’s terminology) is 

greater (at around .5) than the equivalent probability for HHHT (at around .25). Equivalently, the 

probability that HHHH occurs at least once as part of this global sequence of 20 tosses (labeled 

PGO, standing for the probability in the Global sequence of Occurrence) is less than for HHHT.  

Hahn and Warren noted that people’s experiences of random sequences such as coin tosses 

are necessarily finite, and likely to be of moderate length, say 20 or 30 elements at most. 
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Consequently, in the sequences that people have observed, there is a greater probability of not 

observing HHHH than not observing HHHT. When asked by a cognitive psychologist to pick 

which of HHHH or HHHT is more likely, if people assume this question refers to occurrence in a 

similar finite sample, then their preference for the latter should not be classed as an error; instead 

it is a sensible inference based on their experience and the statistical properties of the task at 

hand. More generally, Hahn and Warren stated that “There is not only a sense in which laypeople 

are correct, given a realistic but minimal model of their experience, that different exact orders are 

not equiprobable, it seems that the same experience might be able to provide a useful explanation 

of why some sequences are perceived to be special” (p. 457). 

Although Hahn and Warren use PGO as the basis for their theory, they include simplifying 

assumptions, that aside from strings of streaks of a single outcome, HHHHH, or perfect 

alternations, HTHTH, people treat all strings with the same proportion of heads and tails 

identically – so do not differentiate between, say, HHHTT and HTHHT. As PGO does not vary 

much across strings with the same proportion of heads and tails, this simplifies the predictions 

made by the theory. 

The central argument made by Hahn and Warren (2009) is that judgments may stem from 

participants over-extending their previous experience of genuine differences in probabilities-of-

occurrence to artificial situations contrived by experimenters – the application of alternative 

norms. This is intriguing, and offers a more experiential explanation of participant behavior to the 

notion of a representativeness bias in which participants accurately recall limited frequency 

information. Of course the non-normativeness of a judgment may be relatively inconsequential in 

many laboratory studies. However, representativeness-based biases occur in both memory for 

random sequences (Olivola & Oppenheimer, 2008), and higher-stakes choices with real financial 

(e.g., Chen, Moskowitz, & Shue, 2016) or health (e.g., Kwan et al., 2012) outcomes. This 

suggests that whatever the cause, the bias is not merely the consequence of low-stakes or 
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hypothetical tasks. 

1.3 Optimization versus heuristics 

The accounts above represent two sides of a broader debate on optimization. Some 

approaches (e.g., Kahneman & Tversky, 1972) assume that randomness judgments are one more 

example of ways in which we deviate from optimality, adding to the canon of situations in which, 

perhaps because of processing or motivational limitations (Simon, 1957), we show suboptimal, 

but functionally adequate judgment and decision making. The dominant alternative account 

suggests that our judgment and decision making reflect our limited experience with the 

environment (Hahn, 2014; Hahn & Warren, 2009; see also Miller & Sanjurjo, 2016, and Hertwig, 

Pachur, & Kurzenhäuser, 2005). In accounts of this nature, experimenters inadvertently 

encourage participants to give mathematically or logically incorrect answers by structuring the 

experimental stimuli in a way that does not reflect experience with the environment to which they 

are adapted. For more general reviews of these positions, see Oaksford and Chater (2007), 

Bowers and Davis (2012), and Gigerenzer (2007). 

However, the use of heuristics and environmental optimization are not mutually exclusive. 

Hahn and Warren argue that their alternative norms might not be best seen as necessarily an 

alternative to heuristics. Instead, the reason we have adapted to use heuristics may be as a result 

of their capturing regularities in the environment reasonably well.  

There appear to be four ways in which the relationship among alternative norms, heuristics, 

and behavior could be related. One relationship is that in randomness judgment tasks, although 

people appear to use heuristics, in fact they do not. Instead they use the alternative norm of 

probability of string occurrence, which generates behavior that happens to look like use of 

heuristics because, for example, both accounts predict that people should find the sequence 

HHHHH as particularly improbable relative to other 5-item sequences. A second possible 
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relationship is that alternative norms combine additively with heuristic use to improve judgment. 

A third relationship would be that alternative norms explain the reason for the existence and 

application of the heuristics we use in randomness tasks: The reason we apply a 

representativeness heuristic is that it does a better job of capturing the alternative norms in the 

environment than assuming equiprobability, even if it is not successful for all sequences, and of 

course fails in the less ecological tasks devised by psychologists. Finally, it is possible that 

although these alternative norms may be a statistical reality, they have no influence on behavior, 

and similarities between predictions of alternative norms and behavior are coincidental. 

1.4. Experiment aims and rationale 

Kahneman and Tversky’s original experiments used just two examples of six-item birth-

order strings, and consequently lack the sensitivity to assess the relative influence of different 

aspects of representativeness (e.g., relative proportion of outcomes, alternation rate, 

compressibility) or use of alternative norms of the kind suggested by Hahn and Warren (2009). 

We know of no more systematic attempt to examine the factors affecting people’s judgments of 

likelihood of occurrence of different strings of binary outcomes, using an approach similar to 

Kahneman & Tversky’s. The closest example is perhaps that of Scholl & Greifeneder (2011), 

which attempted to disentangle alternation rate and longest run as predictors of perceived 

randomness in 20- or 21-item binary sequences. Of course with sequences of this length PGO 

would be near-zero in any plausibly experienced sequence of outcomes, making it essentially 

untestable. The aim of this paper is therefore to provide empirical evidence to determine (a) the 

extent to which people’s judgments in evaluating random sequences show sensitivity to 

alternative norms; and (b) what kinds of representativeness are important in determining 

perceptions of randomness in the kind of task that had led to development of local 

representativeness accounts. We note that this work focuses on the perception of random 
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sequences presented as a single entity, as done by Kahenman and Tversky, rather than a general 

account of randomness perception and production. 

2. Experiment 1 

In Experiment 1, we made PGO (the probability of a string occurring at least once in a sequence) 

normative, by asking participants explicitly to estimate the probability of a string occurring at 

least once within a longer, finite global sequence. This was done in order to maximize the chance 

of detecting an influence of PGO on judgments. Our rationale for this was that if the alternative 

norm represented by PGO does not influence judgments when it is actually normatively 

appropriate, then it seems unlikely that it will do so when it is normatively inappropriate (such as 

when people are asked to judge the probability of a string of k items given exactly k 

observations). 

2.1. Method 

2.1.1. Participants.  A total of 149 participants (43% female; median age = 32, range = 20-

74; 57% university educated) were recruited from Amazon Mechanical Turk, with recruitment 

handled by mturkdata.com. The experiment took around 10 minutes to complete, and participants 

were paid $1.50.  

2.1.2. Design and Procedure.  All experiments reported in this article were coded in Adobe 

Flash (see Reimers & Stewart, 2007, 2015 for an overview), and run online. 

In Experiment 1, participants completed a series of trials in which they estimated the 

probability of a string’s occurrence as part of a longer sequence. To ensure that they understood 

this concept, the first page of this experiment gave a concrete example. Specifically, participants 

were asked to imagine generating the sequence of 10 random consonants GKLRWLMFPK. It 

was then highlighted that the string RWLM appears in this sequence, while the string RWLK 
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does not. In order to maximise the likelihood that participants were basing their decisions on PGO, 

instructions stated explicitly that: 

 

‘Of course, the string could appear more than once in the sequence. But we’re not interested in that 

here. So what you are rating is the probability that a string will appear at least once in the sequence, 

versus not appearing at all.’ 

 

Likelihood ratings were made by moving a slider on a 400-pixel line, labelled on the 

left ‘impossible that the string will appear’, in the middle as ‘the string is as likely to 

appear as it is not to appear’, and on the right as ‘it is certain that the string will appear’. 

Beneath the slider, a percentage value was displayed indicating the participant’s 

judgment: If the position of the slider was on the far left, it was at 0%, with integer 

increments to the percentage value with rightward slider position so that it showed 100% 

if the slider was on the far right. Instructions stated: 

 

Imagine that I am going to be tossing the coin separately 20 times for each string. So if we were doing this for 

real, you’d make your judgment for the first string, then we’d toss the coin 20 times and see if the string 

appeared. Then you’d make a judgment for the second string, and we’d toss the coin 20 times again and see if 

the second string appeared. And so on. 

 

The experiment used 4-, 5- and 6-item strings. In total, there are 16 distinct 4-item strings, 

32 distinct 5-item strings, and 64 six-item strings. However, half the strings are inverses of the 

other half, that is, they are identical except that H and T have been swapped (e.g., THHT is the 

inverse of HTTH, HTHTH is the inverse of THTHT, and HTTHTH is the inverse of TTHTHT). 

As all theories under consideration here predict identical judgments across inverses, participants 

were presented with a single item from each pair of inverses, chosen at random for each 
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participant. This means that participants made probability judgments for 8 4-item strings, 16 5-

item strings, and 32 6-item strings. 

Trials were blocked by string length, and both block order and trial order within a block 

were randomized across participants. 

2.2. Results and Discussion 
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Figure 2.  Results of pairwise comparisons for (A) 4-item strings, (B) 5-item strings, and (C) 6-

item strings of heads (H) and tails (T). For each pair, the arrow points to the string that was 
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rated as more likely to occur at least once as part of a global sequence of coin tosses (the red or 

blue color of the arrow also indicates choices of the left-hand or upper string, respectively). The 

saturation of an arrow indicates the strength of the relationship. A solid border around the arrow 

indicates an uncorrected p-value for a paired t-test of <.001, and a dashed border indicates an 

uncorrected p-value of <.05. No border indicates p>.05. 

 

Data from the experiments reported here are available for download from 

https://osf.io/hy5b7/. Figure 2 shows the pairwise pattern of rating differences for 4-, 5-, and 6-

item strings. For this and all subsequent analyses we averaged across inverse strings (e.g., the 

ratings for THHT and HTTH were averaged, and are represented by the label ‘THHT’ in Figure 

2).  

For this analysis, we use the exact values of PGO for every string, as the normative baseline. 

Note that Hahn and Warren’s (2009) model groups strings into sets containing the same 

proportion of each outcome. As PGO values among strings that contain identical proportions of H 

and T (e.g., HHHT and HTHH) are very similar, replacing all individual values with the central 

tendency of the set does not change results substantially1. Many of the observed pairwise 

differences are inconsistent with the normative metric provided by PGO. For example, HHHT is 

rated significantly lower than HHTH, HHHHT is rated lower than HHHTH, and HHHHHT is 

rated lower than HHHTHH (all ps < .001). In each case, PGO is higher for the former string. In 

general, for strings containing a single oddball, PGO is higher the closer this oddball is to either 

end of the string (since the closer it is to an end, the fewer ways the string can cluster; see 

Introduction). However, the empirical data show that, the closer the oddball to an end of the 

string, the lower the string’s perceived likelihood (see Figure 3). The inconsistencies with PGO do 

not apply only to strings with a single oddball. For example, THHHT (PGO = .59) is rated lower 

than THHTH (PGO = .56), THHHHT (PGO = .44) is rated lower than THHHTH (PGO = .43), and 
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(replicating Kahneman & Tversky’s, 1972, comparison) HHHTTT (PGO = .45) is rated lower than 

THHTHT (PGO = .44). In each case PGO is higher for the former. 

  

Figure 3.  Bars show mean likelihood ratings for exact strings of heads (H) and tails (T) 

which contain a single oddball, as part of a global sequence of coin tosses. (A) Estimates for 4-

item strings as a part of a global sequence of 20 tosses. (B) Estimates for 5-item strings as a part 

of a global sequence of 30 tosses. (C) Estimates for 6-item strings as a part of a global sequence 

of 40 tosses. Error bars show standard error of the mean. Black circles show corresponding 

values of probability of occurrence at least one (PGO) for each string. Strings with oddballs 

closer to one end have higher rated likelihood, but lower PGO. 

 

It is worth noting that the PGO values for many of these strings are quite similar. In fact, 
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Hahn and Warren (2009) suggested that differences in PGO would be reflected in judgments only 

when these differences were relatively large. In the absence of any information regarding what 

constitutes a sufficiently large difference in PGO to be observable in judgments, this suggestion 

risks being untestable. For example, the difference in likelihood ratings for HTHHTH (PGO = .40) 

and HHHTHT (PGO = .45) is in the opposite direction to a considerable difference in PGO, but is 

this difference sufficiently large for an influence of PGO to be expected? We return to this issue in 

the General Discussion. 

The question now becomes: if participants’ estimates bear little relation to PGO, then on 

what information are they basing these estimates? In the Introduction, we noted three aspects of 

(non-) representativeness that have been raised in previous theorizing: (1) relative proportion of 

the two outcomes, (2) alternation rate, and (3) complexity. Below we consider each of these in 

turn.  

The first type of local non-representativeness comes from strings in which the overall ratio 

of heads to tails deviates from 50:50. Here we quantify ‘proportion’ as the lower of either the 

proportion of H in the string, or the proportion of T in the string. For example, proportion for 

HHHT is .25, and for TTHHTT is .33. Thus, a proportion of .5 indicates equal numbers of H and 

T, and a proportion of 0 indicates a string containing only one outcome. 

The alternation rate heuristic refers to the proportion of transitions between adjacent items 

in a string that involve an alternation between the binary outcomes, e.g., HHHTTT has an 

alternation rate of 1/5 because it has one alternation out of five transitions, while HTHTHH has 

an alternation rate of 4/5. 

Finally, the complexity heuristic provides a more general conception of randomness 

perception. The more complex a sequence appears to be (that is, the less structure it appears to 

possess – which can be measured in terms of how hard it is to compress, remember, or 

transcribe), the more random it should appear. Many ways of quantifying complexity have been 
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suggested based on concepts such as sequential independence, irregularity, entropy, and 

incompressibility. It is beyond the scope of this article to evaluate these alternatives (for reviews, 

see Falk & Konold, 1997; Nickerson, 2002). For the sake of simplicity, here we use Falk and 

Konold’s (1997) Difficulty Predictor (DP), which provides a numerical measure of encoding 

complexity, with higher values indicating greater complexity (for calculation details, see Falk & 

Konold, 1997). 

 

Figure 4.  Scatterplots of mean likelihood ratings for 4-item strings (top row), 5-item strings 

(middle row), and 6-item strings (bottom row) against: Probability of occurrence at least once 

(PGO; first column); Lower of either the proportion of heads in the string, or the proportion of 

tails in the string (Proportion; second column); Alternation rate (third column); Falk and Konold 
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(1997) Difficulty Predictor (DP; fourth column). In all panels, the data point closest to the 

bottom left of the graph is for perfect repetitions of outcomes (e.g., HHHHH). 

 

Figure 4 shows scatterplots of mean likelihood ratings for 4-, 5- and 6-item strings against 

PGO, proportion, alternation rate, and DP. Looking at the plots for PGO, the point at the bottom-

left of each plot represents the string of perfect repetitions (e.g., HHHHH), which has the lowest 

PGO by a considerable margin, and also received the lowest rating in each case. However, there is 

no evidence of a positive correlation between PGO and ratings over the remaining strings. In 

contrast, ratings over a range of strings appear to correlate with each of the representativeness 

heuristic’s criteria. To analyze these data, we performed a regression analysis on the observed 

likelihood ratings for the 4-, 5-, and 6-item strings, with the following predictor variables: (1) 

PGO; (2) proportion; (3) alternation rate; (4) DP. We use a Bayesian regression analysis, so that 

we can find evidence in favor of predictors being unable to predict the observed likelihood 

ratings.  

In our analysis, we fit all 16 regression models that exclude interaction terms (i.e., 4 models 

with one predictor, 6 models with two predictors, 4 models with three predictors, 1 model with 

all four predictors, and 1 model with no predictors). Our analysis gives us a marginal likelihood 

for all 16 models. We use the marginal likelihoods for two purposes: First, to determine the most 

likely model to have generated the observed likelihood ratings out of our candidate set of 16 

models. Second, by averaging over different combinations of fitted models, we can also assess 

the overall evidence for each predictor variable. In particular, we can compare the marginal 

likelihood of the models that include each predictor with the marginal likelihood of the models 

that exclude that predictor.  

For 4-item strings, there are two models that parsimoniously predict the observed data, 

neither of which include the PGO predictor. The best-fitting model includes the proportion, 
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alternation rate, and DP predictions, and performs slightly better (BF = 1.66) than the model that 

includes the alternation rate and proportion predictors. The next best-fitting model includes all 

four predictors, including PGO, but is 8.6 times less likely to have generated this observed data 

than the best-fitting model.  Averaging over all 16 models, our Bayes factor analysis of effects 

indicates that models which include the PGO predictor are 8.7 times less likely to have generated 

the observed data than the models that do not include PGO. Non-Bayesian regression found that a 

model including only the proportion, alternation rate and DP predictors accounted for 97.7% of 

the variance in mean ratings across the different strings. 

For 5-item strings, the Bayesian analysis revealed that best-fitting model includes the 

proportion and alternation rate predictors, being 4.6 times more likely than the next best model 

(which also included the PGO predictor). Again, the inclusion of the PGO predictor leads to worse 

fitting models, overall (BF=0.207). Non-Bayesian regression found that a model including only 

the proportion and alternation rate predictors accounted for 94.0% of the variance in mean ratings 

across the different strings. 

For 6-item strings (our richest dataset), we see a similar result as for the 4-item strings. The 

best-fitting model is one that includes the proportion and alternation rate predictors, but this 

model provides an equivalent account (BF = 1.02) as one that also includes the DP predictor. The 

next best-fitting model also included the PGO predictor, but was 10.3 times less likely to have 

generated the observed likelihood ratings than the models that did not contain that predictor. 

Averaging across models, those that included the PGO predictor were 14.5 times less likely to 

have generated the data than the models that excluded PGO. Non-Bayesian regression found that a 

model including only the proportion, alternation rate and DP predictors accounted for 92.0% of 

the variance in mean ratings across the different strings.  

In summary, participants’ probability judgments in Experiment 1 were essentially unrelated 

to the alternative norm provided by PGO. Instead judgments were better explained by simple 
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heuristics relating to local representativeness, and a linear combination of these heuristics (but 

not PGO) provided a good account of people’s performance. Returning to the potential 

relationships between alternative norms and heuristic use, it seems clear from Experiment 1 that 

participants do not use the alternative norms discussed by Hahn and Warren (2009) in place of 

heuristics, nor do they appear to improve heuristic-based judgment by taking into account these 

alternative norms. It is still possible that alternative norms explain the existence of heuristics. It is 

also possible that although these alternative norms are a statistical reality, they are not related to 

human judgment. We return to this issue in the General Discussion. 

By asking participants to judge the likelihood of a given string appearing at least once in a 

longer, finite global sequence, we ensured that PGO provided the normative basis for performance 

in Experiment 1. So, for example, the correct response would be to provide a higher rating for 

HHHT than HHTH, since HHHT has a higher value of PGO. And yet participants rated HHHT as 

less likely than HHTH. It is clear, then, that participants’ estimates in Experiment 1 reveal non-

normative biases. Given that people do not follow the pattern of ratings predicted by this 

alternative norm in a situation in which it is appropriate, it seems unlikely that their perception of 

randomness in situations where using PGO is not appropriate (such as the procedure of Kahneman 

& Tversky, 1972) is a consequence of an overgeneralization and misapplication of this metric.  

3. Experiment 2 

Although Experiment 1 showed clear effects, it has limitations. The task of predicting the 

probability that a string occurs in a sequence at least once is both a difficult task about which to 

reason, and is low in ecological validity. We also observed that several participants noted that 

they thought that all strings had equal probability of occurrence, so gave similar ratings for all 

options. In Experiment 2, participants made a series of binary choices between pairs of strings, 

indicating which they thought was more likely to occur (at least once) in a sequence of given 
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length. As each binary choice provides only a single bit of data, we decided to use only 5-item 

strings in this study (rather than dividing participants between 4-, 5- and 6-item strings), in order 

to maximize the number of comparisons for each pair. 

We also provided a small amount of incentivisation for participants’ correct choices in 

Experiment 2. This use of incentivization is potentially important. It has been argued that the 

gambler’s fallacy is not really a fallacy, because participants who display it have the same chance 

of winning as someone choosing randomly, showing the opposite (hot-hand) bias, or using any 

other strategy. The probability of winning is always .5. While in Experiment 1 there was a 

normatively correct pattern of responses (given by PGO), participants in this experiment made 

judgments rather than choices, and hence in this case too they had no disincentive to show biases. 

In Experiment 2, we used a task in which participants could do substantially better than winning 

on 50% of trials, and in which their pay depended on whether they made the correct choice2. 

3.1. Method 

3.1.1. Participants.  A total of 151 participants (47% female; median age = 31, range = 19-

64; 48% university educated) were recruited from Amazon Mechanical Turk, as in Experiment 1. 

No participant who had completed Experiment 1 completed Experiment 2. The experiment took 

around 10 minutes to complete, and participants were paid $1.50, along with a performance-

related bonus which was $0.49 on average. 

3.1.2. Design and Procedure.  We created a subset of the set of 32 possible 5-item strings, 

to exclude inverses (so the subset would not include both HHTTH and TTHHT), meaning there 

were 16 items in the set, and thus 120 possible binary comparisons between non-identical 

members of the 16-item subset.  

Participants completed a series of 120 trials in which they chose the option from a pair of 

strings that they thought was more likely to occur at least once in a sequence of 20 coin flips. 
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General instructions introducing the idea of strings in sequences were the same as in Experiment 

1. Additionally, participants were informed that they would win $0.01 on each trial that the string 

they chose appeared in a virtual sequence of coin flips to be simulated at the end of the study, and 

that the outcomes were independent in this regard: 

 

It doesn't matter whether the other string appears or not - if the string you chose appears, you get a $0.01 

bonus. If it does not, you get no bonus. So you should always choose the string you think is most likely to 

appear. 

 

After reading the instructions, participants made the 120 binary choices, with one option on 

the left of the screen, and the other on the right. Each option had a button beneath it labelled 

‘THIS ONE’, and participants had to click one of the buttons to make their selection. They then 

had to click a ‘NEXT’ button in the middle of the screen to continue to the next trial. For each of 

the 120 binary choices, left-right position of the options was randomized for each participant, and 

each option had a 50% chance of being presented as its inverse. So, taking HHTHH vs HHHHT 

as an example of one of the 120 binary comparisons made, around a quarter of participants chose 

between HHTHH and HHHHT; a quarter between TTHTT and HHHHT; a quarter between 

HHTHH and TTTTH; and a quarter between TTHTT and TTTTH. As all theories under 

consideration make identical predictions for all these pairs, the analysis treats them as a single 

stimulus.  

At the end of the experiment, a sequence of 20 random coin flips was generated for each 

binary choice that the participant had made, and if the string that they had chosen appeared in the 

sequence, their bonus was increased by $0.01. 

3.2. Results and Discussion 
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Figure 5.  Proportion of binary choices made for item in Experiment 2 as a function of 

differences in ratings between the two items in Experiment 1. 

We first examined the congruency between the results of this choice Experiment and the 

ratings in Experiment 1. A scatterplot showing the relationship between the difference in ratings 

for a pair of strings in Experiment 1 and the probability of choosing a string in Experiment 2 is 

shown in Figure 5. To analyse the data from Experiment 2, we ask how well we can predict 

participants’ choices between each pair of strings, based on the various properties of each string. 

For each pair of strings presented, we first evaluated the signed differences between the left and 

right options in terms of the following variables:  PGO, proportion, alternation rate, and DP. For 

example, the string HHTHH has two alternations and HTHTH has four alternations, and so the 

predictor value for this pair of strings would be +2, if HTHTH was the string on the right.  

Participant choices were entered into a binary logistic regression (left option = 0; right option = 

1). The predictor variables were the signed differences between the left and right options on the 
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following variables: PGO, proportion, alternation rate, and DP. We conducted this regression 

using a Bayesian approach so that we can quantify evidence for a null effect of predictors. The 

model also assumed that each participant had their own set of coefficients for each prediction 

(and an intercept), we assumed that individual parameter values were drawn from a population-

level Normal distribution. For example, we assumed that individual-participant alternation rate 

coefficients, βALT, were drawn from a Normal distribution with mean, ΒALT, and standard 

deviation, σALT. We focus our inference on the population-level mean parameters for each of the 

predictor variables. 

 

Figure 6. Posterior distributions for the coefficients for each of the predictor variables in our 

Bayesian logistic regression analysis of Experiment 2, for the full dataset (top row), and for the 

dataset excluding cases in which one of the items in the choice-pair was a string of perfect 

repetitions (HHHHH or TTTTT). The dashed line at 0 in each panel is equivalent to a null-effect 

of that predictor variable. 

The five panels in the top row of Figure 6 plot the posterior distribution of the coefficients 

for each predictor variable (i.e., the Β parameters). The posterior distribution represents the 

distribution of predictor-weights that are most likely, given the observed choices that participants 
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made. Each of the five panels also contains a vertical dashed line at 0, which corresponds to a 

‘null’ predictor variable.  

The posterior distributions for the three local representativeness heuristic predictors 

(proportion, alternation rate and DP) sit far from 0, suggesting that they are reliable predictors of 

choice. The posterior for PGO has relatively little density at zero, suggesting that it is contributing 

to participants’ choices, but its contribution is not as strong as for the heuristics. 

Almost all support for the influence of PGO comes from trials in which one item of the pair 

presented to participants is the string of prfect repetitions (HHHHH or TTTTT). Panels in the 

bottom row of Figure 6 show the posterior distributions of coefficients for each predictor when 

excluding trials containing perfect repetitions. As for the full dataset, these distributions reveal 

strong support for an effect of proportion, alternation rate and DP. However, now the distribution 

for PGO has considerable mass at zero, suggesting that it is unrelated to participants’ choices 

when this small subset of extreme cases is removed. 

There are numerous ways of quantifying the degree of support for these statements. For 

example, if one has a prior likelihood that any given predictor variable was 0, then the ratio of the 

prior and posterior likelihoods would yield a Bayes factor (cf. the Savage-Dickey test: 

Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). Alternatively, one could construct a 

95% credible interval for each predictor variable and determine whether zero (or a region 

surrounding zero) fell within that interval (Kruschke, 2010). We prefer to abstain from either 

approach, since it is clear from Figure 6 that our conclusions are robust to our choice of 

inference. 

4. Experiment 3 

The results of Experiment 2 are strongly congruent with, and readily predicted by, those of 

Experiment 1. In a final experiment, we used a task that was procedurally even easier to 



 30

understand than Experiments 1 and 2, namely choosing which of two strings is likely to occur 

first in a sequence of coin tosses. This makes the task particularly straightforward for 

participants, and is not dependent on participants’ attention to the specifics of a string appearing 

“at least once” in a sequence of coin flips. 

We also ran Experiment 3 completely between-subjects, for two reasons. The first is that 

providing probability ratings or binary choices for dozens of different sequences (as in 

Experiments 1 and 2) is repetitive and effortful, and as such, participants may be inclined to use 

heuristics that they would not use in shorter, less repetitive tasks. This could give the impression 

that judgments are always driven by heuristics, when under normal circumstances they are not. 

Secondly, the within-subjects design of Experiments 1 and 2 meant that participants saw a 

number of strings of outcomes. Matthews (2013) has shown trial-to-trial context effects in 

randomness judgments, and it is thus possible that our previous within-subjects designs produced 

context effects which led to judgments that would not have been made in isolation.  

We designed Experiment 3 to involve only a single trial per participant, combined with a 

more readily understandable task, and some incentivization for normative choice. The rationale 

was to use a simpler choice task, and a between-subjects design to trade off experimental power 

with ecological plausibility. If, using a very different design, we found similar results, we could 

be more confident that the phenomena observed here are not artifacts of the precise 

implementation of the experiment. Thus, in Experiment 3, participants made a single binary 

choice of which string they thought would occur first in a series of coin tosses. Clearly, with only 

a single bit of information per participant, arranging for sufficient comparisons of every possible 

pair of strings to allow robust statistical analysis would require an impractically large number of 

participants. In Experiment 3 we therefore used a subset of all possible pairwise comparisons, 

and recruited over three thousand participants online. 

The other significant change in Experiment 3 was in the instructions. The instructions for 
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Experiments 1 and 2 were designed to make the use of PGO normative. However, despite our best 

efforts they may not have been easy for participants to understand. Thus, in Experiment 3 

participants were asked the simpler question of which of two strings they thought would appear 

first if a coin were tossed repeatedly. 

Making the task more ergonomic for participants adds a layer of normative complexity, 

because although PGO is positively correlated with the actual probability of a string occurring 

sooner, for binary choices, the correlation is not perfect. Notably, probability of occurring first in 

sets of pairs violates transitivity; for example, for any string length k > 2 it is possible to find 

another string of length k that has a higher probability of occurring first (see Gardner, 1974, 

Penney, 1969). 

Thus, the normative basis for behavior in Experiment 3 was different from that in 

Experiments 1 and 2 (where PGO was the appropriate norm). We refer to the normative metric in 

Experiment 3―the probability that string X will occur before string Y in a sequence of binary 

outcomes―as Pfirst,X,Y. As Pfirst is not directly estimable by PGO, we include both measures as 

potential alternative norms that participants might use. (We note that Pfirst, is a relatively unlikely 

candidate, given the amount of experience required to learn the first occurrences of each possible 

pair of strings, but as it is actually the normative baseline in this task, we include it for 

completeness.)   We examine whether these metrics describe behavior here, or whether instead 

behavior was related to same representativeness properties that predicted behavior in 

Experiments 1 and 2. 

4.1. Method 

4.1.1. Participants.  A total of 3447 binary choices were collected. Participants completed 

the choice task at the end of an unrelated 2-minute judgmental forecasting experiment (Reimers 

& Harvey, in preparation), and were paid 50 maximiles points (~USD 0.25; 
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www.maximiles.co.uk; see Reimers, 2009 for a brief introduction) for completing both 

experiments. They were also paid a bonus of 10 maximiles points if their choice of string actually 

came first in a sequence of random coin tosses that was simulated immediately after they made 

their selection. 

4.1.2 Design.  Each participant made a choice between a pair of 5-item strings (see 

Procedure). We used a subset of possible pairings, which covered all possible strings, but not all 

possible pairings. As in Experiment 1, of the 32 different 5-item strings, two sets of 16 were 

constructed. One set held all sequences that contained 2 or fewer heads. The other set held the 

inverse strings that contained 2 or fewer tails. Within each set, all possible pairings of strings 

were generated (120 per set). In other words, the two sets were identical except that in one set all 

heads and tails had been swapped. All theories under consideration make identical predictions for 

the two sets. 

Participants were assigned a code based on the number of participants who had previously 

started the experiment. This meant that across each set of 480 participants, all possible pairings 

across the two sets were used as stimuli, with counterbalanced left-right positioning (although as 

not all participants completed the experiment, there remained significant variation in the number 

of participants for each pairing). 

4.1.3. Procedure.  Participants read the following instructions: 

‘Next, we have a very quick two-choice question. If you get the right answer, you'll receive a bonus 

10 maximiles points. Imagine a trusted friend is tossing a coin again and again, and is noting down 

each time whether it comes down heads (H) or tails (T). Your friend is going to carry on tossing the 

coin until a certain sequence of heads and tails comes up - for example it could be three heads in a 

row (HHH), or a tail followed by another tail followed by a head (TTH). 

You have to say which of the two sequences of heads and tails below you think will occur first. 

Then we'll run a sequence of simulated coin tosses to see which one actually comes first. If your 
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chosen sequence occurs first, you'll receive 10 bonus maximiles points. If the other sequence occurs 

first, you won't receive the bonus points (but you'll still get the points for the rest of the survey of 

course). 

Repeatedly tossing a fair unbiased coin, which of the following precise sequences of heads and 

tails do you think will occur first?’ 

Below these instructions were two 5-item strings, one on the left and one on the right of the 

screen. Participants clicked to indicate their choice. Immediately after making their choice, 

participants saw a sequence of randomly simulated coin flips generated at the bottom of the 

screen, which continued until one of the two strings presented in the choice came up. When this 

happened, participants were informed whether they had won or not, and were debriefed. 

4.2. Results and Discussion 

To minimize the risk of repeat submissions, second and subsequent submissions from a 

single email address or single IP address were deleted, leaving 3282 participants’ data. 

Participants with response times of under 5 seconds (including reading the task instructions) were 

also removed, leaving 3123 in the analysis. This gave a mean of 13.0 (SD = 2.27) participant 

choices across the set of 240 pairs (min = 8, max = 18). For the analyses that follow our 

dependent variable is the proportion of choices of the left-hand option, as presented on the 

participant’s screen, as a function of the difference between the left- and right-hand options along 

the dimensions of interest (such as Pfirst, alternation rate, etc). 

Overall participants chose the string which actually did appear first on 51.5% of trials, 

which was not significantly different from chance [binomial test, p = .11, 95% CI = (.497, .532)]. 

This suggests that whatever strategy or information participants were using, it was not helping 

their overall performance. 

Performance as a function of normativity and heuristics 

First, we compare the proportion of people choosing string X over string Y with the 
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normative choice, given by the difference between the actual probability of string X occurring 

first and the probability of Y occurring first (Pfirst,X,Y – Pfirst,Y,X). For each pairing of strings we ran 

100,000 simulated trials on which coin tosses were generated randomly until one of the strings 

appeared. These simulated data were used to calculate an estimate of Pfirst,X,Y, and since either 

string X or string Y must occur first we have Pfirst,Y,X = 1 – Pfirst,X,Y.  

 

 

Figure 7.  Scatterplots showing the proportion of participants choosing the left-hand option 
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in Experiment 3, as a function of differences between the two strings in: (A) Hahn and Warren’s 

PGO , (B) Hahn and Warren’s PGO, excluding streaks of the same outcome, (C) deviation from 

equal proportions of H and T, (D) Falk and Konold (1997) Difficulty Predictor,(E) number of 

alternations, and (F)  actual probability of occurring first [Pfirst, based on a simulation of 

100,000 sequences]. 

 

Figure 7A shows that there is a weak positive relationship between participants’ choices 

and Hahn and Warren’s alternative norm, PGO. As in Experiment 2, the two clusters at the 

bottom-left and top-right of this plot are the two sets of 15 pairs in which one of the pair is a 

string of perfect repetitions (HHHHH or TTTTT). If these are removed only the central cluster 

remains, and evidence for a positive correlation between PGO and choices disappears, as depicted 

in Figure 7B. 

Figures 7C-E show scatterplots of participants’ choices against the local representativeness 

heuristics studied in Experiment 1: proportion, Falk and Konold (1997) Difficulty Predictor (DP), 

and alternation rate. In contrast to Pfirst, each of these scatterplots shows evidence of a systematic 

relationship between the heuristic and participants’ responses across the range of choices. Finally, 

Figure 7F shows a scatterplot of participants’ choices against this normative metric, Pfirst. There is 

little evidence of a systematic relationship between the two variables. 
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Figure 8.  Posterior distributions for each of the predictor variables in our Bayesian logistic 

regression analysis of Experiment 3, for the full dataset (top row), and for the dataset excluding 

cases in which one of the items in the choice-pair was a string of perfect repetitions (HHHHH or 

TTTTT). The dashed line at 0 in each panel is equivalent to a null-effect of that predictor 

variable. 

 

To examine the relative predictive power of the different variables on participant choices, 

we repeated the same regression analysis as in Experiment 2 with two differences. First, since 

each participant contributed only one response, we could not estimate regression coefficients for 

each individual. Second, we also included a predictor for the difference between values of Pfirst 

for the left and right strings.  The five panels in the top row of Figure 8 plot the posterior 

distribution of each predictor variable, using the same format as in Figure 6.  

This analysis revealed that the posterior distribution for the Pfirst predictor had considerable 

mass at 0, suggesting that Pfirst does not reliably predict participants’ choices. However,  the 

coefficients for the three local representativeness heuristic predictors (proportion, alternation rate 

and DP) have essentially no posterior density at 0, suggesting that they are reliable predictors of 

choice.  
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The posterior for PGO follows a similar pattern to that in Experiment 2. There appears to be 

some evidence for the predictive value of PGO (top row of Figure 8), but this conclusion rests 

entirely upon choices between pairs that include strings of perfect repetitions (bottom row of 

Figure 8).  

In summary, as in Experiments 1 and 2 participants’ choices were well-explained by the 

application of local representativeness heuristics based on a small number of properties of a 

string’s outcomes. For the whole dataset, there was some evidence to suggest an effect of the 

alternative norm represented by PGO, but this was entirely driven by the fact that participants 

rarely chose the string of perfect repetitions (HHHHH) when it was presented in the choice pair, 

and this string has the lowest PGO (but of course it also has the lowest values of proportion, 

alternation rate, and DP). When choices involving the string of perfect repetitions are excluded, 

PGO is unrelated to choices. This stands in contrast to the heuristic measures, which reliably 

predict participants’ choices across the whole dataset. Non-Bayesian logistic regression revealed 

that the best-fitting model including only the proportion, alternation rate and DP predictors 

explained 51% of the variance in participants’ proportional choice of each item in a pair of 

options across the whole dataset. 

These findings suggest that, while proportion, alternation and DP all penalize HHHHH, 

they do not do so as strongly as participants, and it is this additional variance that is picked up by 

PGO. However, this isolated success does not provide a strong case for a more general role of PGO 

in participants’ randomness perception. An alternative view is that the failure of heuristics to 

accurately model the size of the disadvantage for HHHHH reflects our assumption of a linear 

effect of each heuristic. For example, in terms of alternation rate, the linear assumption means 

that the difference between strings containing zero versus one alternation is considered 

psychologically equivalent to the difference between strings containing one versus two 

alternations. Our data may instead be taken to suggest that the 0–1 difference is psychologically 



 38

more salient than the 1–2 difference. 

 

Figure 9.  Scatterplot showing the proportion of participants choosing each string from a pair in 

Experiment 3, as a function of the difference in likelihood ratings in Experiment 1 (left panel, r = 

.67) and choices in Experiment 2 (right panel, r = .77) 

 

Consistency with Experiment 1 

Finally, we compared participants’ behavior in Experiment 3 with the choices that would 

be predicted on the basis of the results of Experiment 1. If decisions were based on similar 

processes in the two different tasks, as we predict, then we should expect to observe a strong 

positive correlation between them. The scatterplot in Figure 9 shows the proportion of choices of 

the left-hand option in Experiment 3 as a function of predictions based on the ratings in 

Experiment 1 and choices in Experiment 2. The clear positive relationships suggest that 

participants in Experiment 3, as a group, performed comparably to, and consistently with, those 

in Experiments 1 and 2. Bearing in mind that responses in Experiment 3 were binary choices, and 

some cells contained only 8 of these binary observations, the strength of these correlations seem 

consistent with the idea that participants used very similar strategies across all three experiments. 

These findings therefore help rule out any account under which the patterns of choice observed in 
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Experiments 1 and 2 were the result of the surface characteristics of any one of the experiments. 

5. General discussion 

A pervasive view in the cognitive psychology literature is that people’s perception of 

randomness is fundamentally biased: that judgments regarding the relative likelihood of different 

strings of events reflect non-normative heuristics relating to the local representativeness of those 

strings. Much of the basis for this reasoning comes from a very small number of exemplars used 

by Kahneman and Tversky (1972). Consequently, these studies lack the sensitivity to distinguish 

between judgments based on the use of representativeness heuristics, versus judgments based on 

environmental experience of real patterns that, in some cases (but not all), coincide with 

representativeness. This latter view suggests that randomness perception is fundamentally a 

property of (unbiased) experience that can then be over-extended to situations in which this 

experience is no longer a good guide to classifying sequences of outcomes as random or not. In 

other words, judgments in a particular task may be based on (or sensitive to, or correlated with) 

alternative norms developed on the basis of related prior experience 

Three experiments assessed participants’ sensitivity to alternative norms, by measuring 

likelihood ratings (Experiment 1) or incentivized choices (Experiments 2 and 3) for different 

strings of heads and tails that could occur in a sequence of coin tosses. In none of these cases did 

participants’ behavior show sensitivity to the appropriate normative metric. Instead, behavior in 

all experiments was best explained by a small number of properties relating to local 

representativeness: the proportion of each outcome, alternation rate, and local complexity. The 

fact that the different methodologies of the three experiments gave similar results suggests that 

participants use very similar approaches to assess the relative probability of a particular series of 

outcomes occurring. 
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5.1 Evaluating the scope of models such as Hahn and Warren (2009) 

As noted in the Introduction, there are several ways in which normative baselines of the 

sort described by Hahn and Warren (2009) can be reconciled with the heuristics that have 

traditionally been argued to underlie perception of randomness. It could be that people do not 

actually use heuristics, it merely looks that way because they are using alternative norms. While 

this could explain people’s behavior with regard to the limited sets of strings that have been 

compared in previous research (e.g., Kahneman & Tversky, 1972), the richer dataset provided by 

the current experiments shows that this is not the case, even in situations such as Experiments 1 

and 2 where the use of experiential norms such as those of Hahn and Warren would be 

normative.  

Alternatively, it is possible that heuristics exist for other reasons, but that alternative norms 

make an additive contribution to judgments. Indeed, Hahn and Warren (2009) argued that 

differences in PGO would be reflected in judgments only when these differences were relatively 

large, and that for strings with similar values of PGO, judgments may instead by dominated by the 

influence of proportion or alternation rate. As noted earlier, in the absence of any information 

regarding what constitutes a sufficiently large difference in PGO to be observable in judgments, 

this suggestion is in danger of being untestable. Importantly however, each of the current 

experiments demonstrated that the appropriate norm did not provide substantial additional 

explanatory power over and above a linear combination of representativeness properties.  

The third possibility raised in the Introduction is that we use only heuristics in tasks of this 

nature, but the reason we do so is because they reflect a normative adaptation to the regularities 

in the environment. In other words, these heuristics exist because they capture the differences in 

objective probability highlighted by Hahn and Warren better than the assumption of 

equiprobability for all strings. However, although the heuristics examined in the current article 

accurately capture the relatively low probability of a string of the same outcome occurring, they 



 41

also mean that participants should make strong distinctions between strings in which the 

objective difference in probability is minimal. For example, Figure 2 shows that participants 

rated HHHT as much more likely than HHHH, which is compatible with Hahn and Warren’s 

account. However, they also rated HHTT as much more likely than HHHT, the difference being 

numerically even larger than between HHHH and HHHT. Objectively, strings HHTT and HHHT 

have equal PGO and hence are equally likely, but participants’ higher rating for HHTT is 

compatible with the use of a proportion heuristic. Any account that assumes heuristics are used 

because they capture the alternative norms discussed by Hahn and Warren would have to justify 

why capturing genuine regularities—such as HHHH being less likely to occur than HHHT—is of 

so much more adaptive importance than, say, accurately representing the fact that HHHT and 

HHTT have an approximately equal probability of occurrence. This is not impossible – situations 

in which a particular outcome never occurs may be much more adaptively important than 

situations in which both outcomes occur but at varying frequencies. For example, in foraging, 

with outcomes of Food and No Food, a streak of No Food outcomes could lead to starvation, and 

as such, paying particular attention to streaks might be important for survival. See also Sun and 

Wang (2010a) for an argument that the timing of streaks of a single outcome might be 

particularly important markers for both the nature of the environment and changes to it. 

The final possibility that we raised in the Introduction is that although of PGO  may be a 

statistical reality, and an indicator of normativity, it has no influence on behavior, and similarities 

between predictions of alternative norms and behavior are coincidental. This possibility is 

certainly consistent with the results of the current experiments. That said, our findings do not 

undermine the validity of the alternative norms presented by Hahn and Warren (2009), or the 

importance of attempting to determine carefully what normative baselines should be (see also 

Miller & Sanjurjo, 2016). Nor do they speak to the potential localized effect of experience on 

randomness judgements. It may well be that where participants gain substantial experience of 
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random outcomes, the experienced alternative norms could influence judgment. For example,  

Matthews (2013) found clear effects of experience on randomness perception, suggesting such 

experiential effects are feasible, although Olivola and Oppenheimer (2008) have suggested 

memory for random sequences may be systematically biased. Recently, Farmer, Warren and 

Hahn (2017) also showed that passive exposure to a sequence of 200 binary random outcomes 

improved performance on randomness generation and perception tasks, and reduced the 

magnitude of gambler’s fallacy effects. Furthermore, they found that this improvement depended 

on the presentation structure: where the same 200 outcomes were presented in short sequences of 

5 rather than longer sequences of 10 of 100, performance did not improve.  

We suspect that the influence of alternative norms would depend both on experience and on 

the precise methodology used – for example, sequential presentation (e.g., Griffiths & 

Tenenbaum, 2004; Farmer et al., 2017), as a more ecologically plausible approach, might be 

more likely to lead participants to use PGO. However, the aim of our research was to examine 

whether Hahn and Warren’s experiential account can explain ‘classic’ findings suggesting biases 

in randomness perception, such as those shown by Kahneman and Tversky (1972). In that 

respect, they do not fare well. 

5.2 Recasting representativeness 

In the Introduction, we noted that the notion of representativeness has previously been 

criticized as vague and hard to falsify (e.g., Gigerenzer, 1996). At a high level, the existence of 

multiple potential heuristics—representativeness, anchoring, availability, among others—allows 

almost any behavior on a task to be explained post hoc. However, even the application of a single 

heuristic such as representativeness has the potential to explain a wide variety of potential results 

There are many ways in which an item can be considered representative of a larger set, and 

correspondingly many ways in which these different ‘dimensions’ of representativeness can be 
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combined to provide an overall measure. As such, the predictions of a representativeness account 

have a great deal of in-built flexibility. This is problematic when applying such an account to 

small numbers of items, since the number of free parameters in the model may outstrip the 

amount of data available. Our approach here has instead been to gather likelihood ratings over a 

large set of items. Bayesian multiple regression can then be used to quantify the support, or lack 

of support, for the use of various forms of representativeness in generating these data. These 

experiments revealed that a combination of a small number of properties provided a good account 

of participants’ responses across a wide range of different items, in both single and joint 

evaluation, for both rating and choice, and both incentivized and non-incentivized procedures. 

Overall our findings suggest that people do not use a single kind of representativeness in 

evaluating randomness: Alternation rate, relative proportions and complexity all appear to be 

predictive of participants’ evaluations. In future work it will be important to examine the extent 

to which the relative contribution of these different forms of representativeness varies across 

individuals and contexts. However, it does appear to be the case that heuristics described by 

Kahneman and Tversky (1972) make significant contributions to predicting participants’ 

judgments and choices across our datasets. More generally this study provides an important step 

in recasting the vague notion of representativeness, by identifying and quantifying the influence 

of different dimensions of representativeness on judgment and choice. 
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Footnotes 

1 We note that Hahn and Warren’s (2009) theory predicts a rank ordering of ratings or 

preferences, where perfects streaks are seen as less probable than perfect alternations which in 

turn are seen as less probable than all other outcomes. The authors note that they do not make any 

predictions about probability ratings among strings that are not streaks or perfect alternations. 

This substantially constrains the predictive power of the theory, which is why we use values of 

PGO rather than the three possible levels of surprisingness that Hahn and Warren predict. 

However, it is the case that many strings that were not perfect alternations were seen as more 

improbable than perfect alternations (e.g., HHHHHT was seen as substantially less likely to 

occur than HTHTHT), which is at odds with the predictions regarding levels of surprisingness 

made by Hahn and Warren. 

2 Although incentivization is generally seen as a way of making tasks more ecologically valid, 

and improving data quality, it is also possible that it can lead participants to switch from their 

default strategy to one of attempting to calculate what the optimal choice would be. As such, 

incentivization could lead to atypical patterns of behaviour. The fact that our findings across 

incentivized and non-incentivized designs were so similar suggests that this was not an issue 

here. We are grateful to an anonymous reviewer for making this observation. 
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