

City, University of London Institutional Repository

Citation: Ray, I. G. & Rajarajan, M. (2017). A public key encryption scheme for string

identification. 2017 IEEE Trustcom/BigDataSE/ICESS, 2014, pp. 104-111. doi:
10.1109/trustcom/bigdatase/icess.2017.226

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18632/

Link to published version: https://doi.org/10.1109/trustcom/bigdatase/icess.2017.226

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Public Key Encryption Scheme for String Identification

Indranil Ghosh Ray and Muttukrishnan Rajarajan
Department of Electrical and Computer Engineering

City, University of London.
London, United Kingdom

Email: Indranil.Ghosh-Ray@city.ac.uk, r.muttukrishnan@city.ac.uk

Abstract—One of the major limitations of index based
encrypted string search on big dataset is the inherent problem
of big index generation, maintenance and update which stops it
from being dynamic in a sense that one could not modify data
or add or remove keywords. Also for a resource constraint
client, to generate an index linear in the size of big dataset
is difficult. In this paper, we provide an efficient easy-to-
implement public key based searchable encryption scheme for
string search which is adaptively secure and does not need any
index. We provide concrete proof of the adaptive security of
our scheme against honest-but-curious server. We validate our
scheme against three different publicly available datasets.

Keywords-Cloud storage; Searchable encryption; PEKS;
Public key; Homomorphic encryption; Elliptic Curve;

I. INTRODUCTION

In recent past, searchable encryption (SE) has unfolded
as a crucial research domain at the intersection of cryptog-
raphy and secure cloud computing. SE allows one party
to outsource the storage of its data to another party (a
cloud) privately while enabling to search selectively over
it. Since huge volumes of documents are stored in a cloud
server, searching against a keyword may result into large
number of documents, most of which are not intended,
causing unnecessary network traffic. This motivates the idea
of searching against a string, which allows the search to be
more specific.

Although few works are available in the literature involv-
ing string search (e.g. [1]–[4]), but all of them are based
on index based searching using SSE and none of them are
adaptively secure and expose lots of informations to the
server following the search.
Our Contributions :

1. In [5], authors proposed PEKS scheme for keyword
search. We extend their construction and propose an
adaptively secure PEKS scheme for string search which
takes one round of communication and O(n) times of
computation over n documents.

2. Our scheme is at the intersection of partially homo-
morphic public key encryption and PEKS. The partial
homomorphic property is used to detect adjacency of
words which is crucial for string identification (see
Remark 1). We observe that unlike fully homomorphic

system, a partially homomorphic system will suffice
and also gives reasonable performance.

3. We provide a formal proof to show that the scheme is
adaptively secure. To the best of our knowledge, this is
the first SE scheme for string search which is adaptively
secure.

4. We validate our scheme using three different datasets
(the speech data, English text data and DNS records).

5. With SSE based search, additional computation is
needed for index maintenance with subsequent modifi-
cation of data. However, with this new scheme of string
search, no such additional computation is needed.

II. RELATED WORKS

For the last ten years, searchable encryption has been the
focus for many leading research groups and several results
were proposed [5]–[17]. In [13], authors defined compu-
tational and statistical relaxations of the existing notion of
perfect consistency and provided a new scheme that was
statistically consistent. In [12] authors presented as-strong-
as-possible definitions of privacy and some constructions for
public-key based encryption schemes where the encryption
algorithm is deterministic. The work in [12] also generalizes
their methods to obtain a notion of efficiently searchable
encryption schemes which permit more flexible privacy to
search-time trade-offs via a technique called bucketization.
In [5], authors studied the problem of searching on data that
is encrypted using a public key system which they referred
to as PEKS and provided several constructions. In [15],
authors show how to create a public-key encryption scheme
that allows PIR (private information retrieval) searching over
encrypted documents. In [14], authors defined and solved the
problem of privacy-preserving multi-keyword ranked search
over encrypted data in cloud computing (MRSE).

Dynamic SSE was first considered by Song et al. [7], but
no solution with sublinear search time existed before the
work in [18]. Recently, two new dynamic SSE schemes have
been proposed. The first one, by Cash et al. [10], which is an
extension of [8]. In [8], authors presented another efficient
SSE scheme which supports complex queries involving mul-
tiple keywords. Similar scheme may be found in [9]. In [19],
authors studied the trade-off between locality and server
storage size of SSE schemes. In [6], authors introduced

the idea of symmetric searchable encryption (SSE) with
improved security definitions.

In [16] authors studied the security provided by various
encrypted databases and presented a series of attacks that
recover the plaintext from encrypted database columns using
only the encrypted column and publicly-available auxiliary
information. In [9], authors studied efficient sub linear search
techniques for arbitrary Boolean queries. In [11], Stefanov
et al. designed a scheme for the first time to address forward
secrecy. In [7], the search complexity is linear in the number
of documents stored in the database.

In [1]–[4], SSE schemes are developed for string search.
With these schemes searching is done based on some secure
index which is generated by client and stored at the cloud.
The size of the index is as large as the dataset.

Table I
PROPERTIES AND PERFORMANCES OF DIFFERENT SSE SCHEMES.

SEARCH TIME IS PER KEYWORD, WHERE n IS THE NUMBER OF
DOCUMENTS.

Property SSE [6] PSS [2] [1] LPSSE [3] this
paper

String
search no yes yes yes yes

adaptive
security yes no no no yes

client
storage no dictionary trusted

server no no

no of
rounds 1 2 2 1 1

storage
cost O(n) O(n) O(n) O(n)

O(max
{|Di| :
i ∈

[1, n]})

III. NOTATIONS AND DEFINITIONS

Document collections and Data Structures: Let 4 =
{w1, w2, . . . , wd} be a dictionary of d words and P(4) be
the set of all possible documents which are collections of
words. Let D ⊆ P(4) be the collection of n documents D =
(D1, D2, . . . , Dn). Let id(Di) be the unique identifier for
the document Di. We denote the list of all n document iden-
tifiers in D by id(D), i.e., id(D) = {id(D1), . . . , id(Dn)}.
Furthermore, let D(wj) be the collection of all documents in
D containing the word wj . A string s of l words is an ordered
tuple (w1, w2, . . . , wl). Let D(s) denotes a collection of
documents in D that contains the string s. It is easy to check
that D(s) ⊆

⋃l
i=1D(wi). We denote by δ(D), all the distinct

keywords connected to the document collection D.
Cryptographic Primitives: Here we define cryptographic
primitives that are needed for our SSE scheme for string
search.

We typically denote an arbitrary negligible function by
negl such that for any arbitrary polynomial p(.), there exists
an integer a such that for all λ > a, negl(λ) < 1

p(λ) [20].
In addition, we use massage authentication code,

MACk(.) [20] which outputs in λ bits. We treat these
outputs as elements of Zp where p is a λ bit prime. We

also use pseudo prime number generator [21], denoted
by PPNG(1λ) which outputs a λ-bit probabilistic prime
number. For a finite set S, we denote the operation of picking
an element uniformly at random from S by x← S.
Public Key Encryption with Searching:

Definition 1. A non-interactive public key encryption with
keyword search scheme consists of the following polynomial
time randomized algorithms:

1. KeyGen(λ): This algorithm takes security parameter, λ,
and generates a public/private key pair Apub, Apriv .

2. PEKS(Apub, w): For a public key Apub, and a word w,
this algorithm produces a searchable encryption of w.

3. Trapdoor(Apriv,w): Given a private key Apriv and a
word w, this algorithm produces a trapdoor tw.

4. Search(Apub, C, tw): Given the public key Apub and
searchable encryption C = PEKS(Apub, w

′) and a
trapdoor tw, this algorithm outputs ‘yes’ if w = w′,
otherwise ‘no’.

Bilinear map: Our construction is based on bilinear map
e : G1 × G2 → G3, where G1, G2 and G3 are groups of
same order p, where p is λ-bit prime. Here the group G1

is the set of points of the elliptic curve Y 2 = X3 − 3X +
B over Zp. G2 corresponds to the points of twisted curve
Y 2 = X3 − 3X −B over Zp. For any g ∈ G3, we write gb
to express the λ-bit representation of g. We now formally
define bilinear map using G1, G2 and G3 which will be
helpful to formalize the security proof of our scheme.

Definition 2. Let G1, G2 and G3 are three groups of prime
order, say p, such that there exists a map e : G1×G2 → G3.
The map is a bilinear map if the following properties hold:

1. Computable: for any g1 ∈ G1 and g2 ∈ G2, there is a
polynomial time algorithm to compute e(g1, g2) ∈ G3.

2. Bilinear: for any a, b ∈ Zp, e(a.g1, b.g2) =
ab.e(g1, g2).

3. If g1 and g2 are generators of G1 and G2 respectively,
then e(g1, g2) is a generator of G3.

Two cryptographic hash functions are used in out
scheme πpss, namely H1 and H2 which are as follows:
H1 : {0, 1}∗×{0, 1}∗ 7→ G2, H2 : {0, 1}∗×G3 7→ {0, 1}λ.
H1 and H2 are realized using MAC() as follows:

H1(k,w) = MACk(w)× g2.

For some g ∈ G3,

H2(k, g) = MACk(gb), where k is the key.

In our scheme we denote the key (session key) as ks
and for simplicity of expression we write H1(ks, w) and
H2(ks, g) as H1(w) and H2(g) respectively.

IV. OUR SCHEME

In this section we present our SSE scheme Πss for string
search.

Scheme 1 (Πpss). The scheme Πpss is a collection of
four polynomial time algorithms (KeyGen, Enc, Trapdoor,
Search) such that:

1. KeyGen(1λ) : KeyGen is a probabilistic key genera-
tion algorithm that is run by the client to setup the
scheme. It takes a security parameter λ, and returns
the setup. Since KeyGen is randomized, we write it
as (p,G1, G2, G3, g1, h, g2, a, ks) ← KeyGen(1λ). The
public key is pk = (g1, h, g2) and the secret key is
sk = a← Zp. The session key is ks and p is a random
prime number whose length is polynomially bounded
in λ. pk, ks and p are shared with server.

2. PEKS Enc(ks, g1, h, g2, Di) : PEKS Enc is a prob-
abilistic algorithm run by the client to generate
the cipher text Ci corresponding to document Di.
It takes ks, pk and p, and returns Ci. Since
PEKS Enc is probabilistic, we write this as Ci ←
PEKS Enc(ks, g1, h, g2, Di).

3. Trapdoor(a, s) : Trapdoor is a deterministic algorithm
run by the client to generate a trapdoor for a given
string of words s = (w1, w2, . . . , wl). It takes ks,
a and s as input and outputs t = (t1, t2, . . . , tl),
where ti is the trapdoor corresponding to the word
wi. Since trapdoor is deterministic, we write this as
t = Trapdoor(a, s).

4. Search(C, t, ks, g1, h, g2) : Search is run by the server
in order to search for the documents in D that contain
the string s. It takes a ciphertext collection C corre-
sponding to D and the trapdoor t corresponding to s
and returns D(s), the set of identifiers of documents
containing the string s.

The Construction: Now we provide the actual algorithms
for key generation (Algorithm 1), PEKS encryption (Algo-
rithm 2), trapdoor generation (Algorithm 3) and searching
(Algorithm 4).

Algorithm 1 Keygen
Input security parameter λ.
Output G1, G2, g1, h = a.g1, g2, a, ks and p.

(p,G1, G2, g1, h, g2, a, ks)← KeyGen(1λ);
p← PPNG(1λ);

Remark 1. In Algorithm 2, to encrypt j-th sentence sj =
(w1, . . . , wm), an element rj is chosen uniformly at random
from Zp. The encryption of wi, i.e., [Ai, Bi] is computed
as follows: Ai = (i + rj)g1 and Bi = H2(e((i +
rj).h,H1(wi))), i ∈ {1, . . . ,m}. It may be noted that for
encrypted blocks, say, [Ac, Bc] and [Ad, Bd], of two adjacent

Algorithm 2 PEKS Enc
Input ks, g1, g2, h p, D = (D1, . . . , Dn).
Output C = (c1, . . . , cn).

Form a collection W = {w1, . . . , wd} of all distinct words
occurring in D;
i← 1;
while i ≤ n do

open Di in read mode and Ci in write mode;
j ← 1;
while (!EOF) do

read j-th string in sj = (w1, . . . , wm);
rj ← Zp;
k ← 1;
while k ≤ m do

compute twk
= e((k + rj).h,H1(wk));

Compute A = (k + rj).g1, B = H2(twk
);

Append [A,B] in Ci;
i← k + 1;

end while
j ← j + 1;

end while
i← i+ 1;

end while
shuffle all the blocks of the form [A,B] uniformly
throughout the cipher;

Algorithm 3 Trapdoor
Input w = (w1, w2, . . . , wl), ks, a, p.
Output t = (t1, . . . , tl).
j ← 1;
while j ≤ l do
tj = a.H1(wj);
j ← j + 1;

end while

words, Ad = Ac + g1. This additive homomorphism of
elliptic curve group is utilized for string identification.

Correctness of the PEKS encryption of our scheme is easy
to realize from the following lemma.

Lemma 1 (Correctness). Let s = (w1, . . . , wl) be a string
such that s is in the document Di in the document col-
lection D and Ci ← PEKS Enc(ks, g1, h, g2, Di). Let
[A1, B1], . . . , [Al, Bl] are the encrypted blocks in Ci for
the string s taken in order. Then Search(C, t, ks, g1, h, g2)
will point out the identifier corresponding to Di where
t = (t1 . . . , tl) is the trapdoor corresponding to s taken
in order, i.e., id(Di) ∈ Search(C, t, ks, g1, h, g2).

Proof: Let A1 = (r + 1)g1, where r ∈ Zp. Note that,
then

Algorithm 4 Search
Input t = (t1, . . . , tl), {C1 . . . , Cn}, ks, g1, h, g2.
Output encrypted file pointers, a list of encrypted doc-

ument pointers;
exists = false;
counter ← 0;
i← 1;
while i ≤ n do

read all blocks of the form [A,B] from Ci and arrange
A’s in listA and B’s in listB;
j ← 1;
while (j ≤ listA.length) do

compute chk = H2(e(listA[j], t1));
if (chk = listB[j]) then
A = listA[j];
exists = true;
counter = 1;
break;

end if
end while
if (counter = 1) then
k ← 2;
while (k ≤ l) do
j ← 1;
while (j ≤ listA.length) do

if [(listA[j] = A× g1) &&
(H2(e(listA[j], tj)) = listB[j])] then
A = A× g1;
counter ← counter + 1;
break;

end if
j ← j + 1;

end while
if (counter 6= k) then
exists = false;
break;

end if
k ← k + 1;

end while
end if
if (exists = true) then

add i to encrypted file pointers
end if

end while

B1 = H2(e((r1 + 1)h,H1(w1))). Now,

e(A1, t1) = e (A1, a.H1(w1))

= e ((r + 1)g1, a.H1(w1))

= a.e ((r + 1)g1, H1(w1))

= e ((r + 1)a.g1, H1(w1))

= e ((r + 1)h,H1(w1))

Thus H2(e(A1, t1)) = H2(e((r+1)h,H1(w1))) = B1. This
detects [A1, B1] for t1. Rest Aj’s are detected using the
property Aj+1 = (g1 + Aj) and corresponding Bj’s are
computed similar to B1. Hence the result follows.

V. SECURITY ANALYSIS

In this section we show that our scheme is
secure against adaptive string attack. We first
define an experiment for any PEKS scheme
π = (KeyGen, PEKS Enc, Trapdoor, Search), any
adversary A, and any value k of the security parameter.

Definition 3. [Game AdaptiveA,π(1k)]

1. A key (pk, sk) is generated by running KeyGen(1k).
2. The adversary A is given input 1k and oracle access

to PEKS Enc(.), H1(.), H2(.) and Trapdoor(.) and
outputs a pair of strings s0, s1 of the same length, say
m.

3. b ← {0, 1} and then a ciphertext c ←
PEKS Enc(sb) is computed and given to A. We call
c the challenge ciphertext.

4. The adversary A continues to have oracle access to
PEKS Enc(.), H1(.), H2(.) and Trapdoor(.) and
outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. In case Game AdaptiveA,π(1k) = 1,
we say that A succeeded.

Definition 4. A PEKS scheme, denoted by π =
(KeyGen, PEKS Enc, Trapdoor, Search), is said to
be adaptively secure under chosen plain text attack
if for all probabilistic polynomial time adversaries
A, there exists a negligible function negl such that
Pr[Game AdaptiveA,π(1k) = 1] ≤ 1

2 + negl(k), where
the probability is taken over the random coins used by A,
as well as the random coins used in the game.

In the next theorem, we prove that our scheme πpss is
adaptively secure.
Bilinear Diffie-Hellman problem(BDH): Let g1 and g2 be
the generators of G1 and G2 respectively and a, b, c ∈ Zp
such that a 6= bc, b 6= ac and c 6= ab. The BDH problem is
as follows:
given g1, g2, a.g1, a.g2, b.g1, b.g2, c.g1, c.g2 as input, com-
pute (abc).e(g1, g2) ∈ G3. BDH is said to be intractable if

all polynomial time algorithms have a negligible advantage
in solving BDH.

Theorem 1. πpss is adaptively secure against chosen key-
word attack in the random oracle model assuming BDH is
intractable.

Proof: Suppose A is a polynomial size adver-
sary that has advantage negl(λ) in breaking πpss, i,e.,
Pr[Game AdaptiveA,πpss(1k) = 1] ≤ 1

2 + negl(λ). Sup-
pose A makes at most nH2

hash function queries to H2 and
at most and at most nT trapdoor queries. We construct a
simulator S, that solves the BDH problem with probability
at least ε′ = negl(λ)

e×nT×nH2
, where e is the base of natural

logarithm.
Let g1 and g2 be the generators of G1 and G2 respectively.

Let the simulator S is given g1, g2, p1 = a.g1, q1 =
a.g2, p2 = b.g1, q2 = b.g2, p3 = c.g1, q3 = c.g2. The
simulator S simulates the challenger and interacts with the
adversary A as follows:

S sets Apub = [g1, g2, p1].
1. (simulating H∗1): Whenever A queries for H1, S main-

tains a list 〈wj , hj , aj , cj〉 called list1 which is initially
empty. When A queries for wi, S responds as follows:

I. If wi already appears in list1, say 〈wi, hi, ai, ci〉,
then algorithm S responds with H∗1 (wi) = hi ∈
G2.

II. Otherwise S generates a random coin ci{0, 1} such
that Pr[ci = 0] = 1

nT+1 .
III. S picks a random ai ∈ Zp. If ci = 0, S sets

hi = q2 + aig2 ∈ G2, otherwise hi = aig2 ∈ G2.
IV. S adds 〈wi, hi, ai, ci〉 to the list and responds to
A’s query by setting H∗1 (wi) = hi ∈ G2.

2. (simulating H∗2): Whenever A queries for H2(t) for a
new t, S picks a random value v from {0, 1}λ and sets
H∗2 (t) = v and adds 〈t, v〉 to list2. If t is already in
the list, then S just sets H∗2 (t) = v.

3. (simulating trapdoor) : To get the simulated trapdoor
corresponding to wi, S sets hi = H∗1 (wi). If ci = 0, it
stops. Otherwise S sets the trapdoor ti = ai.q1.

challenge phase :
A produces a pair of challenge strings s0 =

(w0,1, . . . , w0,m) and s1 = (w1,1, . . . , w1,m) which are of
same length, say, m.

I S computes H∗1 (wi,j) = hi,j for 0 ≤ i ≤ 1, 1 ≤ j ≤
m. For i = 0 and 1, let the corresponding entries in
list1 are 〈wi,k, hi,k, ai,k, ci,k〉, where 1 ≤ k ≤ m.

II S randomly selects b← {0, 1}.
III S responds to the challenge {[u3, J1], [u3 ∗

g1, J2], . . . , [u3 ∗ gm−11 , Jm]} where S choses Ji’s
randomly from {0, 1}λ.

IV A can continue to issue trapdoor queries for strings
other than s0 and s1.

It may be noted that the challenge implicitly defines J1 as
H∗2 (e (cp1, H1(wb,1))). Now,

J1 = H∗2 (e (cp1, H1(wb,1)))

= H∗2 (e (cag1, (bg2 + abg2)))

= H∗2 (e (acg1, (b+ ab)g2))

= H∗2 (ac(b+ ab)e (g1, g2))

So similar computation for wb,k, k = 2, . . . ,m indicates
that this is a valid PEKS for the string sb.
Output phase : Eventually A outputs the guess b′ ∈ {0, 1}.
Then S picks a random pair (t, v) from list2 and outputs
t − abe(p1, q3) as its guess for abc.e(g1, g2), where ab is
the value used in the challenge phase. A must have issued
the query for either s0 or s1 as otherwise A’s view on the
PEKS will be independent of s0 or s1 and thus A cannot
have the advantage of ε in breaking the scheme. Therefore
with probability 1

2 , list2 contains an entry (t, v) such that
t = ac(b+ ab).e (g1, g2). Let ε0 be the event denoting that
S selects this pair (t, v). Then P [ε0] = 1

nH2
, and then S

outputs

t− abe(p1, q3) = ac(b+ ab).e (g1, g2)− abac.e(g1, g2)

= abc.e(g1, g2).

Let ε1 be the event denoting that S does not abort while A
is making trapdoor queries. Then, P [ε1] = 1− 1

(nT+1)nT
≥

1
e (see APPENDIX A).

Let ε2 be the event denoting S does not abort while A is
making challenge. Then, P [ε2] ≥ 1

nT
(see APPENDIX B).

Let ε3 be the event denoting A queried against at least
one of the strings s0 and s1. Then P [ε3] ≥ 2.negl(λ) (see
APPENDIX C).

So, P [S solves BDH] = P [ε0]×P [ε1]×P [ε2]×P [ε3] ≥
negl(λ)

e×nT×nH2
.

VI. EXPERIMENTAL RESULTS

Now we provide complexity analysis of our scheme in
next two lemmas.

Lemma 2. Using Πss, the number of group operations
for searching a query of l-word string in one ciphertext
document C is O

((
|C|
2λ

)
+ (l − 1)

)
.

Proof: It is easy to observe that each block of the form
[A,B] is of size 2λ bits. Thus in the encrypted document C,
the number of blocks is |C|2λ . Since the blocks are shuffled,
to detect the first block requires O

(
|C|
2λ

)
group operations.

If the string exists, then each of the rest l − 1 steps needs
O(|C|2λ) searching to detect corresponding Ai’s followed by
a group operation to detect Bi. Thus the number of group
operations is O

((
|C|
2λ

)
+ (l − 1)

)
.

Now we provide performance results of our proposed
scheme Πss based on three different datasets.The compari-
son of performances and storages of various schemes with

that of Πss can be found in Table I. We build a search engine
based on the scheme Πss using java in linux platform. The
implementation is done on Asus A Series Core i3 laptop ((4
GB/ 1 TB HDD) 90NB0652-M32310 XX2064D). We use
java based ‘Jpair’ library for the cryptographic primitives,
namely ‘Elliptic Curve’.

A. Speech Data

The TIMIT speech corpus [TIMIT] of speech was col-
lected in 1993 as a speech data resource for acoustic
phonetic studies and has been used extensively for the
development and evaluation of automatic speech recognition
systems (ASR).

Figure 1 illustrates the time needed to generate PEKS
ciphers for the speech data. In Figure1 we plot the time
(in seconds along Y-axis) needed to encrypt documents
(along X-axis). It may be noted that the graph reflects a
linear growth with the increase in number of documents.
Also the time needed for encrypting 200 documents is 150
seconds. Figure 2 represents the performance of searching
over encrypted data. Here also we plotted time of search
in seconds along Y-axis against the number of encrypted
documents which are plotted along X-axis. This graph also
shows a linear growth with the increase of number of
encrypted documents with a maximum of 70 seconds needed
to search over 200 encrypted documents.

0 50 100 150 200

0

50

100

150

no of documents

Ti
m

e
(s

ec
on

ds
)

Figure 1. PEKS encryption graph of TIMIT speech data

B. English Text Data

In this section we provide results based on a dataset
which is a Switchboard-1 Telephone Speech Corpus
(LDC97S62) [22] originally collected by Texas Instruments
in 1990-1, sponsored by DARPA.

Figure 3 illustrates the time needed to generate PEKS
ciphers for English text data where we plot the time (in
seconds along Y-axis) needed against number of encrypted

0 50 100 150 200

0

20

40

60

no of encrypted documents

Ti
m

e
(s

ec
on

ds
)

Figure 2. Search time graph of TIMIT speech data

documents (along X-axis). This graph also reflects a linear
growth with the increase in number of documents. The time
needed for encrypting 80 documents is 1586 seconds. Figure
4 compares the performance of searching over encrypted
data for search strings of two different lengths, 1 and 3.
So this graph compares the keyword search against string
search.

0 20 40 60 80
0

500

1,000

1,500

no of documents

Ti
m

e
(s

ec
on

ds
)

Figure 3. PEKS encryption graph for Switchboard-1 speech database

C. DNA Data

We have implemented our algorithm for searching se-
quences of SNP’s (Single Nucleotide Polymorphism) in
large genome databases which is available at [23]. SNP
represents a difference in a nucleotide which is a single DNA
building block.

0 10 20 30 40 50 60

0

200

400

600

no of encrypted documents

Ti
m

e
(s

ec
on

ds
)

3-word string
1 keyword search

Figure 4. Search time graph for Switchboard-1 speech database

Figure 5 illustrates the time needed to generate encrypted
DNA sequence, where we plot the time (in seconds along
Y-axis) needed against number of encrypted DNA’s (along
X-axis). This graph also reflects a linear growth with the
increase in number of DNA sequences. Also the time needed
for encrypting 750 DNA sequences is 1005 seconds. Figure
6 compares the performance of searching patterns over
encrypted DNA sequences for two different lengths, 1 and
3 over the set K. So in binary, both are strings of length 8
and 24 respectively.

200 400 600 800

200

400

600

800

1,000

no of DNA sequences

Ti
m

e
(s

ec
on

ds
)

Figure 5. PEKS encryption graph of DNA data

VII. CONCLUSION

With the increasing number of documents stored in cloud,
searching for the desired document can be a difficult and
resource intensive task. With SE, one can store a large

0 500 1,000 1,500 2,000

0

100

200

300

400

no of encrypted DNA sequences

Ti
m

e
(s

ec
on

ds
)

3-word string
1 keyword search

Figure 6. Search time graph over DNA data comparing the search time
using one keyword against a string of three keywords.

collection of encrypted documents with a server for future
search. In this paper we revisited the PEKS construction
of [5] and proposed a new PEKS scheme Πpss for string
search. We have shown that our scheme is secure under the
adaptive indistinguishability definition. We provide perfor-
mance results of our proposed scheme Πss based on three
different commercial datasets [22]–[24]. We provide com-
parison of performances and storages of various schemes
with that of Πss in Table I.

ACKNOWLEDGMENT

The authors would like to thank Intelligent Voice for their
various help in this work.

REFERENCES

[1] S. Zittrower and C. C. Zou, “Encrypted Phrase Searching In
The Cloud,” in Global Communications Conference (GLOBE-
COM), 2012 IEEE. IEEE, 2012, pp. 764–770.

[2] Y. Tang, D. Gu, N. Ding, and H. Lu, “Phrase Search Over
Encrypted Data With Symmetric Encryption Scheme,” in
2012 32nd International Conference on Distributed Comput-
ing Systems Workshops. IEEE, 2012, pp. 471–480.

[3] M. Li, W. Jia, C. Guo, W. Sun, and X. Tan, “LPSSE:
Lightweight Phrase Search With Symmetric Searchable En-
cryption in Cloud Storage,” in Information Technology-New
Generations (ITNG), 2015 12th International Conference on.
IEEE, 2015, pp. 174–178.

[4] Y. Uchide and N. Kunihiro, “Searchable Symmetric Encryp-
tion Capable of Searching for an Arbitrary String.” Wiley
Online Library, 2016.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Per-
siano, “Public Key Encryption With Keyword Search,” in
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2004, pp. 506–522.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able Symmetric Encryption: Improved Definitions and Effi-
cient Constructions,” vol. 19, no. 5. IOS Press, 2011, pp.
895–934.

[7] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques
for Searches on Encrypted Data,” in Security and Privacy,
2000. S&P 2000. Proceedings. 2000 IEEE Symposium on.
IEEE, 2000, pp. 44–55.

[8] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu,
and M. Steiner, “Highly-Scalable Searchable Symmetric En-
cryption With Support for Boolean Queries,” in Advances in
Cryptology–CRYPTO 2013. Springer, 2013, pp. 353–373.

[9] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G.
Choi, W. George, A. Keromytis, and S. Bellovin, “Blind Seer:
A Scalable Private DBMS,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 359–374.

[10] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-
C. Rosu, and M. Steiner, “Dynamic Searchable Encryption in
Very-Large Databases: Data Structures and Implementation.”
vol. 2014. Citeseer, 2014, p. 853.

[11] E. Stefanov, C. Papamanthou, and E. Shi, “Practical Dy-
namic Searchable Encryption With Small Leakage.” in NDSS,
vol. 14, 2014, pp. 23–26.

[12] M. Bellare, A. Boldyreva, and A. ONeill, “Deterministic and
Efficiently Searchable Encryption,” in Annual International
Cryptology Conference. Springer, 2007, pp. 535–552.

[13] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno,
T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and H. Shi,
“Searchable Encryption Revisited: Consistency Properties,
Relation to Anonymous IBE, and Extensions,” vol. 21, no. 3.
Springer, 2008, pp. 350–391.

[14] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
Preserving Multi-Keyword Ranked Search Over Encrypted
Cloud Data,” vol. 25, no. 1. IEEE, 2014, pp. 222–233.

[15] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. E. Skeith III,
“Public Key Encryption That Allows PIR Queries,” in Annual
International Cryptology Conference. Springer, 2007, pp.
50–67.

[16] M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks
on Property-Preserving Encrypted Databases,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 644–655.

[17] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-
Abuse Attacks Against Searchable Encryption,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 668–679.

[18] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic
Searchable Symmetric Encryption,” in Proceedings of the
2012 ACM conference on Computer and communications
security. ACM, 2012, pp. 965–976.

[19] D. Cash and S. Tessaro, “The Locality of Searchable Sym-
metric Encryption,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques.
Springer, 2014, pp. 351–368.

[20] J. Katz and Y. Lindell, Introduction to Modern Cryptography.
CRC press, 2014.

[21] D. R. Stinson, Cryptography: Theory and Practice. CRC
press, 2005.

[22] [Online]. Available: https://catalog.ldc.upenn.edu/

[23] [Online]. Available: https://github.com/iskana/PBWT-sec/
tree/master/sample dat

[24] [Online]. Available: http://www.fon.hum.uva.nl/david/ma
ssp/2007/TIMIT/train/dr5/fsdc0/

APPENDIX A
Let ε1 be the event denoting S does not abort while

A is making trapdoor queries. Since in list1, the distribu-
tion of ci’s are independent of the distribution of hi’s, so
P [one trapdoor query triggering abort] = 1

(nT+1) . So,

P [ε1] = (1− P [one trapdoor query triggering abort])nT

=

(
1− 1

(nT + 1)

)nT

≥ 1

e
.

APPENDIX B
Let ε2 be the event denoting S does not abort while A is

making challenge. Now,

P [S will abort during challenge]

=P [ci,k = 1 : i ∈ {0, 1}, k ∈ {1, . . . ,m}]

=

(
1− 1

nT + 1

)2m

≤1− 1

nT
.

So,

P [ε2] ≥ 1− p[S will abort during challenge]

=
1

nT
.

APPENDIX C
Let ε3 be the event denoting A queried against at least

one of the strings s0 and s1.

P [A breaks the scheme]

= P [b = b′]

= P [(b = b′)|ε3]P [ε3] + P [(b = b′)|ε′3]P [ε′3]

≤ 1

2
P [ε3] +

1

2
.

From the assumption on negl(λ) (see Definition 4),

negl(λ) ≤ |P [b = b′]− 1

2
|

=
1

2
P [ε3].

Thus P [ε3] ≥ 2ε.

https://catalog.ldc.upenn.edu/
https://github.com/iskana/PBWT-sec/tree/master/sample_dat
https://github.com/iskana/PBWT-sec/tree/master/sample_dat
http://www.fon.hum.uva.nl/david/ma_ssp/2007/TIMIT/train/dr5/fsdc0/
http://www.fon.hum.uva.nl/david/ma_ssp/2007/TIMIT/train/dr5/fsdc0/

