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Abstract In recent years the number of research projects

on computer programs solving human intelligence prob-

lems in Artificial Intelligence (AI), Artificial General In-

telligence (AGI), as well as in Cognitive Modelling, has

significantly grown. One reason could be the interest of

such problems as benchmarks for AI algorithms. An-

other, more fundamental, motivation behind this area

of research might be the (implicit) assumption that a

computer program that successfully can solve human

intelligence problems has human-level intelligence and

vice versa. This paper analyses this assumption.

Keywords Intelligence Tests · Strong AI · Psychome-

tric AI · Cognitive Modelling

1 Introduction

As early as the possibility of machine intelligence was

considered, the role of human intelligence tests in the

development and evaluation of AI was linked to the un-

derstanding of what intelligence is and how it should be

measured. However, the question of whether human in-

telligence tests are valid for the evaluation of machines

has had very different (and opposed) answers, including

absolute indifference of or neglecting the question. Why

do we find this diversity of answers? Is it because of
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disparate conceptions of what a machine is and the na-

ture of computation? Is it because of divergent views of

what intelligence is and what human intelligence tests

measure? Or is it because various breadths and types

of psychometric tests are being considered?

In order to find answers, in section 2 we first analyse

the conceptual notions of machine intelligence that have

been adopted in (strong) AI and Cognitive Science, also

introducing the notion of a computational theory of

mind, the Church-Turing thesis, and the Physical Sym-

bol System Hypothesis (PSSH) as necessary theoreti-

cal foundations. In section 3, we rely on the conception

of (human) intelligence and its measurement, mostly

but not only from psychometrics. We highlight the rel-

evance of the set of subjects to be measured and the

set of problems that are considered. Section 4 presents

previous experience about the use of psychometric tests

in AI and some explicit claims about their convenience

for measuring machine intelligence and for stimulating

the progress of AI. In section 5 we are ready to un-

ravel the question by the use of several arguments, and

clarify whether and, if so, under which circumstances

human intelligence tests are necessary and sufficient for

the evaluation of machine intelligence. Finally, we close

with some remarks about how human intelligence tests

can still be useful for AI (and AI for psychometrics)

and future directions for intelligence evaluation.

2 Conceptual foundations of strong AI

In AI as well as in cognitive science research, there

are many projects which explicitly or implicitly aim at

recreating human higher-level cognitive or intellectual

capacities with computational means. Three conceptual

notions are shared by most, if not all endeavours in
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“strong” artificial intelligence and cognitive systems re-

search, namely the concept of a computational theory

of mind, the Church-Turing thesis, and the Physical

Symbol System Hypothesis (PSSH).

The computational theory (Pylyshyn, 1980) founda-

tionally bridges the gap between humans and comput-

ers by advocating that the human mind and brain can

be seen as an information processing system and that

reasoning and thinking correspond to processes that

meet the technical definition of computation as formal

symbol manipulation. The Church-Turing thesis (Tur-

ing, 1969) adds an account of the nature and limitations

of the computational power of such a system by estab-

lishing Turing computability as valid characterisation of

computability in general. The PSSH (Newell, 1980) op-

erates on a different level, characterising the nature of

the computations: taking the computational character-

istic of cognition and intelligence as given, it proposes a

general criterion for a system to display intelligence by

stating that “[t]he necessary and sufficient condition for

a physical system to exhibit general intelligent action is

that it be a physical symbol system”, with “general in-

telligent action” referring to rational behaviour which,

in turn, can be understood as an agent’s ability and

determination to select a certain action if, given her

goals, it is known that this precise action will lead to

achieving the goal(s) (cf. Newell, 1982).

The implications of the PSSH are twofold. In its ne-

cessity, it states that also human thinking and higher-

level cognition is a kind of symbol processing. In its

sufficiency, it opens up the way to machine intelligence

also on a paradigmatic level with regard to the type

of computation. Whilst in the meantime also alterna-

tive readings have been proposed, in the classical ac-

count of the hypothesis, the symbols are physical ob-

jects representing things in the world, having a recog-

nisable semiotic meaning or denotation but exhibiting

arbitrary shapes unrelated to their meanings, and al-

lowing for recursive composition with other symbols by

rule, thus forming a combinatorial representation (Har-

nad, 1990). Arbitrariness of shape and combinatorial

nature of the representation are thereby two key prop-

erties: the former allows symbols to designate anything

at all by not prescribing to the symbol what expressions

it can designate, but instead by leaving the determina-

tion of the designated object of a complex expression

to the interaction between respective symbol tokens,

whilst the latter characteristic accommodates for the

generality of the intended intelligent action by estab-

lishing a representation language.

While proponents of strong AI and Artificial Gen-

eral Intelligence (AGI) (Kühnberger and Hitzler, 2009;

Besold, 2013a) explicitly claim that the recreation of

human-level intelligence on computer systems is pos-

sible, researchers in “standard” (weak) AI and Cog-

nitive Modelling work on the weaker assumption that

computability provides an appropriate conceptual ap-

paratus for theories of the mind. That is, computa-

tional models can be used to simulate human infor-

mation processes thereby providing detailed and con-

sistent generative descriptions of different areas of cog-

nition (Johnson-Laird, 1988). However, in both cases,

the methodological challenge is to provide empirical ev-

idence that the behaviour generated by a computer sim-

ulation is based on principles similar to human cogni-

tion. In other words, whenever we create an AI system

or a computational cognitive model, we implicitly or

explicitly propose that the computer program realises

or models (aspects of) human-like intelligence.

3 Defining and measuring (human) intelligence

But what is meant by the term “intelligence”? In every-

day life we use this term intuitively to evaluate our fel-

low human beings. Ascribing intelligence in this context

typically means that this person is better than average

in intellectually demanding areas such as mathematics,

physics or chess. On the other hand, the term intel-

ligence is used to contrast and compare human abil-

ities with that of other species, typically animals. In

the context of strong AI and AGI, intelligence usually

is ascribed by observation or interviewing of a system,

i.e. a kind of implicit or unsystematic conduction of

the Turing test (Turing, 1950). In the context of Cog-

nitive Modelling, performance parameters of computer

models (such as number of iterations to solve a task)

are compared to empirical data (such as solution times)

gained from empirical studies with human subjects.

Systematic research on the conceptualisation and

measurement of intelligence is the realm of psychomet-

rics —a branch of psychology established at the begin-

ning of the last century. Intelligence is defined as the

aggregate or global capacity of the individual to act

purposefully, to think rationally, and to deal effectively

with the environment (Wechsler, 1944). In psychomet-

rics, specific test batteries are designed to capture intel-

ligence by assigning an intelligence quotient to a human

based on his or her performance in a series of tasks.

Typically, such IQ tests consist of sub-tests addressing

different aspects of intelligence, such as visual-spatial,

verbal-linguistic, and logical-mathematical abilities (Stern-

berg, 2000). Many researchers assume that all branches

of intellectual activity are based on a common funda-

mental function (Spearman, 1904). Based on factor an-

alytical models, there is some evidence that there is a
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Fig. 1 A visual pattern problem similar to Raven Progressive
Matrix problems (Lovett et al., 2010).

general factor (the g factor) which determines perfor-

mance in all more specific domains. However, there is

high controversy about the so-called “theories of intel-

ligence”, each elaborating a different “taxonomic struc-

ture of abilities” (Sternberg, 2000), and its correspon-

dence with theories of mind in psychology and cognitive

science.

The most prominent example of a test measuring

general intelligence is the Raven Progressive Matrix test

—a non-verbal test where matrices of visual patterns

are given and the pattern of the given regularities has

to be identified (see Fig. 1). Inductive reasoning with

numbers is another example for a test that is included in

several IQ tests (Amthauer et al., 1999). For example,

given the series 3, 7, 15, 31, 63, the pattern 2 × f(n−
1) + 1 can be identified and used to calculate the next

number 127 (Hofmann et al., 2014).

As mentioned above, theories of intelligence and tests

have always dealt with two intertwined dimensions: the

landscape of abilities (the problems that make up the

tasks) and the kind of individuals (the subject popu-

lations). For instance, different sets of tasks (and not

only different ranges of difficulty) are used for children

and disabled people than for the rest of the normative

adult population. How does this duality between tasks

and subjects behave for machine intelligence? The dis-

cussion in section 2 is relevant to the consideration of

the taxonomy of the sets of tasks (symbolic, computa-

tional, etc.) and a hierarchical taxonomy between sets

of subjects in the order humans, animals and machines.

Given that psychometrics provides a well-established

methodological approach to capture human intelligence,

why not adopt a similar procedure to decide whether

AI programs are intelligent? This idea could offer a fur-

ther method to assess intelligence of artificial systems

besides the Turing test approach and the performance

comparison of humans and computer models.

4 Psychometrics and Psychometric AI

“Psychometric AI” (PAI) (Bringsjord and Schimanski,

2003) as a research program aims to apply the full bat-

tery of techniques from psychometrics to a strong AI

context, setting its internal standard by declaring an

agent as intelligent if and only if it does well in all

established, validated tests of intelligence and mental

ability, and subsequently setting out to use the results

of the respective tests in a dedicated effort to build

agents meeting the aforementioned criterion. PAI has

by now become a line of research in its own right as,

e.g., documented by the articles collected in Bringsjord

(2011).

Still, the use of psychometrics in an evaluation-related

AI context is wider. For example, Detterman (2011)

has challenged the field of AI to assess an artificial

system’s performance by using classical IQ tests (but,

unlike PAI, without the commitment to and focus on

the engineering of agents adhering to the introduced

standard). Detterman’s call is issued to AI researchers

working on approaching the level of intelligence exhib-

ited by humans, challenging them to prove the validity

of their claims by administering an IQ test (precompiled

by experts in human psychometrics) to their computer

systems and comparing the actual IQ scores — with the

restriction that in the full version of the challenge only

“a priori algorithms” are admissible, i.e., algorithms not

previously specialised for a battery of tasks.

Over the last years, we can observe a growing num-

ber of publications presenting computer programs solv-

ing IQ test problems, mostly addressing tests with high

loading of the g-factor such as Raven Progressive Ma-

trices and number series problems. In standard AI re-

search, IQ test problems have been identified as chal-

lenging application domains for algorithmic approaches

to inference (Siebers and Schmid, 2012). In AGI, algo-

rithms for solving IQ test problems are designed with

the aim to surpass average human performance on these

tests (Stranneg̊ard et al., 2013a,b).

Some researchers want to demonstrate that com-

puter programs which can solve IQ test problems defi-

nitely are not based on principles underlying human in-

telligent behaviour. A computer program can be hand-

crafted to perform well on a specific set of tasks, such as

an IQ test (Sanghi and Dowe, 2003), instead of covering

a wider scope of problems. On the other hand, there are

some applications of general approaches from theorem

proving (Burghardt, 2005) and inductive programming

(Hofmann et al., 2014) which were applied to number
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series problems to demonstrate that the proposed al-

gorithms are general enough to be applied to problems

outside the original domain.

In Cognitive Science, researchers are interested in

providing cognitive models simulating cognitive prin-

ciples of pattern identification that are assumed to be

underlying human general intelligence (Lovett et al.,

2010). Cognitive models for IQ test problems can relate

the concept of item difficulty of psychometrics with the

complexity of information processing. While item diffi-

culty is defined by the percentage of subjects in a val-

idation sample who solve this item, a cognitive model

can give an explanation of item difficulty with respect

to the necessary effort for an algorithmic solution.

These different perspectives on developing algorith-

mic approaches to solve IQ test problems have differ-

ent underlying assumptions about how to determine

whether a computer program is intelligent: even if AI

uses IQ tests as a challenging area of application, there

is no need to ascribe intelligence to such programs —

evaluation can be done by comparing the performance

of different algorithms. Nevertheless, many researchers

may still have the implicit assumption that a program

which performs better is more intelligent.

When AI algorithms based on general principles of

inference are tested for applicability over different do-

mains, it is harder to define a rank order over approaches.

It is open to discussion which system is more power-

ful —one that outperforms others in some domains but

has weak performance or is not even applicable in other

domains or one with average performance over a broad

variety of domains. One is tempted to use the anal-

ogy to humans which have one isolated exceptional skill

but are intellectually impaired otherwise —so called id-

iot savants (Miller, 1999)— versus humans with aver-

age abilities over many areas. When a cognitive model

is proposed, the crucial question is not whether this

model is intelligent in itself but to what extent it mim-

ics the cognitive processes performed by humans when

solving such problems, that is, whether the model can

provide an explanation of human behavior. How to de-

termine similarity between processing features of a com-

puter model and empirically observable behavior in hu-

mans is a challenging methodological problem in its own

(Cooper et al., 1996). If processing parameters of model

and human performance are judged as sufficiently simi-

lar, the model is assumed to capture the core character-

istics of human information processing. In consequence,

it might be claimed that the model captures relevant

aspects of human intelligence.

From all these approaches, only AGI models explic-

itly make the claim to aim at creating human-level (or

even super-human) intelligence. In this context, PAI

can be seen as an alternative approach to the previously

more dominant observational assessments (like the Tur-

ing test).

5 Can human intelligence tests work for

machines?

The validity of any discriminative test is mostly based

on its necessity and sufficiency. In the case of intelli-

gence, this is not different, and a similar argument has

been applied to the Turing test and other proposals

for measuring (artificial) intelligence. Namely, necessity

means that if a system is intelligent then it must pass

the test and sufficiency means that if a system passes

the test then it must be intelligent.

In order to analyse whether human intelligence tests

are valid for machines we will introduce six arguments

(or characteristics of human intelligence tests) that can

be used to explore whether they are necessary and suf-

ficient, as summarised in Table 1. Many of these argu-

ments rely on machines and humans (and non-human

animals) being different subject populations and on the

breadth and variety of problems in the test.

1. Human intelligence tests are anthropocentric. As hu-

mans are the quintessential example of intelligence, it

makes sense to derive the concept and the measurement

tools from them. Human tests have just been tuned to

become necessary and sufficient for humans (or as much

as possible). For instance, they evolved into culture-

fair tests to solve problems about necessity. They also

evolved to have a range of tasks to solve problems about

sufficiency. So, this argument can be used to question

whether human intelligence, as measured by IQ tests,

is a particular (anthropocentric) type of intelligence,

instead of a universal one. Also, even if it is human-

level intelligence what we want to measure, it is not

clear that the tests can work for other kinds of sub-

jects. Hence, there can be important concerns about the

necessity and sufficiency of these tests for non-human

subjects, such as machines (and animals).

2. Human intelligence tests are administered in a par-

ticular way. Intelligence tests are practical for humans.

A reliable measurement can be obtained with a short

test. As a result, only AI systems that are specialised

to the particular test interface and choice of symbolic

representation can be evaluated, including those tests

that require the understanding of language. In addition,

many tests require the extrapolation of sequences with

no feedback whatsoever about what is correct or not

(e.g., just follow the sequence in a “natural” way). This

happens even if the language or the milieu (e.g., tests

for blind people) are adapted to the examinee. Conse-

quently, the interface raises doubts about the necessity
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# Argument Necessity Sufficiency
1 Human intelligence tests are anthropocentric. Effect Effect
2 Human intelligence tests are administered in a particular way. Effect -
3 Human intelligence tests are specialised to kinds of subjects. Effect Effect
4 Human intelligence tests are usually normalised to a population. Effect Effect
5 Human intelligence tests are robust to training. - Effect
6 Human intelligence tests are composed of many different abilities and factors. Effect Effect

Table 1 Six arguments that can be used to determine the (in)adequacy of human intelligence tests for machines and whether
they can have effect on the necessity and sufficiency of these tests.

of human intelligence tests for other kinds of subjects,

such as machines (and animals, small children and dis-

abled people). As a sign of this, tests for animals are

administered with rewards, not instructions.

3. Human intelligence tests are specialised to kinds of

subjects. The two previous arguments can be responded

by the fact that there are specialised human intelligence

tests for disabled people, for children of different ages,

etc. It could also be argued that the same could be

done for machines. Actually, Detterman suggests that a

“unique battery of intelligence tests” (Detterman, 2011)

could be designed on purpose for machines developed

by “the editorial board of Intelligence and members

of the International Society for Intelligence Research”.

However, which are the criteria for the inclusion in this

‘unique’ battery? And if some tests are developed anew,

what would be the guidelines to specialise these tests

for machines? Would they be still useful for humans?

And what if the battery is finally passed by a machine?

Would the commission be tempted to look for a differ-

ent or more machine-unfriendly battery that humans

can pass but the program cannot, à la CAPTCHA1

(Von Ahn et al., 2003)? In the end, any adaptation

or specialised selection of tasks would raise questions

about the necessity and sufficiency for machines, even

more than a standard human intelligence test.

4. Human intelligence tests are usually normalised to a

population. The result from a human intelligence test

is just a number that can be compared to other num-

bers, in an ordinal, but not a quantitative way. In other

words, human intelligence is measured at “the ordinal

level”, or is “weakly measurable” (Bartholomew, 2004,

pp. 145). For instance, to make the number meaningful,

IQ is normalised to have a mean of 100 and a standard

deviation of 15. Clearly, this normalisation is not going

to work for other populations, as it does not work for

children or even some subgroups of the human popula-

tion. However, we cannot re-normalise for machines, as

the mere notion of an ‘average’ machine is ridiculous,

because there is no normative population of machines.

This means that even if the human normalisation is

1 CAPTCHAs (Completely Automated Public Turing test
to tell Computers and Humans Apart) are tests (e.g., dis-
torted letters) to detect bots in Internet applications.

used, we have problems about sufficiency, i.e., it is un-

clear what it means if a machine scores an IQ of 20 or

an IQ of 524, as these values are clearly anomalous for

humans. Conversely, from the necessity point of view,

what are machines far below or far above human intel-

ligence expected to score?

5. Human intelligence tests are robust to training. Hav-

ing a public and transparent measurement benchmark

is always a good thing for science. Some human intel-

ligence tests are well-known and public, but not all.

Actually, some academic and professional psychological

tests are never made public, because otherwise people

could practice on them and game the evaluation. Even if

care is taken not to disclose or repeat exercises to avoid

rote learning, humans can prepare for the kinds of tests.

Fortunately, the improvement of training, even if signif-

icant, is limited (Bors and Vigneau, 2001), although the

reasons and the permanent effect beyond the particular

test are not very well understood. Aware of this, Detter-

man talks about two levels in his challenge, the second

where tests are not disclosed previously to the evalua-

tion (so programmers cannot implement specialised ap-

proaches). However, it is not clear that this robustness

to humans trying to game the evaluation by systematic

practising should also hold for machines. As already
discussed in the previous section, specialised systems

can be built whose only purpose is to score well in in-

telligence tests (e.g., Sanghi and Dowe, 2003), without

being able to do well in other tasks. This raises strong

doubts on sufficiency.

6. Human intelligence tests are composed of many dif-

ferent abilities and factors. There are broad test bat-

teries, including many abilities and skills. This is good,

but how far should we go? For instance, PAI states that

machines should be evaluated with “all established, val-

idated tests of intelligence and mental ability, a class of

tests that includes not just the rather restrictive IQ

tests, but also [...] tests of artistic and literary creativ-

ity, mechanical ability, and so on” (Bringsjord, 2011).

However, some humans score poorly on some of these

tests (e.g., Stephen Hawking). Conversely, we clearly

see that some tasks that are discriminative for humans

(e.g., arithmetic or even reaction time) are meaningless

for machines. Even if we agree that results for different

tests should be analysed separately, it is not clear how



6 Besold, Hernández, Schmid

the relations between abilities and factors could be in-

terpreted for machines, or how different tasks could be

weighted for an aggregated value. For instance, if the

g factor has been found in human evaluation, should it

appear for machines as well? More blatantly, should we

expect well-established tests of choice reaction time to

be correlated with intelligence in machines as they are

correlated in humans (Deary et al., 2001)? Most of the

research in human intelligence is then, in principle, not

extrapolatable to machines (not even to animals), rais-

ing delicate issues about the breadth, composition and

interpretation of separate results of any test battery for

machines. Actually, it is unclear whether we can come

up with a right set of problems by making the battery

larger or smaller such that they are sufficient and nec-

essary for machines.

From the above analysis of arguments, there seem

to be serious doubts about the necessity and sufficiency

of current human intelligence tests for the evaluation of

machines. This is consistent with other previous papers

(Dowe and Hernández-Orallo, 2012; Besold, 2014).

6 Conclusions

In the previous sections we have discussed whether hu-

man intelligence tests are valid for the evaluation of ma-

chines. As a result, we have found several issues about

their sufficiency and necessity. Even if we argue that in-

telligence tests are not valid, in principle, for the evalu-

ation of machines, it is important to highlight that this

does not mean that human intelligence tests are useless

for artificial intelligence and cognitive science. More on

the contrary, it is precisely the analysis of what is lack-

ing in our AI systems to score well in a range of human

intelligence tests and what is lacking in human intelli-

gence tests to properly discard those systems that are

not intelligent what can give us insight about the nature

of human intelligence tests and also about the progress

of AI if the tests are generalised. In other words, the

use of human intelligence tests in AI research is use-

ful, provided we are cautious about the semantic and

quantitative interpretation of results.

The PAI methodology for AI, however, does not ad-

vocate for any generalisation or improvement of psycho-

metric tests. This can actually be one of the most useful

outcomes of this process, by the development of brand-

new tests based on (algorithmic) information theory

(Hernández-Orallo, 2000; Legg and Hutter, 2007) or

on models about cognition (Mueller et al., 2007), and

their hybridisation with (cognitive) generalisations of

the Turing Test (Besold, 2013b) or generalisations of

psychometrics (Hernández-Orallo et al., 2014), where

tests are devised for any kind of cognitive system inde-

pendent of its type or nature (individual or collective,

artificial, biological, or hybrid). This suggests that an

interesting way of looking at the question is by revers-

ing it: can human intelligence be measured as a very

special case of machine intelligence?
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