
              

City, University of London Institutional Repository

Citation: Chuang, J. & Lazarev, A. (2009). Abstract Hodge decomposition and minimal 

models for cyclic algebras. Letters in Mathematical Physics, 89(1), pp. 33-49. doi: 
10.1007/s11005-009-0314-7 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/188/

Link to published version: https://doi.org/10.1007/s11005-009-0314-7

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ABSTRACT HODGE DECOMPOSITION AND MINIMAL MODELS FOR
CYCLIC ALGEBRAS

J. CHUANG AND A. LAZAREV

Abstract. We show that an algebra over a cyclic operad supplied with an additional linear
algebra datum called Hodge decomposition admits a minimal model whose structure maps are
given in terms of summation over trees. This minimal model is unique up to homotopy.

1. Introduction

Operadic algebras (such as A∞- , C∞- and L∞-algebras) were originally introduced for the
needs of homotopy theory but now figure prominently also in algebraic geometry and certain
parts of theoretical physics, particularly in those aspects which concern mirror symmetry. One
of the highlights of the theory of operadic algebras is the theorem due to Kadeishvili [12] on
the existence of minimal models for A∞-algebras.

Relatively recently this theorem was revisited by Merkulov, Markl and Kontsevich-Soibelman
[21, 19, 15]. They gave explicit formulas for structure maps of minimal models in terms of
summations over trees.

In [5] we introduced a new approach to the construction of explicit minimal models, giving a
conceptual explanation for the Merkulov tree sum formulas. We worked in an operadic setting,
so our results apply to homotopy algebras interpreted in the broadest sense, including as special
cases C∞-algebras and L∞-algebras. Moreover, these methods extended naturally to modular
operads, and in this setting minimal models are given by sums over general graphs. As a
special case we recovered the theory of minimal models for homotopy algebras equipped with
non-degenerate bilinear forms.

The purpose of the present article is to demonstrate how our approach can be adapted
for homotopy algebras with bilinear forms which are not necessarily non-degenerate. This is
important because the most interesting examples such as de Rham and Dolbeault algebras are
infinite dimensional and thus cannot support a non-degenerate inner product. However their
minimal models tend to be finite dimensional and so it is natural to ask whether their inner
products could be made compatible with the higher multiplications.

Finite-dimensional models of operadic algebras with a compatible scalar product are also
important because of their connection to various moduli spaces; for example Gromov-Witten
invariants encode the action of the homology operad of moduli spaces of curves on the Hodge
cohomology of smooth projective varieties.

Another source of interest in finite-dimensional models is the the so-called ‘direct construc-
tion’ of Kontsevich [14, 10] which associates to an A∞-algebra with a non-degenerate scalar
product a family of cohomology classes on moduli spaces of Riemann surfaces.

The appropriate setting in which to study these constructions is that of algebras over cyclic
operads. Our main result states that an algebra V (not necessarily finite dimensional) over a
cyclic operad admits an explicit minimal model whose structure maps are given by a Merkulov-
type formula provided the underlying complex of V possesses a Hodge decomposition. The Hodge
decomposition of a complex with an inner product is a certain linear algebra datum which is
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interesting in its own right and we discuss this notion separately. It is an abstract version of the
structure possessed by the De Rham algebra of a smooth manifold or a Dolbeault algebra of a
complex manifold. Without the presence of a form this structure is known under the name of
strong deformation retract data. If the space V is finite dimensional then a Hodge decomposition
always exists but in infinite-dimensional situations its existence is not straightforward.

There are several papers which treated the A∞-case using more ad hoc methods, notably
[23, 18, 13]. Other methods based on noncommutative geometry [16, 1] potentially generalize
to the operadic context but do not produce an explicit formulas.

The paper is organized as follows. In the remaining part of the introduction we outline the
explicit formula for a minimal model in the A∞-case. The reason for this is that although our
proof does not simplify for this particular choice of an operad, the notational complications make
the formulation of the general case considerably harder to digest. Chapter 2 introduces and
studies the notion of abstract Hodge decomposition. In Chapter 3 we discuss various notions of
a cyclic algebra over a cyclic operad; all these notions coincide in the case of a non-degenerate
form. Chapter 4 contains our main result and various examples.

1.1. Notation and conventions. We work in the category of Z/2-graded differential graded
(dg) vector spaces over a fixed ground field k of characteristic zero. For a dg vector space
V we denote by ΠV the parity reversion of V ; thus (ΠV )0 = V1 and (ΠV )1 = V0. The
homology of a dg vector space V will be denoted by H(V ). The group of permutations of n
symbols will be denoted by Sn. An S-module is a collection E(n) of dg vector spaces together
with a right action of Sn on each E(n). Similarly an S+-module is a collection E(n) of dg
vector spaces together with a right action of Sn+1 on each E(n). A dg operad is an S-module
O = {O(n)}, n = 0, 1, . . . together with right actions of Sn on each O(n) and structure maps
◦i : O(m)⊗O(n)→ O(m+ n− 1), where i = 1, . . . ,m subject to natural axioms, see, e.g. [20].
We will denote by φσ the right action of a permutation σ on φ and by z(n) the n + 1-cycle
z(n) = (0, 1, . . . , n) ∈ Sn+1.

1.2. Minimal models for cyclic A∞-algebras. We will now explain how our construction
works for A∞-algebras. Recall that an A∞-algebra is a dg vector space V together with odd
maps

mn : (ΠV )⊗n → ΠV, n ≥ 2,

such that ∑
i+j+k=n

mi+1+k(id⊗i⊗mj ⊗ id⊗k) = 0, n ≥ 1,(1.1)

where m1 is the differential of V .
Suppose V is equipped with a symmetric bilinear form (even or odd) 〈, 〉 : V ⊗ V → k. Then

(V, {mi}) is called a cyclic (or symplectic) A∞-algebra if the tensor m̃n ∈ ((ΠV )⊗n)∗ defined by
the formula

(1.2) m̃n(Πv0, . . . ,Πvn) = 〈mn(Πv0, . . . ,Πvn−1),Πvn〉

is invariant with respect to all cyclic permutations on ((ΠV )⊗n)∗.
Now let (V, {mi}) be a cyclic A∞-algebra. We explain how a cyclic A∞-algebra structure

is induced on the homology H(V ), a la Merkulov/Kontsevich-Soibelman. To implement the
construction we choose a decomposition V = X⊕ Im(d)⊕W such that X⊕ Im(d) = ker(d) and
W is orthogonal to X ⊕W . When V is finite dimensional and also in some other important
cases such a decomposition does exist.

We define new operators m̃n : V ⊗n → V, n ≥ 2 as follows. Let t : V → V be the projection
onto X along Im(d)⊕W , and let s : V → V be inverse to d on W and 0 on X⊕ Im(d). Let T be
a planar rooted tree with n+ 1 extremities; we assume that each vertex has valence at least 3.
We label the extremities by t, all other edges by s and each vertex of valence v by mv−1. Then
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m̃T is constructed by working from the canopy of the tree down to the trunk, composing labels
in an obvious manner. For the tree pictured in Figure 1 we have

m̃T = tm4(id⊗sm2 ⊗ id⊗2)(sm2 ⊗ id⊗sm3 ⊗ id⊗2)t⊗8.
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Figure 1. Definition of m̃T .

We define m̃n =
∑

T m̃T : V ⊗n → V , where the sum is taken over all planar rooted trees
with n+1 extremities. It can be shown by direct calculation [21, 19, 15] that the m̃n satisfy the
higher associativity conditions (1.1). The compatibility (1.2) of the m̃n with the bilinear form is
also known (by Lazaroiu [18] in general and Kajiura [13] when the form is non-degenerate). By
restriction we obtain a cyclic A∞-structure on H(V ), the minimal model, and it is independent
(in an appropriate sense) of the choice of decomposition of V .

Our goal is to give a conceptual explanation of this, extending our earlier paper [5]. So our
results extend to algebras over arbitrary cyclic operads.

2. Abstract Hodge decomposition

2.1. Definition. Let V be a dg vector space equipped with a bilinear form

〈, 〉 : V × V → k,

In addition, we assume that 〈, 〉 is homogeneous (i.e. either even or odd) and graded symmetric
or antisymmetric:

(2.1) 〈x, y〉 = ±(−1)|x||y|〈y, x〉,
for any homogeneous x, y ∈ V . The form is assumed to be compatible with the differential d
on V :

(2.2) 〈dx, y〉+ (−1)|x|〈x, dy〉 = 0.

We say that the form 〈, 〉 is non-degenerate if for any nonzero x ∈ V there exists y ∈ V such
that 〈x, y〉 6= 0 and strongly non-degenerate if it determines an isomorphism V → V ∗. Clearly a
form can be strongly non-degenerate if and only if V is finite dimensional and in this case this
notion is equivalent to that of non-degeneracy.

For any dg subspace W ⊆ V , we denote by W⊥ the dg subspace consisting of vectors x
orthogonal to W , i.e. such that 〈x, y〉 = 0 for all y ∈ W . We say that W is isotropic if
W ⊆W⊥.

Definition 2.1. A Hodge decomposition of V is a pair of operators

t : V → V and s : V → V,

of even and odd degrees, respectively, such that
3



(1) s2 = 0,
(2) 〈sx, y〉 = (−1)|x|〈x, sy〉,
(3) sd+ ds = 1− t,
(4) dt = td,
(5) 〈tx, y〉 = 〈x, ty〉,
(6) t2 = t,
(7) st = ts = 0,

The Hodge decomposition is called trivial if t = idV . Following the suggestion of Dan Grayson
we will call a Hodge decomposition harmonious if dt = 0; it was called ‘canonical’ in [5] but we
feel that the latter terminology may be misleading.

Remark 2.2.
• The notion of a Hodge decomposition (without a biliniar form) is also known as splitting

homotopy or strong deformation retract (SDR) data studied in the context of homolog-
ical perturbation theory cf. [2]. It is clear that there is a direct sum decomposition
V = Ker t ⊕ Im t into orthogonal sub dg vector spaces; moreover s determines a con-
tractible homotopy on Ker t. The Hodge decomposition is then trivial if and only if
Im t = V , and harmonious if and only if Im t has zero differential and thus carries the
homology of V .
• In view of (3) the operator t is completely determined by s. It is easy to check that

the conditions (4) and (5) are consequences of (1), (2), (3) and that (in the presence
of (1), (2) and (3)) the conditions (6) and (7) together are equivalent to requiring that
sds = s. Thus, a Hodge decomposition on V is encoded in an odd self-adjoint operator
s of square zero and such that sds = s. It is harmonious if and only if dsd = d.

Definition 2.3. We define an almost Hodge decomposition in the same way as a Hodge de-
composition, but just require that ds+ sd+ t be invertible.

It is always possible to ‘correct’ an almost Hodge decomposition to a bona-fide one, as
follows. The operator ds + sd restricts to an automorphism of Ker t, by assumption. Define
the ‘Green operator’ G ∈ EndV to be inverse to ds + sd on Ker t and 0 on Im t. Since
d(ds+ sd) = dsd = (ds+ sd)d we see that G−1|Ker t commutes with d and therefore so does G.
Then we obtain

(sG)d+ d(sG) = 1− t,
i.e. a genuine Hodge decomposition with the operator sG instead of s. We remark that one
automatically has Gt = 0 and Gs = sG.

Remark 2.4.
• The significance of an almost Hodge decomposition is that the classical geometric Hodge

decomposition of differential forms on a smooth or a Kähler manifold is an almost Hodge
decomposition in our sense as will be explained below.
• Another potentially useful weakening of the notion of a Hodge decomposition is where

only conditions (2)-(5) are satisfied, except that the t in (3) is replaced by t2. Here
notice that t is not determined by s, so (4) and (5) are not automatic consequences of
(2) and (3). This version of a Hodge decomposition was employed in [5].

The natural question is whether a Hodge decomposition of a dg vector space with a bilinear
form always exists. We first give the following preliminary result reformulating the notion of a
Hodge decomposition in geometric terms.

Proposition 2.5. Let V be a dg vector space with an (anti)-symmetric bilinear form 〈, 〉 as
above. A harmonious Hodge decomposition on V is equivalent to a decomposition of V into a
direct sum of three subspaces:

V = Im d⊕ U ⊕W
where W⊥(Im d⊕U), W carries the homology of V : H(V ) ∼= W and U is an isotropic subspace
of V .
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Proof. If the dg space V is supplied with the operators s and t as in Definition 2.1 we set
U = Im s and W = Im t; the required conditions are then checked in a straightforward fashion.
Conversely, suppose that we are given a decomposition of V in a direct sum of three spaces
Im d, U and W as above. Since the space Im d ⊕ U is contractible it follows that d maps U
isomorphically onto Im d and we define s|Im d to be the inverse of d : U → Im d and s|U⊕W = 0.
Further, define t to be the projection onto W . It is immediate to check that s2 = 0 and
sd+ ds = 1− t. Furthermore, we have:

〈sv1, v2〉 =〈sv1, (sd+ ds+ t)v2〉
=〈sv1, dsv2〉

=(−1)|v1|〈dsv1, sv2〉

=(−1)|v1|〈(1− sd− t)v1, sv2〉

=(−1)|v1|〈v2, sv2〉.
The remaining axioms for a Hodge decomposition are automatic. �

Remark 2.6. There is also an obvious and well-known analogue of the previous result without
the presence of a form (which is actually a special case of it with the form being identically
zero). In this situation a Hodge decomposition is equivalent to a direct sum decomposition
V = Im d⊕ U ⊕H(V ) without any additional assumptions.

Theorem 2.7. Let V be a dg vector space with an (anti)symmetric bilinear form 〈, 〉 whose
kernel has finite codimension. Then a harmonious Hodge decomposition always exists.

Proof. Let V ′ be the kernel of 〈, 〉, and choose a dg complement: V = V ′⊕V ′′. Since V ′ and V ′′

are orthogonal, it suffices to find harmonious Hodge decompositions for V ′ and V ′′ individually.
Therefore we may assume that the form on V is either identically zero or non-degenerate.

If the form is zero, then we first choose a subspace W in V representing H(V ) and then
choose a complement U to Im d⊕W in V ; by the previous result this will give a desired Hodge
decomposition.

Now suppose that the form is strongly non-degenerate (and thus, V is finite dimensional).
The first step is the same as before: we choose a subspace W representing H(V ). Since our form
is non-degenerate on V it also non-degenerate on W and therefore V = W ⊕W⊥. Moreover,
Im d ∈W⊥; it thus remains to find an isotropic complement to Im d in W⊥.

To this end, note that 〈, 〉 can be viewed as an element in (W⊥ ⊗W⊥)∗. The latter is a
contractible dg vector space and so any cycle in it is in fact a boundary. It follows that there
exists another scalar product (, ) on W⊥ such that 〈v1, v2〉 = (dv1, v2) + (−1)|v1|(v1, dv2) for any
homogeneous v1, v2 ∈W⊥. It follows that (, ) is non-degenerate on Im d ∈W⊥. Indeed, if there
exists v ∈ Im d such that for any u ∈ W⊥ we have (v, du) = 0, then 〈v, u〉 = 0 for any u ∈ W⊥
contradicting the non-degeneracy of 〈, 〉.

Set U be the subspace of W⊥ orthogonal to Im d with respect to (, ). Then, since Im d ⊂W⊥
is finite dimensional, we have W⊥ = Im d⊕ U . It is also clear that U is isotropic (with respect
to the bilinear form 〈, 〉) and this finishes the proof. �

Remark 2.8.
• In the above proof we used the finite-dimensionality assumption in two places:

(1) in the fact that V = W⊥ ⊕W (this uses finite-dimensionality of W = H(V )) and
(2) in the fact that W⊥ = Im d⊕ U (this uses finite-dimensionality of Im d and thus –

that of W⊥)
In the most interesting cases provided by the classical geometric Hodge decomposition
(see below) the space H(V ) is finite dimensional but Im d is not and additional analytical
arguments are needed in order to prove the existence of the desired complement. It is
likely that there exist examples of maximal isotropic subspaces (such as Im d) in general
infinite-dimensional spaces not having an isotropic complement; however we have been
unable to construct such an example.
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• In this paper we work with Z/2-vector spaces; however all our results carry over almost
verbatim to Z-graded vector spaces. In this context, assuming that the given form 〈, 〉 is
homogeneous and that the dg-vector space V has finite-dimensional graded components
Theorem 2.7 still holds.

Example 2.9.
(1) Let A be a Sullivan minimal model of a rational Poincaré duality space of dimension

n. Thus A is a free graded commutative algebra on finitely many generators in degrees
≥ 0. Moreover, A is supplied with a bilinear form of degree n coming from the choice
of a fundamental class. It is clear that all elements of A of degree > n belong to the
kernel of this form; thus by Theorem 2.7 A has a Hodge decomposition.

(2) Let A be the algebra of differential forms on a smooth oriented compact manifold M .
Then A has a bilinear form: for two forms ω, η ∈ A set 〈ω, η〉 =

∫
M ω ∧ η; this form is

clearly compatible with the external differential d. The form has zero kernel; however
since A is infinite dimensional Theorem 2.7 is not applicable. The desired result follows
instead from geometric Hodge decomposition, see e.g. [22]. One introduces a Riemann-
ian metric g(, ) on M , the associated volume form dµ and the operator ∗ determined by
the formula ω ∧ ∗η = g(ω, η)dµ. The operator ∗ has the following properties:

(2.3) ω ∧ ∗η = η ∧ ∗ω;

(2.4) ∗ ∗ ω = (−1)|ω|(n−|ω|)ω.

Next, there is defined a global scalar product (, ) on A by the formula (ω, η) =
∫
M ω∧∗η

and an operator d∗ defined by d∗(ω) = (−1)n(|ω|+1)+1 ∗ d∗. A simple manipulation with
formula (2.3) shows that

(2.5) 〈d∗ω, η〉 = (−1)|ω|〈ω, d∗η〉.
Then Hodge’s theorem asserts that there is a direct sum decomposition

A = H(A)⊕ Im d∗ ⊕ Im d

where H(A) is represented as Ker d
⋂

Ker d∗. It follows from integration by parts and
formula (2.5) that H(A) is orthogonal to Im d∗⊕Im d in the sense of the bilinear product
〈, 〉. It further follows from formula (2.5) that the subspace Im d∗ is isotropic. Therefore
by Proposition 2.5 there exists an abstract Hodge decomposition on A. Note that the
Laplacian dd∗+d∗d is not the identity on Im d∗⊕Im d but is an invertible operator (whose
inverse is the Green operator), therefore the decomposition obtained most naturally is,
in fact, what we termed an almost Hodge decomposition. Of course, an almost Hodge
decomposition is equivalent to a genuine one

(3) Let A = Ω0,∗ be the Dolbeault algebra of a complex Calabi-Yau manifoldM of dimension
n. Thus, A consists of differential forms of type (0, i), i = 0, . . . , n, that is those forms
which could be written locally as

∑
f(zi1 , . . . , zin , z̄i1 , . . . , z̄in)dzi1 , . . . , dzindz̄i1 , . . . , dz̄in .

The holomorphic volume form γ ∈ Ωn,0 determines a bilinear pairing 〈ω, η〉 =
∫
M γωη

compatible with the differential ∂̄ in A. Indeed, we have for ω, η ∈ A:

0 =
∫
M
∂̄(γωη) =

∫
M
γ∂̄(ωη) = 〈∂̄(ω), η〉+ (−1)|ω|〈ω, ∂̄(η)〉.

As in the previous example this bilinear form is non-degenerate but A is infinite
dimensional. However an abstract Hodge decomposition on A exists and is given by
the complex-analytic Hodge decomposition, see, e.g. [9]. Just as in the C∞-case one
introduces the operator ∂̄∗ and obtains the following decomposition:

A = H(A)⊕ Im ∂̄ ⊕ Im ∂̄∗

which satisfies the conditions of Proposition 2.5 and so there results an abstract Hodge
decomposition of A. Moreover, if E is a holomorphic vector bundle (or a dg holomorphic
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vector bundle) then the dg-algebra of End(E)-valued (0, ∗)-forms A⊗C∞(M) Γ(End(E))
has a compatible bilinear pairing: for f, g ∈ Γ(End(E)) and ω, η ∈ A we have

〈ω ⊗ f, η ⊗ g〉 =
∫
M
γωηTr(fg).

Again, geometric Hodge decomposition translates into an abstract Hodge decomposition
on this algebra.

3. Cyclic operads and their algebras

The notion of a cyclic operad was introduced by Getzler and Kapranov [7], cf. also [20],
Section 5.1.

Definition 3.1. 3.2 An operad O is cyclic if the right Sn-action on O(n) extends to a right
Sn+1-action such that:

(1) 1z(1) = 1 where 1 ∈ O(1) is the operadic unit;
(2) for any φ ∈ O(m) and ψ ∈ O(n)

(a) (φ ◦1 ψ)z(m+n−1) = ψz(n) ◦n φz(m);
(b) (φ ◦i ψ)z(m+n−1) = φz(m) ◦i−1 ψ for i = 2, . . . ,m

We will also have a chance to use the notion of an anticyclic operad; its definition is obtained
from the one above by multiplying the right hand sides of formulas (1) and (2) by −1. Anti-
cyclic operads appear as cobar-constructions of cyclic operads and this is the main reason for
considering them.

Most known operads are cyclic. We now discuss the notion of an algebra over a cyclic
operad. It is usually assumed that the underlying space of such an algebra possesses a strongly
non-degenerate inner product. In cases when such a product (or coproduct) is not strongly
non-degenerate there are several inequivalent notions of a cyclic algebra.

3.1. Different notions of algebras over cyclic operads. Given a dg space V , we denote
by E(V ) the endomorphism operad on V , so that E(V )(n) = Hom(V ⊗n, V ). If V is moreover
equipped with a symmetric bilinear form, we define the endomorphism cyclic operad E(V ) by
E(V )(n) = V ⊗n+1.

Definition 3.2. Let O be a cyclic operad. Let V be an dg space (possibly infinite dimensional).
(1) A standard O-algebra structure on V is a symmetric bilinear form on V together with

a map of cyclic operads O → E(V ).
(2) A cyclic O-algebra structure on V is a symmetric bilinear form on V together with a

map of operads O → E(V ) inducing Sn+1-module maps O(n)→ (V ⊗n+1)∗. We will also
say that the given form on V is invariant with respect to the O-algebra structure.

(3) A Casimir O-algebra structure on V is a tensor in V ⊗V together with a map of operads
O → E(V ) inducing Sn+1-invariant maps O(n)→ V ⊗n+1.

Remark 3.3. If the form on V is strongly non-degenerate, then the notions of standard and
cyclic algebras are equivalent. Furthermore, if the tensor in the definition of Casimir algebra
induces an isomorphism V ∗ ∼= V , then the notion of Casimir algebra also reduces to either of
the other two. In this situation E(V ) is a cyclic operad and a cyclic O-algebra structure on V
is simply a map of cyclic operads O → E(V ).

In general the three notions are distinct. Standard algebras are the most natural from a
purely abstract point of view, in the setting of cyclic and modular operads. However it is
unclear whether interesting examples of standard algebras with degenerate forms are plentiful
in nature. Note that a standard algebra over the associative cyclic operad is a dg vector space
V together with a bilinear form and a three-tensor

∑
ai⊗ bi⊗ ci ∈ V ⊗3, subject to a quadratic

relation; it is thus not even an associative algebra.
The notion of Casimir O-algebra is introduced in Hinich-Vaintrob [11].
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Dual to the Casimir algebras are the cyclic algebras, in which we are most interested. The
cyclic algebras are the operadic algebras equipped with invariant bilinear form, as defined by
Getzler and Kapranov [7]. Note that the induced maps O(n)→ (V ∗)⊗n+1 automatically inter-
twine the action of Sn. Hence it is enough to further ensure that the action of the cyclic group
〈z(n)〉 is preserved.

Let O be a cyclic operad and V be an O-algebra (viewing O as just an operad). Then a
bilinear form 〈, 〉 on V determines a cyclic O-algebra structure on V if and only if the map
Bn : O(n)⊗ V ⊗(n+1) → k defined by the formula

Bn(φ⊗ v0 ⊗ . . .⊗ vn) = 〈φ(v0, . . . , vn−1), vn〉
is invariant under the action of Sn+1 on O(n)⊗ V ⊗(n+1). Note that the symmetry of the form
is a consequence of the definition, if the operad is unital.

Our main result turns on the following simple but important lemma:

Lemma 3.4. Suppose that a cyclic operad O is generated by a sub- S+-module M . Then a
bilinear form 〈, 〉 : V × V → k on an O-algebra V is invariant if and only if for all n ≥ 0 the
restriction of Bn to M(n)⊗ V ⊗(n+1) is invariant under the action of Sn+1.

Proof. We need to prove that for all φ ∈ O(n) and all v0, . . . , vn ∈ V we have

〈φ(v0, . . . , vn−1), vn〉 = (−1)|v0|(|v1|+...+|vn|)〈φz(n)(v1, . . . , vn), v0〉.
So it suffices to show that if this property holds for φ ∈ O(n) and ψ ∈ O(m) then it is true

for a composition ψ ◦i φ ∈ O(m+n− 1). For simplicity we assume that the elements v0, . . . , vn
are even; the proof in the general case is slightly messier because of the signs. First suppose
i > 1. Then

〈(ψ ◦i φ)(v0, . . . , vm+n−2), vm+n−1〉 = 〈ψ(v0, . . . , vi−2, φ(vi−1, . . . , vi+n−2), vi+n−1, . . . , vm+n−2), vm+n−1〉
= 〈ψz(m)(v1, . . . , vi−1, φ(vi, . . . , vi+n−1), vi+n, . . . , vm+n−1), v0〉
= 〈(ψz(m) ◦i−1 φ)(v1, . . . , vm+n−1), v0〉
= 〈(ψ ◦i φ)z(m+n−1)(v1, . . . , vm+n−1), v0〉,

where in the second line we used the invariance for ψ while the last line used the cyclicity of
the operad O (property (2b) of Definition 3.2).

For i = 1 we have:

〈(ψ ◦1 φ)(v0, . . . , vm+n−2), vm+n−1〉 = 〈ψ(φ(v0, . . . , vn−1), vn, . . . , vm+n−2), vm+n−1〉
= 〈ψz(m)(vn, . . . , vm+n−1), φ(v0, . . . , vn−1)〉
= 〈φ(v0, . . . , vn−1), ψz(m)(vn, . . . , vm+n−1)〉
= 〈φz(n)(v1, . . . , vn−1, ψ

z(m)(vn, . . . , vm+n−1)), v0〉
= 〈(φz(n) ◦n ψz(m))(v1, . . . , vm+n−1), v0〉
= 〈(ψ ◦1 φ)z(m+n−1)(v0, . . . , vm+n−1), v0〉.

Here the second line used the invariance of ψ, the fourth – the invariance of φ and the last –
the cyclicity of O (property (2a) of Definition 3.2). �

4. Main theorem: an explicit form of a minimal model of cyclic algebras

In this section we assume that a cyclic operad O is admissible i.e. that O(n) is finite di-
mensional for all n and that O(1) is a one-dimensional space spanned by the operadic unit 1.
The cobar-construction BO of O (or, more pedantically, that of the dual cooperad O(n)∗) is an
anticyclic operad, see [7].

Our main result relies heavily on our previous work [5] and we now recall some of the con-
structions and terminology of this paper. Associated to O is its canonical cofibrant resolution
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(essentially the double cobar-construction) bvO and another operad BVO whose algebras are O-
algebras together with a choice of a Hodge decomposition (no invariant inner product is assumed
yet). For an O-algebra structure on a dg vector space V we have the following commutative
diagram:

(4.1) bvO i //

p

��

BVO

h
���
�
�

q
uuO

f
//

j
77

E(V ) E(H(V ))? _oo

Here BVO is given by freely adjoining to O an odd element s and an even element t, both of
arity 1 and subject to the relations 0 = s2 = st = ts = t2 − t and with differential extending
that on O and such that d(s) = 1 − t and d(t) = 0. The operad BVO can be viewed as the
operad of O-decorated trees whose internal edges are marked by the symbols s or t; the vertices,
except those adjacent to the extremities are required to be at least trivalent. There results an
inclusion j : O → BVO obtained by viewing O as the space of trees with no internal edges; this
inclusion is split by the projection q : BVO → O defined by setting s 7→ 0, t 7→ 1.

The operad bvO is the suboperad in BVO consisting of O-decorated trees whose extremities
are connected to t-edges by bivalent vertices, and p = q ◦ i. The map f is the given O-algebra
structure on V and the dotted arrow h corresponds to a choice of a Hodge decomposition on
V . The inclusion E(H(V )) ↪→ E(V ) also comes from a Hodge decomposition on V (which we
always assume to be harmonious).

The action of bvO restricts to the image Im t of the operator t of the Hodge decomposition
thus giving a bvO-algebra structure on H(V ). In the case when the map bvO → O has a
splitting, as is the case when O itself is a (suspended) cobar-construction, this bvO-algebra
structure pulls back to an O-algebra structure on H(V ) giving a minimal model of the O-
algebra V . The structure maps of this canonical (modulo the choice of a Hodge decomposition)
minimal model are given by a Merkulov-like formula, see [5], Theorem 3.2.

Moreover, any two choices of a Hodge decomposition give homotopy equivalent minimal mod-
els by Theorem 4.14 of [5]. Let us recall the notion of homotopy equivalence of operadic algebras.
It is based on a special dg algebra D = k[z, dz] of polynomial forms on the interval. Note that
there are two restriction maps ev0,1 : D → k corresponding to the restrictions of differential
forms to 0 and 1. Associated to any (cyclic) operad O is a (cyclic) operad O ⊗ D given by
O ⊗D(n) = O(n)⊗D.

Definition 4.1.
(1) Two maps between operads f0, f1 : O → O′ are homotopic if there exists a map f : O →
O′ ⊗ D such that f0 = (id ⊗ ev0) ◦ f and f1 = (id ⊗ ev1) ◦ f . If O and O′ are cyclic
operads then f0, f1 are cyclically homotopic if f a map of cyclic operads.

(2) Let V be a dg vector space. Two O-algebras corresponding to operad maps f0 : O →
E(V ) and f1 : O → E(V ) are called (cyclically) homotopy equivalent if f0 and f1 are
(cyclically) homotopic.

The operad BVO has an obvious cyclic structure with generators s and t being invariant with
respect to the action of S2; the suboperad bvO is then also a cyclic operad and the maps i, j, p, q
clearly are maps of cyclic operads.

Now suppose that V has a symmetric bilinear form, not necessarily non-degenerate, making
it into a cyclic O-algebra. The following result asserts that Hodge decompositions allow one to
build minimal models in a unique up to homotopy way.

Theorem 4.2. Let V be a cyclic O-algebra supplied with a Hodge decomposition.
• The induced bvO-algebra structure on tV makes it a cyclic bvO-algebra. The cyclic

bvO-algebra structures on H(V ) induced by any two harmonious Hodge decompositions
are cyclically homotopy equivalent.

9



• Suppose that O = BP, the cobar-construction of an anticyclic operad P. Then the
Merkulov-type formula as in Theorem 3.2 of [5] gives a minimal model for V as a
cyclic O-algebra. Moreover, the cyclic O-algebra structures on H(V ) induced by any
two harmonious Hodge decompositions are cyclically homotopy equivalent.

Proof. A choice of Hodge decomposition on V allows one to extend the O-algebra structure on
V to a BVO-algebra structure. Now BVO is generated by the sub-S+-module K = O⊕ks⊕kt,
and the induced maps K(n)→ (V ⊗n)∗ are Sn+1-module homomorphisms as long as the Hodge
decomposition is chosen compatible with the bilinear form. So by Lemma 3.4 the BVO-algebra
structure on V is cyclic. It follows that the bvO-algebra structure obtained by restriction is
also cyclic.

The homotopy between different minimal models described in [5] (Theorem 4.14) is easily
checked to be a cyclic map: the image of s and t are compatible with the extension of the inner
product to the larger coefficient dg agebra D = k[z, dz].

The second statement about minimal models of V as an O-algebra follows from the first since
the canonical map O = BP → bvO = BBBP (given by applying the contravariant functor B to
the canonical resolution BBP → P) is a map of cyclic operads. �

There is an important special case where a cyclic algebra V over O has finite-dimensional
homology: dimH(V ) < ∞ and the given bilinear form on H(V ) is non-degenerate. In this
situation the endomorphism operad E(H(V )) is cyclic and a minimal model of V is specified
by a map of cyclic operads bvO → E(H(V )). There results a map of modular operads (cf.
[8] concerning this notion): bvO → Emod(H(V )) where the bar indicates the modular closure,
i.e. the modular operad freely generated by the corresponding cyclic operad and Emod(H(V ))
denotes the modular endomorphism operad i.e. Emod(H(V ))((g, n)) = Hom(H(V )⊗n−1, H(V )).
We also get a homotopy bvO → Emod(H(V )) ⊗ D corresponding to two choices of a Hodge
decomposition, giving rise to a homotopy between modular operads. We obtain the following
corollary:

Corollary 4.3. Let O and V be as in Theorem 4.2 and, in addition, suppose H(V ) is finite
dimensional and the given bilinear form is non-degenerate on H(V ) = tV .

• The space H(V ) has the structure of an algebra over the modular operad bvO. The
bvO-algebra structures on H(V ) induced by any two compatible harmonious Hodge de-
compositions are homotopy equivalent as modular algebras.
• Suppose that O = BP, the cobar-construction of an anticyclic operad P. Then the

Merkulov-type formula as in Theorem 3.2 of [5] gives a minimal model for V as a
modular O-algebra. Moreover, the modular O-algebra structures on H(V ) induced by
any two compatible harmonious Hodge decompositions are homotopy equivalent.

�

Remark 4.4. The above corollary allows one to extend the definition of characteristic classes
(Kontsevich’s ‘direct construction’ formulated originally for A∞-algebras, cf. [14], [10]) for cobar
construction cyclic operads. Let O = BP be the cobar construction of an anticyclic operad P
and let O be its modular closure. Let V be a cyclic algebra over O such that V possesses a
Hodge decomposition and the induced form on H(V ) is strongly non-degenerate. While V itself
is not necessarily an algebra over O, its homology is, and any two minimal model structures are
weakly equivalent by the theorem.

Thus we have a map of modular operads O → Emod(H(V ))). The characteristic class is given
by the restriction of this map to the vacuum part O((0)) and therefore determines a cohomology
class [V ] := [H(V )] ∈ O((0))∗ is well-defined and does not depend on the choice of a Hodge
decomposition.

We remark that there is problem in carrying the above argument through for an arbitrary
(i.e. not of the form BP) cyclic operad O. Even though BVO ∼= BV(O), the inclusion bvO ↪→
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bv(O) might not be a quasi-isomorphism (even on the vacuum). For degenerate algebras the
characteristic class construction would take values only in bvO((0))∗, rather than in bv(O)((0))∗.

Example 4.5.

(1) Let V be the Sullivan minimal model of the algebra of differential forms on a simply
connected Poincare duality space M . We saw that V has a Hodge decomposition com-
patible with the Poincaré pairing. The resulting cyclic C∞-model of V is what was
called in [17] a Stasheff model and derived using different methods. If M is in fact a
smooth manifold then we can alternatively use the geometric Hodge decomposition of
the de Rham algebra of M to obtain the same result.

(2) Consider the bounded derived category Db(M) of a smooth projective Calabi-Yau mani-
fold M . It has a dg model C(M) obtained by taking the Dolbeault resolutions of coherent
sheaves. The Hochschild cohomology of this category is, essentially, H∗(M), the Hodge
cohomology of M . On the other hand, the existence of a strong generator of Db(M), cf.
[3] (represented by a complex of holomorphic vector bundles on M) implies that there
is a dg algebra V whose derived category is equivalent to Db(M). As explained in Ex-
ample 2.9 (3) Serre duality gives an invariant scalar product on V and geometric Hodge
decomposition allows one to construct a minimal cyclic model (H(V ), {mi}) for V . The
Hochschild cohomology of (H(V ), {mi}) is isomorphic to the Hochschild cohomology of
V and thus – to H∗(M).

Recall the result [6, 16] which states that the Hochschild cohomology of a cyclic A∞-
algebra with a non-degenerate form supports an action of the chain operad of moduli
spaces of Riemann surfaces. We conclude that the H∗(M) forms an algebra over the
chain operad of moduli of Riemann surfaces.
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