BLOCKS OF MINIMAL DIMENSION

MARKUS LINCKELMANN

Abstract. Any block with defect group P of a finite group G with Sylow-p-subgroup S has dimension at least $|S|^2/|P|$; we show that a block which attains this bound is nilpotent, answering a question of G. R. Robinson.

Mathematics Subject Classification 2000: 20C20

Theorem. Let p be a prime and let \mathcal{O} be a complete local Noetherian commutative ring with algebraically closed residue field k of characteristic p. Let G be a finite group, let b be a block of $\mathcal{O}G$ with a defect group P and let S be a Sylow-p-subgroup of G. Then $\mathrm{rk}_\mathcal{O}(\mathcal{O}Gb) \geq |S|^2/|P|$, and if $\mathrm{rk}_\mathcal{O}(\mathcal{O}Gb) = |S|^2/|P|$ then b is a nilpotent block, the block algebra $\mathcal{O}Gb$ is isomorphic to the matrix algebra $M_{|S|/|P|}(\mathcal{O}P)$ and the algebra $\mathcal{O}P$ is a source algebra of b.

Nilpotent blocks were introduced in [2] as a block theoretic analogue of p-nilpotent finite groups. The proof of the Theorem is based on Puig’s results in [6] on the bimodule structure of a source algebra of $\mathcal{O}G$ as $\mathcal{O}P$-$\mathcal{O}P$-bimodule and the structure theory of nilpotent blocks in [7]. Examples of blocks of minimal \mathcal{O}-rank include all blocks of p-nilpotent finite groups G with abelian $O_{p'}(G)$ and, with $P = 1$, the block of the Steinberg module of a finite group of Lie type in defining characteristic.

We refer to Thévenaz [8] for background material on p-blocks of finite groups. In particular, with the notation of the Theorem, by a block of $\mathcal{O}G$ we mean a primitive idempotent b in $\mathbb{Z}(\mathcal{O}G)$, and a defect group of b is a minimal subgroup P of G such that $\mathcal{O}Gb$ is isomorphic to a direct summand of $\mathcal{O}Gb \otimes_{\mathcal{O}P} \mathcal{O}Gb$ as $\mathcal{O}P$-$\mathcal{O}P$-bimodule. This is equivalent to requiring that P is a maximal p-subgroup of G such that $\mathrm{Br}_P(b) \neq 0$, where

$$\mathrm{Br}_P : (\mathcal{O}G)^P \rightarrow kC_G(P)$$

is the Brauer homomorphism sending a P-stable element $\sum_{x \in G} \lambda_xx$ of the group algebra $\mathcal{O}G$ to the element $\sum_{x \in C_G(P)} \tilde{\lambda}_xx$ in the group algebra $kC_G(P)$, where here $\tilde{\lambda}_x$ is the canonical image of the coefficient $\lambda_x \in \mathcal{O}$ in the residue field k. The map Br_P is well-known to be a surjective algebra homomorphism. In particular, $\mathrm{Br}_P(b)$ is an $\mathcal{O}P$-algebra.
idempotent in \(Z(kC_G(P)) \), hence a sum of blocks of \(kC_G(P) \). The blocks occurring in \(\text{Br}_P(b) \) are all conjugate under \(N_G(P) \). More generally, a \(b \)-Brauer pair is a pair \((Q,e)\) consisting of a \(p \)-subgroup \(Q \) of \(G \) and a block \(e \) of \(kC_G(Q) \) such that \(\text{Br}_Q(b)e \neq 0 \). Following [1], the set of \(b \)-Brauer pairs admits a canonical structure of partially ordered \(G \)-set with respect to the conjugation action of \(G \). This partial order has the property that for any \(b \)-Brauer pair \((Q,e)\) and any subgroup \(R \) of \(Q \) there is a unique block \(f \) of \(kC_G(R) \) such that \((R,f) \) is a \(b \)-Brauer pair and such that \((R,f) \subseteq (Q,e) \). The block \(b \) is called nilpotent if \(N_G(Q,e)/C_G(Q) \) is a \(p \)-group for any \(b \)-Brauer pair \((Q,e)\). As a consequence of a theorem of Frobenius, the group \(G \) is \(p \)-nilpotent if and only if the principal block of \(OG \) is nilpotent, which explains the terminology.

Proof of the Theorem. The statement on the minimal possible rank of \(OGb \) is well-known, but we include a proof for the convenience of the reader. Choose a Sylow-\(p \)-subgroup \(S \) of \(G \) such that \(P \subseteq S \). Since \(OGb \) is a direct summand of \(OG \) as \(O S \times O S \)-bimodule, there is an \(O \)-basis \(X \) of \(OGb \) which is stable under left and right multiplication with elements in \(S \). For any subgroup \(R \) of \(S \), the set of “diagonal” fixpoints

\[
X^R = \{ x \in X \mid uxu^{-1} = x \text{ for all } u \in R \}
\]

is mapped by \(\text{Br}_R \) to a \(k \)-basis in \(\text{Br}_R((OGb)^R) = kC_G(R)\text{Br}_R(b) \). Since \(P \) is maximal such that \(\text{Br}_P(b) \neq 0 \), the set \(X^P \) is in particular non empty. Also, \(OGb \) has vertex \(\Delta P \) and trivial source as \(O(G \times G) \)-module, hence is a direct summand of \(\text{Ind}_{G^P}^{G \times G}(O) \), where \(\Delta P = \{(u,u) \mid u \in P \} \). Mackey’s formula implies that every indecomposable direct summand of \(OGb \) as \(O S \times O S \)-bimodule is of the form \(\text{Ind}_{Q}^{S \times S}(O) \) for some subgroup \(Q \) of \(S \times S \) of the form \(S \times S \cap (x,y)\Delta P \) with \(x,y \in G \); in particular, \(Q \) has order at most \(|P| \). In other words, the stabiliser of any element \(x \in X \) in \(S \times S \) has at most order \(|P| \).

Let \(x \in X^P \). The stabiliser of \(x \) in \(S \times S \) contains \(\Delta P \) but has at most order \(|P| \), hence is equal to \(\Delta P \). Thus the \(O S \times O S \)-bimodule \(O[SxS] \) generated by \(x \) is a direct summand of \(OGb \) as \(O S \times O S \)-bimodule isomorphic to \(O S \stackrel{\partial}{\otimes} O S \). In particular, \(\text{rk}_O(OGb) \geq \text{rk}_O(O S \otimes \mathcal{O}_P) = |S|^2/|P| \).

In order to show that \(b \) is nilpotent we use a result of Puig [6, 3.1] in the form as described in [4, 7.8]. Let \(i \in (OGb)^P \) be a primitive idempotent in the algebra of fixpoints in \(OGb \) with respect to the conjugation action by \(P \) on \(OGb \) such that \(\text{Br}_P(i) \neq 0 \); that is, \(i \) is a source idempotent for \(b \) and the algebra \(iOGi \) is a source algebra of \(b \). Since \(i \) commutes with the action of \(P \), the source algebra \(iOGi \) is also a direct summand of \(OGb \cong O S \otimes \mathcal{O}_P \) as \(O P \times O P \)-bimodule. As a consequence of results in [1], the choice of the source idempotent \(i \) determines a fusion system \(\mathcal{F} = \mathcal{F}_{(P,e)}(G,b) \) on \(P \), where \(e \) is the unique block of \(kC_G(P) \) such that \(\text{Br}_P(i)e = \text{Br}_P(i) \); this makes sense as \(\text{Br}_P(i) \) is a primitive idempotent in \(kC_G(P) \). More precisely, for any subgroup \(Q \) of \(P \) we have \(\text{Aut}_{\mathcal{F}}(Q) \cong N_G(Q,e_Q)/C_G(Q) \) where \(e_Q \) is the unique block of \(kC_G(Q) \) such that \((Q,e_Q) \subseteq (P,e) \). See e.g. [3] or [5], for more details on fusion systems of blocks. Now let \(Q \) be a subgroup of \(P \) and let \(\varphi \in \text{Aut}_{\mathcal{F}}(Q) \). Denote by \(\varphi \mathcal{O}Q \) the
\(\mathcal{O}Q\)-\(\mathcal{O}Q\)-bimodule which is, as \(\mathcal{O}\)-module, equal to \(\mathcal{O}Q\) but with \(u \in Q\) acting on the left by multiplication with \(\varphi(u)\) and on the right by multiplication with \(u\). By [4, 7.8], the \(\mathcal{O}Q\)-\(\mathcal{O}Q\)-bimodule \(\varphi\mathcal{O}Q\) is isomorphic to a direct summand of \(i\mathcal{O}G_i\) as \(\mathcal{O}Q\)-\(\mathcal{O}Q\)-bimodule. Thus \(\varphi\mathcal{O}Q\) is isomorphic to a direct summand of \(\mathcal{O}S \otimes \mathcal{O}S\) as \(\mathcal{O}Q\)-\(\mathcal{O}Q\)-bimodule. This forces \(\varphi\) to be induced by conjugation with an element in \(N_S(Q)\). In particular, \(\varphi\) is a \(p\)-automorphism of \(Q\). Thus \(\text{Aut}_F(Q)\) is a \(p\)-group for all subgroups \(Q\) of \(P\), and hence \(b\) is a nilpotent block.

By the general structure theory of nilpotent blocks [7], the block algebra \(\mathcal{O}Gb\) is isomorphic to a matrix algebra \(M_n(\mathcal{O}P)\); in particular, the block \(b\) has a unique isomorphism class of simple modules. If \(V\) is a simple \(\mathcal{O}Gb\)-module then \(V\) has the defect group \(P\) as vertex and an endo-permutation \(kP\)-module \(W\) as source. This source is trivial if and only if the source algebra \(i\mathcal{O}G_i\) is isomorphic to \(\mathcal{O}P\). Dimension counting yields \(\text{rk}_{\mathcal{O}}(\mathcal{O}Gb) = n^2|P| = |S|^2/P|\), hence \(\dim_k(V) = n = [S : P]\). Now \(V\) is a direct summand of \(\text{Ind}^G_S(W)\), hence by Mackey’s formula, \(\text{Res}_S^G(V)\) is a direct sum of direct summands of \(\text{Ind}^S_{S \cap \pi} P(xW)\) with \(x \in G\). Green’s indecomposability theorem [8, (23.6)] forces \(S \cap xP = xP\) and \(\dim_k(W) = 1\), hence \(W\) is the trivial \(kP\)-module. □

Remark. If \(\mathcal{O}Gb\) has \(\mathcal{O}\)-rank \(|S|^2/P|\) then the first part in the proof of the Theorem says that \(\mathcal{O}Gb \cong \mathcal{O}S \otimes \mathcal{O}S\) as \(\mathcal{O}S-\mathcal{O}S\)-bimodules for any defect group \(P\) of \(b\) contained in \(S\). Thus, if \(x \in G\) such that \((xP \subset S\) then \(\mathcal{O}S \otimes \mathcal{O}S \cong \mathcal{O}S \otimes \mathcal{O}S\), which forces \((xP = uP\) for some \(u \in S\). It follows that the set \(\text{Hom}_G(P, S)\) of group homomorphisms from \(P\) to \(S\) induced by conjugation with elements in \(G\) is equal to \(\text{Hom}_S(P, S) \circ \text{Aut}_G(P)\) or equivalently, \(N_G(P, S) = SN_G(P)\), where \(N_G(P, S) = \{x \in G \mid xP \subset S\}\). In other words, the fact that \(P\) is a defect group of a block of minimal \(\mathcal{O}\)-rank has implications for the fusion system of the group itself.

References

MARKUS LINCKELMANN

DEPARTMENT OF MATHEMATICAL SCIENCES
MESTON BUILDING
ABERDEEN, AB24 3UE
UNITED KINGDOM