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A RECIPROCITY FOR SYMMETRIC ALGEBRAS

MARKUS LINCKELMANN, BERNARD STALDER

March 2001

ABSTRACT. The aim of this note is to show, that the reciprocity property of group
algebras in [5, (11.5)] can be deduced from formal properties of symmetric algebras,
as exposed in [1], for instance.

Let O be a commutative ring. By an O-algebra we always mean a unitary associa-
tive algebra over 0. Given an O-algebra A, we denote by A° the opposite algebra of
A. An A-module is a unitary left module, unless stated otherwise. A right A-module
can be considered as a left A°-module. If A, B are O-algebras, we mean by an A-
B-bimodule always a bimodule whose left and right O-module structure coincide; in
other words, any A-B-bimodule can be regarded as A ®» B%-module. For an A-A-
bimodule M we set M4 = {m € M | am = ma for all a € A}. In particular, A4 =
Z(A), the center of A. If A, B, C are O-algebras, M is an A-B-bimodule and N is an
A-C-bimodule, we consider the space Homy (M, N) of left A-module homomorphisms
from M to N as B-C-bimodule via (b.p.c)(m) = ¢(mb)c. Similarly, if furthermore N’
is a C-B-bimodule, we consider the space Hompo(M, N') of right B-module homo-
morphisms from M to N’ as C-A-bimodule via (c.¢).a)(m) = cip(am). In particular,
the O-dual M* = Homp (M, O) becomes a B-A-bimodule via (b.7.a)(m) = 7(amb).
Here a € A, b € B,ce C, m € M, ¢ € Homa(M,N), ¥ € Hompo(M, N') and
TeM*.

An O-algebra A is called symmetricif A is finitely generated projective as O-module
and if A is isomorphic to its O-dual A* = Home (A, O) as A-A-bimodule. The image
s € A* of 14 under any A-A-isomorphism & : A = A* fulfills ®(a) = a.s = s.a for
all a € A; that is, s is symmetric and the map a — a.s is a bimodule isomorphism
A= A*. Any such linear form is called a symmetrising form of A. The choice of a

symmetrising form on A is thus equivalent to the choice of a bimodule isomorphism
A A"

Theorem 1. Let A, B be symmetric O-algebras and let M, N be A-B-bimodules
which are finitely generated projective as left and right modules. We have a bifunctorial
O-linear isomorphism

which is canonically determined by the choice of symmetrising forms of A and B.

Proof. Let s € A* and t € B* be symmetrising forms on A and B, respectively. It
is well-known (see [1] or also the appendix in [3]) that there is an isomorphism of
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B-A-bimodules

Homu (M, A) = M*

f —so f

which is functorial in M. Moreover, since M and N are finitely generated projective
as left and right modules, we have an isomorphism of B-B-bimodules

Hom 4 (M, A) % N = Homyu(M,N)
{f@m — (m — f(m)n)
which is functorial in both M and N. Taking B-fixpoints yields (M* <§> N)B =~
(Homu (M, A) % N)B = (Homa (M, N))B = Hom g po(M, N). Similarly, there is an
isomorphism of B-A-bimodules
Hompo(M,B) = M*
{ 9 = toyg
and we have an isomorphism of A-A-bimodules
N %) Hompo (M, B) = Hompo(M, N)
{n®9 — (m — ng(m))
As before, taking A-fixpoints yields (N %) M*HA = (N %) Hompo (M, B))* =
(Hompo (M, N))* = Hom gg o (M, N). O

Remark. The proof of Theorem 1 shows, that the two expressions in the statement
of Theorem 1 are isomorphic to Homggpo (M, N). In particular, for M = N, this
induces algebra structures on (M* ® M) and (M @ M*)4.

A B

Taking derived functors of the fixpoint functors in Theorem 1 yields the following
consequence on Hochschild cohomology.

Corollary. With the notation and assumptions of Theorem 1, we have an isomor-
phism of graded O-modules HH*(B,M* @ N) =2 HH*(A, N @ M*).
A B

Proof. Let P be a projective resolution of M as A-B-bimodule. Then P* =
Homep (P, O) is an O-injective resolution of M*. Thus N ® P* and P* ® N are

B A
O-injective resolutions of N ® M* and M* % N, respectively. Using Theorem 1,
B

~

we have isomorphisms of cochain complexes Hompgpo(B, P* ® N) = (P* @ N)P
o A A

(N ® P*)A = Hom g 40 (A, N ® P*). Taking cohomology yields the statement. [J
B o B

Let A be an O-algebra. Following the terminology in [2], [3] (which generalises
[4]), an interior A-algebra is an O-algebra B endowed with a unitary algebra homo-
morphism o : A — B. If A, B are O-algebras, C' is an interior B-algebra and M an
A-B-bimodule, we set Indp,(C) = Endego (M %) (), considered as interior A-algebra

via the homomorphism A — Indy;(C) sending a to the C°-endomorphism given by
left multiplication with a on M ® C.
B
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Theorem 2. Let A, B be symmetric O-algebras and let M be an A-B-bimodule
which is finitely generated projective as left and right module. There is a canonical
anti-isomorphism of O-algebras

(Indpz(B))* = (Indps-(A))B .

Proof. We have Indy;(B) = Endgo(M) and Indp«(A) = End 40 (M*). Since taking
O-duality is a contravariant functor, this algebra is isomorphic to End 4 (M)?. Taking
fixpoints completes the proof. [

The group algebra OG of a finite group G is a symmetric algebra. More precisely,
OG has a canonical symmetrising form, namely the form s : OG — O mapping a
group element g € G to zero if g # 1 and to 1 if g = 1. Following the terminology of
Puig [4], an interior G-algebra is an O-algebra endowed with a group homomorphism
o:G — A*. Such a group homomorphism extends uniquely to an O-algebra homo-
morphism OG — A, and thus A becomes an interior OG-algebra (and vice versa).
If H is a subgroup of G and B an interior H-algebra, the induced algebra Indg(B)

defined in [4] is the O-module OG 0(8}{ B 0(8}{ OG endowed with the multiplication

(z@bey) (@b ®@y) = (x @ byz't) @ y') provided that yz’ € H, and 0 otherwise,
where z,y,2’,y" € G and b,b’ € B. The algebra Indg(B) is viewed as interior G-

algebra with the structural homomorphism mapping x € Gto Y, 2y®1lp®y L.
y€[G/H]

For B = OH, we have the obvious identification Ind%(OH) = OG ((98) OG, with
H

multiplication given by (z ® y)(z’ ® ¢') = = ® ya'y’ if ya’ € H and 0 otherwise,
where x,y,2’,y" € G. The previous notion of algebra induction is consistent with this
concept:

Lemma. Let G be a finite group, H a subgroup of G and let B be an interior H-
algebra. Set M = OGy. There is an isomorphism of O-algebras

{ Ind%(B) = 1Indy (B)
(z@b®yYy) — (2®c —x®byzc ifyz € H and 0 otherwise) ,
where x,y,z € G and b,c € B.

Proof. Straightforward verification. [J

Theorem 3. (Stalder [5]) Let G be a finite group, let H, K be subgroups of G. Con-
sider OG as OH-OK -bimodule via multiplication in OG. Then there is an isomor-
phism of O-algebras

(Ind$ (OH))K = (Ind$(OK)H
> kr@yk™ — 3 he= ' @y th,
kE[K/K (zqy)] he[H/H(zfl(X,yfl)]

where K (y5,) 15 the stabilizer in K of x ® y € Ind$ (OH) under the action of K
and H(,-1g,-1) is the stabilizer in H of t7' @y~ ' € Ind% (OK) under the action of



4 MARKUS LINCKELMANN, BERNARD STALDER

There are (at least) three ways to go about the proof of Theorem 3: by explicit
verification or by interpreting Theorem 3 as special case of either Theorem 1 or
Theorem 2. We sketch the three different proofs.

Proof 1 of Theorem 3. The image of the set G x G in Ind%(OH) = OG O@}{ oG

is an (O-basis which is permuted under the action of K by conjugation. Thus the
subalgebra (Ind$%(OH))X of K-stable elements has as O-basis the set of relative
traces Trﬁ(z@)y) (z®y), where z, y € G. If 2,2, y,y € G and k € K such that

kruk =2 ®4vy

in IndG(OH), there is a (necessarily unique) h € H such that kz = 2’h~' and
yk~! = hy’, which in turn is equivalent to the equality

hZC_l ® y—lh—l — (x/)—l ® (y/)—l

in Ind%((’)K). Thus the map 2 ®y — 2z~ ®y~! induces a bijection between the sets
of K-orbits and of H-orbits of the images of G x G in Ind$(OH) and Ind$ (OK),
respectively. In particular, with the notation above, we have k € K., if and only
if h € H-1gy-1), and the correspondence k +— h induces a group isomorphism
K1gy) = Hg-1gy-1). From this follows that the map given in Theorem 3 is an
O-linear isomorphism. It remains to verify that this is an algebra homomorphism.
In Ind% (OH), multiplication is given by (z ® y)(z ® t) = = ® yzt, if yz € H and
0, otherwise, where x,y,z,t € G. If yz € H, then in Ind?(((’)K), the elements
(y2)z~ ! @t Y(yz)~! and 27! @ t~! are in the same H-orbit, and the multiplication
in Ind%(OK) yields (z7' @y~ ) ((y2)z ' @t (yz)" ) =z ' @t '2~1y~!, and this
corresponds precisely to the bijection between the sets of K-orbits and H-orbits of
the images of the set G x G in Ind$ (OK) and Ind$,(OH), respectively. [

Proof 2 of Theorem 3. We are going to apply Theorem 1 to the particular case where
A=0OH, B=0OK, M = N = OG viewed as A-B-bimodule (through the inclusions
H C G, K CG). This yields an O-linear isomorphism

((OG)*(%OG)K% (0OG 2 (OGY")H .

Composing this with the canonical isomorphism (OG)* = OG mapping f € (OG)*
to > f(z7 1)z yields the isomorphism in Theorem 3. [J
relG

Proof 3 of Theorem 3. Applying Theorem 2 and the above Lemma to A = OK,
B = OH and M = OG as A-B-bimodule yields an anti-isomorphism (Ind$ (OH))¥ =
(Ind%(OK))H. The map sending z ® y to ¥y~ ® z~! is an anti-automorphism of
Ind% (OH) which induces an anti-automorphism of (Ind%(OH))X. Composing both
maps yields again the isomorphism in Theorem 3. [

Remark. The proof 3 of Theorem 3 is essentially the proof given in [5, §11].
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