

City Research Online

City, University of London Institutional Repository

Citation: Linckelmann, M. & Stalder, B. (2002). A reciprocity for symmetric algebras. Quarterly Journal of Mathematics, 53(2), pp. 201-205. doi: 10.1093/qjmath/53.2.201

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1895/

Link to published version: https://doi.org/10.1093/qjmath/53.2.201

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

A RECIPROCITY FOR SYMMETRIC ALGEBRAS

MARKUS LINCKELMANN, BERNARD STALDER

March 2001

ABSTRACT. The aim of this note is to show, that the reciprocity property of group algebras in [5, (11.5)] can be deduced from formal properties of symmetric algebras, as exposed in [1], for instance.

Let \mathcal{O} be a commutative ring. By an \mathcal{O} -algebra we always mean a unitary associative algebra over \mathcal{O} . Given an \mathcal{O} -algebra A, we denote by A^0 the opposite algebra of A. An A-module is a unitary left module, unless stated otherwise. A right A-module can be considered as a left A^0 -module. If A, B are \mathcal{O} -algebras, we mean by an A-B-bimodule always a bimodule whose left and right \mathcal{O} -module structure coincide; in other words, any A-B-bimodule can be regarded as $A \otimes_{\mathcal{O}} B^0$ -module. For an A-A-bimodule M we set $M^A = \{m \in M \mid am = ma \text{ for all } a \in A\}$. In particular, $A^A = Z(A)$, the center of A. If A, B, C are \mathcal{O} -algebras, M is an A-B-bimodule and N is an A-C-bimodule, we consider the space $\operatorname{Hom}_A(M, N)$ of left A-module homomorphisms from M to N as B-C-bimodule via $(b.\varphi.c)(m) = \varphi(mb)c$. Similarly, if furthermore N' is a C-B-bimodule, we consider the space $\operatorname{Hom}_{B^0}(M, N')$ of right B-module homomorphisms from M to N' as C-A-bimodule via $(c.\psi.a)(m) = c\psi(am)$. In particular, the \mathcal{O} -dual $M^* = \operatorname{Hom}_{\mathcal{O}}(M, \mathcal{O})$ becomes a B-A-bimodule via $(b.\tau.a)(m) = \tau(amb)$. Here $a \in A, b \in B, c \in C, m \in M, \varphi \in \operatorname{Hom}_A(M, N), \psi \in \operatorname{Hom}_{B^0}(M, N')$ and $\tau \in M^*$.

An \mathcal{O} -algebra A is called *symmetric* if A is finitely generated projective as \mathcal{O} -module and if A is isomorphic to its \mathcal{O} -dual $A^* = \operatorname{Hom}_{\mathcal{O}}(A, \mathcal{O})$ as A-A-bimodule. The image $s \in A^*$ of 1_A under any A-A-isomorphism $\Phi : A \cong A^*$ fulfills $\Phi(a) = a.s = s.a$ for all $a \in A$; that is, s is symmetric and the map $a \mapsto a.s$ is a bimodule isomorphism $A \cong A^*$. Any such linear form is called a *symmetrising form of* A. The choice of a symmetrising form on A is thus equivalent to the choice of a bimodule isomorphism $A \cong A^*$.

Theorem 1. Let A, B be symmetric \mathcal{O} -algebras and let M, N be A-B-bimodules which are finitely generated projective as left and right modules. We have a bifunctorial \mathcal{O} -linear isomorphism

$$(M^* \underset{A}{\otimes} N)^B \cong (N \underset{B}{\otimes} M^*)^A$$

which is canonically determined by the choice of symmetrising forms of A and B.

Proof. Let $s \in A^*$ and $t \in B^*$ be symmetrising forms on A and B, respectively. It is well-known (see [1] or also the appendix in [3]) that there is an isomorphism of

B-A-bimodules

$$\begin{cases} \operatorname{Hom}_A(M, A) & \cong M^* \\ f & \mapsto s \circ f \end{cases}$$

which is functorial in M. Moreover, since M and N are finitely generated projective as left and right modules, we have an isomorphism of B-B-bimodules

$$\begin{cases} \operatorname{Hom}_A(M, A) \underset{A}{\otimes} N &\cong \operatorname{Hom}_A(M, N) \\ f \otimes n &\mapsto (m \mapsto f(m)n) \end{cases}$$

which is functorial in both M and N. Taking B-fixpoints yields $(M^* \bigotimes_A N)^B \cong (\operatorname{Hom}_A(M, A) \bigotimes_A N)^B \cong (\operatorname{Hom}_A(M, N))^B = \operatorname{Hom}_{A \otimes B^0}(M, N)$. Similarly, there is an isomorphism of B-A-bimodules

$$\begin{cases} \operatorname{Hom}_{B^0}(M,B) &\cong M^* \\ g &\mapsto t \circ g \end{cases}$$

and we have an isomorphism of A-A-bimodules

$$\begin{cases} N \bigotimes_{B} \operatorname{Hom}_{B^{0}}(M, B) & \cong \operatorname{Hom}_{B^{0}}(M, N) \\ n \otimes g & \mapsto (m \mapsto ng(m)) \end{cases}$$

As before, taking A-fixpoints yields $(N \bigotimes_B M^*)^A \cong (N \bigotimes_B \operatorname{Hom}_{B^0}(M, B))^A \cong (\operatorname{Hom}_{B^0}(M, N))^A = \operatorname{Hom}_{A \otimes B^0}(M, N).$

Remark. The proof of Theorem 1 shows, that the two expressions in the statement of Theorem 1 are isomorphic to $\operatorname{Hom}_{A\otimes B^0}(M,N)$. In particular, for M = N, this induces algebra structures on $(M^* \otimes M)^B$ and $(M \otimes M^*)^A$.

Taking derived functors of the fixpoint functors in Theorem 1 yields the following consequence on Hochschild cohomology.

Corollary. With the notation and assumptions of Theorem 1, we have an isomorphism of graded \mathcal{O} -modules $HH^*(B, M^* \bigotimes_A N) \cong HH^*(A, N \bigotimes_B M^*)$.

Proof. Let *P* be a projective resolution of *M* as *A*-*B*-bimodule. Then $P^* = \text{Hom}_{\mathcal{O}}(P, \mathcal{O})$ is an *O*-injective resolution of *M*^{*}. Thus $N \bigotimes_{B} P^*$ and $P^* \bigotimes_{A} N$ are *O*-injective resolutions of $N \bigotimes_{B} M^*$ and $M^* \bigotimes_{A} N$, respectively. Using Theorem 1, we have isomorphisms of cochain complexes $\text{Hom}_{B \bigotimes_{O} B^0}(B, P^* \bigotimes_{A} N) \cong (P^* \bigotimes_{A} N)^B \cong (N \bigotimes_{B} P^*)^A \cong \text{Hom}_{A \bigotimes_{O} A^0}(A, N \bigotimes_{B} P^*)$. Taking cohomology yields the statement. □

Let A be an \mathcal{O} -algebra. Following the terminology in [2], [3] (which generalises [4]), an *interior* A-algebra is an \mathcal{O} -algebra B endowed with a unitary algebra homomorphism $\sigma : A \to B$. If A, B are \mathcal{O} -algebras, C is an interior B-algebra and M an A-B-bimodule, we set $\operatorname{Ind}_M(C) = \operatorname{End}_{C^0}(M \bigotimes_B C)$, considered as interior A-algebra via the homomorphism $A \to \operatorname{Ind}_M(C)$ sending a to the C^0 -endomorphism given by left multiplication with a on $M \bigotimes_B C$.

Theorem 2. Let A, B be symmetric \mathcal{O} -algebras and let M be an A-B-bimodule which is finitely generated projective as left and right module. There is a canonical anti-isomorphism of \mathcal{O} -algebras

$$(\operatorname{Ind}_M(B))^A \cong (\operatorname{Ind}_{M^*}(A))^B$$
.

Proof. We have $\operatorname{Ind}_M(B) = \operatorname{End}_{B^0}(M)$ and $\operatorname{Ind}_{M^*}(A) = \operatorname{End}_{A^0}(M^*)$. Since taking \mathcal{O} -duality is a contravariant functor, this algebra is isomorphic to $\operatorname{End}_A(M)^0$. Taking fixpoints completes the proof. \Box

The group algebra $\mathcal{O}G$ of a finite group G is a symmetric algebra. More precisely, $\mathcal{O}G$ has a canonical symmetrising form, namely the form $s: \mathcal{O}G \to \mathcal{O}$ mapping a group element $g \in G$ to zero if $g \neq 1$ and to 1 if g = 1. Following the terminology of Puig [4], an interior G-algebra is an \mathcal{O} -algebra endowed with a group homomorphism $\sigma: G \to A^{\times}$. Such a group homomorphism extends uniquely to an \mathcal{O} -algebra homomorphism $\mathcal{O}G \to A$, and thus A becomes an interior $\mathcal{O}G$ -algebra (and vice versa). If H is a subgroup of G and B an interior H-algebra, the *induced algebra* $\operatorname{Ind}_{H}^{G}(B)$ defined in [4] is the \mathcal{O} -module $\mathcal{O}G \underset{\mathcal{O}H}{\otimes} B \underset{\mathcal{O}H}{\otimes} \mathcal{O}G$ endowed with the multiplication $(x \otimes b \otimes y)(x' \otimes b' \otimes y) = (x \otimes byx'b' \otimes y')$ provided that $yx' \in H$, and 0 otherwise, where $x, y, x', y' \in G$ and $b, b' \in B$. The algebra $\operatorname{Ind}_{H}^{G}(B)$ is viewed as interior Galgebra with the structural homomorphism mapping $x \in G$ to $\sum_{y \in [G/H]} xy \otimes 1_B \otimes y^{-1}$. For $B = \mathcal{O}H$, we have the obvious identification $\operatorname{Ind}_{H}^{G}(\mathcal{O}H) = \mathcal{O}G \underset{\mathcal{O}H}{\otimes} \mathcal{O}G$, with multiplication given by $(x \otimes y)(x' \otimes y') = x \otimes yx'y'$ if $yx' \in H$ and 0 otherwise, where $x, y, x', y' \in G$. The previous notion of algebra induction is consistent with this

Lemma. Let G be a finite group, H a subgroup of G and let B be an interior Halgebra. Set $M = \mathcal{O}G_H$. There is an isomorphism of \mathcal{O} -algebras

$$\begin{cases} \operatorname{Ind}_{H}^{G}(B) &\cong \operatorname{Ind}_{M}(B) \\ (x \otimes b \otimes y) &\mapsto (z \otimes c \ \mapsto x \otimes byzc \ if \ yz \in H \ and \ 0 \ otherwise) \end{cases}$$

where $x, y, z \in G$ and $b, c \in B$.

concept:

Proof. Straightforward verification. \Box

Theorem 3. (Stalder [5]) Let G be a finite group, let H, K be subgroups of G. Consider $\mathcal{O}G$ as $\mathcal{O}H$ - $\mathcal{O}K$ -bimodule via multiplication in $\mathcal{O}G$. Then there is an isomorphism of \mathcal{O} -algebras

$$\begin{cases} (\operatorname{Ind}_{H}^{G}(\mathcal{O}H))^{K} & \xrightarrow{\sim} (\operatorname{Ind}_{K}^{G}(\mathcal{O}K))^{H} \\ \sum_{k \in [K/K_{(x \otimes y)}]} kx \otimes yk^{-1} & \longmapsto \sum_{h \in [H/H_{(x^{-1} \otimes y^{-1})}]} hx^{-1} \otimes y^{-1}h^{-1}, \end{cases}$$

where $K_{(x\otimes y)}$ is the stabilizer in K of $x \otimes y \in \text{Ind}_{H}^{G}(\mathcal{O}H)$ under the action of Kand $H_{(x^{-1}\otimes y^{-1})}$ is the stabilizer in H of $x^{-1} \otimes y^{-1} \in \text{Ind}_{K}^{G}(\mathcal{O}K)$ under the action of H. There are (at least) three ways to go about the proof of Theorem 3: by explicit verification or by interpreting Theorem 3 as special case of either Theorem 1 or Theorem 2. We sketch the three different proofs.

Proof 1 of Theorem 3. The image of the set $G \times G$ in $\operatorname{Ind}_{H}^{G}(\mathcal{O}H) = \mathcal{O}G \underset{\mathcal{O}H}{\otimes} \mathcal{O}G$ is an \mathcal{O} -basis which is permuted under the action of K by conjugation. Thus the subalgebra $(\operatorname{Ind}_{H}^{G}(\mathcal{O}H))^{K}$ of K-stable elements has as \mathcal{O} -basis the set of relative traces $\operatorname{Tr}_{K_{(x\otimes y)}}^{K}(x \otimes y)$, where $x, y \in G$. If $x, x', y, y' \in G$ and $k \in K$ such that

$$kx \otimes yk^{-1} = x' \otimes y'$$

in $\operatorname{Ind}_{H}^{G}(\mathcal{O}H)$, there is a (necessarily unique) $h \in H$ such that $kx = x'h^{-1}$ and $yk^{-1} = hy'$, which in turn is equivalent to the equality

$$hx^{-1} \otimes y^{-1}h^{-1} = (x')^{-1} \otimes (y')^{-1}$$

in $\operatorname{Ind}_{K}^{G}(\mathcal{O}K)$. Thus the map $x \otimes y \mapsto x^{-1} \otimes y^{-1}$ induces a bijection between the sets of K-orbits and of H-orbits of the images of $G \times G$ in $\operatorname{Ind}_{H}^{G}(\mathcal{O}H)$ and $\operatorname{Ind}_{K}^{G}(\mathcal{O}K)$, respectively. In particular, with the notation above, we have $k \in K_{(x \otimes y)}$ if and only if $h \in H_{(x^{-1} \otimes y^{-1})}$, and the correspondence $k \mapsto h$ induces a group isomorphism $K_{(x \otimes y)} \cong H_{(x^{-1} \otimes y^{-1})}$. From this follows that the map given in Theorem 3 is an \mathcal{O} -linear isomorphism. It remains to verify that this is an algebra homomorphism. In $\operatorname{Ind}_{H}^{G}(\mathcal{O}H)$, multiplication is given by $(x \otimes y)(z \otimes t) = x \otimes yzt$, if $yz \in H$ and 0, otherwise, where $x, y, z, t \in G$. If $yz \in H$, then in $\operatorname{Ind}_{K}^{G}(\mathcal{O}K)$, the elements $(yz)z^{-1} \otimes t^{-1}(yz)^{-1}$ and $z^{-1} \otimes t^{-1}$ are in the same H-orbit, and the multiplication in $\operatorname{Ind}_{K}^{G}(\mathcal{O}K)$ yields $(x^{-1} \otimes y^{-1})((yz)z^{-1} \otimes t^{-1}(yz)^{-1}) = x^{-1} \otimes t^{-1}z^{-1}y^{-1}$, and this corresponds precisely to the bijection between the sets of K-orbits and H-orbits of the images of the set $G \times G$ in $\operatorname{Ind}_{K}^{G}(\mathcal{O}K)$ and $\operatorname{Ind}_{H}^{G}(\mathcal{O}H)$, respectively. \Box

Proof 2 of Theorem 3. We are going to apply Theorem 1 to the particular case where $A = \mathcal{O}H$, $B = \mathcal{O}K$, $M = N = \mathcal{O}G$ viewed as A-B-bimodule (through the inclusions $H \subseteq G$, $K \subseteq G$). This yields an \mathcal{O} -linear isomorphism

$$((\mathcal{O}G)^* \underset{\mathcal{O}H}{\otimes} \mathcal{O}G)^K \cong (\mathcal{O}G \underset{\mathcal{O}K}{\otimes} (\mathcal{O}G)^*)^H$$
.

Composing this with the canonical isomorphism $(\mathcal{O}G)^* \cong \mathcal{O}G$ mapping $f \in (\mathcal{O}G)^*$ to $\sum_{x \in G} f(x^{-1})x$ yields the isomorphism in Theorem 3. \Box

Proof 3 of Theorem 3. Applying Theorem 2 and the above Lemma to $A = \mathcal{O}K$, $B = \mathcal{O}H$ and $M = \mathcal{O}G$ as A-B-bimodule yields an anti-isomorphism $(\operatorname{Ind}_{H}^{G}(\mathcal{O}H))^{K} \cong$ $(\operatorname{Ind}_{K}^{G}(\mathcal{O}K))^{H}$. The map sending $x \otimes y$ to $y^{-1} \otimes x^{-1}$ is an anti-automorphism of $\operatorname{Ind}_{H}^{G}(\mathcal{O}H)$ which induces an anti-automorphism of $(\operatorname{Ind}_{H}^{G}(\mathcal{O}H))^{K}$. Composing both maps yields again the isomorphism in Theorem 3. \Box

Remark. The proof 3 of Theorem 3 is essentially the proof given in $[5, \S 11]$.

References

- 1. M. Broué, On representations of symmetric algebras: an introduction, Notes by M. Stricker, Mathematik Department ETH Zürich (1991).
- 2. B. Külshammer, T. Okuyama, A. Watanabe, A lifting theorem with applications to blocks and source algebras, J. Algebra 232 (2000), 299–309.
- 3. M. Linckelmann, Induction for interior algebras, preprint (2001).
- 4. L. Puig, Pointed groups and construction of characters, Math. Z. 176 (1981), 265–292.
- 5. B. Stalder, Une extension de l'algèbre de groupe en théorie des représentations modulaires, Thèse, Université Lausanne (2000).

Markus Linckelmann CNRS, Université Paris 7 UFR Mathématiques 2, place Jussieu 75251 Paris Cedex 05 FRANCE

Bernard Stalder Université de Lausanne Institut de Mathématiques 1015 Lausanne SUISSE