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ALPERIN’S WEIGHT CONJECTURE IN TERMS

OF EQUIVARIANT BREDON COHOMOLOGY

Markus Linckelmann

Abstract. Alperin’s weight conjecture [1] admits a reformulation in terms of the coho-

mology of a functor on a category obtained from a subdivision construction applied to a

centric linking system [7] of a fusion system of a block, which in turn can be interpreted as
the equivariant Bredon cohomology of a certain functor on the G-poset of centric Brauer

pairs.
The underlying general constructions of categories and functors needed for this refor-

mulation are described in §1 and §2, respectively, and §3 provides a tool for computing

the cohomology of the functors arising in §2. Taking as starting point the alternating sum
formulation of Alperin’s weight conjecture by Knörr-Robinson [10], the material of the pre-

vious sections is applied in §4 to interpret the terms in this alternating sum as dimensions

of cohomology spaces of appropriate functors, using further work of Robinson [16, 17, 18].

Introduction

In its original version, Alperin’s weight conjecture [1] is a numerical statement on the
number ℓ(kG) of isomorphism classes of simple modules over the group algebra kG of a
finite group G over an algebraically closed field k of prime characteristic p, in terms of
invariants of normalisers of non-trivial p-subgroups of G. The subsequent reformulation
of Knörr and Robinson [10] of this conjecture counts the number of ordinary irreducible
characters of a p-block in terms of alternating sums indexed by G-conjugacy classes
of chains of p-subgroups, suggesting there should be a complex behind these sums.
Boltje [4] observed the existence of complexes whose Euler characteristic yields those
alternating sums. The purpose of the present paper is to construct such a complex and
relate it to the equivariant Bredon cohomology of G-posets of Brauer pairs associated
with a block. It is, of course, at this stage pure speculation, whether any of this will
be useful in view of actually proving Alperin’s weight conjecture. The author’s take is
that if there is an intrinsic proof at all, such a proof would actually have to explain
why the - on the surface miraculous - equalities predicted by this conjecture are true. If
nothing more, bringing in topological concepts is at least an attempt towards a structural
interpretation of Alperin’s weight conjecture. It may be significant that the formulation
we end up with - Theorem 4.3 below - involves the concept of a centric linking system,
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2 MARKUS LINCKELMANN

due to Broto, Levi, Oliver [7], which gives a structural perspective to attempts, going
back to work of Benson [3], to attach a “classifying space” to each block of a finite group.

In the context of subgroup complexes, some of the ideas used in this paper appear
already in work of Grodal [9], Symonds [21], Webb [23]. In particular, the covariant
resolution in §3 below is a generalisation to EI-categories of the insight developed in [9]
that Webb’s sequences in [23], when they are not exact, compute certain higher limits,
which in turn has been taken further by Symonds in [21] to give a non-blockwise version
of Alperin’s weight conjecture in terms of higher limits. In some sense, this paper
is about the adjustments which need to be made in order to get such a formulation
of the general blockwise version of Alperin’s weight conjecture. The first adjustment
is straightforward: subgroup complexes need to be replaced by complexes of Brauer
pairs. Keeping in mind possible applications to p-local groups and their fusion systems,
we try to set up the formalism more generally in terms of EI-categories. The second
adjustment is that we need to be able to “glue together” a certain family of 2-cocycles
of the automorphism groups of the underlying fusion system of a block - see [13, 4.2] or
4.2.2 and 4.4 below for more details on this issue.

This paper is subdivided into five Sections. The local structure of a block can be de-
scribed in terms of its category of Brauer pairs [2], and the categories one obtains have
all the property that any endomorphism of an object is an isomorphism. In any category
with this property we can replace the objects by chains of non-isomomorphisms, gener-
alising the concept of barycentric subdivision of a poset. The details of this construction
are described in Section 1. Sending an object in a category to its automorphism group
is in general not functorial. As it turns out, the subdivision categories constructed in
Section 1 have the right formal properties for automorphisms groups to be functorial.
Section 2 takes this observation as starting point for a technically slightly more involved
construction sending objects to certain twisted automomorphism group algebras; this
is necessary for the block theoretic applications to follow. Section 3 gives a simple de-
scription of a projective resolution of the constant functor on the poset of isomorphism
classes in a subdivision category and relates this construction to Bredon cohomology
of G-posets of subgroups of a finite group G. After introducing some block theoretic
notation, the material developed in the previous Sections is applied in Section 4 to yield
a formulation of Alperin’s weight conjecture in terms of Bredon cohomology of G-posets
of Brauer pairs in Theorem 4.3. In order to prevent getting drowned in technicalities,
we describe briefly in Section 5, in which way Theorem 4.3 trivialises when applied to
the two special cases of principal blocks and blocks with abelian defect groups.

1 Subdivisions of EI-categories

We describe in this section a construction which is a variation on the theme of sub-
divisions, designed to generalise the concept of a barycentric subdivision of a poset to
EI-categories in a way that takes into account some of the basic properties of EI-
categories. Recall that an EI-category is a small category with the property that every
endomorphism of an object is an isomorphism. See [14] for more background material
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on EI-categories. If X , Y are non isomorphic objects in an EI-category C then at most
one of the morphism sets HomC(X, Y ) and HomC(Y,X) is non empty. Indeed, if there
is a morphism ϕ : X → Y and a morphism ψ : Y → X in C, then ψ ◦ ϕ and ϕ ◦ ψ
are automorphisms of X and Y , respectively. One easily deduces that both ϕ and ψ
have to be isomorphisms. Thus the set of isomorphism classes of C has a partial order
given by [X ] ≤ [Y ] if HomC(X, Y ) 6= ∅, where [X ], [Y ] are the isomorphism classes of
the objects X , Y in C, respectively. We denote by [C] the poset of isomorphism classes
of C, regarded itself as category in the usual way. There is an obvious functor C −→ [C]
mapping any object X in C to its isomorphism class [X ] and any morphism ϕ : X → Y
in C to the unique morphism [X ] ≤ [Y ] in [C].

In an EI-category C, any morphism composed with any non-isomorphism yields again
a non-isomorphism. The particular role of non-isomorphisms in EI-categories motivates
the following definition.

Definition 1.1. The subdivision of an EI-category C is the category S(C) defined as
follows:

The objects of S(C) are the chains

X = X0
ϕ0

−−−−→ X1
ϕ1

−−−−→ · · ·
ϕn−1

−−−−→ Xm

of objects Xi, where 0 ≤ i ≤ m, and of non isomorphisms ϕi, where 0 ≤ i ≤ m − 1,
and where m is a non negative integer. Any such chain is called a chain of length m,
where as usual chains of length 0 are just objects in C.

A morphism in S(C) from a chain

X = X0
ϕ0

−−−−→ X1
ϕ1

−−−−→ · · ·
ϕm−1

−−−−→ Xm

to a chain

Y = Y0
ψ0

−−−−→ Y1
ψ1

−−−−→ · · ·
ψn−1

−−−−→ Yn

is a family µ = (µi)0≤i≤m where for each i there is j(i) ∈ {0, 1, .., n} such that µi : Xi →
Yj(i) is an isomorphism which makes the obvious diagrams commutative; that is,

µi+1 ◦ ϕi = ψj(i+1)−1 ◦ · · · ◦ ψj(i)+1 ◦ ψj(i) ◦ µi

for any i ∈ {0, 1, .., m− 1}.

The following Proposition collects some basic properties of subdivisions.

Proposition 1.2. Let C be an EI-category. Then the subdivision S(C) is an EI-
category and every morphism in S(C) is a monomorphism.

Proof. The statements are trivial consequences of the fact that morphisms in S(C) are
families of isomorphisms. �
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Clearly if C is itself a poset, this construction yields just the usual barycentric subdi-
vision of C as poset. The subdivision construction is functorial with respect to covariant
functors between EI-categories which preserve non-isomorphisms; more precisely, if C,
C′ are EI-categories and if Φ : C −→ C′ is a covariant functor which maps any non-
isomorphism in C to a non-isomorphism in C′, then Φ induces an obvious covariant
functor S(C) −→ S(C′).

The next observation is one of the key reasons for working with subdivisions:

Proposition 1.3. Let C be an EI-category. For any two objects X, Y in S(C) such

that HomS(C)(X,Y) is non empty, the group AutS(C)(X) acts regularly on the set

HomS(C)(X,Y).

Proof. With the notation of 1.1, two morphisms µ, ν from X to Y in S(C) are given by
two families of isomorphisms µi : Xi → Yj(i) and νi : Xi → Yj(i), respectively, where

0 ≤ i ≤ m. Thus the family of automorphisms ρi = ν−1
i µi of Xi defines the unique

automorphism ρ of X such that µ = ν ◦ ρ. �

By 1.2, if C is an EI-category, so is S(C); in particular, we have a canonical functor
S(C) −→ [S(C)] mapping a chain X to its isomorphism class [X]. Furthermore, the
subdivision S(C) of C comes along with a canonical functor S(C) −→ C which maps a
chain

X = X0
ϕ0

−−−−→ X1
ϕ1

−−−−→ · · ·
ϕn−1

−−−−→ Xm

to its maximal member Xm and maps the morphism µ from the last paragraph to the
morphism ϕn−1 ◦ · · · ◦ ϕm+1 ◦ ϕm ◦ µm : Xm −→ Yn. Finally, there is also a canonical
functor [S(C)] −→ [C] mapping the isomorphism class of a chain

[X0
ϕ0

−−−−→ X1
ϕ1

−−−−→ · · ·
ϕm−1
−−−−→ Xm

]

to the chain of isomorphism classes

[X0] −−−−→ [X1] −−−−→ · · · −−−−→ [Xm] .

This need not be an equivalence of categories. Together with the canonical functors
C → [C] and S(C) → [S(C)] we get a commutative pentagon of canonical functors
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1.4.

S(C)

����
��
��
��
��
��
��
��
��
��

// C

��
++

++
++

++
++

++
++

++
++

+

[S(C)]

**VVVVVVVVVVVVVVVVVVVVVV [C]

S([C])

55jjjjjjjjjjjjjjjjjjjj

The subdivision construction of an EI-category is well-behaved with respect to
extensions of categories in the following sense. Let C be an EI-category and let
Z : C → Mod(Z) be a contravariant functor. Let E be an extension of C by Z; that
is, E is a category having the same objects as C, for any two objects the abelian group
Z(X) acts freely on HomE(X, Y ) whenever this set is non-empty, and there is a func-
tor E → C which is the identity on the set of objects and which induces a bijection
HomE(X, Y )/Z(X) ∼= HomC(X, Y ) for any two objects X , Y for which HomC(X, Y ) is
non-empty. In other words, as a set we may identify HomE(X, Y ) = HomC(X, Y )×Z(X),
and the composition of two morphisms in E ,

X
(ϕ,u)

−−−−→ Y
(ψ,v)

−−−−→ Z

is then given by a formula of the form

(ψ, v) ◦ (ϕ, u) = (ψ ◦ ϕ, u+ Z(ϕ)(v) + α(ψ, ϕ)) ,

where here ϕ ∈ HomC(X, Y ), ψ ∈ HomC(Y, Z), u ∈ Z(X), v ∈ Z(Y ) and α(ψ, ϕ) ∈
Z(X). The associativity of the composition of morphisms in E is equivalent to the
equality

α(τ, ψ ◦ ϕ) + α(ψ, ϕ) = α(τ ◦ ψ, ϕ) + Z(ϕ)(α(τ, ψ)) ,

for any sequence of three composable morphisms X
ϕ

−→ Y
ψ

−→ Z
τ

−→W in C. The above
equality means that α is a 2-cocycle in Z2(C,Z) representing an element in H2(C,Z),
and, just as in the case of group extensions, the extension category E depends up to
isomorphism of categories only on the image of α in H2(C,Z). In other words, even
though α itself depends on the choice of the identifications HomE(X, Y ) = HomC(X, Y )×
Z(X), its image in H2(C,Z) does not. If α is constant 0, this construction is known as
Grothendieck construction.
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Note that E is again an EI-category. By composing Z with the canonical functor
S(C) −→ C we can consider Z as functor on S(C), abusively still denoted by Z. We can
also consider any 2-cocycle α on C with values in Z as a 2-cocycle on S(C) with values
in Z.

Proposition 1.5. With the notation above, the canonical functor S(E) −→ S(C) in-

duces an isomorphism of posets [S(E)] ∼= [S(C)].

Proof. We have to check that two chains X, Y in S(E) whose images in S(C) become
isomorphic were isomorphic to begin with. It suffices to do this for chains of length one.

Let X
ϕ

−→ X ′ and Y
ψ

−→ Y ′ be morphisms in E , viewed as chains of lenght one in S(E).
Suppose there are isomorphisms µ̄ : X ∼= Y and µ̄′ : X ′ ∼= Y ′ in C such that µ̄′◦ϕ̄ = ψ̄◦µ̄,
where ϕ̄, ψ̄ are the images of ϕ, ψ in C. Choose any lifts µ, µ′ in E of the morphisms µ̄,
µ̄′, respectively. Then µ′ ◦ ϕ and ψ ◦ µ are two morphisms in E from X to Y ′ which lift
the same morphism in C, and hence, since HomE(X, Y ′)/Z(X) ∼= HomC(X, Y ′), there
is z ∈ Z(X) such that µ′ ◦ ϕ = ψ ◦ (µz). Thus, after replacing µ by µz we get that the
pair (µ, µ′) induces an isomorphism between the two considered chains of length one. �

The category S(E) need not be an extension of S(C) by Z because S(E) may have
“more” objects than S(C). However, the previous Proposition tells us, that if we replace
S(E) by a suitable equivalent subcategory, we get such an extension:

Proposition 1.6. With the notation above, the category S(E) is equivalent to the ex-

tension of S(C) by the functor Z corresponding to the 2-cocycle α, where both Z and

α are viewed as functor and 2-cocycle on S(C), respectively, via the canonical functor

S(C) → C.

Proof. For any object in S(C) choose a “lift” of that object in S(E) and denote by D
the full subcategory of S(E) obtained in this way. By Proposition 1.5, the inclusion
D ⊆ S(E) is an equivalence of categories. The canonical functor S(E) → S(C) induced
by E → C induces a functor D → S(C). This functor induces in turn a bijection on the
object sets, from which one easily sees that D is an extension of S(C) by Z corresponding
to α as claimed. �

Remark 1.7 If C is an EI-category with the additional property that every isomorphism
in C is an automorphism, then one can show that the subdivision construction S(C) is
equivalent to the opposite of the category s(C) defined in S lomińska [19, 1.1] in terms
of a certain Grothendieck construction. In order to avoid confusion we also point out
that the construction S(C) is different from the division/subdivision constructions used
in [8].
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2 Automorphism functors

Let C be an EI-category. A morphism X → Y in C does not, in general, induce a
map between the automorphism groups AutC(X) and AutC(Y ). However, a morphism
X → Y in S(C) induces a group homomorphism AutS(C)(Y) → AutS(C)(X); in other
words, taking automorphism groups of objects in S(C) becomes a contravariant functor.
This is a consequence of 1.3, which motivates the following definition:

Definition 2.1. An EI-category C is called regular if for any two objects X , Y in C the
group AutC(X) acts regularly on the set HomC(X, Y ) whenever this set is non-empty.

If C is an EI-category its subdivision S(C) is a regular EI-category, by 1.2 and 1.3.
Taking automorphism groups of objects in a regular EI-category is now contravariant
functorial:

Proposition 2.2. Let C be a regular EI-category. There is a contravariant functor

mapping any object X in C to the automorphism group AutC(X) and mapping any

morphism ϕ : X → Y to the group homomorphism AutC(Y ) → AutC(X) sending σ ∈
AutC(Y ) to the unique ρ ∈ AutC(X) satisfying ϕ ◦ ρ = σ ◦ ϕ.

Proof. If ϕ ∈ HomC(X, Y ) and σ ∈ AutC(Y ), then ϕ and σ ◦ϕ are both morphisms from
X to Y . Since AutC(X) acts regularly on HomC(X, Y ), there is a unique ρ ∈ AutC(X)
such that ϕ ◦ ρ = σ ◦ ϕ. The rest is clear. �

Of course, in the situation of 2.2, we can linearise this to a contravariant functor
C → Mod(k) mapping any object X in C to the group algebra kAutC(X) of AutC(X)
over a commutative ring k. We will need a “twisted” version of this observation. Given
a commutative ring k, we denote by k× the constant contravariant functor C → Mod(Z)
mapping any object X in C to the group k× of invertible elements of k. A 2-cocycle
α ∈ Z2(C, k×) is then a map sending any two composable morphisms ϕ, ψ in C to an
element α(ψ, ϕ) ∈ k× such that for any three composable morphisms ϕ, ψ, τ in C we
have the 2-cocycle identity, now written multiplicatively,

α(τ, ψ ◦ ϕ)α(ψ, ϕ) = α(τ ◦ ψ, ϕ)α(τ, ψ) .

Such a 2-cocycle α restricts, for any object X in C, to a 2-cocycle on the group AutC(X)
with values in k×. We denote by kαAutC(X) the corresponding twisted group alge-
bra; that is, as k-module, kαAutC(X) is equal to kAutC(X) but the multiplication in
kαAutC(X) is given by the formula ψϕ = α(ψ, ϕ)(ψ ◦ ϕ) for any two ϕ, ψ ∈ AutC(X).
The 2-cocycle identity applied to IdX , IdX , ϕ implies that α(ϕ, IdX) = α(IdX , IdX) for

any morphism X
ϕ

−→ Y in C. If we define the 1-cochain β by β(ϕ) = α(ϕ, IdX), the
2-cocycle α′ defined by α′(ψ, ϕ) = α(ψ, ϕ)β(ψ)−1β(ϕ)−1β(ψ ◦ ϕ) represents the same
cohomology class as α in H2(C; k) and has the property that α′(ϕ, IdX) = 1. Such a
2-cocycle α′ is called normalised.
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Proposition 2.3. Let C be a regular EI-category. Let k be a commutative ring and let

α ∈ Z2(C; k×). There is a contravariant functor from C to the category of k-algebras
mapping any object X in C to the twisted group algebra kαAutC(X) and mapping any

morphism ϕ : X → Y to the unique k-algebra homomorphism kαAutC(Y ) → kαAutC(X)
sending σ ∈ AutC(Y ) to α(σ, ϕ)α(ϕ, ρ)−1ρ, where ρ is the unique element of AutC(X)
satisfying ϕ ◦ ρ = σ ◦ ϕ. Up to isomorphism of functors, this functor depends only on

the image of α in H2(C; k×).

Proof. We have to check that the assignment σ 7→ α(σ, ϕ)α(ϕ, ρ)−1ρ as in the statement
is a k-algebra homomorphism kαAutC(Y ) → kαAutC(X) and that this assignment is
functorial.

Let X
ϕ

−→ Y be a morphism in C. Let σ, σ′ ∈ AutC(Y ) and ρ, ρ′ ∈ AutC(X) such
that σ ◦ ϕ = ϕ ◦ ρ and σ′ ◦ ϕ = ϕ ◦ ρ′. The product of σ and σ′ in kαAutC(Y )
is equal to α(σ, σ′)σ ◦ σ′, and its image in kαAutC(X) under the above assignment
is α(σ, σ′)α(σ ◦ σ′, ϕ)α(ϕ, ρ ◦ ρ′)−1ρ ◦ ρ′. The product of the images of σ and σ′ in
kαAutC(X) is α(ρ, ρ′)α(σ, ϕ)α(ϕ, ρ)−1α(σ′, ϕ)α(ϕ, ρ′)−1ρ ◦ ρ′. In order to show that
these two expressions coincide, we have to show the equality

2.3.1. α(σ, σ′)α(σ ◦ σ′, ϕ)α(ϕ, ρ ◦ ρ′)−1 = α(ρ, ρ′)α(σ, ϕ)α(ϕ, ρ)−1α(σ′, ϕ)α(ϕ, ρ′)−1 .

Multiplying by α(ϕ, ρ ◦ ρ′) shows that this equation is equivalent to

2.3.2. α(σ, σ′)α(σ ◦ σ′, ϕ) = α(ϕ, ρ ◦ ρ′)α(ρ, ρ′)α(σ, ϕ)α(ϕ, ρ)−1α(σ′, ϕ)α(ϕ, ρ′)−1 .

The 2-cocycle identity applied to the three composable morphisms ϕ, σ, σ′ together
with the equality σ′ ◦ ϕ = ϕ ◦ ρ′ yields for the left side in 2.3.2 the equalities

2.3.3. α(σ ◦ σ′, ϕ)α(σ, σ′) = α(σ, σ′ ◦ ϕ)α(σ′, ϕ) = α(σ, ϕ ◦ ρ′)α(σ′, ϕ)

and similarly we get

2.3.4. α(ϕ, ρ ◦ ρ′)α(ρ, ρ′) = α(ϕ ◦ ρ, ρ′)α(ϕ, ρ) = α(σ ◦ ϕ, ρ′)α(ϕ, ρ) .

By applying 2.3.3 and 2.3.4 in 2.3.2 we get that 2.3.2 is equivalent to the equality

2.3.5. α(σ, ϕ ◦ ρ′) = α(σ ◦ ϕ, ρ′)α(σ, ϕ)α(ϕ, ρ′)−1 ,

and this is just the 2-cocycle identity applied to the three composable morphisms
ρ′, ϕ, σ. This shows that the assignment as defined in 2.3 yields algebra homomorphisms.

For the functoriality, we consider two composable morphisms X
ϕ

−→ Y
ψ

−→ Z.
Let ρ ∈ AutC(X), σ ∈ AutC(Y ), τ ∈ AutC(Z) such that σ ◦ ϕ = ϕ ◦ ρ and
τ ◦ ψ = ψ ◦ σ. The map kαAutC(Z) → kαAutC(X) induced by ψ ◦ ϕ sends τ to
α(τ, ψ ◦ϕ)α(ψ ◦ϕ, ρ)−1ρ, and the composition of the maps induced by ϕ and ψ sends τ
to α(τ, ψ)α(ψ, σ)−1α(σ, ϕ)α(ϕ, ρ)−1ρ. Thus we have to show the equality

2.3.6. α(τ, ψ ◦ ϕ)α(ψ ◦ ϕ, ρ)−1 = α(τ, ψ)α(ψ, σ)−1α(σ, ϕ)α(ϕ, ρ)−1 .

Now α(τ, ψ ◦ ϕ)α(ψ, ϕ) = α(τ ◦ ψ, ϕ)α(τ, ψ) = α(ψ ◦ σ, ϕ)α(τ, ψ) and α(ψ ◦
ϕ, ρ)α(ψ, ϕ) = α(ψ, ϕ ◦ ρ)α(ϕ, ρ) = α(ψ, σ ◦ ϕ)α(ϕ, ρ). Thus the left side in 2.3.6 is
equal to



ALPERIN’S CONJECTURE IN TERMS OF BREDON COHOMOLOGY 9

2.3.7. α(ψ ◦ σ, ϕ)α(ψ, σ ◦ ϕ)−1α(τ, ψ)α(ϕ, ρ)−1 .

Finally, α(ψ ◦ σ)α(ψ, σ) = α(ψ, σ ◦ ϕ)α(σ, ϕ) and hence α(ψ, σ ◦ ϕ)α(ψ, σ ◦ ϕ)−1 =
α(σ, ϕ)α(ψ, σ)−1. Applying this to 2.3.7 proves the equality 2.3.6.

It remains to check that this functor depends, up to isomorphism, only on the image
of α in H2(C; k×). If α′ ∈ Z2(C; k×) represents the same cohomology class as α, there
is a 1-cochain β (that is, a map sending any morphism in C to an element in k×) such
that

α′(ψ, ϕ) = α(ψ, ϕ)β(ψ)β(ϕ)β(ψ ◦ ϕ)−1 .

One checks that, for any object X in C, the map sending ρ ∈ AutC(X) to β(ρ)ρ induces
a k-algebra isomorphism kαAutC(X) ∼= kα′AutC(X) and that the algebra isomorphisms
obtained in this way define a natural transformation. �

Given an algebra A over a commutative ring k we denote by [A,A] the k-submodule
of A generated by the set of additive comutators ab−ba, where a, b ∈ A. A k-linear map
from A to k is central if and only if it has [A,A] in its kernel, and hence the k-module of
central k-linear maps from A to k can be identified canonically with Homk(A/[A,A], k).
A k-algebra homomorphism α : A → B does not, in general, induce an algebra homo-
morphism between the centers Z(A), Z(B) of A and B. It does though map [A,A] to
[B,B], and therefore induces a k-linear map Homk(B/[B,B], k) → Homk(A/[A,A], k).
The point of this observation is that if A is symmetric (cf. [22, §6]), then any choice of a
symmetrising form s : A→ k induces a k-linear isomorphism Z(A) ∼= Homk(A/[A,A], k)
sending z ∈ Z(A) to the k-linear form A/[A,A] → k mapping a+[A,A] to s(za) for any
a ∈ A. This applies in particular if A is a twisted group algebra, which is the situation
underlying the next result.

Proposition 2.4. Let C be a regular EI-category. Let k be a commutative ring and let

α ∈ Z2(C, k×). The automorphism functor defined in 2.3 induces a covariant functor

A :

{

[C] −→ Mod(k)

[X ] 7→ Homk(kαAutC(X)/[kαAutC(X), kαAutC(X)], k)

where X is a representative in C of the isomorphism class [X ]. The functor A is up

to isomorphism of functors independent of the choice of the representative X in each

isomorphism class [X ] in [C].

Proof. By 2.3 we have a contravariant functor sending an object X in C to the twisted
group algebra kαAutC(X), and this functor maps a morphism ϕ : X → Y in C
to a k-algebra homomorphism. Since k-algebra homomorphisms preserve commuta-
tors, this functor induces hence a contravariant functor mapping X to the k-module
kαAutC(X)/[kαAutC(X), kαAutC(X)]. Given two different morphisms ϕ, ψ : X → Y
in C, there is a unique π ∈ AutC(X) such that ψ = ϕ ◦ π. The main point of the
proof is to show that the two k-algebra homomorphisms kαAutC(Y ) → kαAutC(X)
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induced by ϕ and ψ differ by an inner automorphism of kαAutC(X), namely the
one induced by conjugation with π. Before we get into the technicalities of this
verification we show how this concludes the proof of 2.4: the two k-linear maps
kαAutC(Y )/[kαAutC(Y ), kαAutC(Y )] → kαAutC(X)/[kαAutC(X), kαAutC(X)] induced
by ϕ and ψ are then actually equal. Therefore this functor factors through the canonical
functor C → [C] and induces hence a contravariant functor from [C] to Mod(k) sending
[X ] to kαAutC(X)/[kαAutC(X), kαAutC(X)]. By composing this with the contravariant
k-duality functor Homk(−, k) we get the covariant functor A as claimed.

In order to show that the two algebra homomorphisms kαAutC(Y ) → kαAutC(X) in-
duced by ϕ and ψ differ by conjugation with π, let σ ∈ AutC(Y ) and ρ ∈ AutC(X) such
that σ◦ϕ = ϕ◦ρ. Then σ◦ψ = ψ◦π−1◦ρ◦π. Thus the two algebra homomorphisms in-
duced by ϕ and ψ map σ to α(σ, ϕ)α(ϕ, ρ)−1ρ and α(σ, ψ)α(ψ, π−1◦ρ◦π)−1π−1◦ρ◦π, re-
spectively. We show that the second expression is obtained from the first by conjugation
with π in kαAutC(X). By 2.3 we may assume that α is normalised; thus α(ϕ, IdX) = 1,
the identity element of kαAutC(X) is IdX and the inverse of π in kαAutC(X) is equal
to α(π, π−1)−1π−1. Thus conjugation of ρ by π in kαAutC(X) yields the expression

α(π, π−1)−1π−1ρπ = α(π, π−1)−1α(π−1, ρ)α(π−1 ◦ ρ, π)π−1 ◦ ρ ◦ π .

Thus we have to show the equality

2.4.1. α(σ, ϕ)α(ϕ, ρ)−1α(π, π−1)−1α(π−1, ρ)α(π−1◦ρ, π) = α(σ, ψ)α(ψ, π−1◦ρ◦π)−1 .

Multiplying by α(ψ, π−1 ◦ ρ ◦ π)α(ϕ, ρ)α(π, π−1) implies that 2.4.1 is equivalent to
the equality

2.4.2. α(σ, ϕ)α(π−1, ρ)α(π−1 ◦ ρ, ρ)α(ψ, π−1 ◦ ρ ◦ π) = α(σ, ψ)α(ϕ, ρ)α(π, π−1) .

The 2-cocycle identity applied to the three composable morphisms π, π−1 ◦ ρ, ψ to-
gether with the equality ψ = ϕ ◦ π yields α(ψ, π−1 ◦ ρ ◦ π)α(π−1 ◦ ρ, π) = α(ψ ◦ π−1 ◦
ρ, π)α(ψ, π−1 ◦ ρ) = α(ϕ ◦ ρ, π)α(ϕ ◦ π, π−1 ◦ ρ). Thus 2.4.2 is equivalent to

2.4.3. α(σ, ϕ)α(π−1, ρ)α(ϕ ◦ ρ, π)α(ϕ ◦ π, π−1 ◦ ρ) = α(σ, ψ)α(ϕ, ρ)α(π, π−1) .

The 2-cocycle identity applied to π, ϕ, σ yields α(σ, ϕ◦π)α(ϕ, π) = α(σ ◦ϕ, π)α(σ, ϕ);
hence, after cancelling α(σ, ϕ ◦ π) = α(σ, ψ), the equality 2.4.3 is equivalent to

2.4.4. α(ϕ, π)α(π−1, ρ)α(ϕ ◦ π, π−1 ◦ ρ) = α(ϕ, ρ)α(π, π−1) .

The 2-cocycle identity applied to ρ, π−1, ϕ ◦ π yields α(ϕ ◦ π, π−1 ◦ ρ)α(π−1, ρ) =
α(ϕ, ρ)α(ϕ ◦ π, π−1), and hence, after cancelling α(ϕ, ρ), the equality 2.4.4 is equivalent
to

2.4.5. α(ϕ, π)α(ϕ ◦ π, π−1) = α(π, π−1) ,

and this is just the 2-cocycle identity applied to π−1, π, ρ, where we use that
α(ϕ, IdX) = 1 since α was chosen normalised. This proves the equality 2.4.1, whence
the result. �
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Remark 2.5. In [14, 16.1] an EI-category C is called free if AutC(Y ) acts freely on
HomC(X, Y ) for any two objects X , Y in C for which the set HomC(X, Y ) is non empty.
Thus if C is regular in the sense of 2.1 then the opposite category Cop is free.

3 A covariant projective resolution for subdivisions

Given a small category C and a commutative ring k, the constant covariant functor k
sending any object in C to k and any morphism in C to the identity on k has a well-known
canonical projective resolution in the category of covariant functors from C to Mod(k).
The degree n component of this resolution is a direct sum of projective functors of the
form

⊕
X0

ϕ0
→···

ϕn−1
→ Xn

kHomC(Xn,−) ,

where the sum is taken over the set of chains of n composable morphisms in C, and
where kHomC(Xn,−) is the covariant functor sending an object Y in C to the free k-
module kHomC(Xn, Y ) with basis HomC(Xn, Y ); by Yoneda’s Lemma, this is indeed a
projective functor. This construction applies, of course, also to the subdivision S(C)
as well as [S(C)] of an EI-category C, but since the objects of S(C) are already chains
themselves, this would yield rather clumsy direct sums, indexed by chains of chains. It
turns out that there is a simpler projective resolution of the constant covariant functor
k on [S(C)] for any ordered category C.

Proposition 3.1. Let C be an EI-category, let k be a commutative ring, and denote

by k the constant covariant functor on [S(C)] mapping every object in [S(C)] to k and

every morphism in [S(C)] to Idk. There is a projective resolution of k in the category of

covariant functors from [S(C)] to Mod(k) whose degree n component is equal to

⊕
[X]

kHom[S(C)]([X],−) ,

where the direct sum is taken over all isomorphism classes of chains X in S(C) of length

n, for any n ≥ 0. In particular, if C is finite, this projective resolution is bounded.

Proof. The functor kHomS([C])([X],−) sends the isomorphism class [Y] of a chain Y in
S(C) to k if X is isomorphic to a subchain of Y, and to 0 otherwise. The differential is
defined in the usual simplicial way: if X(i) is the chain of length n − 1 obtained from
deleting the i-th term in a chain X of length n, the unique morphism [X(i)] ≤ [X]
induces a natural transformation

ρi : kHom[S(C)]([X],−) −→ kHom[S(C)]([X(i)],−)

and by taking the alternating sum
∑

0≤i≤n

(−1)iρi we get a map from the degree n

component to the degree n−1-component. We are going to show that this is a differential
and that the resulting complex is exact except in degree 0, where the homology is shown
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to be k. To do this, we have to evaluate this sequence at an object [Y] in [S(C)] and
show that what we get is a complex with homology k in degree zero and homology 0 in
all other degrees. Since Hom[S(C)]([X], [Y]) = ∅ unless X is isomophic to a subchain of
Y, the degree n component evaluated at [Y] is the free k-module

⊕
[X]

k ,

where the sum is taken over the set of isomorphism classes [X] of chains X of length
n for which there is a morphism X → Y in S(C). Any such morphism identifies X

to a subchain of Y, and hence, if Y = Y0 → · · · → Ym for some positive integer m,
a subchain of lenght n of Y is uniquely determined by any subset of cardinal n of the
totally ordered set {[Y0], .., [Ym]}. Thus this construction evaluated at Y yields the same
as the projective resolution of k on the totally ordered set {[Y0], .., [Ym]}, so this is indeed
a complex with homology concentrated in degree 0 isomorphic to k. �

The above projective resolution provides a way to compute the cohomology of covari-
ant functors on [S(C)]:

Proposition 3.2. Let C be an EI-category, let k be a commutative ring and let A :
[S(C)] −→ Mod(k) be a covariant functor. There is a cochain complex C(A) whose

component in degree n ≥ 0 is equal to

C(A)n = ⊕
[X]

A([X]) ,

where the direct sum is taken over the set of isomorphism classes of chains X in S(C)
of length n, and whose cohomology is the cohomology of the functor A; that is,

Hi(C(A)) ∼= Hi([S(C)];A)

for any integer i ≥ 0. In particular, if C is finite then Hi([S(C)];A) is zero for all but

finitely many integers i.

Proof. In order to compute the cohomology of A we need to apply the contravariant
functor Hom(−,A) to a projective resolution of k on [S(C)], where “Hom” means here
taking natural transformations of functors. By Yoneda’s Lemma, we have

Hom(kHom[S(C)]([X],−),A) ∼= A([X])

and hence applying Hom(−,A) to the projective resolution in 3.1 yields a complex C(A)
with the properties as stated. �

Thus the complex C(A) computes the cohomology of A; if A is itself the constant
covariant functor k, the complex C(k) computes the cohomology of the poset [S(C)]. If
C is finite and k is a field then C(A) is a bounded complex of vector spaces and hence
∑

i≥0

(−1)i dimk(C(A)i) =
∑

i≥0

dim(Hi(C(A))). In other words:
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Corollary 3.3. If C is finite and if k is a field then the Euler characteristic of the

complex C(A) is equal to

∑

i≥0

(−1)i dimk(Hi([S(C)];A)) .

The following two results establish a connection between the cohomology of covariant
functors on [S(C)] and Bredon cohomology in certain cases. Given a finite group G
and subgroups Q, R of G we denote as usual by HomG(Q,R) the set of all group
homomorphisms ϕ : Q → R for which there exists an element x ∈ G satisfying ϕ(u) =
xux−1 for all u ∈ Q. If P is a G-poset of subgroups of G (that is, P is a set of
subgroups of G closed under conjugation in G with partial order given by the inclusion
of subgroups) we denote by sd(P) the barycentric subdivision of P; that is, sd(P) is the
G-poset of all totally ordered subsets Q0 < Q1 < · · · < Qn in P, ordered by inclusion.

Proposition 3.4. Let G be a finite group and let P be a G-poset of subgroups of G.

Denote by C the category having the same objects as P and morphism sets HomC(Q,R) =
HomG(Q,R) for any two subgroups Q, R of G belonging to P. The inclusion sd(P) ⊆
S(C) induces an isomorphism of posets sd(P)/G ∼= [S(C)].

Proof. Any chain Q0 < Q1 < · · · < Qn in sd(P) is obviously an object in S(C). Since
C contains all homomorphisms induced by conjugation with elements in G it follows
that G-conjugate chains in sd(P) are isomorphic in S(C); thus the inclusion sd(P) ⊆

S(C) induces a map sd(P) → S(C). To see that this map is surjective, let Q0
ϕ0
→

Q1
ϕ1
→ · · ·

ϕn−1
→ Qn be a chain of non isomorphisms belonging to S(C). This chain is

isomorphic, in S(C), to the chain of subgroups R0 < R1 < · · · < Rn, where Rn = Qn
and Ri = (ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕi)(Qi) for 0 ≤ i < n via the isomorphism µ given by the
family of group homomorphisms µn = IdQn

and µi = ϕn−1 ◦ϕn−2 ◦· · ·◦ϕi for 0 ≤ i < n.
Thus this map is indeed surjective. For the injectivity, let Q0 < Q1 < · · · < Qn and
R0 < R1 < · · · < Rn be two chains in sd(P) which are isomorphic in S(C). This means
that there is an isomorphism µ : Qn ∼= Rn such that µ(Qi) = Ri for 0 ≤ i ≤ n and
such that there is x ∈ G satisfying µ(u) = xux−1 for all u ∈ Qn. It follows that the two
chains are G-conjugate, which implies the result. �

By a result of S lomińska [20] (see also Grodal [9, 7.1] for a proof), if P is a G-
poset of subgroups of a finite group G, then the cohomology of covariant functors on
sd(P)/G coincides with equivariant Bredon cohomology. Thus, combined with the above
Proposition, this reads:

Proposition 3.5. Let G be a finite group and let P be a G-poset of subgroups of G.

Denote by C the category having the same objects as P and morphism sets HomC(Q,R) =
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HomG(Q,R) for any two subgroups Q, R of G belonging to P. Let k be a commutative

ring and let A : [S(C)] → Mod(k) be a covariant functor. We have

H∗([S(C)];A) ∼= H∗
G(|P|;A) ,

where H∗
G(|P|;A) is the G-equivariant Bredon cohomology of A viewed as coefficient

system through the isomorphism [S(C)] ∼= sd(P)/G.

The above Propositions carry over in a straightforward way to G-posets of Brauer
pairs, which is what we will use in the next Section to interpret Alperin’s weight con-
jecture in terms of the Bredon cohomology of automorphism functors of the type as
described in 2.4.

4 Alperin’s conjecture in terms of functor cohomology

In this Section, p is a prime, O a complete discrete valuation ring having an alge-
braically closed residue field k = O/J(O) of characteristic p and quotient field K of
characteristic zero.

Let G be a finite group, and let b be a block of OG; that is, b is a primitive idempotent
in Z(OG). In its original version, Alperin’s weight conjecture [1] is a statement on the
number ℓ(b) of isomorphism classes of simple kGb̄-modules, where b̄ is the canonical
image of b in kG. Knörr and Robinson [10] reformulated this in terms of the number
k(b) of ordinary irreducible characters associated with b: Alperin’s weight conjecture is
equivalent to an equality, involving an alternating sum, of the form

4.1.

k(b) =
∑

σ∈sd(P#)/G

(−1)|σ| k(bσ) ,

where |σ| denotes the length n of σ and where bσ is the sum of all blocks of kNG(σ)
which induce to b. Here P# is the G-poset of non-trivial p-subgroups, and hence sd(P#)
is the G-poset of all proper chains of non-trivial p-subgroups of G (excluding the empty
chain which accounts for the slight difference in the formulation of Alperin’s conjecture
here and in [10]). The notation “σ ∈ sd(P#)/G” means that σ runs over a set of
representatives of the G-conjugacy classes of chains in sd(P#). It is shown in [10], that
it is possible to replace sd(P#) by certain subposets without changing the sum 4.1: one
can take the set of all chains σ = Q0 < Q1 < · · · < Qn of non-trivial p-subgroups of G
where all Qi are elementary abelian or where all Qi are normal in Qn or where all Qi
have the property Qi = Op(NG(Qi)). See [10] for more details and references.

Our aim is to show that after rewriting the sum 4.1 as a sum indexed by chains of
Brauer pairs instead of p-subgroups, the numbers occurring in this alternating sum
are the dimensions of a complex computing the cohomology of a functor on a suitable
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category. In order to introduce the relevant categories associated with the block b, we
need some more notation.

A b-Brauer pair is a pair (Q, f) consisting of a p-subgroup Q of G and a block f
of kCG(Q) such that BrQ(b)f = f , where BrQ : (OG)Q → kCG(Q) is the Brauer

homomomorphism induced by the O-linear map sending x ∈ G − CG(Q) to zero and
x ∈ CG(Q) to its canonical image in kCG(Q). Any b-Brauer pair (Q, f) has the property
that Z(Q) is contained in all defect groups of the block f , and we say that (Q, f) is
centric if Z(Q) is a defect group of f . Centric Brauer pairs have first been considered by
Brauer, the general notion is due to Alperin and Broué [2]. It has been shown by Alperin
and Broué in [2] that the set of b-Brauer pairs has a canonical structure of G-poset which
has the following uniqueness property: if (Q, f) is a b-Brauer pair and if R is a subgroup
of Q, there is a unique block g of kCG(R) such that (R, g) is a b-Brauer pair satisfying
(R, g) ≤ (Q, f). Furthermore, any two maximal b-Brauer pairs are conjugate in G. See
[2] or [22] for more details on the inclusion of Brauer pairs.

Let (P, e) be a maximal b-Brauer pair; that is, P is a maximal p-subgroups of G such
that BrP (b) 6= 0 and e is a block of kCG(P ) such that BrP (e)b 6= e. For any subgroup
Q of P denote by eQ the unique block of kCG(Q) such that (Q, eQ) ⊆ (P, e). This
information can be encoded in terms of a category, the fusion system of b; this is defined
to be the category F having as objects the subgroups of P and having as morphism
sets the sets of injective group homomorphisms ϕ : Q→ R for which there exists x ∈ G
satisfying x(Q, eQ) ⊆ (R, eR) and ϕ(u) = xu = xux−1 for any u ∈ Q. The category
F is clearly an EI-category. A subgroup Q of P is called F -centric if the b-Brauer
pair (Q, eQ) is centric, or equivalently, if Z(Q) is a defect group of eQ. We denote by
Fc the full subcategory of F consisting of all F -centric subgroups of P . A theorem
of Külshammer and Puig in [12] associates with every F -centric subgroup Q of P two
pieces of information:

4.2.1. there is a canonical class ζ(Q) ∈ H2(AutF (Q), Z(Q)), or equivalently, a canon-

ical group extension

1 −→ Z(Q) −→ LQ −→ AutF (Q) −→ 1

with the property that if NP (Q) is a defect group of kNG(Q, eQ)eQ then NP (Q) is a

Sylow-p-subgroup of LQ and the above exact sequence restricts to the obvious exact se-

quence 1 → Z(Q) → NP (Q) → NP (Q)/Z(Q) → 1;

4.2.2. there is a canonical class α(Q) ∈ H2(AutF̄ (Q), k×) such that the twisted group

algebra kα(Q)LQ is Morita equivalent to kNG(Q, eQ)eQ, where here α(Q) is viewed as

an element of H2(LQ; k×) via the canonical maps LQ → AutF (Q) → AutF̄ (Q).

By the work of Broto, Levi and Oliver [7] the existence of a classifying space of a
block b is equivalent to the existence of a certain extension category L of Fc by the
center functor Z, called centric linking system in [7]. More precisely, the objects of L
are again the F -centric subgroups in P , for every F -centric subgroup Q in P we have
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AutL(Q) = LQ and there is a functor L → Fc which is the identity on objects, surjective
on morphisms and which induces for each F -centricQ the surjective map LQ → AutF (Q)
from the Külshammer-Puig exact sequence in 4.2.1. The classifying space of b is then
obtained as the p-completion |L|

∧
p of the realisation of the nerve of L. By the time of

this writing, neither the existence nor the uniqueness of L seem to be known in general.
If it exists, the extension category L determines a class ζ ∈ H2(Fc,Z) whose restriction
to AutF (Q) is the class ζ(Q) in 4.2.1 above, for every F -centric subgroup subgroup Q
of P . In other words, ζ “glues together” the classes ζ(Q).

In the same spirit, we conjectured in [13, 4.2] that there is a second cohomology class
α ∈ H2(F̄c, k×) whose restriction to AutF̄ (Q) is the class α(Q) from 4.2.2 for any F -
centric subgroup Q of P . If α and L exist, we can view α as element of H2(S(L); k×)
via the canonical functors S(L) → S(Fc) → Fc → F̄c.

Under the assumption that both L and α exist, we can reformulate Alperin’s weight
conjecture in terms of the Euler characteristic of the twisted dualised automorphism
functor as described in 2.4 on the subdivision category of the centric linking system L.

Theorem 4.3. Let G be a finite group, let b be a block of OG with positive defect,

and suppose that α and a centric linking system L exist as above. Let A be the co-

variant functor defined on [S(L)], mapping the isomorphism class [X] of a chain X

in S(L) to Homk(kαAutS(L)(X)/[kαAutS(L)(X), kαAutS(L)(X)], k), as defined in 2.4.

Then Alperin’s weight conjecture is logically equivalent to

k(b) =
∑

i≥0

(−1)i dimk(Hi([S(L)];A)) .

Remark 4.4. The existence of L is not necessary for the formulation of Thereom
4.3 because [S(L)] ∼= [S(Fc)] by 1.5, but we find the present formulation involving
L structurally more appealing (and we expect anyway that every block has a centric
linking system). The existence of α, though, is necessary and is not established in
full generality by the time of this writing. “Logically equivalent” means that Alperin’s
weight conjecture holds for all p-blocks of finite groups if and only if the equality in 4.3
holds for all p-blocks of finite groups with positive defect, assuming the existence of α
for all such blocks.

Before we prove 4.3 we need to rewrite the sum 4.1 as a sum taken over conjugacy
classes of b-Brauer pairs rather than p-subgroups. Given a chain τ of p-subgroups of G
we denote as before by bτ the sum of all blocks of kNG(τ) which induce to b. Given a
chain of b-Brauer pairs σ = (Q0, d0) < (Q1, d1) < · · · < (Qn, dn), it follows from [10, 3.1]
that dσ = dn remains a block of kNG(σ, dσ). The following version of Alperin’s weight
conjecture in terms of chains of Brauer pairs is well-known (see [18] for more general
formulations related to Dade’s conjectures); we include a proof for the convenience of
the reader.
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Proposition 4.5. With the notation above, we have

∑

τ∈sd(P#)/G

(−1)|τ | k(bτ ) =
∑

σ∈sd(B#)/G

(−1)|σ| k(dσ) ,

where P# and B# are the G-posets of non-trivial p-subgroups of G and non-trivial b-
Brauer pairs, respectively.

Proof. By [10, 3.1], given a chain τ = Q0 < Q1 < · · · < Qn of non trivial p-subgroups
Qi in G, every block of kNG(τ) lies in kCG(Qn), from which follows that bτ = BrQn

(b).
Then either bτ = 0, or bτ is a sum of NG(τ)-conjugacy classes of blocks of kCG(Qn).

In other words, if c is a block of kNG(τ) such that bτ c = c, then c = Tr
NG(τ)
NG(τ,d)(d)

for some block d of kCG(Qn). It is well-known that d remains a block of kNG(τ, d)
and that the block algebras kNG(τ, d)d and kNG(τ)c are Morita equivalent through
induction and restriction (truncated by the block idempotents). Thus in particular
k(c) = k(d). For any i such that 0 ≤ i ≤ n there is a unique block di of kCG(Qi) such
that (Qi, di) ⊆ (Qn, d), by the uniqueness of the inclusion of Brauer pairs; in particular,
dn = d. Therefore, if we set σ = (Q0, d0) < (Q1, d1) < · · · < (Qn, dn) and dσ = dn = d
we get that NG(σ, dσ) = NG(τ, d), from which the equality follows. �

Proposition 3.4 has various more or less straightforward generalisations to posets of
Brauer pairs, centric Brauer pairs, pointed groups, local pointed groups or centric local
pointed groups, of which we spell out only the version as needed for the proof of 4.3:

Proposition 4.6. With the notation above, let B be the G-poset of b-Brauer pairs and

let Bc be the G-subposet of centric Brauer pairs. The map sending a chain of b-Brauer

pairs contained in (P, e) to its underlying chain of subgroups of P induces isomorphisms

of posets sd(B)/G ∼= [S(F)] and sd(Bc)/G ∼= [S(Fc)].

Proof. Let σ = (Q0, d0) < (Q1, d1) < · · · < (Qn, dn) be a chain of b-Brauer pairs. Up
to replacing σ by a G-conjugate, we may assume that (Qn, dσ) ⊆ (P, e). The underlying
chain of p-subgroups of such a chain σ of Brauer pairs can be viewed as an object of
the subdivision S(F) of the fusion system F on P determined by the choice of the
maximal b-Brauer pair (P, e). Conversely, every object in S(F) is isomorphic to such

a chain: any chain Q0
ϕ0
−→ Q1

ϕ1
−→ · · ·

ϕn−1

−→ Qn is ismorphic, in S(F), to the chain
R0 < R1 < · · · < Rn, where we Rn = Qn and Ri = (ϕn−1 ◦ · · ·ϕi+1 ◦ ϕi)(Qi) for
0 ≤ i < n. Thus there is a bijection between sd(B)/G and [S(F)] and hence a bijection
between sd(Bc)/G and [S(Fc)] as required. �

Remark 4.7. The previous Proposition implies that analogously to 3.5 we have, for
any covariant functor A : [S(L)] → Mod(k), an interpretation in terms of G-equivariant
Bredon cohomology H∗([S(L)];A) ∼= H∗

G(|Bc|;A), with A viewed as coefficient system
via the isomorphisms of posets sd(Bc)/G ∼= [S(L)] obtained from combining 4.6 and 1.5.
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Proof of Theorem 4.3. As before, B# is the G-poset of non-trivial b-Brauer pairs and Bc

is the subposet of centric b-Brauer pairs. Even though it is not a priori clear whether the
sums

∑

σ∈sd(B#)/G

(−1)|σ| k(dσ) and
∑

σ∈sd(Bc)/G

(−1)|σ| k(dσ) are equal, it has been shown

by Robinson, that the equality k(b) =
∑

σ∈sd(B#)/G

(−1)|σ| k(dσ) holds for all p-blocks b

with positive defect if and only if the equality k(b) =
∑

σ∈sd(Bc)/G

(−1)|σ| k(dσ) holds for

all b with positive defect.

Thus, in order to prove 4.3, it suffices to show that the right hand side in the last
equality coincides with the right hand side of the equality showing up in the statement
of 4.3. As a consequence of the result of Külshammer and Puig in [12] quoted in 4.2.2
above, one gets that given a chain σ of centric b-Brauer pairs contained in (P, e), the
algebra kNG(σ)dσ is Morita equivalent to the algebra kαAutS(L)(X), where as before
dσ is the block of the maximal member of σ and where X is the underlying chain of
p-subgroups of σ, viewed as object of the category S(L). It follows from 4.6 and 1.5
that sd(Bc)/G ∼= [S(L)], and hence

∑

σ∈sd(Bc)/G

(−1)|σ| k(dσ) =
∑

[X]∈[S(L)]

(−1)|X| k(kαAutS(L)(X)) .

Since k(kαAutS(L)(X)) = dimk(A([X])), this is now the Euler characteristic of the
complex C(A) defined in 3.2, hence, by 3.3, equal to the desired expression in the
statement of 4.3. �

Remark 4.8. As a consequence of recent work of Robinson [18], we expect that The-
orem 4.3 has a generalisation to Dade’s projective conjecture with the fusion system F
replaced by categories whose objects are pairs (Q, ζ) of p-subgroups Q of G and ordinary
irreducible characters ζ of Q.

5 Special cases

We illustrate Theorem 4.3 by describing the particular cases of principal blocks and
blocks with abelian defect groups. As in the previous Section we fix a prime p, an
algebraically closed field k of characteristic p and a complete discrete valuation ring O
with residue field k and quotient field K of characteristic zero. Let G be a finite group,
let b be a block of OG and let (P, e) be a maximal b-Brauer pair; that is, P is a defect
group of b and e is a block of kCG(P ) such that BrP (b)e = e.

5.1. Principal blocks. Suppose that b is the principal block of OG; that is, b is the
unique primitive idempotent of Z(OG) not contained in the kernel of the augmentation
homomorphism OG → O. Then P is a Sylow-p-subgroup of G and e is the principal
block of kCG(P ). In fact, the b-Brauer pairs are in this case exactly the pairs (Q, f),
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where Q is a p-subgroup of G and f is the principal block of kCG(Q) (this is Brauer’s
Third Main Theorem). In particular, NG(Q, f) = NG(Q), and hence the fusion system
F on P of b is the same as that of G; that is, HomF (Q,R) = HomG(Q,R) for any two
subgroups Q, R of P . The b-Brauer pair (Q, f) is centric if and only if Q is a centric
p-subgroup of G; that is, if and only if Z(Q) is a Sylow-p-subgroup of CG(Q). In this
case we have CG(Q) = Z(Q) × CQ, where CQ = Op′(CG(Q)) is the maximal normal
subgroup of order prime to p of CG(Q).

Following Broto, Levi, Oliver [6], the centric linking system L of the principal block can
explicitly be described as follows: the objects of L are the centric subgroups of P , and
for any two centric subgroups Q, R of P , we set HomL(Q,R) = TG(Q,R)/CQ, where
TG(Q,R) = {x ∈ G | xQx−1 ⊆ R} and where the composition of morphisms in L is
induced by multiplication of elements in G.

All 2-cocycles α(Q) appearing in 4.2.2 are trivial (where Q is any centric subgroup of
P ), and so we may take for α the trivial 2-cocycle in Z2(F̄c; k×) mapping any pair of
composable morphisms in F̄c to 1k. For any chain X = (Q0 < Q1 < · · · < Qn) of centric
subgroups of P , viewed as object in S(L), we have AutS(L)(X) = NG(X)/CQn

, where
NG(X) = ∩

0≤i≤n
NG(Qi), which describes the functor A in 4.3.

5.2. Abelian defect. Suppose that the defect group P of b is abelian. Then P is
the only object of Fc, hence of L. Moreover, AutF̄ (P ) = AutF (P ) = E is a p′-group
(the intertial quotient of b) and hence the extension 4.2.1 for P is a split extension of
the form

1 −→ P −→ P ⋊E −→ E −→ 1 ,

The 2-cocycle α ∈ Z2(F̄c; k×) is completely determined by α(P ) ∈ Z2(E; k×) from 4.2.2
because P is the only object of Fc. By results of Külshammer [11] and Puig [15], the
twisted group algebra kα(P⋊E) is a source algebra of kNG(P, e)e. Theorem 4.3 predicts
that k(b) = dimk(H0([S(L)];A)). Since L has P as unique object, this dimension is equal
to dimk(A(P )) = dimk(Homk(kα(P ⋊E)/[kα(P ⋊E), kα(P ⋊E)], k)) = dimk(Z(kα(P ⋊

E))) = dimk(Z(kNG(P, e)e)) = k(c), where c is the unique block of ONG(P ) such that
BrP (c) = BrP (b). In other words, for a block b with abelian defect group P , Theorem
4.3 takes the familiar form of Alperin’s weight conjecture predicting an equality of the
numbers of irreducible characters of the block b and its Brauer correspondent c. The
question as to whether the abelian defect case admits more subtle formulations in terms
of contractible complexes has been investigated by Boltje [5].
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