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method. The polymers show high field-effect transistors performance with hole mobility of 0.032 

cm2/Vs and on/off ratio of 105. 
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Abstract: Two poly (thieno [3, 2-b] thiophene vinylene) derivatives (P2 and P3) were prepared by 

Pd-catalyzed Stille-coupling method. Compared with poly (3-hexylthienylene vinylene) (P1), strong 

photoluminescence was observed for P2 and P3 solutions, while the maximum absorption of P2 and P3 

are blue-shifted. The solution-processed organic field-effect transistors (OFETs) were fabricated with 

bottom gate/top contact geometry. The highest FET hole mobility of P3 after thermal annealing at 180 

oC for 30 min reached 0.032 cm2/Vs with the on/off ratio of 105, which is a high value for the 

conjugated polymers.  Polymer solar cells base on the polymers were fabricated, the power conversion 

efficiency of the devices based on P1, P2 and P3 was 0.19%, 0.17% and 0.28%, respectively, under the 

illumination of AM1.5, 100 mW/cm2. The efficiency of the device based on P3 is ca. 50% higher than 

that of the devices based on P1 and P2, which could be benefited from the higher hole mobility of P3. 

 

Keywords:  Poly (thieno [3, 2-b] thiophene vinylene) s, organic field-effect transistors, photovoltaic 

properties 
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Introduction 

   In the past decades, conjugated organic and polymer materials are the focus of great research 

activity, mainly due to their interesting electronic and optoelectronic properties. They are being 

investigated for a variety of applications, including field-effect transistors (FETs),1-2 organic light-

emitting diodes (OLEDs), polymer solar cells (PSCs), etc.3-5 Conjugated poly (thienylenevinylenes) 

(PTVs) is one important class of conjugated polymers. These polymers display high nonlinear optical 

responses6 and electroluminescence properties.7 Although PTVs exhibit smaller bandgap (below 1.8 

eV)6, 8-9 than the polyaromatic polythiophene (PT) and the PT derivatives,10 the power conversion 

efficiency (PCE) of the PSCs based on PTVs are still very low.11-13 Moreover, PTVs show relatively 

high-charge carrier mobility (10−4 – 10−2 cm2/Vs measured in field-effect transistor geometry)14-18 which 

is one of the prerequisites for high efficient solar cells and field-effect transistors. 

Fused thiophenes has higher hole-mobility, because of good π-stacking in those kinds of materials, so 

many polymers containg fused thiophene rings19-21 were synthesized and used in FETs. Fused thiophene 

oligomers display generally low solubility at room temperature, and indeed polymers of thieno [3, 2-b] 

thiophenes have been reported to be insufficiently soluble to preclude full characterization and 

utilization in devices.22-24  As far as we know, there were little reports of p-polythiophenes with fused 

thiophene units used in PSCs,25, 26 and was only one report of poly(thieno[3,2-b]thiophen-2,5-

diylethynylene).27 We have not seen any report of polythieno [3, 2-b] thiophene vinylene being 

synthesized and used in organic electronic devices. 

For increasing the absorption of the polymers to the sunlight and hole-mobility, we designed and 

synthesized a novel class of polythieno [3, 2-b] thiophene vinylenes, as shown in Scheme 1. For getting 

polythieno [3, 2-b] thiophene vinylenes with good solubility and high regioregularity, we used direct 

methods by the Stille cross-coupling between 2, 5-diborom-thieno [3, 2-b] thiophene monomers and 

(E)-1, 2-bis (tributylstannyl) ethane. Because of the higher degree of unsaturation in the fused rings, 

relatively long hexyl chains were used to increase the solubility of the thieno [3, 2-b] thiophene-based 
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polymers. FETs and PSCs based on those polymers were fabricated, the relationship between structure 

and properties of the polymers and the devices were also investigated. 

Scheme 1. Molecular structure of the polymers. 
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Experimental Section 

Materials. 3-bromo-thiophene, Pd (PPh3)4, bromine, tributyltin chloride, NBS, n-Butyllithium (2.88 

mol/L in hexane, heptanoyl chloride), ethyl mercaptoacetate, K2CO3, DMF, 18-Crown-ether, LiOH, 

tetrabutylammonium iodide, copper powder, quinoline, Bromobenzene and Benzene boronic acid were 

obtained from Acros organics. Tetrahydrofuran (THF) was dried over Na/benzophenone ketyl and 

freshly distilled prior to use. The monomer 2, 5-dibromo-3-hexylthiophene for the synthesis of P1 was 

synthesized as reported in the literature.28 (E)-1, 2-bis (tributylstannyl) ethane was synthesized as 

reported in the literature. 29 The other materials were common commercial level and used as received. 

Measurement and Characterization.  

General Methods: All new compounds were characterized by 1H-NMR. Nuclear magnetic resonance 

(NMR) spectra were taken on a Bruker DMX-400 spectrometer. Chemical shift of 1H-NMR were 

reported in ppm relative to the singlet at 7.26 ppm. Splitting patterns were designated as s (singlet), t 

(triplet), d (doublet), m (multiplet), and br (broaden). Absorption spectra were taken on a Hitachi U-

3010 UV-vis spectrophotometer. Photoluminescence spectra were measured using a Hitachi F-4500 

spectrophotometer. Absorption and Photoluminescence spectra measurements of the polymer solutions 

were carried out in chloroform (analytical reagent) at 25 °C. Absorption and photoluminescence (PL) 

spectra measurements of the polymer films were carried out on the quartz plates with the polymer films 
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spin-coated from the polymer solutions in chloroform (analytical reagent) at 25 °C. Molecular weight of 

the polymers was measured by GPC method, and polystyrene was used as a standard. TGA 

measurement was performed on a Perkin-Elmer TGA-7. The electrochemical cyclic voltammetry was 

conducted on a Zahner IM6e Electrochemical Workstation with Pt disk, Pt plate, and Ag/Ag+ electrode 

as working electrode, counter electrode, and reference electrode respectively in a 0.1 mol/L 

tetrabutylammonium hexafluorophosphate (Bu4NPF6) acetonitrile solution. Polymer thin films were 

formed by drop-casting 1.0 mm3 of polymer solutions in THF (analytical reagent, 1 mg /mL) onto the 

working electrode, and then dried in the air. 

Fabrication of Field-effect transistor Devices. 

Thin-film organic field-effect transistors (OFETs) were fabricated on highly doped silicon substrates 

with thermally grown silicon oxide (SiO2) insulating layer of 500 nm thickness, where the substrate 

served as a common gate electrode. Prior to organic semiconductor deposition, the substrates were 

treated with silylating agent octyltrichlorosilane (OTS). Thin semiconductor films were then deposited 

by spin-coating the polymer solutions in dichlorobenzene (1 wt %) on the substrates. Film thickness was 

about 30 nm, as measured by an XP-2 surface profilometer (Ambios Technology). The samples were 

then dried and annealed at 120-180 ºC under nitrogen for 30 min. Transistor source-drain gold 

electrodes were vacuum-deposited on the polymer layer. The electrical characterization of the transistor 

devices was performed using a Keithley 4200 Semiconductor Parameter Analyzer. 

Fabrication of Photovoltaic Devices. 

Polymer solar cells were fabricated with ITO glass as a positive electrode, Ca/Al as a negative 

electrode and the blend film of the polymer/PCBM between them as a photosensitive layer. The ITO 

glass was precleaned and modified by a thin layer of PEDOT: PSS (Bayer) which was spin-cast from a 

PEDOT: PSS aqueous solution on the ITO substrate, and the thickness of the PEDOT: PSS layer is 

about 60 nm. The photosensitive layer was prepared by spin-coating a blend solution of the polymer and 

PCBM with a weight ratio of 1:1 in o-dichlorobenzene at 1000 rpm on the ITO/PEDOT: PSS electrode. 

Then the Ca/Al cathode, was deposited on the polymer layer by vacuum evaporation under 3 × 10–4 Pa. 
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The thickness of the photosensitive layer is ca.80 nm, measured on an Ambios Tech. XP-2 profilometer. 

The effective area of one cell is ca. 4 mm2. The current-voltage (I-V) measurement of the devices was 

conducted on a computer-controlled Keithley 236 Source Measure Unit. A xenon lamp with AM1.5 

filter was used as the white light source, and the optical power at the sample was around 100 mW/cm2. 

The input photon to converted current efficiency (IPCE) was measured using a Keithley 195 System 

DMM coupled with a WDG3 monochromatic and a 500 W xenon lamp. The light intensity at each 

wavelength was calibrated with a standard single crystal Si photovoltaic cell. 

  

Preparation of the monomers. 

 The monomers were prepared by the methods as shown in Scheme 2. 

 

 

 

Scheme 2. The synthetic routes of the monomers 
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(i) AlCl3, C6H13COCl, C2H2Cl2, room temperature, 2 h; (ii) HSCOOC2H5, K2CO3, 18-Crown-ether, 60 

°C, 24 h; (iii) THF/CH3OH, LiOH, tetrabutylammonium iodide, reflux, 24 h; (iv) Cu, quinoline, 260 °C, 

4 h;  (v) NBS, DMF, room temperature, 24 h; (vi) Br2, HOAc, 4 h, then 60-70 °C, 24 h; (vii) Butyl 

lithium, THF, −78 °C, 1 h, then H2O; (viii) separate by column chromatography. 

 

1-(3-bromothienyl) heptanone, 2. 

To a mixture of 3-bromothiophene (16.30 g, 0.10 mol), AlCl3 (26.80 g, 0.20 mol) and CH2Cl2 (100 

mL), heptanoyl chloride (14.90 g, 0.10 mol) was added dropwise at room temperature. The final 

mixture was stirred for 2 h. The reaction mixture was poured into cold HCl (6 mol/L, 200 mL). 
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Organics were extracted with hexane (3 × 100 mL). The combined organic extracts were washed with 

brine (2 × 100 mL) and water (100 mL). After drying over anhydrous MgSO4, the target was purified by 

silica column chromatography eluted with hexane to yield 2 (25.10 g, 90.9%). GC/MS: M/z = 275-277. 

1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.53 (d, 1H), 7.12 (d, 1H), 3.01 (t, 2H), 1.71 (m, 2H), 1.38 (m, 

6H), 0.92 (t, 3H).  

3-Hexylthieno [3, 2-b] thiophene-2-ethyl-carboxylate, 3. 

Compound 2 (35.40 g, 0.13 mol) and K2CO3 (27.60 g, 0.20 mol) were mixed with DMF (100 mL). To 

this mixture, ethyl mercaptoacetate (14.00 mL, 0.13 mol) was added dropwise at 60 °C. A catalytic 

amount of 18-Crown-ether was added. The mixture was stirred overnight and poured into water (500 

mL). The organic material was extracted with ethyl acetate (3 × 80 mL). The combined organic was 

washed with brine (2 × 100 mL) and water (100 mL). The organic layer was then dried over anhydrous 

MgSO4. After evaporating solvent, the crude compound 3 was obtained and purified by silica column 

chromatography, eluting with 5% ethyl acetate giving yellow oil (32.10 g, 77.4%). EI): m/z = 319. 1H-

NMR (CDCl3, 400 MHz) δ (ppm) 7.56 (d, 1H), 7.24(d, 1H), 4.34(q, 2H), 3.15(t, 2H), 1.71(m, 2H), 

1.32(m, 6H), 0.88(m, 6H). 

3-Hexylthieno [3, 2-b] thiophene-2-carboxylic acid, 4. 

Compound 3 (32.10 g, 0.10 mol) was mixed with LiOH (50 mL,10% water solution), THF (100 mL), 

MeOH (30 mL) and a catalytic amount of tetrabutylammonium iodide in a 500 mL flask. This mixture 

was refluxed overnight. After cooling to room temperature, the liquid was acidified with concentrated 

HCl. A yellow solid was collected by filtration and washed several times with water. The solid was 

heated with hexane (100 mL) and cooled to room temperature. After filtration, the solid was collected 

and dried under vacuum to give light yellow powder (26.26 g, 98.00%). EI): m/z = 268. mp 111-112 °C. 

1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.66 (d, 1H), 7.31 (d, 1H), 3.20 (t, 2H), 1.79 (m, 2H), 1.33 (m, 

6H), 0.91 (t, 3H).  

3-Hexylthieno [3, 2-b] thiophene, 5. 
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A solution of compound 4 (14.60 g, 0.05 mol), copper powder (2.00 g, 0.030 mol) and quinoline (80 

mL) was heated at 260 °C in a Woods-metal bath. After refluxing four hours, the mixture was cooled to 

room temperature and hexane (200 mL) was added to the quinoline mixture. This mixture was washed 

repeatedly with 1 mol/L HCl. The organic layer was dried over anhydrous MgSO4 and solvent was 

removed. The compound 5 (8.20 g, 73.2%) was obtained by chromatography on silica gel eluted with 

hexane. GC/MS: m/z = 224. 1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.36 (m, 1H), 7.25 (m, 1H), 7.01 (m, 

1H), 2.73 (t, 2H), 1.69 (m, 2H), 1.34 (m, 6H), 0.89 (t, 3H). 

2, 5-Dibromo-3-hexylthieno [3, 2-b] thiophene, 6. 

Compound 5 (6.72 g, 0.030 mol) was dissolved in 100 mL DMF, NBS (10.68 g, 0.060 mol) was 

added to the mixture for several portions. After addition was complete, the reaction mixture was stirred 

for overnight, and then was added to 300 mL water. The organic phase was separated, and water phase 

was extracted with chloroform (3 × 100 mL). The combined organics were washed with brine (3 ×100 

mL) and water (3 ×100 mL). The organics were dried over anhydrous MgSO4. The solvent was 

removed in vacuo. The residue was purified with silica column chromatography eluted with light 

petroleum to yield 6 (8.71 g, 76.0%).  1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.15 (s, 1H), 2.68 (t, 2H), 

1.65 (m, 2H), 1.33 (m, 6H), 0.90 (t, 3H).  m/z = 382. 

2, 4, 5-Tribromo-3-hexylthiophene, 8. 

3-hexylthiophene 7 (100.00 g, 0.60 mol) was mixed with 200 mL acetic acid. To this mixture, 

bromine (92.60 mL, 1.80 mol) was added dropwise. After finishing the addition of bromine, the mixture 

was then stirred at room temperature for 4 h and heated to 60-70 °C overnight. The final mixture was 

poured into 800 mL ice water and neutralized with NaOH solution (6 mol/L). The organic was extracted 

with ethyl acetate (3 × 100 mL). The combined organic was washed with brine (2 × 100 mL), water 

(100 mL) and dried over anhydrous MgSO4. After evaporating solvent, 234.00 g (96.5%) of crude 

product 8 was obtained. This product was found good enough for the next reaction. GC/MS: 404 (M-1). 

1H-NMR (CDCl3, 400 MHz) δ (ppm) 2.64 (t, 2H), 1.51 (m, 2H), 1.32 (m, 6H), 0.89 (t, 3H).  

3-Bromo-4-hexylthiophene, 9.  
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Compound 8 (70.00 g, 0.17 mol) was mixed with dry THF (400mL). To this mixture n-butyllithium 

(138 mL, 2.5M in hexane, 0.35 mol) was added dropwise at −78 °C under argon. After finishing the 

addition, the mixture was stirred another 10 minutes and water was added to quench the reaction. The 

THF was evaporated and organic was extracted with ethyl acetate (2 ×100 mL). The combined organic 

layer was washed by brine (2 × 100 mL), water (70 mL) and dried over anhydrous MgSO4. After 

evaporating solvent, the crude product was purified by vacuum distillation at 136°C/0.20 millibar giving 

the product of 9 (35.30 g, 84.1%). GC/MS: 246(M-1). 1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.22(s, 1H), 

6.96(s, 1H), 2.57(t, 2H), 1.61(m, 2H), 1.32(m, 6H), 0.88(t, 3H).  

1-(3-Bromo-4-hexyl-2-thienyl) heptanone, 11.  

To a mixture of compound 9 (24.70 g, 0.10 mol) and AlCl3 (26.80 g, 0.20 mol) in dry CH2Cl2 (100 

mL), heptanoyl chloride (14.90 g, 0.10 mol) was added dropwise at room temperature. This mixture was 

stirred for two hours and GC/MS shown 3:1 mixtures of target compound 11 and heptanone 10 were 

formed. This mixture was poured into HCl (6 mol/L) and washed with water (3 × 50 mL). The organic 

mixture then was dried over anhydrous MgSO4. After evaporating solvent, 34.70 g of 10 and 11 

mixtures of crude products was obtained as confirmed by GC/MS and used for the next reaction without 

separation. 

3, 6-Dihexyl-thieno [3, 2-b] thiophene-2-carboxylic acid, 13. 

 A mixtures of compounds 10 and 11 (66.50 g, 0.19 mol) was mixed with K2CO3 (53.60 g, 0.39 mol) 

and a catalytic amount of 18-Crown-6 in 200 mL DMF. To this mixture, ethyl mercaptoacetate (20.30 

mL, 0.19 mol) was added dropwise at 60-70 °C. The mixture was stirred at this temperature overnight 

and poured into water (800 mL). The organic was extracted with ethyl acetate (3 × 100 mL), washed 

with brine (2 × 100 mL) and water (100 mL). The organic layer was collected and solvent was 

evaporated. The residue included 3, 6-dihexyl-thieno [3, 2-b] thiophene-2-carboxylic acetate 12 and 

compound 10 as confirmed by GC/MS. This mixture was then dissolved in THF (300 mL). To this THF 

solution LiOH (84 mL, 10% w/w solution in water), MeOH (50 mL) and a catalytic amount of 

tetrabutylammonium iodide were added. The mixture was refluxed for 3 hours and the solvent then was 
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evaporated. The residue was then acidified with concentrated HCl (50 mL). The organic was extracted 

with ethyl acetate (3 × 100 mL) after dilution by water. The combined organic layer was washed with 

brine (2 × 100 mL), water (100 mL) and dried over anhydrous MgSO4. After evaporating solvent, 

compound 13 was obtained by silica gel column chromatography (5% ethyl acetate in hexane and then 

20% ethyl acetate in hexane to elute). Yield 30.00 g (44.9%) (Calculated from mixture). 1H-NMR 

(CDCl3, 400 MHz) δ (ppm) 7.24 (s, 1H), 3.18 (t, 2H), 2.73 (t, 2H), 1.75 (m, 4H), 1.34 (m, 14H), 0.89 (m, 

6H). m/z 352. 

3, 6-Dihexyl-thieno [3, 2-b] thiophene, 14.  

A solution of compound 13 (30.00 g, 0.09 mol), copper powder (3.76 g) and quinoline (80 mL) was 

heated at 260 °C in a Woods-metal bath.  After refluxing 4 h, the mixture was cooled to room 

temperature and hexane (200 mL) was added to the quinoline mixture. This mixture was washed 

repeatedly with 1 mol/L HCl. The organic layer was dried over anhydrous MgSO4 and solvent was 

removed. Compound 14 was obtained after silica gel chromatography. Light petroleum eluted 14 (18.00 

g, 68.8%). mp 58-59 ℃, 1H-NMR (CDCl3, 400 MHz) δ (ppm) 6.97 (s, 2H), 2.70 (t, 4H), 1.73 (m, 4H), 

1.37 (m, 12H), 0.88 (t, 6H).  m/z 308. 

2, 5-Dibromo-3, 6-dihexyl-thieno [3, 2-b] thiophene, 15. 

Compound 14 (18.00 g, 0.06 mol) was dissolved in 200 mL chloroform, NBS (21.00 g, 0.12 mol) was 

added to the mixture for several portions. After addition was complete, the reaction mixture was stirred 

for overnight, and then was added to 300 mL water. The organic was separated, and water phase was 

extracted with chloroform (3 × 100 mL). The combined organics were washed with brine (3 × 100 mL) 

and water (3 × 100 mL). The organics were dried over anhydrous MgSO4. The solvent was removed in 

vacuo. The residue was purified with silica column chromatography eluted with light petroleum to yield 

15 (21.60 g, 79.9%).  1H-NMR (CDCl3, 400 MHz) δ (ppm) 2.67 (t, 4H), 1.65 (m, 4H), 1.32 (m, 12H), 

0.88 (t, 6H).  M/z = 466. 

Preparation of the polymers. 
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  The synthesis of all the polymers was carried out using palladium-catalyzed Stille-coupling between 

monomer 2,5-dibromo-3-hexylthiophene, 6, 15 and (E)-1, 2-bis (tributylstannyl) ethane, as shown in  

Scheme 3. All starting materials, reagents and solvents were carefully purified, and all procedures were 

performed under an air-free environment. Under the protection of Argon atmosphere, monomer 2, 5-

dibromo-3-hexylthiophene or 6 or 15 (1 mmol) was dissolved in 10 mL dried toluene, (E)-1, 2-bis 

(tributylstannyl) ethane (1 mmol) was added to the mixture. The solution was flushed with argon for 10 

min, and then 10 mg of Pd (PPh3)4 were added. After another flushing with argon for 20 min, the 

reactant was heated to reflux for 12 h. The terminal bromobenzene and benzene boronic acid were 

added as end-cappers, with the bromobenzene added first and the benzene boronic acid added 12 h later. 

After stirring for another 12 h, the reaction solution was cooled to room temperature, the reaction 

mixture was added dropwise to 200 mL methanol, and then filtered through a Soxhlet thimble, which 

was then subjected to Soxhlet extraction with methanol, hexane, and chloroform. Polymer was 

recovered from the chloroform fraction by rotary evaporation as solid. The polymer was purified with 

bio-beads S-1 column chromatography eluted with THF, the solvent was removed in vacuo. The solid 

was dried under vacuum for 1 day. The yields of the polymerization reactions were about 30-50%. 

 

P1: 

GPC: Mw = 28 K, Mn = 9.1 K, Mw/Mn = 3.08. 1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.13-6.67 (br, 3H), 

2.59 (m, 2H), 1.58 (m, 2H), 1.34 (m, 6H), 0.87 (t, 3H). Elemental analysis for (C12H16S) n Calculated: C, 

75.00; H, 8.33; S, 16.67. Found: C, 74.36; H, 8.21; S, 14.98. 

P2: 

GPC: Mw = 36 K, Mn = 29K, Mw/Mn = 1.23. 1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.15-6.80 (br, 3H), 

2.71 (m, 2H), 1.68 (m, 2H), 1.32 (t, 6H), 0.90 (t, 3H). Elemental analysis for (C14H16S2) n Calculated: C, 

67.74; H, 6.45; S, 25.80. Found: C, 67.56; H, 6.38; S, 25.93. 

P3: 
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GPC: Mw = 32 K, Mn = 28 K, Mw/Mn = 1.13. 1H-NMR (CDCl3, 400 MHz) δ (ppm) 7.15-6.99 (br, 2H), 

2.79 (m, 4H), 1.74 (m, 4H), 1.38 (m, 12H), 0.93 (t, 6H). Elemental analysis for (C20H28S2) n Calculated: 

C, 72.29; H, 8.43; S, 19.28. Found: C, 72.18; H, 8.72; S, 18.96. 

 

Scheme 3. Synthetic routes of the polymers.  
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Results and Discussion 

Synthesis of monomers and polymers 

The synthetic routes of monomers and corresponding polymers are outlined in Scheme 2 and Scheme 

3, respectively. P1, P2 and P3 were prepared by Stille-coupling reaction28 and confirmed by 1H-NMR 

spectroscopy and elemental analysis. In the 1H-NMR spectra (see Figure 1), the α-hydrogen linking to 

the thieno[3,2-b]thiophene of compound 15 peaks at 2.67 ppm, the other hydrogen positions are 

analyzed as shown in Figure 1. Figure 2 shows the 1H-NMR spectrum of P3, where the double-bond 
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hydrogen 7 and 8 correspond to the peaks in the range from 6.99 to 7.15 ppm. The α-hydrogen linking 

to the thieno [3, 2-b] thiophene of P3 positions at 2.79 ppm. 

The polymers are soluble in common organic solvents, such as chloroform, toluene, and THF at 

room temperature. The elemental analysis, weight-average molecular weight (Mw) and polydispersity 

index (PDI) are shown in Table 1. 
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Figure 1. 1H-NMR spectrum of Compound 15. 
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Figure 2. 1H-NMR spectrum of polymer P3. 

 

Table 1. The elemental analysis, weight-average molecular weight and TGA properties of the polymers 

 

Polymers 

Elemental analysis (%)  calculated/found Molecular weight by GPC  

T5d (°C) b C H S Mwa PDI 

P1 75.00/74.36 8.33/8.21 16.66/14.98 28K 3.08 350 

P2 67.74/ 67.56 6.45/6.38 25.81/25.93 36K 1.23 321 

P3 72.29/72.18 8.43/8.72 19.28/18.96 32K 1.13 314 

a Weight-average molecular weight determined by GPC using polystyrene as the standard in THF solution. 

b Decomposition temperature determined by TGA in N2 gas at 5% weight loss. 
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Thermal Analysis. 

Thermal stability of the polymers was investigated with thermo gravimetric analysis (TGA), as shown 

in Figure 3. The P1, P2 and P3 show onset decomposition temperatures with 5% weight loss at 350 °C, 

321 °C and 314 °C, respectively, which was also listed in Table 1. The thermal stability is enough for 

most applications.  
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Figure 3. TGA plots of the polymers with a heating rating of 10 °C/min under inert atmosphere.  

 

Optical properties of the polymers. 

   Figure 4 shows the absorption spectra of the polymer solutions in chloroform and films. The 

absorption peaks of P2 and P3 solutions centered at 537 nm and 538 nm, respectively, which are about 

18 nm blue-shifted in comparison with that of P1, as shown in Figure 4(a). This blue shift of the 

absorption spectra of P2 and P3 could result from the rigid structure of the fused thiophene rings in the 

polymers. Probably, the steric repulsion between β-alkyl chains prevents the coplanarity of ring units 

and causes a decrease in the effective conjugation length of the polymer chain in P3. As reported in the 

literature,30 the absorption peak of poly (3, 6-dinonylthieno[3, 2-b]thiophene) was blue-shifted a lot 

compared to that of poly(3-nonylthieno[3, 2-b]thiophene), because of steric repulsion between β-alkyl 

chains. In our work, the absorption peak of P2 is very close to that of P3, which is probably due to the 

vinylene units in the main chains of P2 and P3. The vinylene units in the main chains increase the 
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distance between two neighbor thieno [3, 2-b] thiophene rings, and thus decrease steric repulsion 

between β-alkyl chains.  

Figure 4b shows the absorption of the polymer films on quartz plates. The absorption peaks of P1, 

P2 and P3 films are located at 580 nm, 538 nm and 542 nm, respectively.  The absorption peaks of P1 

and P3 films are red-shifted relative to that of their solutions by 24 and 4 nm respectively, which result 

from the interchain interactions in the polymer films. For P2, the absorption peak in solid state is very 

close to that of its solution, which suggests that the chain conformation is nearly identical under both 

conditions to P2. The absorption peak and edge wavelength of the polymers were outlined in Table 2. 
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Figure 4. Normalized absorption spectra of the polymers (a) in chloroform solutions; (b) films spin-

coated on quartz plates. 

500 600 700 800 900
0

10

20

30

40

50

 

 

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

 P1
 P2
 P3

 

Figure 5. Fluorescence spectra of the polymers in chloroform solutions (concentration 10–5 M). 
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Interestingly, P2 and P3 show strong photoluminescence in the wavelength range between 500~750 

nm peaked at ca. 650 nm, as shown in Figure 5.  It is well known that poly (thienylenevinylene) is 

nonluminescent polymer. The strong PL spectra of P2 and P3 indicate that the fused thiophene units in 

the polymers influence the optical properties of the polymers greatly.  

 

Table 2. Absorption spectral properties of P1, P2 and P3. 

Polymers λmax(nm)/in solutions λmax(nm )/in films λedge(nm)/in films 

P1 556 580 712 

P2 537 538 685 

P3 538 542 700 
 

Electrochemical Properties. 

The electrochemical property is one of the most important properties of the conjugated polymers and 

many applications of the conjugated polymers depend on the electrochemical properties. We studied the 

electrochemical properties of the polymers by cyclic voltammetry (CVs). 

Figure 6 shows the cyclic voltammograms of the polymer films on Pt electrode. It can be seen that 

they exhibit p-doping/dedoping (oxidation/re-reduction) processes at positive potential range and n-

doping/dedoping (reduction/re-oxidation) processes at negative potential range. From the onset 

oxidation potentials (φox) and the onset reduction potentials (φred) of the polymers, HOMO and LUMO 

energy levels as well as the energy gap (Egec) of the polymers were calculated according to the 

following equations: 31 

    EHOMO = −e (φox + 4.71) (eV); 

ELUMO = −e (φred + 4.71) (eV); 

Egec = e (φox − φred) (eV) 

Where the units of φox and φred are V vs Ag/Ag+. The values obtained are listed in Table 3. φred of P2 

shifted negatively by 0.02 V compared to P1, φox of P2 shifted negatively by 0.09 V compared to P1, 
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and the electrochemical energy gap of P2 is narrower than that of P1 by 0.07 eV. The φox of P3 is 

shifted positively by 0.12 V compared to P1, but the value of φred is shifted negatively by 0.01 V 

compared to P1. The electrochemical energy gap of P3 is larger than that of P1 by 0.13 eV. 
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Figure 6. Cyclic voltammograms of the polymer films on Pt electrode in 0.1 mol/L Bu4NPF6, CH3CN 

solution at a scan rate of 100 mV/s. 

 

 Table 3. Electrochemical onset potentials and electronic energy levels of the polymer films. 

Polymers φox(V vs 
Ag/Ag+)/EHOMO(eV) 

φred(V vs 
Ag/Ag+)/ELUMO(eV) 

Eg,ec(eV) Eg,opt(eV)a 

P1 0.21/-4.92 -1.73/-2.98 1.94 1.74 

P2 0.12/-4.83 -1.75/-2.96 1.87 1.81 

P3 0.33/-5.04 -1.74/-2.97 2.07 1.77 
a the optical band gap was obtained from empirical formula, Eg = 1240/ λedge, in which the λedge is the onset value of the 
absorption spectrum in the longer wavelength direction. 

 

Field-effect transistor properties of the polymers. 

Figure 7 shows the typical output and transfer curves of a representative OFET device, and the device 

performances of the three polymers are summarized in Table 4. The output behaviors followed closely 

the metal oxide-semiconductor FET gradual channel model with very good saturation and no observable 

contact resistance (Figure 7a and 7c).  
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Figure 7. (a) Output and (b) transfer characteristics of OFETs using P3 as active layer, (c) output and 

(d) transfer characteristics of OFETs using P1 as active layer. IDS was obtained at VDS = –100 V for 

transfer characteristics. 

 
The transfer characteristics of P3 show near-zero turn-on voltage and a small threshold voltage (Figure 

7b), indicating its high air stability due to low HOMO (–5.04 eV). Without annealing, the OFET with 

P3 as active layer showed a mobility of 4.64 × 10–4 cm2/ Vs in the saturation regime, together with an 

on/off ratio of 103 when measured in ambient conditions. Annealing the devices at 150 °C and 180 °C 

for 0.5 h led to improved charge carrier mobilities up to 7.54 × 10–3 cm2/ Vs and 0.019 cm2/ Vs 

respectively. The highest mobility of P3 reached 0.032 cm2/ Vs with the on/off ratio of 105. The on/off 

ratio increased to 104-105 (the highest on/off ratio is 7.2 × 105) because of the increased drain current 
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and low current at zero gate voltage (below 10–9 A). With low HOMO (–4.92 eV), P1 also showed very 

high air stability despite its relative low mobility (on the order of 10–4 cm2/ Vs), in sharp contrast to that 

of most polymer semiconductors such as P3HT and its analogues. However, the devices fabricated with 

P2 under similar conditions displayed poorer performance, with mobility of 1.50 × 10–4 cm2/ Vs and low 

on/off ratio of 102-103 without annealing, and even lower performance (with mobility of 1.48 × 10–5 

cm2/ Vs and on/off ratio of 102-103) after annealing at high temperature. This is probably due to the low 

solubility of the polymer P2, the higher HOMO level (–4.83 eV) and the roughness of its thin films (the 

surface of P2 films appeared many small particles after annealing). 

 

Table 4. FET properties of devices with films spun coated on OTS-modified SiO2/Si substrates. 

 

Photovoltaic properties of the polymers. 

The motivation of design and synthesis of the three polymers is to look for novel thiophene vinylene 

polymers used in PSCs. We fabricate the PSCs with the structure of ITO/PEDOT-PSS/Polymer: PCBM 

(1:1, w/w)/Ca/Al, where the polymer (P1, P2 and P3) was used as electron donor and PCBM was used 

as electron acceptor. 

 Figure 8 shows the I-V curves of the PSCs under the illumination of AM 1.5, 100 mW/cm2, and 

Table 4 lists the photovoltaic properties obtained from the I-V curves for the best devices. In 

comparison with the device based on P1, the open circuit voltage (Voc) of the device based on P2 

decreased by ca 0.02 V. The lower Voc is expected from the higher HOMO energy level of P2 than that 

of P1. The Voc of the device based on P3 increased by ca 0.06 V compared with P1, which is benefited 

Polymers 

 

HOMO 

 

LUMO 

Untreated 120 °C 180 °C 

μ 

(cm2/ Vs) 
Ion/Ioff 

μ 

(cm2/ Vs) 
Ion/I off 

μ 

(cm2 /Vs) 
Ion/I off 

P1 –2.98 –4.92 2.02 ×10–4 103 3.12 ×10–4 103 3.76 ×10–4 103-104 

P2 –2.96 –4.83 1.50 ×10–4 102 2.17 ×10–4 102-103 1.48 ×10–5 102-103 

P3 –2.97 –5.04 4.64 ×10–4 103-104 7.54 ×10–3 104-105 0.019 104-105 
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from the lower HOMO energy level of P3 than that of P1. For the best devices, the PCE of the devices 

based on P3 reached 0.28%. The PCE of the device based on P3 is ca. 50% increased than those of the 

devices based on P1 and P2, which could be ascribed to the higher hole mobility of P3. 

 

Table 5. Photovoltaic properties of the polymer solar cells. 

Polymers Voc(v) Isc(mA/cm2) FF HOMO(eV) LUMO(eV) PCE 

P1 0.54 0.96 0.37 -4.92 -2.98 0.19% 

P2 0.52 1.11 0.29 -4.83 -2.96 0.17% 

P3 0.60 1.27 0.37 -5.04 -2.97 0.28% 
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Figure 8.  I-V curves of the PSCs based on the polymers under the illumination of AM 1.5, 100 

mW/cm-2 
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     Two poly (thieno [3, 2-b] thiophene vinylene) derivatives (P2 and P3) were prepared by the Pd-

catalyzed Stille-coupling method. Compared with poly (3-hexylthienylene vinylene) (P1), the 

absorption peaks of P2 and P3 are blue-shifted a little, while the PL intensity of P2 and P3 solutions 

enhanced greatly. The solution-processed polymer OFETs were fabricated with bottom gate/top contact 

geometry and characterized. The OFET using P3 as active layers showed a hole mobility of 4.64 × 10–4 

cm2/ Vs in the saturation regime, together with an on/off ratio of 103 when measured in ambient 

conditions. Annealing the devices at 150 °C and 180 °C for 0.5 h led to improved hole mobilities of up 

to 7.54 × 10–3 cm2/ Vs and 0.019 cm2/ Vs respectively. The highest hole mobility of P3 reached 0.032 

cm2/ Vs with the on/off ratio of 105. However, the OFET devices based on P2 under similar conditions 

displayed poorer performance, with hole mobility of 1.50 × 10–4 cm2/ Vs and on/off ratio of 102-103 

without annealing, and even lower hole mobility of 1.48 × 10–5 cm2/ Vs after thermal annealing at 

180 °C for 0.5 h. This phenomenon could result from the lower solubility of P2 and the roughness of its 

thin film after thermal annealing. PSCs based on the three polymers were fabricated, the PCE of the 

devices based on P1, P2 and P3 was 0.19%, 0.17% and 0.28%, respectively. The PCE of the device 

based on P3 is ca. 50% increased than those of the devices based on P1 and P2, which could be ascribed 

to the higher hole mobility of P3.  
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Figure captions: 

Figure 1. 1H-NMR spectra of Compound 15. 

Figure 2. 1H-NMR spectra of polymer P3. 

Figure 3. TGA plot of the polymers with a heating rating of 10 °C/min under inert atmosphere. 

Figure 4. Normalized absorbance of the polymers (a) in chloroform solutions; (b) films spin-coated on 

quartz plates. 

Figure 5. Fluorescence spectra of the polymers in chloroform solutions (concentration 10–5 M). 

Figure 6. Cyclic voltammograms of the polymer films on Pt electrode in 0.1 mol/L Bu4NPF6, CH3CN 

solution with a scan rate of 100 mV/s. 

Figure 7. (a) Output and (b) transfer characteristics of OFETs using P3 as active layer, (c) output and 

(d) transfer characteristics of OFETs using P1 as active layer. IDS was obtained at VDS = –100 V for 

transfer characteristics. 

Figure 8.  I-V curves of the PSCs based on the polymers under the illumination of AM 1.5, 100 
mW/cm–2. 

 

 


