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Abstract 
 

The thesis deals with the selection of the sets of inputs and outputs using the energy properties of the 

controllability and observability of a system and aims to define input and output structures which require 

minimization of the energy for control and state reconstruction. Such a study explores the energy dimension 

of the properties of controllability and observability, develops computations for the controllability and 

observability Gramians for stable and unstable systems and examines measures of the degree of 

controllability and observability properties using SVD (Singular Value Decomposition) of Gramians to 

compute the maximal and minimal energy requirements. These characterize the relative degree of 

controllability and observability under conditions where the available energy is constrained. The notion of 

energy surfaces in the state space is introduced and this enables the characterization of restricted notions of 

controllability and observability when the available energy is bounded. The maximal and minimal energy 

requirements for different input vectors is demonstrated and this provides the basis for the development of 

strategies and methodologies for selection of systems of inputs and outputs to minimize the energy required 

for control, respectively state reconstruction. These results enable the development of input, output 

structure selection methodology using a novel optimization method. This thesis contributes in the further 

development of the area of systems, or global instrumentation, developed so far based on the assignment of 

structural characteristics by incorporating the role of energy requirements. The research provides energy 

based tools for the selection of input and outputs schemes with a main criterion the minimization of the 

energy required for control and observation and thus provide an alternative approach based on quantitative 

system properties in characterizing control and state observation as functions of given sets of inputs and 

output sets. The methodologies developed may be used as design tools where apart from energy 

requirements other design criteria may be also incorporated for the selection of inputs and outputs.  The 

methodology that is used is based on linear systems theory and tools from numerical linear algebra. The 

solution to the problems considered here is an integral part of the effort to develop an integrated approach 

to control and global process instrumentation. 
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Chapter 1: Introduction 
 

 

 

The instrumentation of a process, that is the selection of measurement variables (outputs) and 
actuation variables (inputs) has a “micro” (local), as well as a “macro” (global) aspect. The “micro” role 
of instrumentation has been well developed (Finkelstein & Grattan, 1994) and deals with the problem 
of measurement, or implementation of action upon given physical variables; instrumentation theory 
and practice deals almost exclusively with the latter problems. The “macro” aspects (Karcanias, 1994) 
of instrumentation stem from that designing an instrumentation scheme for a given process 
(classification and selection of input and output variables) expresses the attempt of the “observer” 
(designer) to build bridges with the “internal mechanism” of the process in order to observe it and/or 
act upon it.  What is considered as the final system, on which Control Systems Design is to be 
performed, is the object obtained by the interaction of the “internal mechanism” and the specification 
of the overall instrumentation scheme. Difficulties in control of the final system may be assessed in 
terms of certain structural characteristics of the final system model (MacFarlane & Karcanias, 1976), 
(Kouvaritakis & MacFarlane, 1976) and the shaping of the degree of the presence of certain system 
properties, such as controllability and observability. These structural characteristics are formed 
through various stages, where the design goes through; however, the process of formation of such 
structural characteristics, as well as the link between their types, values and nature to control 
problems is not yet well understood. From the systems viewpoint, global instrumentation is seen as a 
model structure shaping, design stage as far as the characteristic of the final model is concerned. Given 



2 

 

that the structure of the model determines, in a sense, what can be achieved under compensation, 
global instrumentation is intimately linked to control design. The problems of control design and 
overall selection of input, output schemes for a process, referred to here as Global Process 
Instrumentation (GPI) (Karcanias, 1994), are strongly interrelated and this has been specially 
recognized in the Process Control area, where issues of selection of input, output schemes have been 
considered within the area of control structure selection (Morari, et al., 1980), (Morari & 
Stephanopoulos, 1980), (Morari & Stephanopoulos, 1980), (Govind & G.J. Powers, 1982), (Georgiou & 
Floundas, 1989). So far, however, there has been no systematic attempt to develop a unifying 
framework for selection of systems of measurement and actuation variables for processes, where the 
model structure shaping role of Global Instrumentation is the central feature. The overall research 
activity here reflects the view that instrumentation and control cannot be seen as independent 
activities, but as interrelated tasks with an integrated methodology.  

The problem of selection of input, output schemes for a process, is part of the overall design of the 
process, which is of cascade nature and has as main stages, the Process Synthesis, Global Process 
instrumentation (GPI) and Control System design. It has been argued (Karcanias, 1994) that there is a 
correspondence between the successive design stage decisions of the cascade design process and the 
evaluation of structural characteristics of process models. Global Instrumentation plays a crucial role 
in the shaping of structural characteristics, as well as the boundary values of related system properties. 
This has the advantage that very frequently many degrees of freedom are available, which may be 
used for design purposes. The central characteristic of this approach is that we view GPI as a process 
of shaping further the inherited structure from the process synthesis stage. This expresses a 
fundamental property in the structure evolution during the design (Karcanias, 2008). Note that the 
term structure is viewed here as a linear graph and/or as system invariants of the underlined model.  

The problem of selection of sets of inputs and outputs has been based so far on the shaping of 
structural invariants (Karcanias & Vafiadis, 2002), such as the set of invariant zeros (MacFarlane & 
Karcanias, 1976), (Kouvaritakis & MacFarlane, 1976), (Rosenbrock & Rower, 1970), (Karcanias & 
Giannakopoulos, 1989), (Karcanias, 1994), (Karcanias, 1996), (Karcanias & Vafiadis, 2002), (Karcanias 
& Vafiadis, 2002), (Leventides & Karcanias, 2008), (Georgiou & Floudas, 1990). Shaping properties such 
as controllability and observability, goes beyond the shaping of structural invariants. Structural 
invariants (Karcanias & Vafiadis, 2002), (Karcanias, 2002) determine the shape of system properties, 
but do not provide the measure of presence of such properties in a system. In this thesis, we will use 
energy considerations to evaluate the role of selection of systems of inputs and respectively outputs 
on the energy requirements for state control and state reconstruction. The study of required energy 
for control and state reconstruction has been a standard theme in the study of linear systems (Kailath, 
1980), (Skelton, 1988). However, this has not being used for evaluation and selection of systems of 
inputs (location of actuators) and systems of outputs (location of sensors) so far. Such a study is 
intimately related to the study of degree of controllability and observability of a linear system (Moore, 
1981), (Arbel, 1981), or alternatively measuring the distance of a system from the set of 
uncontrollable, respectively unobservable systems.  
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The objectives of this thesis are: 

Objectives: 

(i) Study the energy dependency of the properties of controllability and observability 
(ii) Define the relative degree and presence of controllability and observability under conditions 

where the available energy is constrained. 
(iii) Develop strategies and methodologies for selection of systems of inputs and outputs to 

minimize the energy required for control, respectively state reconstruction. 
(iv) Evaluate the effect of systems of inputs and outputs on various other system properties.  

This thesis contributes to the further development of the area by clarifying the role of energy 
requirements in achieving control and state observation as functions of given sets of inputs and 
outputs and thus provide energy based tools for the selection of input and outputs schemes with a 
main criterion the minimization of the energy required for control and observation. The 
methodologies developed may be used as design tools where apart from energy requirements other 
design criteria may be also incorporated for the selection of inputs and outputs.  The methodology 
that is used is based on Linear Systems theory (Kailath, 1980), (Karcanias, 2002), (Karcanias & Vafiadis, 
2002) and tools from Numerical Linear Algebra. The solution to the problems considered here is an 
integral part of the effort to develop an integrated approach to Control and Global Process 
Instrumentation (Karcanias, 1994).  

The main achievements of the thesis are in the following areas: 

 Provide a literature review for link of energy to controllability and observability and a review 
of methodologies for selection of inputs and outputs. 

 Perform an overview of controllability/observability Gramians, and methodologies for their 
computation. 

 Introduce the minimum energy and define the constant energy surfaces linked to 
controllability and observability.  

 Develop computations of Energy for unstable systems and measures of degree of 
controllability/observability.  

 Develop a selection methodology of system inputs, and thus of the input matrix B, to minimize 
the average required energy for controllability, respectively observability.  

 Present a metaheuristic optimization method for the optimal selection of input/output system 
structure. 

 

 

The thesis is structured as follows:1 

                                                             
1 Note: (Kalman, 1959) has pointed out that observability and controllability are duals of each other. 
We can observe some similarities between optimal actuator model and optimal observation model 
because of this duality. In order to avoid repetition in this study, what is said about actuator selection 
can be applied to the concept of sensor selection with the proper interpretation. 
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Chapter 1  
This is an introduction chapter, which provides a brief overview of the problem and summarizes the 
contents of each of the following chapters. 

 

Chapter 2  
Describes a review of the literature showing the importance of the input/output selection in control 
system design. It reviews the current methodologies and criteria for selection of inputs/outputs and 
states the open challenges. 

 

Chapter 3  
The concepts of reachability and reachability gramian are introduced for linear continuous time-
invariant systems. The system properties of controllability and controllability Gramian and a novel 
approach of calculation of controllability gramian are studied in this chapters. The problem of 
controllability Gramian assignment is investigated. 

 

Chapter 4  
The chapter develops the fundamentals for selection of input (and by duality output) structure based 
on the energy type criteria, and provides answer to the question of the required energy for the 
transfer of the origin to a given state in the state space within some given final time when the input 
structure is given. It also introduces first the problem of minimum input energy and then discusses the 
important related factors which can influence its value. 

Further, this chapter presents the definition of the energy levels in the state space characterizing the 
maximum of minimum input energy required for transfer to a given distance. This reveals the presence 
of the energy stratification of the state space.  

 

Chapter 5  
The chapter discusses the energy calculation for unstable systems and the impact of actuator selection 
on various issues such as the degree of controllability, and disturbance rejection. Chapter 5 also 
presents the generalized energy stratification of the state space for possibly unstable systems. 

A method of actuator selection is also presented considering the degree of controllability and the 
degree of disturbance rejection. 

The discussed methods which are proposed in chapter 5 are general methods in the sense that they 
support both stable and unstable systems.  
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Chapter 6  
The chapter considers the case where the system matrix A is Hurwitz and has certain canonical form 
structures. This chapter presents some Theorems based on which the controllability Gramian of the 
continuous-time linear time invariant system can be constructed directly based on the coefficients of 
the characteristic polynomial, along with the value of the trace and some upper bounds for the 
maximum eigenvalue of the controllability. Furthermore, the chapter investigates how the value of 
the energy could be derived based on the characteristic polynomial of the system.  

 

Chapter 7  
This chapter proposes a strategy for the selection of the proper input matrix B, based on the average 
of the minimum input energy.  This is formulated and solved as an optimization problem for different 
cases. 

First the problem of finding the best single input structure to minimize the energy requirements is 
discussed and a solution for a general system with a finite terminal time ft is proposed. Then, the same 

optimization problem is discussed for the case of stable system with infinite terminal time. This is 

followed by the input structure selection for the normal system where AA A A  . In the last part of 
this chapter, the case of multi-input systems subject to different possible conditions are investigated. 

The work here provides a new approach to those in existing literature, which considers the problem 
of input structure selection over a binary set, i.e. where the input matrix B can only take the values 
{0,1} or can be chosen among the given sets. The current approach developed in this chapter does not 
rely on such restrictive assumptions. 

 

Chapter 8  
The chapter develops a new metaheuristic optimization method based on the logistic equations. 
Superior performance in terms of exploration, exploitation, and convergence is demonstrated relative 
to other state-of-the-art methods. These properties make the proposed algorithm powerful and 
capable of solving complex high-dimensional multi-parameter problems, such as optimal actuator and 
sensor placement. 

 

 

Chapter 9  
This chapter reviews the contribution of this thesis and draws some conclusions. Directions of further 
work are discussed. 
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Chapter 2: Literature Review 
 
 
 
2.1. Introduction 

In this chapter, we review previous works directly relevant to the problem of sensor and actuator 
selection. In section 2.3, the problem of optimal actuation in continuous linear time-invariant systems 
is described. The dual problem can also be formulated to find the optimal location of the sensors. With 
increasing focus on the particular problem of energy optimization, in section 2.4, we consider some 
of the available methods on input/output selection (IO) and we review the indexes and the criteria 
specialized for optimal actuator/sensor placement in continuous linear time-invariant systems. Finally, 
in section 2.5, we summarize this chapter. 
 

2.2. Input/Output Structure Selection 

44 years ago (Foss, 1973) challenged the process control research community as he made the 
observation that in many areas, application was ahead of theory. He introduced control structure 
design and the gap between theory and applications in this important area: 
 
“The central issue to be resolved by the new theories are the determination of the control system 
structure. Which variables should be measured, which inputs should be manipulated and which links 
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should be made between the two sets. . . . The gap is present indeed, but contrary to the views of 
many, it is the theoretician who must close it.” 
 
A similar observation on the need of control structure design was made by (Findeisen, et al., 1980) (p. 
10). Control structure design determines which variables to control, which variables to measure, which 
inputs to manipulate and which links that should be made between them. (Morari, et al., 1980), 
(Morari & Stephanopoulos, 1980), (Morari & Stephanopoulos, 1980) introduced new and exciting 
ideas and theories in the area of control structure design. In the late 1980s (Nett, 1989), (Minto & 
Nett, 1989) presented a number of lectures about the selection and partitioning of measurements and 
manipulations for the control of complex systems based on his experience on aero-engine control at 
General Electric.  
A good review of the literature on control structure design can be found in (Larsson & Skogestad, 
2000). 
While the area of control structure design has received some interest in the literature, e.g. (Georgiou 
& Floudas, 1989), (Govind & Powers, 1982), (Karcanias, 1996), (Morari & Stephanopoulos, 1980), 
(Rijnsdorp, 1991), (Skogestad & Postlethwaite, 1996), (Skogested, 2000) and references therein, the 
gap still remained, and still does to some extent today. Control structure design cannot be compared 
to the enormous amount of work on controller design, although it is probably the most important in 
practice. It involves a number of key sub-problems (Karcanias, 1996) which are: 
 

I. The classification of process variables into potential inputs, outputs and referred to as Model 
Orientation Problem (MOP) 

II. Specification of effective sets of inputs, outputs on an oriented model and referred to as 
Model Projection Problem (MPP) 

III. The selection of a control configuration (i.e. CC), which decides on the way we couple 
effective inputs and outputs for control design purposes (also called the 
measurement/manipulation partitioning or input/output pairing). 
 

The above sub-problems have received attention in the literature, see e.g. (Wal & Jager, 2001), (Padula 
& Kincaid, 1999) and references therein. (Chen, 2002) and (Assali, 2008) summarized different 
methods for the above sub-problems. Furthermore,  (Reinschke, 1988), (Lin, 1974), (Siljak, 1991), 
(Siljak, 1978), (Murota, 2009) and references therein discussed different solution criteria and 
applications of the IO and CC selection problems. However, most of the attention so far has been 
focused on the last sub-problem, i.e. control configuration, when heuristics and diagnostic indicators 
have been used. For the first two sub-problems, which are the focus of this thesis less attention has 
been given, especially from the Control Theory viewpoint, with the exception of the work in 
(Karcanias, 1996), (Georgiou & Floudas, 1989), (Karcanias & Giannakopoulos, 1989), (Morari & 
Stephanopoulos, 1980) on some specific problems. 
 
In control structure design, the determination of the adequate number, place and sensor-actuator 
type is the input/output selection (i.e. IO selection) process. The system outputs are the set of the 
measured variables and the controlled variables. The system inputs are the set of manipulated inputs 
and the exogenous inputs, such as disturbances, sensor noise and reference inputs or the set-points. 
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In the control structure selection framework and in this thesis outputs are the measured variables and 
inputs are the manipulated variables. 
The Importance of the IO structure selection lies in the fact that it may affect many properties of the 
system such as zeros locations, cost, maintenance, reliability, controllability, observability and 
complexity. 
A formal definition for the IO selection is given by (Wal & Jager, 2001): 
 
“Select suitable variablesu to be manipulated by the controller and suitable variables y to be supplied 

to the controller”  
 
Qualitative rules for IO selection problem could be found in (Seborg, et al., 1989): 
 
“ i) Control the outputs that are not self-regulating, ii) Control the outputs that have favourable 
dynamic and static characteristics, iii) Select inputs that have large effects on the outputs, iv) Select 
inputs that rapidly affect the controlled variables. ” 
 
Over the last few decades different performance criteria and measurements have been proposed for 
the selection of actuation variables (inputs) and sensor locations (outputs) (Georges, 1995), (Marx, et 
al., 2002), (Marx, 2003), (Marx, et al., 2004), (Singh & Hahn, 2005), (Singh & Hahn, 2006). A survey on 
IO selection is given by (Wal & Jager, 2001). They list several criteria for evaluation of control structure 
design methods: generality, applicable to nonlinear control systems, controller-independent, direct, 
quantitative, efficient, effective, simple and theoretically well developed. Ideally, an IO selection 
method should satisfy all these criteria. After reviewing they conclude that such a method does not 
exist.  
Some discussions on IO selection in the process industry are given in (Morari, 1982), (Shinskey, 1988), 
(Stephanopoulos, 1984) and (Balchen & Mummé, 1988). 
 
A literature search for optimal actuator or optimal sensor placement methods yields a wide range of 
publications from different engineering disciplines. Some of these references describe small 
optimization problems and employ manual optimization techniques or intuitive placement recipes 
rather than systematic optimization methods. Other references discuss challenging numerical 
optimization problems and most often use genetic algorithms as the optimization method.  

In this thesis, we study the mathematical strategies to determine the optimal actuator locations. A 
new metaheuristic optimization algorithm is also developed to solve the challenging actuation 
problems in the case of large scale systems. By duality, the solution methodology may be readily 
extended to the problem of optimal sensor selection. To verify the results, wherever 
applicable, numerical examples are designed and the results are compared with those available in the 
literature.  
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2.3. Problem Statement: 

As it is discussed in the previous sub-section, the location of an actuator/sensor has a tremendous 
impact on the performance of the controlled system. Misplaced actuators can lead to lack of 
controllability (Kumar & Narayanan, 2007). The actuators/sensors should therefore be located at 
positions that optimize certain performance objectives. 
In aerospace engineering, the actuators at optimal locations reduce the vibrations (Mehrabian & 
Yousefi-Koma, 2007). The optimal placement of actuators/sensors is essential for effective control of 
structural vibration and acoustic noise (Pulthasthan & Pota, 2008). In acoustic problems, an arbitrarily 
placed actuator can actually increase the sound field locally (Fahroo & M.A. Demetriou, 2000). Civil 
structures such as high-rise buildings and suspension bridges are designed to protect against 
earthquake excitation through the placement of actuators at appropriate heights (Abdullah, et al., 
2001). The energy consumption is a concern in various control applications, e.g. vibration control of 
smart structures, chemical process control. (Arbel, 1981), (Peng, et al., 2005) showed that the optimal 
placement of actuators/sensors improves the performance of the control system significantly and at 
the same time the energy consumption is minimized. In (Leleu, et al., 2001), (Sung, 2002), (Yue, et al., 
2008), (Jha & Inman, 2003), (Hac & Liu, 1993) improved performance of vibration control is observed 
when actuators/sensors are placed at optimal locations. In (Antoniades & Christo, 2002), an integrated 
feedback design problem and optimal actuator placement minimizing the control energy was 
investigated. It is shown in (Morris, 1998) that the optimal actuator placement can reduce noise in a 
duct. In systems modelled by partial differential equations, optimal location calculations are 
performed on approximated problems, although the state space for the full model is infinite 
dimensional. The theory that guarantees optimality of the cost and existence of the optimal actuator 
location for these models has not been developed in its entirety (Hebrard & Henrot, 2005).  
The aim of this thesis is to develop a mathematical framework for calculating optimal actuator 
locations with regard to the energy-based criteria, and to develop a new evolutionary algorithm to 
solve the combinatorial problem of optimal actuator/sensor placement in the challenging real world 
applications. 

Consider the following linear time-invariant system in n : 

( ) ( )
, , , , ,

( ) ( ) ( )
n n n n m l n l mx Ax t Bu t

x A B C D
y t Cx t Du t

    
      


             (2.1) 

where x denotes the state of the system, A denotes the system dynamics and ( )u t is the control 

applied to the system as a function of time. The effect of control on the state of the system is described 
by the input matrix B . 

In many control systems, the location of actuators/sensors can often be chosen. These locations 
should be selected in order to optimize the performance criterion of interest. 

Consider the situation where there are m actuators with locations that could be varied over some 
compact set, call it a  . Parametrize the actuator locations by a and denote the dependence of 

the corresponding input matrix with respect to the actuator location by aB .Note that a is a vector of 

length m with components in so that a varies over a space denoted by m . Based on the designer's 
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interest on the choice of a desired performance measure, a suitable cost function aJ that depends on 

the actuator location is formulated. 

Definition (2.1): The optimal cost optJ over all possible locations is defined as, 

inf
mopt aa

J J


                                                                      (2.2) 

Also, if it exists, the location m
opta  that satisfies 

arg inf
mopt aa

a J


                                                                      (2.3) 

is called the optimal actuator location. 

In the rest of this chapter, the background of the formulations of the cost function aJ with regard to 

the energy-based strategies used in diverse applications will be discussed. 

 

2.4. Different Cost Functions: 

Previous studies have used various measures and criteria in order to increase the effectiveness of 
sensors and actuators and to reduce their numbers and sizes while some specific variables are 
optimized (Wal & Jager, 2001), (Frecker, 2003), (Padula & Kincaid, 1999). The most commonly used 
criteria in literature are: 

 Accessibility 

It is a qualitative technique for IO selection based on cause and effect graphs, which can be generated 
for linear and nonlinear systems. Vertices of the graph represent system variables, disturbances, and 
control signals. Directed edges depict relations between various variables (Kościelny, et al., 2017). The 
key idea for IO selection is that a causal path must exist between the manipulated and the controlled 
variables on the one hand and the measured and the controlled variables on the other hand. A large 
number of candidate IO sets may be termed viable if they are only assessed for accessibility. So, 
additional criteria should be invoked (Wal & Jager, 2001). 
Accessibility may be chosen as a tool for actuator/sensor placement because of the following features:   

I. Faults can be included directly in the model as additional vertices. 
II. The graph model is a simple, intuitive, and easily understandable way of describing a process. 

Mathematical description is not needed, only basic knowledge about the physics of a process. 
This is an important feature because actuator/sensor placement analysis should be performed 
at the design stage and a detailed process model can be unavailable. 

 
(Lambert, 1977) used fault-trees to analyse the location of sensors. Even though this work was the 
first step toward the design of sensor locations based on a diagnostic observability criterion, it had 
drawbacks such as: i) inability to handle cycles, and ii) the development of a fault tree is in itself an 
error-prone and time-consuming process. To solve the problem of observability, based on the process 
graph,  (Ali & Narsimhan, 1993), (Ali & Narsimhan, 1995) have presented sensor placement strategies 
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for linear and bilinear processes (Ali & Narasimhan, 1996). They introduced the concept of reliability 
and the degree of redundancy (spatial redundancy: measuring more variables than the minimum 
required to ensure observability, so that there are multiple ways of estimating a variable (Mah, 1990) 
and hardware redundancy: measuring a variable using more than one sensor) for sensor placement in 
linear systems. There are also other methods based on linear and bilinear mathematical models for 
sensor location (Madron & Veverka, 1992). They proposed two objective functions for optimization: 
overall measurement cost and overall precision of a system and utilized Gauss-Jordan elimination to 
identify a minimum set of variables that need to be measured in order to observe all important 
variables. Their work is essentially an extension of the work of (Vaclavek & Loucka, 1976). (Raghuraj, 
et al., 1999), (Bhushan & Rengaswamy, 2000), (Bhushan & Rengaswamy, 2000b), (Khemliche, et al., 
2006), (Bhushan, et al., 2008), (Yang, et al., 2009) also used qualitative (cause-effect) graph theoretic 
approaches to find the optimal sensor locations in a process. 
 

 Linear Quadratic Control 
 

Linear quadratic control is a well-known closed-loop strategy for controller design that minimizes 
energy of both the control signal and the measured signal. The control is calculated by minimizing a 
quadratic cost function with penalty on both the state of the system and the control input. This 
objective is concerned with controlling the initial condition to 0 and disturbances are neglected. 

Consider the system (2.1) on n . In the case of a single control u , the linear-quadratic (LQ) controller 
design objective is to find a control ( )u t to minimize the quadratic cost functional 0( , )J u x over 

infinite-time interval, for a given initial state 0x : 

0 0
( , ) ( ), ( ) ( ), ( )J u x x t Qx t u t Ru t dt


                                      (2.4) 

where 0R  weights the control cost,Q is a self-adjoint positive semi-definite matrix weighting the state. 

The linear quadratic control problem is to minimize the cost function (2.4) over all possible controls: 

2
0(0, ; )

min ( , )
mu L

J u x
  

                                                         (2.5) 

The control that achieves this minimum, optu ,is often called the linear quadratic optimal control. 

Definition (2.2): The pair ( , )A B  is stabilizable if there exists m nK  so that A BK is Hurwitz. 
 

Definition (2.3): The pair ( , )A C is detectable if there exists n lF  so that A FC is Hurwitz. 
 

Theorem (2.1): (Morris, 2001) Consider the system given by (2.1). assume the case that there are m
actuators with locations that could be varied over the compact set . If 1/2( , , )aA B Q is both 

stabilizable and detectable. Then the infinite-horizon optimization problem (2.5) has a minimum for 
every given initial condition 0x . Furthermore, there exists a symmetric, semi-positive definite matrix,

n n
aP  , such that: 

2
0 0 0 0(0, ; )

min ( , ) ( , )
m

T
a a opt au L

J u x J u x x P x
 

 


                                     (2.6) 
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where aP is the unique solution of the Algebraic Riccati Equation (ARE): 
1 0T T

a a a a a aA P P A P B R B P Q                                             (2.7) 

The optimal control optu is as follows: 
1 ( )T

opt a au R B P x t                                                         (2.8) 

and the corresponding optimal state feedback, 1 T
a aK R B P  is stabilizing, i.e. A BK is Hurwitz. 

  
The proof is given in (Morris, 2011), see Theorem (5.12) and Theorem (5.16). According to the above 
Theorem, for a particular initial condition 0x , the optimal actuator location problem can be formulated 

as follows: 

0 0inf
m

T
aa

x P x


                                                             (2.9) 

The linear quadratic index has been studied in various literature as an objective function to optimise 
actuator location and feedback gain, (Demetriou, 2000),  (Chen, et al., 2012), (Li & Huang, 2013). 
The optimal linear-quadratic cost at a given actuator location a , which is given by (2.9) depends on 
the initial condition 0x . Researchers have used a number of techniques in the past to remove this 

dependency. The first approach is to consider the worst case initial condition (Devasia, et al., 1993), 
(Morris, 2011). The cost function is: 

0 02
0 0 0 max1 1(0, ; )

max min ( , ) max ( ) ( )
m

T
a a ax xu L

J u x x P x P
  

 


                   (2.10) 

Then the optimal actuator selection problem can be formulated as: 

maxinf ( )
m aa

P


                                                                 (2.11) 

 
Another method is to view the initial condition as a random vector with zero mean and unity variance 
(Morris, 2011), (Geromel, 1989). The expected optimal linear-quadratic cost is: 

2
0 0 0(0, ; )

min ( , ) ( )
m

T
a a au L

E J u x E x P x trace P
 

       
                   (2.12) 

Thus, the problem of optimal actuator location can be defined as: 
inf ( )

m aa
trace P


                                                                 (2.13) 

Another approach is to average the cost over a set of linearly independent initial states (Antoniades 
& Christo, 2002). The effect of a disturbance with fixed frequency content (for instance, a 
single white noise disturbance) is considered in (Morris & Demetriou, 2010). This leads to a 2H control 

problem and if the spatial distribution of the disturbance is unknown, then the cost function (2.10) 
is used to calculate the optimal actuator location. Linear quadratic control is a popular choice, since 
the controller is designed simultaneously with the optimal actuator location. A methodology based on 
the minimisation of the optimal linear quadratic control index as an objective function was proposed 
by (Devasia, et al., 1992). This objective function was applied to a simply-supported beam in order to 
optimise the size and location of actuators using a simple search method. They reported that this 
objective function achieves stability of closed-loop control system and allows a designer to choose 
various values of weighted matrices of optimal linear quadratic index in order to optimise actuator 
location and vibration reduction. (Kondoh, et al., 1990) proposed an objective function based on the 
minimisation of the linear quadratic index to optimise sensor and actuator location and feedback gain 
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for a cantilever beam. The authors reported that the optimal linear quadratic control has a clear 
physical meaning and the flexibility to allow the implementation of varying weighted matrices. (Sung, 
2002) used the linear quadratic index with the worst case initial condition for placing actuators on a 
simply supported beam with a moving mass. In (Fahroo & M.A. Demetriou, 2000), the linear quadratic 
cost function with a random vector uniformly distributed initial condition was minimized for finding 
the best locations of actuators to reduce the interior noise in an acoustic cavity. To determine the 
most effective placement and design of an active control system,  (Levine & Athans, 1970), (Abdullah, 
et al., 2001) used the cost function (2.12) to consider both the building response and the control effort.  
(Kumar & Narayanan, 2007), (Kumar & Narayanan, 2008) considered the optimal placement of 
collocated piezoelectric actuator/sensor pairs on flexible beams using a model-based linear quadratic 
regulator (LQR) controller. 
 

 H and 2H Norms 
 

Noise in the environment and disturbances, which are often unknown, will influence the performance 
of the control system. Therefore, in many situations, the problem is to reduce the effect of 
disturbances on the performance. The control system is now described by: 

( ) ( ) ( )
, , , , , ,

( ) ( ) ( )
d n n n n m l n l m n k

d

x Ax t Bu t B d t
x A B C D B

y t Cx t Du t
      

       


      (2.14) 

where ( )d t is the exogenous input or disturbance. H and 2H norm functions are a measure of open 

and closed loop system frequency response to an external disturbance. These criteria have been used 
as objective functions to optimise the location of sensors and actuators. The problem is to find a 
controller ( )u t to minimize: 

2

2

(0, , ) 0
( )lLy y t dt




 

                                                   (2.15) 

Since the 2L norm of y equals the 2H norm of the Laplace transform of y , this is known as an 2H

controller design problem. The 2H and H cost (Geromel, 1989) are closely related to the linear 

quadratic criteria examined in the previous sub-section. (Leonides, 2012) 

The usual orthogonality hypotheses 0TC D  and TD D I are assumed in order to simplify the 
subsequent equations. The full column rank of matrix D ensures a non-singular map y on the control

( )u t . It is assumed that all states of the system are available for measurement. This system (2.14) is 

a special form of the generalised plant configuration, known as the full information problem. 
Assume that ( )d s and ( )y s be the Laplace transforms of the disturbance and the output respectively.  
Then, minimizing the effect of all disturbances on the output is equivalent to minimizing the size of 
the transfer function: 

( )
( )yd

y sG
d s

                                                                   (2.16) 

The notation H indicates the Hardy space of all functions ( )G s , which are analytic in the right-half 
plane Re(s) > 0 and for which: 

0
sup lim ( )

x
G x j





                                                      (2.17) 

Thus, H norm is defined as: 
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 ( ) sup ( ( ))G j G j


  

                                                  (2.18) 

where ( ( ))G j  denotes the maximum singular value of the transfer function ( )G j . The details of 

calculating H norm can be found in many literature, see e.g. (Morris, 2001), (Zhou & Doyle, 1996). 

LetG be the transfer function of the system (2.14): 
 

   1( ) ( ) 0dG s C sI A B B D                                     (2.19) 

With state feedback control: 
( )u Kx t                                                                  (2.20) 

 
The closed loop transfer function from disturbance to output is: 

1( ) ( )( ( ))yd dG s C DK sI A BK B                                      (2.21) 

 
Definition (2.4): (Doyle, et al., 1989) The controlled system will have inputd (disturbance) and output
y (measurement). The fixed attenuation H control problem for attenuation of (2.14) is to 

construct a stabilizing controller with transfer function ( )G s so that the closed loop system ydG with

( ) ( ) ( )u s G s x s is 2L stable and satisfies the bound: 

ydG 

                                                                   (2.22) 

 
Even for stabilizable systems, the fixed attenuation problem cannot be solved for every attenuation 
since such a controller may not exist. However, if it is solvable, as in the case of linear quadratic 
control, the control law can be chosen to be constant state feedback. (Özdemir, 2003) 
 
Definition (2.5): The optimal H control problem for (2.14) with full-information is to find: 

ˆ inf                                                                      (2.23) 
over all for which the fixed attenuation problem is solvable. The infimum ̂  is called the 

optimal H attenuation, which can be calculated using a bisection-type algorithm. 

 
The H cost for a particular actuator location a is ˆa .The value of ˆa provides the best possible 

attenuation of the worst-case disturbance for the system at the actuator location a . 
Another approach for placing actuators is to use the H norm of the closed-loop system, which has 

some advantages: 
 The effect of the worst-case disturbance on the output of the system is minimized 
 with optimal actuator location, the corresponding optimal state feedback controller is 

simultaneously designed 
 The closed loop system is stabilized 
 

 (Gawronski, 1998) discusses the H criteria in more details. 

Consider the performance index: 

2 2

2 22
0 (0, , ) (0, , )( , ; ) l kL LJ u d x y d

 
  

                               (2.24) 
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subject to (2.14) for some 0  . Calculating a controller that achieves the given H attenuation 
bound is equivalent to solving the optimization below (Morris, 2001): 
 

0max min ( , ; )
mk ud

J u d x
 

                                                 (2.25) 

Consider the first term of the performance index (2.24). The 2L norm of y equals the 2H norm of the 

Laplace transform of y , this is known as an 2H controller design problem. The 2H optimal control is 

the state feedback (Zhou, et al., 1997): 
*( ) ( )a au t B P x t                                                           (2.26) 

Subject to stabilizability of ( , )aA B . aP is the unique solution of the Algebraic Riccati Equation (2.7). 

Therefore, the 2H optimal actuator location problem is to find the actuator location a that minimizes 
the corresponding cost (Morris, et al., 2015): 

*( )d a dtrace B P B                                                       (2.27) 

 
Mathematically, the problem is identical to that of minimizing the LQ cost when the initial condition 

is random with covariance *
d dB B . If aB is a continuous function of a , both the optimal actuator 

location problem with a fixed disturbance location, and the problem where the disturbance is 
unknown, lead to well-posed optimization problems. Since the optimal cost relies on the norm of the 
solution to Algebraic Riccati Equation (2.7), well-posedness of this problem follows using techniques 
and results similar to the linear quadratic case  (Morris, et al., 2015), (Morris & Yang, 2015). 
In a fluid application, (Chen & Rowley, 2011) used 2H criteria for optimal actuator and sensor 

placement with respect to the disturbance and with respect to each other, which is shown to have a 
significant effect on performance. In (Ambrosio, et al., 2012), an 2H criterion based on a modal 

approximation of a structure is applied. They have considered the neglected modes to accomplish 
spill-over attenuation. In (Guney & Eskinat, 2008), sensor/actuator pair placement on a simply 
supported beam and H control with an impulse disturbance was performed. The control signal is 

shown, but no comparisons were made between locations. 
(Liu, et al., 2006), (Hiramoto, et al., 2000), (Arabyan & Chemishkian, 1998), (Chemishkian & Arabyan, 
1999) have investigated the optimal locations of sensor and actuator under closed loop control using 
optimisation algorithms to find the optimal combinations of sensors and actuators. In (Hiramoto, et 
al., 2000), the product of a frequency weighting term that represents the design specification and the 
closed-loop transfer function was used for optimal actuator placement. 
In (Raja & Narayanan, 2009) H cost function was used for locating actuators in the vibration control 

of tensegrity structures. The results showed that the displacement is less with H criteria than the 2H

performance index. (Silva, et al., 2006) used an H approach to place actuators on a plate. 

(Sweeney, et al., 2005), (Demetriou & Grigoriadist, 2004) have used an analytical expression to 
compute the upper bound on the H norm of the controlled system was used to optimize the 

actuator locations. Using this analytical approach, it was shown in (Demetriou & Grigoriadist, 2007) 
that the resulting optimal actuator location exhibits spatial robustness. Calculation of optimal actuator 
locations with spatially varying disturbances was addressed in (Demetriou, 2004). 
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 Degree of Controllability/Observability and Gramians 

 

Controllability refers to the property of being able to steer the state of a dynamical system from any 
starting point to any terminal point by means of appropriate inputs. Observability is concerned with 
whether without knowing the initial state, one can determine the state of a system given the input 
and the output. Controllability and observability of a system, which depend primarily on actuator and 
sensor location, will have a major influence on the efficiency of the control system and the control 
effort required to satisfy design requirements. 

Definition (2.6): Consider the following linear time-invariant system: 

( ) ( )
, , , ,

( ) ( )
a n n n m l n l m

a s
s

x Ax t B u t
A B C D

y C x t Du t
    

     


      (2.28) 

aB denotes a family of input operators that are compact and continuous with respect to actuator 

location a . This system is said to be controllable at the actuator location a if, for any initial state 0x
and any final state fx , there exists an input ( )u t such that the integral curve ( )x t generated by ( )u t

with 0(0)x x , satisfies ( )f fx t x  in a finite time 0ft  . Otherwise, the system or the pair ( , )aA B
is said to be uncontrollable at the actuator location a . 

 
Definition (2.7): Consider the linear time-invariant system in (2.28), sC denotes a family of output 

operators that are compact and continuous with respect to sensor location s . This system is called 
observable at the sensor location s if for any finite time 0ft  , the initial state 0(0)x x can be 

determined from the time history of the input ( )u t and the output ( )y t in the interval[0, ]ft . 

Otherwise, the system or the pair ( , )sA C is said to be unobservable at the sensor location s . 

 
 
Since the performance of the controlled system is highly related to the actuator/sensor locations 
(Fahroo, 1995), (Morris, 1998), many authors optimized actuator locations based on maximization of 
observability and controllability (Liu & Hu, 2010), (Peng, et al., 2005), (Qiua, et al., 2007), (Zhang & 
Erdman, 2006 ).  
A general rule for IO selection method would be to reject candidate IO sets for which ( , )aA B is 

uncontrollable or ( , )sA C is unobservable. The problem of associating physically meaningful measures 

of quality with the notions of controllability and observability was discussed a little by (Brown, 1966) 
and (Monzxngo, 1967). Later, (Johnson, 1969)after a comprehensive review of the problem maximized 
one special scalar measure of the quality of complete controllability and complete observability for a 
class of linear dynamical systems. It is shown in (Olshevsky, 2014) that the minimal controllability 
problem is NP-hard; indeed, this paper utilizes a simple greedy heuristic which sequentially picks 
variables to maximize the rank increase of the controllability matrix. (Václavek & Loučka, 1976) 
proposed a sensor selection on steady-state systems using graph theory to ensure observability of 
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variables. (Caruso, et al., 2003) studied the optimal placement of actuators and sensors for a 
collocated flexible plate structure. For a given number of available piezoelectric patches of fixed 
dimensions to be bonded to the plate, the optimal locations were obtained by maximizing the modal 
controllability and observability of the structure. Various simple tests for this qualitative measure are 
available (Zhou, et al., 1997). According to Kalman rank condition, the system given in (2.28) is 
observable and controllable if the controllability and observability matrices (2.29) are full rank. 

2 1

2 1

n

Tn

C B AB A B A B

O C AC A C A C





   

   




                                             (2.29) 

A large number of studies has considered classical binary controllability metrics based on Kalman rank 
(Liu, et al., 2011), (Rajapakse, et al., 2011), (Cowan, et al., 2012), (Nepusz & Vicsek, 2012), (Wang, et 
al., 2012), (Olshevsky, 2014), (Pequito, et al., 2016). (Morari & Stephanopoulos, 1980) proposed 
structural state controllability and observability as the selection criteria. 
The controllability and observability concepts has been strengthened by the fact that they are robust 
properties in linear constant systems(Lee & Markus, 1967). That is, the set of all controllable pairs
( , )A B is open and dense in the space of all such pairs. This fact was exploited by (Lin, 1974) in 

formulating his concept of structural controllability, which states that all uncontrollable systems 
structurally equivalent to a structurally controllable system are a typical. Not only is this concept 
consistent with physical reality in the sense that values of system parameters are never known 
precisely, but it is also helpful in testing the properties of controllability using only binary 
computations. It is a well-known fact that testing controllability is a difficult numerical problem (Nour-
Eldin, 1987), and structural controllability offers a computable alternative especially for systems of 
high dimension. Regarding the duality, the same facts hold for observability.  

Definition (2.8): An n n matrix  ijM m  is said to be a structured matrix if its elements ijm are 

either fixed zeros or independent free parameters. For example, a 2 3 structured matrix is: 

0
0

M
  

    
  

 

To relate a numerical n n matrix  ijM m to a structured matrix  ijM m  we define 

 1, 2, ,n n  ,  1,2, ,m m  and state the following: 

Definition (2.): A numerical matrix M is said to be admissible with respect to a structured matrix M , 

that is, M M  ,if and only if 0ijm  implies 0ijm  for all i n and j m . 

 
 
Definition (2.9): Consider the linear system below: 

:
x Ax Bu

S
y Cx
 

 


                                                                      (2.30) 

A structured system ( , , )S A B C    so that ( , , ) ( , , )A B C A B C   . Structural controllability of the 

system S is defined via the pair ( , )A B  as in (Lin, 1974).  
 
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Definition (2.10): A pair of matrices ( , )A B  is said to be structurally controllable if there exists a 

controllable pair ( , )A B such that ( , ) ( , )A B A B   . 
 

Definition (2.11): A pair of matrices ( , )A C  is said to be structurally observable if there exists an 

observable pair ( , )A C such that ( , ) ( , )A C A C   . 
 

In (Commault & Dion, 2013) and references therein, given the structure of a linear-time invariant 
system and a possible collection of inputs, the objective is to determine the minimum subset of inputs, 
which yields the structural controllability. (Commault & Dion, 2013) proposes solution methods to the 
above constrained minimal input selection problem rely on a two-step optimization procedure, which, 
in general, leads to suboptimal solutions. Determining feasible solutions to the constrained minimal 
input selection problem has been a major focus of (Dion, et al., 2003), (Murota, 2009). Similar work is 
presented in (Boukhobza & Hamelin, 2011), where the analysis of IO selection is investigated via 
ensuring structural observability for linear systems in descriptor form. The problem of identifying the 
optimal input/output, which yields the structural controllability/observability was also considered in 
(Liu, et al., 2011), (Dion, et al., 2002). 
 (Liu, et al., 2011) states that the minimum number of controlling agents required to achieve structural 
controllability is related to the number of right unmatched vertices of an associated bipartite matching 
problem. 
However, these criteria have some disadvantages. They are binary qualitative concepts and tell only 
whether a set of actuators/sensors make the system controllable/observable or not, regardless of 
other considerations such as the energy required to actually drive the system around the state. 
Therefore, a measure of the degree of controllability/observability has to be defined to help choose 
the best IO set. This measure should have the following attributes (Abdel-Mooty & Roorda, 1994): 

 It must vanish for uncontrollable/unobservable case 
 It must indicate the effectiveness of the selected set of actuators/sensors, which is the 

ability of the actuators to induce the desired control effect, i.e. enhance the controllability 
properties, and the ability of the sensors to enhance the detection, i.e. improve the 
observability properties.  

 It must indicate the control/observe cost as a measure of the effort made to achieve the 
required control/detect level  

 It must reflect the control/observe objective 
Definition (2.12): A recovery region in the state space was defined as the region that includes all of 
the initial conditions (or disturbed states) that can be returned to the origin in a finite time using the 
bounded control forces. The degree of controllability (DOC) was defined as a scalar measure of the 
size of the recovery region. 

 
In other words, the degree of controllability will be determined by the minimum distance from the 
origin to a state that cannot be brought to the origin in a finite time ft . More loosely, it is the minimum 

initial condition disturbance from which the system cannot recover in ft . 
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Theorem (2.2): (Morris, 2001) The pair ( , )aA B defined in (2.1) is controllable at a if and only if

(0, )a
c fW t is positive definite for all 0ft  . 

 
 
where: 

0
(0, )

Tfta A T A
c f a aW t e B B e d                                                       (2.31) 

The proof is given as Theorem (2.5) in (Morris, 2001). To address the degree of 
controllability/observability issue various quantitative measures have been proposed in literature. 
Among the first attempts was the work of (Kalman, et al., 1963), in which a symmetric controllability 
matrix for time-varying linear systems was defined. That study further defined the determinant and 
the trace of controllability Gramian as scalar measures of the controllability, see e.g. (Leleu, et al., 
2001). (Muller & Weber, 1972), (Arbel, 1981) added the minimum eigenvalue of the controllability 
Gramian as a third measure. Controllability and observability Gramian have some advantages when 
compared to controllability/observability matrices. The superior numerical properties of Gramians are 
due to their symmetry, semi-definiteness and compactness. An interpretation of the Gramians is the 
geometry of principal components of an ideal sensor/ actuator configuration. The controllability 
Gramian quantifies the energy required to move the system around the state space. 
Relevant results are also found in (Pasqualetti, et al., 2014), where the authors study the controllability 
of a system with respect to the smallest eigenvalue of the controllability Gramian, and they derive a 
lower bound on the number of actuators so that this eigenvalue is lower bounded by a fixed value. 
Nonetheless, they do not provide an algorithm to identify the actuators that achieve this value. They 
propose a heuristic actuator placement procedure that does not constrain the number of available 
actuators and does not optimize their control energy objective. A small eigenvalue of the 
controllability Gramian matrix would lead to at least one state requiring very high control effort. This 
implies that all the eigenvalues of the controllability Gramian matrix should be as large as possible. 
(Georges, 1995) extended this idea to nonlinear systems. (Hac & Liu, 1993), (Qiu, et al., 2007) 
developed an optimization method for finding the optimal locations of piezoelectric actuators based 
on the degree of controllability using the Gramian matrix as follows: 

1 1

max max
m m

nn
ni i

a a i i

  
   

 
   

 
                                                    (2.32) 

where m is the number of actuators with locations that could be varied over some compact set

a  . , 1, ,i i n   denotes the ith eigenvalue of the controllability Gramian. The summation 

term in (2.32) is the trace of the Gramian matrix. To ensure that all the eigenvalues of the Gramian 
are high, the geometric mean of all the eigenvalues is included in the objective function. The optimal 
locations of multiple actuators calculated using (2.32) suppressed the vibrations in a plate (Peng, et 
al., 2005). An adaptive feedforward controller was designed in (Peng, et al., 2005)after calculating the 
optimal actuator location. 

A term related to the standard deviation of Gramian eigenvalue, 1( )i  , was often included in the 

performance index (2.32) as a product term, see e.g., (Jha & Inman, 2003), (Pulthasthan & Pota, 
2008), where the objective function is defined as: 
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2

1 1

( )
nn

ni i i
i i

    
 

  
      
                                            (2.33) 

Here i could be the ith eigenvalue of the controllability gramian in the case of actuator locations or 

the observability gramian when sensor positions are considered. Factor 2

1

( )
n

n i i
i

  


 
  
 
  in 

equation (2.5) are used to normalize the factor
1

n

i
i




 
 
 
 which is directly proportional to the total 

exchanged energy between the plant and actuators or sensors. The term 2

1

n
n i

i




 
  
 
 is the geometric 

mean of the ellipsoid axes length, ( )i  penalizes locations where there is a poorly controllable or 

observable state hidden by a highly controllable or observable state or there exist both very high and 
very small eigenvalues. Optimal sensor and actuator location is obtained at the position where the 
objective function  in equation (2.5) is a maximum. 

(Muller & Weber, 1972), (Dochain, et al., 1997), (Waldraff, et al., 1998), (Van den Berg, et al., 2000) 
presented a sensor placement technique based on a suitable norm of the observability Gramian or 
the observability matrix. For optimal actuator placement (Choe & Baruh, 1992) minimizes the 
objective functions based on the entries of the actuator influence matrix, which gives general 
measures of controllability. (Devasia, et al., 1993), (Jha & Inman, 2003), (Bruant & Proslier, 2005) 
proposed the maximization of a controllability/observability criterion using the Gramian matrices as 
well. (Wang & Wang, 2001) suggested the maximization of the control forces transmitted by the 
actuators to the structure. (Dhuri & Seshu, 2006) proposed a modal controllability index based on the 
same singular value analysis of the control vector. In an attempt to define a degree of controllability, 
(Cheng & Pantelides, 1988) suggested a weighted sum of the squares of the modal displacements of 
seismic buildings at the actuator position, each multiplied by the maximum modal response spectrum 
value for the design earthquake. However, this criterion does not satisfy the basic requirement that 
the DOC vanishes when the system becomes uncontrollable. 
For actuator placement (Kim & Junkinsf, 1991) introduced a combination of the squares of Hamdan 
and Nayfeh's modal controllability measures weighted by the respective modes' contributions to a 
quadratic output cost function. (Bagajewicz & Sanchez, 1999) presented a sensor placement 
technique with the goal of achieving a certain degree of observability or redundancy for a variable in 
a system. They introduced the degree of estimability of a variable by merging the concept of degree 
of redundancy for measurements and degree of observability for unmeasured variables into one single 
property. (Bruant, et al., 2010) used two modified optimization criteria, ensuring good observability 
or controllability of the structure, and considering residual modes to limit the spill-over effect. They 
considered two optimization variables for each piezoelectric device: the location of its centre and its 
orientation. They implied Genetic algorithms to find the optimal configurations. (Han & Lee, 1999) 
also used genetic algorithm (GA) to determine the sensor and actuator locations with the 
consideration of controllability, observability, and spill-over prevention. However, in their work, the 
dynamic characteristics of both rectangular plate and piezoelectric sensors/actuators were not 
derived explicitly. 



21 

 

(Lim, 1992) proposed a method based on the combined degree of controllability and observability to 
select the most suitable set of actuator and sensor locations, which is capable of simultaneously 
controlling and observing the system to a high degree. The controllability Gramian was computed and 
the controllable subspace for each actuator location was derived. The observability Gramian was also 
calculated and the observable subspace for each sensor location was determined. An intersection 
subspace was formed from the controllable and observable subspaces of each actuator/sensor pair. 
The proposed optimization cost functional did not incorporate closed-loop control; therefore, any 
control method could be applied after the actuator positions are determined. Additionally, the 
approach was computationally efficient because the problem size and design space are proportional 
to the number of actuators, unlike other methods where the design space is factorially related to the 
number of actuators.  One disadvantage of the method is that a priori knowledge of the system is 
required. 
The use of Gramians as quantitative metrics of controllability in networks is studied in (Rajapakse, et 
al., 2011), (Yan, et al., 2012), (Sun & Motter, 2013), (Tang, et al., 2012), (Pasqualetti, et al., 2014). 
Other important studies of controllability measures in networks include (Olshevsky, 2014), 
(Sorrentino, et al., 2007), (Rahmani, et al., 2009). They have studied the problem of leader selection 
in networks with consensus dynamics, in which a set of leader states are selected to act as control 
inputs to the system. Controllability Gramian based approach is an open-loop strategy. Calculation of 
optimal actuator location does not simultaneously provide a controller. For example, in (Pulthasthan 
& Pota, 2008), the design of optimal control and the optimal actuator location were treated as two 
separate problems which is cumbersome. 

Definition (2.13): A set function : 2Vf   is called submodular if for all subsets A B V   and all 

elements s B , it holds that: 

      ( ) ( )f A s f A f B s f B                                              (2.34) 

or equivalently, if for all subsets: 
( ) ( ) ( ) ( )f A f B f A B f A B                                                    (2.35) 

A set function is called super-modular if the reversed inequalities in (2.34) and (2.35) hold and is called 
modular if (2.34) and (2.35) hold with equality.  

 
The authors in (Summers & Lygeros, 2014) showed that the mapping from possible actuator 
placements to the trace of the controllability Gramian is a modular set function and therefore a simple 
optimization can be implemented to compute the metric individually for all possible actuator 
placement combination, sorts the outcome, and selects the globally optimal subset that minimizes the 
Gramian energy metric (Summers, 2016). Several classes of Gramian metrics are shown to be 
submodular in (Summers, et al., 2016), (Summers & Lygeros, 2014), (Cortesi, et al., 2014), (Tzoumas, 
et al., 2016): 

 1( )ctrace W   

 log cW  

 ( )crank W  

 
 In addition, many other problems featuring super-modularity or sub-modularity are discussed in 
(Pasqualetti, et al., 2014), (Clark, et al., 2014), (Summers, et al., 2015), (Bushnell, et al., 2014), (Yan, et 
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al., 2015), (Shames & Summers, 2015). Although optimization of submodular functions is difficult, sub-
modularity allows for an approximation guarantee if one uses a simple greedy heuristic for their 
optimization (Nemhauser, et al., 1978). 
The approaches presented in (Summers & Lygeros, 2014) assume that the system is initially stable 
with strict applications to linear time-invariant systems with the controllability Gramian and its 
derivatives as the control metric.  
(Juang & Rodriguez, 1979) regarded the framework of the optimal control theory for systems 
subjected to initial disturbances and defined the cost function that is to be minimized as an indication, 
which relies on the controllability and disturbance sensitivity Gramians, so closed-form solution can 
be found. Many studies to qualify controllability of a system with external disturbances have been 
carried out (Stanley, et al., 1985), (Morari, 1983), (Morari, et al., 1985), (Shimizu & Matsubara, 1985), 
(Skogestad & Morari, 1987), (Hovd & Skogestad, 1992), (Luyben, 1988), (Cao & Rossiter, 1996), (Cao, 
et al., 1997), (Mirza & Niekerk, 1999). However, these works are mainly defined in frequency domain 
and hard to be applied to a system with unmatched disturbance on output, though they have an 
advantage to calculating specific frequency range. Naturally DOC for disturbance rejection in time 
domain is defined by (Kang & Park, 2009) . (Lee & Park, 2014) extended this idea to unstable systems. 
The optimal actuator placement in controlling large structures in space subjected to initial 
disturbances was considered in (Viswanathan, et al., 1979), (Lindberg & Longman, n.d.), (Longman & 
Lindberg, 1986), (Viswanathan & Longman, 1983) and (Longman & Horta, 1989). (Viswanathan, et al., 
1979) developed some numerical methods for generating the degree of controllability and evaluating 
the effectiveness of candidate actuator distributions. The method is shown to take on a relatively 
simple form when spacecraft modal coordinates are used.  
(Hughes & Skelton, 1980) used the norms of the rows of the control location matrix as measures of 
the controllability of the individual modes. (Trajkov & Nestorvic, 2012) analyzed the placement based 
on controllability and observability criteria. The optimization was conducted based on H2-norm and 
controllability and observability gramian function which is dependent on vibrational modes. The 
structure model was designed using finite element and after the reduction of order process, 
optimization operations were done on the reduced model and the optimal place was suggested for 
the plate and cantilever beam.  
(Vilnay, 1981) and (lbidapo-Obe, 1985) proposed a method based on the interpretation of the 
functional relationship (transfer matrix/control influence matrix) between the actuators and modes 
of the structural system. It is shown that, from the form of the matrix, the controllability and 
observability of the system with respect to differing locations of the sensors and actuators can be 
established. In an attempt to consider the control effort in the actuator placement, (Abdei-Rohman, 
1984) suggested that the optimal distribution of the sensors and the actuators is that which minimizes 
the observer gains and the control gains for the same level of control. However, the control gains do 
not represent completely the control effort, which depends greatly on the type and configuration of 
the control mechanism. (Sinha, et al., 2013) derived an analytical expression for the finite time 
controllability and observability Gramian for advection PDE. The selection criteria for the optimal 
location of actuators and sensors was proposed based on the maximization of Gramians. (Safizadeh, 
et al., 2010) studied the best position of piezoelectric actuator for active vibration control using 
controllability Gramian performance index and genetic algorithm. Their proposed method optimizes 
the controllable performance index in order to minimize the output energy of actuator for limited 
modes of frequency. In this method, the main responsibility is system's controllability and expressing 
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an optimum control input so that by applying forces on this optimal place of structure, system, can be 
damped. (Yang & Chen, 2010), (Yang & Chen, 2010 b) studied the optimal placement of piezoelectric 
sensor and actuator on a plate by increasing the controlling performance of system.  In their work, the 
performances of two algorithms are used and compared to achieve better optimization result among 
variables of vibration response deformation precision, control energy and number of actuators. The 
utilized algorithms are GATSP (Genetic for the TSP) algorithm and HTTSP (Hopfield-Tank for the TSP) 
algorithm. 
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2.5. Summary 

In this chapter, a brief survey based on some most popular optimization strategies that were used 
extensively in engineering literature for actuator/sensor placement is done. 
An overview of the problem of optimal actuator/sensor selection is presented and some energy-based 
criteria are described.  
The originality of this thesis is to use the reviewed concepts within a systematic framework in order 
to select the best actuator/sensor location with which the optimum performance is achieved while 
the required control energy is minimized. A new evolutionary algorithm is developed and merged 
within the proposed methodologies for the purpose of the control energy optimisation for each 
actuator/sensor set. The next chapter discusses the controllability Gramian approach in more detail. 
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Chapter 3: Overview of Controllability Gramian and its 
Computation 
 
 
 
3.1. Introduction 

The principal goals of this chapter are to introduce the system properties of controllability and 
controllability Gramian (and of reachability, reachability Gramian), which play a central role in the 
study of energy consumption and input/output structure selection, topics that will be studied in the 
following chapters. 

Controllability refers to the ability to manipulate the state by applying appropriate inputs (in 
particular, by steering the state vector from an initial vector value to a final vector value in finite time). 
Such is the case, for example, in satellite attitude control, where the satellite must change its 
orientation by manipulating its thrusters. 

In Section 3.2, the concepts of reachability and reachability Gramian are introduced for linear 
continuous time-invariant systems.  

Controllability and controllability Gramians are treated in detail in Section 3.3, where a novel approach 
of calculation of controllability Gramian is presented.  
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In the last section, we introduce a new approach for selecting input matrix B, which can assign a 
desired controllability Gramian to the LTI system. 

  

3.2. Reachability and Reachability Gramian 

Consider the LTI state space system: 

x Ax Bu
y Cx Du
 
 


                                                                           (3.1) 

where n nA  , n mB  and ( ) mu t  , Then the state at time ft is given by:  

0
0 0( ) ( , ) ( , ) ( )ft

f f ft
x t t t x t Bu d                                                         (3.2)  

where ( , )t  is the state transition matrix of the system, and 0 0( )x t x is the initial state. 

In the time-invariant case considered here the state transition matrix can be defined as: 

( )( , ) ( ,0) A tt t e                                                                   (3.3) 

Here we are interested in using the input to transfer the state from 0x to some other value ( )f fx t x

at some finite time 0 ft t . Note that here because of time invariance, only the difference 0ft t T  , 

is relevant (rather than the individual times 0t and ft ) and we can always take 0 0t  and ft T . 

Considering (3.3), equation (3.2) can be written as: 

( )
0 0

( )
TAT A T

fx e x e Bu d                                                           (3.4) 

Clearly, there exists ( )u t , 0 t T  , that satisfies (3.4) if and only if such transfer of the state is possible. 

Also, if we define 0ˆ AT
f fx x e x  , it follows that the control input ( )u t , which transfers the states 

from 0x at time 0, to fx at time T will also cause the state to reach ˆ fx at T , starting from the origin at 

time zero. 

Definition (3.1): A state fx is reachable if there exists an input ( )u t , 0 t T  , that transfers the states

( )x t from the origin at 0 to fx over some finite time ft T . A reachable state fx is sometimes also 

called controllable from the origin (Antsaklis & Michel, 2007). 

 

Definition (3.2): The set of all reachable states r is the reachable subspace of the LTI system (3.1), 

or of the pair ( , )A B . Note that the set of all reachable states fx contains the origin and constitutes a 

linear subspace of the state space ( n , ) (Antsaklis & Michel, 2007). 

 
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Definition (3.3): The LTI system (3.1), or the pair ( , )A B is completely reachable if every state is 

reachable, i.e., if n
r    (Antsaklis & Michel, 2007). 

 

Definition (3.4): For the linear continuous-time invariant system (3.1), the n n reachability Gramian 
is (Lewis, et al., 2012) (Antsaklis & Michel, 2007): 

*( ) * ( )

0
(0, )

T T A T A
rW T e BB e d                                                     (3.5) 

 

Lemma (3.1): (Antsaklis & Michel, 2007) rW is a symmetric, positive semidefinite matrix, for every

0T  ; i.e., *
r rW W and 0rW  .  

 

One can also show that the reachable subspace of LTI system (3.1) is exactly the range of the 
reachability Gramian rW . This is described as Theorem 3.1, but before that it is worth mentioning that 

the range of (0, )rW T , is independent of T, it is the same for any finite 0T  , and in particular, it is 

equal to the range of the controllability matrixC , it is stated in Corollary (3.1) below: 

Corollary (3.1): (Antsaklis & Michel, 2007) ( (0, )) ( )rW T C  for every 0T  . 

(Note: In discrete case, the reachable (and/or controllable) subspace does not depend on the finite 
time only when the interval has length larger than or equal to n time steps, when 0 T n  , we have

( (0, )) ( )rW T C  where 1nC B AB A B     (Hespanha, 2009).) 

 

Theorem (3.1): (Antsaklis & Michel, 2007) Consider the LTI system (3.1), and let the initial condition
(0) 0x  . There exists an input u that transfers the state 0 0x   to fx in finite timeT >0 if and only if

( )fx C , or equivalently, if and only if ( (0, ))f rx W T . Thus, the reachable subspace

( ) ( (0, ))r rC W T   . Furthermore, an appropriate u that accomplishes this transfer in time T is 

given by: 

** ( )
1( ) T t Au t B e                                                                      (3.6) 

 

with 1 such that 1(0, )r fW T x  and 0 t T  .                                                                                             

 

Note that here there is no restriction on timeT , other than it has to be finite, soT can be as small as 
we wish; i.e., the transfer can in theory be accomplished in arbitrarily short time, though we will 
discuss later that this may be infeasible in practice as it may require control signals of arbitrarily large 
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magnitude or energy. Thus, it has its own costs, leading to a trade-off due to some physical restrictions, 
which appears in practical cases. 

Next we introduce Corollary (3.2), which is a well-known result that has been used explicitly or 
implicitly by many authors (Farina & Rinaldi, 2011) (Antsaklis & Michel, 2007) (Guzzella, 2011) 
(Hespanha, 2009).  

Corollary (3.2): The LTI system (3.1), or the pair ( , )A B is completely reachable, if and only if: 

 C Rank n                                                                        (3.7) 

or equivalently, if and only if: 

(0, )rRankW T n                                                                 (3.8) 

for any finite 0T  . 

 

Lemma (3.2): (Fabrizio L. Cortesi, Tyler H. Summers, and John Lygero, 2014) Let the LTI system (3.1) 
or pair ( , )A B be completely reachable. Then, there exists an input that will transfer any state 0x to 

any other state fx in some finite time 0T  . One such input is given by: 

** ( ) 1
0( ) (0, )[ ]T t A AT

r fu t B e W T x e x     , 0 t T                                 (3.9) 

 

In fact, this input control is not unique; there exist many various control inputs ( )u t transferring the 

state 0x to the state fx , in timeT , but it can be shown that the control input ( )u t given by (3.9), 

accomplishes this transfer while expending a minimum amount of energy, i.e. it minimizes the cost 

function 2

0
( )

T
u d  , where 2 *( ) ( ) ( )u t u t u t denotes the Euclidean norm of ( )u t . 

This result is discussed in full in subsequent chapters, where the effect of the terminal timeT and the 
terminal state fx  on the value of the cost function will also be investigated. 

 

3.3. Controllability Gramian and its Computation 
Definition (3.5): A state 0x is controllable if there exists an input ( )u t , which transfers the LTI system 

(3.1) from 0x at t=0 to the origin in some finite time 0T   (Mellodge & Kachroo, 2008) (Lewis, et al., 

2003). 

 

Definition (3.6): The set of all controllable states c is the controllable subspace of the LTI system (3.1) 

or of the pair ( , )A B  (Antsaklis & Michel, 2007). 

 
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Definition (3.7): The continuous linear time invariant system (3.1), or the pair ( , )A B is completely 

state controllable if every state is controllable, i.e., if n
c   , i.e. there exists an input ( )u t that can 

transfer the states of the system from an arbitrary initial state 0x to a final state in a finite interval of 

time. This definition was given first by Kalman (Kalman, et al., 1963) and has been used by many 
authors; i.e. (Mellodge & Kachroo, 2008) (Owens, 2015). 

 

We now establish the relationship between reachability and controllability for the LTI system (3.1). In 
view of (3.4), 0x is controllable when there exists ( )u t , 0 t T  , so that: 

( )
0 0

( )
TAT T Ae x e Bu d                                                              (3.10) 

Or when 0 ( (0, ))AT
re x W T , or according to Corollary (3.1), 

0 ( )ATe x C                                                                  (3.11) 

Recall that fx is reachable when ( )fx C . In fact, in the continuous-time case there is no distinction 

between reachability and controllability, in contrast to discrete-time case, since the state transition 

matrix is ATe (rather than kA ) and is always invertible. 

Lemma (3.3): If ( )x C , then ( )Ax C ; i.e., the reachable subspace ( )r C  is A-invariant. 

 

The proof is given in (Levine, 1996). 

Corollary (3.3): the reachability subspace r is the smallest A-invariant subspace containing Im[ ]B . 

 

For the proof see (Bittanti & Colaneri, 2009), p. 114. 

Theorem (3.2): Consider the LTI system (3.1), 

(i) A state x is reachable if and only if it is controllable. 
(ii) c r  . 

(iii) The system (3.1), or the pair (A, B), is completely state reachable if and only if it is 
completely state controllable. 

 

For the proof see Theorem (5.20) in (Antsaklis & Michel, 2007). The following Theorem explains the 
connection of reachability with controllability in the LTI system. Note: Although this Theorem always 
holds for continuous LTI systems in the discrete time case the Theorem is only valid when the system 
matrix A is non-singular. 

  
Definition (3.8): (Antsaklis & Michel, 2007) The controllability Gramian in the linear continuous time-
invariant system (3.1) is n n matrix: 
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**

0
(0, )

T A A
cW T e BB e d                                                      (3.12) 

 
 

It can be verified directly that: 
*

(0, ) (0, )TA TA
r cW T e W T e                                                      (3.13) 

 
The controllability Gramian is widely used to check the controllability of the linear dynamical systems. 
 
Proposition (3.1): The LTI system (3.1) is controllable: 
 

(i) If and only if ( (0, ))crank W T n for some finite 0T   

(ii) If and only if ( )rank C n , where 1[ , ,..., ]nC B AB A B  

(iii) If and only if , where i , 1,  2,..,  i n , is an eigenvalue of A . 

                                                     

The proof is given in (Klamka, 2009).  

Controllability Gramian is related to the energy necessary to transfer the initial state to one final state 
(Moore, 1981). The Gramians are widely studied in the process of model order reduction (Moore, 
1981), (S. Gugercin and A.C. Antoulas, 2003), (Antoulas, 2004).  

In the next section, we introduce a novel approach for the computation of controllability Gramian, 
which presents many advantages not only in decreasing the complexity of the calculation but also in 
investigating the effect of model uncertainty or actuator noise. It also helps in input energy 
optimization problem when we are selecting the input matrix B . 

  

3.3.1. A Novel Approach for Calculation of Controllability Gramian 

In this part, we introduce a new approach of calculating the controllability Gramian matrix (0, )c fW t . 

The key innovative idea of this method is to split the controllability Gramian (0, )c fW t into two distinct 

independent parts: one part deals with the input matrix B and the other part is a function of the 
system matrix A . We will show that in the presence of uncertainty, and perturbation, this method 
helps to examine the effects of the matrices A and B on controllability Gramian (3.12). 

By this method, the controllability Gramian can be calculated faster and easier, however it is 
noteworthy that in the case of large scale systems or multi input systems, this method may result in 
some large matrices while it still preserves its computation advantages. It is shown later that in the 
problem of input selection or finding the optimal placement of the actuators we are usually concerned 
with an eigenvalue optimization problem or a problem of maximization of the trace of controllability 
Gramian. This means that in most practical cases we do not need to calculate the entire controllability 
Gramian. Thus, especially in the case of large scale systems our method has significant advantages. 
This method has been developed by applying the concept of quadratic form matrices and sum of 



31 

 

squares polynomials (SOS polynomials) (Chesi, 2011), (D. Henrion; A. Garull, 2005), (A.A. Ahmadi; P.A. 
Parrilo, 2009), (Parrilo, 2000), (Parrilo, 2003). 

Note: We denote by  1( ,) : ,  nxp x p x  the ring of polynomials in n variables with coefficients in 

the field . 

Proposition (3.2): (Parrilo, 2003), (Parrilo, 2000) A multivariate polynomial ( )p x   in n variables 

and of degree 2d is a sum of squares (SOS) if and only if there exists a real symmetric positive 
semidefinite matrix Q such that: 

      ( ) Tp x z Qz                                                               (3.14) 

where z is the vector of monomials of degree up to d, we call matrix Q the Gram matrix. 

1 2 1 2[1, , , , , , , ]d T
n nZ x x x x x x                                         (3.15) 

Given a Gram matrix Q, of    rank Q t , we can construct polynomials 1 2, , , th h h , such that: 

 2

1

( )
t

i
i

p x h


                                                          (3.16) 

 

The construction is given in the Appendix. We also refer reader to (Powers & Wörmann, 1998). 

Thus, to find a representation of ( )p x  as a sum of squares, we just need to find a matrix Q, which 
satisfies the above relation. 

 As the controllability Gramian definition (3.8) suggests, the most difficult part of the related 
computation, which gives rise to complexity, is related to the computation of the integral, in (3.12). 
thus, the simpler the matrix inside is to integrate the easier and faster are the calculations. 

Inspired from quadratic form associated matrices, we introduce Theorem (3.3) below. First, we give 
two definitions and an intermediate research. 

Definition (3.9): (Lam, 2005) Let A be an n n symmetric matrix with real entries, and let x  be an n 

vector over the field . The mapping : TQ x x Ax is the quadratic form defined by A . 

 
1 1

n n

ij i j
i j

Q a x x
 

   

 

According to the definition above for any multivariate polynomial ( )p x F  in n variables and of 

degree 2d, there exist an associated symmetric matrix n nA F  , with the entries: 

 
2

( ) ( )
,1 , ,

2
( ),1

i j j i
ij

ii i

coefficient x x coefficient x x
a i j n i j

a coefficient x i n


   

  
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Now regarding Proposition (3.2), we define Lemma (3.4) below whose proof is omitted. 

Lemma (3.4): A polynomial ( )p x F is a sum of squares (SOS) polynomial if and only if its associated 

matrix n nA F   is a positive semi definite matrix.  

 

Definition (3.10): (Loan, 2000) For any matrix ,n m p qA B    the Kronecker product (i.e., the 

direct product or tensor product), denoted as A B , is defined by: 

 

11 12 1

21 22 2

1 2

[ ]

m

m np mq
ij

n n nm

a B a B a B
a B a B a B

A B a B

a B a B a B



 
 
    
 
 
 





  



                             (3.17) 

 

Remark (3.1): (Loan, 2000) The following basic properties easily follow: 

i. ( )T T TA B A B     

ii. 1 1 1( )A B A B      

iii. ( )( ) ( )A B C D AC BD     

iv. ( ) ( ) ( )trace A B trace A trace B   

 

Theorem (3.3): For n dimensional LTI system (3.1) with m inputs, the controllability Gramian
**

0
(0, ) ft A A

c fW t e BB e d    , can also be written as: 

            (0, ) ( ) ( )T
c f n nW t I Q I                                             (3.18) 

Where is the vectorised input matrix and
2 2n m n mQ  is a real symmetric matrix. 

 

Proof: 

For simplicity and without loss of generality we consider the case of a 3-dimensional LTI system in 
(3.1), with two inputs. Let: 

 
11 12 13

21 22 23

31 32 33

A

a a a
e a a a

a a a



 
   
  

                                                (3.19) 

According to (3.12), we can define the controllability Gramian as: 
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**

0
*

11 12 13 11 12 13
*

21 22 23 21 22 230

31 32 33 31 32 33

11 12 11 1211 12 13

21 22 21 2221 22 23

31 32 33 31 32 31 32

(0, ) f

f

t A A
c f

t

W t e BB e d

a a a a a a
a a a BB a a a d
a a a a a a

b b b ba a a
b b b ba a a

a a a b b b b

  





   
       
      

    
       
       




* *

11 12 13

21 22 230

31 32 33

ft
a a a
a a a d
a a a


 

  
  
   



    (3.20) 

Clearly, we can simplify (3.20) as: 

 
3 3

, ,, 0
1 1

(0, ) ft

c f col i row j jicol row
i j

W t a a B d
 

          ,
2

1
ji jl il

l

B b b


  , , 1, 2,3col row                      (3.21) 

In the same way, for a general n dimensional LTI system with m inputs the controllability Gramian 
matrix could be defined as: 

  , ,, 0
1 1

(0, ) f
n nt

c f col i row j jicol row
i j

W t a a B d
 

          ,
1

m

ji jl il
l

B b b


  , , 1, ,col row n                    (3.22) 

Now using this fact that the b ’s are independent monomials with respect to , one can readily 
consider   ,

(0, )c f col row
W t  , , 1, ,col row n  , as a quadratic polynomial, which can be written as: 

 
1

1 , ,, 0
1 1

(0, ) [ , , ] f
in nt

c f j jm col i row jcol row
i j

im

b
W t b b a a d

b


 

 
   
  

               , 1, ,col row n                   (3.23) 

Then by defining the monomial matrix *
11 21 1 12 22 2

1 2

[ , , , , , , , , ]
st nd

n n nm

input input

b b b b b b b       the 

controllability Gramian matrix could be defined as: 

2 2

2

*
_ , _ ,0

1 1

11 1 12 2

11 1 12 2

11 1 2

(0, )

, , , , , , , 0 , , 0

0 , , , , , , , , , 0

0 , 0 , , , , , , ,

n m n m

f

Q

n nt

c f corresponding col i corresponding row j
i j

n n nm nm nm

nm n n nm nm

nm nm n n nmn m n

W t a a d

b b b b b

b b b b b

b b b b





 



  

 

 


   
   

   

*

11 1 12 2

, 0 ( )

0 , 0 , , , , , , , ,

nm

nm nm n n nm

I

b b b b b

 
 
 
     
 
 
  


   

                               (3.24)                

and the Theorem (3.3) is proved. 

 
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Example (3.1): Assume an LTI system as: 

0 1
0 0

A  
  
 

,
0
1

B  
  
 

 

A practical example of this system is the linearized pitch motion equation of a rigid spacecraft or a 

lunch vehicle sinI TL   whereT  is the rocket thrust, L  is the distance between the center of 
mass and thrust,  is the gimbal angle,  is the pitch angle and I is the pitch moment of inertia. 
Consider the transfer of the states from the origin to a sphere of the radius one and center the origin 
within one second, i.e. 1ft  . In this case, according to Theorem (3.3) we have: 

**

0
(0, ) ft A A

c fW t e BB e d     

Let us define: 

0 1
0 0 11 12

21 22

A a a
e e

a a




 
 
   

   
 

, 11

21

0
1

b
B

b
  

    
   

 

Then we have: 

 
*

1 11 12 11 11 12
11 210 21 22 21 21 22

(0,1)c
a a b a a

W b b d
a a b a a


     

      
       

21 11 12 11 11 21 11 21
20 21 22 12 2211 21 21

a a b b b a a
d

a a a ab b b


    
     

     
  

2 21 11 11 12 11 21 11 11 21 12 21 11 21
2 20 12 2221 11 22 11 21 21 11 21 22 21

a b a b b a b b a b a a
d

a aa b a b b a b b a b


    
    

     
  

Thus:  

2 2 2 2 2 21 11 11 12 11 11 21 12 11 11 21 12 21 11 21 11 12 21 11 21 11 22 11 21 12 22 21
2 2 2 2 2 20

21 11 11 22 11 11 21 21 12 11 21 22 12 21 21 11 22 21 11 21 21 22 11 21 22 21

(0,1)c
a b a a b b a a b b a b a a b a a b b a a b b a a b

W d
a a b a a b b a a b b a a b a b a a b b a a b b a b


      

  
       

2
11 12 11 11 21 12 21

*21 11 22 12 2212 11 1211 21 11 21
2011 21 11 2121 11 22 11 21 22 21

2
21 12 22 12 21 22 22

0 0 0 0
0 0 0 0

a a a a a a a
a a a aa a ab b b b

d
b b b ba a a a a a a

a a a a a a a



 
 

         
    

 
 




 

Therefore considering:  

0 1
0 011 12 11

21 22 21

1 0
,

0 1 1
a a b

e
a a b

 
 
 
       

        
      

 

we obtain: 
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*21

0

1 0 0
0 1 0 0 1 0 1 0 0

(0,1)
0 0 0 1 0 0 0 10 1 0 0

0 0 1

cW d



  



 
 

             
  

  

Now by calculating the integral we get: 

*
1 0.5 0 0

0 1 0 0 0.5 0.333 1 0.5 0 1 0 0 0.333 0.5
(0,1)

0 0 0 1 0 1 0 0 0 0 0 1 0.5 1
0 0.5 0 1

cW

 
                   
 
 

 

 

Definition (3.11): A symmetric polynomial matrix ( ) [ ] ,m m nP x x x   is SOS matrix if there exists 

a polynomial matrix ( ) [ ]s mM x x  for some s , such that ( ) ( ) ( )TP x M x M x . 
 

 
If 1m  we have a standard SOS polynomial. Also, when  P is a constant matrix, then the condition 
simply states that  P is positive semidefinite matrix. Thus, SOS matrices generalize both positive 
semidefinite (constant) matrices and SOS polynomials. (Blekherman, et al., 2013) 
 
Remark (3.2): The controllability Gramian (0, )c fW t is a SOS matrix in input matrix B and hence can be 

written as ( 1) 1(0, ) ( ) ( ), [1; ( )]T nm
c f n mW t Q x Q x x vec B  

   . 
 

In the sequel, we will see that remark (3.2) simplifies energy minimization and optimal input selection 
achieved by maximizing the eigenvalues of the controllability Gramian, which are generally nonlinear 
functions of its entries. 
 
 

3.3.2. Controllability Gramian Assignment with Respect to Control 
Variables 
One motivating factor behind this section is the fact that many system properties are related to the 
controllability Gramian. Moreover, the eigenvalues and their corresponding eigenvectors of the 
controllability Gramian determine the speed and direction of energy dissipation, a problem, which will 
be studied in more detail in the following chapters. The basic idea behind this part is to find the optimal 
control input matrix that assigns a specific controllability Gramian to a LTI system.  

In particular, we propose a solution to this assignability problem and specify the best possible set of 
input matrices B to steer the system to a target state, under energy limitations imposed by a given 
controllability Gramian. 

Theorem (3.4): In the LTI system (3.1) a specified controllability matrix (0, )c fW t is assignable if and 

only if there exist an input matrix B such that: 



36 

 

 
2 2

( )

0 0

( ) ( (0, )),

( ) ( )f f

T n m
c fn n

t tA A A A

vec BB vec W t B

e e d e d   






  

     


                               (3.25) 

Where m is the number of control inputs. 

 

Proof: 

Consider the general definition of controllability Gramian defined in this chapter: 

 
0

(0, )
Tft A T A

c fW t e BB e d      

Now based on the Kronecker properties (Loan, 2000) (Jain, 1989) (Petersen & Pedersen, 2012) 
(Brookes, 2004) we have: 

1( ) ( ) ( )T
n m m p p q qn pm pmvec A X B B A vec X                             (3.26) 

Then we obtain: 

 
2 2

0

( ) ( (0, )),

( )f

T n m
c fn n

t A A

vec BB vec W t B

e e d  




  

   


                        (3.27) 

and the proof is completed. 

 

 

An important consequence of the above Theorem is that it relates the problem of controllability 
Gramian assignment to a linear system equations where the matrix of coefficients is itself a Kronecker 
product. Note that the linear system Ax b is efficiently solvable if A  is a Kronecker product. 

For the n dimensional system A n ne   , and ( )Tvec BB can be obtained in 3( )O n flops via the LU 

factorization of Ae  . Without the exploitation of structure, an 2 2n n system would normally require 
6( )O n flops to solve (Loan, 2000). 

Now considering the fact that both matrices (0, )c fW t and TBB are symmetric, one may readily 

simplify (3.27) as: 

 (0, )0
( ) ( ) ( (0, ))f

T c f

t A A T
sym W t sym c fBBe e d P vec BB P vec W t                      (3.28) 

where 
2 2( 1) ( 1)

2 2
(0, ){0,1} , {0,1}T c f

n n n nn n

W tBB
P P

  
   denote appropriate permutation matrices. 
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( 1) ( 1)1 1
2 2( ) , ( (0, ))

n n n n
T

sym sym c fvec BB vec W t
  

   are obtained by stacking the sub-diagonal 

columns of TBB and (0, )c fW t respectively. 

This results in a system of linear equations with the special coefficient matrix: 

0
( )f

T

t A A
BBe e d P    

consisting of 
( 1)

2
n n

 equations and
( 1)

2
n n

variables, which can be solved almost twice as fast as a 

system without the symmetry property. 

Assume that we are given a designed controllability Gramian according to the energy restrictions on 
the system. Then the assignability problem is defined as selecting the proper set of input matrices B
such that (3.28) is satisfied, which assigns the given controllability Gramian to the system. To do so we 
just need easily to solve the linear equations based on B . 

The difficulty of this approach is that the desired Gramian may not be assignable, i.e. there may be no 
solution to the linear equations. In this case, one must choose an input matrix B from the set which 
will closely approximate the desired Gramian. One approach is to minimize the matrix norm of the 
difference between the desired controllability Gramian and the assignable approximation to this 
matrix. According to (Wicks & Decarlo, 1990) it is not clear, however, that minimizing some norm of 
the error matrix implies a good approximation to the eigenvalues and eigenvectors of the desired 
matrix, nor is it clear that a large error necessarily means a bad approximation. An alternative method 
could be to approximate the controllability Gramian using least squares by minimizing the Frobenius 

norm of the error matrix over our variables, which are the elements of ( )T
symvec BB . 

The following example clarifies the method. 

Example (3.2): Consider the single input system below: 

 
2 1 2

,
2 0 1

A B
    

       
  

using Lyapunov equations or through the method proposed in this chapter we obtain 

 1.1250   -0.2500
(0, )

-0.2500    0.7500cW  
   

 
. 

Now assume that we are looking for the input matrix 1

2

b
B

b
 

  
 

 such that it assigns the controllability 

Gramian 
 3   0

(0, )
0    2cW  

   
 

to the system. 

According to the above Theorem we have: 
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(0, )0

2
1

( ) ( ) ( (0, ))

1/4      0        0     1/8 1 0 0
0      1/4     -1/4   -1/4 0 1 0
0     -1/4     1/4    -1/4 0 1 0
1/2   1/2     1/2     3/4 0 0 1

f

T
c f

t A A T
sym W t sym c fBB

e e d P vec BB P vec W t

b

   

   
   
   
   
   
   



1

1 2 2
2
2 3

1 0 0
0 1 0
0 1 0
0 0 1

W
b b W
b W

     
               

 

  

As explained above, due to symmetry the2nd and 3rd rows are identical and one of them can be 
removed. Then the set of all assignable controllability Gramians in this system is determined by WS
and clearly the given controllability Gramian is not assignable to this system. This we must choose a 
matrix from the set WS which will closely approximate the desired controllability Gramian. 

1

2

1 2 2 1

2 3

{ : }W

b
b

W W
S B

W W
   

     
  

  

Minimizing the Frobenius norm of the difference between the desired matrix and the assignable 
approximation to this matrix results in: 

 
3.1779  2.7106   -0.3718

,
-1.2195 -0.3718    2.2894cB W   

    
   

   

Note that minimizing the spectral norm in this case also leads to the same result. 

The eigenvalues of approximated controllability Gramian are: 1 22.9257, 2.0743   which are 

close to the eigenvalues of the desired Gramian. 

 

Next consider a similar example to the multi input case. 

Example (3.3): Consider the 3-dimensional system with 2- inputs: 

 

0 0 2 1 1
0 0 4 , 0 1
0 3 1 1 0

A B
   
       
     

  

The eigenvalues of this system are: 1 2 33, 0, 4      . Hence the system is unstable and 

(0, )c fW t  becomes unbounded as ft  so the Lyapunov equations do not produce proper solution 

for the controllability Gramian. Hence, we apply the proposed method for 1ft  . In this case: 

26.4638   21.7711   21.3257
(0,1) 21.7711   69.3133   34.2409

21.3257   34.2409   67.8167
cW

 
   
  

 

with the eigenvalues: 1 2 215.7912, 34.3159, 113.4868     . 
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Next, we define the problem of finding the input matrix: 

11 12
3 2

21 22

31 32

b b
b bB
b b



 
   
  

  

which assigns the controllability Gramian: 

3 0 0
(0,1) 0 2 0

0 0 1
cW

 
   
  

. 

Taking a similar approach to the single input case, it easily follows that the given controllability 
Gramian is not in the set of all assignable Gramians WS and therefore we need to use an 

approximation. 

By minimizing the spectral norm, we obtain: 

3.1329   -0.2907    0.3252-1.5844 0.0243
, -0.2907    2.1759    0.28270.0004 2.3652

0.3252    0.2827    1.1245-0.0235 -1.6908
cB W

   
      
     

  

The eigenvalues of the approximating matrix are: 1 2 133.2422, 2.2082,  0.9829      

If the Frobenius norm of the difference matrix is minimized, we get the optimal input matrix as: 

1.7100 -0.4690
0.0018 -2.4668

0  1.7750
B

 
   
  

 

The corresponding approximate Gramian and its eigenvalues are: 

3.0019    0.0015     0.0165
0.0015    2.0198    -0.0022
0.0165    -0.0022   0.9671

cW
 
   
  

  

1 2 133.0020, 2.0198 ,  0.9670      

 
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3.4. Summary 
In this chapter, we defined the reachability/controllability Gramian for continuous-time LTI system 
and introduced some of their fundamental properties of them.  

Quadratic forms and sum of square polynomials were introduced as well, which led to a new approach 
for controllability Gramian calculation. In contrast to Lyapunov equations, our method does not imply 
any restriction on the stability of the system, and this is a noticeable advantage.  

Another advantage of our method is that it divides the controllability Gramian matrix into two distinct 
parts: one parts linked to the system matrix A and the other part is a tensor product of the vectorised 
input matrix B . Some applications of this method can be demonstrated in perturbation analysis and 
robust control design. Though the eigenvalues of a matrix are nonlinear functions of its entries it will 
be attempted to optimize the eigenvalues of the controllability matrix over the elements of the input 
matrix. 

In the last part of this chapter, the controllability Gramian assignment problem was solved by 
introducing a new approach for selecting the proper input matrix B . This approach can be used for 
any stable/unstable system with one or more control inputs. 

In control design, it is very important to select the proper inputs, to construct an effective control 
system and to satisfy various constraints and limitations. The controllability assignment is a core 
problem, which can be considered wherever we have constraints on the input energy, or when the 
robustness properties of linear system need to be considered. 

In the next chapter, the minimum of input energy is introduced as a quadratic form of the inverse of 
the controllability Gramian. Then we will discuss how the terminal time and the final states may affect 
the value of the energy. The various energy levels will be depicted in the state space. 
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Chapter 4: Minimum Input Energy 
 

 

 

4.1.  Introduction 

In this chapter, we develop the fundamentals for selection of input (and by duality output) structure 
based on the energy type criteria. The fundamental question is the evaluation of the required energy 
for the transfer of the origin to a given state in the state space within some given final time when the 
input structure is given. The overall aim is to use these preliminary results to examine in the following 
parts of the thesis the selection of the input structure under the minimum energy requirement for the 
worst state. Thus, we introduce first the problem of minimum input energy and then we will discuss 
the important related factors which can influence the value of this minimum energy. These results 
lead to the definition of the energy levels in the state space which can be used as an instrument for 
input structure selection. 

The development of the material involves the definition first of the minimal energy and this follows 
by examining the factors influencing the minimum energy requirements. This involves the influence 
of the terminal state factor, as well as the role of the required final time that has to be specified for 
the state transfer. The computations of energy are based on the controllability Gramian and thus we 
examine separately the case of stable and unstable systems. The essence of our investigation is 
comparing the minimum of minimum energy ܧ௠௜௡

௠௜௡ transferring the states of a given system from the 
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origin to a terminal state ݔ௙, such that ฮݔ௙ฮ = ܴ (= 1) within a fixed terminal time ݐ௙ . In fact, we are 
interested to determine the minimum input energy required to transfer the states of the LTI 
controllable system from the origin to the states defined by the distance R away from the origin. We 
compare the maximum of minimum energy ܧ௠௜௡

௠௔௫, required to transfer the states of a given system 
from the origin to a terminal state ݔ௙, ฮݔ௙ฮ = ܴ, where R is variable (within a fixed terminal time ݐ௙), 
that can guaranty to reach a state defined R away from the origin, ignoring the direction of the specific 
states. This leads to the definition of energy levels in the state space characterizing the maximum of 
minimum input energy required for transfer to a given distance. This reveals the presence of the 
energy stratification of the state space.  

4.2. Minimum Input Energy  

Consider a controllable SISO LTI system, we are interested in transferring the states from the origin to 
some point on the surface of a sphere with the radius R . The state-space realization of the system is: 

x Ax Bu
y Cx Du
 

  


                   , , ,n n n m l n l mA B C D                           (4.1) 

The energy dissipated by the controller for such transfer is given as the cost function below: 

                                                 
2

[0, ] 0
( ) ( ) ( )f

f

t T
t

E u t u t u t dt                                                              (4.2) 

We are interested to minimize this cost function, so that the states transfer to the desired terminal, 
within the defined control time, by expending the least possible input energy. 

 

Figure (4.1): Controllability and the energy required to transfer states from the origin to terminal 

states ,f fx x R   

As stated in literature, (VanderVelde & Carignan, 1982), (Georges, 1995), (Toan & Georges, 2007) the 
minimum input energy to transfer the states for the system (4.1) from the origin to the terminal 
state ݔ௙, such that,ฮݔ௙ฮ = ܴ (= 1), is given as:  

                   
2 1

min [0, ] 0
min ( ) min ( ) ( ) (0, )f

f

t T T
f c f ft

E u t u t u t dt x W t x                              (4.3) 
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Note that the system is assumed controllable and so the indicated inverse of the controllability 
Gramian is well-defined. The corresponding (unique) optimal control input is: 

min

( ) 1
0( ) ( ) (0, )

T
fA t tT

E c f fu t u t B e W t x                                         (4.4) 

These results are defined in the Theorem (4.1) below (Fairman, 1998): 

Theorem (4.1): In the controllable LTI system (4.1), the minimum energy required to transfer the initial 
states from the origin to the terminal states located on a sphere around the origin with the radius R
within the terminal time ft is 1

min (0, )T
f c f fE x W t x  and the required control input for this optimal 

transfer is: 

min

( ) 1
0( ) ( ) (0, )

T
fA t tT

E c f fu t u t B e W t x   . 

 

The proof can be found in (Fairman, 1998). In different stages of control design, the concept of 
minimum input energy, may play an important role, e.g. it is important for an airplane or a satellite to 
complete a defined journey using the minimum fuel, in a smart house minimization of input energy as 
the cost function usually defines the aim of the design, etc. 

As the Figure (4.1) illustrates, to transfer the states of a controllable LTI system from the origin to a 
terminal point on the surface of a sphere with the radius R , within a terminal time ft  there are many 

different control inputs in various directions, the Theorem above states that only one of these inputs 
in a unique direction leads to the minimum energy dissipation. In control design and input selection, 
it is also important to investigate the factors, which can influence the value of minimum energy 
corresponding to this optimal direction. This will be discussed in detail in a subsequent section.  

 

4.3. Influence of Different Terms on the Value of Minimum Input 
Energy 

In this part, some significant variables in the value of the minimum input energy are investigated. 

Considering the definition of controllability Gramian in (4.5): 

**

0
(0, ) ft A A

c fW t e BB e d                                                          (4.5) 

As equation (4.3) suggests, in an LTI system, when the matrices A and B are fixed and the system is 
controllable, two important factors may change the value of minimum input energy: 

i. The terminal time: ݐ௙  
ii. The terminal state: ݔ௙  

It is, of course, clear that if ݓ௖൫0,  ௙൯ is nearly singular then a very large energy input is needed toݐ
reach certain states aligned with the eigenspace of the controllability Gramian corresponding to its 
"small" eigenvalues (in this case, the system is hardly controllable.) 
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4.3.1 Terminal Time ࢌ࢚ 

In this part, for the fixed given LTI system (4.1), we consider various transition times to transfer the 
initial states from the origin to the fixed terminal states ݔ௙  such thatฮݔ௙ฮ = ܴ (= 1), using the 
minimum energy. In other words, we define the minimum input energy as a function of the variable 
terminal time.  

The results show that the value of the minimum input energy decreases as the terminal time increases, 
which means that if we give more time to the system it can reach the final states with less input energy 
requirement. 

It is presented in the following Theorem. 

Theorem (4.2): In the controllable LTI system (4.1), where the system is fixed, i.e. and B are 
invariable matrices, the minimum energy required to transfer the states from the origin to the defined 

terminal states , ( 1)f fx x R  , decreases as the terminal time ft  increases, however the rate of 

this change is not fixed and could be shown as a concave up decreasing graph i.e. the change of the 
required energy decreases over the terminal time. 

Proof: 

As stated in (4.3) the minimum input energy for the LTI controllable system (4.1) is defined as follows: 

 1
min (0, )T

f c f fE x W t x   

By differentiating both sides of the equation above with respect to the terminal time, we get: 

                                                                  
1

min
(0, )c fT

f f
f f

W tE x x
t t




 
                                     (4.6) 

Then using identity: 

                                                                 
1

1 1( ) ( )A x A xA A
x x


  

 
                 (4.7) 

Equation (4.6) gives: 

                       
1 1min

1 1

(0, )
( ) (0, ) (0, ) ( )

( ) (0, )( (0, ) (0, ) ) (0, ) ( ) 0

c fT
f c f c f f

f f

T T T
f c f c f c f c f f

W tE x t W t W t x t
t t

x t W t BB AW t W t A W t x t

 

 


 

 

    

       (4.8) 

Hence the minimum input energy decreases as the final time increases. 

  

In other words, the set of states reachable with a cost less than 1 (or any given value) grows as 
௙ݐ  increases.  

A
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In this part, we may consider two different cases: In the first case, all eigenvalues of matrix A are 
located in the open left half plane (OLHP), which means the LTI system is asymptotically stable, while 
in the second case an unstable system is considered.  

We are interested to know how the value of minimum energy is affected by the terminal time ft , in 

each of the above cases. 

 

4.3.1.1 The Stable System  

For the stable case, we have the following result (Yoshizawa, 2012): 

Theorem (4.3): Consider the fixed controllable LTI system (4.1). If the system is asymptotically stable, 
then we can increase the terminal time to , i.e. ft  , in this case, the controllability Gramian 

could be defined as the unique solution of the Lyapunov equation (4.9), and the minimum energy 

required to move the states from the origin to the defined terminal states , ( 1)f fx x R  is also 

minimized. 

     (0, ) (0, ) T T
c cAW W A BB                                                           (4.9) 

Proof: 

For an asymptotically stable system, whose state matrix A has all its eigenvalues in the OLHP, then, 

0Ate   as t   . Thus, there are constants, , 0M    such that: 

, 0
TAt A t te e Me t                                                  (4.10) 

Then: 

0 0

22 2 2

0

2

(0, )

(1 ) 2

1
2

T Tf f

f f

t tA T A A T A
c f

t tT T

T

W t e BB e d e BB e d

M BB e d M BB e

M BB

   



 

 





 

  



 

                           (4.11) 

 

This implies: 

                              lim (0, ) (0, )
f

c f ct
W t W


                                                    (4.12) 

 

and the controllability Gramian matrix (0, )cW  can be obtained as the steady state solution of the 

equation below: 
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                                         (4.13) 

By setting , we then have that the controllability Gramian matrix (0, )cW  satisfies the 

matrix Lyapunov equation: 

(0, ) (0, ) T T
c cAW W A BB                                              (4.14) 

 

which means that for a stable system the minimum input energy can be calculated in the case ft   

via the controllability Gramian which in this case is the unique symmetric positive-definite solution of 

the algebraic Lyapunov equation (4.14). However, in a stable system we have 1(0, ) 0c fW t  ,  which 

implies we cannot get anywhere for free. 

Example (4.1): An example of a classical linear system is the mass-spring-damper system. Newton’s 
laws of motion for an object moving horizontally on a plane and attached to a wall via a spring and 
damper gives: 

                                                        (4.15) 

where ( )y t  is the position of the center of mass of the object,  its velocity,  its acceleration, 

( )u t  is the applied force. Further b  is the viscous friction coefficient, k  is the spring constant and 

m  is the mass of the moving object. Assume the origin as the initial condition, i.e. ( ) ( ) 0y t y t  , if 

we define the target states as ( ) 1, ( ) 0f fy t y t  .We are interested in the minimum energy 

dissipated by the system considering various terminal times. 

 

Figure (4.2): Mass-spring-damper system 

 

The state equation is:  

                                                         (4.16) 
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where 1( )x t  represents the position of the object, and 2 ( )x t its velocity. 

For this example, the controllability test shows that such LTI system is controllable for all b and m : 

 
2

10 0 1 0 0
1 1 1

mB AB k b b
m m m m m m

                                     

                                (4.17) 

Clearly, the system is stable for all values ofb , k and m , since all eigenvalues of A are located in 
OLHP:  

2

2

1
det( ) det 0

( )
2( ) 0

2 1

b kI A k b m m
m m

b k
b m mreal
m


  





 
      
 
 


    



                          (4.18) 

Suppose that 1 , 1 / and 0.2 /m kg k N m b Ns m   . Considering a range of terminal times

0.5 10ft  , the corresponding value of the minimum input energy was calculated and is illustrated 

in Figure (4.3). The Figure demonstrates that the minimum energy required to move the mass from 
the initial condition to the terminal state ( ) 1, ( ) 0f fy t y t  decreases from 91.6790 to 0.4694, as 

the terminal time ft increases from 0.5 to 10.  

 

Figure (4.3): minE  as a function of variable terminal time where [0.5,10]ft     
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Figure (4.4) shows that the minimum energy converges as ft  . The limiting energy can be 

calculated via the steady-state controllability Gramian which is the solution of the algebraic Lyapunov 
equation (4.14).  

 

 

0

1
min

(0, ) (0, )
2.5 0

(0, )
0 2.5

0 1 2.5 0 2.5 0 0 1 0 0
1 0.2 0 2.5 0 2.5 1 0.2 0 1

0.4 0 1
(0, ) 1 0 0.4

0 0.4 0

T

T T
c c

A T A
c

T
f c f

AW W A bb

W e bb e d

E x W x

  




    

 
    

 
         

                       

   
      

   



                  (4.19) 

In fact, 0.4 is the minimum possible energy, by which this system can move from the origin to 
1
0
 
 
 

 

and is achieved when ft  . 

All the results of this example, supports Theorem (4.3). 

 

 

Figure (4.4): minE  as a function of terminal time variable, 0 ft     

 
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4.3.1.2 Unstable System 

If the system is unstable ݁஺௧ܤ becomes unbounded as ݐ = ௙ݐ → ∞ . Thus, the controllability Gramian 

௖ܹ(0,∞) also becomes unbounded which means that for some ݔ௙ , lim
௧೑→ஶ

௠௜௡ܧ → 0. This means that 

some directions do not require any cost of control. In other words, for an unstable system, inverse of 

controllability Gramian 1(0, )c fW t  can have a nonzero null space 1(0, ) 0c f fW t x   for some 0fx 

, which means that the system can get to fx using arbitrarily small input energy. The input just gives 

a little kick to the initial state and then giving the system enough time, instability carries it out to the 
desired final state fx  . 

Example (4.2): As an example, assume the linear model of a Furuta pendulum (Guzman, et al., 2016), 
described below: 

 

 

Figure (4.5): The schematic picture of Furuta pendulum 

 

The model equations are: 

 

          (7.20) 

where, 1x  is the angle of the pendulum, is the angular velocity of the pendulum, 3x 

is the angle of the arm carrying the pendulum, and is the angular velocity of the carrying arm. 

Now, by defining: 
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2 2 2
1 1 0 0 1 0 1 1
2 2 2 2

0 1 1 1 1 1 0 0 1 1 1 1 1 0

2
1 1 01 1 1

2 2 2 2
0 1 1 1 1 1 0 0 1 1 1 1 1 0

( ),
( ) ( )

( ) ,
( ) ( )

gm l L I m L m l g
I J m l J m L I J m l J m L

m l LJ m l
I J m l J m L I J m l J m L

 

 

 
 

   


 

   

                                    (4.21) 

 

The linear model of the system reduces to:  

                                                 (4.22) 

Assume the system is moving from the initial states 0 0 0 0 T
 to  0 0 1 0 T

fx  . 

Figure (4.6) illustrates the changes of the minimum input energy for various terminal times 0 ft  

by substituting the following values: 

                                  (4.23) 

 

The system above is clearly an unstable, controllable system. 

As in can be seen in Figure (4.6), the minimum energy is decreasing as the terminal time increases 
however because of instability, the value of the minimum energy is changing really close to zero, even 
if the terminal time is small. It supports the results discussed in this section as for unstable systems. 
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Figure (4.6): minE  as a function of final time variable, 0 ft    

 

 

4.3.2 Terminal State ࢌ࢞ 

In this part, we assume a fixed given LTI system described in (4.1) and we are interested in 
transferring the initial states from the origin to the variable terminal states ݔ௙  such that (ฮݔ௙ฮ =
ܴ (= 1)), within a fixed terminal time ݐ௙=T. 

Here the terminal state ݔ௙  is assumed a variable point located on the surface of a sphere centerd at 
the origin with radius R , and we are interested to find the direction for which the corresponding 
minimum input energy is minimized or maximized. 

The results show that the minimum value of the minimum input energy happens in the direction of an 
eigenvector corresponding to the maximum eiegenvalue of the controllability Gramian, and the 
maximum of minimum input energy is in the direction of an eigenvector coresponding to the minimum 
eigenvalue of controllability Gramian. First consider the definitions below: 

Definition (4.1): If x is a nonzero vector in n and A  is a n n dimensional matrix, the Rayleigh 
quotient of x with respect to A is defined as (Simovici, 2012): 

( )
T

A T

x AxRQ x
x x

                                                           (4.24) 

 
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Definition (4.2): A linear subspace nV   is called an invariant subspace of A if it satisfies Ax V for
x V   (Simovici, 2012). 

 

We can now prove the following Lemma (Prasolov, 1994):  

Lemma (4.1): If A is a real symmetric matrix and V is an invariant subspace of A , then there is some
x V such that ( ) inf{ ( ), }A ARQ x RQ y y V  . Any x V that minimizes ܴܳ஺(ݔ) is an eigenvector 

of A , and the value ܴܳ஺(ݔ) is the corresponding eigenvalue. 

 

Proof: 

If x is a vector and r is a nonzero scalar, then ܴܳ஺(ݔ) = ܴܳ஺(ݔݎ), hence every value attained inV by 

the function ܴܳ஺(ݔ) is attained on the unit sphere ( ) { , 1}S V x V x   . 

The function ܴܳ஺(ݔ) is a continuous function on ( )S V , and ( )S V is compact (closed and bounded)  

so by Weistrass Theorem (Gould, 1957) ܴܳ஺(ݔ) attains its minimum value at some unit vector
( )x S V . Using this quotient rule we can compute the gradient as: 

 2

2 2( )( )
( )

T

A T

Ax x Ax xRQ x
x x


                                                (4.25) 

At the vector ( )x S V where ܴܳ஺(ݔ) attains its minimum value inV , this gradient vector must be 

orthogonal toV , otherwise, the value of ܴܳ஺(ݔ) would decrease as we move away from x in the 
direction of any ݕ ∊ V that has negative dot product with ∇ܴܳ஺(ݔ). 

On the other hand, our assumption thatV is an invariant subspace of A implies that the right side of 
(4.25) belongs toV . The only way that ∇ܴܳ஺(ݔ) could be orthogonal toV while also belongs toV is 
if the zero vector, hence: 

       ( ) 0 2 2( ) ( )T T T
ARQ x Ax x Ax x Ax x Ax x x Ax                               (4.26) 

so the Lemma is proved. 

 

Now considering the Lemma above, equation (4.3) along with the fact that the inverse of 

controllability Gramian 1(0, )c fW t is a symmetric matrix, by defining: 

( ) { , 1}S V x V x                                                       (4.27) 

it can be concluded that 

                                                                      1( ) (0, )T
A f f c f fRQ x x W t x                                                (4.28) 
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is minimized (maximized) in the direction corresponding to the smallest (largest) eigenvalue of inevrse 

of controllability Gramian 1(0, )c fW t .  

The results stated above are summarized as shown below: 

Remark (4.1):  The following relations hold true: 

 

 

2 1 1
min[0, ] 11

max

min 1
min min1

max

1min{min ( ) } min{ (0, ) } ( (0, ))
{ (0, )}

1( (0, ))
{ (0, )}

T f ff f

f

T
f c f f c ft xx x

c f

c fx
c f

u t x W t x W t
W t

E W t
W t







 







  

    (4.29) 

and 

2 1 1
max[0, ] 11 min

max 1
min max1

min

1max{min ( ) } max{ (0, ) } ( (0, ))
{ (0, )}

1( (0, ))
{ (0, )}

T f ff f

f

T
f c f f c ft xx x c f

c fx
c f

u t x W t x W t
W t

E W t
W t







 







  

  
       (4.30) 

 

 

Now, based on the results above, in the next section two sub-problems could be defined that is: 

i. Energy Levels in the best case, considering “ܧ௠௜௡
௠௜௡” 

ii. Energy Levels in the worst case, considering “ܧ௠௜௡
௠௔௫” 

 
 

4.3.2.1 Energy Levels in the Best Case 

Here, we are comparing the minimum of minimum energy ܧ௠௜௡
௠௜௡ transferring the states of a given 

system from the origin to the terminal states ݔ௙  (within a fixed terminal time ݐ௙ ) such that ฮݔ௙ฮ =
ܴ and R is variable.  

In other words, in this part we are interested to know how much could be the minimum input energy 
which transfers the states of the LTI controllable system from the origine to the states defined R away 
from the origin, according to the Theorem below, this transfer should be done in the direction of the 
eigenvector corresposding to the minimum eigenvalue of 1 (0, )c fW t (i.e. the maximum eigenvalue 

of (0, )c fW t ). 

Theorem (4.4): (Prasolov, 1994) A quadratic form can always be reduced to the form: 

,ଵݔ)ݍ … , (௡ݔ = ଵଶݔଵߣ + ⋯+  ௡ଶ                                    (4.31)ݔ௡ߣ

 
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According to the Theorem above (so called Lagrange Theorem), we can define the minimum input 
energy (4.3) as: 

 1 1 2
min

1
(0, ) ( (0, ))

n
T
f c f f i c f i

i
E x W t x W t x 



                                 (4.32) 

That is: 

  1 2 2 2
min 1

1 1

1 1 1(0, )
( (0, )) ( (0, )) ( (0, ))

n
T
f c f f i n

i i c f c f n c f

E x W t x x x x
W t W t W t  





            (4.33) 

 

Then it can be easily inferred from (4.33) that for a given fixed system we have: 

 

 Proposition (4.1): The optimal minimum input energy, which describes the minmimum energy level 
for ฮݔ௙ฮ = ܴ is defined along the eigenvector corresponding to the maximum eigenvalue of 

controllability Gramian (0, )c fW t , ௠ܸ௔௫ = ܸ ൬ߣ௠௔௫ ቀ ௖ܹ൫0,  :௙൯ቁ൰ and its value isݐ

min 1 2
min

max

1min{ (0, ) }
( (0, ))f

T
f c f fx R

c f

E x W t x R
W t




                           (4.34) 

 

 

Figure (4.7) shows the levels of minimum input energy for the LTI moving object described in example 

(4.1), for different values of R , where
2

fx R . 

In each case the corresponding direction, in which the minimum of minimum energy happens is ploted 
as well, which is the same as the direction of the eigenvector corresponding to the maximum 
eigenvalue of the controllability Gramian (0, )c fW t . 
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Figure(4.7): Energy levels considering min
minE   

 

In Figure (4.8), the levels for the minium of the minimum input energy is shown for furuta pendulum 
3-dimensional system defined in example (4.2). 

 

 

Figure (4.8): Energy levels for furuta pendulum considering min
minE  
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4.3.2.2 Energy Levels in the Worst Case  

In this part, we compare the maximum of minimum energy ܧ௠௜௡
௠௔௫,to transfer the states of a given 

controllable LTI system from the origin to the terminal states ݔ௙, ฮݔ௙ฮ = ܴ, where R is variable (within 
a fixed terminal time ݐ௙), it can guaranty if you want to reach a state defined R away from the origin, 
ignoring the direction of transferring the states, the energy , which you need would be equal or less 
than a specific value, which is corresponding to the energy level defined for the maxmum of minimum 
input energy. 

This would be exactly the same as the solution proposed in previous part. 

Remark (4.2): The maximum of minimum energy for transferring the initial states of controlable LTI 
system (4.1) from the origin to ݔ௙, ฮݔ௙ฮ = ܴ could be defined in the direction of eigenvector 
corresponding to the smallest eigenvalue of controllability Gramian (0, )c fW t , ௠ܸ௜௡ =

ܸ ൬ߣ௠௜௡ ቀ ௖ܹ൫0,  :௙൯ቁ൰ݐ

                                               max 1 2
min

min

1max{ (0, ) }
( (0, ))f

T
f c f f

x R
c f

E x W t x R
W t




                              (4.35) 

 

 

The above represents the energy stratification of the state space, which is important in input selection 
and optimal actuator placement. By optimizing the energy levels of controllable LTI system (4.1), the 
optimum positions of actuators could be defined. 

Figure (4.9) illustrates the energy levels for the maximum of minimum input energy for 2-dimensional 
mass-spring system defined in example (4.1)  

The direction, in which these energy levels are calculated, is shown as well, that is the same as the 
direction of the eigenvector corresponding to the minimum eigenvalue of the controlability Gramian

(0, )c fW t .  
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Figure(4.9): Energy levels considering max
minE  

 

Figure (4.10) demonstartes the eneregy levels for 3 dimensional pendulum system (see Example (4.2)) 

consedering the maximum value of minimum energy input for the varius values of
2

1, 2,3fR x   

 

 

Figure(4.10): Energy levels for furuta pendulum considering max
minE  
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Now, regarding the resuls achived for the variable trminal times and the variable terminal states in 
the sequel, we define the minimum energy ܧ௠௜௡ as a function of two variables ,f ft x , to investigate 

how the minimum input energy ܧ௠௜௡ varies, if we transfer the states of the LTI controlable system 
(4.1) , from the origin to the arbitrary terminal states fx , in varius directions, satisfying the condition

fx R  wihin different terminal times ft . 

Figure (4.11) shows the changes of minimum input energy in the LTI  mass-spring system (example 
(4.1)), assuming 1R  . 

The Figure shows that as the terminal time increases the effect of the direction decreeases, since the 
cost function looks more like a circle, it means that by gowing the terminal time ft the difference 

between the minimum and maximum eigenvalues of the ccontrolability Gramian (0, )c fW t  

decreases, i.e. the reachability sets looks more like a circle. This can be seen in Figure (4.12). 

In other words, for well-conditioned controllability Gramian matrix, the maximum and minimum 
energy levels are almost same, which indicates regardless of the trajectory and the direction of 
movement, there is a minimum value for the energy dissipated to move the states from the origin to 

the target point ,f fx x R  (within a terminal time ft ). 

 

 

 
Figure (4.11): Minimum input energy as a function of the variables ,f ft x  
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Figure (4.12): Reachability area changes based on different terminal times for 2 dimensional 

example model in (4.16) 
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4.4 Summary 

In this chapter, we discussed the fundamentals of minimum energy required for transferring the states of 

a controllable LTI system form the origin to some target states ,f fx x R   in the state space within the 

terminal time ft . Terminal time and terminal states as two important elements which may affect the 

value of this minimal energy have also been discussed.   

In particular, if controllability Gramian (0, )c fW t is nearly singular, then large energy inputs are required 

to reach the target states belonging to the eigenspace of its least eigenvalue min ( (0, ))c fW t . This 

motivated the use of the minimum/maximum eigenvalue of the controllability Gramian in the energy 
stratification of the state space, in this chapter we adopted the measure of the worst-case control effort 
when investigating maximum of optimum energy levels. 

In the next chapter, we consider the energy calculation for unstable systems and the impact of actuator 
selection on various issues such as the degree of controllability and disturbance rejection. 



61 

 

 

 

 

 

 

 

 

Chapter 5: Controllability, Energy for Unstable Systems 
and Measures of Degree of Controllability 
 

 

 

5.1. Introduction 

In this chapter, our focus is on the energy calculation for unstable systems and the impact of actuator 
selection on various issues such as the degree of controllability, and disturbance rejection.  

In the previous chapter, we have defined the minimum input energy and introduced the energy levels 
for stable systems, in this chapter we examine the case where the system is unstable, and we present 
the generalized energy stratification of the state space for the possibly unstable systems. 

Section 5.2 and 5.3 cover the above issues, then in section 5.4 we will investigate the problem of the 
actuator selection with regard to minimum energy. 

One of the most reliable methods for determining actuator locations is the improvement of state 
controllability of the process (Wal & Jager, 2001), then the problem for the actuator placement could 
be viewed as the problem of minimizing the input energy required to reach a given state. A deficiency 
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of this method appears where sufficient information for the initial and final states of the system is not 
available.  

This problem is discussed in section 5.4 in details then optimization of the worst-case method is 
suggested as a solution. 

In section 5.5 we presented a method of actuator selection considering the degree of controllability 
of linear time-invariant systems. Starting from a set of actuator locations which produce an 
uncontrollable system, but for which the number of actuators is sufficient to produce controllability, 
it will usually be the case that moving one of the actuators a distance 0  can produce a controllable 
system, no matter how small the value (and vice versa). It is then important to select the actuators 
which maximize the degree of controllability. 

The similar problem will be considered in section 5.6, where the system is affected by an external 
disturbance as well. In this case, we define the degree of disturbance rejection by considering both, 
the controllability Gramian of the system and the disturbance sensitivity Gramian, and we place the 
actuators such that the presented measure is maximized. 

The methods proposed in this chapter are general methods in the sense that they support both stable 
and unstable systems. The techniques described are successfully verified by various examples. 

5.2. Minimum Energy for Unstable Systems 

In chapter 4 we have discussed in detail, the minimum energy dissipation needed to transfer the states 
of an LTI system from the origin to an arbitrary destination fx  within a finite time ft . This can be 

calculated as 1 (0, )T
f c f fx W t x where (0, )c fW t is the controllability Gramian. According to (Hać & Liu, 

1993) in more general case where we are steering the states from any initial states 0x  to the final 

states fx within the terminal time ft ,the minimum energy required for this transferring could be 

represented as: 

 
1

min 0 0( ) (0, )( )f fAt AtT
f c f fE e x x W t e x x                                  (5.1) 

If the system is asymptotically stable, 0fAte   as ft   , then we can attain the minimum energy 

as a function of final states only regardless of their initial location. In this case if we choose the origin 
as the final state 0fx   then min 0E  , which means bringing the system to the state of equilibrium 

can be achieved by providing zero energy, as the asymptotically stable system always converges to 
the origin by itself, if the final time is sufficiently large. This implies that, if the system is asymptotically 
stable escaping from origin (i.e., the reachability problem) requires more energy than transferring to 
origin, (i.e., the controllability to 0 problem) because the stable system naturally tends to converge to 
zero. 

Furthermore equation (5.1) states that in undamped systems (i.e. eigenvalues are located on the 

imaginary axes) where fAte is an orthonormal matrix, i.e. 
T

f fAt A t
ne e I  , the minimum input energy 

required to bringing the system to the origin is 1
min 0 0(0, )T

c fE x W t x  (Arbel, 1981). 
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In this section, we use the statement (5.1) to determine the minimum energy for an unstable system, 
where the system is decomposable to a stable and anti-stable subsystem, i.e. when system matrix A
has no eigenvalues on the imaginary axis.  

5.2.1. Decomposition of Controllability Gramian in LTI Systems with 
Stable and Anti-Stable Modes 

Consider the unstable LTI system below: 

 , , , , ,n n n m l n l m nx Ax Bu
A B C D x

y Cx Du
    

      


                     (5.2) 

where A  has one or more eigenvalues in the right half plane (RHP) of the complex plane and it has no 
eigenvalues on the imaginary axis (as for the minimum input energy computation, no energy is 
required to change the states of undamped modes in sufficiently large time period [0, ]ft , thus this 

assumption imposes no extra restriction).  

In general, there are two well-known transformation (Sivasundaram, 2004), (Demenkov & Goman, 
2009), (Chen, 1995) suitable for the stable/unstable decomposition of a linear continuous-time 
system. The one is based on Schur transformation (Castelan, et al., 1996), (Golub & Loan, 1986) and 
the second one is based on the block Jordan transformation (Chen, et al., 2004). In this thesis, we will 
use the latter. 

Remark (5.1): There exists a similarity transformation 1A V AV A   , n nV  , for which A is 

block diagonal, i.e. 1 0
0

s

u

A
V AV

A
  

    
 

, where sA , uA  are stable and anti-stable system 

matrices, respectively. 

Then in the new coordinate frame one can rewrite the LTI system (5.2) as: 

 

0
0

[ ]

s s s s

u u u u

s
s u

u

x A x B
u

x A x B

x
y C C Du

x

       
        

       


      




                                            (5.3) 

with the appropriate dimensions for all matrices. 

 

Remark (5.2): For the finite-horizon case (0, )c fW t  is always well defined as a symmetric positive 

semidefinite matrix (which is not the case for the infinite-horizon problem), then the controllability 
Gramian for the finite terminal time (0, )c fW t could be derived from the state space realization above 

as: 
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(0, ) (0, )

(0, )
(0, ) (0, )

s f su f
c f

us f u f

W t W t
W t

W t W t
 

  
 

                                                 (5.4) 

 

and by the general formula for the inverse of the partitioned matrix we obtain: 

Lemma (5.1): Consider the block partitioned controllability Gramian matrix in (5.4) is positive definite, 
then the inverse of controllability Gramian could be achieved as: 

 
1 1 1 1 1

1
1 1 1 1 1

( ) ( )
(0, ) 0

( ) ( )
s su u us s su u us s su

c f
u us s su u us u us s su

W W W W W W W W W W
W t

W W W W W W W W W W

    


    

   
     

 (5.5) 

 1 1 1 1 1 1( ) ( )
T

s su u us s su u us s su u usW W W W W W W W W W W W           

 

We refer the interested readers to (Horn & Johnson, 2012) for the proof. Next, we define Schur 
complement Theorem for a positive definite symmetric matrix. 

Theorem (5.1): (Fuzhen, 2005) Given any symmetric matrix n n T

A B
M

B C

 
  
 

 the following 

conditions are equivalent: 

i. 0M   ( M  is positive definite) 

ii. 10, 0TA C B A B     

iii. 10, 0TC A BC B    

 

The complete proof of this Theorem is given in (Fuzhen, 2005). Regarding the time dependency in (5.1) 
we can use the continuous-time differential Lyapunov equations (CDLE) (Davis, et al., 2010) , then we 
get the Corollary below: 

Corollary (5.1): (Middleton & Goodwin, 1990), (Amato, et al., 2015), (Singh, 2009) Consider the linear 
time-invariant continuous system (5.2) with no eigenvalues on the imaginary axis. Then the 
controllability Gramian satisfies the continuous-time differential Lyapunov equation 

(0, ) (0, ) (0, ) T T
c f c f c fW t AW t W t A BB                                       (5.6) 

with zero initial condition or equivalently by partitioning (0, )c fW t : 

(0, ) (0, )
(0, )

(0, ) (0, )
s f su f

c f
us f u f

W t W t
W t

W t W t
 

  
 
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T T
s s s s s s s

T T
su s su su u s u

T T
us u us us s u s

T T
u u u u u u u

W A W W A B B

W A W W A B B

W A W W A B B
W A W W A B B

  

  

  

  






                                                     (5.7) 

 

For the proof see (Middleton & Goodwin, 1990), (Amato, et al., 2015), (Singh, 2009). 

Theorem (5.2): Let (5.2) be a controllable LTI system with both stable and anti-stable parts. Then the 
inverse of controllability Gramian i.e. 1 (0, ) 0c fW t  , as is stated in Lemma (5.1), is well-defined in 

the limit ft   and: 

 
1

1 0
(0, )

0 0
s

c
W

W


  
   

 
                                                         (5.8) 

 

Proof: 

If the system is controllable, the controllability Gramian (5.4) must be positive definite (0, ) 0c fW t   

(E.Hendricks, et al., 2008) and according to Schur complement Theorem (5.1) we have: 

1( ) 0u us s suW W W W  and 1 1( ) 0u us s suW W W W   . 

Now set 1( )u us s suQ W W W W  . Using the chain rule of differentiation, we get: 

1 1 1( ( ) )u us s su us s su us s suQ W W W W W W W W W W                              (5.9) 

Then considering (CDLE) equations (5.7) we obtain: 

1 1 1

1 1 1 1

1 1 1

( ( ) )
( ) ( )

( ) ( )

u us s su us s su us s su

T T T T T T
u u u u u u u us us s u s s su us s s s su us s s su su u s u

T T T
u u us s su u us s su u u u u s s su us

Q W W W W W W W W W W
A W W A B B A W W A B B W W W W W W W W W A W W A B B

Q A W W W W W W W W A B B B B W W W

  

   

  

   

         



      

   


 1 1 1

1 1 1 1

1 1

( ) ( ) ( )( )

( )( )

T T
s s u us s s s s su

T T
u u us s su u us s su u us s s u us s s u

T T
u u us s s u us s s u

W B B W W B B W W

A W W W W W W W W A W W B B W W B B

Q A Q QA W W B B W W B B

  

   

 



      



    

(5.10) 

Therefore, according to the differential Lyapunov equations (5.7) and with regard to the results of 

chapter 4, we obtain 0Q  . 

Furthermore, using the differentiation property of non-singular matrices we have: 

1 1 1( )Q Q QQ                                                            (5.11) 
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Then the positive definite matrices Q and 1 1 1( )u us s suQ W W W W     yield: 

1 1 1 1 1( ) ( ) ( )u us s su u us s suQ W W W W Q W W W W                                     (5.12) 

 

which clearly defines a negative definite matrix. 

Then via the Lyapunov stability Theorem one can readily recognize that 1 1( )u us s suW W W W  is stable 

and tends to zero as ft   . 

To verify the stability of off- diagonal blocks in (5.5): 

1 1 1 1 1 1( ) , ( )s su u us s su u us s su u usW W W W W W W W W W W W          

 let us define matrices below: 

1 1

1 1 1

( )

( )
u us s su

s su u us s su

P W W W W

Q W W W W W W

 

  

  


 
                                         (5.13) 

Considering Theorem (5.1) and the positive definite matrices (0, )c fW t , 1 (0, )c fW t : 

1

1

0

0
)

0

0

s

s su u us

u

u us s su

W

W W W W
i

W

W W W W








 
 
  

 

1

0
)

( ) 0T
s su u us

P
ii

P Q W W W W Q




  
                                       (5.14) 

According to part ( )ii we have: 

1 1( ) 0 ( )T T
s su u us s su u usP Q W W W W Q P Q W W W W Q                   (5.15)                                     

Considering part( )i  of equation (5.14) we know that 1( ) 0T
s su u usQ W W W W Q  , then due to 

continuity that ft   the statement (5.15) implies that: 

1lim lim ( ) 0
f f

T
s su u ust t

P Q W W W W Q

 
                                            (5.16) 

It was also proved in the previous part that lim 0
ft

P


 then: 

10 lim ( ) 0
f

T
s su u ust

Q W W W W Q


                                              (5.17) 

Hence according to the Squeeze Theorem one can readily conclude: 
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1lim ( ) 0
f

T
s su u ust

Q W W W W Q


                                              (5.18) 

Regarding part( )i  we have 1( ) 0s su u usW W W W  then equation (5.18) implies that the off-diagonal 

blockQtends to zero as ft   . 

Therefore, with regard to the symmetry, it can readily be verified that both off-diagonal blocks in (5.5) 
are stable (i.e. they go to zero as ft   ), and they do not appear in the steady state form of the 

inverse of the controllability Gramian 1(0, )cW   . 

Now consider the first diagonal block matrix 1 1( )s su u usW W W W  in (5.5). Using the Sherman–

Morrison–Woodbury formula (Press, et al., 2007) we obtain: 

 1 1 1 1 1 1 1( ) ( )s su u us s s su u us s su us sW W W W W W W W W W W W W                          (5.19) 

For simplicity, we define matrices ,P Qas: 

1 1

1

( )u us s su

s su

P W W W W

Q W W P

 



  



                                                     (5.20) 

The statement (5.19) can be written as: 


1 1 1 1( ) T

s su u us s
i ii

W W W W W QP Q                                             (5.21) 

Then using the results of the previous parts the second term in (5.21) implies that: 

1

1

(0, ) 0 ,0

lim 0
f

f f

T

t

P t t

QP Q







    
 

                                          (5.22) 

We know that the constant solution of continuous-time algebraic Lyapunov equations (CALE) is in fact 
the steady state solution (i.e. ft   ) of (CDLE) in (5.7) (Davis, et al., 2010). Then clearly the lim

f
st

W


is the solution of (CALE) T T
s s s s s sA W W A B B   and part( )i  in equation (5.21) yields a finite positive 

definite matrix, i.e. 10 lim
f

st
W 


 .  

Hence, we have shown that in the steady state condition as ft   all partitions of: 

1 1 1 1 1
1

1 1 1 1 1

( ) ( )
(0, )

( ) ( )
s su u us s su u us s su

c f
u us s su u us u us s su

W W W W W W W W W W
W t

W W W W W W W W W W

    


    

   
     

 

tend to zero except the first diagonal block, which would be equal to the positive definite matrix
1 ( )sW   . 

 
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The result above shows that in the steady state conditions, i.e. ft   , only the stable modes of LTI 

system can affect the inverse of the controllability Gramian. However, it is shown in the next section 
that the steady state of the minimum input energy is dependent to both stable and unstable modes 
of the system. 

5.2.2. Minimum Input Energy for LTI System with Anti-Stable Part 

According to (5.1), the minimum input energy is given as: 

1
min 0 0( ) (0, )( )f fAt AtT

f c f fE e x x W t e x x    

Then, using Remark (5.2), we get: 

1

min 0 0

(0, ) (0, )
( ) ( )

(0, ) (0, )
f fs f su fAt AtT

f f
us f u f

W t W t
E e x x e x x

W t W t


 

   
 

                    (5.23) 

Next, we consider Theorem (5.3) in time domain: 

Theorem (5.3): In the controllable LTI system (5.3) containing both stable and anti-stable parts, the 
minimum input energy under steady state conditions, i.e. ft   is: 

 
1

min 0 1
0

( )0
( ) ( ) ( )

( )0
f ss

f s u
uu

xW
E x x

xW






   
       

  
                               (5.24) 

Where: 

 
( ) ( )

T T
s s s s s s

T T
u u u u u u

AW W A B B

A W W A B B 

   

    

                                            (5.25) 

 

Proof:  

Considering the minimum input energy equation (5.1) we have: 

  

 
1 1 1 1

min 0 0 0 0( ) { ( ) ( ) }f f f fAt At At AtT T T T
f f c f f c c f cE t x W x x W e x e x W x e x W e x        (5.26) 

Define: 

1
1

1
2 0

1
3 0

1
4 0 0

(0, )

(0, )

( ) (0, )

( ) (0, )

f

f

f f

T
f c f f

AtT
f c f

At T
c f f

At AtT
c f

v x W t x

v x W t e x

v e x W t x

v e x W t e x









 


  
 




                                        (5.27) 
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Then: 

min 1 2 3 4( ) lim ( )
ft

E v v v v


                                               (5.28) 

Thus, in the steady state: 

 

1
1 1

1
2 2 0

1
3 3 0

1
4 4 0 0

lim lim (0, )

lim lim (0, ) 0

lim lim ( ) (0, ) 0

lim lim ( ) (0, )

f f

f

f f

f

f f

f f

f f

T
f c f ft t

AtT
f c ft t

At T
c f ft t

At AtT
c ft t

v v x W t x

v v x W t e x

v v e x W t x

v v e x W t e x

 

 

 

 

 

 

 

 

  

    


   

  


                              (5.29) 

According to Theorem (5.2), part 1v  represents the minimum input energy of the stable modes of the 

system when ft    and is equal to 1 (0, )T
fs s fsx W x  . 

Now consider part the second term: 

 

1 1
2 2 0 0

1 1 1 1 1

2 01 1 1 1 1

lim lim (0, )( ) ( lim (0, ) )

( ) ( )
( lim )

( ) ( )

f f

f f f

f

f

At AtT T
f c f f c ft t t

AtT s su u us s su u us s su
f t

u us s su u us u us s su

v v x W t e x x W t e x

W W W W W W W W W W
v x e x

W W W W W W W W W W

  

  

    


    

   

   
     

(5.30) 

 

The above equation can be stated as: 

1 1 1 1 1

2 01 1 1 1 1

1 1 1 1 1

1

0( ) ( )
( lim )

( ) ( ) 0

( ) ( )
( lim

s f

u ff

s f u f

f

A t
T s su u us s su u us s su
f A tt

u us s su u us u us s su

A t A t
s su u us s su u us s suT

f t
u us

eW W W W W W W W W W
v x x

W W W W W W W W W W e

W W W W e W W W W W W e
x

W W

    


    

    



    
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
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s f
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A t
u us s su u ust
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s su u us s sut

A
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  
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  



 



 
 

   

 

 




 ft











(5.31) 

Then it is easy to show 2lim 0
ft

v


 .  
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Consider part ( )iv ,as it is described in the proof of Theorem (5.2), the rate of the divergence of 

exponential matrix u fA te when ft   is less than the rate of convergence of 1 1( )u us s suW W W W   

then 1 1lim ( ) 0u f

f

A t
u us s sut

W W W W e 


  .  For the same reason, part ( )iii converges to zero as the final 

time ft  increases to infinity, i.e. 1 1 1lim ( ) 0u f

f

A t
s su u us s sut

W W W W W W e  


  . 

Then part 2v is stable. By the same method, one can readily prove that part 3v also tends to zero as 

ft   . 

Now let us consider the last part 4v , it could itself be broken into four different statements: 

1
4 0 0

1 1
0 0

1 1 1
0 0

1 1 1
0 0

lim ( ) (0, )

) lim ( ) ( )

) lim ( ) ( )

) lim ( ) ( )

) lim (

f f

f

s f s f

f

s f u f

f

u f s f

f

f

At AtT
c ft

A t A tT
s s su u us st

A t A tT
s s su u us s su ut

A t A tT
u s su u us s su st

t

v e x W t e x

i e x W W W W e x

ii e x W W W W W W e x

iii e x W W W W W W e x

iv

 



 



  



  














1 1
0 0) ( )u f u fA t A tT

u u us s su ue x W W W W e x 








 


                 (5.32) 

We have shown in Theorem (5.2) that: 

1 1 1lim ( )
f

s su u us st
W W W W W  


                                                  (5.33) 

 Now regarding the stability of sA part ( )i yields zero, i.e. 1
0 0lim ( ) (0, ) 0s f s f

f

A t A tT
s s f st

e x W t e x


 . 

Part( )ii becomes zero as well in the steady state (i.e. ft   ) since 1 1 1( )s su u us s suW W W W W W   is 

stable and the decay rate of its dynamic in the steady state condition is faster than the increment rate 

of the exponential term u fA te . In a similar way, it can be shown that part ( )iii  goes to zero as ft  

. 

Lastly the block diagonal 1 1( )u us s suW W W W  could be expanded based on the Sherman–Morrison–

Woodbury formula (Press, et al., 2007) then we obtain: 

1 1 1 1 1 1 1( ) ( )u us s su u u us s su u us su uW W W W W W W W W W W W W                     (5.34) 

 Hence with regard to the previous parts we obtain: 

1 1 1 1
0 0lim ( ) ( ( ) ) 0u f u f

f

A t A tT
u u us s su u us su u ut

e x W W W W W W W W e x   


    
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 

 
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
1 1

0
) (0, )

Tf
u

t A
ud W   

 

                      (5.35) 

Then as ft   part 4v  converges to 1
0 0(0, )T

u u ux W x
  , which represents the energy needed to 

regulate the initial condition of the anti-stable subsystem. 

 

In fact, the Theorem above supports the results we discussed in the previous chapter stating that in 
the steady state condition the minimum energy in stable system is a function of terminal time and the 
terminal states, therefore, in the steady state, i.e. ft    the minimum control energy is required, 

while in anti-stable systems we need no steering energy but an initial excitation to move the states 
from the origin to the terminal point in the controllable region when ft   . 

As (Zhou, et al., 1999) suggests one can also define the steady state form of the controllability Gramian 
in the frequency domain through Parseval’s Theorem. Similar results can be derived for unstable 
systems also. 

Proposition (5.1): (Zhou, et al., 1999) In the LTI system (5.2) if A is stable, we define the controllability 
Gramian in the frequency domain as2: 

 1 11 ( ) ( )
2

T T
cW j I A BB j I A d  


  


                                      (5.36) 

 

Corollary (5.2): In LTI system (5.3) cW defined in Proposition (5.1) can be decomposed as: 

0
0

s
c

u

W
W

W

 
  
 

                                                             (5.37) 

where ,s uW W are the solutions of Lyapunov equations (5.25). 

 

Proof is given in (Zhou, et al., 1999). The above Corollary uses the frequency domain to show that the 
controllability Gramian of LTI controllable systems with no eigenvalues on the imaginary axes can be 
decomposed into stable and anti-stable parts. This confirms that minimum input energy, which is 

                                                             
2 For the simplicity, we use the same symbol for the controllability Gramian in the frequency domain and the 
time domain. 
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defined in equation (5.1) can be derived as in (5.24). Theorem (5.3) expresses the same results in the 
time domain. 

5.3. Energy Levels for LTI Systems with Anti-Stable Modes 

In this section, we consider the minimum and maximum values of required energy ܧ௠௜௡
௠௜௡ , ܧ௠௜௡

௠௔௫ 
transferring the states of the LTI system (5.2) with anti-stable modes from the initial point

0 0 0,x x R to the terminal states ݔ௙  , f fx R  (within a very large terminal time ft   ) such 

that 0 , fR R are variables. 

min max
min minmin , maxmin minE E E E   

In other words, we are interested to determine how much input energy we require to move the states 
of the LTI controllable system (5.2) from an arbitrary initial state a distance 0R away from the origin 

to the states defined at a distance fR away from the origin. 

Assume 0 0 , 0u fsx x  . According to Theorem (5.3) and Theorem (4.4), in the best case, where we 

need the minimum value of input energy, i.e. ܧ௠௜௡
௠௜௡, this transfer is done such that the stable modes 

of the system are transferred in the direction of the eigenvector corresposding to the maximum 
eigenvalue of sW , and  the unstbale modes start their movement in the direction of the eigenvector 

associated with the maximum eigenvalue of uW . Similarly, in the worst case where we require the 

maximum energy, this transfer would be done in the direction of the eigenvectors corresponding to 
the minimum eigenvalues of sW  for stable part and the initial direction of the movement of anti-

stable part would be along the eigenvector associated with the minimum eigenvalue of uW .  

Example (5.1): Assume the LTI system as: 
1 0 1

,
0 2 1

A B   
       

 where the initial and final states can 

take values in the interval[ 1,1] , i.e. 101
0

202

1 11 1
,

1 11 1
f

f
f

xx
x x

xx
       

            
. According to Theorem 

(5.3) the energy levels could be found as functions of both 0R and fR . Figure (5.1) illustrates the 

energy levels for this unstable system. It is concluded that as the norm of 0ux  or/and fsx increases 

the value of energy input increases as well, however this increase depends on the direction of the 
movement. Wherever 0 0 , 0u fsx x  if the movement starts in the direction of eigenvector 

corresponding to the minimum eigenvalue of uW for unstable modes and continues to reach the final 

states of stable modes in the direction of the eigenvector corresponding to the minimum eigenvalue 
of sW then we will have the minimum increament, which means the maximum energy for transferring 

is used. If the unstable modes of system begin their movement along the direction of the eigenvector 
associated to the maximum eigenvalue of uW and the stable modes of the system move to the final 

states in the direction of the eigenvector corresponding to the maximum eigenvalue of sW , the 

minimum value of energy woud be required.  
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In addition, for 0 0, 0fR R   it is still possible that the system starts its movement in the direction 

such that 0 0 00u sx x R   and moves toward the final state along the direction of

0fs fu fx x R   , in this case the value of the required energy is zero. 

Furthermore, as Figure (5.1) illustartes in this perticular example, the value of minimum energy is 
more sensitive to the norm of initial states, 0R , rather than the distanc of final states from the origin,

fR , i.e. as fR varies, for a fixed 0R , the value of minimum energy changes faster than the case that

fR is fixed and 0R can change. 

 

Figure (5.1): Minimum energy levels with respect to the norm of initial and terminal states (Example 
(5.1)) 

The importance of the shown energy levels is where we have a constraint on the value of control 
energy. This determines how far the system may move from the initial states defined by the distance

0R away from the origin, i.e. 0 0x R . 

 

Additionally, it can be readily concluded from (5.24) that the unstable part contribution vanishes when 
the unstable modes of the LTI system start their movement from zero. In this special case

1
0 0 0 0[ , 0]s sV x x x R    , nV  is the transformation defined in Remark (5.1) and 0 sx

represents the stable modes’ initial states. Therefore, the input energy would be just a function of the 

stable part, and the energy levels in new coordination ( 1x V x ) could be determined as it is 
explained in chapter 4. Consider the 3-dimensional unstable system in the next example. 

Example (5.2): Consider the LTI system: 
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10     0     5 1
0   -12     0 , 1
1     0   -30 1

A B
   
       
      

 

The eigenvalues are 1 2 3 -30.1246, 12, =10.1246     . Assume we wish to move the states 

from the origin to a final state located on the sphere with radius ( 1, 2,3)fR  . The steady state energy 

levels are shown in Figures below. Figure (5.2) demonstrates the value of minimum energy in the state 
space. In Figure (5.3) eigenvectors of sW  are shown, which show the directions in which the minimum 

and maximum of energy levels occur. 

 

  

 

 

Figure (5.2): Minimum energy levels of Example (5.2) 
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Figure (5.3): Max and Min energy levels’ directions in Example (5.2) 

 

 Conversely, if 0 0ux  , no energy is required to steer the stable modes of the LTI system to the origin, 

then if 1 [0, ]f fuV x x  , fu fx R , where nV  is the transformation defined in Remark (5.1) and

fux represents the final states of the unstable subsystem, the input energy could be determined just 

as a function of the unstable part. Thus, the energy levels can be defined in the new coordinate frame 

( 1x V x )as explained in chapter 4. For stable systems, however, the final states would be 
substitute by the initial states of unstable modes 0ux , and the inverse of controllability Gramian can 

modified as the inverse of controllability Gramian of the anti-stable part as it is described in Theorem 
(5.3), 1

uW 
 . Figures (5.4), (5.5) show the energy levels for example (5.3) in this particular case, where

0R  varies as the integer in the interval[1,3] . 

Example (5.3): Assume that we wish to transfer the state of the LTI system: 
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-3     0     5 1
1   40     0 , 1
5     0   10 0

A B
   
       
      

 

from an initial state on a sphere centered at the origin with the radius 0 ( 1, 2,3)R  to the origin within 

a large terminal time ft   . Figure (5.4) describes the minimum energy levels in the state space. 

These energy levels determine that in the worst case how much energy is needed to transfer the 
system from the initial states on a sphere with the radius 0R to the origin. In Figure (5.5) the direction 

of eigenvectors of uW are illustrated. As it can be seen the energy required to derive the system from 

an initial point decreases as 0ux  decreases. Furthermore, if 0 0ux  the required energy decreases in 

the direction of the eigenvector corresponding to the maximum eigenvalue of uW and increases along 

the direction of the eigenvector associated with the minimum eigenvalue of uW .  

  

 

Figure (5.4): Minimum energy levels of Example (5.3) 
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Figure (5.5): Max and Min energy levels’ directions in Example (5.3) 

 

Furthermore, in the case that the initial state 0 0 0x R  is fixed, the minimum input energy levels 

can be defined based on the scaled extremum eigenvalues of 1
sW  via the norm of terminal state 

vector for the stable part, i.e. fs fx R , which are added by a constant value 2
min 0

uW R  related to the 

unstable part. min
uW  represents the smallest eigenvalue of uW . Figure (5.6) and (5.7) describe the 

energy levels for example (5.2), in the case that 0R is fixed at the values of 100 and 1000. 

The importance of these energy levels is that for an upper bounded input energy they determine how 
far the system is guaranteed to be transferred from an initial state located on a sphere centered at 
the origin with radius 0R cte .   
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Figure (5.6): Pure energy values taken by the unstable subsystem when 0 1R  and 0fR  in Example 

(5.2) 

 

 

Figure (5.7): Minimum energy levels when the system steers from the worst initial direction 

0 ( 100,1000)R   and moves toward the final states located on the sphere with the radius 1fR  in 

different directions in Example (5.2) 
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In a similar manner, if 0fR  is a fixed given value, the minimum input energy levels are defined as 

the extremum eigenvalues of 1
uW 

 by the scaled norm of unstable modes’ initial states 0 0ux R , 

which are increased by a constant value 2
min

sW
fR related to the stable part. 

 m in
sW  defines the minimum eigenvalue of sW . In this case, the energy levels describe the maximum 

distance fR the system can move away from the origin using a limited amount of input energy. Figure 

(5.8) shows this minimum energy value when 0 0ux  and 1fR  in example (5.3). Figure (5.9) depicts 

the energy levels for two fixed values ( 100,1000)fR  . 

 

Figure (5.8): Pure energy values taken by the stable subsystem when 1fR  and 0 0R  in Example 

(5.3) 

 

 

Figure (5.9): Minimum energy levels when the system moves from various initial directions 0 1R   

toward the final states located on the sphere with the radius ( 100,1000)fR  in the worst direction 

in Example (5.3) 
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The energy levels discussed in this section imply that if the LTI system is anti-stable then the problem 
of transferring to zero requires more energy than the reachability problem, which deals with the 

problem of transferring the system from the origin 0 0 0x R   to a terminal state

, 0f f fx x R  , since the anti-stable systems tend to amplify the magnitude of the state. 

 In the case that the LTI system has a combination of stable and anti-stable parts, the selection of the 
initial and final states may cause simplifying or complicating the reachability problem and the 
controllability to 0 problem.  

 

5.4. The Energy and Relative Degree of Controllability 

In many practical cases, controllability should not be treated as a binary concept; that either a system 
is controllable or not. In many classes of control problems, it is also important to know how 
controllable a system is. Consider an uncontrollable system, if we start from a set including the 
sufficient number of actuators it will usually be the case that moving one of the actuators a small 
distance 0   a controllable system will result. For a very small , even though technically the system 
is controllable, in some sense it is almost uncontrollable (Viswanathan, et al., 1984). 

According to (Burgmeier, 1992) consider the LTI system: 

, , , , ,n n n m l n l m nx Ax Bu
A B C D x

y Cx Du
    

      


                      (5.38) 

Then 0 0 0( ) ( , , , ),f fx t x t t x u t t  denotes the unique solution of this system for a given initial 

condition 0 0( ) nx t x   and u U  where U  is the set of all admissible controls for the system 

(5.38). 

For a given non-empty set of final states n
fX  we define the X-controllability set of the system at 

time 0ft t  by 0 0 0 0( , , , ) { , , ( , , , ) }n
f f f fS t t U X x u U x t t x u X    . 

As simple measures of the size of the X-controllability set at time 0ft t with respect to a given point
ny we define two degrees of controllability and uncontrollability as: 

 

Definition (5.1): (Burgmeier, 1992) in LTI system (5.38) the degree of controllability with respect to a 

given point ny is defined as: 

0 0 0( , , , ) inf{ : , ( , , , )}n
f f ft t U X x y x x t t x u                          (5.39) 

And the degree of uncontrollability could be stated as: 

0 0 0( , , , ) sup{ : , ( , , , )}n
f f ft t U X x y x x t t x u                          (5.40) 
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Where .  represents the Euclidian norm. 

 

Definition (5.2): (Burgmeier, 1992) The recovery region for time T for normalized system (5.38) is the 
set 0 0[0, ]{ : , 1, ( , , , )}

f
f ftx X u U u x t t x u      . 

 

Then, the recovery region denotes the reachability set of the system if we consider the problem of 

transferring the initial states 0x to the origin, within the finite time ft  using the control input , 1u u 

.  

Therefore, as explained in (Viswanathan, et al., 1984) the recovery region identifies all the final states 
to which at least one initial state can be transferred in an interval using bounded energy control. Also, 
the degree of controllability is a scalar measure of the size of the region chosen as the shortest 

distance from the final point to a given point ny , which is the desired terminal state. 

Then, the control input energy can be employed as the degree of controllability to demonstrate the 
importance or lack of importance of each control input/actuator. 

Example (5.4): Consider the linearized MIMO model of the active magnetic bearing (AMB) system 
(Noshadi, et al., 2016), (Schweitzer & Maslen, 2009), (Mazenc, et al., 2005): 

 

Figure (5.10): Schematic of the AMB system 

 

AMBs can provide contactless suspension of the rotor by attractive forces produced by 
electromagnets. They are employed in a variety of rotating machines in place of conventional 
mechanical bearings. 

In this example, the 18th order AMB has 4 coil currents as inputs and the outputs are defined as the 
position and the orientation of rotors.  
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TC 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  -2.1590   -1.5950      6.9340
   -5.5360   16.7600  -18.1900  -20.8700
  -10.4100    0.5644   16.4900    1.6760
   -5.5310    1.7130    3.7640      1.2470
   -1.2190   -6.6440    1.9040     -1.9720
    0.7982   11.4200    -1.7800   14.4700
   -1.3220   -15.4500    0.3159    9.0980
    6.2330    9.8390    4.5670     -3.8710
   12.8700   16.3700    9.2420   -3.2940
    8.9640     -0.9097    3.0000    1.0810
    3.3940    1.7800    1.0590    -15.4300
   -3.4690  -17.5500    3.2230  -10.5200
   -8.5000   -1.9170   10.1500    -1.3500
    4.0930    -2.0230   -8.2030     -2.2680
    0.6677    -2.5790    0.3406      3.1050
   -2.1520    -0.2261    -1.9370    0.4813
   -1.1260    -1.9160    1.4620     -0.5211
    0.6849    -1.9850     0.2637    -1.0290

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Active magnetic bearing (AMB) systems are intrinsically unstable as they have some poles in the right 
half plane (RHP). One can easily decouple the whole model into stable and anti-stable parts using a 
linear transformation. In this case the eigenvalues are: 

 

-0.0001 - 1.2900i  , -0.0001 + 1.2900i , -0.0001, - 0.4826i , -0.0001 + 0.4826i 
-0.0001 - 0.4835i , -0.0001 + 0.4835i , -0.0152 - 0.0336i , -0.0152 + 0.0336i 
-0.0221 , -0.0112 - 0.0228i , -0.0112 +k 

0 0 0 0 0

 0.0228i 
-0.0071 - 0.0212i , -0.0071 + 0.0212i 
0.0191  , 0.0243   ,  0.0272  ,  0.0285 , 0.0463  

1, 2, 18k

    









 

  

13 13 5 5 13 4 5 4, , ,s u s uA A B B          can be found in the Appendix. 

Now, let us define the initial condition and the terminal state as: 

    0 1 0 0 0.2 0 0 0 , 2 0 0 0.3 0 0 0T T
fx x      
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We can achieve the values for the degree of controllability proposed in this section by using the 
Lyapunov equations for the above decoupled matrices, and we get: 

1 1 1

2 2 2

3 3 3

4 4 4

min {B } u{B }

min {B } u{B }

min {B } u{B }

min {B } u{B }

+ =217.3633 6.9140e+04 6.9357e+04

+ 119.0317 1.2020e+04 1.2139e+04

+ 511.1147 1.9115e+07=1.9116e+07

+ 95.7876 4.7137e+03 4.8095e+03

s

s

s

s

E E E

E E E

E E E

E E E

  

   

  

   








 

Here min , 1, 2,3,4
i

E i  denote the minimum input energy for ith input, and {B } u{B }, 1, 2,3, 4
i isE E i  are 

the steady state energy values stored in the stable and anti-stable subsystems related to ith input 
respectively. 

The results show that for this initial condition and final state, it is efficient to apply the last input since 
it corresponds to the minimum energy. 

Now let us find DOC by a different set of initial and final state: 

   0 1 0 0 1 0 0 0 2 , 2 0 0 2 0 0 0 0.5T T
fx x    

In this case, we get: 

1 1 1

2 2 2

3 3 3

4 4 4

min {B } u{B }

min {B } u{B }

min {B } u{B }

min {B } u{B }

+ =1.5376e+04 3.1321e+08 3.1322e+08

+ 7.5852e+04  1.2252e+08 1.2260e+08

+ 7.5184e+04 1.4773e+08=1.4780e+08

+ 9.8826e+04 1.4857e+08 1

s

s

s

s

E E E

E E E

E E E

E E E

  

   

  

    .4867e+08









 

 The achieved results are different from the first case. Here the 2nd input leads to less steady state 
input energy and thus it is more controllable relative to the other inputs. The results also show that 
this approach is sensitive to the initial and final conditions, i.e. the initial and terminal states may vary 
the result. In this case the proper initial and terminal conditions that coincide with the control 
objective should always be selected (Lee & Park, 2014). 

 

To remove this sensitivity and increase the reliability of the input selection, we can define the degree 
of controllability (DOC) as the worst-case metric where we evaluate the maximum of minimum energy, 
which specifies the largest possible amount of energy required to transfer the states from any initial 
point to any final states located in the sphere with the center in the origin and the radius R, i.e. 

0,sf ux R x R  (without loss of generality one can simply normalize 0 , fx x ). In other words, 

wherever we have not enough information of the initial and final conditions of the system the 
presented energy DOC measure for testing the controllability of a system is not satisfactory in the 
sense it may lead to wrong conclusions. 
Therefore, we introduce another controllability measure, based on the maximum value of minimum 
energy as a metric which seems to be useful, especially in the case that we are designing the system 
for various initial and final conditions. 
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We can readily define the above energy measure as a linear combination of eigenvalues of the inverse 

of controllability Gramians 1 1,s uW W  for the stable and anti-stable subsystems respectively, where 

the coefficients are determined through the initial and final states. 

In the worst case, according to the explanations given in section 5.3, the normalized initial condition 

must represent the eigenvector corresponding to the maximum eigenvalue of 1
uW  and the terminal 

states would be in the same direction of the eigenvector corresponding to the maximum eigenvalue 

of 1
sW  . Then DOC measure could be defined as the summation of maximum eigenvalues of 1

uW  and
1

sW  . 

If we use this DOC measure in our example, we get: 

 
 
 


1 1 1

2 2 2

3 3 3

4 4 4

min {B } u{B }max max

min {B } u{B }max max

min {B } u{B }max max

min {B } u{Bmax

+ =3.6377e+04  1.5978e+08  1.5982e+08

+  1.6471e+05  2.9201e+09 2.9202e+09

+ 9.4060e+04 5.5939e+08= 5.5948e+08

+

s

s

s

s

E E E

E E E

E E E

E E E

  

   

  

 } max
 6.8675e+04 1.7343e+10 1.7343e+10








   

 

The results show that the first input could be a reasonable choice if we are interested in the robustness 
of degree of controllability over the set of all possible initial and final states, though the choosing other 
inputs might result in a better degree of controllability for some specific initial and final conditions, 
they do not provide guaranteed degree of controllability, i.e. there might exist some initial or final 
states which lead to nearly uncontrollable system.  

Remark (5.3): Consider the LTI system (5.30) with stable and anti-stable modes, with defined initial 
and final states the energy optimal degree of controllability (DOC) could be defined as the minimum 
input energy in the steady state defined by Theorem (5.3).  

1

min 0 1
0

( )0
( ) ( ) ( )

( )0
f ss

f s u
uu

xW
E x x

xW





   
       

  
                               (5.41) 

 

Remark (5.4): Consider the LTI system (5.38) with stable and anti-stable modes. The worst-case energy 
optimal degree of controllability (WDOC) can be defined as:  


1

1 1

1

1
max

min max max 1max
max

( )0
( ) ( ) ( )

0 ( )

s

s u

u

W
sW WT T s

s u W
u u

VW
E V V

W V



 







             
                 (5.42) 

Where 
1

max
sWV


shows the eigenvector corresponding to the maximum eigenvalue of 1
sW  and

1

max
uWV


  

determines the eigenvector associated with the maximum eigenvalue of 1
uW  . 

 
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Let us investigate further the difference of two proposed DOC measures using the example of 
linearized seesaw-pendulum. 

We refer the interested readers for details on the linearized model of seesaw-pendulum to (Subbotin, 
2004), (Jirstrand & Gunnarsson, 2001). 

Example (5.5): consider the seesaw-pendulum process in Figure (5.11). 

 

Figure (5.11): The schematic of seesaw-pendulum process 

In this system, we have an inverted pendulum coupled with a second cart which can move in parallel 
on top of an unstable structure - a seesaw. This system has two inputs: a force applied to the cart with 
the pendulum installed on top of it and a force applied to the load cart which tries to balance the 
seesaw structure. 

Let us define the state vector as: 

1 2 1 2

T
x x x x x      

    

where 1x is the position of the load cart, is the angle of the seesaw structure with respect to the 

vertical axis, 2x represents the position of the pendulum cart and  denotes the angle of the 

pendulum with respect to the seesaw symmetry axis, then we can write the linearized model of the 
system as: 

 11 12 1
1 2

21 22 2

[ , ]
A A b

x x u u
A A b
   

    
   

   

Have: 
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11 4 4

12 4

1 2 2

1 2 2
21

1 2 2 2

1 2 2 2 2

2 2
1 2

22 2

0

/ / ( ) / 0
/ / ( ) / 0

/ / ( ) / /
/ / ( ) / ( ) /

( ) / 0 / 0
/ 0 / 0

/ 0

p

p

p p

p p p

A
A I

ghm J g cghm J gh m m J
gm J cgm J g m m J

A
ghm J g cghm J gh m m J gm m
gm J cgm J g m m J g m m l m

J m h m J h J
h J h J

A
h J

 
 
 




    
  
     
       
  


  2

2

2 2

( ) / 0
/ 0 ( ) / 0p p

J m h J
h J l hm J m l 

 
 
 
 
 

    

 

2 2
1 1

1 4 2 2 2 2
2

2 2

( ) / /
/ /

0 ,
/ ( ) /

/ ( ) /p p

J m h m J h J
h J h J

b b
h J J m h J

h J l hm J m l J



 
      
 

  

 

Assuming all parameters are equal to 1 then we get the LTI system below: 

8 8

     0     0     0     0     1     0     0     0
     0     0     0     0     0     1     0     0
     0     0     0     0     0     0     1     0
     0     0     0     0     0     0     0     1
   

A  
 -1     0    -2     0    -2     0    -1    0

     1     1     2     0     1     0     1     0
    -1     0    -2    -1   -1     0     2     0
    -1    -1    -2    2    -1    0      0     0

 












8 2

0     0
0     0
0     0
0     0

,
2     1
-1    -1
1     2
1     0

B 

 
  
  
  
  
    
  
  
  
  
    

 

This system has three anti-stable modes. Using a similarity transformation, we can split it into a 5-
dimensional stable part and a 3-dimensional anti-stable subsystem. 

Let us consider the first case, where the initial and final conditions are given as: 

    0 0 1 0 0 0 0 0 0 , 0 2 0 0 0 0 0 0T T
fx x   

Then the results of the first DOC are achieved as: 

 1 1 1

2 2 2

min {B } u{B }

min {B } u{B }

+ =1.6358e+05 5.8621 1.6358e+05

+ 3.4472e+33  29.9975 3.4472e+33
s

s

E E E

E E E

  
    

  

Recall that  , 1, 2iB i  means the part of the B matrix related to ith input.  
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As shown in the results, it is efficient to apply force to the cart with pendulum to change the angle of 
the seesaw structure.  

Now consider the second case, where the angle of pendulum changes from 1 to 2: 

   0 0 0 0 1 0 0 0 0 , 0 0 0 2 0 0 0 0T T
fx x   

Then, the values of the proposed measure are: 

1 1 1

2 2 2

min {B } u{B }

min {B } u{B }

+ =1.4566e+06 24.1888 1.4566e+06

+ 4.4568e+04 1.8663e+02 4.4755e+04
s

s

E E E

E E E

  
    

 

In this case, the results show that it is efficient to apply force to the load cart to change the pendulum’s 
angle. 

Note also that DOC result of the system varies with the initial and final conditions. 

While the second DOC measure, which illustrates the degree of controllability in the worst case, leads 
to the same values for all normalized initial and final states:  

 
 

1 1 1

2 2 2

min {B } u{B }max max

min {B } u{B }max max

+ =1.0588e+03  32.5079 1.0913e+03

+ 1.7695e+31  246.9892

s

s

E E E

E E E

   


    
 

 The results show that if we use the force to the load cart there exist at least one direction in which 
the system would be uncontrollable or at least hardly controllable, while if we select the first input 
(force to the cart with pendulum), even in the worst case the value of control energy does not exceed
1.0913e+03 , and the system remains controllable. 

 

From this simple example, it becomes apparent that the proposed worst case method (WDOC) is a 
more meaningful controllability metric rather than the steady state energy measure (EDOC), which is 
dependent to the initial and final conditions and may produce opposite results according to these 
conditions. 

 In summary, if we know the initial and final condition of a system we can easily use the first DOC 
measure to precisely determine the degree of controllability of the system, however in the case that 
we are considering the system with various initial and final conditions, the second DOC measure seems 
more reliable.  

5.5. Degree of Controllability 

In this section, a novel measure of controllability is proposed, which amounts to generalization of 
Kalman’s rank test to quantify the degree of controllability. 

In fact, the proposed (WDOC) approach, in the previous section, determines the distance to 
uncontrollability, which was firstly defined by (Paige, 1981): 
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Definition (5.3): The distance to uncontrollability is the spectral norm distance of the pair (A, B) from 
the set of all uncontrollable pairs: 

  ( , ) min [ , ] : ( , )
s

d A B E F A E B F Uncontrollable


  


                  (5.43) 

where .  denotes the spectral norm.  
 

 
This definition has its root in (Hautus, 1970), (Hautus, 1969) characterization of controllability (5.44) 
and confirms the definition (5.1) involving the degree of controllability, i.e. 

   , , , ,n n n mrank A sI B n s A B                                  (5.44) 

According to (Eising, 1984), (Eising, 1984) ( , )d A B can be equivalently expressed as: 

   n( , ) min , , ,n n n m

s
d A B A sI B A B  


   


                       (5.45) 

where min denotes nth singular value of augmented matrix  ,A sI B . 

There is a considerable number of research papers which quantify the distance to uncontrollability 
based on the above definition (Wicks & DeCarlo, 1991) , (Boley & Lu, 1986), (Eising, 1984) (Gahinet & 
Laub, 1992) (Tarokh, 1992).Special purpose optimization methods have been developed for 
calculating this distance, however the current methods usually face difficulties due to the presence of 
numerous local minimum points, so that the algorithm method search for all of them in order to 
guarantee the optimal solution (Byers, 1989). Furthermore, a good starting point is typically needed 
to identify the global optimum (Boley, 1987), (Byers, 1989). In addition, some of the existing methods 
may fail to detect nearly uncontrollable systems (Paige, 1981) (Hu & Davison, 2001). 
Next, we propose a new approach based on Kalman’s controllability criteria (Ogata, 1997) to solve 
distance to uncontrollability problem. This new method removes many drawbacks of the current 
heuristic/numerical methods, and produces more accurate results. Then we will use this novel method 
to check the validity and accuracy of the worst-case DOC measure (WDOC), which was introduced 
above.  
 
Lemma (5.2): (Kalman, 1963) A necessary and sufficient condition for ( , )A B to be controllable is: 
 

  2 1( ) , ,n n n n mrank C rank B AB A B A B n A B                   (5.46) 

C is called Kalman’s controllability matrix or Kalman block matrix (of size n nm ). 

 

For the proof see (Kalman, et al., 1963) , (Ogata, 1997). The above Lemma is a useful and simple test 
but less effort has been spent to generalize it from classical binary rank test to a test which indicates 
the distance to uncontrollability. In fact, the characterization ( , )d A B  based on the PBH test has 

received more attention in literature (Eising, 1984), (Kenney & Laub, 1988). In Theorem (5.4), we 
propose a new way of calculating distance to uncontrollability based on Kalman’s rank condition. 
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Theorem (5.4): Consider the LTI system described by (5.38). The distance to controllability is: 
 

 2 1 1( , ) min ( [ ( ) ( ) ]( ))n
n n n n n ns

d A B V I sI sI sI I V B  


       


     (5.47) 

where 1A V V   is the Eigen-decomposition of system matrix A , and n denotes nth singular value 

of modified Kalman block matrix 2 1( ) ( ) ( )n
n n nB A sI B A sI B A sI B     . 

 

Proof: 

Consider the controllable pair ( , )A B . According to the definition (5.3) we are looking for the 

minimum-norm perturbation such that ( , )A A B B   is uncontrollable, so according to Kalman’s 

rank condition we have: 

  2 1( )( ) ( ) ( ) ( ) ( )nrank B B A A B B A A B B A A B B n                 

(5.48) 

Additionally, based on (Kienitz, 2012), (Eising, 1984) we know that for uncontrollable pair

( , )A A B B    there exists a left-eigenvector/eigenvalue pair  ,i iV  of ( )A A   such that: 

 ( ) , 0i i i iV A A V V B                                                          (5.49) 

Furthermore, it is easy to see that the eigenvalues of nA sI  for any scalar s are those of A subtracted 

by s , while the eigenvectors remain those of A . Further controllability of pairs ( , )A B and ( , )nA sI B

is equivalent, since: 

, 0 ( ) ( ) , 0i i i i i n i i iV A V V B V A sI s V V B                               (5.50) 

Kalman’s controllability matrix for the second pair gives: 

2 1( ) ( ) ( )n
n n nB A sI B A sI B A sI B                          (5.51) 

Now considering the Eigen-decomposition of A , i.e. 1A V V    (in the case of repeated eigenvalues 
the singular decomposition is used), we get: 

1 2 1 1 1

1 1 2 1 1 1

1 1 2 1 1 1

2 1 1

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ]( )

[ ( ) ( ) ( ) ]( )
( [ ( ) ( ) ]( )( ))

( [

n
n n n

n
n n n n

n
n n n n

n
n n n n n n

n n

B V sI V B V sI V B V sI V B

VV V sI V V sI V V sI V I B

V V sI V sI V sI V I B
V I sI sI sI I V I B

V I sI

   

    

    

 

     

       

    

      

 







2 1 1( ) ( ) ]( ))n
n n nsI sI I V B    

   (5.52) 

Then according to (5.50) and using definition (5.3), calculating the distance to uncontrollability reduces 
to finding the minimum of nth singular values of (5.52) over s and the proof is completed. 
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 

Now we illustrate the method introduced above with some numerical examples, each representing a 
time-invariant linear system of the form (5.38). The examples show the comparable accuracy and 
validity of our method. 
The first example is taken from (Boley & Lu, 1986): 
 
Example (5.6): The LTI system is defined by: 
 

 
0 1 1

,
1 0 0

A B   
       

  

It is clear by Kalman’s criterion that this system is controllable, and by applying the Theorem above 
we obtain ( , ) 0.6616d A B  . 

 

In the second example, we start with an uncontrollable system which is studied in various references 
(Paige, 1981), (Boley, 1987), etc. This example shows the power of our method in detecting the 
systems very close to uncontrollability where many existing methods may not indicate that fact (in the 
most cases, our approach is comparable to Eising’s method, and in many cases, it produces better 
results).  
For this particular example with repeated eigenvalues, the best current distance to uncontrollability 
by staircase algorithm is 0.00087689843786 (Boley, 1987). The found solution by Eising’s method is 
1.1308e-22. 
 
Example (5.7): Consider the pair: 
 

 

1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0

,0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0

A B

         
           
       
          
     
   

    
      

  

The distance to uncontrollability achieved by the above Theorem is exactly zero, i.e. DOC=0, which is 
much more accurate rather than the solutions found by other approaches. 

 

Now consider the following example, which is borrowed from (Khare, et al., 2012): 

Example (5.8): Consider the LTI system: 

 

1 1 0 0
1 1 0 ,
0 0 3 1

x x t u t
    
         
      

    
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In this example, the distance to uncontrollability changes as the parameter t varies. Table (5.1) 
demonstrates the real controllability radius obtained by Theorem (5.4) and compares our method 
with the results achieved by Eising’s method for five different values of t , clearly as t decreases the 
real controllability radius decreases too (as would be expected since the system is uncontrollable with 

0t  ). The comparison of the results in Table (5.1) confirms the accuracy of our approach. 

         t=10            t=2          t=1          t=0.1         t=0 
New Theorem 
(5.4) 

     
     0.2192 

 
     0.7181 

 
      0.3779 

 
      0.0388 

 
         0 

Eising’s 
Method 

     
0.2165 

 
0.7180 

 
0.6063 

 
0.645 

 
3.1659e-05 

Table (5.1): Results of Example (5.8) 

 

Now let us investigate if the Theorem (5.4) supports the actuator selection which was suggested in 
Examples (5.4), (5.5) using our WDOC criterion. 

 Table (5.2) lists the real controllability radius of each actuator selection of AMB system in example 
(5.4). The results show that the first input produces more controllability. It supports the results of 
WDOC measure. 

         Input 1          Input 2      Input 3       Input 4 
( , )d A B   

New Method 

      
         0.0175 

         
         0.0041 

   
        0.0107 

        
         0.0037 

Table (5.2): Distance to uncontrollability for AMB system in Example (5.4) 

The real controllability radius of seesaw-inverted pendulum in example (5.5) is shown in Table (5.3). 
The results also confirm the input selection by WDOC. 

                  Input 1                   Input 2 
( , )d A B  New Method                    

                 0.0147 
 
                  4.6907e-17 

Table (5.3): Distance to uncontrollability for seesaw-inverted pendulum system in Example (5.5) 

 

5.6. Degree of Disturbance Rejection 

Consider the linear time-invariant system given in equation (5.36) with an input disturbance d : 

 , , , , ,d n n n m n p q n q m
d

x Ax Bu B d
A B B C D

y Cx Du
      

      


          (5.53) 

Degree of disturbance rejection is defined as minimum energy required to steer initial state 0x to the 

final state fx under the presence of external disturbance d  (Lee & Park, 2014). 

The state transition equation for above system is given by (Chen, 1984): 
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 0 0
( )ff

tAt A
f dx e x e B d d                                                             (5.54) 

(Friedland, 1986) has defined the disturbance sensitivity Gramian as: 

 
0

(0, )
Tft A T A

d f d dW t e B B e d                                                          (5.55) 

 

Lemma (5.2): The disturbance energy of the LTI system in equation (5.36) is given by: 

1
[0, ] 0 0( ) (0, )( )

f

d At T At
t f d f fE x e x W t x e x                                            (5.56) 

where 0x , fx are initial and terminal states respectively, and 1(0, )d fW t is the inverse of disturbance 

sensitivity Gramian.  

 

Proof: 

Suppose that (0, )d fW t is non-singular for some finite 0 ft , then the disturbance, which takes the 

system from some initial state 0x to the final state fx is given by: 

 ( ) 1
0( ) ( ) (0, )( ),0f fA t t AtT

d d f f fd t B t e W t x e x t t                               (5.57) 

Then the disturbance input energy is defined as:  

 

2
[0, ] 2 0

1
00

1
0 0

( ) ( ) ( )

( ) ( ) (0, )( )

( ) (0, )( )

f

f

Tf

td T
t

t T T A t At
d d f f

At T At
f d f f

E d t d t d t dt

d t B t e W t x e x dt

x e x W t x e x





 

 

  


                               (5.58) 

 

In the case that system is transferred from the origin 0 0x  equation (5.56) could be simplified as: 

 1
[0, ] (0, )

f

d T
t f d f fE x W t x                                                           (5.59) 

From the above Lemma, it can be seen that the inverse of disturbance sensitivity Gramian 1(0, )d fW t

should be maximized to make the system maximally insensitive to the disturbance.  Equivalently, 
(0, )d fW t  needs to be minimized to have a minimum effect of disturbance on the system. This could 

be used to define an appropriate criterion as an indication of the optimal position of the actuators to 
reject an external disturbance acting on the system. 

The degree of disturbance rejection (DODR) is the capability of the system to prevent the disturbance 
energy to be transferred into the state of the system. This is defined as the trace of the inverse of 
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controllability Gramian multiplied by the sensitivity Gramian in the steady state (Lee & Park, 2015), 
(Lee & Park, 2014): 

1lim ( ( ) ( ))c dt
trace W t W t 


                                                         (5.60) 

Clearly the above measure has a physically meaningful value of input energy and has the potential to 
be modified to unstable systems by following the procedure proposed in the previous section. ,c dW W
can be obtained from the (CALE) equations:  

        ,T T T T
c c d d d dAW WA BB AW W A B B                                       (5.61) 

 where A denotes the proper related system matrix, which would be A in the stable case, and A in 
anti-stable system. Although this is computationally straightforward we will show that it does not 

necessarily lead to the correct answer where the growth or decrease in one eigenvalue of 1
c dW W is 

large, relative to the increment or decrement of the other eigenvalues. We offer the following 
illustrative counterexample: 

Example (5.9): Consider the linearized model of a two-CSTR process, which is schematically shown in 
Figure (5.12). A full description of the system and an eight-state model can be found in (Cao & Biss, 
1996). 
 

 
Figure (5.12): Two-CSTR Process 

 
Let us define cooling water temperature fluctuations as the disturbance and assume that we have 
two options for control inputs: 

i. two feed flowrates  
ii. two cooling-water flowrates 

 

 i dx Ax B u B d
y Cx Du
  

  


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-17.9751 -295.8655    0             0             0                  0
0.0207    0.1889     0.0704         0             0                  0
0              0.3879     -0.8000       0             0   

A 
               0

0.0977       0                0        -18.0088   -295.8655       0
0              0.0617         0           0.0131     0.0433    0.0589
0               0                 0            0

1

           0.378       -0.6220
17.8996   -13.7811 
-0.0131      0.0101  
0                 0          
17.8636   17.8636  
-0.0082     -0.0082  
0                 0

B B

 
 
 
 
 
 
 
  
 
 
 
 
 

  
 
 
 
 

2

0              0 0          0
0              0 0          0
-0.0294    0 0.0137 0

,
0              0 0          0
0              0 0          0
0      -0.0235 0   0.0081

dB

C

   
   
   
   

    
   
   
   
   

0     362.9950    0    0        0              0
0      0                0    0     362.9950    0
 

  
 

  

If we choose the first input 1B  the degree of disturbance rejection would be obtained as: 

 1
1 lim ( ) 17.0353

f
c dt

trace W W 


    

While by selecting the second input 2B we will have: 

1
2 lim ( ) 1.0154

f
c dt

trace W W 


   

The two results yield that the control input energy of first input 1B is larger than that of second input

2B , which suggest input 2B is the best selection, while we know that dB is same in both cases then the 

degree of controllability could be a good indicator of the disturbance rejection capability of the system 
and it suggests that input 1B is a better choice, because the first input causes more controllability,

1 20.0024, 9.6533e-05DOC DOC  .  

 

 In following, we introduce a new DODR, based on worst case of steady state input energy. We will 
show that this new method can be used as a reliable criterion to measure the degree of disturbance 
rejection of the system, and it can easily be modified for unstable systems. 

Definition (5.4): Consider the LTI system in equation (5.53), the degree of disturbance rejection could 
be defined as: 

 
( ( )) 1

1 ( ( )) ( ( ))
c

c d

trace W
trace W trace W

 
 

  
                                            (5.62) 
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( )cW  denotes the controllability Gramian in the steady state situation for the system without the 

disturbance, i.e. , 0, fx Ax Bu d t    , and ( )dW  demonstrates the sensitivity Gramian of 

the system without control input when ft  i.e. , 0dx Ax B d u   .  

 

Consider the continuous time invariant system in equation (5.53), we can write it as: 

  d

u
x Ax B B

d
 

   
 

                                                                      (5.63) 

Then with regard to the definition of controllability Gramian we obtain: 

  
0

(0, )
Tft A A

sys f d
d

B
W t e B B e d

B
  

 
  

 
                                                (5.64) 

Thus, we have: 

 
0

0 0

( (0, ))

( (0, ))

Tf

T Tf f

t A A
sys f d

d

t tA T A A T A
sys f d d

B
trace W t trace e B B e d

B

trace W t trace e BB e d trace e B B e d

 

   



 

 
  

 

  



 
(5.65) 

Now assume we define: 

( (0, ))sys fk trace W t ,
0

Tft A T Aa trace e BB e d    ,
0

Tft A T A
d db trace e B B e d     

Then (5.65) can be written as: 

k b a   

According to
1

aa
a




 we get:               

1
ak b

a
 


                                                             (5.66) 

One can add 
10
b

 to both sides of statement (5.66), then we obtain: 
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2

2 2

1 1
1

1 1
1
1 1

1
1 1 0

1

ak b
b a b

kb b a
b a b

ab b b a
b a b

ab a
b a b

    


 
  


  

  



   



                                         (5.67) 

Hence, with regard to minimum input energy optimization problem we know that the left-hand side 
of the statement (5.67) should be maximized that is a non-convex optimization, then using a relaxation 

we can optimize input energy by maximizing the lower bound
1

1
a

a b
  


 : 

1 1 1max( ) max( ) max( )
1

ab aa
b b a b


   


                             (5.68) 

( ( )) 1
1 ( ( )) ( ( ))

c

c d

trace W
trace W trace W

 
  

  
                                 (5.69) 

Thus statement (5.62) is verified.  

 

Remark (5.5): In the case that A is stable we can easily use the Lyapunov equations to get DODR 
defined in (5.4): 

 ( ) ( )

( ) ( )
( ) ( )

T
sys sys d

d

T T
c c

T T
d d d d

B
AW W A B B

B

AW W A BB
AW W A B B

  
      

 
     
     


                                  (5.70) 

 Furthermore, as discussed in previous sections, in the case that A is unstable, i.e. A has some 
eigenvalues on the right half plane (RHP), we may decompose the system into stable and anti-stable 
parts, and then we can easily use the Lyapunov equations to find the controllability and sensitivity 
Gramians of each subsystem separately: 

   . . . .

. . . .

. . . .

( ) ( ) , ( ) ( )

( ) ( ) , ( ) ( )
( ) ( ) , ( ) ( )

s uT T
s sys s sys s s s ds u sys u sys u u u du

ds du

T T T T
s c s c s s s s u c u c u u u u

T T T T
s d s d s s ds ds u d u d u u du du

B B
A W W A B B A W W A B B

B B

A W W A B B A W W A B B
A W W A B B A W W A B B

    
            

   
        
        







(5.71) 
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 

Therefore, our method is not computationally intensive either. It can be readily solved using the 
Lyapunov equations. 

Now let us test the validity of the proposed DODR measure in example (5.9): 

The eigenvalues of A are:

-17.6314
-17.7915
-0.1142
-0.1283
-0.8406
-0.6678

A






 





 By choosing the first input 1B we obtain

0.9699 444.8508 445.8207    while the second input 2B yields

0.0122 444.8508 444.8630     thus the results suggest the CSTR plant with 1B would be less 

affected by the disturbance d.   

Now consider another example cited from (Johnston & Barton, 1985): 

Example (5.10):  Consider the linear system with three candidate inputs, u described by the following 
state space model: 

 dx Ax Bu B d
y Cx
  

 


  

 

    -1    -2     3     0     0     1
     0    -2    10     0     2     0
     0     0   -20    10     0   -20
     0     0     0    -3     0     0
     4     0     0     0   -10     2
     1     1     0

A 

1 2 3

     0     3   -15
 1 -4 2 1     0
 5 1 0 0     2
 0 5 1 0     0

, , ,
 0 1 0 0     0
 2 -4 0 0     0
 1 -2 0 0     0
0     0

B B B d

C

 
 
 
 
 
 
 
 
 
       
       
       
       

          
       
       
       
       


     0     0     1     0

0     0     0     0     0     1
 
 
 

  

The aim is to select two inputs from the three candidates by considering the disturbance rejection 
properties of each input. Table (5.4) demonstrates the results of our method in measuring the 
system’s capability in disturbance rejection. In the original work Johnston and Barton claimed that
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1 3{ , }B B is the best input set. However, later (Cao, et al., 1997) through Input-Disturbance Gain 

Deviation (IDGD) method in the frequency domain revealed that this selection appears to be wrong 
and showed that the best performance is expected from selecting the input set 1 2{ , }B B . The results 

of our method also support this statement, because our proposed DODR is maximized by the selection 
of input set 1 2{ , }B B , which means that this approach maintains the physical meanings of DODR as 

the maximum energy requirement for the disturbance. 

            1 2{ , }B B                1 3{ , }B B               2 3{ , }B B  

DODR New Method 
 

            1.3240               1.2624                1.3210 

Table (5.4): DODR results of Example (5.10) 

 

To evaluate the performance and usefulness of the proposed measure, let us consider another 
numerical example describing a continues-time linear model of bus suspension system. In this 
example, we will consider the cases when the disturbance is matched and unmatched. Next, we will 
identify the variation of the measure according to the variation of a model parameter. 

Example (5.11): Consider a 1/4 bus model (one of the four wheels) to simplify the problem to a one-
dimensional spring-damper system: 

 

 

1 1 1 1

2 2 2 2

0 1 0 0
0
1

0 0 0 1 0
2 0

1 0 1 0

d

k b k b
m m m m

x x u B d

k b k b
m m m m

y x

  
                              
  
  


  

Assume body mass 1 2500m kg ,  suspension mass 2 320m kg , spring rate 10000k N m
damping constant 140000b Ns m and the deformation of the tire as the disturbance. The system is 

controllable and asymptotically stable.  

 

Figure (5.13): Model of bus suspension system (matched disturbance) 
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We first study the case when the matching condition is satisfied; that is, the disturbance is in the range 

of input matrix B (Figure (5.13)). For the matched disturbance,  0 1 0 0 T
dB  then we get

0.9474 0.0555=1.0029   . 

Next, we will calculate the measure for the case of the unmatched disturbance depicted in Figure 
(5.14).  

 

Figure (5.14): Model of bus suspension system (unmatched disturbance) 

In this case, the disturbance matrix is given by  0 0 0 1 T
dB  , then the proposed DODR is

0.9474 3.3857=4.3331   . 

Thus, it is found that the capability of disturbance rejection of the system would be degraded when a 
matched disturbance exists, i.e. dB B , since the matched disturbance can directly affect the system, 

then the control input energy is equal to the disturbance energy, while in unmatched case the 
disturbance may require larger energy to affect the system. 

Now assume that the spring constant k changes from zero to infinity while the matched disturbance

 0 1 0 0 T
dB   is applied to the system. The results from changing the spring constant k are 

shown in Table (5.5). The results reveal that as the spring constant becomes larger our proposed DODR 
measure increases. That means that the degree of disturbance rejection improves. Those results are 
expected from the physical understanding of the system. The small spring constant means that the 
masses are almost not linked to each other. Thus, the disturbance may highly affect the system. As 
the spring constant k increases the two masses 1m and 2m are connected tightly to each other. 

Accordingly, the DODR measure increases. 

      K=0      K=0.01        K=0.1       K=1          K=10 

DODR 
New 
Method 

   
       1 

 
1+2.5329e-13 

 
1+2.5328e-11 

 
1+2.532e-9 

  
        32.5240e-7 

Table (5.5): DODR results of Example (5.11) 

    K=100     K=10^3     K=10^4    K=10^5    K=10^6     K=inf 
DODR 
New 
Method 

 
1.00002446 

  
     1.0019 

 
    1.0029 

 
    1.2699 

 
    5.4894 

 
   21.3538 
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5.7. Summary 

In this chapter, we defined the minimum energy of unstable systems in the steady state form. Two 
different energy-based measures were introduced to check the degree of controllability for both 
stable and unstable systems. According to Kalman’s controllability rank condition a new quantitative 
measure of DOC is also presented, which verified the validity of the energy-based controllability 
metrics. 

In the chapter, it was explained how these measures can be employed to determine optimal actuator 
locations for good degree of controllability. A measure for the degree of disturbance rejection was 
also proposed. The approach depends on computation of the controllability Gramian and the 
disturbance sensitivity Gramian. 

In the next chapter, we consider the stable LTI systems and propose an approach to find the value of 
the minimum input energy using the coefficients of the characteristic polynomial of the system. This 
enables to determine the trace and some upper-bounds for the maximum eigenvalue of the 
controllability Gramian. 
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Chapter 6: Controllability Gramian and Energy 
Calculations of the Stable LTI System in Canonical Forms 
 
 
 
6.1. Introduction 
In this chapter, we consider the case where the LTI system is stable and it has certain canonical form 
structure. We derive a simple structure for the controllability Gramian based on the coefficients of the 
characteristic polynomial of the system. 
The aim of this chapter is to present the interesting links between the value of minimum input energy 
and the place of the eigenvalues of a stable system. Moreover, an expression for the trace of the 
controllability Gramian is derived as a simple function of the coefficients of the characteristic 
polynomial using the fact that the controllability Gramian of a stable LTI system is the solution of a 
Lyapunov equation. 
In section 6.2 we discuss the case where the system is defined in the controller companion form. An 
upper bound for the maximum eigenvalue of the controllability Gramian is proposed based on the 
Routh Hurwitz table. The inverse controllability Gramian and the minimum input energy using the 
coefficients of the characteristic polynomial of a stable system in the controller companion form is 
discussed in section 6.3. Finally, in section 6.4 an approach is proposed to find the controllability 
Gramian of a diagonal LTI system. 
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6.2. Controllability Gramian Computation in Controller Canonical Form 
The controllability Gramian of stable linear continuous time-invariant systems:  

 

1 1 1 1, , , ,n n n nx Ax Bu
A B C D

y Cx Du
    

     


                           (6.1) 

can be described by the solution of the following Lyapunov equation: 
 

 T T
c cAW W A BB                                                          (6.2) 

 
A number of methods for solving the Lyapunov equation have been presented in the literature 
(Barnett & Storey, 1970), (Barnett & Storey, 1968), (Wu, et al., 2006), (Zhou & Duan, 2005), 
(Hauksdóttir, et al., 2008), (Hauksdóttir & Sigurðsson, 2009). In this section through the Kronecker 
product we present a simple method for finding the controllability Gramian directly based on the 
coefficients of the characteristic polynomial. 
 
Lemma (6.1): (Barnett & Storey, 1970) The Lyapunov equation (6.2) can be written as: 

( ) ( ) ( )cA A vec W vec Q                                                 (6.3) 

where TQ BB and (.)vec is the vector obtained by stacking columns of matrix over each other.

( )A A is the Kronecker sum of matrix A . ( A is assumed to be in controller companion form) 

(Note: The Kronecker sum of two matrices is defined as: ( ) ( ) ( )n n m m m nA B I A B I       (Laub, 

2005)) 
 

 
The proof can be found in (Barnett & Storey, 1968), (Laub, 2005).  
 
Lemma (6.2): Consider the LTI system (6.1). There is a non-singular similarity matrixT such that: 
 

1

1
c c

cc

T AT A AT TA
b TbT b b





      
                                                      (6.4) 

where: 

( 1) 1 ( 1) ( 1)

0 1 2 1

0
0 0

,

1

n n n
c c

n n

I
A b

   
    

 

 
            
 
 

 
 

MatrixT can be described as: 

1 2 1

2 32 1

1
1 0

1 0 0 0

n

nT b Ab A b A b

  
 





 
 
      
 
 





    



                          (6.5) 
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where , 1, , 1i i n   are the coefficients of the characteristic polynomial of the system, i.e. 

 1
1 0( ) n n

np s s s 
                                               (6.6)   

                                   
 

Proof: (Kailath, 1980) 

Let  1 2 3 nT t t t t   and define the similarity transformation: 
1

cA T AT A   

Consider the characteristic polynomial of the system: 
1

1 0
n n

nsI A s s 
                                                (6.7) 

 According to (6.5) we obtain: 

   1 2 3 0 1 1 2 2 1 1c n n n n n n nAT TA At At At At t t t t t t t             

(6.8) 

and: 

 

0
0

0
1

c nb Tb b T t

 
 
 
    
 
 
  

                                                   (6.9) 

Then (6.5) shows thatT is the product of the controllability matrix of the system and the Hankel matrix 
of the characteristic polynomial’s coefficients. In vector form: 

 

1 2 1
1 1

2 32 1
1 2 2

2 1 1

1
1 0

1 0 0 0

n
n

n n
n

n n n

b t
Ab b t
At b t T b Ab A b A b

At b t

  


 





 


  


                    





    




            

(6.10) 
which concludes the proof.           

      
               

Using the similarity transformationT , Lemma (6.1) yields: 
 
Corollary (6.1): Consider the stable LTI system (6.1). Then the Lyapunov equation (6.2) can be written 
as: 
 

1( )( ) ( ) ( )c c c cA A T T vec W vec Q                                (6.11) 

where cA and cQ  are defined in (6.4).  
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Considering the equation above, the controllability Gramian can be written as:  

1 1

( )

( ) ( ) ( ))
c

c

c c c c

vec W

W vec T T A A vec Q 
 
    
  
 

                                    (6.12) 

or equivalently: 
c T

c cW TW T  

Here c
cW defines the controllability Gramian in the controller companion form, and 1vec is the inverse

vec operator reshaping the vector into a n-by-n matrix. 
  

Note: In the Corollary above system is stable, i.e. cA  has no eigenvalues in the open right-half 

plain (ORHP) and then 0, , 1, ,i j i j n      where i  defines the ith eigenvalue of cA . Hence the 

inverse of the Kronecker sum ( )c cA A is well-defined. 

 

Proposition (6.1): Let n n
cA  be in controller companion form and assume that

0, , 1, ,i j i j n      . Then: 

2 2

11 12 1

1 21 22 2

1 2

( )

n

n
c c n n

n n nn

O O O
O O O

A A

O O O




 
 
  
 
 
  




   


 

where the blocks ijO are defined recursively as: 

21 111 1 1 1
11 2

0 1 1 21

32 22

1 1 2 2 1
12 2 12

0

( ( 1) ) ( 1) ,
( 1) , 3, ,

( ( 1) ) ( 1) , ( ) , 2

n n
ci i i i

i c i c i i
i i i c

cn
i i i i i

i c i c i c
i

O I A O first underdiagblock
O A A

O A O i n

O I A O first underdiagblock

O A A O A O i d

 

 

   


 

    



       
  
   

      

 





2 3
2 32

43 33

1 1 3 3 1
13 3 13

0 3 4
3 43

1

( ) , 4, ,

( ( 1) ) ( 1) , ( ) , 2,3

( ) , 5, ,

( (

n

i i
i c

cn n
i i i i i

i c i c i c
i i i

i c

n

iagblock

O A O i n

O I A O first underdiagblock

O A A O A O i upperdiag and diagblocks

O A O i n

O

 

 

    

  




   
    


        
   

 



 







1 1 1
1

0
1) ) , ( ) , 2, ,

n
i i i

i c in c n
i

A O A O i n  



















   






 

(6.13) 
 
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Proof: 
 
From the Kronecker sum definition (Laub, 2005) we have: 
 

 

0 1 2 1

0 0
0 0 0

( ) ( ) ( )
0 0

c n n n n

n n c n n n n

c c c c

n n n n c

n n c

A I
A I

A A A I I A
A I

I I I I A   

 

  

 

 

 
 
 
      
 
 
      

 


  



(6.14) 

Then, we define the inverse of this matrix as: 

2 2

11 12 1

1 21 22 2

1 2

( )

n

n
c c n n

n n nn

O O O
O O O

A A

O O O




 
 
  
 
 
  




   


                                         (6.15) 

Thus: 
 

2 2

11 12 1

21 22 2

1 2
0 1 2 1

0 0
0 0 0

0 0

c n n n n
n

n n c n n n n
n

n n

n n n n c
n n nn

n n c
N

M

A I
O O O

A I
O O O

I
A I

O O O
I I I I A   

 

  



 

 

 
  
  
   
  
           

 





  
   




   (6.16) 

 
Appling Gaussian elimination with partial pivoting to equation (6.16), we can readily obtain 

1( )c cA A  as it is described in equation (6.13). 

By multiplying the first row of M by the columns of N we obtain: 

11 21 21 11

12 22 22 12

1 2 2 1

0

0

c n c

c n c

c n n n c n

A O O I O I A O
A O O O A O

A O O O A O

     


    


     


                                           (6.17) 

Take the second row of M , and multiply by the columns of N : 

21 31 31 21

22 32 32 22

2 3 2 3

0

0

c n c

c n c

c n n n c n

A O O O A O
A O O I O I A O

A O O O A O

     


    


     


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By multiplying, in the third row we get: 

2
31 41 41 31 21

32 42 42 32

33 43 43 33

2
3 4 4 3 2

0
0

0

c n c c

c c

c n c

c n n n c n c n

A O O O A O A O
A O O O A O
A O O I O I A O

A O O O A O A O

      


    
     


      


 

Similarly, multiplication of the rest of the rows gives: 

( 1)1 1 1 ( 1)1

( 1)2 2 2 ( 1)2

( 1) ( 1)

0

0
c n n n n c n

c n n n c n

c n n nn n nn c n n

A O O O A O

A O O O A O

A O O I O I A O

 

 

 

     


    


     




 

1 1 1
0 11 1 21 1 1 1 11

0 1

1 2 2
0 12 1 22 1 2 2 12

0 2

1
0 1 1 2 1 1

0 ( ( 1) ) ( 1) )

0 ( ( 1) ) ( 1) )

( ( 1) )

n n
i i i i

n n c n i c i c
i i

n n
i i i i

n n c n i c i c
i i

i i
n n n nn c nn i c n

i

O O O A O A O A

O O O A O A O A

O O O A O I A O I

    

    

   

  


 

  


 




         

         

        

 

 








0

n
















 

and the proof is complete.  

 
Remark (6.1): The Proposition above, allows to calculate the inverse of n2-dimensional matrix

2 21( ) n n
c cA A    by inverting the n-dimensional matrix 1

0

( ( 1) )
n

i i
i c

i

A



 where

1
1 0 , 1n n

c n n nsI A s s   
      . 

 
 
 
Corollary (6.2): Consider the stable LTI system (6.4) in controller companion form. The controllability 

Gramian (0, )c
cW   can be readily derived as the matrix produced by the inverse vectorization of the 

last column of 1( )c cA A  , i.e. 

 1
1 2(0, ) (:, ) (:, ) (:, )

Tc
c n n nnW vec O n O n O n                                (6.18) 

where: 
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2 2

11 12 1

1 21 22 2

1 2

( )

n

n
c c n n

n n nn

O O O
O O O

A A

O O O




 
 
  
 
 
  




   


                                        (6.19) 

 

and (:, ), 1, ,inO n i n  describes the last column of the block matrix inO . 

 
 

Remark (6.2): Corollary (6.2) shows that the full structure of 1( )c cA A  is not needed for the 

calculation of the controllability Gramian (0, )c
cW  . 

 
 

Remark (6.3): Consider the controllability Gramian of the stable LTI system (6.1) in controller 
companion form. Then the trace of the controllability Gramian is equal to: 

1
( (0, )) ( )

n
c

c in in
i

trace W o O


                                               (6.20) 

where 1( ) 0c cA A   is defined in (6.19) and ( )in ino O denotes the element in ith row and last column 

of the block matrix inO , for 1, ,i n  . 

 

Remark (6.4): An upper bound on the maximum eigenvalue of the controllability Gramian of the stable 
LTI system (6.4) in controller form is equal to: 

 

2
max

2 2 3 3 ( 1) 1
1 1

1

max
1

( (0, )) ( (0, ))

( ( ) ( ) ( ) )

( (0, )) ( (:, )) (:, )

c c
c c

T T T T T n T n
n n c c c c c c c c n n

n
T T

n in in n
i

n
c T

c in in
i

W trace W

e O I A A A A A A A A O e

e O O e

W O n O n





 





  

     





 







 (6.21) 

where  10 0 1 T
n n

e


  . (:, )inO n represents the last column of the block matrix inO and inO

denotes the block matrix in the ith row and nth column of the matrix 1( )c cA A  , 1, ,i n   in (6.19) 

 

Example (6.1): Consider the stable LTI system below: 
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-1.6673   -0.0868   -0.0345 1.0306
0.0924   -1.2321   -1.6134 , 0.3275
-0.0139    1.6137   -1.2334 0.6521

A B
   
       
      

  

Using the similarity matrix: 

4.2601    2.4902    1.0306
-0.9425   -0.0069    0.3275
 2.3626    2.4050    0.6521

T
 
   
  

 

The system can be put in controller companion form: 

 

     0             1              0 0
     0             0              1 , 0
-6.8913   -8.2417   -4.1328 1

c cA B
   
       
      

  

Then according to Corollary (6.1) we obtain the controllability Gramian (0, )cW  as: 

 1 1(0, ) ( ( )( ) ( ))c c c cW vec T T A A vec Q        

Then, using Proposition (6.1) we have: 

 
11 12 13

1
21 22 23 9 1

31 32 33

( ) , ( ) 0 0 1 T
c c c

O O O
A A O O O vec Q

O O O




 
    
  

  

where: 

    1 21 112 3 2
11 2 1 2 1 0

31 21

c
c c c c c

c

O I A O
O A A I A A A I

O A O
    

         
 

 

in which: 

11

21

31

-0.9130   -0.3765   -0.0727
0.5000   -0.3146   -0.0761
0.5236    1.1267         0

0.5000    0.3146    0.0761
-0.5236   -0.1267    0.0000
0.0000   -0.5236   -0.1267

0.5236    

O

O

O

 
   
  
 
   
  


0.1267    0.0000

-0.0000    0.5236    0.1267
-0.8716   -1.0432   -0.0000











  
  
  
   

 

Also: 
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   1 22 123 2
12 2 2 1 0

32 22

c
c c c c

c

O A O
O A I A A A I

O I A O
   

         
 

 

12

22

32

-0.3765   -0.2074   -0.0457
0.3146    0.0000   -0.0184
0.1267    0.4662    0.0761

-0.3146   -0.0000    0.0184
-0.1267   -0.4662   -0.0761
0.5236    0.5000   -0.1516

1.1267   

O

O

O

 
   
  
 
   
  


 0.4662    0.0761

-0.5236    0.5000    0.1516
-1.0432   -1.7721   -0.1267











  
  
  
   

 

and finally: 

  1 23 133 2
13 2 1 0 2

33 13

c
c c c

c

O A O
O A A A I

O A O
  

       


 

13

23

33

-0.0727   -0.0457   -0.0111
 0.0761    0.0184   -0.0000
 0.0000    0.0761    0.0184

-0.0761   -0.0184    0.0000
-0.0000   -0.0761   -0.0184
 0.1267    0.1516   -0.0000

 0.000

O

O

O

 
   
  
 
   
  


0    0.0761    0.0184

-0.1267   -0.1516    0.0000
-0.0000   -0.1267   -0.1516











  
  
  
   

 

Hence the controllability Gramian (0, )cW  is readily obtained by Corollary (6.1) as: 

1 1(0, ) ( ( )( ) ( ))c c c cW vec T T A A vec Q       

In this example: 

 0.3138   -0.0004    0.2279
(0, ) -0.0004    0.0375    0.0046

 0.2279    0.0046    0.1758
cW

 
    
  

 

 

Example (6.2): Consider the stable LTI system below: 
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    0                    1                0 0
    0                   0                 1 , 0
-727.8173   -185.0919   -5.8585 1

A B
   
       
      

 

According to Remark (6.3) the trace of the controllability Gramian is obtained as: 

13 13 23 23 33 33( (0, )) ( ( ) ( ) ( )) (0-0.0014-0.2596) 0.2610c
ctrace W o O o O o O         

where: 

 

 

1 23 133 2
13 2 1 0 2

33 13

1 23 133 2
13 2

33 13

13

,

5.8585 185.0919 727.8173 ,

-0.0007   -0.0001   -0.0000
 0.0082    0.0014   -0.0000
 0.0000    0.0082    0.0

c
c c c

c

c
c c c

c

O A O
O A A A I

O A O

O A O
O A A A I

O A O

O

  




      


      




23

33

014

-0.0082   -0.0014    0.0000
-0.0000   -0.0082   -0.0014
 1.0207    0.2596   -0.0000

 0.0000    0.0082    0.0014
-1.0207   -0.2596    0.0000
-0.0000   -1.0207   -0.2596

O

O

 
 
 
  
 
   
  
 
 
 







 



 
 
 

 

 

Example (6.3): Consider the stable LTI system below: 

     0             1              0 0
     0             0              1 , 0
-6.8913   -8.2417   -4.1328 1

c cA B
   
       
      

 

For this stable controller form system, the corresponding matrices below are calculated in example 
(6.1): 
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  1 23 133 2
13 2

33 13

13

23

-4.1328 8.2417 -6.8913

-0.0727   -0.0457   -0.0111
 0.0761    0.0184   -0.0000
 0.0000    0.0761    0.0184

-0.0761   -0.0184    0.0000
-0.0000   -0

c
c c c

c

O A O
O A A A I

O A O

O

O

     


 
   
  



33

.0761   -0.0184
 0.1267    0.1516   -0.0000

 0.0000    0.0761    0.0184
-0.1267   -0.1516    0.0000
-0.0000   -0.1267   -0.1516

O







 
  
  
   
  
    
   

 

Then according to Remark (6.4) an upper-bound of the maximum eigenvalue of the controllability 
Gramian is: 

3
2

3 3
1

( (0, )) ( (:,3)) (:,3)c T
c i i

i
trace W O O



    

     
0.0111 0 0.0184

0.0111 0 0.0184 0 0 0.0184 0 0.0184 0.0184 0 0.1516 0
0.0184 0 0.1516

     
                
          

 

 
Hence: 
 

2( (0, )) 0.0241 0.1554c
ctrace W     

 
Further, according to Corollary (6.2) we know that the controllability Gramian of the system in 

controller companion form can be obtained by the last column of 1( )c cA A  as: 

 

 0.0110   -0.0000   -0.0184
(0, ) -0.0000    0.0184    0.0000

-0.0184    0.0000    0.1516

c
cW

 
    
  

 

 
The eigenvalues of the controllability Gramian are 1 2 30.1540, 0.0184, 0.0087     and they 

verify the upper bound for the maximum eigenvalue of (0, )c
cW  , i.e. 

2
1 0.1540 ( (0, )) 0.1554c

ctrace W      

 
In the sequel, a simple method for calculating the controllability Gramian of the stable LTI system in 
companion form is proposed. This method involves the solution of a linear system of equations based 
on the system’s characteristic polynomial. 
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Definition (6.1): (Xiao, et al., 1992) A square n n  matrix [ ]ijP p is said to be a Xiao matrix, if it has 

only n  independent elements, and has the property: 

 ( )
2

0, 2 , 1, ,

( 1) , 2 , 1, ,
i jij

kk

i j k k n
p

p i j k k n


   
    




                                  (6.22) 

 

Proposition (6.2): (Xiao, et al., 1992) Let the stable LTI system (6.1) be in controller companion form. 

The controllability Gramian (0, )c
cW  is a Xiao matrix and can be obtained as the solution of the quasi 

Hankel form linear system of equations below: 
 

If the dimension of the system is even, i.e. , 2 , 1, 2,3,n nA n k k     

 

0 2 4 6 1

1 3 5 2

0 2 4 3

1 3 4

1 3 1

0 0
0 0 0
0 0 0
0 0 0 0

0 2 2 2 1n n nn n

x
x
x
x

x

   
  
  

 

    

      
           
     

          
     
     

           

  
  
  
  

       
  

           (6.23) 

If the dimension of the system is odd, i.e. , 2 1 , 1, 2,3,n nA n k k      

0 2 4 6 1

1 3 5 2

0 2 4 3

1 3 4

0 3 1

0 0
0 0 0
0 0 0
0 0 0 0

0 2 2 2 1n n nn n

x
x
x
x

x

   
  
  

 

    

      
           
     

          
     
     

           

  
  
  
  

       
  

          (6.24) 

Here , 0, ,i i n    are the coefficients of the characteristic polynomial, and the vector x includes 

the elements of the Xiao matrix (0, )c
cW  : 

In an even dimensional system, i.e. , 2 , 1, 2,3,n nA n k k     
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1 2 3

2 3

2 3 2

3 2

3 2 1

2 1

2 1

0 0 0
0 0

0
(0, ) 0 0

0
0 0

0 0 0

n
c

c n

n n

n n

n n n

x x x
x x

x x x
W x x

x x x
x x

x x x





 

 

 

 
  
 
     
 
 

 
  


  

 
 

 
 



                      (6.25) 

In an odd dimensional system, i.e. , 2 1 , 1, 2,3,n nA n k k      

1 2 3 ( 1)
2

2 3

2 3 2

3 2

3 2 1

2 1

( 1) 2 1
2

0 0

0 0
0

(0, ) 0 0
0

0 0
0 0

n

n
c

c n

n n

n n

n n n n

x x x x

x x
x x x

W x x
x x x

x x
x x x x







 

 

  

 
 
 
 
 

     
 
  
 
  



  
 

 
 

 


                     (6.26) 

 

The proof is given in (Xiao, et al., 1992). 

In the above Proposition matrices (6.23), (6.24) are called quasi Hankel since by permuting rows and 
columns so that all the odd numbered rows and columns precede the even numbered ones, the matrix 
transforms into a 2-block diagonal matrix, each block being almost a Hankel matrix. 

Regarding Proposition (6.2) a simple method is proposed for the calculating the controllability 
Gramian in asymptotically stable systems, which involves evaluating only the elements of a Routh 
table and does not involve the solution of a linear system of equations or matrix inversion (Sreeram & 
Agathoklis, 1991). 

Proposition (6.3): In n-dimensional stable LTI system in controller companion form, the zero-plaid 

structured controllability Gramian (0, )c
cW  described in (6.25), (6.26) can be obtained as: 

1
1

, 1
1

,1

0.5

( 1)
, 1, , 1

n
n

m
i

n k i n k i
i

n k
n k

x
R

R x
x k n

R



   





 

  

  





                           (6.27) 

where ijR denotes the entry in the Routh table of the reciprocal system corresponding to the ith row 

and jth column and m denotes the number of elements in the (n-k)th row of the Routh table. 
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 

The proof is given in (Sreeram & Agathoklis, 1991). 

Note: Consider the characteristic polynomial of an LTI system 1
1 1 0( ) n n

np s s s s  
     . 

Then the Routh table for the reciprocal characteristic polynomial is defined as: 1( ) ( )np s s p s . 

Example (6.4): Consider the stable LTI system in the previous example. The reciprocal polynomial of 
the system is: 

 3 2 3 2
0 1 2( ) 1 6.8913 8.2417 4.1328 1p s s s s s s s           

Then the Routh table of the reciprocal system is: 

 

3

2

1

0

6.8913 4.1328
8.2417 1
3.2966 0

1

s
s
s
s








  

Then according to Proposition (6.3) we have: 

1 2

2

2 3

0
(0, ) 0 0

0

c
c

x x
W x

x x

 
    
  

 

where: 

3

2

1

0.5 0.1517
3.2966
1 0.1517 0.0184

8.2417
4.1328 0.0184 0.0110

6.8913

x

x

x

 


 


 

 

 

Remark (6.5): The trace of the controllability Gramian in the controller companion form of the stable 
LTI system (6.1), is equal to: 

1
( (0, ))

n
c

c k
k

trace W x


                                                        (6.28) 

where: 
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1

1

, 1
1

,1

0.5

( 1)
, 1, , 1

n
n
m

j
i j i j

j
i

i

x
R

R x
x i n

R



 


 

  
   





                               (6.29) 

Here ijR denotes the entry in the Routh table corresponding to the ith row and jth column and m
denotes the number of elements in the jth row of the Routh table. 

 

Remark (6.6): An upper bound on the maximum eigenvalue of the controllability Gramian of the stable 
LTI system (6.1) in controller form is equal to: 

2
max

1
( (0, ))

n
c

c i i
i

W q x


                                                    (6.30) 

where: 

1
1

, 1
1

,1

0.5

( 1)
, 1, , 1

n
n
m

j
i j i j

j
i

i

x
R

R x
x i n

R



 


 

  
   





                         (6.31) 

and: 

2 1, int{ }
2

2 (2 1), int{ }
2

i

i

nq i i

nq n i i

   

    


                                            (6.32) 

Here ijR denotes the entry in the Routh table corresponding to the ith row and jth column and m

denotes the number of elements in the jth row of the Routh table. Further, int{ } is defined
2


if

2 , 1,2,k k    and 
1

2
 

if 2 1, 1,2,k k     . 

 

The above Remark states that the eigenvalues of the controllability Gramian of the stable LTI system 
in controller form is bounded from above by a function of ix s defined in Proposition (6.3). 

Example (6.5): Consider the LTI system in example (6.2). The Routh table of the reciprocal system is: 
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3

2

1

0

727.8173 5.8585
185.0919 1

1.9263 0
1

s
s
s
s








 

According to Remark (6.5) we have: 

 

0.2596 0.0014

0.5 0.2596 5.8585 0.0014( (0, )) 0.2596 0.0014 1.1290e-05 0.26101129
1.9263 185.0919 727.8173

c
ctrace W 

       
 

  

Remark (6.6) determines also an upper bound of the maximum eigenvalues of the controllability 
Gramian as:  

2 2 2
max 1 2 3( (0, )) 0.2596 3 0.0674 0.2596c

cW x x x         

 

6.3. Inverse of Controllability Gramian and Energy Calculation in 
Controller Canonical Form 

In this section, we introduce a simple algorithm for finding the inverse controllability Gramian of a 
SISO stable system based on the Routh table. This helps in feedback design when a constraint on the 
input control energy is imposed. By relating the minimum input energy to the location of the 
eigenvalues of the system. 

Note that in the previous section we introduced some methods for finding the controllability Gramian

(0, )c
cW  in controller companion form, which has close resemblance to our method for finding the 

inverse of controllability Gramian of a SISO stable LTI system in phase variable form (Controller 

companion form) 1( (0, ))c
cL W   . Our method is important since it does not involve solution of a 

linear system of equations or matrix inversion and hence is a computationally efficient way for 
calculating the control input energy in various problems of feedback control design or pole placement 
with input energy constraints, compared to other techniques. This result is illustrated by a number of 
numerical examples. 

Theorem (6.1): Consider the SISO stable LTI system (6.1) in controller companion form. The inverse of 

the controllability Gramian 1( (0, ))c
cL W   can be derived as the zero-plaid structured matrix in 

terms of the characteristic polynomial’s coefficients: 

1
1 0

n n
nsI A s s 
                                                    (6.33) 

If the dimension of the system is odd, i.e. , 2 1, 0,1,2,n nA n k k     : 
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2 1
1

1 3 0
2

1

1n
n

n
n n

n

s
s
s

s

 
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 








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



                                                       (6.34) 

and: 

1 2 1

2 3 ( 1 1) 1
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3 2

4 1 (4 (3 2) 1) 4

2 ( 1)( )
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

    

 


 
 
 
 
 
  
 
 
 
 
  







 

(6.35) 

or: 

 

0 1 0 3 0

2 1 0 3 4 1 0 5 1 1 0

2 3 4 1 0 5 2

1 3 2

4

1

2 0 2 0 0 2
0 2 2 0 2 2 2 2 0

0 2 (2 2 ) 0 0 2
0 2 2 0

2

0 2

n

T
n

n

L L

    
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      
  











 
    
  
    
 
 
 
  





 
 

 

(6.36) 

If the dimension is even, i.e. , 2 , 0,1,2,n nA n k k    : 

2 0
1

1 3
2

1

1
0

n
n

n
n n

n

s
s
s

s

 
 




 














                                                      (6.37) 

Then: 
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1 2
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2 1 (2 ( 1)) 2

3 ((3 1) (2 1) 1) (3 1)
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            (6.38) 

or: 
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


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 

(6.39) 

   

Proof:  

Assuming that A is Hurwitz and using the system’s controllability Lyapunov equation we get:  

 c c T T T T
c cAW W A bb LA A L Lbb L                                            

(6.40) 

The system is in controller form then if , 2 1 , 0,1,2,n nA n k k    according to above 

Lyapunov equation we have: 
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2 1 2 2 1

( 1) 1 ( 1) ( 1)3 2 2 3 2

0 1 2 1

2 1 3 2 ( 1)
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0 1

n

n n n
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 
  


 
   

     




(6.41) 

Furthermore, note that since the controllability Gramian in controller companion form is symmetric 
and zero plaid (Sreeram & Agathoklis, 1991), (Xiao, et al., 1992), as it is stated in the previous section, 
the same must hold true for L . Thus (6.35) reduces to: 
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(6.42) 

By calculating the right hand-side we obtain: 
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(6.43) 

Hence equation (6.42) defines the elements of symmetric matrix L as: 
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   (6.44) 

Thus (6.36) is verified. 

Now consider the case that , 2 , 0,1,2,n nA n k k   . Regarding the zero-plaid structure of 

matrix L we can write the Lyapunov equation (6.40) as: 
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(6.45) 

which implies that: 
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(6.46) 

Therefore, the nonzero elements of the symmetric matrix L are readily obtained by Gaussian 
elimination with partial pivoting to equation (6.46) as: 
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(6.47) 

Thus (6.39) is proved.  

 

 

Considering the above Theorem, it is of interest to mention that the minimum energy and the inverse 
of the controllability Gramian of SISO stable LTI system can be directly obtained from the Routh–
Hurwitz table through a simple algorithm. 
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1) At the beginning, we define the system in controller companion form. Then: 
 

2) Define the first two rows of Routh–Hurwitz for the SISO stable LTI system 
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3) The last column of L is obtained by multiplying the second row of coefficients in the Routh–

Hurwitz table. 
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 


  

 
4) The first row of L can be readily determined based on the last column elements and the first 

row of coefficients in the Routh–Hurwitz table as: 
 

, 2 1, 0,1, 2,n n
cA n k k      

 

0 1 0 3 0 4 0 2 02 0 2 2 0 2 0 2n n           
 

, 2 , 0,1, 2,n n
cA n k k     

 

0 1 0 3 0 3 0 12 0 2 0 2 0 2 0n n          

 
 

5) The rest of the elements are determined by the opposite sign of their upper right hand side 
element plus a proper coefficient of the last column’s arrays. These coefficients are selected 
from the first row of the corresponding Routh–Hurwitz table: 
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, 2 1, 0,1, 2,n n
cA n k k      

4 21

1 2 1

6 2

4 6 2 6

2 6

4 2 6 4

2 4

2

0 0
0 00 0

0 0
0 0

0 ( ) 0
( ( )) 0 0

( ) 0
0

0

n n

n

n n

n n n n

n n

n n n n

n n

n

 
  

 
   

 
   

 


 



 

   

 

   

 



 

  
   

   
     

   




   
  

    

 

, 2 , 0,1, 2,n n
cA n k k     

0 0 0

2 02

1 2 0 2

6 2

4 6 2 6

2 6

4 2 6 4

2 4

2

00 0
0 0

0 ( ) 0 0

0 0
0 0

0 ( ) 0
( ( )) 0 0

( ) 0
0

0

n

n

n n

n n n n

n n

n n n n

n n

n

  
 

   

 
   

 
   

 






 

   

 

   

 



 
 

    

  
   

   
     

   





 

 
    

 

 
 

6) In the last step of the algorithm, we just need to use the non-singular similarity matrix: 

1 2 1

2 32 1

1
1 0

1 0 0 0

n

nT b Ab A b A b

  
 





 
 
      
 
 





    



 

to find the inverse of the controllability Gramian 1 1T
cW T LT   , then the minimum input 

energy is readily obtained as 1
min

T
f c fE x W x .  

 
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The importance of this method lies in the fact that given a stable linear time-invariant continuous-time 

system in the frequency domain (i.e. transfer function
( )( )
( )

b sG s
a s

 ) or the time domain (i.e. state space), 

we are able to calculate the minimum input energy directly in terms of the coefficients of the transfer 
function (i.e. ( ), ( )a s b s ) or equivalently based on the Routh-Hurwitz table. 

Let us to review the details of the proposed method by some examples: 

Example (6.6): As in the first example, consider the stable 4-dimensional LTI system below: 

 

   -1.1577    0.0161   -0.5121   -0.1164 -1.0690
    0.0161   -0.9540   -0.1244    0.1954 -0.8095

,
   -0.5121   -0.1244   -1.7388    0.0544 -2.9440
   -0.1164    0.1954    0.0544   -2.0123   

A B

 
 
  
 
 
     0

 
 
 
 
 
 

  

We are interested to calculate the minimum energy to transfer the states of the system from the origin 

to the final state  1 0 0 0 T
fx  . 

To be able to use our algorithm we consider the controller model of the system as: 

 

    0                1              0             0
    0                0              1             0
    0                0              0             1
-3.2289  -10.5455  -12.1920   -5.8628

cA

 






0
0

,
0
1

cB

 
  
  
  
  
  

  

Then regarding the dimension of the system ( 4 2 , 2n n k k    ), based on Theorem (6.1) we 

can define the symmetric matrix L as: 

 

1 2

3 4

5

6

0 0
0

0

L L
L L

L
L

L

 
  
  
    

  

Then in the first step of the algorithm, we write the Routh–Hurwitz table for the system: 

4

3

2

1

0

1 12.1920     3.2289
5.8628   10.5455 0

s
s
s
s
s









 

In the second step, the last column of matrix L is determined as the second row of the Routh–
Hurwitz coefficients multiplied by two: 
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 6

4

2 5.8628 11.7256
2 10.5455 21.0910

L
L

  
  

  

According to the next step of the algorithm we determine the nonzero elements in the first row of 
matrix L : 

2 63.2289 3.2289 11.7256 37.8608L L      

1 43.2289 3.2289 21.0910 68.1007L L      

In the fourth step, we calculate the rest nonzero elements of the symmetric matrix L as: 

68.1007 0 37.8608 0
12.1920 21.0910 37.8608 0 21.0910

12.1920 11.7256-21.0910 0
11.7256

L

 
    
   
    

 

Hence, we get the inverse of the controllability Gramian in the controller form as: 

68.1007 0 37.8608 0
0 219.2807 0 21.0910

37.8608 0 121.8675 0
0 21.0910 0 11.7256

L

 
 
 
 
 
 

 

Now in the last step, we can easily use the similarity transformationT in Lemma (6.2) to obtain the inverse 

of the controllability Gramian 1
cW   and to calculate the minimum input energy of the system: 

 

   -1.0690    2.7322   -6.0760   12.8639    10.5455   12.1920 
   -0.8095    1.1215   -1.7816    3.1611
   -2.9440    5.7671  -11.5769   23.4956
        0         -0.1940    0.6054   -1.4895

T

 
 
 
 
 
 

   5.8628    1.0000
   12.1920    5.8628    1.0000         0
    5.8628    1.0000         0              0
    1.0000         0             0              0

 
 
 
 
 
 

  

or: 

   -0.7199   -3.0907   -3.5351   -1.0690
   -2.1476   -5.0760   -3.6244   -0.8095
   -5.1108  -13.6589  -11.4930   -2.9440
   -0.3051   -0.5319   -0.1940         0

T

 
 
 
 
 
 

 

Hence: 

1 1

    0.0168   -0.0327    0.0028    0.1423
   -0.0327    0.5428   -0.1369   -1.4594

1.0e+06 
    0.0028   -0.1369    0.0366    0.3482
    0.1423   -1.4594    0.3482    4.1250

T
cW T LT  

 
 
   
 
 
 
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and finally: 

1
min 1.6759e+04T

f c fE x W x   

 

Example (6.7): In the second example, we calculate the minimum input energy for the 5-dimensional 
stable system below: 

 

   -1.0860    1.2673    0.2865   -2.1291   -0.7724
   -0.9140   -0.4367   -0.4485    0.5639    0.6074
   -0.5004    0.0405   -0.5401   -0.4105    0.0616
    2.0285    0.0340    0.3304   -0.9072   -0.95

A 

-0.2725
1.0984

, -0.2779
72      0

    1.2718   -0.3384    0.1786    0.3489   -0.3977      0

B

   
   
   
   
   
   
      

  

Assume the terminal state is defined as:  1 0 0 0 0 T
fx  . 

In the beginning, we need to define the controller form of the system: 

 

    0                1           0              0             0
    0                0           1              0             0
    0                0           0              1             0
    0   

cA 

0
0

, 0
             0           0              0             1 0

-0.1409   -2.0769   -9.2391  -11.6151   -3.3676 1

cB

   
   
   
   
   
   
     

  

Noting that the dimension of the system is odd ( 5 2 1, 2n n k k     ), we define the structure 

of the symmetric matrix L using Theorem (6.1) as: 

 

1 2 3

4 5

6 7

8

9

0 0
0 0

0
0

L L L
L L

L L L
L

L

 
  
   
    
     

  

In the first step, we write the first two rows of Routh–Hurwitz table for the system: 

5

4

3

2

1

0

1 11.6151 2.0769
3.3676 9.2391 0.1409

s
s
s
s
s
s










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Then the nonzero elements in the last column of L are determined as the second row’s elements of 
the Routh–Hurwitz multiplied by two: 

  
9

7

3

2 3.3676 6.7352
2 9.2391 18.4782
2 0.1409 0.2818

L
L
L

  

  

  

 

In the next step of the algorithm, the first row of matrix L is described as: 

 2

1

11.6151 0.2817 3.2720
2.0769 0.2817 0.5851

L
L

  
  

  

Then in the third step of the algorithm, we readily obtain the rest of nonzero elements of the 
symmetric matrix L as: 

1 2 3

7 2 9 3

7 9 3 7

9 7

9

0 0
2.0769 - 0 2.0769 0

11.6151 -(2.0769 ) 0
11.6151 0

L L L
L L L L

L L L L L
L L

L

 
   
    
     
     

 

Thus: 

0.5851 0 3.2720 0 0.2818
0 35.1051 0 13.7066 0

3.2720 0 200.9196 0 18.4782
0 13.7066 0 59.7518 0

0.2818 0 18.4782 0 6.7352

L

 
 
 
 
 
 
  

 

Now in the last stage, we can readily calculate the minimum input energy as: 

 

-0.2725    1.6084    0.0997  -14.9854   35.1977
 1.0984   -0.1060   -2.3810    5.2822    9.3239
-0.2779    0.3309   -0.7859   -1.4947   11.2815
     0       -0.6072    4.6541   -6.4990   -26.2780
     0

T 

    2.0769    9.2391   11.6151    3.3676    1.0000
    9.2391   11.6151    3.3676    1.0000         0
   11.6151    3.3676    1.0000         

       -0.7679    2.2339    1.5276   -23.9877

 
 
 
 
 
 
  

0             0
    3.3676    1.0000         0              0             0
    1.0000         0              0             0             0

 
 
 
 
 
 
  

  

or: 
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    0.1836    1.5140    2.3513    0.6908   -0.2725
    0.7597    6.1815   10.0204    3.5931    1.0984
   -0.3997   -2.8647   -2.8989   -0.6048   -0.2779
    0.2832    2.1218    2.6093   -0.6072        

T 
 0

    0.0098    0.1321   -0.3519   -0.7679         0

 
 
 
 
 
 
  

 

Hence: 

 1 1

    0.4138    0.0699   -0.0493   -0.5970    1.1412
    0.0699    0.0246    0.0176   -0.1033    0.2358

1.0e+03    -0.0493    0.0176    0.0825    0.0978   -0.0763
   -0.5970   -0.1033    0.09

T
cW T LT    

78    0.9071   -1.6991
    1.1412    0.2358   -0.0763   -1.6991    3.4126

 
 
 
 
 
 
  

  

and then: 

1
min 413.7565T

f c fE x W x   

 

6.4. Controllability Gramian Computation in Diagonal Canonical Form 

In this section, we investigate the controllability Gramian of the stable linear continuous time-
invariant system (6.1) as the solution of the Lyapunov equation (6.2), in the case that matrix A is 
diagonalizable. 

LetT be a non-singular transformation matrix such that: 

 1T AT     

where   is diagonal matrix. 

Note thatT is the matrix of the eigenvectors and is the diagonal matrix of the eigenvalues of A . 

Define a new state vector 1x T x , then the linear system (6.1) transforms to: 

 
1x x T Bu

y CTx Du

   


 

 


                                                               (6.48) 

which represents n decoupled first order equations. 

Denoting the solution of the Lyapunov equation associated with above system as diag
cW , the 

controllability Gramian of the original system (6.1) will be equal to:  

 diag T
c cW TW T                                                                  (6.49) 

The Proposition below presents the explicit solution of the Lyapunov equation in diagonal canonical 
form. 
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Proposition (6.4): Consider the stable LTI system (6.48). The controllability Gramian (0, )diag
c fW t is 

obtained as: 

        ( )

1 1

,

1
(0, )

i j ft
Tdiag

c f i j i j
i j

e
W t T B T B

 

 



 





                             (6.50) 

where    1 1,
T

i j
T B T B  represent ith and jth rows of 1T B and i denotes ith eigenvalue of A andT is 

the eigenvectors matrix of A . 

 

Proof:  

According to the definition of the controllability Gramian, we have: 

 1

0
(0, ) ftdiag T T

c fW t e T BB T e d                                           (6.51) 

Since is a diagonal matrix, exponentiation can be performed simply by exponentiating each of the 
diagonal elements: 

1 1

2 2
1

0

0 0 0 0
0 0 0 0

(0, )

0 0 0 0

f

n n

tdiag T T
c f

H

e e
e e

W t T BB T d

e e

   

   

   

 

   
   
   
   
   
   



 

     
 

          (6.52) 

Using the Kronecker product we obtain: 

1 1

2 2

0

0 0 0 0
0 0 0 0

( (0, )) ( ) ( )

0 0 0 0

f

n n

tdiag
c f

e e
e e

vec W t d vec H

e e

  

   

   



    
    
         
         



 

     
 

(6.53) 

where: 

( )

0
( (0, )) ( ) ( )ftdiag

c fvec W t e d vec H                              (6.54) 

or: 

1

1 2

2

0

2

0 0
0 0

( (0, )) ( ) ( )

0 0

f

n

tdiag
c f

e
e

vec W t d vec H

e

 

  

 




 
 
 
 
 
 





  


           (6.55) 

Equation (6.55) yields: 
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    
    

    

    

1

1 2

2 1 1

1,1 1 10

( ) 1 1

2,1 2 10

( ) 1 1

, 0

( ) 1 1

, 0

(0, ) ( )

(0, ) ( )

(0, ) ( )

(0, ) ( )

f

f

f i j

f
n n

t Tdiag
c f

t Tdiag
c f

t Tdiag
c f i j i j

t Tdiag
c f n n n n

W t e d T B T B

W t e d T B T B

W t e d T B T B

W t e d T B T B

 

  

  

  









 

  

  

  

 







 



 














                          (6.56) 

and the Proposition is proved. 

  

Corollary (6.3): The solution of the Lyapunov equation of the stable LTI system (6.41) is:  

    1 1 1

,
(0, ) ( )

Tdiag
c i ji j i j

W T B T B                                   (6.57) 

where    1 1,
T

i j
T B T B  represent ith and jth rows of 1T B , i denotes ith eigenvalue of A andT is the 

eigenvectors matrix of A . 

 

Corollary (6.4): Consider the stable LTI system (6.48) in diagonal form. Then the trace of the 
controllability Gramian when ft  is obtained as: 

 1

1

( (0, )) 0.5
T Tn

diag ii
c

i i

T BB T
trace W



 



                               (6.58) 

Again    1 1,
T

i j
T B T B  denote the ith and jth rows of 1T B , i is ith eigenvalue of A andT is the 

eigenvector matrix of A . 

 
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6.5. Summary 

Two different canonical form structures of the system have been discussed in this chapter: 

 Phase-variable canonical form 
 Diagonal canonical form 

We considered the stable LTI system in the above canonical form structures and introduced the 
interesting links that the entries of the controllability Gramian of the system have to the entries of the 
Routh Hurwitz table. Moreover, an expression for the minimum input energy is developed as a simple 
function of the coefficients of the characteristic polynomial from the fact that it is connected to the 
inverse of the controllability Gramian. 

Furthermore, we devised an approach to determine the value of the trace and an upper-bound for 
the maximum eigenvalue of the controllability Gramian based directly on the coefficients of the 
characteristic polynomial of the system. 

In the next chapter, the problem that will be considered is the variability of the input structure. This 
will lead to the investigation of the selection of the optimal input structure under the minimum 
average energy requirement. A variety of such problem will be examined next. 
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Chapter 7: Optimal Selection of Input Structure, 
Minimizing the Average of Input Energy 
 

 

 

7.1. Introduction 

In this Chapter, we propose a novel approach for selection of input (and by duality output) 
structure based on the energy type criteria. The main aim of this chapter is to propose a 
strategy for the selection of the proper input matrix B , based on the average of the minimum 
input energy. The overall aim is to use these results to define the proper number and location 
of the sensors and actuators in a control system. 

In the following parts of the chapter we discuss the input structure selection problem in 
different cases. First, we consider the case that the input matrix B is a single input vector. We 
look for the best input structure to minimise the energy requirements and we propose a 
solution for a general system and a finite terminal time ft . Then, in the next part we assume 

the system to be stable and that the terminal time tends to infinity, using appropriate 
Lyapunov equations. This is followed by the input structure selection for a normal system 

where AA A A  . Finally, in the case of multi-input systems, we define the proper set of 
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input vectors that minimize the average of the minimum input energy, and we investigate the 
problem subject to different possible conditions. 

The work here provides a new approach to those in existing literature, which consider the 
problem of input structure selection over a binary set, where the input matrix B can only take 
the values {0,1} (V. Tzoumas, 2015), (Kumar & Narayanan, 2008), (Shaker & Tahavori, 2013) 
or can be chosen among the given sets (Summers & Lygeros, 2014), (Cortesi, et al., 2015). In 
contrast, the current approach developed in this chapter doesn’t have such limitations. 

7.2. Optimal Selection of Input to Minimize the Average of 
Minimum Input Energy 

In previous chapters, the minimum input energy was defined as a function of the inverse of 
the controllability Gramian and the effect of input structure on the value of minimum energy 
requirements was examined. In this chapter, we are looking for the best selection of the input 
matrix ܤ, such that the average of the minimum energy is minimized. The mathematical 
formulation of this optimization problem is presented in (7.1). 
 

 1
min[0, ]

1 1
1 1

min{ } min{ (0, ) }
f

f f

T
t f c f fB Bx x

B B

ave E ave x W t x
 



  
 

                            (7.1) 

where is the set of all possible inputs and min[ 0 , ]ftE  is the minimum input energy evaluated 

over the interval 0, ft   . fx defines the final state and 1 (0, )c fW t is the inverse of the 

controllability Gramian. . denotes the standard Euclidean 2-norm. 

Theorem (7.1): The average value of the minimum input energy ܧ௠௜௡ over the unit 
hypersphere is equal to 1 1( (0, ))c fn trace W t   where n denotes the dimension of the system. 

 
 

Proof: 
 
Based on the results of chapter 4,  ܧ௠௜௡ , the minimum energy required for the state trajectory 
to reach the final state fx from the origin in a terminal time ft , was found as: 

1
min[0, ]f

T
t f c fE x W x                                                               (7.2) 

The average value of min[ 0 , ]ftE over the unit hypersphere is obtained by integrating (7.2), 

1fx  , (Summers & Lygeros, 2014): 
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1
1

1
min[0, ]

1

(0, ) ( (0, ))f

f

f

T
f c f fx c f

t

x

x W t x dx trace W t
aveE

ndx








 



                        (7.3) 

and hence the Theorem is proved. 
 

 
Note that the trace of ௖ܹ(0, ௙)is inversely related to the trace of ௖ܹݐ

ିଵ(0,  ௙), and thusݐ

maximizing ݁ܿܽݎݐ ቀ ௖ܹ൫0,  ௠௜௡ required to moveܧ ௙൯ቁ effectively minimizes the average ofݐ

around the state space in all directions (Le, et al., 2015), (Cortesi, et al., 2015).  
 
For an asymptotically stable strictly-proper system its ܪଶnorm is an important design 
parameter and is defined as (Antoulas, 2005): 

 
1

* 2
2

1( ( ) ( ) )
2

H trace H j H j d  





                                       (7.4) 

This can be interpreted as the RMS3 response of the system when it is driven by a white noise 
input. 
  
Proposition (7.1): (Summers & Lygeros, 2014) Let ( )H s be an asymptotically stable strictly 

proper matrix function with realization ( , , )A B C . Then: 
**

0
(0, ) A A

cW e BB e d  


    

is the controllability Gramian of the system, from which the system ܪଶnorm is obtained as: 
2*
2

1{ (0, ) } { ( ) ( )} ( )
2ctrace CW C trace H jw H jw dw H s


 


                  (7.5)4 

 
 
Proof: 
 
The controllability Gramian corresponding to a stable LTI system can be expressed in the 
frequency domain using Parseval’s Theorem as: 

 
** 1 * * 1

0

1(0, ) ( ) ( )
2

A A
cW e BB e d jwI A BB jwI A dw  


   


          (7.6)                            

Now if we multiply both sides by output matrix C , we get: 

                                                             
3 RMS norm is not a norm, but only a semi-norm, since we can have nonzero signals with zero 
RMS value 

4 For simplicity of notation, quantities in the time and frequency domains will be denoted by 
the same symbol. 
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* 1 * * 1 *1 1(0, ) ( ) ( ) ( ) ( )
2 2cCW C C jwI A BB jwI A C dw G jw G jw dw
 

   

 
        

Then it can be easily inferred from the above equation: 

        * 1{ (0, ) } ( ) ( )
2ctrace CW C trace G jw G jw dw


 


                          (7.7) 

which proves the result. 

 
The Proposition above shows that the ܪଶnorm of a stable strictly proper system is equal to 
the ܮଶnorm of its (causal) impulse response, i.e. the energy of the system response to a unit 
impulse input, and can be represented as a weighted trace of the controllability 
Gramian ௖ܹ(0,∞). 
Thus, maximizing the ܪଶnorm, minimizes a weighted average energy required to move around 
the state space, with certain directions weighted differently, which can be encoded into the 
output matrix. 
 
 
In the following, we discuss the proper selection of input matrix B , such that the average 
energy of the trajectory between the origin and a terminal state uniformly distributed over 
the unit hypersphere, which is formulated in (7.1) is minimized.   
Thus, the main aim in this chapter is the optimization of the average of the minimum energy, 
over the set of all possible input matrices B .           
According to what was stated above, the optimization problem can be equivalently expressed 
as the maximization of the controllability Gramian’s trace over the set of all inputs defined 

over the interval 0, ft   and satisfying the condition 1B  : 

 
1

max{ ( (0, ))}c fB
B

trace W t



                                                  (7. 8) 

Note again that is the set of all possible inputs. 

In this chapter, considering the dimension of input matrix B, the solution to the presented 
optimization problem (7.8) is investigated in two main parts: 

- Single input: 
Where matrix B is an input vector as ܾ௡×ଵ 

- Multiple inputs: 
Where input matrix B is a matrix of dimension ݊×݉ 
 

7.2.1. Single Input Matrix Structure Selection Problem  

Consider the case of a single input LTI system. The aim is to select the proper input 
vector ܾ௡×ଵ, such that the trace of the controllability Gramian ௖ܹ൫0,  ௙൯ is maximized. Thisݐ
guarantees the least value of the average of the minimum input energy ܧ௠௜௡. 
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According to the equation (7. 8), we describe the optimization problem in this section as: 

 
1 1

min[0, ]

1 1

min{ } max{ ( (0, ))}
f

n n
t c fb b

b b

aveE trace W t
   

 

                                (7. 9) 

where is the set of all possible inputs and min[ 0 , ]ftE  is the minimum input energy evaluated 

over the interval 0, ft   . 

In the following, this problem is investigated by considering various separate cases, such as 
the finite and infinite terminal times, and different properties for the system matrix A . 

 

7.2.1.a. Optimal Input Vector Selection Considering the Finite 
Terminal Time  

Here, we investigate the solution to the optimization problem (7.9) for the general single input 
LTI system, while the terminal time ݐ௙  is finite. No special assumptions on system matrix A are 
imposed. Note that the system may be stable, or unstable.  

 

 

 

 

 

Theorem (7. 2): In a LTI single input system, the eigenvector corresponding to the maximum 

eigenvalue of matrixQdefined below describes the optimal input vector b , which minimizes 

the average of the minimum input energy, i.e. 

1
min[0, ] max

1

min{ } ( )
f

n
tb

b

aveE Q



 


  

*

0

ft A t At
n nQ e e dt                                                                  

 
(7.10) 

1
min[0, ] 1 max

1

arg min{ } ( )
f

n

opt
t nb

b

aveE b V Q





   

 is the set of all possible inputs. max ( )Q , max ( )V Q denote the largest eigenvalue of Q and 

the corresponding eigenvector respectively. 

 

Proof: 

Considering the definition of the controllability Gramian: 

Problem: 

Consider a LTI SISO system, find  

1
1

max{ ( (0, ))}
n

c fb
b

trace W t
 



, where is the set of all possible input vector 
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 **

0
(0, ) ft At A t

c fW t e bb e dt                                               (7. 11) 

we get: 

 **

0
( (0, )) ( )ft At A t

c ftrace W t trace e bb e dt                               (7.12) 

Using the linearity property of trace, the equation above can be stated as: 

**

0
( (0, )) ( )ft At A t

c ftrace W t trace e bb e dt                               (7.13) 

 

Using the commutative property of trace, this can be rewritten as: 

 **

0
( (0, )) ( )ft A t At

c ftrace W t trace b e e b dt                                 (7.14) 

Since 
** A t Atb e e b  is scalar, the trace function can be ignored, and we get: 

**

0
( (0, )) ft A t At

c ftrace W t b e e bdt                                             (7.15) 

and since b  and *b are constant, we obtain: 

**

0
( (0, )) ( )ft A t At

c ftrace W t b e e dt b                                          (7.16) 

By defining the n-dimensional matrix Q: 

 *

0

ft A t At
n nQ e e dt                                                      (7.17) 

we get: 

     
1 1 1

*
min[0, ] max

1 1 1

min{ } max{ ( (0, ))} max{ } ( )
f

n n n
t c fb b b

b b b

aveE trace W t b Qb Q
  


    
  

            (7.18) 

and: 

1
1 max

1

argmax{ ( (0, ))} ( )
n

opt
c f nb

b

trace W t b V Q





                                     (7.19) 

Here ߣ௠௔௫(ܳ) is the largest eigenvalue ofQ and ௠ܸ௔௫(ܳ) is the eigenvector corresponding to 

it. 

The equation above shows that in a LTI single input system, the eigenvector corresponding to 

the maximum eigenvalue of *

0

ft A t At
n nQ e e dt   , describes the input matrix b , which 

optimizes the average of the minimum input energy.  

 
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Example (7.1): (Rubin, 2016) Consider the LTI system below, which may have a real-world 
example such as a rocket in vertical motion: 

2 1

0 1
0 0

x x b u

 
  
 

  

Now the problem can be defined as the selection of input vector b , which maximizes the 
trace of controllability Gramian, i.e. the minimum average of input energy. 

Based on the Theorem above, the eigenvector corresponding to the maximum eigenvalue of 
matrixQ in (7.17) corresponds to the optimal input vector b , which leads to the maximum 

trace of the controllability Gramian. In addition, as one can easily see, the system is unstable 
since the eigenvalues of the system are located in the origin, 1 2 0   . Let 1ft  be the 

(finite) terminal time. Then based on (7.17) we get: 

 
*1

0

1 0.5
0.5 1.3333

A t AtQ e e dt  
   

 
   

The characteristic polynomial ofQ is: 

21 0.5
2.3333 1.0833 0

0.5 1.3333
I A


  


  

        
    

and hence the two eigenvalues and corresponding eigenvectors are: 

1 21.6937,  0.6396    

and 

1 2

0.5847 -0.8112
,

0.8112  0.5847
V V   
    
   

 

respectively. 

Then based on Theorem (7.2) choosing 1

0.5847
0.8112

b V  
   

 
, we achieve the maximum trace 

of the controllability Gramian, that is equal to 1.6937. This is illustrated in Figure (7.1) for 
vector b described uniformly in the interval 1,1 to verify the validity of this result. 
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Figure (7.1): ( (0,1))ctrace W with respect to different values of b  

 

The importance of Theorem (7.2) is that it can be effectively used to find the optimal input 
vector for any LTI-SISO system, stable or unstable, with the minimum possible complexity in 
computation. After matrix Q is calculated, the eigenvector corresponding to its largest 

eigenvalue is the solution of the optimization problem. 

 

7.2.1.b. Optimal Input Vector Selection for the Case of Stable 
System 

 

 

 

 

 

For a single input LTI system, we now assume that the system is stable (i.e., all eigenvalues of
A are in the open left half plane). We also consider the limit of the terminal time ݐ௙  tends to 

infinity, i.e. ft   . 

Proposition (7.2): For single input LTI system, optimal selection of the input vector b , which 
maximizes the trace of the controllability Gramian (0, )cW  , i.e. minimizes the average of the 

minimum input energy, is given by the normalized eigenvector corresponding to the 
maximum eigenvalue of the unique solution to the Lyapunov equation below: 

Problem: 

Given a stable LTI SISO system, find 

1
1

max{ ( (0, ))}
n

cb
b

trace W
 



 , where is the set of all possible input vector 
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* 0A Q QA I                                                                      (7.20) 

Further, the value of the maximum trace is equal to the maximum eigenvalue ofQ i.e. 

1
min[0, ] max

1

min{ } ( )
nb
b

aveE Q








                                                        (7.21) 

1
min[0, ] 1 max

1

argmin{ } ( )
n

opt
nb

b

aveE b V Q


 


                                              (7.22) 

max ( )Q , max ( )V Q denote the largest eigenvalue ofQand the corresponding eigenvector 

respectively. denotes the set of all possible input vector. 

 

Proof: 

For simplicity, the largest eigenvalue ofQ is assumed to be distinct. The result is still true if 

this condition is violated but in this case the solution is not uniquely defined. The 
controllability Gramian has been defined as the integral (7.23): 

**

0
(0, ) At A t

cW e bb e dt


                                                         (7.23) 

If the LTI system is stable, i.e. A is Hurwitz, the controllability Gramian (0, )cW   is the 

unique solution for the Lyapunov equation (Raczyński & Stanisławski, 2012): 

* *(0, ) (0, ) 0c cA W W A bb                                                   (7.24) 

Similar to section (7.2.1.a), we consider the trace of the controllability Gramian as: 

 **

0
( (0, )) ( )A t At

ctrace W b e e dt b


                                             (7.25) 

and then by introducing the constant matrix Q as in (7.26) below, we derive the optimum 

input vector which minimizes the average of the minimum input energy:  

*

*

0

( (0, ))c

A t At

trace W b Qb

Q e e dt


 

 
                                              (7.26) 

ClearlyQ is the unique solution of the Lyapunov equation: 

 * 0A Q QA I                                                               (7.27) 

and the solution of trace optimization problem (7.9) is obtained as:  

                                                                                                   

1 1 1

*
min[0, ] max

1 1 1

min{ } max{ ( (0, ))} max{ } ( )
n n n

cb b b
b b b

aveE trace W b Qb Q
  


  

  
  

                  (7.28) 
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and 

1
1 max

1

arg max{ ( (0, ))} ( )
n

opt
c nb

b

trace W b V Q





                              (7.29) 

Again is the set of all possible inputs. 

 

 

7.2.1.c. Optimal Input Vector in The Case That “A” Is a Normal 
Matrix 

 

 

 

 

 

Definition (7.1): In LTI system, if A is normal, then it satisfies the property in (7.30): 

∗ܣܣ =  (7.30)                                                                     ܣ∗ܣ

Note that ܣ +  .is always a normal matrix and it is diagonalizable by unitary matrices ∗ܣ

 

Lemma (7. 1): Consider the LTI system, in which A is normal. Then the optimal input vectorb
, which minimizes the average input energy within finite time 0ft  , is given by the 

eigenvector, i.e. *
max ( )V A A , corresponding to the maximum eigenvalue of *A A , i.e. 

*
max ( )A A  . 

Furthermore, maximum value of the trace of the controllability Gramian is equal to: 

max

max

1fte


                                                                           (7.31) 

and 

1

*
min[0, ] 1 max

1

arg min{ } ( )
f

n

opt
t nb

b

aveE b V A A





                                (7.32) 

where represents the set of all possible inputs.  

      

 

Problem: 

Consider the standard LTI SISO system and assume that A  is normal. Find 

1
1

max{ ( (0, ))}
n

c fb
b

trace W t
 



, where is the set of all possible input vectors 
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Proof: 

Similar to part (7.2.1.a) by using the linearity property of the trace we define the optimization 
problem as the maximization of (7.33): 

**

0
( (0, )) ( )ft A t At

c ftrace W t b e e dt b                                      (7.33) 

Considering the normal assumption for the finite terminal time ݐ௙, we have: 

* *( )

0 0

f ft tA t At A A tQ e e dt e dt                                            (7.34) 

and hence: 

 

1

1

0

0

0

f

n

t

t

t

e
Q P P dt

e







 
 

  
 
 




  


                                       (7.35) 

Whereߣ௜defines the ith eigenvalue of ܣ + and 1,P ,∗ܣ P are orthogonal eigenvector matrices. 

Now by calculating the integral we get: 

1

1
1

1 0

10
n

t

t

n

e

Q P P
e











 
 
 
 
 

 
 
 



  



                                             (7.36) 

Then using matrixQ above, the solution of the optimization problem is obtained as: 

1

1 1 1

*
min[0, ] max

11 1 1

1min{ } max{ ( (0, ))} max{ } ( )
f

n n n

t

t c fb b b
b b b

eaveE trace W t b Qb Q


  


    
  


         (7.37) 

and 

1

*
1 max max

1

arg max{ ( (0, ))} ( ) ( )
n

opt
c f nb

b

trace W t b V Q V A A





                            (7.38) 

where denotes the set of all possible inputs, 1  is the maximum eigenvalue of matrix
*A A , and maxV is its corresponding eigenvector.  

 
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7.2.1.d. Optimal Input Vector in The Case That “A” Is Stable and 
Normal 

 

 

 

 

 

Lemma (7.2): (Karcanias, et al., 2010) if n nA   is asymptotically stable and normal, then it 
is also strongly stable, which is defined by the condition: 

*( ) 0, 1, ,i A A i n     . 

 

Proof: 

Using the real Schur form of matrix A  (Bai & Demmelt, 1992): 

 * *
1{ , , , , , }i i

k
i i

U A U block diag
 

 
 

 
   

 
                               (7.39) 

where i are the real eigenvalues and i ij   the complex eigenvalues of A . 

Thus: 

 * *
1

2 0
( ) {2 , , 2 , , , }

0 2
i

k
i

U A A U block diag


 


 
    

 
     

Then, by introducing Â:  

*
ˆ

2
A A A

  

we have: 

                

 *
1

ˆ { , , , , , , }k i iU AU block diag                                         (7.40) 

  

and from asymptotic stability 0i  , 0i  and this establishes the negative-definiteness of

Âand the Lemma is proved.  

Problem: 

Consider a stable LTI SISO system and assume A is stable and normal. Find 

1
1

max{ ( (0, ))}
n

cb
b

trace W
 



 , where is the set of all possible input vectors 
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 

The above result establishes a sufficient condition for strong stability in terms of the property 
of normality.  

According to (Ricardo, 2009), the spectral Theorem for normal matrices states: 

Theorem (7.3): For n nA  , there exists a unitary n n matrix n nP  such that P AP D   
( D is a diagonal matrix) if and only if A  is normal. 

 

Proof: 

By the Schur decomposition, we can write any matrix as A P TP , where P is unitary and
T is upper-triangular. If A is normal clearlyT is normal as well, since: 

 * * * * * *AA A A P TT P P T TP TT T T                               (7.41) 

which implies thatT must be diagonal. The converse is obvious. 

  

Now, by combining the results of the last two sections, we can examine the problem of 
optimum input selection in the case that the LTI system is both normal and stable. We have 
the following results: 

Proposition (7.3): Consider an LTI single input system with A is a normal and Hurwitz. Then, 
the optimal input vector b, which maximizes the trace of the controllability Gramian, i.e. 
minimizes the average of the input energy, is the eigenvector corresponding to the largest 

eigenvalue of *A A and the maximum value of the trace is 1
1
 , where 1( 0)   is the 

maximum eigenvalue of *A A . Equivalently: 

1
min[0, ]

11

1min{ }
nb
b

aveE
 





                                                 (7.42) 

and 

1

*
min[0, ] 1 max

1

arg min{ } ( )
n

opt
nb

b

aveE b V A A


 


                                 (7.43) 

where denotes the set of all possible input vectors and maxV (i.e. optimal inputb ) is the 

normalised eigenvector associated with 1 . 

 

Proof: 

Due to the assumption of stability for the system, we can increase the terminal time to infinity

ft   , and similar to the last part we define matrixQ as: 
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* *( )

0 0

A t At A A tQ e e dt e dt
                                           (7.44) 

Note: the identity
* *( )A t At A A te e e  follows directly from the assumed normal property of A . 

Then, regarding Theorem (7.3), Q in (7.44) can be written as (7.45): 

 

1
*

1 0

10
n

Q P P




 
 
 
 
  
 
 



  



                                           (7.45) 

Thus, by combination the properties of stability and normality for the LTI system, the 
optimal input vector minimizing the average of input energy is achieved by: 

1 1 1

*
min[0, ] max

11 1 1

1min{ } max{ ( (0, ))} max{ } ( )
n n n

cb b b
b b b

aveE trace W b Qb Q
  


  

  
  


              (7.46) 

and 

 
1

*
1 max max

1

arg max{ ( (0, ))} ( ) ( )
n

opt
c nb

b

trace W b V Q V A A





                         (7.47) 

where is the set of all possible inputs, 1( 0)   is the largest eigenvalue of *A A  and

maxV  is its corresponding eigenvector. 

 

7.2.2 Multi-Input Matrix Structure Selection 

In this part, we assume that input ܤ ∈ ℝ௡×௠, is a ݊×݉ matrix: 

n n n m

l n l m

x A x B u
y C x D u

 

 

 
  


                                                          (7.48) 

The aim is to select the proper input matrix ܤ = [ܾଵ,ܾଶ, … , ܾ௠],ܾ௜ ∈ ℝ௡×ଵsuch that the trace 
of controllability Gramian matrix ௖ܹ(0,  ௙)is maximized.  Again, this is equivalent to theݐ
minimization of the average of minimum input energy ܧ௠௜௡, i.e. 

min[0, ]min { } max{ ( (0, ))}
f

n m n m
t c fB B

aveE trace W t
   

                                    (7.49) 

Now  is the set of all possible input matrices of appropriate dimensions. 

In this part, we also investigate the problem subject to various assumptions defined on input 
matrix B . In each case, we suggest the selection of the proper set, over which the average 
energy minimization (i.e. maximization of the trace of the controllability Gramian) is carried 
out.  
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7.2.2.a. Input Matrix Selection Within a Finite Terminal Time Part 
I 

 

 

 

 

 

In this part, we find the optimal input structure for the general case, where ܤ =

[ܾଵ,ܾଶ, … , ܾ௠],ܾ௜ ∈ ℝ௡×ଵ is the input matrix such that 1FB  , and matrix *

0

ft A t AtQ e e dt   

has n eigenvalues ordered as 1 2 0n      . It is assumed for simplicity that 1  is 

distinct. 

Here we are looking for the input matrix B that maximizes the trace of the controllability 
Gramian, (0, )c fW t , i.e. minimizes the average input energy. 

 Theorem (7.4): Consider the system in (7.48) and assume that *

0

ft A t AtQ e e dt  has a 

maximum eigenvalue of multiplicity one. Then, all optimal input ܤ = [ܾଵ, ܾଶ, … , ܾ௠],ܾ௜ ∈
ℝ௡×ଵ, such that 1FB  , which minimize the average input energy, i.e. maximize the trace 

of the controllability Gramian (0, )c fW t , can be defined as: 

 

1 1 1

2 2 1

1m m

b V
b V

b V












                                                                   (7.50) 

where 1V  is the normalized eigenvector corresponding to the largest eigenvalue ofQ and the

i ’s 1, ,i m  are scalars satisfying the condition 2 2 2
1 2 1m      . 

 

Proof:  

We know that: 

* ** *

0 0
{ (0, )} { } { }f ft tAt A t A t At

c ftrace W t trace e BB e dt trace B e e dtB          (7.51) 

Defined Q as: 

*

0

ft A t AtQ e e dt                                                              (7.52) 

Problem: 

For the LTI MIMO system (7.48), find 

1

max{ ( (0, ))}
n m

F

c fB
B

trace W t
 



, where is the set of all possible input matrices 
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Then by substituting (7.52) into (7.51) we obtain: 

 *{ (0, )} { }c ftrace W t trace B QB                                       (7.53) 

Equivalently: 

 

*
1
*
2

1 2

*

{ (0, )} { }c f m

m

b
b

trace W t trace Q b b b

b

 
 
   
  
 




                           (7.54) 

or: 

1 1

1 1

*
1 1

*

{ (0, )} { }
n n

n n

n n

c f

m n n m
m m

b Q b

trace W t trace
b Q b

 

 






 
 

  
  



  


                  (7.55) 

and hence: 

*

1
{ (0, )}

m

c f i i
i

trace W t b Qb


                                                (7.56) 

Then according to the Rayleigh quotient eigenvalue problem (Golub & Loan, 1983), 
(Watkins, 1982), (Uper, July 2002), the solution for the maximization of the trace of 
controllability Gramian is achieved by selecting input vectors ib , 1, ,i m  , along the 

eigenvector corresponding to the largest eigenvalue of Q :  

   

* *

11 1 1
1,2,.. 1,2,.. 1,2,..

** *
* * *1 1 2 2
1 1 2 2* * *

1 1 2 21

max{ ( (0, ))} max{ ( )} max

max{ }

n m n m n m

F F F

n m

F

m

c f i iB B B iB B B
i i i

m m
m mB

m mB

trace W t trace B QB b Qb

b Qbb Qb b Qbb b b b b b
b b b b b b

  



  



  
  

  




 

      





                (7.57) 

so that: 

 1 1 1 2 2 1 1
2 2 2

1 2

, , ,
1 1

m m

mF

b V b V b V
B

  

  

  

     




                                                  (7.58) 

where is the set of all possible input matrices, 1V  is the eigenvector corresponding to 1 , 

the maximum eigenvalue ofQ .  

Note that optimality over the set 1FB  occurs on the boundary, i.e. 1FB  . 

 
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Then all columns of the optimal solution set are aligned along the direction of 1V while we can 

distribute their lengths arbitrarily subject to the condition
2

1
1

m

i
i

b


 . This generalizes the 

solution of the single-input problem. In the next subsection, we investigate the optimal input 

structure n mB  where the largest eigenvalue ofQ has multiplicity r n . 

 

7.2.2.a. Input Matrix Selection Within a Finite Terminal Time Part 
II 

 

 

 

 

 

 

In this section, we find the optimal input matrix ܤ = [ܾଵ, ܾଶ, … , ܾ௠],ܾ௜ ∈ ℝ௡×ଵ, such that

1FB  , and matrix *

0

ft A t AtQ e e dt   has n eigenvalues ordered as

1 2 1 0r r n           , where 1  is the maximum eigenvalue of multiplicity

r n . 

Lemma (7.3): For the LTI MIMO system (7.48), the columns of the optimal input matrix ܤ =
[ܾଵ,ܾଶ, … , ܾ௠],ܾ௜ ∈ ℝ௡×ଵ, 1FB  , which maximizes the trace of controllability Gramian

(0, )c fW t , are equal to: 

1
, 1, ,

r

i ik k
k

b V i m


                                                   (7.59) 

where , 1, ,kV k r  are independent (orthonormal) eigenvectors corresponding to the 

maximum eigenvalue of *

0

ft A t AtQ e e dt  and the i ’s 1, ,i m  are the constant 

coefficients that satisfy the condition 2

1 1
1

m r

ik
i k


 

 . In this case    ,rank B min r m , and 

the maximum value for the trace of (0, )c fW t is equal to the largest eigenvalue of Q. 

The dimension of optimal input matrix depends on the maximum eigenvalue ofQ , assumed 

of multiplicity r . If m r , then B is full rank and the optimal solution would be m

Problem: 

Consider the LTI MIMO system (7.48) and suppose that
*

0

ft A t AtQ e e dt  has 

maximum eigenvalue 1 of multiplicity r n . Find 

1

max{ ( (0, ))}
n m

F

c fB
B

trace W t
 



, where is the set of all possible input matrices 
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dimensional input matrix. Otherwise, m r  of input vectors ib , 1, ,i m   , would be 

dependent. 

 

Proof: 

Since the proof of this Lemma is quite similar to the proof of Theorem (7.4), then it is 
neglected. 

 

 

Remark (7.1): Suppose that m r n  . Thus, among all optimal solutions with ( )rank B m
the best (in the sense that the condition number of B is equal to one) is: 

1 1 2
1[ , , ] [ , , , ]m mB b b V V V
m

                                           (7.60) 

where 1 2, , , mV V V are m  orthonormal eigenvectors corresponding to the maximum 

eigenvalue ofQ. 

 

7.2.2.a. Input Matrix Selection Within a Finite Terminal Time Part 
III 

 

 

 

 

 

 

Here we complete the solution of finding the optimal matrix B over a finite terminal time ft , 

by imposing the constraint on the rank of input matrix B to guarantee a full rank multiple 
input solution.  

In other words, in this section we are looking for a full rank input matrixܤ =
[ܾଵ,ܾଶ, … , ܾ௠],ܾ௜ ∈ ℝ௡×ଵ, 1FB  , that maximizes the trace of the controllability Gramian

(0, )c fW t , i.e. minimizes the average of input energy, where r is the order of the maximum 

eigenvalue of *

0

ft A t AtQ e e dt  is less than ( )rank B m , i.e. r m n  . 

Problem: 

Consider the LTI MIMO system (7.48) and suppose that
*

0

ft A t AtQ e e dt   has 

maximum eigenvalue 1 of multiplicity r m n  . Find 

1
( )

max { ( (0, ))}
n m

F

c fB
B

rank B m

trace W t
 




, where is the set of all possible input matrices 
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    b1 … br 

Definition (7.2): Inner product of two vectors ,a b is defined as: 

 , cosa b a b                                                            (7.61) 

From the Cauchy–Schwarz inequality it follows immediately that: 

0 ,a b a b                                                        (7.62) 

 

Next, we seek to find an optimal input matrix n mB  =[ܾଵ,ܾଶ, … , ܾ௠] of full rank, which 

maximizes the trace of the controllability Gramian (0, )c fW t subject to constraint 1FB   . 

For simplicity, we assume that ( )r rank b m  , where r is the multiplicity of the largest 

eigenvalue of *

0

ft A t AtQ e e dt  . To define a meaningful problem, we need to redefine the 

constraint region as described below. 

In effect, this replaces the full rank constraint on B by a numerical-rank constraint of a 
certain tolerance. Specifically, the optimal solution requires that the first r input vectors of 
matrix B  are aligned in the directions of the r independent eigenvectors corresponding to 
the maximum eigenvalue ofQ . Let be the spectral subspace generate by theses 

eigenvectors. A numerical rank constraint on B can be imposed by constraining the input 
vectors ib , 1, ,i r m    to lie in directions whose angles with any vector in the spectral 

subspace exceeds same minimum value 0< . 

 

 

 

  

 

 

 

 

Figure (7.2): The optimal input vectors and the spectral subspace 

 

Thus, the problem becomes: 

1 ( )

, 1, ,1 ( ) 11, ,

max { }
j

i

m r

i i
i m r ij m


 

 

   






                                                        (7.63) 

where: 

br+1 
… 

bm 
br+2
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1

2 2
1

1 1
1, ,

, 1, ,1 ( )

( ) ( ) 1

,
0 cos , 1, , ( )(( ) 1) / 2, , , 1, ,

m
j

i i
j

r m
j j

i
j j r

i j

k l
i

k l

i m r

b b
i m r m r k l r r m

b b

 

 

 



  


   

 

        



 




 

(7.64) 

Then, the optimal solution is obtained by selecting: 

1
1 1 1

1 1
1 1 1

1

2 2 2
2 1 1 2 2

1

1 1 2 2 ( ) 1 ( ) 1
1

r
r r r

r
r r

r i i r r
i

r
r r r

r i i r r r r
i

r
m m m m

m i i r r r r m r m r
i

b V

b V

b V V

b V V V

b V V V V





 

  

   

 
  



  
    



       






 

  

    













                     (7.65) 

Here , 1, ,1 ( )iV i m r   , is the normalized eigenvector corresponding to ith largest 

eigenvalue ofQ , i denotes the ith eigenvalue ofQ , 1, ,1 ( )i m r   , i.e. 

1 1 0r r m          . 

Note that j
i , 1, ,1 ( ), 1, ,i m r j m     are constant coefficients, which satisfy 

condition 2 2
1

1 1
1, ,

( ) ( ) 1
r m

j j
i

j j r
i j

 
  



  


. For notational simplicity coefficients

1
, 1, ,1 ( )

m
j

i i
j

i m r 


     have also been defined. 

Note further that in the special case where 1r  , (i.e. Q has a non-repeated maximum 

eigenvalue), the optimal input matrix is defined as: 

1 2 2 3 3 3
1 1 1 1 2 2 1 1 2 2 3 3 1 1 2 2 3 3{ , , , , }m m m m

m mB V V V V V V V V V V                        

(7.66) 

where 1 2, , mV V V  are the normalized eigenvectors corresponding to the m largest 

eigenvalues of *

0

ft A t AtQ e e dt  respectively. We can now state and prove the following 

Theorem. 
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Theorem (7.5): Under the constraint of matrix B  given in equation (7.65) above, the trace 

of the controllability Gramian, (0, )c fW t , is maximized as: 

           
1 ( )

11

1, ,

max { ( (0, ))}
n m

i

m r

c f i iB i
b

m
i m

trace W t


 


 

 




 



                                     (7.67)         

                 

Proof: 

It is assumed without loss of generality that the eigenvalues of Q are distinct. Otherwise, the

ib ’s could be selected as orthonormal bases of the corresponding spectral subspace spanned 

by the clusters of the repeated eigenvalues. 

Similar to single input section, first we define the trace of controllability Gramian as: 

  * ** *

0 0
{ (0, )} { }f ft tAt A t A t At

c ftrace W t trace e BB e dt trace B e e dtB                   (7.68) 

Again define: 

  *

0

ft A t AtQ e e dt                                                         (7.69) 

Then: 

  

*
1
*

* 2
1 2

*

{ (0, )} { } { }c f m

m

b
b

trace W t trace B QB trace Q b b b

b

 
 
    
  
 




                 (7.70) 

or equivalently: 

 

1 1

1 1

*
1 1

*

{ (0, )} { }
n n

n n

n n

c f

m n n m
m m

b Q b

trace W t trace
b Q b

 

 






 
 

  
  



  


                      (7.71) 

which implies that: 

    *

1
{ (0, )}

m

c f i i
i

trace W t b Qb


                                             (7.72) 

Then considering the Rayleigh quotient eigenvalue problem (Golub & Loan, 1983), (Watkins, 
1982), (Uper, July 2002), the trace of the controllability Gramian is maximized as follows:  
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1

** *
* * * *1 1 2 2
1 1 2 2* * *

11 1 2 21 1

max{ ( (0, ))}

max max

n m

F

n m n m

F F

c fB
B

m
m m

m m i iB B im mB B

trace W t

b Qbb Qb b Qbb b b b b b b Qb
b b b b b b



 



 




 
 

                  
       



(7.73) 

It follows using Theorem (7.4) that one optimal solution can be obtained by choosing 1b in the 

direction of the normalized eigenvector corresponding to the maximum eigenvalue ofQ , i.e.

1V , 2 2
2 1 1 2 2b b V   , where 2V  is the normalized eigenvector corresponding to the second 

largest eigenvalue of Q . 

Using a similar procedure, we can define 3 3 3
3 1 1 2 2 3 3b b b V     , where 3V  is the normalized 

eigenvector corresponding to the third largest eigenvalue of Q . In general: 

 

1
1 1 1

2 2
2 1 1 2 2

1 1 2 2 3 3
m m m m

m m m

b V
b V V

b V V V V



 

   



 

    




                                        (7.74) 

Nothing that; 

 2

1, ,
1, ,

1 ( ) 1j
iF

i j
j m

B 



  



                                                           (7.75) 

and the Cauchy–Schwarz inequality: 

 0 ,i j i jb b b b                                                      (7.76) 

Show the optimality of (7.65). 

 

A geometric interpretation of Theorem (7.5) is given below. 

Let 1b be defined in the direction of the eigenvector 1V . To satisfy the numerical rank constraint 

on input matrix B and minimize the angle between 1b and 2b , 2b must be located on the 

boundary of the cone shown in Figure (7.3) below. Constraining 2b to lie outside this cone 

ensures that the angle between 1b and 2b is always greater than the required tolerance .  
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Figure (7.3): 2b must be located on the boundary of the cone with center 1b  

 

Similarly, with 1b and 2b fixed, 3b is selected to lie on the intersection of the two cones centered 

at vectors 1b , 2b respectively as shown in Figure (7.4). 

 

 

Figure (7.4): Vector 3b  lies on the intersection of the two cones centered at vectors 1b and 2b  

This procedure could be continued to construct all , 1, ,ib i m  . 

An alternative approach for defining the sub-optimal solution is based on the following 
Lemma: 
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Lemma (7.4): For any matrix n mA  , m n , ( )rank A m , if and only if the minimum singular 

value of A is greater than zero, i.e. 0m  . 

 

The proof is given in the Appendix. Using the above Lemma, we have: 

 ( ) ( ) 0mrank B m B                                           (7.77) 

Then the requirement that the numerical rank of B is m can be expressed as ( )m B  for a 

sufficiently small number 0  then the corresponding optimization problem takes the form: 

1 ( )

, 1, ,1 ( ) 11, ,

max { }
j

i

m r

i i
i m r ij m


 

 

   






                                                            (7.78) 

Subject to: 

0 ( )m B    

Here , are constant coefficients, which satisfy condition

 and coefficients i are defined as: 

 

Then, the optimal solution is obtained by selecting: 

1
1 1 1

1 1
1 1 1

1

2 2 2
2 1 1 2 2

1

1 1 2 2 ( ) 1 ( ) 1
1

r
r r r

r
r r

r i i r r
i

r
r r r

r i i r r r r
i

r
m m m m

m i i r r r r m r m r
i

b V

b V

b V V

b V V V

b V V V V





 

  

   

 
  



  
    



       






 

  

    













                     (7.79) 

where , is the normalized eigenvector corresponding to i , the i
th 

largest eigenvalue of , i.e. 1 1 0r r m          . 

An alternative formulation of the optimization problem relies on the determinant of the Gram 
matrix of B . 

j
i 1, ,1 ( ), 1, ,i m r j m    

2 2
1

1 1
1, ,

( ) ( ) 1
r m

j j
i

j j r
i j

 
  



  


1
, 1, ,1 ( )

m
j

i i
j

i m r 


    

, 1, ,1 ( )iV i m r  
Q
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Definition (7.3): If m nA  , then the square matrix * n nG A A   is known as the Gram 
matrix of A and G as the Gram determinant of A  (Mirsky, 2012). 

 

Theorem (7.6): (Mirsky, 2012) If G is the Gram matrix of A , then ( ) ( )rank G rank A . 

 

The proof is given in the Appendix. 

Proposition (7.4):  (Peter Lancaster, Miron Tismenetsky, 1985) Let ܤ = [ܾଵ,ܾଶ, … , ܾ௠], ܾ௜ ∈
ℝ௡×ଵ, m n . Then, ( )rank B m if and only if the Gram matrix of B is non-singular, i.e. 

0G  . 

 

The proof of the above Proposition, which is given by  (Peter Lancaster, Miron Tismenetsky, 
1985) can be found in the Appendix, however, an easier proof might be using Theorem (7.6), 
it states that ( ) ( )rank G rank B then if ( )rank B m , it implies that ( )rank G m , and G
is a symmetric positive definite matrix, which means Gram determinant of B is nonzero, i.e. 

1

0
m

i
i




  where i ’s are the eigenvalues ofG . Conversely, ifG is non-singular, with regard 

to Definition (7.3) G is a symmetric positive definite matrix, then ( )rank G m thus using the 

Theorem above ( )rank B m , and the proof of Proposition is completed.  

 

Note that if n mB  , then *
ij i jG b b . Thus, if ij is the angle between vectors ib and jb and

,   such that ij    , then it follows from the monotonicity of function 1cos (.)

that: 

 cos cosi j ij i jb b G b b                                                     (7.80) 

Which is a pair of linear inequalities on the elements of G . Thus, we can always maximize or 
minimize angle ij by maximizing or minimizing ijG  (Stephen P. Boyd, Lieven Vandenberghe, 

2004). 

Using G as a measure f the numerical rank of B , the optimization problem can be formulated 

as: 

1 ( )

, 1, ,1 ( ) 11, ,

max { }
j

i

m r

i i
i m r ij m


 

 

   






                                                       (7.81) 

Such that: 
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1

2 2
1

1 1
1, ,

, 1, ,1 ( )

( ) ( ) 1

0

m
j

i i
j

r m
j j

i
j j r

i j

i m r

G

 

 





  


   

 

 



 




                                                   (7.82) 

where: 

1
1 1 1

1 1
1 1 1

1

2 2 2
2 1 1 2 2

1

1 1 2 2 ( ) 1 ( ) 1
1

r
r r r

r
r r

r i i r r
i

r
r r r

r i i r r r r
i

r
m m m m

m i i r r r r m r m r
i

b V

b V

b V V

b V V V

b V V V V





 

  

   

 
  



  
    



       






 

  

    













         (7.83) 

To summarize the results of this sub-section, the optimization of the trace of the 
controllability Gramian (0, )c fW t under the constraint that 1FB  and the input matrix 

ܤ = [ܾଵ,ܾଶ, … , ܾ௠],ܾ௜ ∈ ℝ௡×ଵhas full (numerical) rank, i.e. ( )rank B m , is the solution of 

one of the suboptimal optimization problems proposed in (7.65), (7.79) or (7.83). 

Example (7.2): Consider the problem of multiple input structure selection of a heating 
furnace (Yadykin, 2011), which can be represented by the following equations:         

0.5 0
0 1

1 0
0 1

x x Bu

y x

 
   
 

  
 


 

subject to the constraints: ( ) 2rank B  and 1 2[ , ]B b b   ܾ௜ ∈ ℝଶ×ଵ, i = 1,2,
2 2 2

1 2 1
F

B b b   . Assume the terminal time 1ft  . 

According to the results stated above the optimal solution can be obtained by minimizing 
the positive angle between the two input vectors, while choosing the first input vector along 

the eigenvector corresponding to the maximum eigenvalue of *

0

ft A t AtQ e e dt  . 

In this case: 
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*1

0

0.6321 0
0 0.4323

A t AtQ e e dt  
   

 
   

and 

1 1

2 2

1
0.6321

0
0

0.4323
1

V

V





 
    

 
 

    
 

 

Thus, the optimization problem can be stated as: 

 
1 2 2
1 1 2

1 2 2 2 2 2
1 1 2

, ,
max {0.6321(( ) ( ) ) 0.4323( ) }

  
      

Such that: 

1 1
1 1 1

2 2 2 2
2 1 1 2 2 1 2

2
11

2 2
1 2

1 2 2 2 2 2
1 1 2

1
, 0

0

, , 0

0 cos

( ) ( ) ( ) 1

b

b b b

 

   




 

  



 
  

 
  

 


  

                                             (7.84) 

Taking the minimum angle between 1b and 2b as 0.0367  , then by solving 

optimization problem in (7.84), the suboptimal solution for B is obtained as: 

1 1 2 2
1 1 2cos (0.9993) 0.0367  0.3134, -0.9490, 0.0349           

and hence: 

0.3134 -0.9490
0 0.0349

B  
  
 

 

In this case the maximum trace of controllability Gramian (0,1)cW is: 

1 2 2 2 2 2
1 1 2

2 2 2

max{ ( (0,1)} {0.6321(( ) ( ) ) 0.4323( ) }
0.6321(0.3134 0.9490 ) 0.4323(0.0349 )  0.6319

ctrace W     

   
 

Similarly, if we solve the optimization problem (7.84) for a minimum angle 0.0736  , the 
input matrix will be achieved as: 

0.1432 0.9870
0 -0.0728

B  
  
 

 

for which the value of trace of (0,1)cW is 0.6311. 
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In Figures (7.5) the validity of the optimization results is investigated using a brute force 
method. The values of 1b , 2b  are continuously changed between -1 and 1 (with a step of 0.2), 

in this case, the maximum value of trace of controllability Gramian (0,1)cW  is obtained as 

0.6229, where the suboptimal input matrix is
0.8 0.56

0.08 0.2
B  
  
 

and the angle between 1b ,

2b is 0 .2435  . The corresponding results obtained by reducing the step to 0.1 are shown 

in Figure (7.6). In this case, the maximum value of trace of controllability Gramian (0,1)cW  is 

obtained as 0.6229 and the suboptimal solution is 
-0.64 0.76
0.08 0.08

B
 

  
 

 , here the angle 

between 1b , 2b is 0 .0195  . This confirms that as the accuracy increases 1b tends to align 

itself with the eigenvector corresponding to the maximum eigenvalue of Q , 1

1
0

V  
  
 

, and the 

angle between 1b , 2b , tends to zero. 

 Figure (7.7) illustrates changes in the value of trace { (0,1)cW }, when 1b is selected along the 

eigenvector corresponding to the maximum eigenvalue ofQ and 2b is formed as a linear 

combination of first and second eigenvectors ofQ , i.e. 1 2 2
1 1 1 2 1 1 2 2,b V b V V     . In the 

first subplot, the values of trace are demonstrated as a function of cos( ) , while the second 

subplot displays the values of trace for different values of 2
1 , 2

2 . This figure also confirms 

that we can reach the suboptimal solution by decreasing the angle between input vectors

1 2,b b , i.e. increasing cos( ) . The maximum value of trace in Figure (7.7) is equal to 0.6320 

and it is reached where input matrix is 
0.7680 0.64

0 0.024
B

 
  
 

 and 0 .0374  , 

comparing this results with the results in plot (7.6) it can be easily inferred that though the 
optimal angle between input vectors is greater in Figure (7.7), however since in Figure (7.7) 1b
is selected align the eigenvector corresponding to the maximum eigenvalue ofQ the optimal 
value of trace (0.6320) is greater than optimal result (0.6296), shown in Figure (7.6). 
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Figure (7.5): { (0,1)}ctrace W according to the variable input matrix B in the interval
2[ 1: 0.2 :1]  

 

Figure (7.6): { (0,1)}ctrace W respect to the variable input matrix B in the interval
2[ 1: 0.1:1]  
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Figure (7.7): { (0,1)}ctrace W based on the angle between 1 2,b b  (top), and { (0,1)}ctrace W

as a function of 2 2
1 2,   (bottom) 

Next, consider optimization method (7.79), in which numerical rank is imposed via a lower 
bound on the minimum singular value of input matrix B : 

 
1 2 2
1 1 2

1 2 2 2 2 2
1 1 2

, ,
max {0.6321(( ) ( ) ) 0.4323( ) }

  
      

where: 

1 1
1 1 1

2 2 2 2
2 1 1 2 2 1 2

1 2
1 2 2 2 2 2
1 1 2

1
, 0

0

, , 0
0 ( ), [ , ]
( ) ( ) ( ) 1

m

b

b b b
B B b b

 

   
 

  

 
  

 
  
  

  

 

The optimal input matrix for 0.017  is given as
0.1776 0.9794

0 0.0958
B  
  
 

 , and the 

corresponding value of { (0,1)}ctrace W is 0.6303. In this case, the positive angle between 

1 2,b b  is equal to 1cos (0.9952) 0.098  . By decreasing to 0.0011, i.e. 0.0011  , 

changes the suboptimal solution to 
0.0434 -0.9988

0 0.0243
B  
  
 

, while the optimal value of 

{ (0,1)}ctrace W becomes 0.6320. Further the positive angle between input vectors 1 2,b b

reduces to 1cos (0.9997) 0.0245  . 

Repeating the procedure with the Gram determinant constraint (optimization (7.83)) the 
problem becomes: 
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1 2 2
1 1 2

1 2 2 2 2 2
1 1 2

, ,
max {0.6321(( ) ( ) ) 0.4323( ) }

  
     

Such that: 

1 1
1 1 1

2 2 2 2
2 1 1 2 2 1 2

1 2

1 2 2 2 2 2
1 1 2

1
, 0

0

, , 0
0 ( ) , [ , ]

( ) ( ) ( ) 1

b

b b b
G B B b b

 

   



  

 
  

 
  

  

  

 

The solution of this problem for 0.0022  is: 

 -0.8753 0.4805
0 0.0542

B  
  
 

 

{ (0,1)} 0.6315ctrace W   

The positive angle between input vectors 1 2,b b is 1cos (0.9937) 0.1123  and the 

minimum singular value of B is 0.0475. 

Setting 1.2771e-04  gives: 

-0.3279 -0.9441
0 -0.0345

B  
  
 

 

{ (0,1)} 0.6319ctrace W   

The positive angle between input vectors 1 2,b b reduces to 1cos (0.9993) 0.0374   and the 

minimum singular value of B decreases to 0.0113. 

In conclusion, the example confirms the validity of the results stated in this section, and shows 
that the optimization problems (7.65), (7.79), (7.83) produce equivalent suboptimal solutions. 

 

7.2.2.b. Optimal Multi-Input Selection in a Stable System 

 

 

 

 

Problem: 

For stable LTI MIMO system (7.48) find 

1

max{ ( (0, ))}
n m

F

cB
B

trace W
 



 , where  is the set of all possible input matrices 
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In this sub-section, we assume the multi input LTI system (7.48) is stable and 1[ , , ]mB b b  ,
1n

ib   with 1FB  and ( )rank B m for. In this case,Q can be calculated as the unique 

solution to the Lyapunov equation: 

       * 0A Q QA I                                                               (7.85) 

Using the results described in the previous sub-section the average of minimum input energy can 
be obtained by solving one of sub-optimization problems stated in (7.65), (7.79), (7.83). 

Lemma (7.5): If A is stable, then 1
2

{ (0, )} ( )ctrace W sI A B   , where 2. denotes the 2H

norm of the system. 

 

Proof:  

Let ( ) Ath t e B be the impulse response of the system: 

x Ax Bu
y x
 

 


                                                              (7.86) 

Then: 

 
*

*

2 *
2 0

*

0

*

0

{ ( ) ( ) }, ( )

{ }

{ }

At

At A t

A t At

h trace h t h t dt h t e B

trace e BB e dt

trace B e e dtB







 









                                         (7.87) 

Hence: 

22 1
2 2

( ) ( )H s sI A B                                                  (7.88) 

So, if we assume all states are observed in output, i.e. C I then we can write the optimization 
problem of minimizing the average of input energy as the maximization problem of ܪଶnorm of 
the stable LTI system.  

  

7.2.2.c. Optimal Input Matrix Selection Subject to the Condition On 
2-Norm of the Input Matrix B 

 

 

 

 

Problem: 

For the LTI MIMO system (7.48), find 

0

1
( )

max { ( (0, ))}
n m

c fB
B

rank B m

trace W t



 




 , where is the set of all possible input matrices 
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In this part, we look for an optimal solution to the problem of multi input structure selection 

corresponding to the constraint ‖ܤ௡×௠‖ ≤ 1, . denotes the spectral norm (i.e. maximum 

singular value) and ( )rank B m  note that the condition‖ܤ௡×௠‖ ≤ 1 can be expressed 

equivalently as ܤ∗ܤ ≤  . ܫ

Theorem (7.7): The optimal matrix B , which maximizes the trace of controllability Gramian 
subject to ( )rank B m and ܤ∗ܤ ≤  isܫ

1 2

1 2[ ( ), ( ),..., ( )]
m

m

b b b

B V Q V Q V Q
  

 where iV , 1, ,i m 

is the eigenvector corresponding to the thi   largest eigenvalue of *

0

ft A t AtQ e e dt  .The 

optimal value of 0 , in this case, is 
1, ,

i
i m






, where i  denotes the thi   largest eigenvalue of

Q . 

 

Proof: 

The constraint 1B  can be written as: 

 

* *
1 1 1

*

* *
1

m

m m

m m m

b b b b
B B I I

b b b b


 
    
  


  


                                       (7.89) 

Then by considering the trace of the controllability Gramian, and defining *

0

A t AtQ e e dt


 
we have: 

 

 

1 1

1 1

*
1
*

* 2
1 2

*

*
1 1

*

1*

( (0, )) ( )

n n

n n

c f m

m

n n
m

i i
i

m n n m
m m

b
b

trace W t trace B QB trace Q b b b

b

b Q b

b Qb
b Q b

 

 








  
  
      
      

 
 

  
  








  


           (7.90) 

Thus, the optimization problem is equivalent to: 

* *
min[0, ]

11 1 1 1
( ) ( ) ( ) ( )

min { } max { ( (0, ))} max { ( )} max
f

n m n m n m n m

m

t c f i iB B B B iB B B B
rank B m rank B m rank B m rank B m

aveE trace W t trace B QB b Qb
         

   
   

   

(7.91) 
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This is equivalent to the Rayleigh quotient form of 
1

( )
m

i
i

Q

 . 

The results follow by expanding ܤ௡×௠ = ܺ௡×௡ ௡ܻ×௠where ܺ is the matrix whose columns are 
the eigenvectors of Q 5, and ܻ ∈ ℝ௡×௠ . Then: 

 * * *( ) ( ) ( )n n n m m ntrace B QB trace Y Y trace Y Y                                      (7.92) 

where is the diagonal matrix of the eigenvalues. The condition ܤ∗ܤ = ܻ∗ܻ implies ,ܫ =
௠×௠ܫ  and so ݁ܿܽݎݐ ܻ∗ܻ = ∗ܻܻ ݁ܿܽݎݐ = ܫ ݁ܿܽݎݐ = ݉. 

Hence (∗ܻܻ ߉)݁ܿܽݎݐ is maximized when ܻ = ቂ0ܫቃ, which concludes the proof. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
5 Q is symmetric matrix then it is diagonalizable 
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7.3. Summary: 

In this chapter, we proposed a novel solution to the problem of optimum input structure 
selection, considering the average of minimum input energy, and we solved the problem for 
two main cases, single input where input matrix B is a vector, and the case of multi inputs, 
where input matrix B has the dimension of n m . 

We also considered various interesting cases, in which matrix A has special properties or the 
input matrix B satisfies different constraints. 

The results of this chapter are summarized in tables (7. 1) and (7. 2). 

These results can be used as the solution to the problem of actuator localization, where we 
are looking for the optimum location of actuators, considering the minimum achievable input 
energy averaged over all possible directions. 

 

 

ܾ ∈ ℝ௡×ଵ max }݁ܿܽݎݐ ௖ܹ൫0, ௙൯} argݐ max } ݁ܿܽݎݐ ௖ܹ൫0,  {௙൯ݐ

1) ܾ ∈ ℝ௡×ଵ 
௙ݐ  finite 

 (ܳ)௠௔௫(ܳ) ௠ܸ௔௫ߣ

2) ܾ ∈ ℝ௡×ଵ 
௙ݐ → ∞ 

              A stable 

 (ܳ)௠௔௫ߣ

ܳ∗ܣ + ܣܳ + ܫ = 0 

௠ܸ௔௫(ܳ) 

3) ܾ ∈ ℝ௡×ଵ 
௙ݐ  finite 

A normal 

(ܳ)௠௔௫ߣ =
݁ఒభ೟೑ − 1

ଵߣ
 

ଵߣ = ܣ)௠௔௫ߣ +  (∗ܣ

 

௠ܸ௔௫(ܣ +  (∗ܣ

4) ܾ ∈ ℝ௡×ଵ 
௙ݐ → ∞ 

               A stable              

                 A normal 

 

1
max 1( )Q    

ଵߣ = ܣ)௠௔௫ߣ + (∗ܣ < 0 

 

௠ܸ௔௫(ܣ +  (∗ܣ

Table (7.1): Optimum input vector in single input cases, which minimizes the average of 

minE   
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ܤ ∈ ℝ௡×௠ max }݁ܿܽݎݐ ௖ܹ൫0, ௙൯} argݐ max } ݁ܿܽݎݐ ௖ܹ൫0,  {௙൯ݐ

ܤ (1 ∈ ℝ௡×௠ 
1

( )
FB

rank B m



  

௙ݐ        finite 

1

m

i i
i
 


   

A weighted function of m
first largest eigenvalues of

Q  

ib is the linear function of  

{ ௠ܸ௔௫ଵ(ܳ), … , ௠ܸ௔௫௜(ܳ)} 

௠ܸ௔௫௜ , ݅ = 1, … ,݉  

Eigenvectors corresponding 
to ߣ௜∗, ith largest eigenvalue ofQ  

ܤ (2 ∈ ℝ௡×௠ 

          
1

( )
FB

rank B m



 

A stable 

௙ݐ                  → ∞ 

 

If: ܥ =  ܫ

}݁ܿܽݎݐ ௖ܹ(0,∞)}
= ‖ℎ(ݐ)‖ଶଶ 

= ܫݏ))‖ −  ଶଶ‖ܤ(ଵି(ܣ

ܳ∗ܣ + ܣܳ + ܫ = 0 

ib  is the linear function of 

{ ௠ܸ௔௫ଵ(ܳ), … , ௠ܸ௔௫௜(ܳ)} 

௠ܸ௔௫௜ , ݅ = 1, … ,݉  

Eigenvectors corresponding 
to ߣ௜∗, ith largest eigenvalue ofQ  

ܤ (3 ∈ ℝ௡×௠ 
‖௡×௠ܤ‖ ≤ 1 

( )rank B m  

௙ݐ            finite 

෍ߣ௜∗(ܳ)
௠

௜ୀଵ

 

௜∗are theߣ  m largest 
eigenvalues of Q  

ܤ = [ ௠ܸ௔௫ଵ(ܳ), … , ௠ܸ௔௫௠(ܳ)] 

௠ܸ௔௫௜ , ݅ = 1, … ,݉  

Eigenvectors corresponding 
to ߣ௜∗, ith largest eigenvalue ofQ  

Table (7.2): Optimum input matrix in multi- input cases, which minimizes the average of 

minE   
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Chapter 8: Kamineh Algorithm Optimization 
 
 
 
8.1. Introduction 

In this chapter, a novel metaheuristics optimization algorithm namely Kamineh Algorithm (KA) 
is proposed. The KA starts from a random initial population and requires them to move 
towards the best solution using Logistic equation like functions. 

A metaheuristic is formally defined as an iterative generation process which guides a 
subordinate heuristic by combining intelligently different concepts for exploring and 
exploiting the search space, learning strategies are used to structure information in order to 
find efficiently near-optimal solutions (Osman & Laporte, 1996).  

Metaheuristics have admirable ability to avoid trapping in local optima, this important 
property is due to the stochastic nature of metaheuristic algorithms, which make them 
suitable for optimizing challenging real problems where the search space is usually unknown 
and very complex with a massive number of local optima. 

Different metaheuristic algorithms exist in literature, some more popular ones are Genetic 
algorithms (GAs), Simulated annealing (SA), Differential evolution (DE), Ant colony 
optimization (ACO), Bat algorithms (BA), Particle swarm optimization (PSO), Tabu search (TS), 
Gravitational search algorithm (GSA), and Firefly algorithms (FA). Some algorithms have also 
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been proposed integrating or improving the current techniques, to make them more efficient 
and applicable. 

Two main components of any metaheuristic algorithm are intensification and diversification, 
or exploitation and exploration. Exploration is the ability of the algorithm to search for new 
individuals far from the current solution in the search space and to explore the search space 
on a global scale. Exploitation is to search the surrounding search area nearby the current 
solution, something like local search. Exploitation ensures that the solutions will converge to 
the optimality, whereas the exploration via randomization avoids the solutions being trapped 
at local optima and, at the same time, increases the diversity of the solutions. 
Finding an algorithm that can handle both (exploitation and exploration) is still challenging 
because they are two different contrast objectives. 
The No Free Lunch (NFL) Theorem of (Wolpert & Macready, 1997) states that “There is no 
strategy or algorithm that generally behaves better than another for the entire set of possible 
problems”. (Ho & Pepyne, 2002) also expressed that: “Universal optimizers are impossible”. 
This motivated us to develop a new effective metaheuristic algorithm called KA (Kamineh 
Algorithm), using the mathematical logistic equation like functions, which shows superior 
performance in terms of exploration, exploitation, and convergence comparable with other 
state-of-the-art methods. It makes KA a powerful optimization algorithm in solving complex 
multi-parameter optimization problems, such as the actuators (sensors) placement. In this 
thesis, the optimization criteria for the selection of actuators are based on the eigenvalues of 
controllability Gramian matrix.  

The structure of this chapter is as follow: 

Section 8.2 outlines the proposed KA optimization method. The results and discussion of 
benchmark functions and some case studies are presented in Sections 8.3. Finally, Section 8.4 
concludes the work.  

 

8.2. Kamineh Optimization Algorithm (KA) 

In this section, the inspiration of the proposed method is first discussed. Then, the 
mathematical model is provided. 

8.2.1. Inspiration 

The logistic equation (also called Verhulst model or logistic growth curve) is a model of 
population growth first published by (Verhulst, 1845), (Verhulst, 1847). The model is 
continuous and when is translated into mathematics, results to the differential equation 
below: 

0
( ) ( )( ) 1 , (0)dP t P trP t P P

dt K
     

                                              (8.1) 
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wheret denotes time, 0P is the initial population and ,r K are constants associated with the 

growth rate and the carrying capacity of the population. 

However, in many applications, when modelling a realistic problem, one may decide to 
describe the continuous-time logistic equations in terms of discrete-time model. Thus, the 
differential equation (8.1) can be formulated instead, as an initial value problem of a 
difference equation below: 

 1 1n n nP rP P                                                               (8.2) 

where r is the Malthusian parameter (rate of maximum population growth). The above 
statement is non-linear, since it involves a term 2

nP . Because of this non-linearity, the 

equation has remarkable non-trivial properties, but cannot be solved analytically. The discrete 
version of the logistic equation has the fascinating properties and can be used in many real-
world examples such as: 

 The concentration of oxygen in the lungs after the ith breath 
 The concentration in the blood of a drug after the ith dose 
 The size of a population of mosquitoes in year n 
 The number of cells in a bacterial culture on day i 

The steady state ssP  of difference equation (8.2) is defined by: 

1n n ssP P P                                                              (8.3) 

which returns: 

 
1

2

0
1 11

ss

ss ss ss
ss

P
P rP P

P
r


  

 

                                         (8.4) 

Now consider a small perturbation that moves the system out of its steady state: 

1 1

1 ( )

n ss n

n ss n

n ss n ss

P P
P P

f P P




 
 



  

  

  

                                                    (8.5) 

Since n ssP  we can use the Taylor expansion around ssP : 

 2( ) ( )
ss

ss n ss n n
P P

dff P f P P O P
dP




     
 

                            (8.6) 

Then equation (8.5) can be approximated as: 

1
ss

n n
P P

df P
dP

 


 
 
 

                                                            (8.7) 
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Clearly, if 1
ssP P

df
dP 

   
 

, the steady state is stable and the perturbation tends to zero as n

increases, otherwise the steady state is unstable. In the case of the logistic equation (8.2), for 
the first steady state, i.e. 1 0ssP   we have: 

 0
0

( 2 )P
P

df r rP r
dP 



     
 

                                            (8.8) 

 Thus, the steady state 1 0ssP  is stable when 0 1r  . 

Similarly, for the second steady state 2
11ssP
r

  , we have: 

1111

( 2 ) 2
P

P r
r

df r rP r
dP  

 

      
 

                               (8.9) 

Thus, the steady state 2
11ssP
r

  is stable when1 3r  . 

 

Figure (8.1): Steady states of logistic equation (8.2) 

In Figure (8.2), several time sequences, corresponding to different values of 0 r are shown. 
When r increases, the steepness of the parabola increases as well, which makes the slope of 
this tangent steeper, so that eventually the stability condition is violated. The steady state 
then becomes unstable and the oscillations appear. (May, 1976) proves that as r increases just 
beyond 3r  , stable oscillations of period 2 (sometimes called two-point cycles) appear. A 
stable oscillation means a periodic behavior that is maintained despite small perturbations 
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and period 2 implies that successive generations alternate between two fixed values of P . 
When r further increases, the periodic solution becomes unstable and then higher period 
oscillations appear. When all the cycles become unstable, chaos is observed. 

The schematic representation shown in Figure (8.3) illustrates that as r increases, the system 
(8.2) undergoes successively cycles of period 2,4,8,and ultimately leads to a chaotic 

behavior. 
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Figure (8.2): Graphical resolution for various values of r  
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Figure (8.3): Schematic representation of the bifurcation diagram 

In KA optimization method, an agent represents a diversity of species with different 
populations. Over the iterations, the species reach new populations different from the 
previous ones. The change of each species’ population is correlated with the fitness of the 
agent and can affect all its other species’ populations as well. The species on the same agent 
share their individual information with others to reach their destination population, which 
leads to the optimum fitness value.  

A function of the distance between the current agent’s fitness and the best existing objective 
value updates the rate of maximum population growth of the species in each iteration. Then 
the closer the objective value is to the current optimum fitness, the smaller the Malthusian 
parameter r is and the species are closer to the stable steady state region. Moreover, as r
increases the chaotic growth of the species guarantees that KA algorithm intrinsically benefits 
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from high exploration and local optima avoidance. However, in the exploitation phase when
r is small there are gradual changes due to the stable behavior and the cyclic oscillations of 
the logistic equations and random variations are considerably less than those in the 
exploration phase. This enhances the convergence capability of KA method towards the 
optimal solution. 

In the next subsection, KA optimization method is proposed based on the mathematical 
model.  

8.2.2. Mathematical Model and Algorithm 

As shown in Figure (8.4), KA algorithm starts with randomly generated populations of species 
for each candidate/agent called individual and the fitness function is evaluated for each 
candidate. 

We represent the set of current populations in a matrix as: 

11 12 1

21 22 2
1 2

1 2

n

nT
n

m m mn

x x x
x x x

X X X X

x x x

 
 
       
 
 





   



                                                       (8.10) 

where n is the number of agents and m is the number of species (i.e. dimension). For all agents
, 1, ,iX i n  , we also assume a vector corresponding to the fitness values as: 

1 2 nX X X Xf f f f                                                                      (8.11) 

Each agent passes through the fitness function and the obtained output updates the 
corresponding fitness value of the associated agent in the matrix Xf .  

We also assume that there is an array for storing the optimum populations for the best agent
, 1, ,best iX X i n   and the corresponding fitness value

iXf . 

 

Figure (8.4): Schematic representation of the KA optimization method 
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The KA algorithm approximates the global solution of the optimization problem based on the 
triplet: 

   Initialze, Update, Terminate , ,I U T  

I is a function that generates some random populations of the species for individuals and 
corresponding fitness values: 

 : , XI X f                                                              (8.12) 

Any random distribution can be used in I function. What we used in KA algorithm is as 
follows: 

(:, ) ( ,1) ( ) , 1, ,

( )
j j j

X

X j rand n ub lb lb j m

f Obj X

    




                             (8.13) 

where , , 1, ,j jub lb j m  denote the upper-bound and lower-bound of the jth species’ 

population (i.e. the jth decision variable) respectively.Obj defines the objective function, 

which is used for the optimization problem. (:, )X j is a n-dimensional vector, which consists 

the jth species’ population of all individuals and ( ,1)rand n is a n-dimensional random vector. 

TheU function, which is the main function, moves the agents around the search space. This 
function receives the populations ijx where 1, , , 1, ,i n j m    and returns their updated 

ones eventually: 

: ( ) ( 1)ij ijU x t x t                                                         (8.14) 

TheT function returns Stop if the termination criterion is satisfied and C ontinue if the 

termination criterion is not satisfied. The KA algorithm terminates the optimization process 
when the iteration counter goes higher than the maximum number of iterations by default. 
However, any other termination condition can also be considered easily wherever it is needed, 
e.g. maximum number of function evaluation or the accuracy of the global optimum obtained. 

 : ,T X Stop Continue                                              (8.15) 

The U function iteratively run until the T function returns Stop .With defined three-tuple 

 , ,I U T the general framework of the KA algorithm is defined as: 
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 
While
for 1, ,
Update ,

Update species' populations of i-th individual ( , ), 1, ,

end
end

best

i

best X

ij ij X

X I
T Continue

i n
X f

x U x f j m






 





                                                   

(8.16) 

As mentioned in the previous subsection the inspiration of this algorithm is the fascinating 
properties of the discrete version of the logistic equation. In order to mathematically model 
this behavior, we update each species with respect to its current value of population via the 
equation below: 

,

( )(1 ( )) ( ) 1
( 1)

( ) ( ) 0
ij ij

ij
best j

rx t x t O t
x t

rand x t O t

     
                                       (8.17) 

where i jx indicates the jth species’ population of the individual i and ,best jx denotes the jth 

species’ population of the current optimal solution. rand denotes a random number 
generated with uniform distribution over the interval of [0,1]. ( )O t is a stochastic function 

defined as: 

1 if 0.5
( )

0 if 0.5
rand

O t
rand


  

                                                  (8.18) 

In equation (8.17), r is the rate of maximum population growth and is defined as: 

1 1

2 1 2

3 2

1 2 ( , )

2 3.4 ( , )

3.4 4 ( , )

i best

i best

i best

X X

X X

X X

S f f

r S f f

S f f

 

  

 

   
    
   

                                 (8.19) 

where
iXf is the objective value of the associated agent and

bestXf denotes the fitness value of 

the current optimal solution. ( , )
i bestX XS f f dictates a logarithmic function of the difference 

between
iXf  and

bestXf : 

 ( , ) log 1
i best i bestX X X XS f f f f rand                                            (8.20) 

The rand parameter in (8.20) brings a random weight for the logarithmic function, i.e. 

 log 1
i bestX Xf f  in order to stochastically determine the effect of the difference between 

the current solution and the best one in defining the behavior of the logistic equations, which 
are used to update the current populations via (8.17). 
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In KA method, we employ two user-controlled parameters to guide the searching behavior: 

 , 1, 2,3i i  : This parameter defines the rate of maximum population growth and 

determines the population’s behavior. 
 1 20 1    : defines random values in (0,1). This parameter controls the 

probability of the species’ population changing rate and assists KA method to show a 
more random behavior throughout optimization through a balanced exploration and 
exploitation. 

Choosing proper parameters of KA for numerical examples and real-world optimization 
problems can be done through different schemes: 

 The trial-and-error scheme: May reveal the best possible performance over the 
parameter space at the expense of high computational cost. In real-world 
optimization problems, evaluating the fitness function may take a long time, much 
longer than evaluating our benchmark functions, then it might be impractical to use 
this scheme. 

  Fixed parameter schemes: As the optimization benchmark set is generally divided 
into three categories (i.e., unimodal, high-dimensional multimodal, and low-
dimensional multimodal), we try to determine a parameter value combination 
generally suitable for each category. This combination remains constant throughout 
the whole search (Yao, et al., 1999), (Lam, et al., 2012), (Price, et al., 2005). 

 Deterministic parameter schemes: Change the parameter values throughout the 
search using some pre-defined rules (Lam, et al., 2012), (Chen, et al., 2012). 

 Adaptive parameter schemes: Change the parameter values by adaptively learning 
the impact of changing parameters on the searching performance throughout the 
search (Qi, et al., 2009). Some schemes encode the parameters into the solution and 
evolve the parameters together with the population (Vrugt, et al., 2009). 

Here, we use the deterministic scheme to choose the parameters, which can consistently lead 
to satisfactory results on a wide range of different kinds of optimization problems. According 
to (Bergh & Engelbrecht, 2006), there should be abrupt changes in the movement of search 
agents over the initial steps of optimization. This assists a meta-heuristic to explore the search 
space extensively. Therefore, in the KA algorithm, the first step is to combine the random 
solutions in the set of solutions abruptly with a high rate of randomness to find the promising 
regions of the search space. Hence, at the beginning of the optimization, the appropriate 
values of the parameters are selected, which lead to a higher rate of maximum population 
growth, i.e. r . However, according to (Bergh & Engelbrecht, 2006) the changes should be 
reduced to emphasize exploitation at the end of optimization. Therefore, after finding the 
promising regions of the search space, the KA algorithm converges to the global optimum by 
gradual changes in the random solutions. The random variations are considerably less than 
those in the exploration phase. Then, the parameters change adaptively such that r ,i.e. the 
rate of maximum population growth, decreases over the course of iterations.  
Figure (8.5) shows that how the parameters of the KA algorithm change adaptively through 
the iterations. The following formulas are utilized in this regard: 
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1 2 3

1 2 2

=2 1 , =3.4 1 , =4 1

min 1 , 0.3 , min 1 0.3,0.8

t t t
T T T

t t
T T

  

  

            
     

                       

                (8.20) 

 
where t is the current iteration andT is the maximum number of iterations. 

 

 

 

 

Figure (8.5): Change of parameters over the course of iterations. 

Figure (8.6) illustrates how the parameters in equation (8.20) change the behavior of the 
logistic equation and decrease the range of the movement of the solutions over the iterations. 
It may be inferred from figure (8.6) that the KA algorithm explores different regions of the 
search space with a higher degree of randomness via increasing the range of the chaotic 
behavior of the logistic equation in (8.17), when the optimization starts, so this can assist 
resolving local optima stagnations. Then the algorithm gradually increases the probability of 
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the steady state behavior of the logistic equation through the iterations to emphasize more 
exploitation around the most promising regions of the search space. Then, using the adaptive 
parameters in the proposed method leads to a smooth transition from exploration to 
exploitation during optimization process, which guarantees the improved accuracy of local 
search over the iterations and the convergence of the proposed algorithm. In Figure (8.6), the 
red point shows a search agent, the blue star is the best solution found so far and the three 
colored circles around the red point describe the search spaces associated with 3 different 
logistic equation regions:  

 Steady state 
 Cyclic  
 Chaos  

 

Figure (8.6): The movement of a solution around the destination via change of the 
parameters over the iterations 

After all, the pseudo code of the KA algorithm in (8.16) can be presented as follows: 
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Step 1: Initialization
Step 2: Iteration

Do
      for each 
      Update ,

      Update the parameters , , 1, 2,3, 1, 2
      Update the rate of

individual 

 maximum po

repea

pulation growth, i.e. 
 

t

bestbest X

k l

X f

k l
r

   

     Update the population of the species ( , ); 1,

      end
  While stopping criteria
Step 3: Return the best solution obtained 

iij ij Xx U x f j m  

(8.21) 

The general steps defined in (8.21) shows that the KA algorithm starts the optimization 
process with creating a set of random solutions. The algorithm then saves the best solutions 
obtained so far, assigns it as the destination point, and updates other solutions with respect 
to it. Mean-while, the parameters and the rate of maximum population growth, i.e. r , are 
updated to emphasize more exploration of the search space at the beginning and higher 
exploitation of the search space as the iteration increases. The KA algorithm terminates the 
optimization process when the termination criterion is satisfied and the best solution 
obtained so far is returned as the global optimum. 

The next section employs a wide range of test problems to investigate, analyze and confirm 
the effectiveness of the KA algorithm. 

8.3. Experimental Results and Discussion 

For any new optimization algorithm, it is essential to validate its performance and compare it 
with other existing algorithms over a good set of test functions. 

In this section, the proposed KA algorithm is tested against different sets of benchmark 
functions and compared with five current popular metaheuristic methods introduced over a 
long range of time starting from 1975 onwards: Genetic Algorithms (GA) (Holland, 1975), 
Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), Firefly Algorithm (FA)  (Yang, 
2008), Gravitational Search Algorithm (GSA) (Rashedi & Nezamabadi-pour, 2009), and 
Collective Animal Behavior Algorithm (CAB) (Cuevas, et al., 2012).  

In this work, the maximum number of iterations and the size of population for the KA 
algorithm are set to 100 and 80 respectively. The results are averaged over 30 independent 
runs and the mean value and standard deviation of the best solutions are obtained. 
 
The performance of optimization algorithms were compared considering three criteria: 1) the 
final results (i.e. average value of cost functions and the value of standard deviations), 2) the 
convergence rate and 3) the results produced by non-parametric statistical Wilcoxon rank sum 
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test (Wilcoxon, 1945), (Garc´ıa, et al., 2009). We can also use the following efficiency measure 
to evaluate the performance of the algorithm (de-los-Cobos-Silva, et al., 2015): 

min
min

min

min

1 if 0
efficiency =

1 if 0

best

best

X

X

f f
f

f

f f

 
 


  

                             (8.22) 

where 
bestXf is the best value of fitness found by the algorithm and minf is the optimum value 

of the cost function. (Note: considering the accuracy of Matlab, when the efficiency is greater 
than 0.999999, it is rounded to 1.) 
 

8.3.1. Benchmark Functions 

Test functions are important to evaluate reliability, efficiency and validation of optimization 
algorithms. There have been many test or benchmark functions reported in the literature; 
however, there is no standard list or set of benchmark functions. The number of test functions 
in most papers varied from a few to about two-dozen, and ideally, the test functions used 
should be diverse and unbiased to cover a wide variety of problems, such as unimodal, 
multimodal, separable, non-separable and multi-dimensional problems to confidently make 
sure that the achieved results of our algorithm are not by chance. (Jamil & Yang, 2013)  

A complete detailed description of optimization test functions can be found in (Jamil & Yang, 
2013), (Ali, et al., 2005), (Adorio & Dilman, 2005), (Botev, et al., 2004), (Yang, 2010). 

In this work, we are using a comprehensive set of 23 functions, which are used in most 
literature (Cuevas, et al., 2012), (Yao & Liu, 1996), (Gaviano, et al., 2003), (Ali, et al., 2005) to 
test the performance of the proposed approach. Such functions are classified into three 
different categories: unimodal test functions (F1-F7), which have only one local optimum and 
allow to evaluate the exploitation capability of the investigated optimization algorithm, 
multimodal test functions with variable dimensions (F8-F13) and multimodal fixed-low-
dimensional test functions (F14-F23), which both have more than one local optimum. These 
functions are used to test the capability of the KA algorithm to escape from local minima, and 
to investigate the exploration ability of the algorithm. The test functions are given in Tables 
(8.1), (8.2) and (8.3), where V-no is the dimension of the function, Range is the boundary of 
the function’s search space and fmin shows the optimum value of the function. Figures (8.7), 
(8.8) and (8.9) represent two-dimensional form of some benchmark functions out of each 
category. 
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Table (8.1): Unimodal test functions 

 
 

 
Figure (8.7): Typical two-dimensional form of unimodal benchmark functions 

 

 
Function   minf  

 
30 [-500,500]n -12569.5 

 30 [-5.12,5.12]n 0 

 
30 [-32,32]n 0 

 30 [-600,600]n 0 

 

 
30 

 
[-50,50]n 

 
0 

  
30 

 
[-50,50]n 

 
0 

Table (8.2): Multimodal test functions with variable dimensions 
 
 

F1
( x

1 , 
x 2 )

F4
( x

1 , 
x 2 )

F5
( x

1 , 
x 2 )
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Figure (8.8): Typical two-dimensional form of high-dimensional multimodal benchmark 

functions 
 
 

 
Table (8.3): Fixed-dimension multimodal test functions 

 

     
Figure (8.9): Typical two-dimensional form of fixed-dimensional multimodal benchmark 

functions 
 
 

8.3.1.1. Unimodal Test Functions 
Functions F1-F7 in Table (8.1) are unimodal functions. Unimodal functions are those functions 
which have only single local minima and these functions are suitable for testing the 
convergence rate and exploitation of algorithms. 
Minimization results of unimodal benchmark functions are given in Table (8.4) (due to 

accuracy of Matlab software, the values below 1610 are assumed to be 0). 

F8
( x

1 , 
x 2 )

F1
0(

 x 1 , 
x 2 )

F1
2(

 x
1 , 

x 2 )

F1
4(

 x
1 , 

x 2 )

F1
6(

 x
1 , 

x 2 )

F1
8(

 x
1 , 
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As Table (8.4) shows, the KA algorithm outperforms the other algorithms on 6 out of 7 
unimodal test functions. The results are followed by the CAB, GSA, PSO, FA and GA algorithms. 
Only in the case of function F6 the CAB algorithm provides the better mean value over 30 
runs, however, in this case, the standard deviation (i.e. SD) of the CAB algorithm is much 
higher than the SD value in the KA method. F6 poses a difficulty for the KA algorithm, since 
the flatness of the function does not give the algorithm any information to direct the search 
process towards the minima. Furthermore, the KA algorithm does provide very competitive 
results compared to the CAB on F5 and F7. The benchmark F7 is a noisy function, which 
contains a random term. The best results are those of KA. As Table (8.4) shows all algorithms 
are able to optimize F1 with a more or less acceptable error. Unlike the other algorithms, KA 
and GSA are able to reach the global optimum without any error. Although none of the six 
tested algorithms could optimize F5 which is a non-separable function the KA was able to 
provide a better result. Note that in general, inseparable functions are relatively difficult to 
solve, when compared with their separable counterpart, where each variable is independent 
of the other variables. If all the variables are independent, then a sequence of n independent 
optimization processes can be performed and then each design variable or parameter can be 
optimized independently (Salomon, 1996). F3 is also a non-separable function, for which the 
CAB algorithm comes close to the global optimum (which is equal to zero) with an error of 
about 10-9, while the best result obtained by the KA algorithms without any error. Some 
algorithms such as GSA and GA are not able to find good solutions for this benchmark. 
Moreover, to significantly compare the algorithms, we conducted a pairwise comparison to 
detect significant performance between all the algorithms with the non-parametric Wilcoxon 
rank test (Wilcoxon, 1945), (Garc´ıa, et al., 2009). The analysis is performed considering a 5% 
significance level over the mean value data. Table (8.5) reports the p-values produced by 
Wilcoxon’s test for the pairwise comparison of the five groups. Such groups are formed by KA 
versus GA, KA versus PSO, KA versus FA, KA versus GSA, and CAB versus CAB. As a null 
hypothesis, it is assumed that there is no significant difference between mean values of the 
two algorithms. The alternative hypothesis considers a significant difference between the 
mean values of both approaches. The most of p-values reported in Table (8.5) are less than 
0.05 (5% significance level), which is a strong evidence against the null hypothesis, indicating 
that the KA results are statistically significant and that it has not occurred by coincidence i.e., 
due to the normal noise contained in the process.  
In total, the results of Table (8.4) show that the KA algorithm is able to provide very 
competitive results on the unimodal benchmarks. The p-values in Table (8.5) also prove that 
the superiority is significant in the majority of the cases. This testifies that the proposed 
algorithm has a high exploitation ability, which is due to the integrated adaptive growth rate 
parameter that assists the KA optimization method to provide very good exploitation. High 
exploitation assists the KA algorithm to rapidly converge towards the optimum and exploit it 
accurately as can also be inferred from Figures (8.10)- (8.16). 
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                        KA                                                       GA                                                   PSO 

      Mean                       SD                    Mean                        SD                     Mean                 SD 

F1 0 0 0.8078 0.4393 0.000136 0.000202 

F2 0 0 0.269483 0.23788 0.042144 0.045421 

F3 0 0 0.13902 0.121161 0 0.317039 

F4 0 0 1.59375 1.21348 1.086481 0.862029 

F5 6.2295 0.0813 369.7545 342.8893 96.71832 60.11559 

F6 3.6042e-05 9.8070e-06 6.984222 7.010388 0.167918 0.868638 

F7 9.4939e-05 2.9781e-05 0.047174 0.043587 0.010073 0.003263 

 

Table (8.4): Results of unimodal test functions 

KA  versus GA PSO FA GSA CAB 

F1 8.0065e-09 5.4955e-05 8.0065e-09 N/A 3.9926e-06 

F2 2.1025e-07 5.4987e-04 8.0065e-09 5.4987e-04 3.9926e-06 

F3 3.9926e-06 0.4643 2.1025e-07 8.0065e-09 0.2534 

F4 8.0065e-09 8.0065e-09 8.0065e-09 8.0065e-09 0.2534 

F5 1.6098e-04 6.7956e-08 6.7956e-08 0.0012 1.2009e-06 

F6 3.5557e-08 2.4844e-04 6.7956e-08 6.7956e-08 0.2853 

F7 1.5997e-05 6.7956e-08 8.4848e-09 6.7956e-08 6.7956e-08 

Table (8.5): P-values produced by Wilcoxon’s test comparing KA versus GA, PSO, FA, GSA and 
CAB over all runs for unimodal test functions 

                         FA                        GSA                       CAB 

      Mean                 SD        Mean                     SD       Mean                  SD 

F1 0.039615 0.01449 0 0 8.2e-14 5.9e-14 

F2 0.050346 0.012348 0.055655 0.194074 1.43e-9 9.9e-10 

F3 0.049273 0.019409 50.9289 20.6008 3.51e-12 7.4e-11 

F4 0.145513 0.031171 1.8027e-09 2.5326e-10 4.96e-10 2.93e-06 

F5 21.75892 14.47251 67.54309 62.22534 25.16 7.1944 

F6 0.05873 0.014477 0.089441 0.04339 1.03e-12 1 

F7 0.000853 0.000504 0.018 0.0055 0.089441 0.0012 
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Figure (8.10): Benchmark function F1-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 

 

  
Figure (8.11): Benchmark function F2-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.12): Benchmark function F3-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 

  

  
Figure (8.13): Benchmark function F4-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.14): Benchmark function F5-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 

  

  
Figure (8.15): Benchmark function F6-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.16): Benchmark function F7-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

 

8.3.1.2. Multimodal Test Functions 
Functions F8-F23 given in Table (8.2), (8.3) are multimodal functions. Multimodal functions 
are those functions which have more than one local optimum. These functions are used to 
test the ability of an algorithm to escape from any local minimum. If the exploration process 
of an algorithm is poorly designed, then it cannot search the function landscape effectively. 
This, in turn, leads to an algorithm getting stuck at a local minimum. Multimodal functions 
with many local minima are among the most difficult class of problems for optimization 
algorithms. The results reported in Table (8.6), (8.7) show that KA algorithm has a very good 
exploration capability, since it is the most efficient or the second-best algorithm in the 
majority of test problems. This is due to integrated mechanisms of exploration in the proposed 
algorithm that leads this algorithm towards the global optimum. 
F9 is one of the multimodal functions that is difficult to optimize. Thus, only the KA algorithm 
was able to reach the global optimum. The only function that the KA algorithm cannot 
optimize is F8, which is a complex multimodal function with many local minima and very 
difficult to optimize. However, as the results show, the KA optimizer outperformed the other 
algorithms in the optimization of this benchmark function. The results of 30 runs with KA for 
the multimodal functions are often better than the results found by concurrent algorithms, 
with the exception of PSO and CAB which show a performance almost equal to that of the 
F16-F20 KA results. In benchmark functions F10 and F14 the area that contains the global 
minima are very small, when compared to the whole search space. Optimizing this kind of 
functions is really challenging. In addition, KA is the only one who can optimize F9-F11 and the 
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results found by the KA algorithm for F12, F13, F15, F20, F23 are the best. Only KA and CAB 
with theirs two variants reached the solutions very close to the global minimum of the 
function F21-F23. For the benchmark F15 the global minimum is located very close to the local 
minima. This function is notoriously difficult. Furthermore, in optimization, a problem that 
algorithms may suffer is the scaling problem with many orders of magnitude differences 
between the domain and the function hyper-surface (Junior, et al., 2004), it can be seen in 
benchmark F18. Only KA could optimize it without any error. The results obtained with KA in 
Tables (8.6), (8.7) evidence that even the worst outcomes of KA outperformed those of the 
other algorithms in the majority of the test. The p-values reported in Tables (8.8) and (8.9) 
also show that the KA algorithm has significantly better results. Therefore, it can be concluded 
that the KA algorithm is efficient algorithm with a high level of exploration, which assists it to 
explore the promising regions of the search space and to avoid all of the local optima and 
approach the global optimum. 
 
 
 KA GA PSO 

Mean               SD Mean                SD Mean                SD 

F8 -3004.4716 400.9120 -2091.64 2.47235 -1367.01 146.4089 

F9 0 0 0.659271 0.815751 0.278588 0.218991 

F10 0 0 0.956111 0.807701 1.11e-09 2.39e-11 

F11 0 0 0.487809 0.217782 0.009215 0.007724 

F12 1.2623e-06 2.993e-06 0.110769 0.002152 0.006917 0.026301 

F13 5.7287e-06 9.5067e-04 0.129 0.068851 0.006675 0.008907 

 

                    FA GSA                    CAB 

        Mean                SD       Mean                 SD       Mean                 SD 

F8 -1245.59 353.2667 -1108.01 574.7 -1200 50.42824 

F9 0.263458 0.182824 25.96841 7.470068 0.001 8.45e-06 

F10 0.168306 0.050796 0.062087 0.23628 0.0031 0.003096 

F11 0.099815 0.024466 27.70154 5.040343 0.122678 0.049673 

F12 0.126076 0.263201 1.799617 0.95114 5.60e-06 1.58e-8 

F13 0.00213 0.001238 8.899084 7.126241 9.5067e-06 6.09e-07 

Table (8.6): Results of high-dimensional multimodal test functions 
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 KA GA PSO 

Mean               SD Mean                SD Mean                SD 

F14 0.998 3.3e-16 2.111973 2.498594 3.627168 2.560828 

F15 0.00031007 6.2200e-06 0.0005 0.00032 0.000577 0.000222 

F16 -1.0316 0 -1.03 4.9e-07 -1.03163 6.25e-16 

F17 0.39789 0 0.398 1.5e-07 0.397887 0 

F18 3 0 3.02 0.11 3 1.33e-15 

F19 -3.8623 0 -3.86 1.4e-5 -3.86278 2.58e-15 

F20 -3.3219 0.026 -2.98105 0.376653 -3.26634 0.060516 

F21 -10.1489 1.0000e-04 -5.52  1.59 -6.8651 3.019644 

F22 -10.3908 0.0117 -5.53 2.12 -8.45653 3.087094 

F23 -10.5326 0.0094 -6.57 3.14 -9.95291 1.782786 

 

                    FA GSA                    CAB 

        Mean                SD       Mean                 SD       Mean                 SD 

F14 1.22 0.56 5.859838 3.831299 0.999 0.0003 

F15 0.00058 0.000324 0.003673 0.001647 2.2e-3 8.8000e-04 

F16 -1.03163 4.2e-07 −1.03163 4.88e-16 -1.0316 3.1e-13 

F17 0.397914 2.7e-05 0.397887 0 0.397887 9.9e-09 

F18 3 4.22e-15 3 4.17e-15 3 2e-15 

F19 -3.85616 0.002706 -3.86278 2.29e-15 -3.86278 0.0127 

F20 -3.27 0.059 -3.31778 0.023081 -3.2369 0.0471 

F21 -6.04918 3.629551 -5.95512 3.737079 -10.1532 2.5e-06 

F22 -8.18178 3.829202 -9.68447 2.014088 -10.4028 3.9e-07 

F23 -9.34238 2.414737 -10.5364 2.6e-15 -10.5323 7e-4 

Table (8.7): Results of fixed-dimensional multimodal test functions 
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KA  versus GA PSO FA GSA CAB 

F8 6.7956e-08 6.7956e-08 6.7956e-08 9.1728e-08 6.7956e-08 

F9 5.4987e-04 5.4955e-05 5.4955e-05 8.0065e-09 8.0065e-09 

F10 5.4987e-04 8.0065e-09 8.0065e-09 0.0215 5.4955e-05 

F11 8.0065e-09 5.4955e-05 8.0065e-09 8.0065e-09 8.0065e-09 

F12 6.7956e-08 0.5979 0.0315 6.7956e-08 1.2009e-06 

F13 6.7956e-08 1.0373e-04 1.4309e-07 1.5997e-05 0.1075 

Table (8.8): P-values produced by Wilcoxon’s test comparing KA versus GA, PSO, FA, GSA and 
CAB over all runs for high-dimensional multimodal test functions 

 
 
 

KA  versus GA PSO FA GSA CAB 

F14 0.0388 6.6725e-05 0.0058 2.1882e-15 6.4918e-18 

F15 5.8913e-04 3.7961e-13 3.2874e-08 5.5727e-10 0.3790 

F16 1.2118e-12 1.1275e-12 1.2118e-12 1.1092e-12 0.6411 

F17 1.2118e-12 1.6853e-14 2.2081e-06 1.6853e-14 1.2118e-12 

F18 0.6411 0.6293 0.0960 0.6409 0.3393 

F19 1.2118e-12 1.1661e-12 1.2118e-12 1.1882e-12 0.2706 

F20 2.6816e-07 0.1568 0.9246 0.3794 0.0771 

F21 3.0199e-11 1.1077e-06 1.1077e-06 9.5139e-06 3.0199e-11 

F22   3.0199e-11 9.5139e-06 1.1077e-06 0.0315 1.5997e-05 

F23 1.1077e-06 9.5139e-06 0.0271 0.0263 0.1537 

Table (8.9): P-values produced by Wilcoxon’s test comparing KA versus GA, PSO, FA, GSA and 
CAB over all runs for fixed-dimensional multimodal test functions 
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Figure (8.17): Benchmark function F8-The convergence rate, average fitness of all 
individuals, trajectory and the fitness history. 

 

 

  
Figure (8.18): Benchmark function F9-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.19): Benchmark function F10-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.20): Benchmark function F11-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 

O
bj

ec
tiv

e 
Va

lu
es

Av
er

ag
e 

fit
ne

ss
 o

f t
he

 in
di

vid
ua

ls

Po
si

tio
ns

Fi
tn

es
s 

va
lu

es
 o

f t
he

 in
di

vid
ua

ls

O
bj

ec
tiv

e 
Va

lu
es

A
ve

ra
ge

 fi
tn

es
s 

of
 th

e 
in

di
vi

du
al

s

Po
si

tio
ns

Fi
tn

es
s 

va
lu

es
 o

f t
he

 in
di

vid
ua

ls



196 

 

  

  
Figure (8.21): Benchmark function F12-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.22): Benchmark function F13-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.23): Benchmark function F14-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.24): Benchmark function F15-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.25): Benchmark function F16-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.26): Benchmark function F17-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.27): Benchmark function F18-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.28): Benchmark function F19-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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Figure (8.29): Benchmark function F20-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.30): Benchmark function F21-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 

O
bj

ec
tiv

e 
Va

lu
es

Av
er

ag
e 

fit
ne

ss
 o

f t
he

 in
di

vi
du

al
s

Po
si

tio
ns

Fi
tn

es
s 

va
lu

es
 o

f t
he

 in
di

vid
ua

ls

O
bj

ec
tiv

e 
Va

lu
es

Av
er

ag
e 

fit
ne

ss
 o

f t
he

 in
di

vid
ua

ls

P
os

iti
on

s

Fi
tn

es
s 

va
lu

es
 o

f t
he

 in
di

vi
du

al
s



201 

 

  

  
Figure (8.31): Benchmark function F22-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
 

  

  
Figure (8.32): Benchmark function F23-The convergence rate, average fitness of all 

individuals, trajectory and the fitness history. 
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8.3.2. Analysis of KA Optimizer 
This subsection aims for identifying and confirming the convergence and potential behavior 
of the KA algorithm when solving real problems. Although the results discussed in the previous 
section prove the high performance of the KA algorithm, there are several quantitative 
metrics, which can be employed to confidently confirm the performance of this algorithm in 
solving real problems such as actuator selection. In other words, the change of populations of 
the species and the obtained fitness values during optimization should be monitored to 
observe: 

 how the average fitness of search agents changes from the first to the last iteration 
 how the individuals converge towards the global optima in the search space 
 how the algorithm improves the initial random solutions, and their fitness values over 

the iterations 
 if there are abrupt changes in the populations of species in the initial stages of 

optimization to explore the search space and gradual changes in the final steps of 
iteration to exploit the search space 

The second plots of the first column in Figures (8.10)-(8.32) show the fluctuations of the 
variables in the search agents. It can be seen that the populations of the species face abrupt 
fluctuations in the early steps of optimization. However, the sudden changes are decreased 
gradually over the iterations. This confirms that the search candidates first explore the search 
space to find the promising regions and then converge around the best solution obtained in 
the exploration phase. There is a question here as how to make sure that all of the search 
agents are improved during optimization despite the rapid and steady changes in the 
aforementioned plots. In order to confirm the improvement of all solutions, the average 
fitness of all search agents during optimization is illustrated in the first plots of the second 
column in Figures (8.10)-(8.32). It can be seen that the average fitness of all individuals tends 
to be decreased over the course of iterations. The interesting pattern that can be observed in 
this plots is the high fluctuation of the average fitness in the exploration phase and low 
changes in the average fitness in the last iterations, when the exploitation phase begins. 
Deterioration of the fitness of some of the search agents is inevitable in the exploration. 
However, the general pattern in the average plots illustrates that the fitness of candidates has 
a descending behavior over the iterations. This proves that the proposed KA algorithm is able 
to eventually improve the fitness of initial random solutions for a given optimization problem. 
In the previous section, it was claimed that the search agents of the KA algorithm tend explore 
the promising regions of the search space and exploit the best one eventually. However, the 
convergence behavior of the algorithm was not observed and verified. Although this can be 
inferred indirectly from the trajectory and average fitness, the convergence curve of KA is 
depicted in the first plots of Figures (8.10)-(8.32). These plots illustrate the best solutions 
obtained so far by KA during optimization. The descending trend is quite evident in the 
convergence curve of KA on all of the test functions investigated. This strongly evidences the 
ability of the proposed algorithm in obtaining a better approximation of the global optimum 
over the course of iterations. All the results and discussions of this section prove that the KA 
algorithm is suitable for solving real-world optimization problems. This is due to the integrated 
adaptive parameter selection scheme in the algorithm and employed mechanism of updating 
the best feasible solutions obtained during the change of populations of individuals, in which 
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the species are guided towards promising feasible regions of the search space. It leads to 
boosting the exploration of the feasible areas of a search space 
and therefore, KA can solve the real-world challenging optimization problems efficiently with 
low computational cost. 
 

8.3.3. Optimization Problems Using the KA Algorithm   

As the proposed algorithm considers optimization problem as black-boxes, it is readily 
incorporable to problems in different fields subject to proper problem formulation. In this 
section, first, some well-studied engineering design problems that have been solved by 
various optimization methods in the literature are used to examine the efficiency of KA 
algorithm. Then we used the KA algorithm to solve the problem of optimal actuator placement 
in some real-world examples. 

Example (8.1): (Kaveh & Talatahari, 2010) Consider the well-known optimization problem of 
tension/compression spring design as depicted in Figure (8.34). The objective of this 
optimization problem is to minimize the weight of tension/compression spring. The 
optimization problem can be formulated as: 
 

2
3 1 2

3
2 3

1 4
1

2
2 1 2

2 3 4 2
2 1 1 1

1
3 2

2 3

1 2
4

1 2 3

min ( ) ( 2)

( ) 1 0
71785
4 1( ) 0

12566( ) 5108
140.45( ) 1 0

( ) 1 0
1.5

0.05 2, 0.25 1.3, 2 15

J x x x x

x xh x
x

x x xh x
x x x x

xh x
x x

x xh x

x x x

  

   



   


   

 

  


     

 

 
Here, the decision variables are the mean coil diameter 1( )D x , the wire diameter

2( )d x , and the number active coils 3( )N x . The results of KA optimization method are 

illustrated in Table (8.10) and compared to some existing results of the other optimization 
methods. 
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Figure (8.33): Convergence curve of Example (8.1) 

 

Figure (8.34): A tension/compression spring 

 

 
1x  2x  3x  ( )optJ x  

KA Optimization 0.0515778      0.354025        11.45                0.012667 
Belegundu 

(Belegundu, 
1982) 

0.050000 0.315900 14.250000 0.0128334 

Arora (Arora, 
2016) 

0.053396 0.399180 9.1854000 0.0127303 

GA (Coello, 
2000) 

0.051480 0.351661 11.632201 0.0127048 

GA (Coello & 
Montes, 2002) 

0.051989 0.363965 10.890522 0.0126810 

PSO (He & 
Wang, 2007) 

0.051728  0.357644 11.244543  0.0126747 

ES (Montes & 
Coello, 2008) 

0.051643  0.355360  11.397926  0.012698 

Table (8.10): The numerical results of Example (8.1) 

 

Example (8.2): Consider a pressure vessel design problem (Sandgren, 1988), (Kaveh, 2016), 
where the objective is to minimize the cost of fabricating a pressure vessel which is clapped 
at both ends by hemispherical heads as depicted in Figure (8.35). The design variables are the 
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thickness of the shell 1( )sT x , the thickness of the head 2( )hT x , the inner radius 3( )R x

and the length of cylindrical section of the vessel 4( )L x . The optimization problem can be 

defined as: 
 

2 2 2
1 3 4 2 3 1 1 3

1 1 3

2 2 3

2 3
3 3 4 3

4 4

1 2 3 4

min ( ) 0.622 1.7781 3.1661 19.84
( ) 0.0193 0
( ) 0.0095 0

4( ) 1296000 0
3

( ) 240 0
0 99, 0 99, 10 200, 10 200

J x x x x x x x x x
h x x x
h x x x

h x x x x

h x x
x x x x

 

    


   
    



    


  
        

 

 

 

Figure (8.35): A pressure vessel, and its design variables 

The results of KA optimization method are illustrated in Table (8.11) and compared to some 
existing results of the other optimization methods. 

 

Figure (8.36): Convergence curve of KA in Example (8.2) 
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 sT  hT  R  L  optJ  

KA 
Optimization 

0.804799     
 

0.4026198      41.68858      181.8004                     5949.0906 

PSO  (He & 
Wang, 2007) 

0.8125  0.4375  42.091266  176.746500  6061.0777 

GA (Coello, 
2000) 

0.8125  0.4345  40.323900  200.000000  6288.7445 

GA (Coello & 
Montes, 

2002) 

0.8125  0.4375  42.097398  176.654050  6059.9463 

GA (Deb, 
1997) 

0.9375  0.5000  48.329000  112.679000  6410.3811 

ES (Montes & 
Coello, 2008) 

0.8125  0.4375  42.098087  176.640518  6059.7456 

DE (Li, et al., 
2007) 

0.8125  0.4375  42.098411  176.637690  6059.7340 

ACO (Kaveh 
& Talatahari, 

2010) 

0.8125  0.4375  42.103624  176.572656  6059.0888 

Lagrangian 
Multiplier 
(Kannan & 

Kramer, 
1994) 

1.1250  0.6250  58.291000  43.6900000  7198.0428 

Branch-
bound 

(Sandgren, 
1988) 

1.1250  0.6250  47.700000  117.701000  8129.1036 

Table (8.11):  The numerical results of Example (8.2) 

 

In the next example, we apply KA optimization method to solve the problem of designing a 
robust PID controller. The results obtained are compared to those of ALPSO (Bellman, 2003). 
The problem is mathematically formulated as follows: 

 

   

   

( )

1
0

2
0

min ( ) arg max Re( ( )),

( ) sup ( ) ( , ) 1 0

. ( ) sup ( ) ( , ) 1 0

, 1, , 4

i
ix

S s j s j

T s j s j

i i i

J x x i

h x W s S s x

s t h x W s T s x

lb x ub i



 


 




 


 


 

   



  


  




                             (8.23) 

where ( )i x denotes the ith pole of the closed-loop system. ( )SW s and ( )TW s are weighting 

matrices. 
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 1 2 3 4
Tx x x x x is the vector of variables, ,i ilb ub are the lower and upper bounds 

respectively. s is the Laplace variable,   is the frequency (rad/s). ( , )S s x denotes the 

sensitivity function defined as: 
    ,    1 / 1  ,  S s x L s x  . 

( , )T s x is the closed-loop system, i.e.: 

      , ,  / 1  ,  T s x L s x L s x   

and  ,  L s x is the open-loop transfer function: 

     ,  ,L s x P s K s x  

where  P s is the transfer function of the system and  ,K s x the transfer function of the 

PID controller: 

 
3

1 2

3 4

1
( )

101 0
0

, 0 1 1
1

x
x x

x x
ssK

s
s x  



 
    

                                  (8.24) 

This optimization problem has been solved for a magnetic levitation system in the next 
example. For more details see (Bellman, 2003) and references therein. 
 
Example (8.3): The transfer function of a magnetic levitation system is defined as: 

7.147( )
( 22.55)( 20.9)( 13.99)

P s
s s s


  

 

The objective is to design the robust PID controller: 

 
3

1 2

3 4

1
( )

101 0
0

, 0 1 1
1

x
x x

x x
ssK

s
s x  



 
    

 

Let us define the weighting matrices in (8.23) as: 

4 2
5 43.867( 0.066)( 88)( 31.4)( ) , ( )
0.1 ( 10 )S T

s s sW s W s
s s

  
 

 
 

Consider the search space as follows: 

1 2 3 42 4 , 1 1 , 1 1 , 1 3x x x x           

The results are shown in Table (8.12), from which we can observe that the better value of the 
objective function obtained with ALPSO is due to the violation of the constraint 1 ( )h x ; this is 

not the case at all in our solution for which all constraints are satisfied. Therefore, the best 
solution found by KA method is significantly better than the solution found by ALPSO. Figure 
(8.37) shows the convergence curve of the KA optimization for this example. 
 

 1x  2x  3x  4x  1 ( )h x  2 ( )h x  optJ  

KA 
optimization 

3.2614 -0.8085 -0.7433 2.3026 -9.1778e-04 -0.0045 -
1.7124 

ALPSO 3.2548 -0.8424 -0.7501 2.3137 6.1 e-03 -4 e-04 -
1.7197 

Table (8.12): The numerical results of Example (8.3) 
 



208 

 

 
Figure (8.37): Convergence curve of KA in Example (8.3)  

 
 

Example (8.4):  Consider the control of the mass-damper-spring system shown in the figure 
below: 
 

 
Figure (8.38): Mass-Spring-Damper system 

 
By applying the fundamental principle of dynamics, we get the following equation of motion 
mx cx kx u    where x is the position of the mass from its equilibrium position, and u is 
the control 
variable which represents the force applied to the mass. The state space representation of 
the system is then given by: 

 

0 1 0
1

1 0

x x u
k m c m m

y x

    
         

 


 

where 1x is the position and 2x the velocity of the mass. The parameters ,m c and k are not 

known exactly, but it is assumed that their values are within the following known intervals:

 min max,m m m ,  min max,c c c and  min max,k k k . These parameters can be also written 

as: 
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max min max min

max min max min

max min max min

, 1
2 2

, 1
2 2

, 1
2 2

o

o

o

m m

m

c c

c

k k

k

m m m mm

c c c cc

k k k kk

 

 

 


  

  


  

  


  

  









 

The block diagram of the system is shown below: 

 
Figure (8.39): Block diagram of the mass-spring-damper system with uncertainty 

 
 

Then, the corresponding uncertain system can be described as follows: 

1 1

2 2

x x
x G x
y u

   
      
      


  

 
0 0

( , ) : 0 0 , 1
0 0

m

u c

k

G G F sys







  
            
    

  

where the matrices sys and are: 

1 1

2 2

0

0 1 0 0 0 0
1
1

0 0 0 0 0
0 0 0 0 0

1 0 0 0 0 0

o o o o d o d o o d o o o

m o o o o d o d o o d o o o m

c c

k o k

x x
x k m c m m m c c m k k m m x
q k m c m m m c c m k k m m v
q c v
q k v
y u

     
              
         

     
     
     
     
     




 

where: 
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 

m m

c c

k k

q v

q v
q v
q v

   
       
      

 

Hence, the extended or augmented system augG , which is a perfectly known LTI system is 

defined as: 

 
Figure (8.40): The augmented system augG  

v w u

q qv qw qu
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C D D D
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A
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B B B
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k m c m
C c C C

k

m
D D D D D D D

 
    

    
             

  
     
  
 
        
  

 

Therefore, the multi-objective robust structured control design problem can be stated as 
follows. For the uncertain system G , defined above, find a robust PID controller K , which 
minimizes the decay rate while ensuring the robust stability of the closed-loop system. The 
optimization problem in KA can be formulated based on the minimization of the maximum 
decay rate as: 
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 
  

( ) ( )

1

( )

1

( ) (1) (2) ( )
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, max Re ( ( , ))

max , 0

, , ,
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











 

 



        
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or based on the average decay rate minimization as follows: 
 

 
  

( ) ( )

1

1 ( )

1

( ) (1) (2) ( )

min

, max Re ( ( , ))

, 0

, , ,
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i

i

i
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K K
K K K









 



 







        

     


   



        









   

 

 

clA is the state matrix of the nominal closed-loop system and j , 1, ,i n  is the ith eigenvalue 

of clA . GK is the set of structured controllers that stabilize the uncertain system G . denotes 

the number of samples, which can be determined using the inequality below (Toscano, 2013): 
ln(1 ) ln(1 )e     

where    0,1 , 0,1e   are two given numbers, which state with a confidence  , the 

obtained solution is a probable global minimum of the objective function to level e . ( )iG is the 

sample system with the uncertainty ( )i .  Table (8.13) shows the results of the worst-case 
decay rate optimization and the results of the average decay rate optimization are also given 
in Table (8.14). The obtained results evidence that KA algorithm outperforms the other 
methods. 
 
 

 PK   IK  DK    
optJ  

KA 
Optimization 

150 58.12941 131.5966 0.0007594358 -0.71043 

HKA 150       59.14118      132.7368   0.0001095862 -0.62616 
GA 148.1950 48.5724 148.6651 0.0064 -0.58759 

Table (8.13): Numerical results for worst-case optimization case of Example (8.4) 
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 PK   IK  DK    
optJ  

KA 
Optimization 

150        58.6768       132.0986   0.0001009429 -0.7221 

HKA 150.0 58.7 130.5 0.01 -0.722 
GA 150 58.23111 130.8706 0.009314293 -0.70898 

Table (8.14): Numerical results for average performance optimization case of Example (8.4) 
 

 
The next example discusses the problem of optimal distribution of actuators in a three-story 
building. Let us assume the actuators are the viscous dampers. Viscous dampers greatly 
reduce the earthquake excitation of a structure and permit it to remain linearly elastic during 
a seismic event. They work by adding damping to a structure, which significantly lowers its 
resonant response to an earthquake and reduces stress and deflection because the force from 
the damping is completely out of phase with stresses. This provides a significant decrease in 
earthquake excitation (Lee, 2016). By installing as many dampers as necessary, damping can 
be selectively inserted into the structure at optimal positions. Several dangerous modes are 
effectively reduced, and resonance effects are eliminated. Therefore, damper locations can 
be regarded as the problem of maximizing the efficiency taking into account the energy 
dissipated in dampers as well as minimizing the number of devices, which has great influence 
on costs in case of retrofitting. (Wu & Ou, 1997), (Takewaki, et al., 1999). Clearly, minimum 
vibration magnitudes are criteria for the effectiveness (Takewaki, 2000).  

Example (8.5): Consider the three-story building presented in (Gluck, et al., 1996),  
(Takewaki, 1997): 

 
( ) ( ) ( ) 1 ( )gMx t Cx t Kx t M x u t         

3

200.4 0 0 238.932     -119.466          0
0 200.4 0 ( ) , 10 -119.466     238.932    -119.466 ( )
0 0 178     0           -119.466      119.466

264.99    -78.09    -16.08
-78.09     246.8

M Kg K N m

C

   
        
      

 9   -92.15
-16.08     -92.15    162.02

 
 
 
  
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Figure (8.41): Three-story building model with supplemental passive viscous dampers 

 

where x is the n-dimensional displacement vector relative to the ground. , ,M C K are the 

mass, damping and stiffness matrices respectively.  is the n m distribution matrix for the 

damper force ( )u t and 1 is an n-dimensional distribution vector for the ground acceleration gx , 

with all elements being unity.m denotes the number of actuators. 
An augmented system state equation can be formulated as: 
 

z Az Bu W    

1 1 1

0 0
,

I
A B

M K M C M  

   
         

 

Here, 
TT Tz x x    is the state vector.  0 1 gW x   denotes the earthquake induced 

disturbance. 
The response of the building structure, under the effect of random earthquake excitation, 
largely depends on the system matrix A and the control effort u . In fact, installation of 
dampers will affect the control gain matrix B . A zero entry of  is related to the absence of 
a damper installed at the corresponding story. 
As (Hac & Liu, 1993) states the controllability Gramian (0, )c fW t of the above system tends 

to a diagonal form when the terminal time, ft , is large enough. Therefore, we have: 

 

,

2
2

1 1

( ) ( ) ( )

1 1, ,
4 4

r r
u

c ii c c iii N N i N N

m m
ij

ij
j ji i i i

W W W

b
b i N

   

   

 

 

    
 

and 

, 2 , 2

2
2

1 1

( ) ( ) ( )

( ) 1 ( ) 1, ,
4 4

r r
r

c i N i N c c iii N N i N N

rm m
ij r r

ijr r r r
j ji i i i

W W W

b
b i N

   

     

 

 

    
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where ( )u
c iiW , ( )r

c iiW equal to the energy transmitted from the actuators to the structure for 

the ith used and residual eigenmode. N denotes the number of the eigenmodes, which are 

considered, and rN is the number of residual eigenmodes. 
Hence, according to the previous chapters one approach to determine the actuator placement 
is to minimize the control energy required by maximizing a measure of the controllability 
Gramian cW .  

However, one must consider that if one eigenvalue of ( )r
c iiW corresponding to a residual 

mode is high, the induced spill-over effect can be important.  As our objective is to control the 
modes considered, without exciting residual modes, by transmitting a maximum control force 
with a minimum energy, and to achieve optimum suppression of quake-induced vibrations, 
the control problem is cast as a multi-objective optimization process. To manage this in our 
algorithm, we defined the objective function as a single fitness by the use of importance 
weights. Thus, the optimization problem can be defined as follows (Arbel, 1981), (Hac & Liu, 
1993), (Collet, 2001): 
 

   1 2 3 01, ,1, ,
min max min f

r

tr u T
c cii iib i Ni N

J W W z z dt  


   
 

Here , 1, 2,3i i  is a weighting constant, z is the state vector of displacements and velocities 

and 
0

ft Tz z dt  reflects upon the desire to minimize the structural response.  This optimization 

problem has m decision variables (the locations of the actuators) and rN N optimization 
functions. This criterion ensures global controllability of the system for the N first eigenmodes 

and try to minimize the global excitation of the rN residual modes. 
In this example, we considered El Centro earthquake, on soil, with a peak ground acceleration 
of 0.30g, and the North- East (21º) component recorded during the 1952 Kern County 
earthquake, Taft, on rock, with a peak ground acceleration of 0.16g.   
According to (Bruant & Proslier, 2005), as the components of cW have not the same range then 

the above optimization problem becomes, by using the homogeneous components: 
 

 
 

 
 1 2 3 01, ,1, ,

min max min
max max

f

r

r u
tc c Tii ii

r ub i Ni N
c cii iilocations locations

W W
J z z dt

W W
  


   

 

 
Hence, the objective function in the KA algorithm can be formulated as: 

2 2

1 1
1 2 3 01, ,1, , 2 2

1 1

( )
min max min

max ( ) max

f

r

m m
r
ij ij

tj j T
m mi Ni Nb r

ij ijlocations locationsj j

b b
J z z dt

b b
   



 

  
 


 



 

or (regarding the type of the selected seismic, Elcentro): 
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2 2

1 1
1 2 31, ,1, , 2 2 1

1 1

( )
min max min max( )

max ( ) max
r

m m
r
ij ij number of floors

j j
km mb i N ti N r k

ij ijlocations locationsj j

b b
J z

b b
   

 

 

  
 


 



 
 

In this example, for simplicity, we consider that we are given a fixed number of the actuators. 
We are interested in finding the optimal distribution for the available actuators. The results 
are shown in Figures (8.43)-(8.52). Figure (8.42) demonstrates the fluctuation in the 
convergence curve of the optimization due to the multi-objective intrinsic of the problem.   
The results of this particular example show that when only one damper is placed this should 
be located at the first story in order to obtain the best overall performance. When more than 
one damper is available, the best damper placement is one damper per story; if the number 
of dampers is less than the number of stories, one damper per story beginning at the lowest story 
is the best choice. 
 
 

 
Figure (8.42): The best objective values of Example (8.5) using KA optimization 
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Figure (8.43): Top-floor displacement response of the 3-storey building 

 
 
 

 
Figure (8.44): Maximum displacement of the floors (One damper) 

 
 
 
 

Am
pl

itu
de

D
is

pl
ac

em
en

t



217 

 

  

 
Figure (8.45): Inter-story displacement response of the floors for one damper in different 

locations 

  

 
Figure (8.46): Acceleration of the floors using two dampers 
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Figure (8.47): Floors’ maximum displacement (Two dampers) 

 
 
 

 

 
Figure (8.48): Inter-story displacement response of the floors for two dampers in different 

locations 
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Figure (8.49): Acceleration of the floors using two dampers 

 
 
 

 
Figure (8.50): Floors’ maximum displacement (Three dampers) 
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Figure (8.51): Inter-story displacement response of the floors for three dampers in different 

locations 

                
 

 
Figure (8.52): Acceleration of the floors using three dampers 
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 
 
 
In the next example, we consider the actuator placement problem for uncertain linear 
systems, where the aim is to minimize the control input energy to drive the system from an 

arbitrary initial condition on the unit sphere to the origin in the worst case, i.e. max
minmin

B
E


. 

max
minE depicts the maximum value of the minimum input energy and is the set of all possible 

input matrices. According to the previous chapters, the above optimization problem can be 
viewed as the optimization problem of minimizing the inverse of the smallest eigenvalue of 
the associated controllability Gramian via the placement of an actuator. 
In spite of its simple and natural formulation, this problem is difficult to solve. 
 
Example (8.6):  (Sojoudi, et al., 2009) , (Sojoudi, et al., 2009 (b)) Consider the uncertain 
fourth-order LTI system below: 

 1 2 1

0.65  0.6     1      1.5 0.75      1.4         0        2.3 
0.05 0.95 1.85 0.4 1.35  1.75  0.65  1.1 

,  
0.7      1.6   3.05     0.2 0.8       2.
1.5   0.1   2.85 0.35

A   

   
       


 
  

 
 
 

 
 



 

2

1 2 1

2   3.25  2.5 
0.5        1.7      0.15     0.45

1.2  0.3    0.85    1.55 0.45 
0.35  1.05   1.3   1.8

,  
0.25      1.2    2.5   0.8

0.3     1.45     1    0.3

B



  

 


  
  




 
 
 
 
 
 

 
 
 
 
 




 

2

     1.7      0.85     0.75
1.7   0.7     0.65      0.7

0.55        1    0.75    1.7
0.2     0.25     1.15     0.75



 
 
 

 



 
 
 

 

 
where 1 and 2 are the uncertain parameters of the system, which belong to the polytope: 

  1 2 1 2 1 2,  1,  | ,  0S           

Regard 1 2( , )A   is robustly Hurwitz over the region S . Assume that four actuators are 

available, the aim is to find the minimum set of actuators, which play a vital role in 
controlling the system. To this end, for the given set of actuator  1,  2,  3,  4actuators  , we 

consider four cases as follows: 
 {1, 2, 3, 4} 
 {1, 2, 3}, 
 {2, 3, 4}, 
 {1, 4} 

The optimization problem can be formulated using SDP as: 

1 2,

1 2

1 2 1 2

min

( ) 0
0

,

1,  ,  0

c

x

W xI
x

 

 

   



  



  




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Here, 1 2,( )cW   denotes the controllability Gramian, which is dependent to the values of 

the parameters 1 2( , ) S   . 
 
The optimal results obtained by applying KA algorithm are given in Table (8.15).  
 

 1 2( , )   obj  

{1, 2, 3, 4} 0.23665  ,  0.25416 0.25311 
{1, 2, 3} 0.22288  ,   0.15434 0.19853 
{2, 3, 4} 0.23629  ,    0.4307 0.074542 

{1, 4} 0.82059  ,     0.172 0.0074269 
Table (8.15): Numerical results for Example (8.6) 

 
The results show that the last actuator can be neglected due to its weak contribution to the 
value of the minimum input energy in the worst case. In contrast, the first actuator is not 
neglectable as removing it increases the maximum value of the minimum input energy 
drastically. Moreover, in the case that the second and third actuators are removed 
concurrently, although the system remains robustly controllable by the remaining inputs, the 
required control energy would be huge. 

The resulting input and state of the system for the interval  10,0t  are plotted in Figures 

(8.53)-(8.56), which confirm the results obtained in Table (8.15). One can observe that if the 
complete set of actuators, i.e.  1, 2 ,3, 4actuators  is selected the worst-case optimal input of the 

system has the minimum overshoot occurring at 0t  (about 2 in magnitude) while if both 
actuators 2 and 3 are removed, i.e.  1, 4actuators  , the worst-case optimal input of the system 

has a very large overshoot (about 10 in magnitude). 
 

 
Figure (8.53): The input and state of the system with the actuator set  1, 2 ,3, 4actuators   
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Figure (8.54): The input and state of the system with the actuator set  1, 2 , 3actuators   

 

 
Figure (8.55): The input and state of the system with the actuator set  2 , 3, 4actuators   

 

 
Figure (8.56): The input and state of the system with the actuator set  1, 4actuators   

 
 

 
Example (8.7):  The purpose of this example is to accomplish the pole placement, finding the 
optimal location of actuators in a mechanical system to control the vibration response with 
the minimum control effort.  
Consider the open-loop system shown in figure below: 

in
pu

t

Am
pl

itu
de

in
pu

t

Am
pl

itu
de

in
pu

t

Am
pl

itu
de



224 

 

 

 
Figure (8.57): The open-loop system of Example (8.7) 

 
Define the mass damping and stiffness matrix for this system as: 

1 0 0 0.2 0.2 0 15 10 0
0 2 0 , 0.2 0.2 0 , 10 15 5
0 0 1 0 0 0 0 5 5

M C K
      

               
          

 

We wish to assign the eigenvalues of the system to the set: 

 -1, -3, -0.5 2i, -0.75 5i     

by using optimal actuation with the minimum control effort. Therefore, the optimization 
problem can be defined as: 

min

0,

1

b

cl

F

A I

b

 


    
 

 

where clA denotes the closed-loop system and F is the associated feedback gain. Note that 

the force selection vector could theoretically be made very large to allow the position and 
velocity gain vectors to be very small, with the same control effect. However, physically this 
would not minimize the actuation needed. To consider this, we defined the last constraint

1b  . Using the KA optimization algorithm, we obtain: 

 0.5828  -0.3996  0.7076
[-10.8490   14.0029   -7.4201    2.3196   -2.7915  -11.4613]

T
opt

opt

b
F




 

 

 
Figure (8.58): The convergence curve of Example (8.7) 
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Figure (8.59) shows the change of cost function when the entries of the input matrix b change 
over the interval [-1,1]. The graph of cost function in the neighborhood of the input matrixb
associated with the global optimization is also shown in Figure (8.60). 

 
Figure (8.59): The graph of cost function of Example (8.7) 

 
Figure (8.60): Local minimum of Example (8.7) 

 
The validity of the optimization results is investigated using brute force method. The values of 

1 2,b b are continuously changed between -1 and 1 with a step of 0.01 and 2 2
3 1 2b b b  , in 
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this case, the minimum value of the feedback gain associated with the desired eigenvalues is 
obtained when the input matrix b is: 

   1 2 3 0.5800  -0.4000  0.7096T Tb b b b   

It yields the feedback gain vector as follows: 

 -10.9032   14.0101   -7.3940    2.2987   -2.8320  -11.4136F   

Furthermore, given an initial position and velocity of: 

   0 01 0 0 , 0 1 0T Tx x   

using the optimal inputb and the associated gain vector, the control input necessary over time 
is shown in Figure (8.61). To compare the results, Figure (8.62) demonstrates the control input 
for some other random selected input matrices:  

   
   

1 2

3 4

0.6948 0.3171 0.9502 , 0.0344 0.4387 0.3816

0.7655 0.7952 0.1869 , 0.4898 0.4456 0.6463

T T

T T

b b

b b

 

 
 

 
Figure (8.61): Control force input needed to control the system when using the optimal 

actuation 

 
Figure (8.62): Control force input needed to control the system when using the input vector

, 1, 2,3, 4ib i   
 
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As it is discussed in chapter 3, many system properties are related to the controllability 
Gramian. Moreover, the eigenvalues and their corresponding eigenvectors of the 
controllability Gramian determine the speed and direction of energy dissipation, therefore, it 
is worth investigating the optimal location of the actuators, which use the minimum feedback 
gain, assigning a specific controllability Gramian to the LTI system. This assignability problem 
defines the best possible set of input matrices to steer the LTI system to a target state, under 
energy limitations imposed by a given controllability Gramian. 

 
Example (8.8): Consider the mass-spring-damper system in the previous example. We apply 
the KA optimization to find the optimal actuation, which assigns the below controllability 
Gramian to the system when the control terminal time is very large ft  : 

0.1372    0.1809    0.2113    0.0000   -0.0020    0.0019
0.1809    0.2567    0.3014    0.0020    0.0000    0.0032
0.2113    0.3014    0.3926   -0.0019   -0.0032   -0.0000
0.0000    0.0020   -0.0019  

o
cW 

  0.2489    0.1467    0.1558
-0.0020    0.0000   -0.0032    0.1467    0.2737    0.2292
0.0019    0.0032   -0.0000    0.1558    0.2292    0.4616

 
 
 
 
 
 
 
 
 

 

Let ,cl olA A denote the state matrices of the closed-loop and the open loop system 

respectively. Using the Lyapunov equation, we obtain: 

( ) ( )

o o T T
cl c c cl

o o T T
ol c c ol

A W W A BB

A BF W W A BF BB

  

    
 

Then, we have: 

o o T T o o T T
ol c c ol c cA W W A BB BFW W F B     

Using the Kronecker sum, we get: 

 ( ) ( ) ( ) ( )o o T T o o
ol c c ol c cvec A W W A BB W B B W vec F       

B is the input matrix, F is the feedback gain matrix, (.)vec is the vectorization operator and

 denotes the Kronecker product. Then F can be readily obtained by solving a linear system 
of equations. 

Hence, the assignability problem can be formulated as: 

1 1

min

(( ) ( ))
1

o
c c FB

T
c cl cl

cl

W W F

W vec A A vec BB
B
A H

 

  

   



 
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. F denotes the frobenious norm, clA is the state matrix of the closed-loop system and H is 

the set of Hurwitz matrices with the appropriate dimension. 1(.)vec is de-vectorization 

operator. 

Using the KA optimizer, the optimal actuation is obtained as: 

 0.5030    0.4993    0.7055 TB   

which results in the feedback matrix: 

 0.0007   -0.0133    0.0050   -0.4041    0.2113   -0.3628F   

and produces the controllability Gramian: 

 0.1434    0.1881    0.2208   -0.0000   -0.0026    0.0002
 0.1881    0.2680    0.3148    0.0026    0.0000    0.0023
 0.2208    0.3148    0.4089   -0.0002   -0.0023   -0.0000
-0.0000    0.0026   -0.000cW 

2    0.2714    0.1419    0.1647
-0.0026    0.0000   -0.0023    0.1419    0.2842    0.2362
 0.0002    0.0023   -0.0000    0.1647    0.2362    0.4718

 
 
 
 
 
 
 
 
 

 

 

The convergence curve is shown in Figure (8.63). To verify the accuracy of the results, Table 
(8.16) compares the eigenvalues of the desired controllability Gramian with the eigenvalues 
of the controllability Gramian produced by the KA optimizer: 

 

 1  2  3  4  5  6  
o

cW  0.0055 0.0228 0.1002 0.1720 0.7121 0.7582 

cW  0.0066 0.0227 0.1146 0.1795 0.7333 0.7909 

Table (8.16): The eigenvalues of the controllability Gramians in Example (8.8) 
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Figure (8.63): The convergence curve of the KA algorithm in Example (8.8) 
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8.4. Summary: 

In this chapter, a novel optimization algorithm was proposed as an alternative for solving 
optimal actuator selection problems among the current techniques in the literature. In the 
proposed algorithm, the logistic equation like functions fluctuated the solutions outwards or 
towards the current optimum point via switching amongst the steady state, cyclic and chaotic 
behavior to guarantee exploration and exploitation of the search space, respectively. A 
combination of random and adaptive variables also facilitated divergence and convergence of 
the search agents in the algorithm. To benchmark the performance of the proposed algorithm, 
a set of well-known test cases including unimodal, fixed- dimensional multi-modal, and 
varying-dimensional multi-modal functions were employed to test exploration, exploitation, 
local optima avoidance, and convergence of the KA algorithm for the various convex, non-
convex, separable, non-separable cases. To quantitatively and qualitatively verify the 
performance of the KA algorithm several performance metrics were employed:  

 The average and standard deviation of the results, which define the convergence 
curve 

 The average fitness of solutions over the iterations 
 The trend of the change of the solutions throughout the iterations 
 Non-parametric statistical Wilcoxon rank sum test results 

 
The results of the metrics proved that KA algorithm required the search individuals to change 
abruptly in the initial stage of optimization and gradually in the final steps. The results showed 
that this behavior caused exploration of the search space extensively and exploitation of the 
most promising regions. The convergence curves and the average fitness of solutions also 
confirmed the improvement of initial random populations and the best current solution 
obtained during the optimization by the KA algorithm. 
Finally, a wide range of challenging case studies is employed to demonstrate the performance 
of the proposed algorithm in solving real-world problems with constrains. The results 
demonstrate the merits of KA in solving real problems.  
Amongst the case studies, the KA algorithm is used to solve the problem of the optimal 
actuation in a typical 3-storey building to decrease seismic effects.  
The problem of input selection in optimal feedback design is also investigated in two different 
cases:  

 Considering the pole placement  
 Assigning the controllability Gramian 

The KA algorithm also demonstrates the ability to solve the problem of optimal actuation for 
the robust DOC in the case of uncertainty.  
It can be concluded that the KA algorithm not only is a very suitable alternative compared the 
current selection methods in the literature for solving optimal actuator problems, but also it 
can be applied in many different optimization problems. Therefore, the KA algorithm is 
offered to researchers in different fields. 
This chapter opens up several research directions for future studies. The binary version of this 
algorithm can be proposed to solve problems with binary objectives. The KA algorithm can 
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also be hybridized with other methods and algorithms in the field of optimization to improve 
its performance. Finally, investigation of the application of KA in different fields would be a 
valuable contribution. 
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Chapter 9: Conclusions & Future Research 
 

 

9.1. Summary and Contribution of Thesis 
This thesis has contributed to the development of methodologies for the selection of the input and 
output structures, that is selection of the matrix B and the matrixC in a continuous-time LTI system 
described by the triple ( , , )S A B C . This has been achieved by considering the implications of such 

selections as far as the required energy to achieve control and state reconstruction. The main criterion 
for this selection has been the minimization of the required energy for control and state reconstruction 
and the notions of relative degree of controllability and observability have been instrumental for the 
development of the overall methodology. The methodologies developed may be used as design tools 
where apart from energy requirements other design criteria may be also incorporated for the selection 
of inputs and outputs. The research undertaken in this thesis is an integral part of the effort to develop 
an integrated approach to Control and Global Process Instrumentation. The developed methodology 
has been supported by computational tools for the relevant energy indicators (Gramians) and the 
development of an optimization based approach that can be used for the design process.  

A general research agenda to determine the quality of input and output structure based on 
fundamental criteria such as performance, stability and so on has been presented, which highlights the 
significance of the input-output structure selection to meet a certain control objective. The developed 
research agenda is novel and has introduced new aspects to the design of desirable input and output 
structures by exploring the state input, state output criteria based on energy and linking them to the 
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relative degree of controllability and observability. In the case of controllability, the transfer a state 
from the origin to some point, i.e. to a terminal state location on the boundary of a disc of radius R
from the origin has been the key issue, whereas, in the case of observability, it has been the evaluation 
of the cost of energy to reconstruct the initial state from the distance R from the origin. To address 
the above challenges properly, it has been required to provide solutions to some specific problems 
such as: 
 
 

I. The computation of the energy required for each of the above cases for a given time of 
transition and a fixed value of R as a function of terminal time and R .  

II. Expressing the functions derived in the first problem as a function of the input matrix, output 
matrix, and then evaluate the quality of the given input-output structure selection, it should 
be as a function of the input-output matrix. 

 

The main contributions of the thesis have been in the following areas: 

 

 Provided a literature review for link of energy to controllability and observability and a review 
of methodologies for selection of inputs and outputs. The review on relative measure of 
controllability and observability properties covers measures such as Kalman: controllability 
and observability matrices rank tests, gramians: integral definitions (finite time) as well as 
the algebraic expression (Lyapunov and Sylvester for infinite time).  These reviews also 
include Gramians (controllability, observability and cross gramians) for unstable systems with 
no poles on the imaginary axis. Additionally, eigenvectors measures, and input and output 
restriction pencil, which are measures of controllability and observability independent of 
state feedback.  

 Proposed an overview of Controllability/ Observability Gramians, and methodologies for 
their computation. The proposed approach is based on the integral definitions (finite time) 
of the controllability Gramian hence it does not imply any restriction on the stability of the 
system. Another advantage of this method is its simplicity to be used in perturbation analysis 
and robust control design. The controllability Gramian assignment problem is also discussed. 

 Provided a solution of minimum energy, minimum time problems for controllability and 
observability which has led to the definition of the constant energy surfaces linked to 
controllability and observability. This has been linked to clarifying how to transfer states from 
the origin to some point at defined time on the boundary of a disc of radius R along with the 
transfer energy requirement may be achieved. 

 Has produced computational tools for the Energy for unstable systems and measures of 
degree of controllability/observability. The proposed measures have been linked to the 
minimum required control input energy to change the state from an arbitrary initial condition 
to an arbitrary final condition. The improved measure has been introduced by generalizing 
the Kalman controllability and observability matrices rank tests. A new quantitative measure 
of the degree of disturbance rejection (DODR) has also been proposed representing how 
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controllable the system is under the presence of persistent disturbance. The measures are 
general in the sense that they cover both stable and unstable systems. 

 Has developed some new methods for the computation of controllability Gramian in the 
stable system, which has particular canonical form structures.  The value of minimum energy 
has been evaluated directly via the coefficients of the characteristic polynomial of the 
system. The trace and some upper bounds for the largest eigenvalue of the controllability 
Gramian has been derived based on the coefficients of the Routh Hurwitz’s table. 

 Has introduced a number of partial problems linked to the overall selection of system of 
inputs, and thus of the input matrix B , to minimize the average required energy for 
controllability respectively observability. The new proposed approach provided an extension 
to the existing literature, in which the problem of input structure selection is investigated 

over the binary set 0,1 . 

 Has developed an optimization method for the optimal selection of input/output system 
structure for large-scale systems. The proposed optimization algorithm exploring and 
exploiting the search space in order to find efficiently near-optimal solution of the problem 
of IO selection. We focused on the problem of cardinality-constrained actuator placement 
for minimum control effort, where the optimal actuator set is selected so that an input 
energy metric is minimized. While this is an NP-hard combinatorial problem, our proposed 
algorithm has proved its efficiency in converging for optimal solution. 

 

9.2. Future Directions 

The research agenda developed for the selection of the input and output structures has a number of 
problems which have not yet been handled in this thesis and remain open. A number of topics that 
require further research are: 

 Energy methodology for the selection of the input, output structure is based on energy 
requirements. A related issue is the gain requirements for feedback design which leads to an 
alternative problem formulation. The link between energy and gain requirements is not well 
understood and this may also form the basis for further research. Of particular interest is 
exploring the link between energy and gain restrictions. 

 Linked to the above investigation is exploring the relations between relative degrees of 
controllability and observability and the restrictions on the gains for state feedback design, 
state reconstruction respectively. 

 The computational tools based on optimization need further development. The associated 
optimization problem is non-convex and computing approximate solutions in an efficient way 
is still challenging. 

 The selection of the input and output structures has been considered so far as unconstrained 
problems. In many design cases, certain variables have to be used for control, measurement 
respectively and thus constrained versions emerge which are linked to constrained 
optimization problems. 

 Two challenging theoretical problems that require attention are linked to introducing 
restricted notions of controllability and observability under energy, or gain constraints. 
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 The basic ideas developed for linear systems can be transferred with minor modification to the 
case of nonlinear systems. This is achieved by generating an efficient problem relaxation based 
on the steady state. The results of this thesis can also be extended to some other types of the 
system, e.g. discrete- time systems, time variant systems. 

 when the parameters of the system are subject to perturbation in order to find a dominant 
subset of inputs and outputs for any given large-scale system, it is needed to determine the 
effectiveness of each input and output in the overall operation of the control system. Thus, 
the investigating the robust controllability (observability) degree of the system is worth 
pursuing. 

  



236 

 

References 
1) Abdei-Rohman, M., 1984. Design of optimal observers for structural control. IEE 

Proceedings D - Control Theory and Applications , 131(4), pp. 158-163. 

2) Abdel-Mooty, M. & Roorda, J., 1994. Optimal configuration of active-control 
mechanisms. Journal of engineering mechanics, 120(3), pp. 535-556. 

3) Abdullah, M., Richardson, A. & Hanif, J., 2001. Placement of sensors/actuators on civil 
structures using genetic algorithms. Earthquake Engineering and Structural Dynamics, 
Volume 30, pp. 1167-1184. 

4) Adorio, E. & Dilman, U., 2005. MVF - Multivariate Test Function Library in C for 
Unconstrained Global Optimization Methods. [Online]  
Available at: http://www.geocities.ws/eadorio/mvf.pdf 

5) Agathoklis, P. & Sreeram, V., 1990. Identification and model reduction from impulse 
response data. International Journal of Systems Science , 21(8), pp. 1541-1552. 

6) Ahmadi, A.A & Parrilo, P.A., 2009. Sum of Squares and Polynomial Convexity. s.l., 48th 
IEEE Conference on Decision and Control. 

7) Ali, M., Khompatraporn, C. & Zabinsky, Z., 2005. A numerical evaluation of several 
stochastic algorithms on selected continuous global optimization test problems. Journal 
of Global Optimization, 31(4), p. 635–672. 

8) Ali, Y. & Narasimhan, S., 1996. Sensor Network Design for Maximizing Reliability of 
Bilinear Processes. AIChE, 42(9). 

9) Ali, Y. & Narsimhan, S., 1993. Sensor network design for maximizing reliability of linear 
processes. AIChE, Volume 39, p. 821. 

10) Ali, Y. & Narsimhan, S., 1995. Redundant Sensor Network Design for Linear Processes. 
AIChE, Volume 41, pp. 2237-2249. 

11) Alvarez, J., Romangnoli, J. & Stephanopoulous, G., 1981. Variable measurements 
structures for the control of a tubular reactor. Chemical Engineering Science, 36(10), pp. 
1695-1712. 

12) Amato, F., Tommasi, G. D. & Pironti, A., 2015. Necessary and Sufficient Conditions for 
Input-Output Finite-Time Stability of Impulsive Dynamical Systems. Chicago, IL, USA, 
2015 American Control Conference. 

13) Ambrosio, P., Resta, F. & Ripamonti, F., 2012. An H2-norm approach for the actuator and 
sensor placement in vibration control of a smart structure. Smart Materials and 
Structures, 21(12), p. 125016. 

14) Antoniades, C. & Christo, P., 2002. Integrated optimal actuator/sensor placement and 
robust control of uncertain transport-reaction processes. Computers and Chemical 
Engineering, Volume 26, pp. 187-203. 



237 

 

15) Antoulas, A., 2004. Approximation of large-scale dynamical systems. Philadelphia: SIAM 
Book series ”Advances in Design and Control”. 

16) Antsaklis, P. & Michel, A., 2007. A Linear Systems Primer. illustrated, reprint ed. 
Birkhäuser Boston: Springer Science & Business Media. 

17) Arabyan, A. & Chemishkian, S., 1998. H∞-optimal mapping of actuators and sensors in 
flexible structures. s.l., Proceedings of the IEEE Conference on Decision and Control, pp. 
821-826. 

18) Arbel, A., 1981. Controllability measures and actuator placement in oscillatory system. 
International Journal of Control , 33(3), pp. 565-574. 

19) Arora, J., 2016. Introduction to optimum design. 4 ed. New York : Elsevier Science 
Academic Press. 

20) Assali, W., 2008. Optimal Selection of Measurements and Manipulated Variables for 
Production Control. University of Maryland, College Park, MD: Ph.D. Thesis. 

21) Bagajewicz, M., 1997. Design and retrofit of sensor networks in process plants. AIChE, 
43(9), pp. 2300-2306. 

22) Bagajewicz, M., 2000. Process Plant Instrumentation: Design and Upgrade. illustrated ed. 
Lancaster, Pennsylvania, USA: CRC Press. 

23) Bagajewicz, M. & Sanchez, M., 1999. Design and Upgrade of Nonredundant and 
Redundant Linear Sensor Networks. AIChE, 45(9), pp. 1927-1938. 

24) Balchen, J. & Mummé, K., 1988. New York: Von Nostrand Reinhold. 

25) Barnett, S. & Storey, C., 1968. Some Applications of the Lyapunov Matrix Equation. J. 
Inst. Maths Applies , Volume 4, pp. 33-42. 

26) Barnett, S. & Storey, C., 1970. Matrix Methods in Stability Theory. illustrated ed. the 
University of Michigan: Thomas Nelson & Sons Ltd. 

27) Belegundu, A., 1982. A study of mathematical programming methods for structural 
optimization. Iowa, USA: Ph.D. thesis, Department of Civil and Environmental 
Engineering, University of Iowa. 

28) Bellman, R., 2003. Dynamic programming. paperback edition ed. New York. Dover: 
Princeton University Press. 

29) Benner, P. & Damm, T., 2011. Lyapunov Equations, Energy Functionals, and Model Order 
Reduction of Bilinear and Stochastic Systems. SIAM J. Control Optim, 49(2), p. 686–711. 

30) Benqlilou, C., Graells, M., Muslin, E. & Puigjaner, L., 2004. Desig and Retrofit of Reliable 
Sensor Networks. Ind. Eng. Chem. Res., 43(25), pp. 8026-8036. 

31) Berat Doğan, , Tamer Ölmez , 2015. A new metaheuristic for numerical function 
optimization: Vortex Search algorithm. Information Sciences, Volume 293, p. 125–145. 

32) Bergh, F. v. d. & Engelbrecht, A., 2006. A study of particle swarm optimization particle 
trajectories. Information Sciences, 176(8), pp. 937-971. 



238 

 

33) Bhushan, M., Narasimhan, S. & Rengaswamy, R., 2008. Robust Sensor Network Design 
for Fault Diagnosis. Computers & Chemical Engineering, Volume 32, pp. 1067-1084. 

34) Bhushan, M. & Rengaswamy, R., 2000b. Design of sensor location based on various fault 
diagnostic observability and reliability criteria. Computers and Chemical Engineerin, 
Volume 24, pp. 735-741. 

35) Bhushan, M. & Rengaswamy, R., 2000. Design of sensor network based on the SDG of 
the process for efficient fault diagnosis. Industrial & Engineering Chemistry Research, 
39(4). 

36) Bittanti, S. & Colaneri, P., 2009. Periodic Systems: Filtering and Control. llustrated ed. 
s.l.:Springer Science & Business Media. 

37) Blekherman, G., Parrilo, P. A. & Thomas, R. R., 2013. Semidefinite Optimization and 
Convex Algebraic Geometry. illustrated ed. s.l.:SIAM. 

38) Blum, Christian; Roli, Andrea, 2003. Metaheuristics in Combinatorial Optimization: 
Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), pp. 268-
308. 

39) Boley, D., 1987. Computing rank-deficiency of rectangular matrix pencials. IEEE 
Conference Decision and Control, pp. 207-214. 

40) Boley, D. & Lu, W., 1986. Measuring how far a controllable system is from an 
uncontrollable one. IEEE Trans. Automat. Contr, Volume AC-31, pp. 249-251. 

41) Botev, Z. et al., 2004. the GLOBAL library at The Cross-Entropy Toolbox. [Online]  
Available at: http://www.maths.uq.edu.au/CEToolBox/ 

42) Boukhobza, T. & Hamelin, F., 2011. Observability analysis and sensor location study for 
structured linear systems in descriptor form with unknown inputs. Automatica, 47(12), 
p. 2678–2683. 

43) Brookes, M., 2004. Matrix Reference Manual by Mike Brookes. [Online]  
Available at: http://www.psi.toronto.edu/matrix/matrix.html 
[Accessed 20 May 2004]. 

44) Brown, R., 1966. Not Just Observable, But How Observable?. National Electronic Conf, 
Volume 22, pp. 709-714. 

45) Bruant, I., Gallimard, L. & Nikoukar, S., 2010. Optimal piezoelectric actuator and sensor 
location for active vibration control, using genetic algorithm. Journal of Sound and 
Vibration, 329(10), pp. 1615-1635. 

46) Bruant, I. & Proslier, L., 2005. Optimal Location of Actuators and Sensors in Active 
Vibration Control. Journal of Intelligent Material Systems and Structures, 16(3), pp. 197-
206. 

47) Burgmeier, P., 1992. Operations Research ’91-Extended Abstracts of the 16th 
Symposium on Operations Research held at the University of Trier at September 9–
11,1991. In: Degrees of Controllability. Germany: Physica-Verlag HD, pp. 182-185. 



239 

 

48) Bushnell, L., Clark, A. & Poovendran, R., 2014. A supermodular optimization framework 
for leader selection under link noise in linear multiagent systems. IEEE Transactions on 
Automatic Control, 59(2), p. 283–296. 

49) Byers, R., 1989. Detecting nearly uncontrollable pairs. Proceedings of the International 
Symposium MTNS-89, pp. 447-457. 

50) Cao, Y. & Biss, D., 1996. An extension of singular value analysis for assessing 
manipulated variable constraints. Journal of Process Control, 6(1), pp. 37-48. 

51) Cao, Y. & Rossiter, D., 1996. Input Screening Method for Disturbance Rejection. 
Proceedings of Control '96, CP427, United Kingdom, Automatic Control Council, Exeter, 
England, u.K., pp. 497-502. 

52) Cao, Y., Rossiter, D. & Owens, D., 1997. Input Selection for Disturbance Rejection Under 
Manipulated Variable Constraints. Computers & Chemical Engineering, 21(Supplement), 
pp. S403-S408. 

53) Caruso, A., Galeani, S. & Menini, L., 2003. On sensor/actuator placement for collacated 
flexible plate. s.l., IEEE Mediterranean Conference on Control and Automation . 

54) Castelan, E., Silva, J. G. d. & Cury, J., 1996. A reduced-order framework applied to linear 
systems with constrained controls. IEEE Transactions on Automatic Control, 41(2), pp. 
249-255. 

55) Chemishkian, S. & Arabyan, A., 1999. Intelligent algorithms for H∞-optimal placement of 
actuators and sensors in structural control. s.l., Proceedings of the American Control 
Conference, IEEE, pp. 1812-1816. 

56) Chen, B., 1995. A simple algorithm for the stable/unstable decomposition of a linear 
discrete-time system. International Journal of Control , 61(1), pp. 255-260. 

57) Chen, B., Lin, Z. & Shamash, Y., 2004. Linear Systems Theory: A Structural Decomposition 
Approach. illustrated ed. Boston: Springer Science & Business Media. 

58) Chen, C., 1984. Linear System Theory and Design. New York: Holt, Rinehart, and 
Winston. 

59) Chen, D., Zheng, S. & Wang, H., 2012. Genetic algorithm based LQR vibration wireless 
control of laminated plate using photostrictive actuators. Earthquake Engineering and 
Engineering Vibration, 11(1), pp. 83-90. 

60) Cheng, F. & Pantelides, C., 1988. Optimal placement of actuators for structural control, 
Buffalo, N.Y.: National Center for Earthquake Engineering Research, State Univ. of New 
York at Buffalo. 

61) Chen, K. & Rowley, C., 2011. H2-optimal actuator and sensor placement in the linearised 
complex Ginzburg–Landau system. Journal of Fluid Mechanics, Volume 681, pp. 241-260. 

62) Chen, R., 2002. An Optimal Control Based Plantwide Control Design Methodology and its 
Applications. University of Maryland, College Park, MD: Ph.D. Thesis, . 



240 

 

63) Chen, W. et al., 2012. Particle swarm optimization with an aging leader and challengers. 
IEEE Transactions on Evolutionary Computation, 17(2), pp. 241-258. 

64) Chesi, G., 2011. SOS Polynomials. In: Domain of Attraction. London: Springer London, pp. 
3-44. 

65) Chmielewski, D., Palmer, T. & Manousiouthakis, V., 2002. On the theory of optimal 
sensor placement. AIChE, 48(5), pp. 1001-1012. 

66) Choe, K. & Baruh, H., 1992. Actuator Placement in Structural Control. Journal of 
Guidance, Control, and Dynamics, 15(1), pp. 40-48. 

67) Clark, A., Alomair, B., Bushnell, L. & Poovendran, R., 2014. Minimizing convergence error 
in multi-agent systems via leader selection: A supermodular optimization approach. IEEE 
Transactions on Automatic Control, 59(6), p. 1480–1494. 

68) Coello, C., 2000. Use of a self-adaptive penalty approach for engineering optimization. 
Computers in Industry, 41(2), pp. 113-127. 

69) Coello, C. & Montes, E., 2002. Constraint-handling in genetic algorithms through the use 
of dominance-based tournament selection. Advanced Engineering Informatics, 16(3), pp. 
193-203. 

70) Colantuoni, G. & Padmanabhan, L., 1977. Optimal sensor location for tubular-flow 
reactor systems. Chemical Engineering Science, 32(9), pp. 1035-1049. 

71) Collet, M., 2001. Shape optimization of piezoelectric sensors dealing with spill-over 
instability. IEEE Transactions on Control Systems Technology, 9(4), pp. 654-662. 

72) Commault, C. & Dion, J., 2013. Input addition and leader selection for the controllability 
of graph-based systems. Automatica, Volume 49, pp. 3322-3328. 

73) Cortesi, F., Summers, T. & Lygeros, J., 2014. Submodularity of energy related 
controllability metrics. Los Angeles, CA, IEEE Conference on Decision and Control, p. 
2883–2888. 

74) Cowan, N. et al., 2012. Nodal dynamics, not degree distributions, determine the 
structural controllability of complex networks. PLOS ON, 7(6), pp. 1-6. 

75) Cuevas, E. et al., 2012. An Algorithm for Global Optimization Inspired by Collective 
Animal Behavior. Discrete Dynamics in Nature and Society, Volume 2012, pp. 1-24. 

76) D. Henrion; A. Garull, 2005. Positive Polynomials in Control. Berlin: Springer Science & 
Business Media. 

77) Davis, J., Gravagne, I., Marks, R. & Ramos, A., 2010. Algebraic and dynamic Lyapunov 
equations on time scales. IEEE System Theory (SSST). 

78) Deb, K., 1997. GeneAS: A robust optimal design technique for mechanical component 
design. In: D.Dasgupta & Z. Michalewicz, eds. Evolutionary Algorithms in Engineering 
Applications. Berlin: Springer, pp. 497-514. 

79) de-los-Cobos-Silva, S. et al., 2015. An Efficient Algorithm for Unconstrained 
Optimization. Mathematical Problems in Engineering, Volume 2015, pp. 1-17. 



241 

 

80) Demenkov, M. & Goman, M., 2009. Suppressing Aeroelastic Vibrations via stability 
region maximization and numerical continuation techniques. University of Manchester, 
UKACC International Conference on Control, p. 
https://ukacc.group.shef.ac.uk/proceedings/control2008/Proceedings.html#We07_04. 

81) Demetriou, M., 2000. Numerical algorithm for the optimal placement of actuators and 
sensors for flexible structures. Chicago, IL, USA, USA, American Control Conference. 

82) Demetriou, M., 2004. Integrated actuator/sensor placement and hybrid controller 
design of flexible structures under worst case spatiotemporal disturbance variations. 
Journal of Intelligent Material Systems and Structures, 15(12), pp. 901-921. 

83) Demetriou, M. & Grigoriadist, K., 2004. Collocated actuator placement in structural 
systems using an analytical bound approach. s.l., Proceeding of the 2004 American 
Control Conference, pp. 1604-1609. 

84) Demetriou, M. & Grigoriadist, K., 2007. Utilizing spatial robustness measures for the 
optimization of a pzt-actuated flexible beam. In: D. K. Lindner, ed. Modeling, Signal 
Processing, and Control for Smart Structures 2007. s.l.:Proc. of SPIE Vol. 6523, 65230N. 

85) Devasia, S., Meressi, T., Paden, B. & Bayo, E., 1992. Piezoelectric actuator design for 
vibration suppression: placement and sizing. Tucson, AZ, USA, USA, Proceedings of the 
31st IEEE Conference on Decision and Control. 

86) Devasia, S., Meressi, T., Paden, B. & Bayo, E., 1993. Piezoelectric actuator design for 
vibration suppression: placement and sizing. Journal of Guidance Control and Dynamics, 
16(5), p. 859–864. 

87) Dhuri, K. & Seshu, P., 2006. Piezo actuator placement and sizing for good control 
effectiveness and minimal change in original system dynamics. Smart Materials and 
Structures, Volume 15, p. 1661–1672. 

88) Dion, J., Commault, C. & Woude, J. d., 2002. Characterization of generic properties of 
linear structured systems for efficient computations. Kybernetika, 38(5), p. 503–520. 

89) Dion, J., Commault, C. & Woude, J. v. d., 2003. Generic properties and control of linear 
structured systems: a survey. Automatica, 39(7), pp. 1125-1144. 

90) Dochain, D., Tali-Mammar, N. & Babary, J., 1997. On modeling,monitoring and control of 
fixed bed bioreactors. Computers & Chemical Engineering, 21(11), pp. 1255-1266. 

91) Doyle, J., Glover, K., Khargonekar, P. & Francis, B., 1989. State-space solutions to 
standard H2 and Hinf control problems.. IEEE Transactions on Automatic Control, 34(8), 
pp. 831-847. 

92) Eising, R., 1984. Between controllable and uncontrollable. Systems & Control Letters, 
4(5), pp. 263-264. 

93) Eising, R., 1984. The distance between a system and the set of uncontrollable systems. 
In: Mathematical Theory of Networks and Systems-Proceedings of the MTNS-83 
International Symposium Beer Sheva, Israel, June 20–24, 1983. s.l.:Springer Berlin 
Heidelberg, pp. 303-314. 



242 

 

94) Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi, 2009. GSA: A Gravitational 
Search Algorithm. Information Sciences, 179(13), p. 2232–2248. 

95) Fabrizio L. Cortesi, Tyler H. Summers, and John Lygero, 2014. Submodularity of Energy 
Related Controllability Metrics. s.l., s.n. 

96) Fahroo, F., 1995. Optimal location of controls for an acoustic problem. New Orleans, LA, 
USA, USA, Proc. of the 34th IEEE Conference on Decision and Control, p. 3765 –3766. 

97) Fahroo, F. & M.A. Demetriou, 2000. Optimal actuator/sensor location for active noise 
regulator and tracking control problems. Journal of Computational and Applied 
Mathematics, 114(1), pp. 137-158. 

98) Fairman, F., 1998. Linear Control Theory: The State Space Approach. illustrated, reprint 
ed. Kingston, Ontario, Canada: John Wiley & Sons. 

99) Farina, L. & Rinaldi, S., 2011. Positive Linear Systems: Theory and Applications. annotated 
ed. s.l.:John Wiley & Sons. 

100) Findeisen, W. et al., 1980. Control and Coordination in Hierarchical Systems. s.l.:John 
Wiley & Sons. 

101) Finkelstein, L. & Grattan, K.T.V., 1994. Concise Encyclopedia of Measurement and 
Instrumentation (Advances in Systems Control and Information Engineering). 
s.l.:Pergamon. 

102) Foss, C., 1973. Critique of chemical process control theory. AIChE Journal, 19(2), pp. 209-
214. 

103) Frecker, M., 2003. Recent advances in optimization of smart structures and actuators. 
Journal of Intelligent Material Systems and Structures, Volume 14, p. 207–216. 

104) Friedland, B., 1986. Control system design: an introduction to state-space methods. New 
York: McGraw-Hill. 

105) Fuzhen, Z., 2005. The Schur Complement and Its Applications. US: Springer. 

106) Gahinet, P. & Laub, A., 1992. Algebraic Riccati equations and distance to the nearest 
uncontrollable pair. SIAM J. Contr. Optim, 30(4), pp. 765-786. 

107) Gamal Abd El-Nasser A. Said, Abeer M. Mahmoud, El-Sayed M. El-Horbaty, 2014. A 
Comparative Study of Meta-heuristic Algorithms for Solving Quadratic Assignment 
Problem. (IJACSA) International Journal of Advanced Computer Science and Applications, 
5(1). 

108) Garc´ıa, S., Molina, D., Lozano, M. & Herrera, F., 2009. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on 
the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 
p. 617–644. 

109) Gaviano, M., Kvasov, D., Lera, D. & Sergeyev, Y., 2003. Software for generation of classes 
of test functions with known local and global minima for global optimization. Association 
for Computing Machinery. Transactions on Mathematical Software, 29(4), p. 469–480. 



243 

 

110) Gawronski, W., 1998. Dynamics and Control of Structures: A Modal Approach. New York: 
Springer-Verlag. 

111) Georges, D., 1995. The Use of Observability and Controllability Gramians or Functions. 
New Orleans, LA, IEEE, pp. 3319 - 3324. 

112) Georges, D., 1995. The use of observability and controllability gramians or functions for 
optimal sensor and actuator location in finite-dimensional systems. New Orleans, LA, 
USA, USA, Proceedings of the 34th IEEE Conference on Decision and Control. 

113) Georgiou, A. & Floudas, C., 1990. Structural properties of large scale systems. Int. J. 
Control, Volume 51, pp. 169-187. 

114) Georgiou, A. & Floudas, C. A., 1989. Structural analysis and synthesis of feasible control 
systems: Theory and applications. Chemical Engineering Research and Design, Volume 
67, pp. 600-618. 

115) Georgiou, A. & Floundas, C., 1989. Structural Analysis and Synthesis of feasible Control 
Systems: Theory and Applications. Chem. Eng. Res. Des., Volume 67, pp. 600-618. 

116) Geromel, J., 1989. Convex analysis and global optimization of joint actuator location and 
control problems. IEEE Transactions on Automatic Control, 34(7), pp. 711-720. 

117) Gluck, N., Reinhorn, A., Gluck, J. & Levy, R., 1996. Design of Supplemental Dampers for 
Control of Structures. Journal of Structural Engineering, ASCE, 122(12), pp. 1394-1399. 

118) Golub, G. H. & Loan, C. V., 1986. Matrix Computations. London: North Oxford Academic 
publ. 

119) Gould, S. H., 1957. Variational Methods for Eigenvalue Problems: An Introduction to the 
Methods of Rayleigh, Ritz, Weinstein, and Aronszajn. Mathematical expositions ed. 
s.l.:University of Toronto Press. 

120) Govind, R. & G.J. Powers, 1982. Control Systems Synthesis Strategies. AICHE, Volume 28, 
pp. 60-73. 

121) Gugercin, S. & Antoulas, A.C., 2003. On balancing related model reduction methods and 
the corresponding error. Int. Journal of Control. 

122) Guney, M. & Eskinat, E., 2008. Optimal actuator and sensor placement in flexible 
structures using closed-loop criteria. Journal of Sound and Vibration, Volume 312, pp. 
210-233. 

123) Guzman, V., Cruz, M. & A.R.S.Ortigoza, 2016. Linear State Feedback Regulation of a 
Furuta Pendulum: Design Based on Differential Flatness and Root Locus. IEEE Access, 
Volume 4, pp. 8721 - 8736. 

124) Guzzella, L., 2011. Analysis and Synthesis of Single-Input/Single-Output Control Systems. 
revised ed. s.l.:vdf Hochschulverlag AG. 

125) Hac, A. & Liu, L., 1993. Sensor and actuator location in motion control of flexible 
structures. Journal of Sound and Vibration, 167(2), p. 239–261. 



244 

 

126) Han, J. & Lee, I., 1997. Active Damping Enhancement of Composite Plates with Electrode 
Designed Piezoelectric Materials. Journal of Intelligent Material Systems and Structures, 
8(3), pp. 249-259. 

127) Han, J. & Lee, I., 1999. Optimal placement of piezoelectric sensors and actuators for 
vibration control of a composite plate using genetic algorithms. Smart Mat. Struct., 8(2), 
p. 257–267. 

128) Harris, T., Macgregor, J. & Wright, J., 1980. Optimal sensor location with an application 
to a packed bed tubular reactor. AIChE, 26(6), pp. 910-916. 

129) Hauksdóttir, A. & Sigurðsson, S., 2009. The continuous closed form controllability 
Gramian and its inverse. Hyatt Regency Riverfront, St. Louis, MO, USA, 2009 American 
Control Conference . 

130) Hauksdóttir, A. et al., 2008. Closed Form Solutions of the Sylvester and the Lyapunov 
Equations - Closed Form Gramians. Seattle, The 2008 American Control Conference, pp. 
2585-2590. 

131) Hautus, M., 1969. Controllability and observability conditions of linear autonomous 
systems. Nederl. Akad. Wetensch. Proc., Ser., A72, pp. 443-448. 

132) Hautus, M., 1970. Stabilization controllability and observability of linear autonomous 
systems. Indagationes Mathematicae (Proceedings), Volume 73, pp. 448-455. 

133) Hebrard, P. & Henrot, A., 2005. A spillover phenomenon in the optimal location of 
actuators. SIAM Journal on Control and Optimization, 44(1), pp. 349-366. 

134) He, Q. & Wang, L., 2007. An effective co-evolutionary particle swarm optimization for 
constrained engineering design problems. Engineering Applications of Artificial 
Intelligence, 20(1), pp. 89-99. 

135) Hendricks, E. & Jannerup, O. & Sørensen, P., 2008. Linear Systems Control: Deterministic 
and Stochastic Methods. illustrated ed. Berlin: Springer Science & Business Media. 

136) Hespanha, J., 2009. Linear Systems Theory. annotated ed. s.l.:Princeton University Press. 

137) Hiramoto, K., Doki, H. & Obinata, G., 2000. Optimal sensor/actuator placement for active 
vibration control using explicit solution of algebraic Riccati equation. Journal of Sound 
and Vibration, 229(5), pp. 1057-1075. 

138) Holland, J., 1975. Adaptation in Natural and Artificial Systems. First edition ed. 
s.l.:Cambridge, MA: MIT Press. 

139) Horn, R. & Johnson, C., 2012. Matrix Analysis. illustrated, revised ed. s.l.:Cambridge 
University Press. 

140) Hovd, M. & Skogestad, S., 1992. Simple Frequency-Dependent Tools for Control System 
Analysis, Structure Selection and Design. Automatica, 28(5), pp. 989-996. 

141) Ho, Y. & Pepyne, D., 2002. Simple explanation of the no-free-lunch theorem and its 
implications. J Optim Theory Appl, 115(3), p. 549–570. 



245 

 

142) Hu, G. & Davison, E., 2001. A Real Radius Measure for Controllability. Arlington, VA, s.n., 
pp. 3144-3148. 

143) Hughes, P. & Skelton, R., 1980. Controllability and observability for flexible spacecraft. 
Journal of Guidance, Control, and Dynamics, 3(5), pp. 452-459. 

144) Jain, A., 1989. Block Matrices and Kronecker Products. In: Fundamentals of digital image 
processing. Englewood Cliffs: Prentice Hall. 

145) Jamil, M. & Yang, X., 2013. A literature survey of benchmark functions for global 
optimization problems. Journal of Mathematical Modelling and Numerical Optimisation, 
4(2), p. 150–194. 

146) Jha, A. & Inman, D., 2003. Optimal sizes and placements of piezoelectric actuators and 
sensors for an inflated torus. Journal of Intelligent Material Systems and Structures, 
14(9), p. 563–576. 

147) Jirstrand, M. & Gunnarsson, J., 2001. The Mathematica Journal-Code generation for 
simulation and control applications. [Online]  
Available at: http://www.mathematica-
journal.com/issue/v8i2/features/codegeneration/contents/html/Links/index_lnk_2.html 
[Accessed 2001]. 

148) Johnson, C., 1969. Optimization of a certain quality of complete controllability and 
observability for linear dynamical systems. ASME Trans J. Basic Eng, 91(2), pp. 228-238. 

149) Johnston, R. & Barton, G. W., 1985. Control system development without dynamic 
simulation. IChemE Symposium Series No. 92, pp. 443-456. 

150) Jorgensen, S., Goldschmidt, L. & Clement, K., 1984. A sensor location procedure for 
chemical processes. Computers & Chemical Engineering, 3(3-4), pp. 195-204. 

151) Juang, J. & Rodriguez, G., 1979. Formulations and applications of large structure 
actuator and sensor placements. Blacksburg, VA, VPI&SUIAIAA Symp., on Dynamics and 
control of large flexible spacecraft. 

152) Junior, ]., Silva, R., Mundim, K. & Dardenne, L., 2004. Performance and Parameterization 
of the Algorithm Simplified Generalized Simulated Annealing. Genet. Mol. Biol., 27(4), 
pp. 616-622. 

153) K Ramesh Kumar and S Narayanan, 2008. Active vibration control of beams with optimal 
placement of piezoelectric sensor/actuator pairs. IOPScience, Smart Materials and 
Structures, 17(5). 

154) Kailath, T., 1980. Linear Systems. illustrated ed. The University of Michigan: Prentice-Hall 
Information and System Sciences Series. 

155) Kalman, R., 1959. On the general theory of control systems. IRE Transactions on 
Automatic Control, 4(3), pp. 110-110. 

156) Kalman, R., 1963. Mathematical description of linear Dynamical systems. SIAM J. Control 
Optim. , Volume 1, pp. 152-192. 



246 

 

157) Kalman, R. E., Ho, T. C. & Narendra, K. S., 1963. Controllability of linear dynamical 
systems. Contributions to Differential Equations, 1(2), p. 189–213. 

158) Kang, O. & Park, Y., 2009. New Measure Representing Degree of Controllability for 
Disturbance Rejection. Journal of Guidance, Control, and Dynamics, 32(5), pp. 1658-166l. 

159) Kannan, B. & Kramer, S., 1994. An augmented Lagrange multiplier based method for 
mixed integer discrete continuous optimization and its applications to mechanical 
design. Journal of Mechanical Design, 116(2), pp. 405-411. 

160) Karcanias, N., 1994. Global Process Instrumentation: Issues and Problems of a System 
and Control Theory Framework. Measurement, 14(1), pp. 103-113. 

161) Karcanias, N., 1994. The selection of input and output schemes for a systems and the 
Model Projection Problems. KYBERNETICA, 30(6), pp. 585-596. 

162) Karcanias, N., 1996. Control Problems in Global Process Instrumentation : A structural 
Approach. 6th European Symposium on Computer Aided Process Engineering (ESCAPE-6) 
Rhodes and Computers & Chemical Engineering, Volume 2, pp. 1101-S1106. 

163) Karcanias, N., 1996. Control problems in global process instrumentation: A structural 
approach. Computers Chem. Engng, Volume 20, pp. 1101-1106. 

164) Karcanias, N., 2002. Multivariable Poles and Zeros. Control Systems, Robotics and 
Automation from Encyclopedia of Life Support Systems (EOLSS), Developed under the 
Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net], [Retrieved 
October 26,2005], Volume VII. 

165) Karcanias, N., 2008. Structure Evolving Systems and Control in Integrated Design. IFAC 
Annual Reviews in Control, 32(2), pp. 161-182. 

166) Karcanias, N. & Giannakopoulos, C., 1989. Necessary and sufficient conditions for zero 
assignment by constant squaring down. Linear Algebra and its Applications, Volume 122-
124, pp. 415-446. 

167) Karcanias, N. & Giannakopoulos, C., 1989. Necessary and Sufficient Conditions for Zero 
Assignment by Constant Squaring Down. Linear Algebra and Its Applications, Volume 
122-124, pp. 415- 446. 

168) Karcanias, N. & Vafiadis, D., 2002. Canonical Forms for State Space Descriptions. Control 
Systems, Robotics and Automation, from Encyclopedia of Life Support Systems (EOLSS), 
Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, 
[http://www.eolss.net], [Retrieved October 26,2005], Volume VII. 

169) Karcanias, N. & Vafiadis, K., 2002. Derivation of Effective Transfer Function Models By 
Input-Output Variables Selection. KYBERNETICA, Volume 38, pp. 657-683. 

170) Karcanias, N. & Vafiadis, K., 2002. Model Orientation and Well Conditioning of System 
Models: System and Control Issues. Barcelona, 15th IFAC World Congress. 

171) Kaveh, A., 2016. Advances in Metaheuristic Algorithms for Optimal Design of Structures. 
2, illustrated ed. Gewerbestrasse, Switzerland: Springer. 



247 

 

172) Kaveh, A. & Talatahari, S., 2010. An improved ant colony optimization for constrained 
engineering design problems. Engineering Computations. Int J Comput Aided Eng., 27(1), 
p. 155–182. 

173) Kaveh, A. & Talatahari, S., 2010. Optimal design of skeletal structures via the charged 
system search algorithm. Structural and Multidisciplinary Optimization, 41(6), p. 893–
911. 

174) Kennedy, J. & Eberhart, R., 1995. Particle Swarm Optimization. IEEE International 
Conference on Neural Networks, Volume IV, p. 1942–1948. 

175) Kenney, C. & Laub, A., 1988. Controllability and stability radii for companion form 
systems. Mathematics of Control, Signals and Systems, 1(3), p. 239–256. 

176) Khare, S., Pillai, H. & Belur, M., 2012. Computing the radius of controllability for state 
space systems. Elsevier Systems & Control Letters, pp. 327-333. 

177) Khemliche, M., Bouamama, B. & Haffaf, H., 2006. Sensor placement for component 
diagnosability using bond-graph. Sensors and Actuators A: Physical, 132(2), pp. 547-556. 

178) Kienitz, K., 2012. Controllability and Observability of Linear Dynamic Systems Revisited. 
Barcelona, IEEE. 

179) Kim, Y. & Junkinsf, J., 1991. Measure of Controllability for Actuator Placement. American 
Institute of Aeronautics and Astronautics, 14(5), pp. 895-902. 

180) Klamka, J., 2009. System Characteristics: Stability, Controllability, Observability. In: 
Control System, Robotics and Automation-Volume VII: Advanced Control Systems-I. 
s.l.:EOLSS Publications, pp. 232-247. 

181) Kondoh, S., Yatomi, C. & Inoue, K., 1990. The Positioning of Sensors and Actuators in the 
Vibration Control of Flexible Systems. JSME international journal. Ser. 3, Vibration, 
control engineering, engineering for industry, 33(2), pp. 145-152. 

182) Kościelny, J., Sztyber, A. & Syfert, M., 2017. Graph description of the process and its 
applications. s.l.: In: Mitkowski W., Kacprzyk J., Oprzędkiewicz K., Skruch P. (eds) Trends 
in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in 
Intelligent Systems and Computing, vol 577. Springer, Cham. 

183) Koumboulis, F. & Mertzios, B., 1999. On Kalman's controllability and observability 
criteria for singular systems. Circuits, Systems and Signal Processing, 18(3), pp. 269-290. 

184) Kouvaritakis, B. & MacFarlane, A., 1976. Geometric approach to analysis and synthesis of 
system zeros; Part II: non-square systems. Int. J. Control, Volume 23, pp. 167-181. 

185) Kumar, K. & Narayanan, S., 2007. The optimal location of piezoelectric actuators and 
sensors for vibration control of plates. Smart Materials and Structures, 16(6), pp. 2680-
2691. 

186) Kumar, K. R. & Narayanan, S., 2008. Active vibration control of beams with optimal 
placement of piezoelectric sensor/actuator pairs. Smart Materials and Structures, 17(5), 
pp. 1-15. 



248 

 

187) Kumar, S. & Seinfeld, S., 1978. Optimal location of measurements in tubular reactors. 
Chemical Engineering Science, 33(11), pp. 1507-1516. 

188) Lam, A. S., Li, V. K. & Yu, J. Q., 2012. Real-Coded Chemical Reaction Optimization. IEEE 
Transactions on Evolutionary Computation 16(3), pp. 339-353. 

189) Lambert, H., 1977. Fault Trees for Locating Sensors in Process Systems. Chemical 
Engineering Progress, Volume 81. 

190) Lam, T. Y., 2005. Introduction to Quadratic Forms Over Fields. illustrated ed. 
s.l.:American Mathematical Soc. 

191) Larsson, T. & Skogestad, S., 2000. Plantwide control—A review and a new design 
procedure. Modeling, Identification and Control, 21(4), pp. 209-240. 

192) Laub, A., 2005. Matrix Analysis for Scientists and Engineers. s.l.:SIAM: Society for 
Industrial and Applied Mathematics. 

193) lbidapo-Obe, O., 1985. Optimal actuators placements for the active control of lexible 
structures. Journal of Mathematical Analysis and Applications, 105(1), pp. 12-25. 

194) Lee, D., 2016. Taylor Devices, Inc.. [Online]  
Available at: http://www.taylordevices.com/fluidviciousdamping.html 

195) Lee, E. & Markus, L., 1967. Foundations of Optimal Control Theory. New York: John Wiley 
and Sons. 

196) Lee, H. & Park, Y., 2014. Degree of controllability for linear unstable systems. Journal of 
Vibration and Control, pp. 1-7. 

197) Lee, H. & Park, Y., 2014. Degree of Disturbance Rejection Capability for Linear Anti-Stable 
Systems. Seoul, South Korea, IEEE, 14th International Conference on Control, 
Automation and Systems (ICCAS), pp. 154-156. 

198) Lee, H. & Park, Y., 2015. Degree of Disturbance Rejection Capability for Linear Marginally 
Stable Systems. Busan, South Korea, IEEE, 15th International Conference on Control, 
Automation and Systems (ICCAS 2015), pp. 307-310. 

199) Lee, I. & Han, J., 1996. Optimal placement of piezoelectric actuators in intelligent 
structures using genetic algorithms. Lyons, 3rd Int. Conf. on Intelligent Materials, pp. 
872-875. 

200) Leleu, S., Abou-Kandil, H. & Bonnassieux, Y., 2001. Piezoelectric actuators and sensors 
location for active control of flexible structures. IEEE Transactions on Instrumentation 
and Measurement, 50(6), pp. 1577-1582. 

201) Leonides, C., 2012. Control and Dynamic Systems V57: Multidisciplinary Engineering 
Systems: Design and Optimization Techniques and Their Application: Advances in Theory 
and Application. Control and Dynamic Systems: Advances in Theory and Applicat, ISSN 
0090-5267 ed. s.l.:Academic Press. 

202) Leventides, J. & Karcanias, N., 2008. Structured Squaring Down and Zero Assignment. 
International Journal Control, Volume 81, pp. 294-306. 



249 

 

203) Levine, W. & Athans, M., 1970. On the determination of the optimal constant output 
feedback gains for the linear multivariablesystems. IEEE Transactions on Automatic 
Control, 15(1), pp. 44-48. 

204) Levine, W. S., 1996. The Control Handbook. illustrated ed. s.l.:CRC Press. 

205) Lewis, F., Dawson, D. & Abdallah, C., 2003. Robot Manipulator Control: Theory and 
Practice. 2, revised ed. s.l.:CRC Press. 

206) Lewis, F., Vrabie, D. & Syrmos, V., 2012. Optimal Control. 3 ed. s.l.:John Wiley & Sons. 

207) Li, L., Huang, Z., Liu, F. & Wu, Q., 2007. A heuristic particle swarm optimizer for 
optimization of pin connected structures. Computers & Structures, 85(7-8), pp. 340-349. 

208) Lim, K., 1992. Method for Optimal Actuator and Sensor Placement for Large Flexible 
Structures. Journal of Guidance, Control, and Dynamics, 15(1), pp. 49-57. 

209) Lin, C., 1974. Structural controllability. IEEE Transactions on Automatic Control, 19(3), 
pp. 201-208. 

210) Lindberg, R. & Longman, R., 1981. Aspects of the degree of controllability-applications to 
simple systems. Adv.Astronautical Sci, Volume 46, pp. 871-891. 

211) Liu, K. & Yao, Y., 2016. Robust Control: Theory and Applications. Singapore: John Wiley & 
Sons. 

212) Liu, W., Hou, Z. & Demetriou, M., 2006. A computational scheme for the optimal 
sensor/actuator placement of flexible structures using spatial H2 measures. Mechanical 
Systems and Signal Processing, 20(4), pp. 881-895. 

213) Liu, X. & Hu, J., 2010. On the placement of actuators and sensors for flexible structures 
with closely spaced modes. Sci. China Technol. Sci, 53(7), p. 1973–1982. 

214) Liu, Y., Slotine, J. & Barabasi, A., 2011. Controllability of complex networks. Nature, 
473(7346), pp. 167-173. 

215) Li, W. & Huang, H., 2013. Integrated optimization of actuator placement and vibration 
control for piezoelectric adaptive trusses. Journal of Sound and Vibration, 332(1), pp. 17-
32. 

216) Loan, C. V., 2000. The ubiquitous Kronecker product. Journal of Computational and 
Applied Mathematics, 123(1-2), pp. 85-100. 

217) Longman, R. & Horta, L., 1989. Actuator placement by degree of controllability including 
the effect of actuator mass. Dynamics and control of large structures; Proceedings of the 
Seventh VPI&SU Symposium, Blacksburg, VA, May 8-10, 1989 (A91-23726 08-18). 
Blacksburg, VA, Virginia Polytechnic Institute and State University, pp. 245-260. 

218) Longman, R. & Lindberg, R., 1986. The search for appropriate actuator distribution 
criterion in large space structures control. Boston, MA: Narendra K.S. (eds) Adaptive and 
Learning Systems, Springer. 

219) Luyben, W. L., 1988. The Concept of 'Eigenstructure in Process Control. Industrial and 
Engineering Chemistry Research, Volume 27, pp. 206-208. 



250 

 

220) MacFarlane, A. & Karcanias, N., 1976. Poles and zeros of linear multivariable systems: A 
survey of the Algebraic Geometric and Complex Variable Theory. Int. J. Control, Volume 
24, pp. 33-74. 

221) Madron, F. & Veverka, V., 1992. Optimal selection of measuring points in complex plants 
by linear models. AIChE , 38(2), p. 227–236. 

222) Mah, R., 1990. Chemical Process Structures and Information Flows. Butterworths series 
in chemical engineering ed. Stoneham, England: Elsevier. 

223) Marx, B., 2003. "Contribution a´ la commande et au diagnostic de syste´mes alge´bro-
diffe´rentiels line´aires" Contribution to the analysis and structured ordering of large 
systems. France: PhD Thesis, Institut National Polytechnique de Grenoble (INPG). 

224) Marx, B., Koenig, D. & Georges, D., 2002. Optimal sensor/actuator location for descriptor 
systems using Lyapunov-like equations. Las Vegas, NV, USA, USA, Proceedings of the 41st 
IEEE Conference on Decision and Control. 

225) Marx, B., Koenig, D. & Georges, D., 2004. Optimal Sensor and Actuator Location for 
Descriptor Systems using Generalized Gramians and Balanced Realizations. Boston. 
Massachusett, Proceedings of the 2004 American Control Conferenc. 

226) May, R., 1976. Simple mathematical models with very complicated dynamics. Nature, 
Volume 261, pp. 459-467. 

227) Mazenc, F., Queiroz, M. d. & Malisoff, M., 2005. On Active Magnetic Bearing Control 
with Input Saturation. 44th IEEE Conference on Decision and Control-the European 
Control Conference, pp. 1090-1095. 

228) Mehrabian, A. & Yousefi-Koma, A., 2007. Optimal positioning of piezoelectric actuators 
on a smart fin using bio-inspired algorithms. Aerospace Science and Technology, Volume 
11, pp. 174-182. 

229) Mellodge, P. & Kachroo, P., 2008. Model Abstraction in Dynamical Systems: Application 
to Mobile Robot Control. illustrated ed. s.l.:Springer. 

230) Miao, J., 1991. General expressions for the Moore-Penrose inverse of a 2 × 2 block 
matrix. Linear Algebra and its Applications, Volume 151, pp. 1-15. 

231) Middleton, R. & Goodwin, G., 1990. Digital Control and Estimation: A Unified Approach. 
Englewood Cliffs, New Jersey: Prentice Hall . 

232) Minto, D. & Nett, C., 1989. A quantitative approach to the selection and partitioning of 
measurements and manipulations for the control of complex systems. Pittsburgh, PA, 
American Control Conference. 

233) Mirjalili, S., 2015. The Ant Lion Optimizer. Advances in Engineering Software, Volume 83, 
pp. 80-98. 

234) Mirjalili, S. & Mirjalili, S.M. and Yang, X.S., 2014. Binary bat algorithm. Neural Computing 
and Applications, 25(3), p. 663–681. 



251 

 

235) Mirza, M. & Niekerk, J., 1999. Optimal Actuator Placement for Active Vibration Control 
with Known Disturbances. Journal of Vibration and Control, 5(5), pp. 709-724.. 

236) Montes, E. & Coello, C., 2008. An empirical study about the usefulness of evolution 
strategies to solve constrained optimization problems. International Journal of General 
Systems, 37(4), pp. 443-473. 

237) Monzxngo, R., 1967. A note on sensitivity of system observability. IEEE Trans. Aut. 
Control, Volume 12, pp. 314-315. 

238) Moore, B., 1981. Principal component analysis in linear systems. IEEE Transactions on 
Automatic Control, 26(1), pp. 17-32. 

239) Moore, B., 1981. Principle component analysis in linear systems: Controllability, 
observability and model reduction. IEEE Tran. sAutomat. Control, Volume 26, pp. 17-32. 

240) Morari, M., 1982. Integrated plant control: A solution at hand or a research topic for the 
next decade. New York, Chemical Process Control II : AIChE, pp. 467-495. 

241) Morari, M., 1983. Design of Resilient Process Plants 3: A General Framework for the 
Assessment of Dynamic Resilience. Chemical Engineering Science, 38(11), pp. 1881-189l. 

242) Morari, M., Arkun, Y. & Stephanopoulos, G., 1980. Studies in the synthesis of control 
structures for chemical processes: Part I: Formulation of the problem. Process 
decomposition and the classification of the control tasks. Analysis of the optimizing 
control structures. AIChE Journal, 26(2), pp. 220-232. 

243) Morari, M., Grimm, W., Oglesby, M. & Prosser, I., 1985. Design of Resilient Processing 
Plants 7: Design of Energy Management System for Unstable Reactors-NewInsights. 
Chemical Engineering Science, 40(2), pp. 187-198. 

244) Morari, M. & O’Dowd, M., 1980. Optimal sensor location in the presence of 
nonstationary noise. Automatica, 16(5), pp. 463-480. 

245) Morari, M. & Stephanopoulos, G., 1980. Studies in the synthesis of control structures for 
chemical processes. Part II: Structural aspects and the synthesis of alternative feasible 
control schemes. AIChE Journal, 26(2), pp. 232-246. 

246) Morari, M. & Stephanopoulos, G., 1980. Studies in the synthesis of control structures for 
chemical processes: Part III: Optimal selection of secondary measurements within the 
framework of state estimation in the presence of persistent unknown disturbances. 
AIChE Journal, 26(2), pp. 247-259. 

247) Morris, K., 1998. Noise reduction achievable by point control. ASME Journal on Dynamic 
Systems, Measurement and Control, 120(2), p. 216–223. 

248) Morris, K., 2001. Introduction to Feedback Control. illustrated ed. the University of 
Michigan: Harcourt/Academic Press. 

249) Morris, K., 2011. Linear quadratic optimal actuator location. IEEE Transactions on 
Automatic Control, Volume 56, p. 113–124. 



252 

 

250) Morris, K. & Demetriou, M., 2010. Using H2 control metrics for the optimal actuator 
location of infinitedimensional systems. s.l., Proceeding of the 2010 American Control 
Conference, pp. 4899-4904. 

251) Morris, K., Demetriou, M. & Yang, S., 2015. Using H2-control performance metrics for 
optimal actuator location in distributed parameter systems. IEEE Transactions on 
Automatic Control, 60(2), p. 450–462. 

252) Morris, K. & Yang, S., 2015. Comparison of actuator placement criteria for control of 
structures. Journal of Sound and Vibration, Volume 353, pp. 1-18. 

253) Muller, P. & Weber, H., 1972. Analysis and optimization of certain quantities of 
controllability and observability for linear dynamic system. Automatica, 8(3), pp. 237-
246. 

254) Murota, K., 2009. Matrices and Matroids for Systems Analysis. illustrated ed. Berlin 
Heidelberg: Springer Science & Business Media. 

255) Nemhauser, G., Wolsey, L. & Fisher, M., 1978. An analysis of approximations for 
maximizing submodular set functions. Mathematical Programming, 14(1), p. 265–294. 

256) Nepusz, T. & Vicsek, T., 2012. Controlling edge dynamics in complex networks. Nature 
Physics, 8(7), p. 568–573. 

257) Nett, C. N., 1989. A quantitative approach to the selection andpartitioning of 
measurements and manipulations for the control ofcomplex systems. Pasadena, USA: 
Presentation at the Caltech Control Workshop. 

258) Noshadi, A. et al., 2016. System Identification and Robust Control of Multi-Input Multi-
Output Active Magnetic Bearing Systems. IEEE Transactions on Control Systems 
Technology, 24(4), pp. 1227-1239. 

259) Nour-Eldin, H., 1987. Linear Multivariable Systems Controllability and Observability: 
Numerical Aspects. M.G. Singh (ed.) ed. Oxford, UK: Systems and Control Encyclopedia, 
Pergamon Press. 

260) Ogata, K., 1997. Modern Control Engineering. 4th edition (2002) ed. s.l.:PrenticeHall. 

261) Olshevsky, A., 2014. The minimal controllability problem. IEEE Transactions on Control of 
Network Systems, 1(3), p. 249–258. 

262) Omatu, S., Koide, S. & Soeda, T., 1978. Optimal sensor location for a linear distributed 
parameter system. IEEE Transactions on Automatic Control, 23(4), pp. 665-673. 

263) Osman, I. & Laporte, G., 1996. Metaheuristics: a bibliography. Annals of Operations 
Research, 63(5), pp. 513-623. 

264) Owens, D., 2015. Iterative Learning Control: An Optimization Paradigm. illustrated ed. 
s.l.:Springer. 

265) Özdemir, N., 2003. State-space solutions to standard H∞ control problem. Academic 
Journal, 52(2), pp. 35-53. 



253 

 

266) Padula, S. & Kincaid, R., 1999. Optimization strategies for sensor and actuator 
placement, Virginia 23681: National Aeronautics and Space Administration Langley 
Research Center, Tech. Rep.. 

267) Paige, C., 1981. Properties of numerical algorithms related to computing controllability. 
IEEE Transactions on Automatic Control, pp. 130-138. 

268) Parrilo, P., 2003. Semidefinite programming relaxations for semialgebraic. Springer, 
Mathematical Programming, 96(2), pp. 293-320. 

269) Parrilo, P. A., 2000. Structured semidefinite programs and semialgebraic geometry 
methods in robustness and optimization. California: PhD Thesis,California Institute of 
Technology. 

270) Pasqualetti, F., Zampieri, S. & Bullo, F., 2014. Controllability metrics limitations and 
algorithms for complex networks. IEEE Transactions on Control of Network Systems,, 
1(1), pp. 40-52. 

271) Peng, F., Ng, A. & Hu, Y., 2005. Actuator Placement Optimization and Adaptive Vibration 
Control of Plate Smart Structures. Journal of Intelligent Material Systems and Structures, 
16(3), pp. 263-271. 

272) Pequito, S., Kar, S. & Aguiar, A., 2016. A Framework for Structural Input/Output and 
Control Configuration Selection in Large-Scale Systems. IEEE Transactions on Automatic 
Control, 61(2), pp. 303-318. 

273) Petersen, K. & Pedersen, M., 2012. The Matrix Cookbook. [Online]  
Available at: 
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf 
[Accessed 15 Nov 2012]. 

274) Powers, V. & Wörmann, T., 1998. An Algorithm for Sums of Squares of Real Polynomials. 
Pure and Applied Algebra, 127(1), pp. 99-104. 

275) Prasolov, V., 1994. Problems and Theorems in Linear Algebra. s.l.:American 
Mathematical Soc. 

276) Press, W., Teukolsky, S., Vetterling, W. & Flannery, B., 2007. Numerical Recipes: The Art 
of Scientific Computing. 3rd Edition ed. New York: Cambridge University Press. 

277) Price, K., Storn, R. & Lampinen, J.A., 2005. Differential Evolution: A Practical Approach to 
Global Optimization. New York, NY, USA. 1 ed. :Springer-Verlag Berlin Heidelberg. 

278) Pulthasthan, S. & Pota, H., 2008. The optimal placement of actuator and sensor for 
active noise control of sound-structure interaction systems. Smart Materials and 
Structures, 17(3), pp. 1-11. 

279) Qi, A., Huan, V. & Suganthan, P., 2009. Differential evolution algorithm with strategy 
adaptation for global numerical optimization. IEEE Transactions on Evolutionary 
Computation, 13(2), pp. 398-417. 



254 

 

280) Qiua, Z., Zhang, X., Wub, H. & Zhang, H., 2007. Optimal placement and active vibration 
control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 
301(3-5), pp. 521-543. 

281) Qiu, Z., Zhang, X., Wu, H. & Zhang, H., 2007. Optimal placement and active vibration 
control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 
301(3-5), pp. 521-543. 

282) Raghuraj, R., Bbushan, M. & Rengaswamy, R., 1999. Location of sensors in complex 
chemical plants based on fault diagnostic observability criteria. American Institute of 
Chemistry Engineering Journa, 45(2). 

283) Rahmani, A., Ji, M., Mesbahi, M. & Egerstedt., M., 2009. Controllability of multi-agent 
systems from a graph-theoretic perspective. SIAM Journalon Control and Optimization, 
48(1), p. 162–186. 

284) Raja, M. & Narayanan, S., 2009. Simultaneous optimization of structure and control of 
smart tensegrity structures. Journal of Intelligent Material Systems and Structures, 20(1), 
pp. 109-117. 

285) Rajapakse, I., Groudine, M. & Mesbahi, M., 2011. Dynamics and control of state-
dependent networks for probing genomic organization. Proceedings of the National 
Academy of Sciences, 108(42), p. 17257–17262. 

286) Rao, S., Pan, T. & Venkayya, V., 1991. Optimal placement of actuators in actively 
controlled structures using genetic algorithms. AIAA journal, 29(6), pp. 942-943. 

287) Rashedi, E. & Nezamabadi-pour, H., 2009. GSA: A Gravitational Search Algorithm. 
Information Sciences: an International Journal, 179(13), pp. 2232-2248. 

288) Reinschke, K. J., 1988. Multivariable Control A Graph-Theoretic Approach. Lecture Notes 
in Control and Information Sciences ed. s.l.:Springer-Verlag. 

289) Rijnsdorp, J., 1991. Integrated Process Control and Automation. Amsterdam: Elsevier 
Science Ltd. 

290) Romagnoli, J., Alvarez, J. & Stephanopolus, G., 1981. Variable measurement structures 
for process control. International Journal of Control, 33(2), pp. 269-289. 

291) Rosenbrock, H. & Rower, B., 1970. Allocation of poles and zeros. Proceedings of the 
Institution of Electrical Engineers, 117(9), pp. 1879 - 1886. 

292) Safizadeh, M. R., Darus, I. M. & Mailah, M., 2010. Optimal placement of piezoelectric 
actuator for active vibration control of flexible plate. Kuala Lumpur, Malaysia, Malaysia, 
2010 International Conference on Intelligent and Advanced Systems (ICIAS). 

293) Salomon, R., 1996. Re-evaluating genetic algorithm performance under coordinate 
rotation of benchmark functions. A survey of some theoretical and practical aspects of 
genetic algorithms. Biosystems, 39(3), pp. 263-278. 

294) Sandgren, E., 1988. Nonlinear integer and discrete programming in mechanical design. 
Journal of Mechanical Design, 112(2), pp. 223-229. 



255 

 

295) Schweitzer, G. & Maslen, E., 2009. Magnetic Bearings: Theory, Design, and Application 
to Rotating Machinery. Verlag Berlin Heidelberg: Springer. 

296) Seborg, D., Edgar, T., Mellichamp, D. & Doyle, F., 1989. Process Dynamics and Control. 
Third Edition ed. USA: John Wiley & Sons, Inc.. 

297) Seif, Z. & Ahmadi, M.B., 2015. An opposition-based algorithm for function optimization. 
Engineering Applications of Artificial Intelligence, Volume 37, p. 293–306. 

298) Shaker H.R. & Tahavori, M., 2013. Optimal sensor and actuator location for unstable 
systems. Journal of Vibration and Control, Volume 19, pp. 15-20. 

299) Shames, I. & Summers, T., 2015. Rigid network design via submodular set function 
optimization. IEEE Transactions on Network Science and Engineering, 2(3), pp. 84-96. 

300) Shimizu, K. & Matsubara, M., 1985. Directions of Disturbances and Modeling Errors on 
the Control Quality in Distillation Systems. Chemical Engineering Communications, 37(1), 
pp. 67- 9l. 

301) Shinskey, F., 1988. Process Control System Application Design and Tuning. 4, illustrated 
ed. New York: McGraw Hill. 

302) Siljak, D., 1978. Large-scale dynamic systems: stability and structure. illustrated ed. The 
University of Michigan: North-Holland. 

303) Siljak, D., 1991. Decentralized control of complex systems. Boston: Academic Press. 

304) Silva, S., Lopes, V. & Brennan, M., 2006. Design of a control system using linear matrix 
inequalities for the active vibration control of a plate. Journal of Intelligent Material 
Systems and Structures, 17(1), p. 81{93. 

305) Simovici, D. A., 2012. Linear Algebra Tools for Data Mining. s.l.:World Scientific. 

306) Singh, A. & Hahn, J., 2005. Determining Optimal Sensor Locations for State and 
Parameter Estimation for Stable Nonlinear Systems. Ind. Eng. Chem. Res, 44(15), p. 
5645–5659. 

307) Singh, A. & Hahn, J., 2006. Sensor Location for Stable Nonlinear Dynamic Systems:  
Multiple Sensor Case. Ind. Eng. Chem. Res, 45(10), p. 3615–3623. 

308) Singh, T., 2009. Optimal Reference Shaping for Dynamical Systems: Theory and 
Applications. illustrated ed. s.l.:CRC Press. 

309) Sinha, S., Vaidya, U. & Rajaram, R., 2013. Optimal placement of actuators and sensors for 
control of nonequilibrium dynamics. Zürich, Switzerland, 2013 European Control 
Conference (ECC). 

310) Sivasundaram, S., 2004. Advances in Dynamics and Control. Nonlinear Systems in 
Aviation, Aerospace, Aeronautics and Astronautics Series ed. s.l.:CRC Press. 

311) Skelton, R., 1988. Dynamic Systems Control: Linear Systems Analysis and Synthesis. New 
York: John Wiley & Sons. 



256 

 

312) Skogestad, S. & Morari, M., 1987. The Effect of Disturbance Directions on Closed-Loop 
Performance. Industrial and Engineering Chemistry Research, 26(10), pp. 2029-2035. 

313) Skogestad, S. & Postlethwaite, I., 1996. Multivariable Feedback Control. Chichester : 
Wiley. 

314) Skogestad, S. & Postlethwaite, I., 2005. Multivariable Feedback Control:Analysis and 
Design 2nd Edition. In: Chapter 4. s.l.: Chichester: John Wiley & Sons. 

315) Skogested, S., 2000. Plantwide control: The search for the self-optimizing control 
structure. Journal of Process Control, 10(5), pp. 487-507. 

316) Sojoudi, S., Lavaei, J. & Aghdam, A., 2009 (b). Robust Controllability and Observability 
Degrees of Polynomially Uncertain Systems. Automatica, 45(11), pp. 2640-2645. 

317) Sojoudi, S., Lavaei, J. & Aghdam, A., 2009. Robust controllability and observability 
degrees of polynomially uncertain systems. Shanghai, China, 48th IEEE Conference on 
Decision and Control. 

318) Sontag, E. D., 1991. Mathematical System Theory-Kalman’s Controllability Rank 
Condition: From Linear to Nonlinear. In: Chapter 7, The Influence of R. E. Kalman. 
s.l.:Springer Berlin Heidelberg, pp. 453-462. 

319) Sorrentino, F., Bernardo, M. d., Garofalo, F. & Chen, G., 2007. Controllability of complex 
networks via pinning. Physical Review-Series E, 75(4), p. 046103. 

320) Sreeram, V. & Agathoklis, P., 1991. Solution of Lyapunov equation with system matrix in 
companion form. IEE Proceedings D - Control Theory and Applications, 138(6), pp. 529 - 
534. 

321) Stanley, G., Marino-Galarraga, M. & McAvoy, T., 1985. Shortcut Operability Analysis I: 
The Relative Disturbance Gain. Industrial and Engineering Chemistry Process Design and 
Development, 24(4), pp. 1181-1188. 

322) Stephanopoulos, G., 1984. Chemical Process Control: An Introduction to Theory and 
Practice. illustrated, reprint ed. The University of Michigan: Prentice-Hall. 

323) Subbotin, M., 2004. Balancing an Inverted Pendulum on a Seesaw, Santa Barbara: 
University of California. 

324) Summers, T., 2016. Actuator placement in networks using optimal control performance 
metrics. s.l., in to appear, IEEE Conference on Decision and Control. 

325) Summers, T., Cortesi, F. & Lygeros, J., 2016. On submodularity and controllability in 
complex dynamical networks. IEEE Transactions on Control of Network Systems, 3(1), pp. 
1-11. 

326) Summers, T. & Lygeros, J., 2014. Optimal sensor and actuator placement in complex 
dynamical networks. IFAC Proceedings Volumes, 47(3), p. 3784–3789. 

327) Summers, T. & Lygeros, J., 2014. Optimal Sensor and Actuator Placement in Complex 
Dynamical Networks. Cape Town, South Africa, Preprints of the 19th World Congress 
The International Federation of Automatic Control. 



257 

 

328) Summers, T., Shames, I., Lygeros, J. & Dorfler, F., 2015. Topology design for optimal 
network coherence. s.l., European Control Conference (ECC). IEEE, p. 575–580. 

329) Sung, Y., 2002. Modelling and control with piezo actuators for a simply supported beam 
under a moving mass. Journal of Sound and Vibration, 250(4), pp. 617-626. 

330) Sun, J. & Motter, A., 2013. Controllability transition and nonlocality in network control. 
Physical Review Letters, 110(20), p. 208701. 

331) Sweeney, R., Demetriou, M. & Grigoriadist, K., 2005. Hinf control of a piezo-actuated 
flexible beam using an analytical bound approach. s.l., Proceeding of the 2005 American 
Control Conference, pp. 2505-2509. 

332) T.H.Summers & J.Lygeros, 2014. Optimal Sensor & Actuator Placement in Complex 
Dynamical Networks. Cape Town, South Africa, s.n. 

333) Takewaki, I., 1997. Optimal Damper Placement for Minimum Transfer Functions. 
Earthquake Engineering and Structural Dynamics, John Wiley & Sons, Ltd, 26(11), p. 
1113–1124. 

334) Takewaki, I., 2000. Optimal damper placement for critical excitation. Probabilistic 
Engineering Mechanics, 15(4), pp. 317-325. 

335) Takewaki, I., Yoshitomi, S., Uetani, K. & Tsuji, M., 1999. Non-monotonic optimal damper 
placement via steepest direction search. Earthquake Engineering & Structural Dynamics, 
John Wiley & Sons, Ltd., 28(6), p. 655–670. 

336) Tang, Y., Gao, H., Zou, W. & Kurths, J., 2012. Identifying controlling nodes in neuronal 
networks in different scales. PLOS ONE, 7(7), p. e41375. 

337) Tarokh, M., 1992. Measures for controllability, observability, and fixed modes. IEEE 
Trans. Auto. Contr, Volume 37, pp. 1268-1273. 

338) Toan, N. & Georges, D., 2007. An energy approach to optimal selection of 
controllers/sensors in power system. Singapore, IEEE, pp. 106-111. 

339) Toscano, R., 2013. Structured Controllers for Uncertain Systems: A Stochastic 
Optimization Approach. illustrated ed. Saint-Etienne, France: Springer Science & 
Business Media. 

340) Trajkov, M. & Nestorvic, T., 2012. Optimal Placement of Piezoelectric Actuators and 
Sensors for Smart Structures.. Porto/Portuga, 15th International Conference on 
Experimental Mechanics. 

341) Tzoumas, V., Rahimian, M.A., Pappas, G.J. & Jadbabaie, A., 2016. Minimal actuator 
placement with bounds on control effort. IEEE Transactions on Control of Network 
Systems, 3(1), pp. 67-78. 

342) Tzoumas, V., Rahimian, M.A., Pappas, G.J. & Jadbabaie, A., 2015. Minimal Actuator 
Placement with Optimal Control Constraints. Chicago, s.n. 



258 

 

343) Václavek, V. & Loučka, M., 1976. Selection of Measurements Necessary to Achieve 
Multicomponent Mass Balances in Chemical Plant. Chemical Engineering Science, 31(12), 
pp. 1199-1205. 

344) Van den Berg, F., Hoefsloot, H., Boelens, H. & Smilde, A., 2000. Selection of optimal 
sensor position in a tubular reactor using robust degree of observability criteria. 
Chemical Engineering Science, 55(4), pp. 827-837. 

345) VanderVelde, W. E. & Carignan, C. R., 1982. Placement of Control System Actuators. 
Arlington, VA, USA, IEEE, pp. 7-15. 

346) Verhulst, P., 1845. Mathematical Researches into the Law of Population Growth 
Increase. Nouveaux Mémoires de l'Academie Royale des Sciences et Belles-Lettres de 
Bruxelles, Volume 18, pp. 1-42. 

347) Verhulst, P., 1847. Deuxième mémoire sur la loi d'accroissement de la population. 
Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 
Volume 20, pp. 1-32. 

348) Vilnay, O., 1981. Design of modal control of structures. Journal of Engineering 
Mechanics, 109(1), pp. 907-915. 

349) Viswanathan, C. & Longman, R., 1983. The determination of the degree of controllability 
for dynamic systems with repeated eigenvalues. The American Institute of Aeronautics 
and Astronautics (AIAA), 50(part II), pp. 1091-1111. 

350) Viswanathan, C., Longman, R. & Likins, P., 1979. A definition of the degree of 
controllability- a criterion for actuator placement. Dynamics and control of large flexible 
spacecraft; Proceedings of the Second Symposium, Blacksburg, Va., June 21-23, 1979. 
(A80-31656 12-18) Blacksburg, Va., Virginia Polytechnic Institute and State University, 
pp. 369-384. 

351) Viswanathan, C. N., Longman, R. W. & Likins, P. W., 1984. A degree of controllability 
definition : Fundamental concepts and application to modal systems. Journal of 
Guidance, Control, and Dynamics, pp. 222-230. 

352) Vrugt, J., Robinson, B. & Hyman, J., 2009. Self-adaptive multimethod search for global 
optimization in real-parameter spaces. IEEE Transactions on Evolutionary Computation, 
13(2), p. 243–259. 

353) Waldraff, W., Dochain, D., Bourrel, S. & Magnus, A., 1998. On the use of observability 
measures for sensor location in tubular reactor. Journal of Process Control, 8(5-6), pp. 
497-505. 

354) Wal, M. v. d. & Jager, B. d., 2001. A review of methods for input/output selection. 
Automatica, 37(4), pp. 487-510. 

355) Wang, Q. & Wang, C., 2001. A controllability index for optimal design of piezoelectric 
actuators in vibration control of beam structures. Journal of Sound and Vibration, 242(3), 
p. 507–518. 



259 

 

356) Wang, W., Ni, X., Lai, Y. & Grebogi, C., 2012. Optimizing controllability of complex 
networks by minimum structural perturbations. Physical Review E 85, 026115, 85(2), pp. 
026115-1-5. 

357) Wicks, M. & Decarlo, R., 1990. Gramian Assignment Based on the Lyapunov Equation. 
IEEE Transactions on Automatic control, 35(4), pp. 465-468. 

358) Wicks, M. & DeCarlo, R., 1991. Computing the distance to uncontrollable system. IEEE 
Transactions on Automatic Control, 36(1), pp. 39-49. 

359) Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics, Volume 1, p. 
80–83. 

360) Wolpert, D. & Macready, W., 1997. No free lunch theorems for optimization. IEEE 
Transactions on Evolutionary Computation, 1(1), pp. 67-82. 

361) Wu, A., Duan, G. & Yu, H., 2006. On Solutions of the Matrix Equations XF − AX = C and XF 
− AX¯ = C. Applied Mathematics and Computation, Volume 183, pp. 932-941. 

362) Wu, B. & Ou, .., 1997. Optimal placement of energy dissipation devices for three-
dimensional structures. Engineering Structures, 19(2), pp. 113-125. 

363) Xiao, C., Feng, Z. & Shan, X., 1992. On the solution of the continuous-time Lyapunov 
matrix equation in two canonical forms. IEE Proceedings D - Control Theory and 
Applications, 139(3), pp. 286-290. 

364) Xiao, C., Feng, Z. & Shan, X., 1992. On the solution of the continuous-time Lyapunov 
matrix equation in two canonical forms. IEE Proceedings D - Control Theory and 
Applications, 139(3), pp. 286 - 290. 

365) Yang, F., Xiao, D. & Shah, S., 2009. Optimal Sensor Location Design for Reliable Fault 
Detection in Presence of False Alarms. Sensors, 9(11), p. 8579–8592. 

366) Yang, J. & Chen, G., 2010 b. Actuator Placement and Configuration Direct Optimization in 
Plate Structure Vibration Control System. s.l., International Conference on Measuring 
Technology and Mechatronics Automation. 

367) Yang, J. & Chen, G., 2010. Optimal Placement and Configuration Direction of Actuators in 
Plate Structure Vibration Control System. Wuhan, China, 2010 2nd International Asia 
Conference on Informatics in Control, Automation and Robotics (CAR). 

368) Yan, G. et al., 2012. Controlling complex networks: How much energy is needed?. 
Physical Review Letters, 108(218703), pp. 1-9. 

369) Yan, G. et al., 2015. Spectrum of controlling and observing complex networks. Nature 
Physics, Volume 11, p. 779–786. 

370) Yang, X., 2008. Nature-Inspired Metaheuristic Algorithms. illustrated ed. Cambridge, UK: 
Luniver Press. 

371) Yang, X. S., 2010. Test problems in optimization, in: Engineering Optimization: An 
Introduction with Metaheuristic Applications. Cambridge: John Wiley & Sons. 

372) Yao, X. & Liu, Y., 1996. Fast Evolutionary Programming. MIT Press, s.n. 



260 

 

373) Yao, X., Liu, Y. & Lin, G., 1999. Evolutionary programming made. IEEE Transactions on 
Evolutionary Computation, 3(2), pp. 82 - 102. 

374) Yoshizawa, T., 2012. Stability Theory and the Existence of Periodic Solutions and Almost 
Periodic Solutions. illustrated ed. New York: Springer Science & Business Media. 

375) Yue, H., Deng, Z. & Tzou., H., 2008. Optimal actuator locations and precision micro 
control actions on free paraboloidal membrane shells. Communications in Nonlinear 
Science and Numerical Simulation, Volume 13, pp. 2298-2307. 

376) Zhang, H. & Ding, F., 2013. On the Kronecker Products and Their Applications. Journal of 
Applied Mathematics, 2013(Article ID 296185), p. 8 pages. 

377) Zhang, X. & Erdman, A., 2006 . Optimal placement of piezoelectric sensors and actuators 
for controlled flexible linkage mechanisms. Trans. ASME., J. Vib. Acoust., 128(2), pp. 256-
260. 

378) Zhou, B. & Duan, G., 2005. An Explicit Solution to the Matrix Equation AX − XF = BY. 
Linear Algebra and its Applications, Volume 402, pp. 345-366. 

379) Zhou, K. & Doyle, J., 1996. Essentials of Robust Control. New Jersey: Prentice Hall. 

380) Zhou, K., J.C. Doyle & Glover, K., 1997. Robust and optimal control. illustrated ed. Upper 
Saddle River, NJ: Prentice Hall. 

381) Zhou, K., Salomon, G. & Wu, E., 1999. Balanced realization and model reduction for 
unstable systems. International Journal of Robust and Nonlinear Control, pp. 183-198. 

 

  



261 

 

Appendix chapter 3: 

 

Proposition : (Parrilo, 2003), (Parrilo, 2000) A multivariate polynomial ( )p x   in n variables 

and of degree 2d is a sum of squares if and only if there exists a real symmetric positive 
semidefinite matrix Q such that: 

( ) Tp x z Qz  

where z is the vector of monomials of degree up to d, we call matrix Q the Gram matrix. 

1 2 1 2[1, , , , , , , ]d T
n nZ x x x x x x    

Given Gram matrix Q, of    rank Q t , we can construct polynomial 1 2, , , th h h , such that: 

2

1

( ) ( )
t

i
i

p x h


  

Proof: 

If 2

1

( ) ( )
t

i
i

p x h


  is true and is SOS, then as above we take TQ AA , where A  is the matrix 

whose columns are the coefficients of the ih s. 

Now suppose there exist a real symmetric psd matrix Q, such that ( ) Tp x z Qz  and rank(Q)=t, 

since Q is real symmetric of rank t, there exists a real matrix V  and a diagonal                                

1( , , ,0, 0)tD diag d d   , 0id   such that TQ V DV , since Q is psd we have 0id  , 

then: 

( ) T Tp x z V DVz  

Now considering , , 1,i jV v i t   , we have: 

,
1

i

k

i i i j
i

h d v z


    

It follows that 2

1

( ) ( )
t

i
i

p x h


 . 

 
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Appendix chapter 5: 

 

Proposition: In an LTI system with no undamped modes, the controllability Gramian in the 
frequency domain is defined as6: 

1 11 ( ) ( )
2

T T
cW j I A BB j I A d  


  


                                       

And it can be expressed as the block diagonal form: 

0
0

s T
c

u

W
W V V

W
 

  
 

 

Proof: 

Consider the steady state definition of controllability Gramian in the time domain: 

0
(0, )

TAt T A t
cW e BB e dt


    

Then based on the Parseval’s Theorem we can convert the definition above to the statement 
below: 

1 11 ( ) ( )
2

T T
cW j I A BB j I A d  


  


     

The statement above is clear for the stable systems, but let’s investigate what happens if the 
system has some eigenvalues on the right half plane.  

Through non-singular similarity transformation V (the eigenvectors’ matrix) the LTI system is 
decomposed into stable and anti-stable diagonal blocks as it is explained before: 

10
,

0
s

u

A
V AV

A
 

    
 

 

By imposing the similarity transformationV we will obtain: 

1 1

0

0

(0, )

(0, )

T T

T

V V t T V V t
cnew new new

t t T T
cnew new new cnew c

W e VB B V e dt

W V e B B e dtV VW V W

   

  

 

    




                

Using the Parseval’s Theorem in the frequency domain we have: 

1 11 ( ) ( )
2

T T T
c new newW V j I B B j I d V  


  


                                  

                                                             
6 For the simplicity we use the same symbol for the controllability Gramian in the frequency domain 
and the time domain. 
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Considering the clockwise contour   that encircles the right-half plane, we will have: 

1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )1
2 ( ) ( ) ( ) ( )

T T

T T

T T
s s s s s s u u T

c T T
u u s s u u u u

sI A B B sI A sI A B B sI A
W V dsV

sI A B B sI A sI A B B sI A

   

   


      
  

       
  

Clearly off-diagonal blocks both are analytic in the right half plane (RHP) then their integral 
would be zero. 

And the diagonal blocks both are stable. The stability of the first block is clear regarding this fact 
that it represents the stable modes of the system. For the second diagonal block that is related 
to the anti-stable subsystem, one can readily prove that: 

1 1 1 1

1 1 1 1

( ) ( ) ( ( )) ( ( ))

... ( ( )) ( ( )) ( ( )) ( ( ))

T T

T T

s s
T T

u u u u u u u u

T T
u u u u u u u u

sI A B B j A d sI A B B sI A ds

sI A B B sI A ds sI A B B sI A ds

 


   

 

   

 

         

           

 

 

 

 
 

 

Example (5.4): 

13 13 1 2 3

1

( )

-0.0000 + 1.2900i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -0.0000 - 1.2900i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0

s s s s

s

A a a a

a

   



000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0001 + 0.4826i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0001 - 0.4826i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0001 + 0.4835i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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2

0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000

sa 

 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
  -0.0001 - 0.4835i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -0.0152 + 0.0336i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0152 - 0.0336i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0221 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0112 + 0.0228i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3

   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0

sa 

000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
  -0.0112 - 0.0228i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -0.0071 + 0.0212i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.0071 - 0.0212i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 5 5

462.7000         0           0         0         0
     0      191.4000         0         0         0
     0         0        243.4000       0         0
     0         0         0          272.4000

uA  
     0

     0         0         0         0      284.5000

 
 
 
 
 
 
  
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 13 1

 -0.0172    0.0124 
 -0.0172    0.0124
 -1.0416    0.1889 
 -1.0416    0.1889 
 -0.1211  -1.0076 
 -0.1211   -1.0076 
 -3.7286   3.0158
 -3.7286   3.0158 
 -1.4743  -0.9178
 -1.4743   -0.9178 
 0.7778   

sB  

-0.0166    -0.0136
-0.0166    -0.0136
1.2417      0.2170 
1.2417      0.2170
0.1456    -1.2523
0.1456    -1.2523
-3.4040   -2.4204 
-3.4040   -2.4204 
-0.2739   2.9

 0.6500 
 0.7778    0.6500 
 -4.6704   2.8426 

960 
-0.2739   2.9960 
1.2099    1.0762 
1.2099    1.0762 
-4.9413   -4.7850 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 5 5

2.6764   -0.5699     6.9452     -0.3500    
8.7810  -21.0600    0.5281     33.6300
-44.7700  -16.00   -53.4300     1.0640
-50.9400   -8.020    65.9800   13.8900
34.1700  -55.910   -50.3000  -44.6800

uB 













 
 
 

  

 

 
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Appendix chapter 7: 

 

Lemma: For any matrix , , , if and only if the minimum singular value of

is greater than zero, i.e. . 

Proof: 

Based on singular value decomposition (Gene H. Golub, Charles F. Van Loan, 1996), (Horn, Roger 
A and Johnson, Charles R, 2012), (Marcus, M. and Minc, H, 1988), for any matrix  has a 

factorization of the form *U V , where is a unitary matrix, is a rectangular 
diagonal matrix with non-negative real numbers on the diagonal, and is a unitary matrix. 

The diagonal entries ’s of are the singular values of . 

Now assume that then clearly , which means that all singular values 

of must be greater than zero, (i.e. ). Conversely, if minimum singular value of is 

greater than zero, then the number of nonzero columns of , which shows the rank of would 
be equal to , i.e. , and the Lemma is proved.  

 

Theorem: If is the Gram matrix of , then . 

Proof: (Mirsky, 2012) 

Let be a vector such that . Then and so we have , i.e. 

. Therefore, we have . Conversely, if satisfies the relation , then clearly

. It follows that the homogeneous system and are equivalent. Hence,
 where is the number of columns of . The proof of the Theorem 

is completed. 

 

Proposition: Let ܤ = [ܾଵ, ܾଶ, … , ܾ௠], ܾ௜ ∈ ℝ௡×ଵ, . Then, ( )rank B m if and only if the 

Gram matrix of is non-singular, i.e. . 

Proof: (Peter Lancaster, Miron Tismenetsky, 1985) 

Assume ( )rank B m , i.e. [ܾଵ, ܾଶ, … , ܾ௠] are linearly dependent, let  be a 

nonzero vector such that
1

0
m

i i
i

a b


 then for all j, 
1

. 0
m

i j i
i

a b b


 so Ta is in the kernel of the 

Gram matrix. Conversely, if the Gram matrix is singular, then there exists a nonzero vector

1 2[ , , , ]ma a a a  , such that
1

. 0
m

i j i
i

a b b


 , let
1

0
m

i i
i

w a b


  Then w is orthogonal to every

n mA  m n ( )rank A m

A 0m 

n mA 

U n n  n m
V m m

i  A

 rank A m ( )rank m 

A 0m  A
 A

m ( ) ( )rank rank A m  

G A ( ) ( )rank G rank A

x * 0A Ax  * * 0x A Ax  * *( ) 0A x Ax 
2 0Ax  0Ax  x 0Ax 

* 0A Ax  0Ax  0G x 

( ) ( )n rank A n rank G   n A

m n

B 0G 

1 2[ , , , ]ma a a a 
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, and therefore orthogonal to itself. That is, then , thus [ܾଵ, ܾଶ, … , ܾ௠]are 

linearly dependent, and ( )rank B m . 

 

 

 

 

jb . 0w w  0w 


