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ABSTRACT 

Most available research on analysis of reinforced concrete structures under impact 

loads focuses on using continuum models such as membrane and solid elements, 

which renders the problem expensive in terms of computational effort. Therefore, a 

gap exists in the available literature, as no simple finite element has sufficient 

capabilities to deal with impact and shock problems while considering detailed local 

parameters. 

Meanwhile, the objective of this research is to develop several non-linear planar 

finite element models capable of accurately predicting the response of reinforced 

concrete structures subjected to impact dynamic loading. A mixed and displacement-

based element that use an explicit time integration method and consider large 

deformations are being developed together with a third force-based first-order element 

that employs the explicit time integration method. A new algorithm that eliminates the 

need for iterations at the element level is proposed. The strain rate effect is accounted 

for in the material constitutive models. 

The developed explicit fibre beam models, particularly the force-based and mixed 

elements, represent a simple yet powerful tool for simulating the nonlinear complex 

effect of impact loads on structures accurately while using very few finite elements. 

The elements can particularly model fibrous slender reinforced concrete structures and 

steel concrete panels under impact loading. A simplified procedure is also developed 

to employ the planar elements in solving three-dimensional problems where the load 

is applied in the out-of-plane direction. The proposed elements are validated using 

benchmark experiments available from the literature. 



 

xx 
 

The results of the numerical studies proved the newly developed elements are 

capable of providing accurate and computationally efficient estimates of structural 

demands under severe impact loading conditions.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview  

The finite element method is widely used for the analysis of structures under 

different loading conditions. The creation of the finite element dates back to 1956 

when Turner et al., (1956) introduced the method for the analysis of structures in a 

project funded by the Boeing summer faculty program (Clough, 1990). The method 

has already proven its feasibility and computational efficiency in many aspects of 

engineering problems through accurate simulation of complex structures and its ease 

of use. Yet, the development of more adequate and advanced finite element 

techniques is still ongoing in many branches of engineering.  

In the same way, the nonlinear analysis of reinforced concrete (RC) structures is 

deemed interesting to many researchers and developers over the last few decades. 

Although many commercial software packages have already explored this area and 

have presented several numerical elements and algorithms for the modelling of 

numerous structures, still many advanced algorithms and simulation techniques are 

being developed in several universities and research centres around the word. These 

new algorithms attempt to deal with complex geometry, comprise different material 

properties and simulate global and local effects with higher accuracy. The resulting 

elements are employed in the solution of complex problems that cannot be solved 

using modest straightforward analytical methods or other rudimentary finite element 

models.  
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1.2 Problem statement 

The main purpose of this PhD research is to develop a new finite element model 

able to accurately simulate complex reinforced concrete structures such as composite 

steel concrete (SC) beams and panels under the effect of impact dynamic loading. 

Currently there is a clear gap in the available literature, as no simple beam element 

has sufficient capabilities to deal with impact and shock problems while considering 

specific analysis details. The reason of this gap can be attributed to the fact that most 

available research focuses on using continuum models such as membrane and solid 

elements, which renders the problem expensive in terms of computational effort. 

Subsequently there is an urge to close the gap that presently exists in the 

literature. For this reason, this PhD research offers to the engineering community 

adequate, accurate and simple finite element models that focus on impact and shock 

problems for RC structures. These models can contribute to increasing the life safety 

of reinforced concrete structures. They can also be used to suggest suitable design 

methods to help prevent possible collapse and failure due to impact loading. 

Therefore, the presented models will use a fibre-based element formulation to 

simulate the nonlinear behaviour of both steel and concrete components of several 

reinforced concrete structures and particularly steel concrete beams and panels. In 

addition to this, advanced material models will be employed to capture the accurate 

nonlinear behaviour of the systems.  

The proposed elements will also use an explicit dynamic analysis technique 

known for its superiority in short term dynamic problems to avoid ordinary 

convergence problems associated with the traditional implicit technique. 

Additionally, in order to include large displacement and rotations deformations, 
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second order effects, that probably accompany impact problems, will be accounted 

for using the geometric stiffness matrix technique.  

The developed elements will also model different types of fibres that can be 

used in the concrete mix such as steel fibres and Nano fibres allowing for a higher 

level of accurate simulation of the pre and post cracking behaviour of fibre-

reinforced concrete members under impact loading. As a result of this consideration, 

the elements will be able to cope with the recent advancements in concrete 

manufacturing technology.  

Moreover, since impact problems are always accompanied by a change in the 

mechanical properties of the resisting materials, the strain rate effect in steel and 

concrete materials will be studied using available tests from the literature. Different 

dynamic amplification factors (DIF) will be investigated and implemented in the 

elements’ material models for accurate prediction of the modified stress strain 

curves. 

The present research will particularly focus on the analysis of composite steel 

concrete panels recently adopted in nuclear containment structures, allowing for a 

safer design for nuclear buildings under expected severe loads. The validation of the 

new elements will be accomplished by comparing their results with a considerable 

number of experiments available from the literature to guarantee the reliability of the 

developed elements. 

In summary, the present work offers to the engineering community a strong and 

accurate tool to express the behaviour of such important structures under impact and 

dynamic loading. Figure (1.1) shows the four new elements presented in this 

research. The developed elements are all plane flexural beam-column elements that 
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consider an explicit time integration scheme, which accounts for the strain rate effect 

and can consider large displacement and rotations. The four elements will be 

developed, discussed and validated in detail in the next parts of this report. Several 

impact and shock problems from the literature will be simulated using the new fibre 

beam elements to demonstrate the capabilities of the improved element and their 

abilities to model the nonlinear behaviour of normal concrete, and concrete 

engineered with nanoparticles under impact loads. 
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Figure 1.1: Flowchart diagram of the four proposed fibre beam elements. 
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1.3 Objective and scope 

The main aim of this research is to develop several non-linear finite element 

models capable of accurately predicting the response of reinforced concrete 

structures subjected to impact dynamic loading. The available literature lacks a 

simple beam element that has sufficient capabilities to deal with impact and shock 

problems while accounting for specific analytical details. In particular, existing 

elements are based on implicit algorithms, which are not computationally robust, and 

the development of explicit methods was not tailored for fibre beam elements. In 

addition, the effect of large deformation requires the use of fine meshes, which 

renders the problem computationally demanding. Further, current models do not 

make use of advanced material models, particularly fibre-reinforced concrete, in the 

case of high strain rate loadings. The proposed elements will seek to resolve these 

shortcomings, which will significantly contribute to enhancing the capabilities of 

fibre beam-column elements and extend their use in modelling impact and dynamic 

problems. 

The different tasks of this study needed to accomplish the given aims are:  

- To develop a force-based element that employs an explicit time integration 

method. 

- To develop a displacement-based element that considers large deformations and 

uses an explicit time integration method. 

- To develop a mixed element that considers large deformations and uses an 

explicit time integration method. 

- To consider the strain rate effects in the material constitutive models of the 

developed elements. 



7 
 

- To analyse fibrous concrete members subjected to impact loading. 

- To establish an efficient and simple solution strategy for utilizing the fibre 

beam elements in grillage analysis of three-dimensional structures under 

different loading. 

- To simulate the behaviour of steel concrete panels under impact loading using 

fibre beam elements. 

- To investigate the most effective method of increasing the safety of SC panels 

to resist impact loading. 

All the established elements in this research will be validated using benchmark 

experimental results available from the literature. 

 

1.4 Structure of the thesis 

The present study is organization as follows: 

Chapter 1 presents the introduction, the problem statement, the objective and scope 

of the work and the structure of the thesis.  

Chapter 2 presents a thorough literature review of previous research studies and the 

contribution of this PhD in closing the knowledge gap. 

Chapter 3 describes the formulations of large deformations and the method of 

implementing them in the displacement-based and mixed-based fibre beam elements. 

The material models used within the elements are also presented and the effect of 

tension softening stiffness on the second order analysis is emphasised. Many 

experiments of slender structures are then used to calibrate the elements. 
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Chapter 4 deals with the explicit approach employed for short-time duration 

problems and compares it with the classical implicit analysis technique. The chapter 

also introduces the consideration of the strain rate effect in the material models. The 

developed explicit elements are validated against different impact experiments. 

Chapter 5 displays the use of the fibre beam elements in the grillage analysis of 

different structures under cyclic and dynamic loading. A simplified and innovative 

technique will be used to solve three-dimensional (3D) problems using the 

developed planar elements. A numerical study is also presented to determine the 

most effective parameter in increasing the resistance of steel concrete panels under 

impact and shock loading. 

Finally, chapter 6 presents the summary and conclusion of the current research along 

with possible future research work.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

A systematic literature review is presented herein that includes numerous 

contributions of other researchers in the last few years. Since the present research 

covers several areas, the literature review will be divided into several sections where 

each section will focus on a specific branch of the research. All units are connected 

to each other through the global objective of the work, which is the development of a 

fibre beam element able to perform dynamic impact analysis using explicit time 

integration technique while considering strain rate and second order effects.   

The literature review aims to discuss recent developments in the nuclear 

infrastructure field, particularly steel-concrete construction, and their accurate 

modelling techniques. For this task, fibre beam elements proved to be more 

numerically efficient than continuum elements, especially when considering natural 

hazards such as earthquake, or impact and blast loads. Accordingly, three main areas 

from the literature will be presented in this chapter as follows: 

- Nuclear structures 

- Fibre models for beams 

- Material constitutive models 
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2.2 Nuclear structures 

The importance of nuclear infrastructure is increasing as many countries are 

investing large amount of money to build new nuclear power plants. Many countries 

are planning to make huge investments in this field in order to produce vast amount 

of electricity (World-nuclear.org, 2017). Worldwide, as of January 18, 2013, in 31 

countries there exist 437 nuclear power plant units with an installed electric net 

capacity of about 372 GW that are in operation and 68 plants with an installed 

capacity of 65 GW that are in 15 countries under construction (Marion 

Bruenglinghaus, 2015). The UK has recently committed to a long-term nuclear 

programme and has recently signed a contract worth £14 Billion with a French 

company to construct two new reactors (Mzconsultinginc.com, 2013). 

 

2.2.1 Safety of nuclear structures 

As the safety of nuclear structures is vital, more research linked to this field is 

required as nuclear power plants can be subjected to severe dynamic loads such as 

aircraft impact, blast load due to possible terrorist attacks or explosions due to 

internal problems in the reactor.  

Well-known nuclear structures were subjected to hazard risks many times 

before, which led to terrible disasters and strong damage to the surrounding 

environment and people’s lives. Some of the widely known disasters are: 

- The blast at Marcoule nuclear power plant in France (2011) (IAEA-Topic: 

Banning atomic energy, 2016) 
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- The earthquake and tsunami that destroyed the active reactor plant in Fukushima, 

Japan (2011) (Lipscy et al., 2013) 

- The Chernobyl nuclear power plant explosion in Ukraine (1986) (Chernobyl: 

Assessment of radiological and health impacts, 2002) 

Improving the safety of these types of structures can be achieved by adopting 

safer and more resistant structural systems such as steel concrete panels. The new 

systems will still need to be tested and modelled with advanced computer software to 

ensure its reliability and capability to resist impact loads. 

The present PhD focuses on developing new elements able to model steel 

concrete beams and panels under the effect of impact loading, as discussed next. The 

beam elements can be used to create a full grillage to model the whole structure and 

can be used in modelling a particular area of the building by studying a particular 

strip under a specific load.  

 

2.2.2 Steel concrete beams and panels 

Composite steel-concrete beams and panels were recently adopted in nuclear 

containment structures. The systems consist of a thick concrete core, sandwiched 

between two steel plates. The steel plates are regularly connected by shear 

connectors (anchors) spaced in both directions as shown in Figure (2.1). The system 

usually does not contain any horizontal, vertical reinforcement or any stirrups. 
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Figure 2.1: Steel concrete steel panel, Figure from Liew and Wang (2011). 

 

These panels are casted in precast yards and only welded on site. One big 

advantage of this system is the use of the steel plates as formwork during the 

construction, which accelerates the building process. There is also no need to use a 

steel liner as the steel plates replace them, which is an economical benefit of 

adopting the SC system. 

One of the leading manufacturer of steel concrete panels in the UK are TATA 

steel (Tatasteelconstruction.com, 2017). They produce the so-called Bi-Steel 

(steel/concrete composite panels). Bi-steel was used in several projects in the UK 

including the eight-storey office building in St Paul's Square in Liverpool and the 18-

storey tower of the Birmingham-1 student halls of residence in south-west 

Birmingham. 

The steel concrete beams and panels are known to be an excellent protective 

structure in resisting blast and impact loads. SC beams are commonly used in 

residential, industrial and commercial buildings. The SC panels are also widely used 

especially in offshore structures, liquid containments, blast walls in factories and 

basements, caissons, tunnels and in shear walls and cores of multi-storey buildings. 

The SC panel system was lately used in nuclear structures for the construction of the 

new generation of nuclear containment infrastructures namely the AP1000 



13 
 

Pressurized Water Reactor designed and sold by Westinghouse Electric Company. 

The SC panel system was adopted in the Shield Building Cylindrical Wall. Its design 

was the first Generation III+ reactor to receive final design approval from the NRC 

(Westinghousenuclear.com, 2017). 

Several researchers have tested SC beams and panels experimentally. Liew and 

Wang (2011) tested six steel-concrete-steel sandwich composite plates under field 

blast Load. Each specimen has a length of 1200 mm and width of 495 mm. The 

concrete core thickness was 70 mm and the thickness of the faceplates varied 

between 3 and 4 mm. An interesting finding was concluded that the steel faceplate 

thickness is more essential in increasing the resistance of SC panels under blast 

loads. 

Sohel et al. (2011) discussed the importance of J-hook connectors in improving the 

punching and impact resistance, by avoiding local buckling, of the steel plates of SC 

panels. They found that the J-hook connectors are effective in resisting the transverse 

and vertical shear for SC panels subjected to blast loads. Later, Sohel and Liew 

(2014) used an instrumented drop-weight impact test machine to test eight SC 

sandwich slabs measuring 1200 × 1200 mm2. The concrete core varied between 80 

and 100 mm while the steel plate thickness varied between 4, 6 and 8 mm. J-hook 

shear connectors, spaced 100mm in both directions, were used to connect the two 

steel plates for all specimens. The authors found that J-hook connectors are one of 

the major controlling parameters that affect the punching resistance of the SC panels 

when subjected to impact load. They concluded that the use of J-hook shear 

connectors increases the shear resistance of the SC panels and offers an additional 

resistance to prevent tensile failure of the faceplates. 
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Similarly, Hashimoto et al. (2005) carried out an experimental programme on 

the behaviour of concrete panels with steel plate subjected to projectile impact. 40 

specimens of 750mm square were tested. The experiment concluded that the steel 

plate is less effective at impact resistance when used on the front face of concrete 

panel, as opposed to the rear face. 

Although experimental research is important to determine the accurate 

behaviour of the system and to form a deep knowledge about its variables, it is still 

expensive and takes a considerable amount of time to perform a comprehensive 

research.  On the other hand, numerical simulation and analysis helps in 

investigating the effect of each variable on the system and in studying an unlimited 

number of cases while saving time and money. Therefore, accurate modelling of the 

system increases the confidence in adopting it and consequently helps its 

development and the spread of its use. Besides, the continuous improvement of these 

panels is necessary in order to comply with further demand on safety and reliability 

related to nuclear structures. That’s why, in this dissertation, the steel concrete panel 

behaviour will be examined under the effect of impact loading using the newly 

developed finite element models which are based on a fibre beam element 

formulation.  

Furthermore, the behaviour of steel-concrete panels and beams can be enhanced 

with the use of different types of fibres, such as carbon Nano fibres. The presence of 

these fibres in the concrete core of the steel concrete panels will be included in the 

models and investigated. 

Previous efforts were made to analyse the steel-concrete panel systems under 

impact and dynamic loading. Anandavalli et al. (2011) analysed steel-concrete 

composite panels under blast loading using ANSYS software. Two models were 
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created. In the first one, solid elements were used to model the concrete core, the 

steel plates and the shear connectors. In the second model, shell elements were used 

to model the steel plates, while solid elements were employed for the modelling of 

the concrete core and finally shear connectors were introduced using link elements. 

Kong et al. (2012) performed a numerical simulation for SC panels under impact 

loading using LS-DYNA software. A 10 mm mesh was used to model the concrete 

core and the steel faceplates. The concrete was simulated using constant stress solid 

elements while the faceplates were modelled using Belytschko-Tsay shell elements. 

The reinforcing steel was presented using the Hughes-Liu beam element.  Similarly, 

Anandavalli et al. (2012) numerically simulated SC panels subjected to blast 

loading. In order to reduce the number of degrees of freedom, concrete core, steel 

plates; and shear connectors were modelled using solid, plate and link elements, 

respectively. Using this simplified modelling approach, the authors found that the 

diameter of the shear connector has insignificant effect on the peak response of the 

SC panels. 

 Whereas, Zhu et al. (2013) used ANSYS/ LS-DYNA programmes to analyse 

SC panels under scaled-aircraft Impact. The concrete was modelled using constant 

stress solid element with large deformation, the reinforcement was modelled using 

beam elements. The damage identified at the back surface of the SC panel was 

greater than the one at the front surface, which concludes that the rear face steel plate 

is more effective in stopping the perforation and the scattering of fragments under 

impact force. 

Later, Sadiq et al. (2014) analysed the impact of an aircraft on SC panels using 

the finite element programmes ANSYS and LS-DYNA. Three-dimensional finite 

element models of the SC panels, with different core thicknesses, were created. The 
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concrete was modelled using an 8-nodes solid element. The steel plates were 

introduced using a 4-node Belytschko-Tsay shell element. The shear studs were 

modelled using a 3-node beam element following the formulation of Hughes-Liu. 

The aeroplane was also simulated using solid and shell elements. The study found 

that the performance of LS-DYNA Winfrith concrete model in simulating the 

nonlinear response of concrete in case of large deformations and high strain rates is 

better when compared with LS-DYNA concrete constitutive model (CSCM).  

On the other hand, for the steel-concrete beams, Sohel et al. (2015) modelled 

numerically lightweight steel‐concrete‐steel sandwich composite beams under 

impact loading using LS-DYNA software. The projectile, shear connectors and 

concrete core were meshed with 8-nodes solid elements. The steel plates were 

presented in the model using 8-nodes thick-shell elements. Automatic surface-to-

surface contact option was used to model the contact interfaces between the steel 

plates and the concrete, the projectile and the steel plate, the steel plate and the 

support, and finally the studs and the concrete core. A beam element was used to 

model the interconnection of the J-hooks connectors. The pair of J-hook connectors 

were modelled using a bar spring model. The beam was supported on two rigid steel 

bars modelled using shell elements. The strain-rate effect was considered in the 

material models using a dynamic increase factor to enhance the material strength. 

The numerical three-dimensional model showed good agreement with the 

corresponding test results in terms of deflections, forces and failure modes. In the 

following sections, the fibre beam models types and formulations will be presented 

and discussed. 
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2.3 Fibre models for beams 

The fibre beam model is a simplified form of the finite element method and a 

more advanced numerical procedure than the plastic hinge models. For lumped 

models, the nonlinearity of the member is concentrated at the ends of the beam 

elements and the body is modelled with elastic properties. Consequently, in the case 

of the spread of plasticity, errors are expected; while in distributed nonlinearity 

models, the element behaviour is calculated from the integration of the response of 

the sections and the material nonlinearity can occurs at any section along the element 

length. Therefore, numerical models based on the distributed nonlinearity 

assumptions are the most accurate approaches that express the nonlinear behaviour 

of reinforced concrete structures (Rahai and Nafari, 2013).  

The fibre beam method is known to be an advanced computational technique 

with reduced computational cost and results in a convenient execution time. The 

method requires less storage capacity and gives correct results. The fibre beam 

element has been widely used in the last decade to model static and dynamic loads 

for nonlinear problems. In fact, fibre beam models use detailed geometry and 

material models to obtain accurate representation of nonlinear behaviour along the 

length of the member (Mullapudi, 2010). The fibre beam elements are mainly 

created by dividing each element into several sections. Those sections are divided 

into fibres that represent steel and concrete (Figure 2.2). The strain at each fibre is 

calculated using the section strain and the curvature with the use of the assumption 

that plane sections remain plane. 
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Figure 2.2: Fibre model discretization. 

 

In this research, the finite element method will be employed to study the 

performance of SC beams and panels under dynamic impact loading and the effect of 

different factors on the resistance of SC systems against impact loading will be 

determined. In order to accomplish this task, new elements will be formulated that 

will use an explicit time integration method and will account for large displacements 

and rotations (the second order effect). The explicit time integration technique will 

improve the capability of the elements in running short-term dynamic problems 

without the need for internal element or external global iterations and thus will avoid 

convergence complications. Moreover, the second order effect will allows the 

elements to model slender structures, axially restraint structures and in general 

structures subjected to large deformations.  
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2.3.1 Types of fibre beam elements 

Currently, there are three different types of formulations for distributed 

plasticity fibre beam elements available in the literature: 

1- The displacement-based formulation (Kang 1977). 

2- The force-based formulation (Spacone and Filippou 1992; Neuenhofer and 

Filippou 1997).  

3- The mixed-based formulation (Ayoub and Filippou 2000; Alemdar and 

White 2005). 

The displacement-based element, which is the classic beam element 

formulation, usually faces numerical difficulties around the point of maximum 

resistance in the section or the element level (Kang and Scordelis, 1977). Besides 

this, the approximation of the curvature into a linear curvature distribution is 

enforced along the element, which requires the adoption of a fine mesh. 

In the displacement-based method, the equilibrium is satisfied in a weighted 

integral sense. While in the force-based method, the equilibrium is satisfied by a 

more strict method, on a section-by-section basis, therefore the equilibrium between 

the element and the section forces is exact. The mixed formulation can be considered 

as an update to the force method and is a hybrid formulation that uses both the 

element displacements and the generalized internal stress resultants to allow, in the 

present case, the incorporation of the geometric nonlinearity terms into the element 

formulation. 

Until present, the available fibre beam elements developed by Ayoub and 

Filippou (2000) use only the classic implicit time integration method and do not 
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consider the second order effect, which limits their use in many applications 

(including dynamic analysis and when large displacements are expected). 

In previous studies, Otani (1974) promoted an inelastic dynamic model that 

accounts for the distribution of inelastic deformation. Soleimani et al. (1979) 

presented an analytical model for nonlinear reinforced concrete beams with inelastic 

zone for fixed-end rotations and flexural deformations. Meyer et al. (1983) 

accounted for the finite size of the plastic regions instead of assuming a plastic 

hinges of zero dimensions to simulate the response of reinforced concrete frames 

under strong cyclic loads. 

Takayanagi and Schnobrich (1979) modelled the nonlinear response of a 

coupled wall system under static and dynamic loading. The connecting beams were 

modelled as separate flexural beams with uniform elastic rigidity and connected to 

the wall by a rotational spring and rigid link. The wall itself was modelled as a beam 

with a linear variation of strain over the cross section. 

Kang (1977) adopted a displacement-based formulation to analyse planar 

reinforced concrete frames with time dependent effects. Mari (1984) established 

three-dimensional nonlinear time dependent models to study the response of concrete 

frames. Kaba and Mahin (1984) created the first flexibility based multi-slice fibre 

element to model beams and columns. Later, Zeris and Mahin (1988) presented a 

more stable finite element model for nonlinear cyclic flexural analysis of reinforced 

concrete beams specially under softening response. 

Ciampi and Carlesimo (1986) proposed a consistent implementation of the 

force-based element. The approach was then promoted and extended by Taucer et 

al. (1991) and Spacone and Filippou (1992). Later, Nukala (1997) addressed the 
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finite element modelling of three-dimensional second-order inelastic beam members 

for steel frames using displacement and mixed approaches. Ayoub and Filippou 

(2000) presented an inelastic beam element for the simulation of partial composite 

steel concrete girders subjected to monotonic and cyclic loading. Recently, 

Mullapudi and Ayoub (2010) formulated an inelastic nonlinear beam element with 

axial, bending and shear force interaction where the concrete material model 

accounts for the shear effects using the softened membrane model.  

However, the fibre beam element formulation contains some limitations. 

According to Kappos et al. (2012), fibre beam elements are considered relatively 

complex models, they require several iterations in order to achieve appropriate 

results and in general face many convergence problems. Moreover, distributed fibre 

beam models do not tend to capture plastic hinge rotations, but instead calculate the 

strains in the concrete and steel cross section fibres. The strain calculated using fibre 

beam models could be very sensitive to the element length, integration technique, 

moment gradient and strain hardening parameters (Deierlein et al., 2010).  

In this study, the developed elements will be used to analyse RC members under 

different loading types such as monotonic and cyclic loading mainly under dynamic 

effects, taking into account the geometric nonlinearity and benefiting from 

sophisticated material models that can accurately capture the nonlinear behaviour of 

concrete and steel materials.  

The established elements are implemented in the research-oriented finite 

element analysis program FEAP developed by Taylor (2014). 
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2.3.2 Initial selection of fibre beam elements mesh size 

It is established in the finite element analysis method that the size of the mesh 

significantly affects the accuracy of the results. In general, displacement-based 

elements necessitate the adopting of a fine mesh because of the approximation in the 

calculation of the curvature in plastic zone regions.  

A mesh convergence study is essential in order to determine the number of 

elements required to ensure that the output values are not affected by changing the 

mesh size. The solution is considered converging when the obtained stresses and 

deflections are constant regardless of the mesh size. Meaning that after convergence 

is achieved additional mesh refinement will not affect the results.  

 According to Kotsovos (2015), mesh configuration and finite element size are 

important factors in the accuracy of linear and non-linear analysis. Mesh refinement 

is needed in zones of localised effects such as load concentrations and sudden 

changes in geometry. Kotsovos (2015) found using numerical experiments, that RC 

beams dominated by shear failure were sensitive to the adopted iterative techniques 

and recommended the adoption of a coarse mesh and a constant size load step 

throughout the entire loading history. He recommended a loading increment size 

between 2% and 10% of the estimated ultimate load. 

For fibre beam elements, five sections are typically adopted in the model since 

this discretization accurately represents the plastic hinge zone in concrete structures 

(Spacone et al., 1996). Other different studies on section discretization approaches, 

including recommendations for arrangement and the number of fibres, were 

performed by Campbell (1994) for steel sections and by Berry (2006) for circular 

RC columns. 
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Tao and Nie (2014) studied the section discretization and element mesh effect 

on displacement-based fibre beam elements for the nonlinear response of composite 

structural members. The research was performed on composite beams and concrete 

filled steel tubular columns. The authors found that the element mesh size has to be 

chosen as about half of the mid-span equivalent plastic hinge length for simply 

supported member. The recommendation can be used to capture the sharp jump of 

the curvature value at the plastic hinge region, and to control the numerical problems 

of pathological mesh-sensitivity arising from the strain softening behaviour. 

 A more general recommendation can be withdraw from Ayoub and Filippou 

(2000), Alemdar and White (2005) and De Souza (2000) work that primarily for 

force-based models an initial mesh size of one element can be used and at least two 

to four elements are needed for displacement-based elements. A convergence study 

has to be performed to insure the mesh independency of the solution especially for 

displacement-based elements. 

   

2.3.3 Modelling of fibre reinforced concrete 

The use of fibre in the concrete mix improves the properties of the concrete by 

increasing the compressive and tensile strength, the impact resistance, the ductility 

and also improves Young’s modulus [(Mullapudi et al., 2013) and (Sbia et al., 

2014)] which in turn improves the overall structural performance. 

Different types of fibres exist such as (steel fibres, carbon Nano fibres and glass 

fibre). Sanchez and Sobolev (2010) emphasized that carbon Nano fibres are the 

most promising nanomaterials for enhancing the mechanical properties of cement-

based materials.  According to Scrivener and Kirkpatrick (2008), the importance 
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of the addition of carbon fibres to concrete is due to their high stiffness and strength, 

plus the very low friction of their surfaces, which make them very difficult to bind 

together.  

Furthermore, Nanomaterials deal with the cracks presented in the concrete with 

a very small dimensions less than 100 nm (where 1 nm = 10 -9 m). This allows the 

control of the material behaviour at the nanoscale level and thus presents fresh 

properties to the mix such as higher ductility and better control of the cracks 

(Sanchez and Sobolev, 2010). The new concrete mix is believed to be able to 

provide new functions and is considered a smart material because of its innovative 

performance, and its different properties including its self-sensing capabilities and its 

improved deterioration process (Sanchez and Sobolev, 2010).   

The cracking process can be explained according to Mo and Roberts (2013) as 

follows: concrete is a brittle material, when loaded, the tensile stress increases and 

the cracking process within the concrete starts with the formation of Nano cracks. 

These Nano cracks grow together to form localized micro cracks, which in turn 

expand to construct macro cracks. These macro cracks increase and widen to form 

cracks visible with the naked eye. Therefore, fibres play an important role to arrest 

these cracks by forming bridges across them. This is called bridging which produces 

a crack-free concrete that is the main reason of the improvement in the properties of 

the concrete mix. Banthia et al. (1989) used a drop weight impact machine to test 

plain concrete and steel-fibre-reinforced concrete under impact loading and found 

them to be more impact resistant. Nataraja et al. (1999) quantified the effect of steel 

fibre on compressive strength, strain at peak stress and the toughness of concrete and 

observed that the increase in toughness and the compressive strength is directly 

proportional to a reinforcing index function of the weight fraction of the fibres, the 
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diameter and the length of the fibres. Lok et al. (2003) used a 75 mm diameter split 

Hopkinson pressure bar (SHPB) to examine the dynamic behaviour of steel fibre 

reinforced concrete (SFRC). They found that different types of fibre reinforcement 

have the same response on the strength of concrete. Lan et al. (2005) tested steel 

fibre reinforced concrete slabs under explosive loading and recommended that 1.0% 

fibre concentration should be used to increase damage resistance. Tyson et al. 

(2011) utilized a three-point flexural test to investigate the addition of carbone Nano 

fibres to the cement matrix with 0.1 and 0.2% by weight of cement. They found that 

samples with carbone Nano fibres have an increase in the peak displacement up to 

150% higher than plain cement samples. Elavenil and Knight (2012) examined 

different percentages of steel fibre in the concrete core of concrete plates tested 

under drop weight impact loading. They found that an increase in steel fibre content 

decrease the crack width. Sohel and Liew (2014) found that the addition of 1% steel 

fibres in the concrete core of SC panels reduced the cracks and spalling of concrete 

core, which in turn decreased the deflection of the panel under impact loading. 

Hrynyk and Vecchio (2014) tested steel fibre reinforced concrete slabs with fibre 

content between zero and 1.50% under impact loading. Their findings were that the 

fibres effectively increased the slab stiffness, capacity and impact resistances. 

Consequently, the proper behaviour of the implementation of fibres in the 

reinforced concrete mix should be taken into account in the numerical models. In the 

present research, the concrete constitutive model will reflect the change in the 

concrete properties due to the presence of fibres in both the ascending and 

descending branches of the stress strain curve of concrete in both tension and 

compression zones. 
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 In previous studies, Sluys and de Borst (1992) investigated the impact 

modelling of steel fibre reinforced concrete beams. The fibres were modelled using a 

macroscopic method where the addition of the fibres is taken as an increase in the 

ductility of the cracked material (by increasing the value of the ultimate crack strain). 

The authors found that the difference between a rate dependant and a rate 

independent formulation is very limited when considering the global response of the 

beams. Campione and Letizia Mangiavillano (2008) modelled the flexural 

behaviour of fibrous reinforced concrete beams with the nonlinear finite element 

program (DRAIN-2DX) under monotonic and cyclic loading. The model was able to 

simulate the load-deflection response of the simply supported beams.  

On the other hand, Abbas et al. (2010) used ABAQUS software to compare the 

output of three different material models with experimental results in order to 

numerically model fibre reinforced concrete under static loading and found 

reasonable agreement between the results. Pros et al. (2011) proposed a numerical 

strategy to consider the influence of fibres in the numerical simulation of steel fibre 

reinforced concrete. In their approach, concrete and fibre meshes are independent, 

although they interact together, and the actual geometry of all fibres is defined inside 

the concrete mesh. To couple the two models, displacement compatibilities are 

imposed. Constitutive equations that depend on the angle between the fibres and the 

direction of the failure pattern are then used to describe the deboning between the 

fibres and the concrete at the mesoscale level.  

Likewise, Xu et al. (2012) numerically simulated a number of dynamic impact 

tests on steel fibre reinforced concrete specimens on the Mesoscale level. They used 

LS-DYNA commercial software to simulate the impact test. The model was able to 

accurately capture the presence of the fibres in the specimens and indicated that the 
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crack-bridging effect of the fibres is more significant at higher strain rate. Karadelis 

and Zhang (2015) simulated numerically the tensile behaviour of steel fibre 

reinforced concrete using ABAQUS. The model was able to express the macro 

(Mesoscale) behaviour of SFRC without considering the bridging effect. 

In this research, the addition of fibres to the concrete mix regarding different 

type of structures (beams, columns and panels) will be accounted for. The fibres 

effect will be comprised in the material models of the concrete through several 

concrete parameters including the concrete compressive and tensile strength, the 

concrete strain and the tension softening stiffness. The successful inclusion of the 

fibre effect in the numerical concrete material model requires adequate data 

generated from the stress-strain curve of the experimentally tested sample.  

 

2.3.4 Enhancement of state of the art in RC Frame finite element modelling 

The developed models, presented in this report, will use a fibre-based element 

formulation to solve short-term dynamic problems. In order to solve impact 

problems accurately, the enhanced elements will use an explicit dynamic analysis 

technique and will consider large deformations. 

 

2.3.4.1 Impact dynamic analysis 

In general, the dynamic analysis of structures has been widely performed using 

different numerical computational methods such as the finite element method and the 

boundary element method. It is well established that several commercial and 

research oriented software packages can simulate the behaviour of structures under 

dynamic impact loading. However, most available explicit-based finite elements 
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were developed for continuum models such as membrane and solid elements, which 

create computationally expensive models that require considerable execution time, 

large storage memory and lead to significantly slow post-processing. 

In the past, researchers have addressed the numerical analysis of impact 

problems using the finite element method. For instance, Saatci and Vecchio 

(2009.a) modelled reinforced concrete beams under impact load, dominated by shear 

behaviour, using the VecTor2 finite element software developed at the University of 

Toronto. A smeared rotating crack approach was utilized to capture the gradual 

change in the direction of the cracks that takes place during loading and through the 

structure’s response. Shell element meshes were used to model the tested beams. The 

supports were modelled with compression-only truss bars. The drop-weight itself 

was modelled with rectangular reinforced concrete elements with high rigidity and 

connected to the beams with rigid compression-only truss bars to eliminate the drop 

weight effect when it rebounds back after the collision. Jiang et al. (2012) used LS-

DYNA software to numerically simulate impact tests on RC beams. A three-

dimensional finite element mesh model was created for the RC beam and the drop 

weight. A surface-to-surface constraint algorithm with friction was employed in 

order to model the contact between the drop weight and the RC beam. Due to the 

short duration of the impact response, dampers were not inserted in the finite element 

model. 

Later, Lee and Kim (2015) modelled SC panels under aircraft impact loading. 

A constant stress solid element was used to model the concrete core. The 

Belytschko-Tsay shell element was employed to model the steel plates and Hughes-

Liu beam element was selected to model the studs. In order to avoid the penetration 

between the concrete and the steel plates, an automatic contact option available in 
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the software was applied to manage disjointed meshes and prevent nonphysical 

contact behaviour. However, for the concrete material model in compression, the 

strain softening behaviour was not accounted for. To generate the impact force of a 

large commercial aircraft, they used the Riera equation (Riera, 1968) that calculates 

the total force at the interface between the collapsing aircraft and the structure. 

Recently, Chen et al. (2016) simulated the effect of a large-size truck hitting a 

reinforced concrete column using LS-DYNA. Shell and solid elements were utilized 

to model the hitting truck. While solid elements were assigned for the circular 

concrete column, beam elements were used for the reinforcement bars and were 

considered as fully bonded with the concrete. The model results indicated that the 

reactions and mid span deflections matched well with the test results. 

Moreover, other researchers have adapted simpler analytical techniques to solve 

impact problems. Fujikake et al. (2009) presented an analytical model to estimate 

the maximum mid span deflection for reinforced concrete beams subjected to impact 

loading. The analytical model consisted of a two-degree-of-freedom mass-spring-

damper system to simulate the RC beams analytically. The system entailed one 

degree of freedom to express the local impact response between the drop weight and 

the beam and another one to express the overall response of the beam. The analysis 

technique involved the determination of the moment-curvature relationship of the 

beam using section-by-section analysis procedure, whereas the strain rate effects 

were considered. Then the calculation of the load vs. mid-span deflection 

relationship using the moment-curvature relationship was performed. Zhan et al. 

(2015) proposed two empirical equations to predict the maximum and residual 

deflection of reinforced concrete beams under high impact loading. The equations 

were based on the static flexural and the input impact energy. The method was found 
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to slightly overestimate or underestimate the deflection when compared with 

experimental results. 

It can be concluded that the numerical computing technique overcomes the 

weaknesses associated with the analytical methods. The numerical approach, in 

general, is time-consuming, allows for a considerable number of trials to be 

performed, is easier to use and produce accurate results with appropriate 

approximations. Next, the implication of the geometric nonlinearity will be 

discussed. 

 

2.3.4.2 Large displacement and rotation 

Linear elastic analysis is not able to accurately simulate the structure response 

when the displacements are sufficiently large to change the stiffness of the structure 

significantly. The change in the geometry as the structure deforms is a major issue 

that has to be considered. Therefore, the interaction between the axial load and the 

lateral deformation has to be taken into account leading to a second order analysis. 

The second order effects will increase the moments, forces and the deflections and 

will affect the stiffness matrix of the structure. Figure (2.3), illustrates four different 

load displacement responses for the same structure, produced from various analysis 

methods (first and second order analysis) plus (elastic and inelastic analysis).  

 



31 
 

 

Figure 2.3: Load displacement graphs for different analysis methods. 

 

The calculation of second order forces in numerical algorithms can be carried 

out using matrix analysis where the geometric stiffness is directly derived from the 

governing differential equation that considers the second-order effect of the axial 

force on the flexure. This offers a simple and accurate method for the consideration 

of the second order effect for beam-column elements. This method is also called the 

second-order computer program method due to the ease of its implementation in 

computer routines compared to other conventional methods. The geometric stiffness 

effect usually varies between 10 to 25% of the forces and displacements of the 

member depending on the ratio between the lateral and the axial load (Wilson, 

1998). 
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Two types of deformations are associated with the second order analysis. First, 

the P-δ, (called the small P-delta), where δ is related to the local deformation with 

respect to the chord of the element end nodes and can be considered by subdividing 

the element into smaller segments. Second, the P-Δ, (called the big P-delta), where Δ 

is related to member ends displacements. The big P-delta should be considered in the 

numerical formulation to accurately model the second order structural response. 

In previous studies, Kuo Mo Hsiao et al. (1988) formulated a displacement-

based beam element for large deformations of plastic plane frames. The effect of 

axial force was included in small deflection theory and the element was formulated 

in a body-attached coordinate to separate between rigid body and deformational 

rotations. Whereas Crisfield (1991) adopted a strain smoothing technique to use the 

average strain instead of the membrane strain, to remove shear locking in bending, 

encountered in displacement-based formulations.  

Nukala (1997) presented two-dimensional displacement-based and generalized 

mixed variation finite elements that can be used to model arbitrarily large 

displacements and rotations with small strains. De Souza and Filippou (De Souza, 

2000) developed a three-dimensional force-based fibre beam element that considers 

inelastic large displacement analysis and accounts for linear geometry and nonlinear 

material. However, the element was only employed to investigate the performance of 

steel structures. 

 Alemdar and White (2005) presented several beam column finite element 

formulations for full nonlinear distributed plasticity analysis of two-dimensional 

steel frame structures. For the displacement-based and the mixed elements, the 

second order effect was included in the corotational formulation. Scott and 

Hamutçuoğlu (2008) developed a numerically consistent regularization technique 
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for force-based frame elements to model reinforced concrete members, which is 

applicable for large displacement analysis based on (De Souza, 2000) formulation. 

Heidarpour and Bradford (2011) promoted a numerical model for non-linear 

dynamic analysis of steel beam-column elements. The formulation included large 

displacements. The method was utilized to investigate the behaviour of beam-

column steel elements subjected to blast loading. The steel member was restrained at 

its ends by rotational and translational springs producing second order effect. 

Denavit and Hajjar (2012) developed a 3D distributed plasticity beam element 

using mixed-based formulation for composite circular concrete-filled steel tubes. The 

beam element was utilized for modelling nonlinear static and dynamic seismic force 

resisting structures. The formulation considered large displacements and rotations 

using corotational frame transformation.  

Recently, Nguyen and Tran (2016) used large displacement corotational 

formulation to analyse planar functionally graded sandwich beams. The beams were 

composed of a metallic steel core and two top and bottom ceramic faces. The study 

highlighted the importance of considering the effect of plastic deformation in large 

displacement analysis.  

In the subsequent section, the explicit time integration approach will be 

presented.  

 

 2.3.4.3 Explicit time integration 

The solution of impact problems necessitates advanced computational 

procedures to handle the difficulties related to large short-duration loads. In this case, 

the explicit time integration method is typically used, instead of the traditional 
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implicit approach, since it offers a stable solution for problems such as the analysis 

of structures subjected to shock and impact loads. Moreover, the existing fibre beam 

elements use an implicit time integration method that requires a large number of 

iterations per time step to reach convergence, where in several dynamic analyses, 

particularly for impact and blast problems, the solution cannot be achieved due to 

severe numerical difficulties [(Bathe and Cimento 1980) and (Yang et al. 1995)]. 

 Gu and Wu (2013) assured that the explicit method provides a useful 

alternative technique to avoid difficulties of nonlinear programming associated with 

the implicit method. In the explicit approach, the accelerations of the nodes are 

calculated directly without the need to invert the stiffness matrix but only the mass 

matrix is inverted. No iterations are required and no convergence checks are needed, 

therefore a large number of inexpensive time steps is desired.  

A number of researchers employed the explicit time integration technique to 

solve different linear and non-linear structural problems under dynamic loading. 

Kujawski (1988) presented an iterative semi-explicit algorithm for stiff non-linear 

transient dynamic problems using iteratively only forward substitution that allows 

the utilization of both consistent and lumped mass matrix. Miranda et al. (1989) 

derived an explicit predictor-corrector algorithm from the implicit alpha-method that 

is second-order accurate. It was found that the explicit algorithm has a better 

stability, higher accuracy and permits the assignment of a larger stable critical time 

step when compared with a Newmark-based algorithm. The algorithm is utilized for 

the solution of linear and non-linear structural dynamics problems such as wave 

propagation and single-degree-of-freedom oscillations.  
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Likewise, Pezeshk and Camp (1995) developed an explicit time integration 

technique for dynamic analyses of linear undamped single and multi-degree of 

freedom systems. The technique was based on a modified trapezoidal rule to 

approximate the governing ordinary differential equation. The developed explicit 

approach requires that the time step size be inversely proportional with the period of 

the structure. It was established that the new explicit procedure is more accurate in 

determining the transient response with the same amount of computational cost when 

compared with the modified Euler method procedure. 

Furthermore, Sun et al. (2000) compared the performance of an implicit and 

explicit finite element methods for two linear dynamic problems (an elastic bar and a 

cylindrical disk on a rigid wall) using the ABAQUS finite element software. For the 

fast linear contact problems, it was established that the advantages of the explicit 

method are significant within an acceptable tolerance, regarding the computational 

cost. However, the authors reported that the explicit procedure requires very long 

time for slow linear contact problems when compared with the implicit procedure.  

Chang (2009) presented a new explicit approach with unconditional stability for 

general instantaneous stiffness hardening systems in addition to linear elastic and 

instantaneous stiffness softening systems, where the instantaneous stiffness is a 

parameter used by the author to describe the variation of stiffness for a non-linear 

system. The unconditional stability was achieved by presenting the Newmark 

parameters 𝛽 and 𝛾 in terms of an equation function of the damping ratio, the natural 

frequency and the size of integration time step, instead of any combinations of real 

numbers. It was observed that the new method is efficient for the solution of general 

structural dynamic problems where the response is dominated by low-frequency 
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modes and when high frequency responses are of no interest. The method was also 

found to be second-order accurate. 

Likewise, Curiel Sosa and Gil (2009) improved an explicit continuum-based 

beam element involving large deformation. An adaptive time stepping was used, in 

order to avoid the stability limitations of the traditional fixed time stepping. Fulei 

and Yungui (2011) presented an explicit element that considers large displacements 

and large rotations to solve geometrical nonlinear dynamic problems. The authors 

formulated their element in a corotational system and used the finite rotation theory 

to determine the node direction vectors and the Yoshida method (Yoshida et al. 

1980) to find the element direction vectors in order to construct the coordinate 

transformation matrix of the nonlinear beam element. The authors compared their 

results with the ANSYS explicit commercial software.  

Recently, Tenek (2015) presented a three-dimensional explicit beam finite 

element with the derivation of an initial load due to temperature. The element was 

employed to analyse beams, arches, and frame structures. 

During the preparation of this report, Kolay and Ricles (2017) presented a 

force-based frame element implementation for real-time hybrid simulation using 

explicit direct integration algorithms. The authors developed a procedure based on a 

fixed (small) number of iterations and an unconditionally stable explicit model-based 

integration algorithm. They presented a numerical investigation using a two-story 

RC frame building subjected to a maximum considered earthquake level ground 

motion. 

In general, most of the previously published work uses continuum type 

elements, while the majority of them concentrated on employing simple material 
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models. However, the accurate prediction of the complex structural response requires 

more rigorous material models able to depict the performance of the structure under 

severe loading conditions. In this study, the presented elements use advanced 

nonlinear material models for both concrete and steel members for the accurate 

representation of nonlinear behaviour along the element length. 

Moreover, other scholars presented different unconditionally stable explicit 

algorithms for structural dynamics. For instance, Trujillo (1977) presented an 

unconditionally stable explicit algorithm for the direct integration of the structural 

dynamic equations of motion. A diagonal mass matrix was adopted along with a 

positive definite symmetric stiffness and damping matrices. The conditional stability 

was established for the undamped case. Chang and Liao (2005) proposed an 

explicit integration method with unconditional stability. The method required no 

limitation on the time step to satisfy the stability limit. The technique was 

recommended for nonlinear systems where the implementation was more 

computationally efficient than for the constant average acceleration method. Yina 

(2011) developed an unconditionally stable explicit time-integration approach that 

presented a derivation of the increment of mechanical energy of undamped systems. 

Later, Kolay and Ricles (2014) established a number of unconditionally stable 

explicit direct integration algorithms with controllable numerical energy dissipation 

for linear and nonlinear structural dynamic problems. 

In the present study, the developed explicit fibre beam elements use a 

conditionally stable explicit algorithm and a minimum stable time increment has to 

be respected. Next, the material constitutive models used with the fibre beam 

elements will be described. 
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2.4 Material constitutive models 

Material models are a set of equations associated with the numerical elements in 

order to present the materials constitutive behaviour mathematically. A material 

model is typically created from idealized experimental results. The main role of the 

material model is to generate the stress-strain curve of the modelled material for use 

during the numerical solution. In the present case, the material models predict the 

concrete and steel response for different load histories. These material models are 

coded with subroutines that are linked to the main algorithm through common 

programming language commands. 

In the literature, a large material library already exists, which can represent the 

wide range of material behaviours. The selection of the material model will 

significantly influence the analytical results of the proposed elements; as a result, 

trustful and appropriate material models are assigned to the developed elements. 

Therefore, the model originated by Kent and Park (1971) as modified by Scott et 

al. (1982) will be used for the concrete material of the developed elements. On the 

other hand, the Menegotto and Pinto (1973) stress-strain curve of mild steel bar as 

modified by Filippou et al. (1983) will be employed for the steel material of the 

developed elements. 

When accounting for the strain rate effect during impact analysis, the models 

generated by Fujikake et al. (2009), Ross et al. (1989), and Lok and Zhao (2004) 

for concrete; and Malvar (1998) for steel will be used to evaluate the dynamic 

increase factor, which will be used to modify the former concrete and steel material 

models. All these fibre beam material models connected with the developed elements 

will be discussed more in detail in chapter (3) and (4). 
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2.4.1 Material strain rate effect 

Concrete and steel structures subjected to impact and other dynamic loading 

constantly demonstrate an increase in their dynamic mechanical properties. This 

increase in the material resistance is linked to the loading rate effects, where the 

loading rate can be expressed in terms of the strain rate.  

The strain rate can be defined as the rate of change in the strain of a material 

with respect to time. It is also defined as the speed at which deformation occurs. The 

strain rate has units of (s-1). It was found that the strength and the fracture energy of 

the material generally increase with the increase of strain rate. The ranges of the 

strain rates for different loading conditions are shown in Figure (2.4). Quasi-static 

strain rates range between 10-6-10-4 s-1. For the earthquake loading, the strain rate 

varies between 10-4-10-2 s-1. The impact loads yield a strain rate in the range between 

100 to 102 s-1, while blast loads produce excitations related to a higher strain rate in 

the range of 102 to 104 s-1. 

 

 

Figure 2.4: Strain rates ranges for different types of loading, Figure from Ngo et al. 

(2007).  

 

The strain rate can be expressed as: 

𝜀̇ = ∆𝜀 ∆𝑡⁄                                                                                                               (2.1)                                                                                                            

𝜀(𝑡) = (𝐿(𝑡) − 𝐿0(𝑡)) 𝐿0(𝑡)⁄                                                                                 (2.2)             



40 
 

Where: 

𝜀:̇ The strain rate and has the unit of s-1. 

∆𝑡: The time interval. 

𝜀(𝑡): The instantaneous Strain.  

𝐿(𝑡): The length of the object after deformation at time 𝑡. 

𝐿0(𝑡): The original length of the object. 

 

Usually a split Hopkinson pressure bar, invented by Bertram Hopkinson 

(Hopkinson, 1914) and modified by Kolsky (1949), or an instrumented drop weight 

impact test are utilized to apply the impact high strain load. In the Split Hopkinson 

bar test, Figure (2.5), a striker bar is utilized to impose a dynamic load on a small 

specimen. The stress-strain responses in compression and tension at high strain rates 

are determined using strain gauges installed on the incident and transition bars. The 

split Hopkinson bar can be used to perform compression, tension and torsion testing. 

In the compression test setup, the specimen is installed between the transmitter and 

the incident bar. The striker bar is fired causing a compression stress in the 

specimen. Several techniques are used to investigate the effect of strain rate on 

tensile properties using the split Hopkinson bar. In 2013, Dunand et al. (2013) used 

a load inversion device to transform the compressive loads applied at the boundaries 

by the input bar to produce a tensile load into the specimen. The input bar was 

attached to the right specimen shoulder and the output bar was attached to the left 

specimen shoulder. Consequently, the pressure pulse in the incident bar generated a 

tensile pressure in the specimen and a compressive pressure in the transmitter bar. 

For the torsion testing, several techniques are also used. For instance, Gilat and Pao 

(1988) used a modified SHPB in which the input bar consisted of two sections with 
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different cross-sectional areas. A loading wheel and clamp were used in the setup of 

the apparatus. A torque is then produced between the clamp and the loading wheel 

by clamping the clamp and rotating the wheel. After releasing the clamp, a torsional 

wave is directly transmitted to the specimen. 

Material models, available from the literature, created from experiments 

performed with SHPB devices will be used to update the constitutive models of the 

elements presented in this study.    

In the instrumented drop weight test, Figure (2.6), an instrumented projectile is 

utilized to vertically hit a relatively large specimen. Guiding rails are used to guide 

the projectile during the free fall. A data acquisition system is used to measure the 

displacements and strains over a short period. The major advantage of this test is that 

it actually measures the behaviour of the structure as a whole and not solely the 

material behaviour as the Split Hopkinson bar does. However, the test is criticized 

for the possibility of inaccuracy that may lead to unreliable results. Yet it remains 

one of the important test methods of impact especially with the use of computer 

modelling for simulation and validation of experimental works.  

Results from experiments, available from the literature, performed using several 

instrumented drop weight tests will be used to validate the developed elements 

presented in this study.    
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Figure 2.5: Schematic of the split Hopkinson pressure bar device. 

 

 

Figure 2.6: Schematic of the drop-weight impact test machine. 

 

Furthermore, several researchers have investigated the sensitivity of concrete, 

fibre reinforced concrete and steel reinforcement to strain rates. Körmeling and 

Reinhardt (1987) studied the influence of strain rate on the mechanical properties of 

steel fibre reinforced concrete under uniaxial tension. A displacement controlled 

servo-hydraulic testing device was used for static and intermediate strain rates while 
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a split Hopkinson bar was employed for the high strain rate. Results showed an 

increase in the tensile strength of plain and steel fibre concrete due to high strain 

rates. Lok et al. (2003) experimentally tested steel fibre reinforced concrete using 

SHPB and found that the dynamic tensile strength is more influenced by the strain 

rate effect than the dynamic compressive strength. Yousuf et al. (2011) also used the 

SHPB to determine the dynamic strength of concrete under strain rate that ranges 

between (14 and 55 s-1). The results stated that the concrete dynamic compressive 

strength is 2.5 times more than the static compressive strength.  

Later, Zhang et al. (2013) studied the dynamic properties of polypropylene 

fibre concrete (PFRC) when subjected to different high-strain rates using an 

improved 74mm diameter SHPB. They proved that PFRC has damage softening 

performance under high strain rate and used Weibull damage model to describe the 

non-linear and fracture process of concrete and PFRC and implemented it into a 

dynamic constitutive model of concrete which was modified from Zhu-Wang-Tang 

constitutive model. They also compared the experimental work with the constitutive 

model and found that the calculated stress-strain curves of PFRC with different 

polypropylene fibre contents under different strain rates fitted well with the 

experimental stress strain curve. 

Pająk (2011) collected numerous data on the strain rate effect from a wide 

range of experiments and compared them. Figure (2.7) shows the effect of strain rate 

on the compressive strength of concrete while Figure (2.8) displays the effect of 

strain rate on the tensile strength of concrete. A clear increase in the concrete 

compressive and tensile strengths is spotted in the two Figures. However, the results 

were divided in two parts where a limited increase is seen in the first phase but in the 

second phase, the strain rate exceeds 101 s-1, therefore a much higher dynamic 
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increase factor was observed. For compression strength, the dynamic increase factor 

reached 3.5 while for tension strength, the DIF jumped up to 13, where the dynamic 

increase factor, also called the dynamic amplification factor, is a non-dimensional 

ratio used to present the difference between the properties of the materials under 

static and dynamic loading. This load factor can be applied to forces and stresses. 

Therefore, the load factor can be employed in order to implement the strain rate 

effect inside the concrete and steel constitutive material models.  

 

 

Figure 2.7: Effect of strain rate on concrete compressive strength, Figure from Pająk 

(2011). 
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Figure 2.8: Effect of Strain rate on concrete tensile strength, Figure from Pająk 

(2011). 

 

Different formulas and equations, from the literature, can be used to describe the 

change in the material properties of concrete, fibre reinforced concrete and steel in 

which the DIF is presented as function of the static and dynamic strain. For instance, 

the comprehensive design code for concrete (Fib Model Code for Concrete 

Structures 2010, 2013) stated that the DIF for concrete under high strain rates could 

be determined by the following equations: 

𝐷𝐼𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = (
𝜀̇

𝜀̇𝑐0
)

0.014

 𝑓𝑜𝑟 𝜀̇ ≤ 30𝑠−1̇                                                          (2.3)                  

𝐷𝐼𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 0.012 (
𝜀̇

𝜀̇𝑐0
)

1 3⁄

         𝑓𝑜𝑟 𝜀̇ > 30𝑠−1̇                                           (2.4)                                  
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𝐷𝐼𝐹𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = (
𝜀̇

𝜀̇𝑐𝑡0
)

0.018

                    𝑓𝑜𝑟 𝜀̇ ≤ 10−4𝑠−1                                           (2.5)                                       

𝐷𝐼𝐹𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 0.0062 (
𝜀̇

𝜀̇𝑐𝑡0
)

1/3

        𝑓𝑜𝑟 𝜀̇ > 10𝑠−1                                               (2.6)                                 

Where: 

𝜀̇ ∶ Is the dynamic strain rate in s-1. 

𝜀𝑐̇0: 30x10-6 s-1. 

𝜀𝑐̇𝑡0: 1x10-6 s-1. 

 

Malvar (1998) studied the strength enhancement of steel reinforcing bars under 

the effect of high strain rates from the available literature and proposed a formula for 

the DIF function of the strain rate and yield stress. The equations were derived and 

are valid for a yield stress that ranges between 290 and 710 MPa and are as follows: 

𝐷𝐼𝐹 = (
𝜀̇

10−4)
𝛼

                                                                                                        (2.7) 

For yield stress calculation: 𝛼 = 𝛼𝑓𝑦;     𝛼𝑓𝑦 = 0.074 − 0.04(𝑓𝑦 414⁄ )               (2.8) 

For ultimate stress calculation: 𝛼 = 𝛼𝑓𝑢 ;    𝛼𝑓𝑢 = 0.019 − 0.009(𝑓𝑦 414⁄ )       (2.9) 

Where:  

𝜀̇ ∶ Is the strain rate is in s-1. 

𝑓𝑦 : The bar yield strength in MPa. 

Furthermore, the DIF for steel plates and connectors were presented by the Cowper-

Symonds equation (Cowper and Symonds, 1957): 

𝐷𝐼𝐹𝑠𝑡𝑒𝑒𝑙  = 1 + (
𝜀̇

𝐷
)

1

𝑞
                                                                                            (2.10)                      

Where: 
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𝜀̇ ∶ Is the strain rate is in s-1. 

𝐷 = 40.4 S-1 and 𝑞 = 5. 

Zhou and Hao (2008) also investigated the inertia force effect on DIF and 

found that inertial confinement effect on the compressive strength is negligible when 

strain rate is less than 200 s-1 and that the contribution becomes more significant 

when the strain rate is higher than 1000 s-1. 

They proposed a tensile dynamic increase factor (TDIF) and compressive dynamic 

increase factor (CDIF) empirical equations for concrete-like materials as follows:   

𝑇𝐷𝐼𝐹 = 0.0225 log 𝜀̇ + 1.12  𝑓𝑜𝑟   (𝜀̇  ≤ 0.1 𝑆−1)                                            (2.11) 

𝑇𝐷𝐼𝐹 = 0.7325(log 𝜀̇)2 + 1.235(log 𝜀̇) + 1.6 𝑓𝑜𝑟  (0.1 𝑆−1 ≤ 𝜀̇ ≤ 50 𝑆−1)   (2.12) 

𝐶𝐷𝐼𝐹 = 0.0225 log 𝜀̇ + 1.12   𝑓𝑜𝑟 (𝜀̇ ≤ 10 𝑆−1)                                               (2.13) 

𝐶𝐷𝐼𝐹 = 

0.2713(log 𝜀̇)2 − 0.3563(log 𝜀̇) + 1.2275  𝑓𝑜𝑟 (10 𝑆−1 ≤ 𝜀̇ ≤ 2000 𝑆−1)    (2.14) 

Similarly other researhers have presented different DIF equations including 

Ross et al. (1989), Lok and Zhao (2004) and Fujikake et al. (2009). These 

equations will be presented and discussed in chapter (4) in detail.  

 

2.5 Closing the Knowledge Gap 

From the available literature review, it can be demonstrated that there is a clear 

knowledge gap in the existing literature, as no simple beam element has enough 

features to simulate impact problems while considering important analysis details. 

Therefore, the main contribution of this PhD study is to offer four new fibre beam 

elements that can be used in modelling reinforced concrete and composite structures 

under impact loading. The proposed elements will use an explicit dynamic analysis 
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technique, will consider large displacement and rotations, will account for the strain 

rate effect in the material constitutive models, will model different types of fibres 

and will focus on the analysis of composite steel concrete panels under impact 

loading. The research, in general, enhances the capabilities of fibre beam elements in 

order to employ them in the analysis of impact and dynamic problems.   

The implementation of the mentioned futures in a single element is presented for 

the first time to the engineering community especially the explicit second-order 

mixed fibre beam element. The newly developed elements will help avoid the 

complications associate with computational complexity and high numerical cost of 

continuum models. 

In the next chapter, the consideration of the second order effect in the 

formulation of the displacement-based and mixed beam-column elements will be 

presented in detail. 
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Chapter 3 

LARGE DISPLACEMENTS AND ROTATIONS FIBRE BEAM 

ELEMENTS 

 

3.1 Introduction 

In this chapter, the formulation of two proposed elements will be presented. 

Both finite elements are based on a distributed plasticity fibre beam element 

formulation. The two elements can consider second order effects by taking into 

account the geometric stiffness matrix in the element formulation.  

When an axial compressive force accompanies another bending force, additional 

bending moment in the member is created and should be considered in the element 

formulation as the element load vector and the element stiffness matrix are modified 

by the presence of this axial load. Thus the Second-order analysis will increase the 

forces, moments and deflections values. 

 The presented elements are used to predict the response of axially restrained 

reinforced concrete structures and slender reinforced concrete members using the 

geometric nonlinearity (the actual structure deformation) and the material 

nonlinearity (the nonlinear concrete and steel constitutive material models).  

The proposed elements are based on the work by Ayoub and Filippou (2000) and 

Alemdar and White (2005); to incorporate second order effects into displacement 

and mixed-based elements. Unlike the element of Alemdar and White (2005), 

which was used to analyse simple steel members under static monotonic loads only, 

the proposed elements developed herein are able to model normal and high-
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performance reinforced concrete as well as steel members under monotonic, cyclic, 

and severe dynamic loads. They can also monitor the behaviour of the structures at 

the element, section and fibre level. 

 

3.2 Transformation between the corotational and global systems 

The two elements formulated in this chapter follow Navier’s three principles of 

mechanics: The stress equilibrium, the strain compatibility and the constitutive 

relationships of the steel and concrete. First the two elements are formulated in a 

corotational system where rigid body modes (R.B.M.) are removed and small strains 

are assumed.  

According to Crisfield (1990), co-rotational elements are introduced to 

overcome the problems that non-linear beam elements face under rotations including 

a significant rigid-body component, producing over-stiff solutions due to self-

straining. Moreover, the corotational formulation is needed for a force-based model 

since the model aims to find the element flexibility first then invert it. For a system 

with R.B.M., this flexibility does not exist since the stiffness is singular. 

 For two-dimensional planar elements, the number of degrees of freedom (DOF) 

in the corotational system are three. An axial elongation q1 and two rotations q2 & q3 

relative to the element chord. The conjugate forces are the axial force Q1 and the 

moments Q2 & Q3 at both ends (Figure 3.1.a). On the other hand, the global system 

consists of 6 DOF including 4 translations (𝑞̅1, 𝑞̅2, 𝑞̅4 &𝑞̅5) and 2 rotations (𝑞̅3 &𝑞̅6) 

(Figure 3.1.b) and β is the final angle of inclination of the beam element with respect 

to the global frame. 
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For the present formulation, the axial force is constant and does not change 

along the element, while distributed loads are not considered in the current fibre 

beam element formulation. Only internal loads on the members are lumped at nodal 

points along the members, and are transformed to end loaded members. 

 

Figure 3.1: Element forces and displacement degrees of freedom in: (a) corotational 

and (b) global system. 

 

The element internal forces in the corotational system, shown in Figure 3.2, from the 

equilibrium can be calculated as: 

𝑉1 =
𝑄2+𝑄3

𝐿
                                                                                                               (3.1)                                       

𝑉2 = −
𝑄2+𝑄3

𝐿
                                                                                                           (3.2)                                   

𝐻1 = −𝑄1                                                                                                                (3.3)                          

𝐻2 = +𝑄1                                                                                                               (3.4)            
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Where 𝑉 and 𝐻 are the internal vertical and axial forces in the corotational system 

and are displayed in Figure (3.2). The element nodal forces in the global system are 

connected to the element internal forces by: 

{

𝑄̅1
𝑄̅2
𝑄̅3

} = [
cos𝛽 −sin 𝛽 0
sin 𝛽 cos𝛽 0
0 0 1

] {
𝐻1
𝑉1
𝑀1

}                                                                       (3.5)                                

{

𝑄̅4
𝑄̅5
𝑄̅6

} = [
cos𝛽 −sin 𝛽 0
sin 𝛽 cos𝛽 0
0 0 1

] {
𝐻2
𝑉2
𝑀2

}                                                                       (3.6)                                       

When combining the two sets of equations and rearranging we can obtain the 

transpose of the tranformation matrix 𝑇𝑟.  

 

Figure 3.2: Internal element loading with respect to corotational system. 

{
  
 

  
 
𝑄̅1
𝑄̅2
𝑄̅3
𝑄̅4
𝑄̅5
𝑄̅6}
  
 

  
 

=

[
 
 
 
 
 
 
 − cos 𝛽 −

sin𝛽

𝐿
−
sin𝛽

𝐿

−sin 𝛽
cos𝛽

𝐿

cos𝛽

𝐿

0 1 0

cos 𝛽
sin𝛽

𝐿

sin𝛽

𝐿

sin 𝛽 −
cos𝛽

𝐿
−
cos𝛽

𝐿

0 0 1 ]
 
 
 
 
 
 
 

{

𝑄1
𝑄2
𝑄3

}                                                            (3.7)                                                                       
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The matrix 𝑇𝑟 links the element nodal forces in the global system with the element 

internal forces in the corotational system. 

𝑄̅ = 𝑇𝑟
𝑇𝑄                                                                                                                (3.8)                                       

In addition, the transformation matrix is used for the transformation of the 

displacements between the corotational and global system.  

𝛿𝑞̅ = 𝑇𝑟
𝑇𝛿𝑞                                                                                                            (3.9)                                     

Where 𝑞 = {

𝑞1
𝑞2
𝑞3
} such that 𝑞1 is the axial deformation of the element and 𝑞2 & 𝑞3 are 

the chord rotations (Figure 3.1.a). 

Similarly, the stiffness matrix will be transformed between the two systems 

using the same mapping matrix. However, an additional term 𝐾𝐺 that includes the 

effects of element internal forces on the element stiffness must be included. 

𝑘𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) = 𝑇𝑟
𝑇𝐾𝑒𝑙𝑒𝑚 𝑇𝑟 + 𝐾𝐺                                                                        (3.10)     

Where KG is called the external geometric stiffness matrix and is presented in 

Appendix 1. 

While the transformation matrix 𝑇𝑟 is in fact the multiplication of the matrix that 

removes the R.B.M. and the matrix that accounts for the member inclination. 

𝑇𝑟 = 

[

−1 0 0 1 0 0

0
1

𝐿
1 0 −

1

𝐿
0

0
1

𝐿
0 0 −

1

𝐿
1

] ×

[
 
 
 
 
 
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 0 0 0 0
−𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 0
0 0 0 −𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 0
0 0 0 0 0 1]

 
 
 
 
 

       (3.11)                                
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𝑇𝑟 =

[
 
 
 
− cos 𝛽 − sin 𝛽 0 cos 𝛽 sin 𝛽 0

−
sin𝛽

𝐿

cos𝛽

𝐿
1

sin𝛽

𝐿
−
cos𝛽

𝐿
0

−
sin𝛽

𝐿

cos𝛽

𝐿
0

sin𝛽

𝐿
−
cos𝛽

𝐿
1]
 
 
 
                                               (3.12)                                                              

The (cos 𝛽) and (sin 𝛽) can be determined from the current position of the element 

nodal coordinates. The element nodal coordinates are displayed in Figure (3.3). In 

the initial state, the two-dimensional coordinates system are (𝑥1, 𝑦1) for node 1 and 

(𝑥2, 𝑦2) for node 2. After deformation of the element and at its final state the 

coordinates becomes (𝑥1 + 𝑢1, 𝑦1 + 𝑣1) for node 1 and (𝑥2 + 𝑢2, 𝑦2 + 𝑣2) for node 

2. Where 𝑢 is the end displacement in the X direction and 𝑣 is the end displacement 

in the Y direction. Then using trigonometric rules (cos 𝛽) and (sin 𝛽) can be 

calculated as follows: 

cos 𝛽 =
𝑥2+𝑢2−𝑥1−𝑢1

𝐿
                                                                                             (3.13)                                                         

sin 𝛽 =
𝑦2+𝑣2−𝑦1−𝑣1

𝐿
                                                                                              (3.14)                      

The original length of the element between the nodes is: 

L0  = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                                                         (3.15)                                                     

While the current length of the element, after deformations, can be calculated using: 

L = √(𝑥2 + 𝑢2 − 𝑥1 − 𝑢1)2 + (𝑦2 + 𝑣2 − 𝑦1 − 𝑣1)2                                        (3.16)                                
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Figure 3.3: Initial state and final element configuration. 

 

The angle 𝛽  can correspondingly be calculated using the following equation: 

𝛽 = arctan  (
(𝑦2+𝑣2) −(𝑦1+𝑣1)

(𝑥2+𝑢2)−(𝑥1+𝑢1)
)                                                                              (3.17)                          

Consequently large rigid body rotations are well considered during the 

transformation from the corotational to the global system, while in the original 

corotational formulations only small rotations and deformations are expected. 

However, equation (3.17) is valid only for |𝛽| < 𝜋/2 and if 𝛽 exceed this limit an 

arctangent function (ARCTAN2) has to be used to calculate the value of the 𝛽 angle 

(Yaw, 2009).  

After the elements are formulated in the corotational system, which will be 

presented next, they are transformed back to the global system with the help of the 

same transformation matrix. 
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3.3 Displacement-based element with second order effect formulation 

First, the displacement-based element is presented. The element is easier to 

implement than more complex force-based elements, but nevertheless gives accurate 

results although a large number of members division is required to accurately 

simulate the response of the structure, mainly in plastic zones regions, because the 

calculation of the curvature is performed using a linear equation that is derived from 

a cubic shape function. If a small number of element division is adopted, the inelastic 

curvature will not be properly presented and the efficacy of the element will become 

questionable. 

In the displacement-based method, the equilibrium is achieved only in a 

weighted integral sense. The displacements serve as primary variables and are 

interpolated from the DOF of the element and the principle of virtual displacements 

is implemented to obtain the solution.  

The proposed element is formulated in the corotational system using the weak 

form of the equilibrium equations. Then the element stiffness matrix is calculated by 

the linearization of the weak form of the equilibrium equations where the 

linearization is the linear approximation of the nonlinear system by consistent 

linearization of the principle of virtual displacements (Nukala, 1997), and this 

approximation is only valid in a small region.  

A linear shape function is selected for the axial displacement of the beam: 

𝑢 = [
𝑥

𝐿
0 0]𝑞                                                                                                   (3.18)                                                                                 

Letting: 

𝑁𝑢
𝑇 = [

𝑥

𝐿
0 0]                                                                                                   (3.19)                                                                               
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The axial strain is calculated as the first derivative of the axial displacement 
𝑑𝑢

𝑑𝑥
 . 

A cubic displacement shape function is designated for the transverse displacement of 

the beam: 

𝑣 = [0 𝑥 −
2𝑥2

𝐿
+
𝑥3

𝐿2
−
𝑥2

𝐿
+
𝑥3

𝐿2
] 𝑞                                                                    (3.20)                                                               

Letting: 

𝑁𝑣
𝑇 = [0 𝑥 −

2𝑥2

𝐿
+
𝑥3

𝐿2
−
𝑥2

𝐿
+
𝑥3

𝐿2
]                                                                    (3.21)                                                            

The curvature is calculated as the second derivative of the transverse displacement 

(
𝑑2𝑣

𝑑𝑥2
). 

Then the equilibrium is satisfied in a weighted integral sense by multiplying the 

equilibrium equation by a weighting function and integrating along the element 

length.  This is known as the weak form of equilibrium. Therefore, the variations and 

the weighting functions are: 

𝛿𝑢 = 𝑁𝑢
𝑇𝛿𝑞                                                                                                           (3.22)                                                      

𝛿𝑣 = 𝑁𝑣
𝑇𝛿𝑞                                                                                                           (3.23)                                                

The Green-Lagrange strain-displacement relation is used to evaluate the strain. The 

relation leads to the classical strain calculation method used in solid mechanics: 

𝜀̂ =
𝑑𝑢

𝑑𝑥
+
1

2
(
𝑑𝑣

𝑑𝑥
)
2

+
1

2
(
𝑑𝑢

𝑑𝑥
)
2

                                                                                   (3.24)                           

The third term in the previous equation is neglected since the axial deformation of 

the element chord within the corotational system is relatively small.  

Therefore, the variation of the Green-Lagrange strain is: 
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𝜀̂ = 𝛿𝑢′ + 𝛿𝑣′𝑣′                                                                                                   (3.25)                                      

And, 

𝛿𝑢′ = (
1

𝐿
) 𝛿𝑞1                                                                                                       (3.26)                                                                                       

𝑣′ = [1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
−
2𝑥

𝐿
+
3𝑥2

𝐿2
] {
𝑞2
𝑞3
}                                                                  (3.27)                

𝛿𝑣′ = [1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
−
2𝑥

𝐿
+
3𝑥2

𝐿2
] {
𝛿𝑞2
𝛿𝑞3

}                                                              (3.28)         

After substitution equations (3.22) and (3.23) into (3.24) and neglecting 
1

2
(
𝑑𝑢

𝑑𝑥
)
2

, the 

variation becomes: 

𝜀̂ =  (𝑁𝑢
′ 𝑇 + 𝑞𝑇𝑁𝑣

′𝑁𝑣
′𝑇) 𝛿𝑞                                                                                   (3.29)                                                                   

Similarly for the curvature:  

𝛿𝐾̂ =  (𝑁𝑣
′′𝑇) 𝛿𝑞                                                                                                   (3.30)                                                                                                                                                                                                                

So the variation in the generalized strains can be stated as: 

𝛿𝑑̂ = {
𝛿𝜀̂
𝛿𝐾̂
} =  𝑁𝛿  𝛿𝑞                                                                                            (3.31)           

Where 𝑁𝛿 = {
(𝑁𝑢

′ + 𝑞 𝑁𝑣
′𝑇𝑁𝑣

′) 

𝑁𝑣
′′

}                                                                         (3.32)                                             

After substitution with the displacement shape function and their derivatives we 

obtain: 

𝑁𝛿 = 
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[
 
 
 
 
1

𝐿
(1 −

4𝑥

𝐿
+
3𝑥2

𝐿2
)
2

𝑞2 + (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
) 𝑞2

(1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
) 𝑞3 +(

2𝑥

𝐿
+
3𝑥2

𝐿2
)
2

𝑞3

0 −
4

𝐿
+
6𝑥

𝐿2
−
2

𝐿
+
6𝑥

𝐿2 ]
 
 
 
 

            (3.33)  

Consequently, the generalized strains is: 

𝑑̂ = {
𝜀̂
𝐾̂
} =  {

𝑁𝑢
′ 𝑇

𝑁𝑣
′′𝑇
}  𝑞 +

1

2
{
0
1
} 𝑞𝑇𝑁𝑣

′  𝑁𝑣
′𝑇𝑞                                                            (3.34)                                                                                                               

In addition, the increment in the generalized strains is specified as: 

Δ𝑑̂ = 𝑁1Δ𝑞 + {
0
1
} Δ𝑞𝑇𝑁2𝑞

𝑡 +
1

2
{
0
1
} Δ𝑞𝑇𝑁2Δ𝑞                                                     (3.35)                                                                         

Where: 

𝑁1 = {
𝑁𝑢
′ 𝑇

𝑁𝑣
′′𝑇
} = [

1

𝐿
0 0

0
−4

𝐿
+
6𝑥

𝐿2
−2

𝐿
+
6𝑥

𝐿2

]                                                               (3.36)                                                                                                      

𝑁2 = 𝑁𝑣
′  𝑁𝑣

′𝑇= 

[
 
 
 
 
0 0 0

0 (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
)
2

(1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (

−2𝑥

𝐿
+
3𝑥2

𝐿2
)

0 (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (

−2𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
)
2

]
 
 
 
 

                          (3.37) 

Where 𝑁1 and 𝑁2 are the final shape functions containing the higher order terms.                                                    

Where Δ𝑞  is the element end displacements increment and is taken as the difference 

between the current step and the step just before; while 𝑞𝑡 is the total value of the 

displacement at the current step. 

After satisfying the equilibrium, a linearization of the equilibrium equations is 

performed in order to obtain the element stiffness matrix 𝐾𝑒𝑙𝑒𝑚. 

𝐾𝑒𝑙𝑒𝑚Δ𝑞 = 𝐹𝑒𝑥𝑡 − 𝐹𝑒𝑙𝑒𝑚                                                                                       (3.38)                           
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𝐾𝑒𝑙𝑒𝑚 = ∫ (𝛬 + 𝑁𝛿
𝑇 𝑘𝑠𝑒𝑐 𝑁𝛿)𝑑𝑥

𝐿0

0
                                                                (3.39)   

and the first term of the right-hand-side of the equation is later defined in equation 

(3.41).  

𝐹𝑒𝑥𝑡 is the applied external nodal load vector and 𝐹𝑒𝑙𝑒𝑚 is the internal resisting load 

vector and equal: 

𝐹𝑒𝑙𝑒𝑚 = ∫ 𝑁𝛿
𝑇  𝐹𝑠𝑒𝑐 𝑑𝑥

𝐿0

0
                                                                                       (3.40)                       

Where 𝐹𝑠𝑒𝑐 is the section resisting forces and is shown in vector form as {
𝑃
𝑀
}. 

While 𝑃 is the section axial force and 𝑀 is the section bending moment. 

And 𝛬 = 𝑄1

[
 
 
 
0 0 0

0 (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
)2 (1 −

4𝑥

𝐿
+
3𝑥2

𝐿2
)(−

2𝑥

𝐿
+
3𝑥2

𝐿2
)

0 (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
)(−

2𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
)2 ]

 
 
 
     (3.41)                                              

And can be further simplified by solving the integral to: 

𝐾𝑔 = ∫ 𝛬 𝑑𝑥
𝐿0

0
= 𝑄1 [

0 0 0

0
2𝐿

15

−𝐿

30

0
−𝐿

30

2𝐿

15

]                                                                        (3.42)                                      

Where 𝐾𝑔 is termed the internal geometric stiffness matrix.              

   

3.4 Displacement-based element state determination 

The state determination of the displacement-based element starts by calculating 

the generalized section deformation increment. Averaging the second and third terms 

of the generalized strain equations along the element length is useful for obtaining 
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appropriate results and avoiding the membrane locking effect (Crisfield, 1991). 

Therefore, equation (3.35) becomes: 

Δ𝑑̂ = 𝑁1Δ𝑞 + {
0
1
}
1

𝐿
∫ Δ𝑞𝑇𝑁2𝑞

𝑡𝐿0

0
+
1

2
{
0
1
}
1

𝐿
∫ Δ𝑞𝑇𝑁2Δ𝑞
𝐿0

0
                                    (3.43)    

And then updating the generalized section deformations 

𝑑̂𝑖+1 = 𝑑̂𝑖 + Δ𝑑̂                                                                                                     (3.44)                 

Where the ‘i’ index denotes the previous step of the Newton-Raphson iteration at the 

global level and ‘i+1’ symbolises the current step. 

Using the section state determination, the section flexibility and the section resisting 

forces are calculated from the fibre discretization (the integration of the response of 

the fibres) using the section deformation increment and following the assumption 

that plane sections remain plane.  

The section flexibility is then inverted into a section stiffness. 

The element stiffness matrix and the element internal resisting load vector are then 

calculated by the integration of the section stiffness matrix and the section resisting 

force respectively along the element length:  

𝐾𝑒𝑙𝑒𝑚 = (𝐾𝑔 + ∫ 𝑁𝛿
𝑇  𝑘𝑠𝑒𝑐

𝑖+1 𝑁𝛿𝑑𝑥
𝐿0

0
)                                                                    (3.45)                       

𝐹𝑒𝑙𝑒𝑚 = ∫ 𝑁𝛿
𝑇 𝐹𝑠𝑒𝑐

𝑖+1 𝑑𝑥
𝐿0

0
                                                                                     (3.46)               

 

3.5 Mixed-based element with second order effect formulation 

The mixed (hybrid) beam element is formulated to overcome the weakness of 

the displacement-based element. The mixed element overcomes the complexity of 
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accounting for the second order effect in a force-based formulation (De Souza, 

2000), where the mixed formulation effectively represents the curvature and the 

strain in the localized plastic zones with a small number of element divisions. Even 

under cyclic loading and degrading strength, appropriate results can be achieved with 

a very small number of elements. The resulting element merges the robustness of the 

flexibility method with the ease of implementing the second order effect. However, 

the creation of the mixed element is computationally more complicated and 

involving than the displacement-based element. 

In the two-field mixed technique, displacement variables and stress resultant 

forces are casted individually. Both the displacements and the internal forces are 

interpolated along the length of the element. The equilibrium equations and 

compatibility equations are satisfied in a weighted integral sense and the stress 

resultant forces respect the equilibrium equations at any section along the element 

length. 

The mixed element is also formulated in the corotational system. All definitions 

and numerical expression previously identified in the displacement-based 

formulation are also valid for this formulation. Weighting functions are multiplied 

by the equilibrium equations and then integrated along the element length. Cubic and 

linear interpolation shape functions are chosen for the transverse (𝑣) and axial (𝑢) 

displacements: 

{
𝑣
𝑢
} = [

0 𝑥 −
2𝑥2

𝐿
+
𝑥3

𝐿2
−𝑥2

𝐿
+
𝑥3

𝐿2
𝑥

𝐿
0 0

] {

𝑞1
𝑞2
𝑞3
}                                                             (3.47)                                   

Taking 𝑁𝑢 and 𝑁𝑣 the same as in the displacement-based formulation.                              
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The force shape function is formed from a constant axial force field and a linear 

moment field: 

{
𝑃
𝑀
} = [

1 0 0

0
𝑥

𝐿
− 1

𝑥

𝐿

] {
𝑄1
𝑄2
𝑄3

}                                                                                  (3.48) 

Considering: 

𝑁𝐷 = [
1 0 0

0
𝑥

𝐿
− 1

𝑥

𝐿

]                                                                                            (3.49)           

Where 𝑁𝐷 is the force shape function. 

The variations and the weighting functions are: 

𝛿𝑣 = 𝑁𝑣
𝑇𝛿𝑞                                                                                                           (3.50)                                            

𝛿𝑢 = 𝑁𝑢
𝑇𝛿𝑞                                                                                                           (3.51)                         

The Green-Lagrange strain-displacement relation is: 

𝜀̂ =
𝑑𝑢

𝑑𝑥
+
1

2
(
𝑑𝑣

𝑑𝑥
)
2

+
1

2
(
𝑑𝑢

𝑑𝑥
)
2

                                                                                   (3.52)         

After ignoring the third term, the variation of the strain will be: 

𝜀̂ = 𝛿𝑢′ + 𝛿𝑣′𝑣′                                                                                                   (3.53)  

Then: 

𝜀̂ =  (𝑁𝑢
′ 𝑇 + 𝑞𝑇𝑁𝑣

′𝑁𝑣
′𝑇) 𝛿𝑞                                                                                   (3.54)                            

Therefore the variation in the generalized strains is: 

𝛿𝑑̂ = {
𝛿𝜀̂
𝛿𝐾̂
} =  𝑁𝛿  𝛿𝑞                                                                                            (3.55)                                                                                                     

Where: 
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𝑁𝛿 = {
(𝑁𝑢

′ + 𝑞 𝑁𝑣
′𝑇𝑁𝑣

′) 

𝑁𝑣
′′

}                                                                                     (3.56)                              

After substitution with the displacement shape function and their derivatives we 

obtain that: 

𝑁𝛿 = 

[
 
 
 
 
1

𝐿
(1 −

4𝑥

𝐿
+
3𝑥2

𝐿2
)
2

𝑞2 + (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
) 𝑞2

(1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
) 𝑞3 +(

2𝑥

𝐿
+
3𝑥2

𝐿2
)
2

𝑞3

0 −
4

𝐿
+
6𝑥

𝐿2
−
2

𝐿
+
6𝑥

𝐿2 ]
 
 
 
 

            (3.57)        

The generalized strains are: 

𝑑̂ = {
𝜀̂
𝐾̂
} =  {

𝑁𝑢
′ 𝑇

𝑁𝑣
′′𝑇
}  𝑞 +

1

2
{
0
1
} 𝑞𝑇𝑁𝑣

′  𝑁𝑣
′𝑇𝑞                                                            (3.58)                                                                                                                         

In addition, the increment in the generalized strains is specified by: 

Δ𝑑̂ = 𝑁1Δ𝑞 + {
0
1
} Δ𝑞𝑇𝑁2𝑞

𝑡 +
1

2
{
0
1
} Δ𝑞𝑇𝑁2Δ𝑞                                                     (3.59)                                                                                                    

Where: 

𝑁1 = {
𝑁𝑢
′ 𝑇

𝑁𝑣
′′𝑇
} = [

1

𝐿
0 0

0
−4

𝐿
+
6𝑥

𝐿2
−2

𝐿
+
6𝑥

𝐿2

]                                                               (3.60)                                                                                         

𝑁2 = 𝑁𝑣
′  𝑁𝑣

′𝑇 = 

[
 
 
 
 
0 0 0

0 (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
)
2

(1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (

−2𝑥

𝐿
+
3𝑥2

𝐿2
)

0 (1 −
4𝑥

𝐿
+
3𝑥2

𝐿2
) (

−2𝑥

𝐿
+
3𝑥2

𝐿2
) (−

2𝑥

𝐿
+
3𝑥2

𝐿2
)
2

]
 
 
 
 

                          (3.61)                              

At that point, the compatibility is imposed using the weak form by multiplying 

the weighting function with the difference of the strains calculated from the 
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displacement shape function 𝑑̂, and the strains calculated from the force shape 

function 𝑑, then integrating along the element length.  

∫ 𝛿𝐹𝑠𝑒𝑐
𝑇(𝑑̂ − 𝑑)

𝐿0

0
𝑑𝑥 = 0                                                                                    (3.62)                              

Next, the weak form of equilibrium equations is combined with the weak form 

of the compatibility equations resulting in two equations: 

Firstly, the element equilibrium equation: 

𝑔 = ∫ 𝑁𝛿
𝑇𝐹𝑠𝑒𝑐𝑑𝑥 − 𝐹𝑒𝑥𝑡  = 0

𝐿0

0
                                                                             (3.63)               

Secondly, the element strain displacement compatibility equation: 

𝑉 = ∫ 𝑁𝐷
𝑇(𝑑̂ − 𝑑)𝑑𝑥 = 0

𝐿0

0
                                                                                  (3.64)       

Together with the incremental cross section constitutive equation: 

Δ𝐹𝑠𝑒𝑐 = 𝐾𝑠𝑒𝑐 Δ𝑑                                                                                                    (3.65)                     

Then the section constitutive equations, the element compatibility equations and the 

equilibrium equations are linearized. 

From the linearization of the section constitutive equations we get: 

Δ𝑑 = 𝑓𝑠𝑒𝑐(𝐹𝑠𝑒𝑐 − 𝐹𝑅)                                                                                           (3.66)          

Where: 

 𝐹𝑅: The section resisting forces.  

𝑓𝑠𝑒𝑐: The section flexibility. 

And from the linearization of the element compatibility equations we get: 

Δ𝐹𝑒𝑙𝑒𝑚 = 𝑓𝑒𝑙𝑒𝑚
−1(V + 𝐺 Δ𝑞)                                                                               (3.67)                     
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Where:                                                                                  

𝑓𝑒𝑙𝑒𝑚 = ∫ 𝑁𝐷
𝑇 𝑓𝑠𝑒𝑐  𝑁𝐷𝑑𝑥

𝐿0

0
                                                                                    (3.68)                               

𝐺 = ∫ 𝑁𝐷
𝑇   𝑁𝛿𝑑𝑥

𝐿0

0
                                                                                                (3.69)                               

And 𝐺 is the integration of the product of the displacement and force shape functions 

along the element length. It contains higher order terms to include the second order 

effect. 

𝐺 = [
1

2𝐿𝑞2

15
−
𝐿𝑞3

30
−
𝐿𝑞2

30
+
2𝐿𝑞3

15

0 1 0
0 0 1

]                                                                     (3.70)     

Lastly, the element stiffness is determined from the linearization of the equilibrium 

equations:  

𝐾𝑒𝑙𝑒𝑚 Δ𝑞 = 𝐹𝑒𝑥𝑡 − 𝐹𝑒𝑙𝑒𝑚                                                                                      (3.71)                

Where: 

𝐾𝑒𝑙𝑒𝑚 = (𝐾𝑔 + ∫ 𝐺𝑇 𝑓𝑒𝑙𝑒𝑚
−1  𝐺 𝑑𝑥

𝐿0

0
)                                                                     (3.72)                                           

𝐹𝑒𝑙𝑒𝑚 = 𝐺𝑇𝐹𝑒𝑙𝑒𝑚 + 𝐺
𝑇 𝑓𝑒𝑙𝑒𝑚

−1  𝑉                                                                            (3.73)                  

 

3.6 Mixed-based element state determination 

In the following state determination, residuals at the section and element stages 

are eliminated using the internal element iteration and the Newton-Raphson global 

iteration respectively. Hence “i” index represents the Newton-Raphson iteration at 

the global level and “j” index symbolises the internal iteration at the element level. 

First, we start by calculating the element end force increments ∆𝐹𝑒𝑙𝑒𝑚        



67 
 

∆𝐹𝑒𝑙𝑒𝑚
𝑗

= 𝒦𝑒𝑙𝑒𝑚
𝑗−1

 Δq                                                                                               (3.74)                                                

Where 𝒦𝑒𝑙𝑒𝑚
𝑗−1

 is the element stiffness calculated from the previous step and the 

deformation increment Δq: 

Δq = 𝐺 Δ𝑞̅                                                                                                             (3.75)                                           

Where 𝑞̅ was previously defined in Figure (3.1) and equation (3.9).                                                                                                                                                 

Then element end forces are updated using the previous converged step: 

𝐹𝑒𝑙𝑒𝑚
𝑗

= 𝐹𝑒𝑙𝑒𝑚
𝑗−1

+ ∆𝐹𝑒𝑙𝑒𝑚
𝑗

                                                                                        (3.76)                                                                          

Then the section force increments ∆𝐹𝑠𝑒𝑐 is primarily evaluated from the force shape 

function:  

∆𝐹𝑠𝑒𝑐
𝑗
= 𝑁𝐷(𝑥). ∆𝐹𝑒𝑙𝑒𝑚

𝑗
                                                                                          (3.77)                                                                                                                                         

And the section forces are updated using the previous converged value: 

𝐹𝑠𝑒𝑐
𝑗
= 𝐹𝑠𝑒𝑐

𝑗−1
+ ∆𝐹𝑠𝑒𝑐

𝑗
                                                                                              (3.78)                                                        

The section deformation increments derived from the interpolated stress-resultant 

can now be calculated: 

∆𝑑𝑗 = 𝑓𝑠𝑒𝑐
𝑗−1
 ∆𝐹𝑠𝑒𝑐

𝑗
                                                                                                 (3.79)                                                                                              

And the section deformations are at that point updated using the previous converged 

value: 

𝑑𝑗 = 𝑑𝑗−1 + ∆𝑑𝑗                                                                                                  (3.80)                                  

The Green-Lagrange equation is used to calculate the increment in the generalized 

strains: 

Δ𝑑̂𝑖 = 𝑁1Δ𝑞 + {
0
1
} Δ𝑞𝑇𝑁2𝑞

𝑡 +
1

2
{
0
1
} Δ𝑞𝑇𝑁2Δ𝑞                                                   (3.81)                                                        

And then the total generalized strains are obtained using the values at the previous 

converged step: 
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𝑑̂𝑖 = 𝑑̂𝑖−1 + Δ𝑑̂𝑖                                                                                                   (3.82)                        

The first residual is then evaluated:  

𝑉𝑗 = ∫ 𝑁𝐷
𝑇(𝑥)(𝑑̂𝑖 − 𝑑𝑗)

𝐿

0
                                                                                      (3.83)           

And the element flexibility matrix 𝑓𝑒𝑙𝑒𝑚 is calculated 

𝑓𝑒𝑙𝑒𝑚
𝑗

= ∫ 𝑁𝐷
𝑇(𝑥). 𝑓𝑠𝑒𝑐

𝑗 (𝑥).𝑁𝐷(𝑥). 𝑑𝑥
𝐿0

0
                                                                 (3.84)      

Further, the section stiffness and force vector are determined from the fibre 

discretization using the section deformation increment and the assumption of plane 

sections remaining planes. The section residual deformations ∆𝑑𝑗 are determined by 

multiplying the section flexibility 𝑓𝑠𝑒𝑐
𝑗

 and the section unbalanced forces, where, the 

unbalanced forces are the difference between the applied section forces 𝐹𝑠𝑒𝑐
𝑗

 and the 

section resisting forces 𝐹R
𝑗
. 

Δ𝑑𝑗+1 = 𝑓𝑠𝑒𝑐
𝑗
(𝐹𝑠𝑒𝑐

𝑗
− 𝐹R

𝑗
)                                                                                     (3.85)              

The section residual deformations are then used to update the section deformations: 

𝑑𝑗+1 = 𝑑𝑗 + ∆𝑑𝑗+1                                                                                              (3.86)                                                                                                        

The section residuals deformations are integrated along the element to calculate the 

element residual deformations: 

𝑅𝑗 = ∫ 𝑁𝐷
𝑇(𝑥). ∆𝑑𝑗+1. 𝑑𝑥

𝐿

0
                                                                                    (3.87)         

Then by inverting the element flexibility 𝑓𝑒𝑙𝑒𝑚, the element stiffness matrix 𝒦𝑒𝑙𝑒𝑚 is 

obtained.  

And the internal geometric stiffness matrix 𝐾𝑔 is added to the element stiffness. 

𝐾𝑒𝑙𝑒𝑚
𝑗

= (𝐾𝑔
𝑗 +𝒦𝑒𝑙𝑒𝑚

𝑗
)                                                                                      (3.88)                                                                                               
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Where: 

𝐾𝑔 = 𝑄1 [

0 0 0

0
2𝐿

15

−𝐿

30

0
−𝐿

30

2𝐿

15

]                                                                                           (3.89)   

When updating the element end resisting forces both the element residuals and 

compatibility equation have to be considered.  

∆𝐹𝑒𝑙𝑒𝑚
𝑗+1

= 𝐾𝑒𝑙𝑒𝑚
𝑗

 (𝑉𝑗 − 𝑅𝑗)                                                                                    (3.90)                                                                                                                  

Then the element end resisting forces are updated this time from the previous step. 

𝐹𝑒𝑙𝑒𝑚
𝑗+1

= 𝐹𝑒𝑙𝑒𝑚
𝑗

+ ∆𝐹𝑒𝑙𝑒𝑚
𝑗+1

                                                                                        (3.91)                                            

Later an update to the forces and deformations of all sections has to be 

performed using the updated element end resisting forces. 

Iterations have to be performed until the residuals diminish and the subsequent 

criteria is met: 

Σ|𝑉𝑗| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒                                                                                               (3.92)                                                                                                                                                                      

For the mixed element only, it will be required upon convergence that the 

element force vector 𝐹𝑒𝑙𝑒𝑚 and element stiffness matrix 𝐾𝑒𝑙𝑒𝑚 be multiplied by the 𝐺 

matrix, previously defined in (3.70), before being transformed to the global system 

by the transformation matrix 𝑇𝑟 as shown below: 

For the element forces: 

𝐹𝑒𝑙𝑒𝑚(𝐺) = 𝐺
𝑇 𝐹𝑒𝑙𝑒𝑚                                                                                             (3.93)                                                                                                  

And for the element stiffness matrix: 

𝐾𝑒𝑙𝑒𝑚(𝐺) = 𝐺
𝑇 𝐾𝑒𝑙𝑒𝑚 𝐺                                                                                        (3.94)                                      
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3.7 The fibre beam element material model  

Advanced material models were assigned to the displacement and the mixed 

fibre beam elements that consider the second order effect, to allow the proper 

simulation and the prediction of the response of reinforced concrete members under 

different monotonic and cyclic loading. However, the effect of the bond slip is 

neglected in this study. For the concrete material model in compression, the model of 

Kent and Park (1971) as modified by Scott et al. (1982) is employed.  

The model simulates the nonlinear behaviour of concrete and the expected strain 

softening behaviour that occurs with the reduction of the stresses after its peak value 

that is accompanied by an upsurge in the deformation. The model also acknowledges 

the ductility of concrete that helps in achieving considerable amount of deformations 

before failure occurs. Meaning that the adopted concrete material model respects the 

pre-peak and post-peak behaviour of concrete, also the effect of concrete 

confinement in compression and the softening that occurs to the concrete in 

compression due to the propagation of cracks. Furthermore, the model reflects the 

ability of concrete to carry tension.  

For the tensile behaviour in the concrete material model, the model accounts for 

the effect of the tension stiffening and the degradation of the unloading and reloading 

stiffness for increased peak tensile strains after early cracking, where the tension 

stiffening is the capability of the cracked concrete to carry tensile stresses and to 

participate in the stiffness of the member. As the cracks increase, this participation 

diminishes and the tension stiffening decreases progressively. So the concrete stress-

strain relation simulates this behaviour by reducing the tensile stress, after reaching 

the tensile strength, until it reaches a zero value.  The reduction of the tensile 
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strength can follow a linear, multilinear or exponential path. In the present material 

model, the linear path is the only possible choice. Meanwhile, if the tension 

stiffening is ignored, the calculated deflection of the members will be significantly 

overestimated. 

The concrete material model with tensile strength and linear tension softening 

requires the input of a number of parameters in order to create the full stress strain 

curve. These parameters are shown in Figure (3.4) and defined below. The hysteretic 

concrete stress-strain curve is also shown in Figure (3.5). The model contains the 

unloading, reloading and transition between tension and compression curves for the 

concrete while the cyclic behaviour is modelled by a number of straight lines. 

INPUT PARAMETERS FOR THE CONCRETE MATERIAL MODEL: 

 𝑓𝑐
′, 𝜀0, 𝜀𝑐𝑢, 𝜆, 𝑓𝑡 , 𝐸𝑡𝑠 

Where: 

𝑓𝑐
′ : Concrete compressive strength at 28 days (negative for compression) 

𝜀0 : Concrete strain at maximum strength  

𝜀𝑐𝑢 : Concrete strain at crushing strength  

𝜆 : 
𝐸𝑈

𝐸𝐶
 (For cyclic loading only) 

𝑓𝑡: Tensile strength (positive for tension) 

𝐸𝑡𝑠 : Tension softening stiffness (absolute value) 
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Figure 3.4: Material Parameters for concrete model. 

 

Figure 3.5: Concrete cyclic material model. 

For the steel material model, the modified Menegotto-Pinto cyclic stress-strain 

curve of mild steel bar is employed. Filippou et al. (1983) improved the Menegotto 

and Pinto (1973) model by including the isotropic strain hardening effect. The 
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model contains the monotonic envelope, the ascending and the descending branches. 

However, the yield plateau and the nonlinear work hardening are approximated 

through curved transitions with a straight-line asymptote with slope 𝐸 to another 

straight-line asymptote with slope 𝐸𝑝 and controlled by a strain hardening ratio 𝑏. 

The steel material model with isotropic strain hardening requires the input of a 

number of parameters in order to create the full stress-strain curve. These parameters 

are shown in Figure (3.6) and defined below. The hysteresis steel stress- strain curve 

is also shown in Figure (3.7).  

 

INPUT PARAMETERS FOR THE STEEL MATERIAL MODEL: 

 𝑓𝑦, 𝐸, 𝑏, 𝑅0, 𝐶1, 𝐶2 

𝑎1, 𝑎2, 𝑎3, 𝑎4 

Where: 

𝑓𝑦 : yield strength. 

𝐸 : Young’s modulus. 

𝑏 : 
𝐸𝑝

𝐸
 Strain hardening ratio 

𝑅0 : Exponent number for the control of the transition between elastic and hardening 

zones. 

𝐶1& 𝐶2 : Parameters for the change of 𝑅0  with cyclic loading. 

𝑎1, 𝑎2, 𝑎3& 𝑎4: Isotropic hardening parameters. 
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Figure 3.6: Material Parameters for Steel model. 

 

Figure 3.7: Menegotto-Pinto Cyclic stress-strain curve of steel. 

 

3.8 Validation of the finite element models 

The newly developed models are verified by comparing their results with a 

number of experiments available from the literature. All the chosen experiments are 
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subjected to large deformations because of the slenderness of the adopted sections 

and the dimensions of the members. Fibrous materials were utilized in some 

specimens and were accounted for in the models. Their effect is displayed and 

discussed in the next sections. After the calibration of the numerical models, the 

elements can be extensively used to simulate the response of different reinforced 

concrete structures subjected to large displacements and rotations. 

 

3.8.1 William’s toggle frame 

First, the two elements will be validated against the well-known experiment of 

Williams (1964) that has been studied previously by many researchers to validate 

their models. The frame is shown in Figure (3.8) with its circular cross section. The 

importance of this exercise is that the beam undergoes considerable large 

deformations. It is considered a good tool to examine the formulation of 

geometrically nonlinear elements due to its highly nonlinear response. The 

experiment was first devised by Williams (1964) and later analysed by many 

researchers including Chan (1988) who used an elastic perfectly plastic material and 

two different values of yield stress in the analysis. Similarly, De Souza (2000) used 

a force-based element to model the cantilever. 



76 
 

 

Figure 3.8: Williams toggle frame. 

 

The developed fibre beam elements were used to model the William toggle 

frame with three different yield stress values. Young’s modulus was taken as 

199,714 MPa and the circular cross section was divided into 10 fibres. The 

displacement-based model was divided into 8 elements, while the mixed-based 

model was divided into 4 elements only. The boundaries were fixed and the load was 

applied at the centre using a displacement control procedure.  

The load-deformation plot shown in Figure (3.9) confirms that the two fibre 

beam elements were both able to follow the equilibrium path of the William toggle 

frame for the three yield stress values accurately. Both the elastic and inelastic 

regions were modelled accurately although only in the elastic region the equilibrium 

path was identical.  
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Figure 3.9: Equilibrium paths for the toggle frame. 

 

Although many scholars modelled the previous William toggle frame, none of 

them went further and showed the distribution of straining actions along the length 

of the frame. The distribution of curvatures, moments and axial forces can be used 

for the design of structures. It can form a better understanding of the behaviour of the 

structural elements. Therefore, the displacement-based element was nominated to 

produce the distribution for the case of infinite yield strength. Figure (3.10) shows 

the curvature distribution along the toggle frame length at displacement values of 

0.5, 1.0 and 1.5 cm, while Figure (3.11) shows the moment distribution along the 

toggle frame length at displacement values of 0.5, 1.0 and 1.5 cm. Finally, Figure 

(3.12) shows the axial distribution along the toggle frame length at the same 

displacements. Only the calculation of the axial force faced some slight numerical 

deviations for the displacement value of 1.5 mm because of the high displacements 

exerted on the frame. However, the elements were able to run stably in all cases.  
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Figure 3.10: Curvature distribution for the toggle frame under 3 different 

displacement values. 

 

 

Figure 3.11: Moment distribution for the toggle frame under 3 different displacement 

values. 
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Figure 3.12: Axial distribution for the toggle frame under three different 

displacement values. 

 

3.8.2 Cantilever beam with a vertical load at the tip 

In the second example, a cantilever beam of hollow circular cross section with 

external diameter of 355.46 mm and a thickness of 3.8 mm was loaded from its tip 

by a vertical load (Figure 3.13). The beam had a length of 4000 mm and a Young’s 

modulus of 20 GPa. The significance of this beam is that it considers large 

displacements compared to its cantilever length. Chan (1988) analysed this problem 

using an elastic perfectly plastic material and used two different values of yield 

stress. In addition, De Souza (2000) used a force-based element to model the 

cantilever.  
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Figure 3.13: Cantilever beam with a vertical load at the tip. 

 

In order to analyse the cantilever beam, the displacement-based model was 

divided into 8 elements, while the mixed-based model was divided into 4 elements 

only. Figure (3.14) shows the equilibrium path of the cantilever beam for three yield 

stress values. The displacement and mixed fibre beam elements, as shown from the 

equilibrium path, were able to accurately simulate the behaviour of the member for 

the three different values of yield stress. 
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Figure 3.14: Equilibrium paths for the cantilever beam. 

Additionally, the mixed element is nominated to draw the bending moment 

distribution along the length of the beam for four relative displacement values with 

the yield value of 16500 MPa (Figure 3.15). Results show consistency and confirm 

the stability of the numerical solution along the cantilever beam length.  

 

Figure 3.15: Moment distribution along the cantilever beam for four different 

relative displacement values. 
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3.8.3 Barrera experiment 

The first experiment that will be used for the calibration of the new elements for 

reinforced concrete structures is a test performed by Barrera et al. (2011) to 

examine forty-four rectangular slender reinforced concrete columns, with different 

sections, under combined axial load and lateral force. The use of high strength 

concrete (HSC) in the column produced smaller cross sections which increased its 

slenderness and produces a major second order effect.  A constant axial load and a 

monotonic lateral force were applied up to failure of the columns. The test outlines 

and settings are displayed in Figure (3.16). After the testing, two simplified methods 

from Eurocode 2 and ACI-318 were used by the authors for comparison with the 

experiments and were both found very conservative.  

The tested specimens simulate two semi-columns of two consecutive levels 

linked together by a central element, which acts as a stiffener to represent an 

intermediate floor or the connection between a column and the foundation 

represented by a stub element. Each semi-column has a total length of 1.5 m, such 

that 1.32 m is the reinforced concrete member and the remaining 0.18 m represents 

the hinge support of the sample. The steel hinges enable the free rotation of the 

specimen. They are maintained by a steel plate with installed rollers to permit 

horizontal movements. The complete geometry and dimensions of the specimens are 

given in Figure (3.17).  

The developed elements are then used to compare the results of specimen (H60-

10.5-C0-2-30). This sample has a cross section of 200x150 mm and a nominal 

concrete strength of 60.5 MPa, steel young’s modulus of 200 GPa, longitudinal steel 
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yielding stress of 537 MPa and longitudinal reinforcement of 6Ø10 bars. The sample 

was subjected to an axial load equal 432 kN. 

On the other hand, the fibre beam model was constructed using only 4 elements. 

This was enough to reach convergence for both the displacement and the mixed 

elements. Further, every element was divided internally into 5 sections and the 

sections were divided into 10 concrete fibres and 6 steel fibres that represent the 

column reinforcement (Figure 3.18). 

 

 

Figure 3.16: Test framework, Figure from Barrera et al. (2011). 

 

Figure 3.17: Geometry and dimensions of the specimen, Figure from Barrera et al. 

(2011). 
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Figure 3.18: Fibre beam element cross section mesh for specimen H60-10.5-C0-2-

30. 

 

Figure (3.19) shows the load displacement curve of the tested column. It is clear 

that both fibre beam elements were able to follow the output path of the experiment 

until failure. The previous displacement-based element that did not consider the 

second order analysis strongly missed the path and produced an error up to double 

the value near failure. It is noticeable that the more the load becomes stronger the 

more the second order effect increases (at a small displacement of 5 mm the second 

order effect was 33% and at higher displacement of 20 mm the second order effect 

increased to 69%).  
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Figure 3.19: Load displacement curve for column H60-10.5-C0-2-30 tested by 

Barrera et al. (2011) and compared with the fibre beam elements. 

 

Using the mixed element, Figure (3.20) presents the full vertical displacement 

under four different lateral force values along the element length. These deformed 

shapes are very similar to the one retrieved from the experiment. For instance, the 

experimental deformed shape at a lateral force of 16.56 kN is plotted in Figure (3.20) 

for comparison with the mixed element results. The difference between the deformed 

shape of experimental results and the numerical solution was about 5%.  For this 

specimen, the maximum vertical load (Vmax) achieved during the experiment was 

18.43 kN. 
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Figure 3.20: Vertical displacements along the column H60-10.5-C0-2-30 under 

different Lateral forces values. 

 

In Figure (3.21), a comparison is presented between the curvatures (at lateral 

force 15 kN) for the displacement and mixed elements with and without the second 

order effect. It is clear that the P-delta effect is higher near the stub where the load is 

applied and the effect lessens as we move near the supports. It can also be seen that 

there is no considerable difference between the accuracy of the displacement and 

mixed elements at this stage since not much of inelastic deformation is occurring at 

that level and the curve is almost linear.   
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Figure 3.21: Comparison between the curvature at maximum lateral load for the fibre 

beam elements with and without second order effect. 

 

However, when comparing the maximum curvature at the maximum vertical 

load level, Figure (3.22), it is clear that while the mixed element still produces a 

smooth curve, the displacement element requires more divisions to avoid kinks and 

match with the mixed elements results. This is linked to the occurrence of inelastic 

deformations at this level. The output curve of the displacement-based element with 

higher element divisions (12 elements) approaches the one of the mixed element (4 

divisions); however, the produced curve was still not sufficiently smooth. 

Consequently, the higher accuracy of the mixed element in the determination of the 

curvature in the case of inelastic deformations is apparent.   
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Figure 3.22: Comparison between the displacements based elements (4 and 12 

divisions) vs the mixed element (4 divisions) for curvature at maximum lateral load. 

 

Moreover, the developed fibre beam elements are an advanced tool to study in 

detail the global and local behaviour of reinforced concrete structures. First, the 

structural behaviour was studied by the load displacement curves (Figure 3.19). 

Second, the section behaviour will be investigated using moment curvature curves of 

the five sections of elements 2 (Figures 3.23 to 3.27). Finally, the fibre behaviour 

will be studied and monitored for some particular fibres. This capability is only 

possible in advanced fibre based elements.  

The mixed element with four elements is employed for this exercise. The 

moment curvature curves for all sections of element 2 are shown in Figures (3.23) to 

(3.27). It is clear that the second order analysis, at the section level, produced 

moments modified up to 9% than the moments produced without second order 

analysis.  
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Figure 3.23: Comparison between the moment curvature relationship for (element 2-

section 1) using the mixed element for cases with and without second order analysis. 

 

 

Figure 3.24: Comparison between the moment curvature relationship for (element 2-

section 2) using the mixed element for cases with and without second order analysis. 
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Figure 3.25: Comparison between the moment curvature relationship for (element 2-

section 3) using the mixed element for cases with and without second order analysis. 

 

 

Figure 3.26: Comparison between the moment curvature relationship for (element 2-

section 4) using the mixed element for cases with and without second order analysis. 
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Figure 3.27: Comparison between the moment curvature relationship for (element 2-

section 5) using the mixed element for cases with and without second order analysis. 

 

Further, the stress-strain curves of particular fibres (either concrete or steel) are 

monitored and displayed. Such capabilities can be adequately used by the designer to 

take economical decisions regarding the design of different reinforced concrete 

elements. The monitored fibres are labelled and shown in Figure (3.28). Where fibre 

1 is the top concrete fibre, fibre 2 is the bottom concrete fibre and fibre 3 is a bottom 

steel bar fibre.   



92 
 

 

Figure 3.28: labelling of monitored fibres for Barrera experiment. 

 

Figures (3.29) and (3.30) display the stress strain behaviour of concrete fibre 1. 

For (fibre 1 - sec 1 at element 2) the concrete fibre is at the end of the elastic range, 

for the case where the analysis was performed with the second order effect, the fibre  

is stressed with a final stress of 49.77 MPa at a strain of 0.0012 while when no 

second order effect is performed the fibre reached a stress of only 46.4 MPa with a 

lower strain of 0.00108. While for (fibre 1 – sec 4 at element 2) the concrete fibre 

was clearly in the ductile nonlinear zone. The second order effect in this region 

produced a final stress of 62.27 MPa  at a strain value of 0.00261 compared to a final 

lower stress of 62.05 MPa at a higher strain value of 0.00299. It is clear that both 

curves produced the same stress strain path but with different final stress values 

under different strains. 

For the concrete (fibre 2 - element 3 at sec 2), the second order effect did not 

produce much difference for the loading and unloading behaviour (Figure 3.31).  
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 For the steel (fibre 3 – sec 2 at element 2), shown in Figure (3.32), the fibre is in 

the linear zone and the second order effect is strongly spotted in this fibre behaviour 

at this particular section. The second order analysis stressed the fibre under much 

less stress of 119 MPa with a small strain of 0.00048 compared to a higher stress 

value of 205.8 MPa with a higher strain of 0.0008 when no second order analysis is 

performed. Finally for the steel (fibre 3 – sec 5 at element 2), Figure (3.33), the fibre 

behaved elastically until a nonlinear effect was observed and the curves entered the 

partial plasticity zone and the second order effect produced a small change in the 

final stress strain values of the fibre. The initial negative part of the stress-strain 

curves shown in Figures (3.32) and (3.33) can be attributed to the effect of the axial 

force on the fibre behaviour. 

 

 

Figure 3.29: Comparison between the stress strain curves for fibre 1 for element 

2 at sec 1 using the mixed element with and without second order effect. 
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Figure 3.30: Comparison between the stress strain curves for fibre 1 for element 

2 at sec 4 using the mixed element with and without the second order effect. 

 

 

Figure 3.31: Comparison between the stress strain curves for fibre 2 for element 

3 at sec 2 using the mixed element with and without the second order effect. 
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Figure 3.32: Comparison between the stress strain curves for fibre 3 for element 

2 at sec 2 using the mixed element with and without the second order effect. 

 

 

Figure 3.33: Comparison between the stress strain curves for fibre 3 for element 

2 at sec 5 using the mixed element with and without the second order effect. 
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It can then be concluded that the new proposed elements are able to accurately 

model high strength reinforced concrete slender columns with high accuracy under 

monotonic loading. From the distribution of the curvature and moment along the 

element length, it can be established that the second order effect is much higher near 

the applied load and diminish near the supports. The mixed element requires less 

number of divisions to efficiently predict the curvature and produces smoother 

output curves when compared with the displacement-based element.  

In general, the second order effect tends to decrease the final stress and strain 

forces of most fibres. However, different behaviours can be spotted in each 

individual fibre. 

 

3.8.4 Morrison SFRC experiment  

Later, Caballero-Morrison et al. (2013) used the same previous type of 

specimen, that represent two columns of two connected floors joined by a stub, to 

test steel fibre-reinforced high strength concrete (SFRC) slender columns, but this 

time under cyclic loading. HSC was used for the slender columns to increase its 

deformation capacity in order to overcome the expected increase of the second-order 

effect, while the presence of the steel fibres will result in a considerable increase in 

toughness and in the strain at peak stress together with a slight increase in the peak 

stress itself. This can reduce the deformation of the concrete under cyclic loading 

and delays the spalling of concrete. The test procedure consisted of first applying a 

constant compression horizontal load corresponding to a relative normal force, and 

then a cyclic lateral load is applied. 
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Two samples were selected to be modelled using the fibre beam elements. The 

detailed geometries of the specimens are the same as the ones used in the previous 

experiment in this chapter and are displayed in Figure (3.17). The first sample 

(NF00L05V2S100) is a normal strength concrete, with fc= 33.57 MPa, a cross 

section of 260x150 mm and longitudinal reinforcement of 6Ø12. No steel fibres 

were added to this sample. The second specimen (HF60L05V1S50) is a HSC, with 

fc= 81.10 MPa, a cross section of 260x150 mm, with longitudinal reinforcement of 

6Ø12 and with steel fibre content of 60 kg/m3 (equivalent to a volumetric ratio of 

0.76%). The fibre content was modelled by increasing the element tensile strength by 

1%.  

The first sample was subjected to an axial force equal 491.7 kN while the 

second sample was subjected to an axial force equal 333.9 kN. Figure (3.34) shows 

the fibre beam element cross section mesh used for the two specimens. The same 

finite element model described in the previous experiment in this chapter was used. 

The cyclic load was implemented using a displacement control method with the 

same loading history used in the experiment, which is shown in Figure (3.35).  

A sensitivity study was performed for the two models and it was found that the 

displacement-based model requires to be constructed with 14 elements division to 

reach convergence and to capture the external retraction hysteric path. Whereas, the 

mixed-based model required only 4 elements to match with the output of the 

experiment and to achieve full convergence.  
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Figure 3.34: Fibre beam element cross section mesh for specimens NF00L05V2S100 

and HF60L05V1S50. 

 

Figure 3.35: loading history, Figure from Caballero-Morrison et al. (2013). 

 

Subsequently, in Figure (3.36), the two fibre beam elements are compared with 

the experiment results. It is clear that they were both able to model the specimen 

(NF00L05V2S100) and to agree with the test results. If the second order effect was 

not considered a higher load-displacement path could be expected and is not shown 
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herein only for clarity. The maximum difference in the displacement values, between 

considering and not considering the second order effect, was about 10-15% in the 

first three cycles and then jumped to about 30% in the later cycles. For this sample, 

the maximum bending moment at critical section (70 mm from the column-stub) 

calculated from the experiment was 71.68 kN.m and from the mixed fibre beam 

element with second order analysis was 71.28 kN.m with an error less than 0.1%. 

 

 In Figure (3.37), the elements were compared with the experimental results of 

sample (HF60L05V1S50); also, the numerical solution matched with the 

experimental results. For this sample, the maximum bending moment at critical 

section (70 mm from the column-stub) calculated from the experiment was 78.37 

kN.m and from the mixed fibre beam element with second order analysis was 85.92 

kN.m with an error up to 9.6%. 

 

Figure 3.36: Load displacement curve for the experimental results of column 

NF00L05V2S100 Vs the mixed and displacement-based elements. 
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Figure 3.37: Load displacement curve for the experimental results of column 

HF60L05V1S50 Vs the mixed and displacement-based elements. 

 

From the plots, it can be noticed the influence of using HSC and adding fibrous 

materials on the second sample (HF60L05V1S50) regarding the deformation that the 

sample has undergone and the shape of the hysteric curves. Therefore, this example 

establishes the ability of the enhanced elements to model slender reinforced concrete 

members subjected to cyclic loading while accounting for the presence of steel fibres 

in the concrete mix. 

Later, the elements capabilities are employed to draw the moment distribution 

along the length of the two columns. The mixed element was used for this task with 

the 4 element division model. From Figures (3.38 & 3.39) accurate and consistent 

distributions can be spotted.  
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Figure 3.38: Moment distribution along column NF00L05V2S100 at the middle and 

the end of each load cycle. 

 

Figure 3.39: Moment distribution along column HF60L05V1S50 at the middle and 

the end of each load cycle. 
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When comparing between the two graphs in Figures (3.38 & 3.39) that were 

created using the mixed element, it can be observed that the distribution of the 

moments is clustered together in the case of the HSC column that contain the steel 

fibre content for all the cycles. Meaning that the presence of the HSC and fibres did 

not allows jumps in the values of the bending moment from a cycle to another 

(Figure 3.39). While in Figure (3.38), jumps in the values of moment can be clearly 

seen. A conclusion can be drawn from this observation that HSC and fibres help to 

improve the ductility of reinforced concrete members subjected to cyclic and second 

order effect.  

 Next, the fibre beam element is used to monitor the behaviour of particular 

fibres. Figure (3.40) shows the labelling of the monitored fibres for sample 

NF00L05V2S100 and for sample HF60L05V1S50. The stress strain behaviour of 

each fibre is created by the programme and the second order effect is investigated at 

the fibre level using the mixed element with four members.  

Figures (3.41, 3.42 and 3.43) show the stress strain curves for the normal 

concrete sample NF00L05V2S100 with no steel fibres. When the second order effect 

is omitted, higher strain values were produced. Figures (3.44, 3.45 and 3.46) shows 

the stress strain curves for the HSC concrete sample HF60L05V1S50 with steel 

fibres. In this case, neglecting the second order effect produces lower strain values.  



103 
 

 

Figure 3.40: labelling of monitored fibres for Morrison experiment. 

 

 

Figure 3.41: Comparison between the stress strain curves of top concrete fibre 1 

for element 2 at sec 4 using the mixed element with and without the second order 

effect (sample NF00L05V2S100). 
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Figure 3.42: Comparison between the stress strain curves of bottom concrete 

fibre 2 for element 3 at sec 1 using the mixed element with and without the second 

order effect (sample NF00L05V2S100). 

 

Figure 3.43: Comparison between the stress strain curves of bottom steel fibre 3 

for element 2 at sec 5 using the mixed element with and without the second order 

effect (sample NF00L05V2S100). 
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Figure 3.44: Comparison between the stress strain curves of bottom concrete 

fibre 1 for element 2 at sec 1 using the mixed element with and without the second 

order effect (sample HF60L05V1S50). 

 

Figure 3.45: Comparison between the stress strain curves of bottom concrete 

fibre 2 for element 2 at sec 4 using the mixed element with and without the second 

order effect (sample HF60L05V1S50). 



106 
 

 

Figure 3.46: Comparison between the stress strain curves of bottom steel fibre 3 

for element 2 at sec 4 using the mixed element with and without the second order 

effect (sample HF60L05V1S50). 

 

The experiment confirms the ability of the proposed fibre beam elements in 

modelling reinforced concrete slender structures subjected to second order forces 

under cyclic loading. 

 

3.8.5 Dundar experiment 

The fibre beam elements are used to model the experimental work of Dundar et 

al. (2015), where slender reinforced concrete columns strengthened with steel fibres 

and carbon fibre polymer sheets were tested under combined axial load and biaxial 

bending in order to determine their behaviour. 
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The tested columns had a length of 1300 mm, a cross section of 125x125 mm 

along with two heavily reinforced concrete brackets with dimensions of 

200x200x200 mm, that were installed at the columns ends to allow for the 

application of biaxial loads. The columns had a slenderness ratio of 34.67. Figure 

(3.47) shows the experiment setup.  

For all tested columns, the longitudinal reinforcement was Ø8 at each corner of the 

section and the lateral reinforcement was Ø6 with spacing 100 mm. The yield 

strength of the longitudinal reinforcement was 550 MPa. The columns were loaded 

with pinned end conditions and lateral deformations of the specimens were recorded 

at column mid height. 

 

Figure 3.47 Experiment setup, Figure from Dundar et al. (2015). 

 

Two specimens were chosen to be modelled with the fibre beam elements. 

Specimen (C2-II) with a concrete strength of 61.91 MPa and specimen (C2-II-SF) 
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with a concrete strength of 53.13 MPa and contains 60 kg/m3 steel fibre in the 

concrete mix. Both specimens had two layers of carbon fibre reinforced polymer 

(CFRP). The two samples were subjected to an eccentricity of 50 mm around the two 

horizontal axis. For specimen (C2-II), the applied axial load was 267 kN, while for 

specimen (C2-II-SF) was 283 kN. Every column was divided into a number of 

elements and each element was divided internally into 5 sections. Two different 

types of cross sections were defined in the finite element models. The first one 

(125x125 mm), for the intermediate cross sections, and was divided into 10 concrete 

fibres and 4 steel fibres and the second one (200x200 mm), was assigned to the 

column ends, and was divided into 10 concrete fibres and 9 steel fibres as shown in 

Figures (3.48 & 3.49). 

The presence of the CFRP sheets and the steel fibres material affect the strength, 

ductility and confinement of the columns and has to be taken into account in the 

finite element model by assigning higher compression post-peak stiffness values for 

the concrete material model (𝜀𝑐𝑢 = 0.04). Further, the addition of steel fibres was 

accounted for by increasing the concrete tensile strength 𝑓𝑡 to 6.0 𝑀𝑃𝑎 and taking 

the tension softening (𝐸𝑡𝑠)values 0.001. 

The column was divided into only 4 members for the mixed element (the 

minimum possible number of division as the full model is considered and two 

different sections are assigned) and 12 members for the displacement-based element. 

The two fibre beam elements with the second order analysis, were able to model the 

two slender columns accurately and to follow the load displacement path for both 

(C2-II) & (C2-II-SF). It can be seen that disregarding the second order effect gives 

exaggerated path for the load displacement curves, as seen in Figures (3.50 & 3.51). 
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Figure 3.48: Fibre beam element cross section mesh for intermediate section. 

 

 

Figure 3.49: Fibre beam element cross section mesh for end sections. 
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Figure 3.50: Load-deflection curve for column C2-II tested by Dundar et al. (2015) 

and compared with the fibre beam elements. 

 

 

Figure 3.51: Load-deflection curve for column C2-II-SF tested by Dundar et al. 

(2015) and compared with the fibre beam elements. 
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By comparing the two specimens’ output curves using the displacement-based 

element, Figure (3.52), and the mixed element, Figure (3.53), the effect of the 

presence of the steel fibre in sample C2-II-SF can be easily noticed. This 

accomplishes that both elements can recognise and simulate the presence of the 

fibrous material while taking into account the second order effect. 

 

 

Figure 3.52: Load-deflection curve for columns C2-II & C2-II-SF using the 

displacement fibre beam element. 
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Figure 3.53: Load-deflection curve for columns C2-II & C2-II-SF using the mixed 

fibre beam element. 

 

Further, the mixed element with four divisions is then used to generate the 

vertical displacement (Figure 3.54) and moment distributions, at load axis, along the 

length of the column (Figure 3.55). The results were selected at the case of 

maximum load (257.94 kN), where the middle of the column was subjected to the 

highest displacement of about 8.5 mm and a bending moment of 2.4 kN.m.  
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Figure 3.54: Vertical displacement along the column length at maximum load for 

column C2-II-SF using the mixed fibre beam element. 

 

 

Figure 3.55: Moment at load axis along the column length at maximum load for 

column C2-II-SF using the mixed fibre beam element. 
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3.9 Column with horizontal displacement at the tip 

The simulation of fibrous material is accomplished by controlling the values of 

the concrete tensile strength and tension softening stiffness. It is established, from 

recent researches, that the addition of steel and Nano fibres increases these two 

parameters (Faghih et al., 2016). 

In order to study the tension softening effect on the second order analysis, 

another case will be investigated. In this application, the sampling will be more 

sensitive to Nano parameters (the tensile strength and the tension softening stiffness). 

This will be achieved by modelling a sample with no or smaller longitudinal 

reinforcement ratio to allow the concrete tensile strength to have more significance 

on the response of the structure. By this way, the developed elements can investigate 

the outcome of the concrete tensile strength and the tension softening stiffness on the 

second order effect clearly. 

In the investigated problem, an unreinforced concrete column is subjected to an 

axial load of 4000 N and a lateral displacement up to 167 mm. Due to the lack of 

available experimental tests in this field, the column dimensions and loading were 

chosen from the verification example of the commercial programme SAP2000 

(Wiki.csiamerica.com, 2017). However, the concrete linear stress strain behaviour 

used in the verification example was replaced by a full nonlinear stress strain 

response. 

The cantilever column was fixed from the bottom and free from the top end and 

had a total length of 10000 mm with a cross section of 100x100 mm. The concrete 

was assigned an 𝑓𝑐 of 30 MPa. 
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When adding carbon fibre or steel fibre to the concrete mix, according to 

Faghih et al. (2016), it is expected that the tensile strength increases and tension 

softening stiffness changes. 

For this study, three cases were chosen to be examined as follows: 

Case 1: simulates the presence of a high percentage of fibres, so that the tensile 

strength 𝑓𝑡 was chosen more than 10% of the compression strength and the tension 

softening stiffness slope was chosen zero to model the shape of the ideal constant 

line state (𝐸𝑡𝑠 = 0.001)  (Figure 3.56.a). 

Case 2: simulates the presence of a small percentage of fibres, so that the tensile 

strength was chosen as 1% of the compression strength and the tension softening 

stiffness value was chosen as a linear moderate decreasing line (𝐸𝑡𝑠 = 1000) (Figure 

3.56.b). 

Case 3: simulates the absence of fibres leading to negligible tensile strength and an 

infinity slope to simulate a brittle tension failure (𝐸𝑡𝑠 = 106)  (Figure 3.56.c). 

All other parameter were retained the same for the three investigated cases. 
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Figure 3.56: Different tension softening stiffness. 

 

From the output of the moment vs the lateral displacement plot shown in Figure 

(3.57), it is noticeable that for the three cases, the consideration of the P-delta 

produced a lower moment – displacement curve. Therefore, the new elements can 

differentiate between the different values of tensile strength and different behaviours 

of the tension softening stiffness while considering the second order effect. This 

means that the programme simulates the effect of the addition of fibres and Nano 

fibres to the concrete elements with different percentages whereas the second order 

analysis is accounted for.  
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Figure 3.57: Load-displacement curves for the three different cases with and without 

the P-Delta effect. 

 

3.10 Conclusion 

In this chapter, two elements, one displacement-based and one mixed were 

developed that can consider the second order effect and can be used to model 

reinforced concrete structures.  The two elements consider large displacements and 

rotations but small strains. The stiffness matrix was modified by the internal and 

external geometric stiffness matrix. The load vector was also modified by higher 

terms contained within the shape function.  An advanced transformation matrix that 

accounts for the removal of R.B.M. and the member inclination was used to 

transform between the corotational and the global system.  

The two elements were validated against different reinforced concrete 

experiments and benchmark nonlinear problems available from the literature. The 
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effect of the second order analysis on the curvature, moment and internal forces was 

emphasised at the global, section and fibre level. The study of the tension softening 

stiffness effect on second order analysis was also investigated. 

In the next chapter, explicit large-deformation fibre beam elements will be 

formulated and employed to solve impact problems.  
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Chapter 4 

EXPLICIT DYNAMIC ANALYSIS UNDER IMPACT LOADING 

 

4.1 Introduction 

In this chapter, an advanced explicit technique is presented within the context of 

fibre beam element formulations for the solution of structures subjected to impact 

and shock loading. The new explicit fibre-based beam elements are mainly 

developed to overcome the difficulties associated with implicit analysis of large 

short-duration loads. The traditional implicit method of analysis typically fails to 

provide numerical stable behaviour for such short time duration problems. The 

adopted explicit time integration method offers a stable and numerically efficient 

solution for dynamic problems without the need for iterations or convergence 

checks.  

In fact, the fibre beam element permits the simulation of the global structural 

behaviour with identically limited degrees of freedoms, while accounting for the 

detailed material nonlinearity along the element length. On the other hand, the 

majority of explicit finite element software packages available in the market, were 

developed for continuum models such as solid and membrane elements. These 

models render the solution computationally expensive, involve a large disk space 

memory, and require a long runtime analysis when compared with fibre beam 

elements. 

In this research, two fibre beam elements are developed that consider an explicit 

time integration scheme for the solution of the dynamic equation of motion are 
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presented. The first element uses a displacement-based formulation, while the second 

element uses a force-based formulation. For the latter case, a new algorithm that 

eliminates the need for iterations at the element level is proposed. The developed 

elements involve the use of a lumped mass matrix and a small time-increment to 

ensure numerical stability. 

Furthermore, the strain rate effect of the concrete and steel is carefully 

introduced to the material models of these elements using several equations available 

from the literature to accurately model the behaviour of concrete and steel under 

high strain rates. Besides, the explicit displacement element will take into 

consideration the second order effect that usually accompanies dynamic problems. 

On the other hand, the explicit force-based element will be upgraded to a mixed 

element in order to account for the second order effect.  The large displacement 

analysis formulation was covered in detail in chapter (3) of this dissertation and will 

only be briefly visited in this chapter. Therefore, the developed elements tend to 

improve the computational efficiency of the explicit time integration schemes for 

impact analysis using fibre beam elements. 

Finally, a number of studies will be presented in this chapter to display the 

efficacy of the developed explicit fibre beam elements in modelling impact dynamic 

problems. These examples confirm the accuracy and reliability of the recently 

developed elements and allow their use in simulating large and complex reinforced 

concrete structures. The developed explicit fibre beam models, particularly the force-

based element, represents a simple yet powerful tool for simulating the nonlinear 

complex effect of impact loads on structures accurately while using very few finite 

elements.  
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4.2 Explicit vs implicit time integration approaches 

Explicit dynamic analysis is a mathematical method for integrating the equations 

of motion through time. It is recommended for high-speed short duration transient 

loading and impact problems. Hence, it can be used in many applications such as 

simulating drop weight tests, shock and collision, material degradation, ballistic 

missiles, detonation and blast analysis. The explicit analysis approach is 

conditionally stable, which means that a small time-increment has to be used to 

ensure that the solution is stable. As a result, longer analysis runtime has to be 

expected in the explicit analysis. However, the explicit method does not require 

convergence check and uses the inversion of the mass matrix, which is a lumped 

(diagonal) matrix and its inversion is an easy single step process. In addition, in the 

explicit method, the nodal accelerations are calculated directly by multiplying the 

inverse of the mass matrix by the force vector. On the contrary, the implicit method 

is unconditionally stable and entails convergence checks at all times, requires small 

number of expensive time steps, and is typically suitable for static and quasi-static 

problems. Table (4.1) shows a detailed comparison between the explicit and implicit 

approaches. 

Moreover, for the explicit force-based element, a new element-level 

convergence criterion is introduced to avoid internal element iterations. The 

condition is checked at each time step, and the time step is reduced accordingly if 

necessary.  
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Table 4.1 Comparison between explicit and implicit time integration methods 

Explicit approach Implicit approach 

Suitable for short transient dynamic 

problems 

Suitable for static and quasi 

static problems 

Use the inversion of the mass 

matrix 

Use the inversion of the stiffness 

matrix 

Conditionally stable Unconditionally stable 

Convergence check is not required Convergence check is required 

Requires many relatively 

inexpensive time steps 

Requires small number of 

expensive time steps 

 

For the implicit transient solution employed in this study, the Newmark method 

(Newmark, 1959) is used for nonlinear time dependent problems using second order 

ordinary differential equations in which 𝛽 and 𝛾 are two parameters used to control 

the stability and numerical dissipation. 

 

4.3 Transient Solution  

The dynamic behaviour of structures can be expressed by linear and nonlinear 

differential equations using numerical integration techniques, where a time 

integration scheme is utilized to evaluate the system of equations of a structure that 

depends on time. In Figure (4.1), a graph illustrates the displacement of a structure 

and the time taken by the structure to perform this displacement. In this graph, the 

distance is plotted on the vertical axis and the time is plotted on the horizontal axis, 

(𝑡) is the elapsed time and (∆𝑡) is the time increment. 
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For the explicit analysis, dynamic values for the next step are calculated from 

the state of the structure already known from the previous step by solving for time 

(𝑡 + ∆𝑡) using values from the preceding time(𝑡). However, for the implicit method, 

values for the next step are determined from the state of the structure from both the 

current step and the later one by solving for time (𝑡 + ∆𝑡) using data from time (𝑡) 

and (𝑡 + ∆𝑡). Therefore, a Newton-Raphson iteration technique is used, in implicit 

analysis, to obtain the solution and to enforce the equilibrium by iterating until 

convergence is accomplished. In general, in dynamic analysis, the implicit method 

can lead to convergence difficulties, as it is more sensitive to initial conditions and 

nonlinear behaviour. 

 

Figure 4.1: Time integration scheme. 

 

4.4 Stability of the explicit method 

Numerical stability of the explicit method must be maintained in order to yield 

an accurate solution. For that reason, a small time-step leading to many small time 



124 
 

increments is essential for the explicit analysis. A minimum stable time increment 

(∆𝑡𝑚𝑖𝑛) has to be determined first and then the chosen global time increment (∆𝑡) 

must be taken less than, or equal to, the minimum stable time increment. Thus, the 

stable time increment will be governed by the smallest element in the mesh. The 

choice of the time increment will have a major effect on the required runtime of the 

solution and the size of the output files.  

For zero damping, the stable time increment is calculated by: 

Δt𝑚𝑖𝑛 =
𝐿

𝑐𝑑
                                                                                                              (4.1)                                                                                                                              

Where: 

𝐿 is the element length. 

𝑐𝑑 is the dilatational wave speed. 

 And according to Segel and Handelman (2007): 

𝑐𝑑 = √
𝜆+2𝜇

𝜌
                                                                                                             (4.2)                             

The Lame’s constants originated from the strain-stress relationships can be given in 

terms of other material properties. According to Timoshenko and Goodier (1951): 

𝜆 ≡
𝜈 𝐸

(1+𝜈)(1−2𝜈)
                                                                                                        (4.3)                                                         

𝜇 ≡
 𝐸

2(1+𝜈)
                                                                                                                (4.4)                                                    

Where: 

𝐸 is the material Young’s modulus, 𝜌 is the material density, 𝜈 is Poisson’s ratio, 𝜆 

and 𝜇 are Lame’s constants. 
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Decreasing 𝐿 or increasing 𝑐𝑑 will reduce the stable time increment. Whereas 𝑐𝑑 can 

be increased by decreasing the material density or by increasing the element 

stiffness.  

 

4.5 Dynamic formulation of the explicit method 

In the dynamic analysis, the input load is a function of time and according to 

Newton’s law of motion: 

𝐹𝑡   = 𝑀𝑈̈𝑡                                                                                                              (4.5)                                           

After D'Alembert's principle, if an external force is applied to the system in a 

direction opposite to the acceleration, the system will be in a dynamic equilibrium 

under the actual force 𝐹 and the inertia force 𝑀𝑈̈. 

 

Figure 4.2: Mass on a spring system. 

 

For the mass on a spring system shown in Figure 4.2: 

−𝑀𝑈̈𝑡 − 𝐾𝑈𝑡 = 0                                                                                                  (4.6)                                              

This equation of motion is for an ideal system with no damping and subjected to free 

vibration and means that the system is in equilibrium at each step. Consequently: 
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𝑈̈𝑡 +
𝐾

𝑀
𝑈𝑡 = 0                                                                                                         (4.7)                                                 

And 

 𝜔 = √
𝐾

𝑀
                                                                                                                  (4.8)                                                           

𝑇 =
2𝜋

𝜔
                                                                                                                     (4.9)                                              

Where 𝜔 is the natural circular frequency of vibration and 𝑇 is the natural period of 

the vibration. 

Consequently, the dynamic problem is transformed into a set of equations of 

motion that define the dynamics of the system, where the dynamic displacement and 

the full response of the structural system can be expressed using these equations of 

motion. 

For the more general dynamic equilibrium equation of motion that describes the 

motion of the body subjected to a force, it can be stipulated in the following form: 

𝑀𝑈̈𝑡 + 𝐶𝑈̇𝑡 + 𝐾𝑈𝑡 = 𝐹𝑡                                                                                       (4.10)                                                  

Where 𝑀 is the mass matrix and 𝐾 is the stiffness matrix and 𝑀𝑈̈𝑡 represents the 

inertia force while 𝐶𝑈̇𝑡 denotes the damping force.  

The damping matrix 𝐶 can be determined using the Rayleigh damping equation: 

𝐶 = 𝛼𝑚𝑀 + 𝛽𝑘𝐾                                                                                                  (4.11)                                                                                                                             

Where 𝛼𝑚 is the mass proportional Rayleigh damping parameter and 𝛽𝑘 is the 

stiffness proportional Rayleigh damping parameter. They are calculated based on the 

natural frequencies of the first modes and their damping ratios. The solution of the 
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dynamic equation of motion for the newly developed fibre beam elements is 

conducted in a corotational reference system as described next. 

  

4.6 Corotational formulation of the developed elements 

The elements are formulated in a corotational system where the motion is 

decomposed into rigid body and local deformations then the rigid body modes are 

removed. Later, the dynamic effect is added in the global system. The element forces 

and displacement degrees of freedom in the corotational and the global system were 

presented and defined in detail in chapter (3) of this dissertation and are applicable 

herein unless noted otherwise. Concisely, for the developed elements, the 

corotational element has three natural degrees of freedom, an axial elongation 𝑞1 and 

two rotations 𝑞2 and 𝑞3 at each end of the element. The axial force 𝑄1 and the 

moments 𝑄2 and 𝑄3 at both ends are the corresponding element nodal forces. 

 

4.7 Explicit formulation of the displacement-based element 

In the first explicit fibre beam element, a displacement-based formulation is 

used where equilibrium is satisfied in a weighted integral sense. 

The internal and external forces are summed at each node point, and the nodal 

accelerations are computed by multiplying the forces with the inverse of the nodal 

mass: 

[𝑀]{𝑈̈}
𝑡
= [𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙]𝑡 − [𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙]𝑡                                                                 (4.12)                             
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The explicit algorithm uses the Newmark beta-gamma method with the primary 

variables being displacement increments to calculate the displacement, velocity and 

acceleration. Accordingly, the solution of equation (4.10) leads to the following: 

𝑈𝑡+1 = 𝑈𝑡 + ∆𝑡𝑈̇𝑡 +
1

2
(1 − 𝛽)∆𝑡2𝑈̈𝑡 +

1

2
𝛽∆𝑡2𝑈̈𝑡+1                                           (4.13)                                                         

 𝑈̇𝑡+1 = 𝑈̇𝑡 + (1 − 𝛾)∆𝑡𝑈̈𝑡 + 𝛾∆𝑡𝑈̈𝑡+1                                                                (4.14)                                                                                                   

𝑀𝑈̈𝑡+1 + 𝐶𝑈̇𝑡+1 + 𝐾𝑈𝑡+1 − 𝐹𝑡+1 = 0                                                                 (4.15)                                                                                                                                                      

For an implicit solution, 𝛽 = 0.25 and  𝛾 = 0.5, while the explicit algorithm 

assumes 𝛽 = 0 and  𝛾 = 0.5, then calculates the acceleration 𝑈̈𝑡 at time (t) by 

making use of the inversion of the mass matrix based on equation (4.12),  followed 

by calculating the displacement 𝑈𝑡+1 using equation (4.13). The evaluation of the 

mass matrix is described in detail in section 3.9. The velocity 𝑈̇𝑡+1 and the 

acceleration 𝑈̈𝑡+1 are then calculated explicitly at time (t+1) by using the two 

equations (4.14) and (4.15). 

The algorithm starts by assuming an Explicit Parameter to equal 1 for explicit 

dynamic analysis. The equivalent global dynamic stiffness 𝐾̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) is 

substituted by the lumped mass matrix: 

𝐾̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1 = 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ×  𝑀                                                        (4.16)                                                                 

And the global internal dynamic load 𝐹̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) is determined as: 

𝐹̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1 = 𝐹𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)

𝑡+1 + 𝑀 𝑈̈𝑡+1 + (𝛼𝑚𝑀 + 𝛽𝑘𝐾)𝑈̇𝑡+1                          (4.17)                                        

Where 𝐹𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) is the static element load vector in the global system. This is 

calculated through integration of sections along the element length and discretization 
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of each section into fibres with prescribed nonlinear material behaviour. The global 

element force increment is: 

Δ𝐹̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1   = 𝐹̂𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

𝑡+1 − 𝐹̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1                                                            (4.18)                                                           

Where 𝐹̂𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is the applied external force corresponding to the load step. 

Then at the global level, the finite element solution for an acceleration increment in 

the global system ∆𝑈̈(𝑔𝑙𝑜𝑏𝑎𝑙) is computed by: 

Δ𝑈̈(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1 = [𝑘̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)

𝑡+1 ]
−1

×  Δ𝐹̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1                                                  (4.19)                                                              

In the explicit solution, Δ𝑈 is estimated from ∆𝑈̈(𝑔𝑙𝑜𝑏𝑎𝑙) using equations (4.13) 

to (4.15) as detailed before. At this point, the evaluation of the stiffness matrix 𝐾𝑒𝑙𝑒𝑚 

and load vector 𝐹𝑒𝑙𝑒𝑚 is first calculated in the corotational system, and then 

transformed to the global system by adding the rigid body modes as follows: 

𝑘𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1 = 𝑇𝑇 𝐾𝑒𝑙𝑒𝑚

𝑡+1  𝑇                                                                                  (4.20)                                                                                  

𝐹𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1 = 𝑇𝑇 𝐹𝑒𝑙𝑒𝑚

𝑡+1                                                                                       (4.21)                                                       

Where 𝑇 is the transformation matrix: 

 𝑇 = [

−1 0 0 1 0 0

0
1

𝐿
1 0 −

1

𝐿
0

0
1

𝐿
0 0 −

1

𝐿
1

]                                                                           (4.22)      

To determine the value of 𝐾𝑒𝑙𝑒𝑚 and 𝐹𝑒𝑙𝑒𝑚 using the displacement-based 

method in the corotational system, the section deformation increment of the element 

reference axis in the corotational system is first evaluated as: 

𝑑𝑠
𝑡+1 = 𝑆 Δ𝑞𝑡+1                                                                                                      (4.23)                       
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Where 𝑆 is the displacement shape function in the explicit formulation:  

𝑆 = [

1

𝐿
0 0

0
−4

𝐿
+

6 𝑥

𝐿2

−2

𝐿
+

6 𝑥

𝐿2

]                                                                                  (4.24)        

The calculation of the displacement increment ∆𝑞 in the corotational system is 

accomplished by using the matrix 𝑇: 

∆𝑞𝑡+1 = 𝑇 ∆𝑈𝑡+1                                                                                                  (4.25)                                              

The element stiffness can then be calculated as:  

𝐾𝑒𝑙𝑒𝑚
𝑡+1 = ∫ 𝑆𝑇 𝑘𝑠𝑒𝑐

𝑡+1 𝑆 𝑑𝑥
𝐿

0
                                                                                      (4.26)                                    

Where 𝑘𝑠𝑒𝑐 is the section stiffness. 

The element internal resisting force vector is equal to:  

𝐹𝑒𝑙𝑒𝑚
𝑡+1 = ∫ 𝑆𝑇 𝐹𝑠𝑒𝑐

𝑡+1  𝑑𝑥
𝐿

0
                                                                                        (4.27)                                                       

Such that 𝐹𝑠𝑒𝑐 is the section forces in the corotational system and represents the 

vector {
𝑃
𝑀

}  , where 𝑃 is the section axial force and 𝑀 is the section bending 

moment. 

The section stiffness 𝑘𝑠𝑒𝑐 and force vector 𝐹𝑠𝑒𝑐  are determined from fibre 

discretization as noted earlier using the section deformation increment and following 

the assumption of plane sections remaining planes:  

𝜀1 (𝑥, 𝑦) = 𝜀(𝑥) − 𝑦 ∅(𝑥)                                                                                    (4.28)                                                                                                                     

Where 𝜀1  is the fibre axial strain, 𝜀 is the axial strain at the beam axis, 𝑦 is the 

distance from the neutral axis, and ∅ is the section curvature. The fibre strain is used 

along with the fibre nonlinear material constitutive law to determine the fibre force 
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and stiffness, which are integrated along the section depth to evaluate the section 

force and stiffness. 

To consider the second order effect, as in chapter (3), the stiffness matrix must 

be updated by adding the internal geometric stiffness matrix term 𝐾𝑔: 

𝐾𝑒𝑙𝑒𝑚
𝑡+1 = (𝐾𝑔

𝑡+1 + ∫ 𝑁𝛿
𝑇  𝑘𝑠𝑒𝑐

𝑡+1 𝑁𝛿𝑑𝑥
𝐿

0
)                                                                  (4.29)                                                                               

Where 𝐾𝑔
𝑡+1 = 𝑄1

𝑡+1 [

0 0 0

0
2𝐿

15

−𝐿

30

0
−𝐿

30

2𝐿

15

]                                                                      (4.30)                                                                                                    

And 𝑄1 is the axial force in the corotational system. 

Therefore, equation (4.26) is replaced by equation (4.29), while the resisting load 

vector is evaluated by: 

𝐹𝑒𝑙𝑒𝑚
𝑡+1 = ∫ 𝑁𝛿

𝑇 𝐹𝑠𝑒𝑐
𝑡+1 𝑑𝑥

𝐿

0
                                                                                      (4.31)                                                                                        

Where: 

𝑁𝛿 =

[
 
 
 
 

1

𝐿
(1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)
2

𝑞2 + (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
) 𝑞2

(1 −
4𝑥

𝐿
+

3𝑥2

𝐿2 ) (−
2𝑥

𝐿
+

3𝑥2

𝐿2 ) 𝑞3 +(
2𝑥

𝐿
+

3𝑥2

𝐿2 )
2

𝑞3

0 −
4

𝐿
+

6𝑥

𝐿2 −
2

𝐿
+

6𝑥

𝐿2 ]
 
 
 
 

  (4.32)                            

Thus, equation (4.27) is replaced by equation (4.31) and the transformation matrix 𝑇 

in equation (4.22) will be replaced by the transformation matrix 𝑇𝑟 that includes 

large rotations. 

𝑇𝑟 =

[
 
 
 
− cos 𝛽 − sin 𝛽 0 cos 𝛽 sin 𝛽 0

−
sin𝛽

𝐿

cos𝛽

𝐿
1

sin𝛽

𝐿
−

cos𝛽

𝐿
0

−
sin𝛽

𝐿

cos𝛽

𝐿
0

sin𝛽

𝐿
−

cos𝛽

𝐿
1]
 
 
 
                                               (4.33)                                                                           
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Where the current length of the element 𝐿, (cos 𝛽) and (sin𝛽) were all explained 

and defined in detail in chapter (3). Accordingly, the element global stiffness matrix 

can be specified as: 

𝑘𝑡+1
𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) = 𝑇𝑟

𝑇𝐾𝑒𝑙𝑒𝑚
𝑡+1  𝑇𝑟 + 𝐾𝐺

𝑡+1                                                              (4.34)                                                                       

Where KG is the external geometric stiffness matrix and can be found in Appendix 1.  

And the element nodal forces in the global system can be identified as: 

𝐹𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)
𝑡+1 = 𝑇𝑟

𝑇𝐹𝑒𝑙𝑒𝑚
𝑡+1                                                                                       (4.35)                  

 

4.8 Explicit formulation of the force-based element 

In the second explicit fibre beam element, a force-based formulation is used 

where the equilibrium is satisfied in a section-by-section basis along the element 

length. In the proposed algorithm, normal internal iterations are avoided and the 

solution procedure is only conducted once to calculate the element stiffness matrix 

and the load vector. The use of this technique is accurate as long as the time step is 

set to be smaller than a critical value. However, if adopting a time step larger than 

the critical value, performing internal iterations would be needed to minimize the 

internal residual error. In this case, the solution is transformed into a mixed explicit-

implicit approach. 

Equations (4.12 to 4.15) are used to calculate the global acceleration, velocity and 

displacement explicitly at time (t+1). The dynamic stiffness 𝐾̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) and the 

dynamic load 𝐹̂𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) are then evaluated using equations (4.16 & 4.17).  
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Here, 𝐾𝑒𝑙𝑒𝑚 and 𝐹𝑒𝑙𝑒𝑚 are determined using a force-based procedure in the 

corotational reference system. The same matrix 𝑇 described in equation (4.22) is 

used to transform the system to and from the corotational system. ∆𝑞𝑡+1is again 

evaluated using equation (4.25). 

First, the element initial end force increments are calculated with the use of the 

stiffness of the element at the previous step: 

Δ𝐹𝑒𝑙𝑒𝑚
𝑡+1 = 𝒦𝑒𝑙𝑒𝑚

𝑡  ∆𝑞𝑡+1                                                                                         (4.36)                                                                                         

Then the element end forces 𝐹𝑒𝑙𝑒𝑚
𝑡+1 are updated by Δ𝐹𝑒𝑙𝑒𝑚

𝑡+1 : 

𝐹𝑒𝑙𝑒𝑚
𝑡+1 = 𝐹𝑒𝑙𝑒𝑚

𝑡 + Δ𝐹𝑒𝑙𝑒𝑚
𝑡+1                                                                                        (4.37)                                                          

Where (𝑡 + 1) denotes the new increment step and (𝑡) denotes the previous step as 

the external load is imposed in an incremental sequence.   

Using the force interpolation function, the section force increments Δ𝐹𝑠𝑒𝑐 are 

determined by: 

Δ𝐹𝑠𝑒𝑐
𝑡+1 = 𝑏 ΔF𝑒𝑙𝑒𝑚

𝑡+1                                                                                                  (4.38)                                                

Where 𝑏 is the force interpolation function, in the explicit formulation, and can be 

expressed as: 

 𝑏 = [
1 0 0

0
𝑥

𝐿
− 1

𝑥

𝐿

]                                                                                              (4.39)         

The total section forces 𝐹𝑠𝑒𝑐(𝑥)𝑡+1 are calculated by adding the section force 

increments Δ𝐹𝑠𝑒𝑐
𝑡+1 to the previous section forces 𝐹𝑠𝑒𝑐

𝑡 (𝑥): 

𝐹𝑠𝑒𝑐
𝑡+1(𝑥) = 𝐹𝑠𝑒𝑐

𝑡 (𝑥) +  Δ𝐹𝑠𝑒𝑐
𝑡+1                                                                                (4.40)                                                                                                                      
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The section deformation increments are at that moment established by the 

linearization of the section force-deformation and then used to update the section 

deformation 𝑑𝑠𝑒𝑐
𝑡 . 

𝑑𝑠𝑒𝑐
𝑡+1 = 𝑑𝑠𝑒𝑐

𝑡 + 𝑓𝑠𝑒𝑐
𝑡+1 Δ𝐹𝑠𝑒𝑐

𝑡+1                                                                                   (4.41)                                                                                  

Where 𝑓𝑠𝑒𝑐
𝑡+1 is the section flexibility retrieved from the previous step.  

To avoid violating the equilibrium, the section unbalanced forces are 

considered; which are the difference between the calculated total section forces and 

the section resisting forces. The section resisting forces are assessed from the 

discretization of the section into fibres using the updated section deformation 𝑑𝑠𝑒𝑐
𝑡+1 

and following the assumption of plane sections remaining planes. Therefore, the 

section unbalanced forces are: 

𝐹𝑈
𝑡+1(𝑥) = 𝐹𝑠𝑒𝑐

𝑡+1(𝑥) − 𝐹𝑅
𝑡+1(𝑥)                                                                            (4.42)                                                                                          

Where FU is the section unbalance force vector, and FR is the resisting force vector. 

Subsequently, the unbalanced forces are converted to a residual section deformation 

𝑟(𝑥) using the current section flexibility: 

𝑟𝑡+1(𝑥) = 𝑓𝑠𝑒𝑐
𝑡+1 𝐹𝑈

𝑡+1(𝑥)                                                                                       (4.43)                                                                          

The residual element deformations are then calculated by integrating the residual 

section deformations along the element length: 

𝑅𝑡+1 = ∫ 𝑏𝑇(𝑥) 𝑟𝑡+1(𝑥) 𝑑𝑥
𝑙

0
                                                                               (4.44)                                                                         

To ensure numerical stability of the force-based element, the residual 𝑅 has to 

be minimized to a very small acceptable value. In the implicit force-based algorithm, 
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an element iteration is needed in order to eliminate the section residual 

deformation 𝑟(𝑥). This is performed using the following energy criteria: 

∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq ≤  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒                                                     (4.45)                                                          

In the explicit algorithm, a similar approach could be used, which requires an 

element-level iteration until convergence is achieved. However, the element iteration 

becomes unnecessary if the analysis time step is sufficiently small to satisfy the 

previous energy condition. 

In this case, (∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq ) is compared to the ‘𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒’ 

for each element; and if found smaller this means that the element converges with 

one iteration only. If found larger, however, the algorithm calculates a new critical 

time step Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 : 

Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
𝑛𝑒𝑤 = Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

𝑜𝑙𝑑  × √
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑∙3
1 Δq 

                                             (4.46)                                                               

Where the tolerance value is typically varied between 10−4 to 10−8 N.mm 

depending on the problem being analysed and the accuracy desired by the user. 

Finally, the chosen Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is the minimum Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  of all elements. Hence, 

the time step is reduced to equal Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . 

Therefore in addition to the condition of the stable time increment ∆𝑡𝑚𝑖𝑛 , if the time 

step is smaller than or equal to Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , a single iteration is sufficient to satisfy the 

element-level convergence criteria described in equation (4.46), and the entire 

solution algorithm would not require any iterations.  

Once the element residual deformations are reduced to within the specified 

tolerance value, the element flexibility 𝑓𝑒𝑙𝑒𝑚 is estimated by the integration of the 
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section flexibility 𝑓𝑠𝑒𝑐 along the element length and the element stiffness 𝐾𝑒𝑙𝑒𝑚 is 

computed by inverting the flexibility of the element. 

(𝒦𝑒𝑙𝑒𝑚
𝑡+1 )−1 = 𝑓𝑒𝑙𝑒𝑚

𝑡+1 = ∫ 𝑏𝑇𝐿

0
𝑓𝑠𝑒𝑐

𝑡+1 𝑏 𝑑𝑥                                                                (4.47)                                                    

 Then the element end resisting forces are updated using a new Δ𝐹𝑒𝑙𝑒𝑚.  

Δ𝐹𝑒𝑙𝑒𝑚
𝑡+1 = −𝒦𝑒𝑙𝑒𝑚

𝑡+1 (𝑅𝑡+1)                                                                                      (4.48)                                                                                             

𝐹𝑒𝑙𝑒𝑚
𝑗+1

= 𝐹𝑒𝑙𝑒𝑚
𝑡+1 + Δ𝐹𝑒𝑙𝑒𝑚

𝑡+1                                                                                         (4.49)                                                            

As a last step, the forces and deformations of all sections are updated using the 

new element end resisting forces. Following this, the element stiffness and the 

element end resisting forces are transformed to the global system. 

To consider the second order effect, as in chapter (3), the force-based element 

has to be converted into a mixed element. This allows the use of the displacement 

variables to calculate the Green-Lagrange strain that includes the higher second 

order terms. Then the compatibility is imposed to ensure a smooth differentiable 

displacement field. 

It can be noted that the force-based element satisfies the equilibrium on a 

section-by-section basis, while the mixed element satisfies the equilibrium equations 

and the compatibility in a weighted integral sense while the stress resultant forces 

respect the equilibrium equations at any section along the element length. 

Accordingly, the element end resisting forces, equation (4.48), is replaced by the 

next formula that accounts for both the element residuals (𝑅) and the compatibility 

equation (𝑉):                                                                             

Δ𝐹𝑒𝑙𝑒𝑚
𝑡+1 = 𝐾𝑒𝑙𝑒𝑚(𝑉𝑡+1 − 𝑅𝑡+1)                                                                             (4.50)                                                                       
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Where the element strain displacement compatibility equation is calculated as 

follows:  

𝑉𝑡+1 = ∫ 𝑏𝑇 (𝑑̂𝑡+1 − 𝑑𝑡+1)𝑑𝑥 = 0
𝐿

0
                                                                   (4.51)                                                    

The Green-Lagrange strain-displacement relation is employed to calculate the 

generalized strains and their increments: 

∆𝑑̂𝑠𝑒𝑐
𝑡+1 = 𝑁1 Δ𝑞𝑡+1 + {

0
1
} (Δ𝑞𝑡+1)𝑇𝑁2𝑞

𝑡+1 +
1

2
{
0
1
} (Δ𝑞𝑡+1)𝑇𝑁2Δ𝑞𝑡+1               (4.52)                                          

Where 𝑁1 and 𝑁2 were defined in chapter (3). Then, the internal geometric stiffness 

matrix 𝐾𝑔 is added to the element stiffness previously calculated in equation (4.47) 

using the force interpolation function: 

(𝒦𝑒𝑙𝑒𝑚
𝑡+1 )−1 = 𝑓𝑒𝑙𝑒𝑚

𝑡+1 = ∫ 𝑏𝑇𝐿

0
𝑓𝑠𝑒𝑐

𝑡+1 𝑏 𝑑𝑥                                                                (4.53)       

And                                 

𝐾𝑒𝑙𝑒𝑚
𝑡+1 = (𝐾𝑔

𝑡+1 + 𝒦𝑒𝑙𝑒𝑚
𝑡+1 )                                                                                   (4.54)                                                  

For the mixed element that includes the second order effect only, it will be 

required that the element force vector 𝐹𝑒𝑙𝑒𝑚 and element stiffness matrix 𝐾𝑒𝑙𝑒𝑚 be 

multiplied by another matrix 𝐺 before being transformed by the transformation 

matrix 𝑇𝑟 as shown below: 

 

For the element forces: 

𝐹𝑒𝑙𝑒𝑚(𝐺)
= 𝐺𝑇 𝐹𝑒𝑙𝑒𝑚                                                                                             (4.55)                                                                                                                                                                                                              

And for the element stiffness matrix: 

𝐾𝑒𝑙𝑒𝑚(𝐺)
= 𝐺𝑇 𝐾𝑒𝑙𝑒𝑚 𝐺                                                                                        (4.56)                                                                                                 
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The 𝐺 matrix that includes the higher order terms was previously defined in chapter 

(3). 

Then the transformation that contains the higher order terms is applied: 

𝑘𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) = 𝑇𝑟
𝑇𝐾𝑒𝑙𝑒𝑚(𝐺)

 𝑇𝑟 + 𝐾𝐺                                                                    (4.57)                                                 

𝐹𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) = 𝑇𝑟
𝑇𝐹𝑒𝑙𝑒𝑚(𝐺)

                                                                                  (4.58)                                                

In addition, the transformation matrix 𝑇𝑟 is used to transform the displacements 

between the corotational and global system: 

𝛿𝑞̅ = 𝑇𝑟
𝑇𝛿𝑞                                                                                                           (4.59)                                                                                         

A detailed flowchart diagram summarizing the algorithm of the proposed 

explicit fibre beam elements is shown in Figure (4.3).  
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Figure 4.3: Flowchart diagram of the proposed explicit fibre beam elements. 
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4.9 Construction of the mass matrix for explicit elements 

In the traditional implicit dynamic analysis, a consistent mass matrix can 

typically be constructed in local coordinates, used and transformed to the global 

system. However, the formulation of the explicit elements necessitates that a 

diagonal mass matrix be constructed instead of the consistent one to make the 

inversion of the mass matrix trivial. 

The diagonal mass matrix is based on direct lumping and can be stored as a 

vector. All diagonal terms of the lumped mass matrix have to be defined, as shown 

in Figure (4.4), including a rotational mass. To evaluate the mass matrix due to the 

self-weight of a beam with element length 𝐿, cross section area 𝐴 and a uniform 

mass density 𝜌: 

The translational nodal masses in both horizontal and vertical directions equal: 

1

2
 𝜌𝐴𝐿                                                                                                                    (4.60)     

While the rotational mass at each node equal: 

𝛼𝜌Α𝐿3                                                                                                                    (4.61)               

Where from Felippa (2013) the value of 𝛼 varies between 0 and 1/100. 

However, higher values of 𝛼 might stabilize the system without scarifying its 

accuracy. If the 𝛼 value is taken as zero this leads to a singular mass matrix, which 

cannot be used in an explicit formulation. 

For the presented elements, the value of 𝛼 was taken equal to (3.5 100⁄ ) and 

was found to yield stable and accurate results for the displacement and the force-

based explicit elements. For the implicit analysis, the value of 𝛼 can be taken equal 

to zero.  

In addition to the self-weight mass, all the external masses supported by the element 

should be lumped at the element ends. 



141 
 

 

Figure 4.4: Direct mass lumping for two-node plane beam element. 

 

4.10 Material models of the explicit elements 

For the proposed explicit elements, the strain rate effects have to be accounted 

for in the material models. To consider the strain rate effect in the material models, 

the material parameters for concrete and steel were modified using the dynamic 

increase factor (DIF) where the DIF is a non-dimensional parameter and is used to 

present the difference between the properties of the materials under static and 

dynamic loading. The DIF can be applied to the concrete and steel material 

parameters to reflect the strain rate effect. 

For the concrete stress strain curve (Figure 4.5), the value of the concrete 

compressive strength, the concrete strain at maximum strength and the concrete 

tensile strength are amplified, while for the steel reinforcement stress strain curve 

(Figure 4.6), the value of the yield strength is augmented. 

Many researchers have tested several types and samples of concrete and steel 

materials in order to determine their DIF. Typically, the split Hopkinson pressure bar 

or an instrumented drop weight impact test were employed to investigate these 

parameters. 
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Figure 4.5: Concrete material model with and without strain rate effect. 

 

 

Figure 4.6: Menegotto-Pinto monotonic stress-strain curve of mild steel bar with and 

without strain rate effect. 
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 The following equations retrieved from the literature were used in the explicit 

fibre beam element material models. For normal concrete, the dynamic compressive 

strength was determined by Fujikake et al. (2009): 

𝑓′𝑐𝑑 = 𝑓′𝑐 (
𝜀̇

𝜀̇𝑠𝑐
)
0.006[log 𝜀̇ 𝜀̇𝑠𝑐⁄ ]1.05

𝑓𝑜𝑟 𝜀̇ ≥ 𝜀𝑠̇𝑐                                                       (4.62)                                                                                                                  

And the strain corresponding to the dynamic compressive strength was calculated as:  

𝜀′𝑐𝑑 = 𝜀′𝑐 (
𝜀̇

𝜀̇𝑠𝑐
)
−0.036+0.01 log (𝜀̇/𝜀̇𝑠𝑐)

𝑓𝑜𝑟 𝜀̇  ≥ 𝜀𝑠̇𝑐                                                  (4.63)                                                          

Where: 

𝑓′𝑐𝑑 = The dynamic concrete tensile strength at strain rate 𝜀̇ in MPa. 

𝑓′𝑐 = The static compressive strength in MPa. 

𝜀′𝑐𝑑 = The dynamic strain corresponding to𝑓′𝑐𝑑. 

𝜀′𝑐 = The static strain corresponding to𝑓′𝑐. 

𝜀𝑠̇𝑐 = 1.2 × 10−5. 

For the dynamic tensile strength of normal concrete, the Ross et al. (1989) equation 

was used: 

𝑓𝑡𝑑 = 𝑓𝑡 exp [0.00126 (log10
𝜀̇

𝜀̇𝑠𝑡
)
3.373

]  𝑓𝑜𝑟 𝜀̇ ≥  𝜀𝑠̇𝑡                                          (4.64)                                                     

Where: 

𝑓𝑡𝑑 = The dynamic concrete tensile strength at strain rate 𝜀̇.  

𝑓𝑡 =  The static concrete tensile strength. 

𝜀𝑠̇𝑡 = 1.0 ×  10−7 . 

The Lok and Zhao (2004) equations were used to account for the effect of the 

presence of fibres in the concrete mix on the DIF. They used the Split Hopkinson 

pressure bar in the development of the strain rate tests that ranged between 20 and 

100 𝑆−1 and proposed two equations to express the compressive response of steel 

fibre-reinforced concrete subjected to different strain rates as follows: 
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𝐷𝐼𝐹 = 1.080 + 0.017 log(𝜀̇)  0 ≤ 𝜀̇ ≤ 20 𝑆−1                                                  (4.65)                                                                           

𝐷𝐼𝐹 = 0.067 + 0.796 log(𝜀̇)    20 ≤ 𝜀̇ ≤ 100 𝑆−1                                            (4.66)                                          

For the reinforcing steel, and according to Limberger et al. (1982) and 

Ammann et al. (1982), the steel elastic modulus 𝐸𝑆 and the strain hardening 

modulus 𝐸𝑆𝑃 are not affected by the loading rates. So in the steel material model, 

only the effect on the yield strength is considered. The dynamic yield strength 

𝑓𝑠𝑦𝑑   at strain rate 𝜀̇ is estimated by the Malvar (1998) equations. Malvar (1998) 

studied the strength enhancement of steel reinforcing bars under the effect of high 

strain rates and proposed a formula to approximate the straight line on the 

logarithmic scale of the dynamic increase factor versus the strain rate. 

The equations were derived and are valid for a yield stress 𝑓𝑦 that ranges between 

290 and 710 MPa and are as follows: 

𝐷𝐼𝐹 = (
𝜀̇

10−4)
𝛾

                                                                                                      (4.67)                                                                                              

For yield stress calculation: 

 𝛾 = 𝛼𝑓𝑦;     𝛼𝑓𝑦 = 0.074 − 0.04(𝑓𝑦 414⁄ )                                                         (4.68)             

For ultimate stress calculation:  

𝛾 = 𝛼𝑓𝑢 ;    𝛼𝑓𝑢 = 0.019 − 0.009(𝑓𝑦 414⁄ )                                                        (4.69)                            

Where:  

𝜀̇ ∶ The strain rate is in 𝑆−1. 

𝑓𝑦 : The bar yield strength in MPa. 

However, it is first necessary to estimate the dynamic strain rate before being 

able to use the previously mentioned equations. For this, Perrone and Bhadra 

(1984) studied the strain rate effect on mild steel and aluminium wires and the work 
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was then extended by Jones (1990) to calculate the mean strain rate for beams using 

the following simplified equation: 

𝜀̇ = 4𝑤𝑝𝑉0/(3√2𝐿2)                                                                                             (4.70)                                                                                                               

 

Where: 

𝑤𝑝: is the maximum permanent displacement in mm and can be calculated from 

Jones (1990). 

𝑉0: is the impact velocity. 

𝐿:  is the length of the beam in mm. 

Similarly, Liew et al. (2009) used the same formulation to evaluate the strain rate of 

sandwich structures subjected to impact force. 

Theses promising models cover a wider range of cases not covered by the Fib 

Model Code for Concrete Structures 2010 (2013) equations (i.e. when fibres are 

introduced to the concrete mix and for steel reinforcement). 

 

4.11 Validation of the finite element models 

The developed explicit models are verified by comparing their results with three 

benchmark experiments available from the literature. In the selected experiments, 

instrumented drop weight impact tests were used to examine the dynamic behaviour 

of doubly reinforced concrete beams, steel fibre-reinforced concrete beams and SC 

panel system. After the calibration of the numerical models, the elements can be 

widely used to simulate the response of large structures subjected to impact while 

considering the effect of the presence of fibres in the concrete core. 
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4.11.1 Saatci and Vecchio experiment 

An instrumented experimental program was carried out by Saatci and Vecchio 

(2009.b) where eight reinforced concrete beam specimens were tested under free-

falling drop-weights. All the specimens had a section of 250 mm x 410 mm and a 

total length of 4880 mm. The beams were simply supported with a clear span of 

3000 mm. All the specimens were doubly reinforced with equal top and bottom 

reinforcement that consists of 4 bars with diameter 29.9 mm and a yield stress of 464 

MPa. Figure (4.7) illustrates the impact test setup used in the experiment. 

 

 

Figure 4.7: Test setup of the beams, Figure from Saatci and Vecchio (2009.b). 

 

For specimen SS3a-1, the drop-weights impacted the specimen once at the 

midspan, from a clear height of 3.26 m, with a small drop weight (211 kg). A 

bending failure mode dominated the sample under the static loading with visible 
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wide vertical flexural cracks at the midspan. However, shear cracks also developed 

under the impact test mainly after other multiple impacts. 

Specimen SS3a-1 was chosen to be modelled with the fibre beam elements. The 

Specimen had a compressive strength of 46.7 MPa and a strain at peak compressive 

stress equal to 2.51 × 10−3. The strain rate effect in this sample was small and did 

not change the material properties much. Figure (4.8) displays the impact force and 

the reaction forces obtained from the experiment.  

 

 

Figure 4.8: Impact and reaction forces vs time for sample SS3a-1, Figure from 

Saatci and Vecchio (2009.b). 

 

In the finite element models, each element was divided into 5 sections and the 

sections were further divided into 12 concrete fibres and 4 steel fibres (Figure 4.9). 
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Figure 4.9: Fibre beam element cross section mesh for sample SS3a-1. 

 

A convergence study was first performed for the explicit displacement-based 

element. The beam was modelled with 10, 14, 18 and 22 elements including the 

cantilever parts. Figure (4.10) shows that 18 explicit-based elements are sufficient to 

reach convergence. 
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Figure 4.10: Conversion study for the explicit displacement-based element for 

sample SS3a-1. 

 

Therefore, for the displacement-based elements, the beam was subdivided into 

18 finite elements. Regarding the displacement-based implicit element a step of 0.01 

was adopted while for the displacement-based explicit element, a step of 0.01 was 

found unstable and a smaller step of 0.001 was used. The impact load was applied in 

the middle of the beam under a force control and the displacement time history was 

then compared with the experimental results. 

Similarly, for the force-based elements, the beam was divided into 12 elements 

to reach convergence. The same time step used with the displacement-based element 

is also implemented. 

Figure (4.11) shows the midpoint displacement vs time response retrieved from the 

explicit and implicit displacement and force-based elements. All four elements 

produced similar results. Matching can be seen for both, the impact and the free 

vibration phases.  
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The displacement-based implicit element performed on average 4 global iterations in 

every step to reach convergence. While the force-based implicit element performed 

on average 2 internal iterations and 4 global iterations in every step to reach 

convergence. 

 

 

Figure 4.11: Midpoint displacement time history of sample SS3a-1. 

 

For the fully explicit force-based element, the element was initially assigned a 

large time step of 0.01 and the behaviour of the element was monitored as follows: 

First, the element was facing stability problems from an early stage. For the solution 

for time steps between 0 and 0.04 sec, the largest ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq ranged 

between (1.30E-06 and 2.74E-05 N.mm) and element residual deformations 𝑅 

ranged between 0.3E-7 and 0.6E-5. For the largest value of  ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq =

2.74E − 05, using Equation (4.46) and assuming a tolerance value of 1.00E − 05: 
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Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
𝑛𝑒𝑤 = 0.01 × √

1.00E−05 

2.74E−05
= 0.00604  𝑠𝑒𝑐 (Which is the minimum 

Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  of the 12 elements). This new time step was used in the analysis to avoid 

internal element iterations. 

For the rest of the time steps, ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq ranged between (-0.23E-05 and 

0.10E-02 N.mm): 

Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
𝑛𝑒𝑤 = 0.01 × √

1.00E−05

0.10E−02 
= 0.001 sec. 

Using the new time step 0.001, the element did not perform any internal iterations 

and the element residual deformations 𝑅 ranged between 0.10E-30 and 0.10E-10, 

satisfying convergence. 

Table (4.2) shows the execution time each element used to solve the problem 

and the size of the main output file. From the table, it can be observed that because 

implicit elements use larger time step they require less execution time (about one 

fifth of that of explicit elements in this case), and smaller output files. However, the 

explicit force-based element requires a smaller execution time than the explicit 

displacement-based element mainly because a coarse mesh is adopted. The 

elimination of the iterations requires considerable longer execution time as the 

selected time step played the major role in determining the execution time.  
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Table 4.2. Comparison between execution time of the implicit and the explicit 

displacement and force-based elements for sample SS3a-1. 

 

This experiment confirms the ability of the explicit elements in modelling the 

impact behavior of reinforced concrete beams while avoiding internal and external 

element iterations. 

 

4.11.2 Fujikake et al. experiment 

Fujikake et al. (2009) tested several reinforced concrete (RC) beams under 

impact loadings using a drop hammer impact test. Figure (4.12) shows the drop 

hammer impact test setup used in the experiment. The beams were designed to allow 

for an overall flexural failure. The authors also used an analytical model that 

consisted of a two-degree-of-freedom mass-spring-damper system to simulate the 

RC beams analytically. The system consisted of one degree of freedom to express 

the local impact response between the drop weight and the beam and another one to 

express the overall response of the beam. The analysis technique involved the 

determination of the moment-curvature relationship of the beam using section-by-

section analysis procedure whereas the strain rate effects were considered. Then the 

Element type 

Displacement-based Force-based 

Implicit Explicit Implicit Explicit 

Time step 0.01 0.001 0.01 0.001 

Elements mesh size 18 18 12 12 

Execution time (mn:sec) 00:28.8 02:16.5 00:23.9 01:50.6 

Main output file size (MB) 6.83 13.40 6.62 13.39 
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calculation of the load-midspan deflection relationship using the moment-curvature 

relationship was performed. 

 

Figure 4.12: Drop hammer impact test setup, Figure from Fujikake et al. (2009). 

 

The two Specimens S1616-A and S1616-D were chosen to be modelled with the 

fibre beam elements. The RC beam specimens had a rectangular cross section of 

250x150 mm and a total span length of 1400 mm. The beams were simply supported 

at their ends and were allowed to freely rotate while preventing them from moving 

out of plane. The beams were reinforced with 2Ø16 top and bottom bars with yield 

strengths of 426 MPa. The concrete compressive strength was 42 MPa.  

The impact forces applied in the middle of the beams retrieved from the 

experiment are shown in Figure (4.13) for sample S1616-A and Figure (4.14) for 

sample S1616-D. Both the implicit and explicit fibre beam elements were used to 

simulate the behaviour of the two beams under the impact force. Due to symmetry, 

only half of the beams was modelled with a variable number of elements. The beam 

in this problem was assumed simply supported, which allowed free rotation at the 
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ends while preventing vertical displacements; and the symmetry in the middle was 

respected by allowing the vertical movement and preventing the horizontal 

movement and rotations. Consequently, no second order effect was expected in this 

case. 

 

 

Figure 4.13: Impact load history for sample S1616-A, Figure from Fujikake et al. 

(2009). 

 

Figure 4.14: Impact load history for sample S1616-D, Figure from Fujikake et al. 

(2009). 

 

Each element was divided into five sections, and each section was further 

divided into 12 concrete fibres and 4 steel fibres that represented the top and bottom 

reinforcement (Figure 4.15), where five sections are typically adopted in fibre beam 
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models since this discretization can accurately represent the plastic hinge zone in 

reinforced concrete structures (Spacone et al., 1996). 

 

 

Figure 4.15: Fibre beam element cross section mesh for sample S1616-A and S1616-

D. 

In the experiment, the drop hammer used had a mass of 400 kg. It was dropped 

freely onto the top surface of the RC beam at the midspan from different heights. For 

specimen S1616-A, the drop height was the smallest with 0.15m, and for specimen 

S1616-D the drop height was the highest with 1.2m.  

A laser displacement sensor was used to measure the midspan deflection of the 

beam and a dynamic load cell was utilized to measure the contact force between the 

hammer and the beam. 

 

4.11.2.1 Specimen S1616-A 

The impact force-time history was used as input for the two fibre beam elements 

and was retrieved from the experiment. In the implicit model, the step size was 

chosen as 0.001 sec and an excessive maximum of 20 iterations per step was allowed 
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(although usually 4 to 8 iterations are commonly sufficient). The total number of 

steps is 2500. In the explicit force-based model, the time step size was chosen as 

0.00001 to satisfy ∆𝑡𝑚𝑖𝑛 and Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 based on a fully explicit element with no 

iteration and a required tolerance of 1.00E-06, thus 250000 steps was used.  

For the proposed criteria of the force-based explicit model, the element was first 

assigned a large time step of 0.001, and the behaviour of the element was monitored 

below: 

The element worked well at the initial stage between steps 0 and 0.544 

sec, ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq ranged between (0.12E-46 and 0.83E-30 N.mm) and the 

element residual deformations R ranged between 0.2E-14 and 0.7E-29. 

Then from steps 0.544 to 1.23 sec, the largest ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq ranged between 

(0.95E-05and 0.43E-10 N.mm) and element residual deformations R ranged between 

0.29E-06 and 0.95E-11). 

For the largest value of ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq = 0.95E − 05  and, using equation 

(4.46) with a tolerance value of 1.00E-06,  Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
𝑛𝑒𝑤 = 0.001 × √

1.00E−06 

0.95E−05
=

0.00032 𝑠𝑒𝑐. This new time step ensured no element iterations were performed. 

Later, between time steps 1.23 sec and the end of the analysis,  ∑ 𝐹 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ∙3
1 Δq 

ranged between (0.50E-02 and 0.44E-07 N.mm)  

Thus Δt𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
𝑛𝑒𝑤 = 0.001 × √

1.00E−06 

0.50E−02
= 0.000014 sec 

Using a new time step of 0.000014 sec, the element did not perform any internal 

iterations and R ranged between 0.10E-30 and 0.10E-16. 

For the explicit displacement-based model, the time step size was chosen as 

0.0001 to fulfil the ∆𝑡𝑚𝑖𝑛 requirement. A diagonal lumped mass was adopted for the 
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explicit analysis. The material constitutive parameters used in the finite element 

model considering the strain rate effect were taken as follows: 

𝑓′𝑐𝑑 = 52 MPa, 𝜀′𝑐𝑑 = 0.009, 𝑓𝑡𝑑 = 3 MPa and 𝑓𝑠𝑦𝑑 = 580.0 MPa. 

With only two elements, the two explicit models were able to follow the input 

load-time curve and to predict the displacement-time history accurately as shown in 

Figure (4.16). On the other hand, both implicit models, the displacement and force 

elements, suffered from severe convergence issues and resulted in an unstable 

behaviour and inaccurate displacement estimates (Figure 4.16). It is worth 

mentioning that both explicit elements converged with only two elements, as the 

impact load was small for this specimen. Figure (4.17) shows the bending moment 

distribution along the span of beam S1616-A at the maximum displacement using 

the explicit force-based element. Due to the assumption of the force-based 

formulation, the bending moment is linear within each element.  

 

Figure 4.16: Deflection time history for specimen S1616-A. 
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Figure 4.17: Bending moment at maximum displacement using the explicit force-

based element (specimen S1616-A). 

 

Further, the section behaviour was monitored using the moment curvature 

relationship for section 4 of element 2 and is displayed in Figure (4.18). The curve 

started by an increase in the bending moment proportional to an increase in the 

curvature value up to a moment of 58 kN.m then a reversed behaviour was detected 

and a decrease in the bending moment values escorted a decrease in the curvature. 

This behaviour can be explained from the deflection time history of the specimen. 

The first phase of the response happened due to an increase in the deflection value 

up to a time of 1.4 (sec/100) then the second phase occurred where the deflection 

value decreased until reaching zero. In addition, section 5 of element 2 behaved in 

the same manner as both sections are situated in the middle of the beam model.    
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Figure 4.18: Moment curvature relationship for (element 2-section 4) using the 

mixed element. 

 

Additionally, three different fibres were observed for specimen S1616-A. Figure 

(4.19) shows the location of the top concrete fibre (1), the bottom concrete fibre (2) 

and a bottom steel fibre (3). The stress strain curve of concrete fibre (1) for section 4 

of element 2 is shown in Figure (4.20). The concrete fibre was under compression 

and behaved in an elastic manner until it reached a stress of 30 MPa at a strain of 

0.0031 then the concrete loss its ductility and started an unloading failure.  
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Figure 4.19: labelling of monitored fibres for Fujikake experiment. 

 

 

Figure 4.20: Stress strain curve for top concrete fibre (1) (element 2 at sec 4) using 

the mixed element. 

 

For bottom concrete fibre (2) at section 4 of element 2, the stress strain curve is 

shown in Figure (4.21). The bottom concrete fibre was under pure tension and 

reached a stress of 3.0 MPa at a strain of 0.0025 then a clear linear ductile 
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performance was observed with a tension softening stiffness behaviour until a large 

strain value of 0.00325 was achieved. 

 

 

Figure 4.21: Stress strain curve for Bottom concrete fibre (2) (element 2 at sec 4) 

using the mixed element. 

 

Finally, the steel fibre (3) at section 5 of element 2 is presented in Figure (4.22). 

A linear elastic behaviour was observed for fibre (3) and the maximum stress 

achieved was 580 MPa mainly due to the presence of the strain rate effect. The 

displayed Figures (4.20 to 4.22) allowed a detailed understanding of the fibre 

behaviour of each part of the modelled structure.  
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Figure 4.22: Stress strain curve for steel fibre (2) (element 2 at sec 5) using the 

mixed element. 

 

The difference between the capabilities of the explicit and implicit elements is 

very clear in this problem. Although 10 iterations are routinely allowed, for this 

example, the implicit element was allowed to perform the double of the standard 

number of iterations. However, this did not help the element to converge. Meaning 

that, increasing the number of the global iterations for the implicit element will not 

yield better results. Consequently, this emphasises the superiority of the explicit time 

integration methods for short time duration impact problems.  

It should be noted that the explicit force-based element requires a higher number 

of time steps in case no internal element iterations are allowed when compared with 

the mixed explicit implicit force-based element or the explicit displacement-based 

element. 
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4.11.2.2 Specimen S1616-D 

For the implicit model, the step size was also chosen as 0.001 and the total 

number of steps was 3500.  In the explicit force-based model, the time step size was 

initially chosen as 0.00001 based on a fully explicit element with no iteration at all 

and a tolerance of 1.00E-06, thus 350000 steps were used. For the explicit 

displacement-based model, the time step size was chosen the same as the one used to 

solve specimen S1616-A.  A diagonal lumped mass was created for the explicit 

element. 

For the material parameters, the values considering the strain rate effect were taken 

as follows: 

𝑓′𝑐𝑑 = 44.0 MPa, 𝜀′𝑐𝑑 = 0.0950, 𝑓𝑡𝑑 = 1.0 MPa and 𝑓𝑠𝑦𝑑 = 430.0 MPa. 

In Figure (4.23), only the two explicit models were able to predict the behaviour 

of the impact problem with four elements for the force-based and eight elements for 

the displacement-based approach. Both of the implicit models, the displacement and 

force-based elements, failed to follow the input path and produced exaggerated 

deflection values. The two explicit fibre beam elements overcome the complexity of 

the analysis method used by Fujikake et al. (2009). Further, the force-based explicit 

element produced better results than the displacement-based explicit element as it 

requires less number of elements to reach convergence (Figure 4.23).  
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Figure 4.23: Deflection time history for specimen S1616-D. 

 

Figure (4.24) shows the bending moment along the span of beam S1616-D at the 

maximum displacement using the explicit force-based element. It also confirms the 

linear distribution of the moment function. 

 

Figure 4.24: Bending moment at maximum displacement using the explicit force-

based element (specimen S1616-D). 
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In a further attempt to study the new explicit force-based element, the bending 

moment output of the 1, 2 and 4 elements are compared with each other’s. It is clear 

from Figure (4.25) that only 2 elements were sufficient to reach convergence 

because in the force-based formulation the relation of curvature is linear. 

Whereas in Figure (4.26), a comparison between the load-displacement curves 

for the 1, 2, 4 and 6 elements is shown. It can be seen that the 2 elements model 

produced an output curve slightly away from experimental results, while when 

comparing the 4 and 6 elements, convergence was noticeable.   

 

 

 

Figure 4.25: Comparison between the Bending moments at maximum displacement 

using the explicit force-based element (specimen S1616-D) for 1, 2 and 4 elements. 
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Figure 4.26: Comparison between deflection time history for specimen S1616-D 

using the explicit force-based element (specimen S1616-D) for 1, 2, 4 and 6 

elements. 

 

It can also be established from Figures (4.25) and (4.26) that the load 

displacement curves are more sensitive to element mesh division than the calculation 

of the bending moment. 

Next, the section and fibre behaviour of specimen S1616-D is studied. In Figure 

(4.27), the moment curvature relationship for section 5 of element 4 is shown. The 

moment curvature relationship can be divided into three phases. In the first phase, 

the relation is linear and happens in a small strain range. The second phase is 

nonlinear and occurs in a large strain range; and is followed by the third and last 

phase were failure is happening. It can be spotted that a numerical error occurred at 

strain values 0.0003 with a sudden drop and rise in the value of moment. However, 

this numerical error did not affect the stability of the solution and the element was 

able to converge until the end. 
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The same three fibres shown previously in Figure (4.19) are monitored. 

Different behaviour is observed for sample S1616-D than the one retrieved from 

sample S1616-A. In Figure (4.28), the stress strain curve of concrete fibre (1) for 

section 5 of element 4 is presented. The concrete fibre is under compression and 

behaves in an elastic manner until it reaches a stress of 30 MPa at a strain of 0.0431 

then the concrete starts an unloading path characterised by the decrease of loads and 

displacements until failure. The proposed element was able to capture this behaviour, 

which is similar to near-fault ground motions. For the bottom concrete fibre (2) of 

section 3 of element 4, the stress-strain curve is shown in Figure (4.29).  The bottom 

concrete fibre is under pure tension and reaches a stress of only 1.0 MPa at a strain 

of 0.001 then a clear linear ductile behaviour is observed with tension softening 

stiffness until a large strain value of 0.0022 is achieved. 

Finally, the steel fibre (3) for section 5 of element 4 is presented in Figure 

(4.30). A linear elastic behaviour is observed for fibre (3) and the maximum stress 

achieved due to the presence of strain rate effect is only 420 MPa but followed by a 

clear ductile behaviour with strain hardening until a stress of 510 MPa is attained at a 

large strain value of 0.043. 
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Figure 4.27: Moment curvature relationship for (element 4-section 5) using the 

mixed element. 

 

 

Figure 4.28: Stress strain curve for top concrete fibre (1) (element 4 at sec 5) using 

the mixed element. 
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Figure 4.29: Stress strain curve for Bottom concrete fibre (2) (element 4 at sec 3) 

using the mixed element. 

 

 

Figure 4.30: Stress strain curve for steel fibre (3) (element 4 at sec 5) using the 

mixed element. 
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The ability of the implicit element to solve short-term dynamic problems is 

limited and can be linked to several factors including the impact force intensity, the 

load input path complication, the duration of the load and the nonlinear material 

behaviour. On the other hand, the use of explicit techniques with the fibre beam 

element is an advanced method to solve highly nonlinear dynamic problems without 

the need for iterations and convergence complications. The elements benefit from 

their simplicity, which makes them competitive with complex continuum elements 

available in commercial finite element software. 

 

4.11.3 Sohel and Liew experiment 

The test conducted by Sohel and Liew (2014) is used to verify the ability of the 

explicit fibre beam element to model an SC panel system. In the experiment, eight 

SC sandwich slabs measuring 1200 × 1200 mm2 were tested under impact loading 

(Figure 4.31). The SC panels were simply supported with a span of 1000mm. The 

drop height was chosen as 3m while the projectile mass was about 1246 kg. Panel 

SLFCS6-80 had a steel plate thickness of 5.96 mm, a Lightweight concrete core with 

1% fibre of 80 mm thickness. The concrete density was equal to 1445 kg/m3, the 

cylinder strength of the concrete was 28.5 MPa, the elastic modulus of concrete was 

14.0 GPa and the yield strength of steel plate was 315.0 MPa. The low velocity 

impact of the large mass produced mainly local punching for the tested SC panels. 
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Figure 4.31: Sample SLFCS6-80 under impact loading with cracking but no spalling 

behaviour, Figure from Sohel and Liew (2014). 

 

Panel SLFCS6-80 was chosen to be simulated using the explicit displacement 

and force-based fibre beam elements. The 1% fibre in the concrete mix was 

considered in the model using a high tensile strength value of 9.0 MPa and a 

constant zero slope tension softening stiffness. 

For the explicit displacement-based element, only half of the panel was 

modelled first using one element then using four elements. Every element was 

divided into five sections. Each section was further divided into 12 concrete fibres 

and 2 steel fibres that represent the top and bottom steel plates (Figure 4.32). The 

impact forces, retrieved from the experiment, are shown in Figure (4.33). The impact 

forces were applied in the middle of the panel using a force control method. 
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Figure 4.32: Fibre beam element cross section mesh for sample SLFCS6-80. 

 

 

Figure 4.33: Impact load history for sample SLFCS6-80, Figure from Sohel and 

Liew (2014). 

 

Several time steps were studied, the largest time step was 0.01 sec and the 

smallest one was 0.00001 sec. From Figures (4.34 & 4.35), It was found that the 

solution became stable only when a small enough time increment was used. For 

instance, when the panel was modelled with one element division, the stable time 
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step was 0.0001 sec while when the panel was divided into four element divisions 

only a time step of 0.001 sec was sufficient to reach full convergence. For both 

element divisions, the time step 0.01 sec did not satisfy ∆𝑡𝑚𝑖𝑛 and the output was 

numerically unstable. This complies with the displacement-based elements’ 

necessity to adopt fine meshing, and confirms the effect of the length of the element 

on the stable time increment.  

 

 

Figure 4.34: Load-Deflection Comparison of the displacement-based Explicit Fibre 

Beam Element for SC panel SLFCS6-80 using different time step values and one 

element division. 



174 
 

 

Figure 4.35: Load-Deflection Comparison of the displacement-based Explicit Fibre 

Beam Element for SC panel SLFCS6-80 using different time step values and four-

element division. 

 

In Figure (4.36), the two stable displacement-based solutions with one and four 

elements divisions are compared with the experimental results. Both solutions agreed 

with the experimental load displacement path except when the model failed to 

capture the valley in the experimental curve. This could be attributed to the strain 

hardening of the steel subsequent to the concrete strength degradation. 

 In conclusion, the more the number of element divisions increases, a larger step 

size can be accepted. 
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Figure 4.36: Load-Deflection Comparison of the force-based Explicit Fibre Beam 

Element for SC panel SLFCS6-80 using different time step values. 

 

For the explicit force-based element, also half of the panel was modelled using 

one and four elements. Figure (4.37) shows a comparison between using the two 

different element divisions for the explicit force-based element with a time step of 

0.001 sec. It is clear that both results match each other. 
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Figure 4.37: Load-Deflection Comparison between the one and four elements 

division of the explicit force-based elements for SC panel SLFCS6-80. 

 

Finally, in Figure (4.38), the explicit force-based elements together with the 

explicit displacement-based element are compared with the experimental results. The 

four element divisions were used for this comparison although one element was 

sufficient to reach adequate results especially for the force-based elements. For the 

area under the load displacement curve, the difference between the experimental 

results and the displacement-based fibre beam model was 2%, while the difference 

increased for the force-based fibre beam model to 8.2%. However, it is clear that the 

explicit force-based element better simulated the post peak behaviour. Care should 

be taken when using explicit beam elements to ensure the numerical stability of the 

solution. 
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Figure 4.38: Load-Deflection Comparison between the experiment results and the 

displacement and force-based elements for SC panel SLFCS6-80. 

 

This experiment confirms the ability of the explicit elements in modelling the 

impact behavior of steel concrete panels while avoiding internal and external 

element iterations. The experiment also confirms the ability of the force-based 

explicit element in modelling such problems with the minimum possible number of 

elements while preserving numerical stability and accuracy. 
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4.12 Conclusion 

In this chapter, two-plane fibre beam elements were presented that adopt an 

explicit time integration scheme to solve short-term dynamic problems, particularly 

impact problems where a high force is applied over a very short duration of time. 

The elements use a displacement-based and a force-based formulation respectively, 

and benefit from advanced material constitutive models that can simulate the 

nonlinear behaviour of concrete and steel materials.  

The developed elements overcome the difficulties and complications that are 

associated with the implicit time integration method, such as the need to iterate in 

every time step and the convergence requirements. Yet, the explicit element 

necessitates the use of a diagonal lumped mass matrix and the chosen time increment 

has to be smaller than the stable time increment required to maintain the stability of 

the numerical solution. Additionally for the fully explicit force-based element, a 

single iteration can be used if a critical time step is respected.  The developed 

explicit fibre beam-column models, particularly the force-based element, represent a 

simple yet powerful tool for analysis of complex impact problems efficiently while 

using a limited number of finite elements. Both elements can be used reliably to 

analyse different reinforced concrete structures to ensure their safety against impact 

loading. 

In the next chapter, different RC and SC panels will be modelled with the 

developed elements using different techniques including grillage modelling under 

static and impact loading. 
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Chapter 5 

GRILLAGE ANALYSIS AND ELEMENTS APPLICATIONS 

 

5.1 Introduction 

Many researchers have contributed to the development of different fibre beam 

elements. The elements until present were effectively utilized in modelling simple 

structures such as columns and beams. However, the fibre beam elements can be 

used to model large-scale walls and slabs using grillage-modelling techniques. The 

approach offers a wider area of application for beam elements and reduces the cost 

of static and impact analysis when compared to continuum models such as 

membrane and solid models. With this approach, efficient statistical studies on large 

complex RC systems under hazard loads would be computationally possible. In this 

chapter, the fibre beam element will be employed to model different experiments 

using the grillage technique. The slabs or walls will be simulated as a series of beam 

elements connected and restrained at their joints. 

In grillage modelling, the slab or wall is divided into a network of longitudinal 

and transversal grid lines in one-dimensional plane. Each grid is assigned a beam and 

given the properties of the part of the slab it represents. The beams are connected 

together at their nodes. The transversal beams are mainly used to link the 

longitudinal beams together and help in the accurate distribution of the load. 

Therefore, the longitudinal and transversal members represent the stiffness of the 

slab, in both directions. Extra grid lines might be required in order to improve the 

accuracy of the results as it is always recommended to adopt fine meshes in grillage 

modelling (usually a spacing ratio limit of 2:1 has to be respected). Care should be 
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taken not to double the own weight of the structure as it has to be assigned only in 

one direction. 

Such modelling practice is common especially in bridge deck analysis and shear 

walls. According to Booth (2008), the simplification of a plate structure into an 

equivalent beam element is generally acceptable and the approximation in the 

resulting midpoint displacement can be satisfactory. For instance, Hambly and 

Feng (1991) presented several techniques and recommendations for modelling 

bridge slab decks using beam elements. O’Brien and Keogh (1999) emphasized the 

reliability of modelling a slab by a network of beam elements stating that the method 

is inexpensive and easy to use. Similarly, Kubin et al. (2008) modelled shear walls 

using a grillage of beam elements. By the same technique, Youssef et al. (2014) 

used grillage analysis to calculate the nonlinear lateral behaviour of flat plate 

buildings. They reported that using shell elements to predict the seismic behaviour of 

such structure is cumbersome due to material and geometric nonlinearities. 

Hajializadeh et al. (2015) also utilized beam elements to analyse linear and 

nonlinear isotropic slab bridges under extreme traffic loading.  

O’Brien and Keogh (1999) provided some important recommendations that can 

be used as a guide for grillage analysis. The recommendations included the 

following major points: 

1- Longitudinal members should be provided along lines of strength in the slab 

(such as concentration of reinforcement, tendons or existing beams). 

2- Nodes should coincide with the location of supports. 

3- Transverse beams should have similar spacing of longitudinal beams. 
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Furthermore, Kappos et al. (2012) discussed the idealization of bridge decks 

using longitudinal and traversal elements. The author provided detailed guidance for 

the calculation of members’ properties for different types of bridges including girder 

and slab deck sections. The provided equations were valid for the usual square 

configuration of grillages.   

 

5.2 Grillage modelling using fibre beam elements 

In the next sections, the fibre beam elements are used to create a network of 

beams (grillage) to simulate three different experiments available from the literature 

to establish the ability of the fibre beam element in general to implement such 

procedure in modelling large-scale walls and slabs. The technique is validated 

against experimental work to display its feasibility and practicality. Initially, two 

large-scale walls will be used in the validation, where in-plane loadings are applied 

to the tested walls. Later, the formulation of the fibre beam elements will be 

modified, using a simple innovative technique, in order to allow for out-of-plane 

loading. The emerging technique can be considered a 3D model, as two dimensions 

define the geometry while the load acts on the third perpendicular dimension. 

  

5.2.1 Hube experiment 

Hube et al. (2014) tested six half-scale reinforced concrete structural walls. The 

walls were subjected to a quasi-static cyclic lateral in-plane displacement load 

accompanied by a constant axial load to simulate earthquakes effect. The walls were 

fixed at the base and their top part was allowed to freely rotate and horizontally 
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move. Figure (5.1) shows the test setup of the experiment. A flexural failure mode 

was observed for the tested specimens due to their relatively large aspect ratio. 

 

 

Figure 5.1: Test setup of the experiment, Figure from Hube et al. (2014). 

 

Wall W1 was selected to be modelled with a grillage of fibre beam elements. 

The wall had a length of 700 mm, a thickness of 100 mm and a height of 1600 mm. 

The wall was reinforced with 4Ø10 vertical bars at each corner plus 6Ø8 vertical 

bars distributed in two sides along the rest of the wall length. The concrete had a 

strength of 27.4 MPa; the Ø10 reinforcement had a yield strength of 469.2 MPa and 

a modulus of elasticity of 224.7 GPa while Ø8 reinforcement had a yield strength of 

445.6 MPa and a modulus of elasticity of 225.8 GPa. 

The wall was subjected to a constant axial load of 287 kN and a quasi-static 

cyclic horizontal displacement at a constant rate of 10 mm/min. The displacement 

loading protocol is shown Figure (5.2) and was retrieved from another publication of 

the authors (Alarcon et al., 2014). 
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Figure 5.2: Horizontal cyclic loading protocol, Figure from Alarcon et al. (2014). 

 

The grillage model was constructed with 36 longitudinal fibre beam element and 

27 transversal fibre beam element forming 40 joints. Each element was divided into 

5 sections and each section was additionally divided into 10 concrete fibres and 

another number of steel fibres that represent the reinforcement available in each 

section. Figure (5.3) shows a schematic of the grillage model with joints and 

elements labelling. Each longitudinal member was assigned a section of 175x100 

mm with its specific reinforcement depending on which part of the wall it simulates. 

For the transversal members a section of 200x100 mm was assigned. The beam was 

also modelled by planar (one directional) element and the corresponding results were 

compared.   

In the present grillage model, the dimensions of the transversal members did not 

affect much the results; however, their presence is vital for the accuracy of the 

solution as they link the longitudinal members together. Joints 1, 2, 3 &4 were fixed 

and the horizontal and vertical loads were assigned to joints 37, 38, 39 &40 equally.  
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Figure 5.3: Schematic of the grillage model for wall W1 with joints and elements 

labelling. 

 

The aim of this exercise is to show that the wall can be modelled as a set of 

grillage elements in the horizontal and transversal directions. Therefore, a static 

displacement-based element was selected to solve the problem since the load was 

imposed in a quasi-static process. However, the concept of dividing the wall into a 

number of horizontal and vertical members forming a grillage can be adopted 

similarly to any other problem with the newly developed elements previously 

presented in chapter (3) and (4) of this dissertation. 
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Figures (5.4 & 5.5) shows a comparison between the experimental results and 

the grillage model results. The load–displacement curves of the grillage model 

matched the experimental behavior and good correlation is observed. The difference 

in the dissipated energy between the envelope of the experimental results and the 

envelope of the fibre beam grillage model was 4.2%. In Figure (5.6), the grillage 

model output is compared with the planar model. Both models were able to analyse 

the problem, as an in-plane loading was applied to the wall. However, some 

differences can be observed in the hysteric curves. 

 

 

Figure 5.4: Comparison between the load displacement curves of the fibre beam 

grillage model and the envelope of the results retrieved from the experiment (Wall 

W1). 
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Figure 5.5: Full experimental load–displacement hysteretic relationship for wall W1, 

Figure from Hube et al. (2014). 

 

Figure 5.6: Comparison between the load displacement curves of the fibre beam 

grillage model and the planar fibre beam model. 
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5.2.2 Epackachi experiment 

Epackachi et al. (2015) performed an experimental study on four rectangular 

large-scale steel-plated composite walls under in-plane inelastic cyclic lateral 

loading. The tested walls had an aspect ratio of 1.0 and failed in a flexural mode. The 

SC walls were fixed to a rigid foundation using posttensioned bars. Figure (5.7) 

shows the steel-plate composite wall test setup. 

 

Figure 5.7: steel-plate composite wall test setup, Figure from Epackachi et al. 

(2015). 

 

Wall SC1 was selected to be modelled by a grillage of fibre beam elements. The 

wall had a dimension of 1524x1524x305 mm. The steel faceplates had a thickness of 

4.8 mm and a yield strength of 262 MPa. The concrete core had a thickness of 295.4 

mm and a nominal compressive strength of 27.5 MPa. Quasi-static cyclic lateral 

loads were applied at the top of the SC walls. The displacement-controlled reversed 

cyclic loading protocol is shown in Figure (5.8).  



188 
 

 

 

Figure 5.8: Loading protocol, Figure from Epackachi et al. (2015). 

 

The grillage model was constructed with 15 longitudinal fibre beam elements 

and 10 transversal fibre beam elements forming 18 joints. Each element was divided 

into 5 sections and each section was further divided into 10 concrete fibres and 2 

steel fibres that represents the steel faceplates. Figure (5.9) shows a schematic of the 

grillage model with the joints and elements labelling. Each longitudinal member was 

assigned a section of 508x305 mm including the faceplates. The transversal members 

were assigned a section of 305x305 mm. Joints 1, 2& 3 were fixed and the horizontal 

displacement control load was assigned to joints 16, 17& 18.  
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Figure 5.9: Schematic of the grillage model for wall SC1 with joints and elements 

labelling. 

 

Similarly, a static force-based element was employed to simulate the experiment 

since the load was imposed in a quasi-static process. However, the concept of 

dividing the SC wall into a number of horizontal and vertical members forming a 

grillage can be adopted correspondingly under other types of loading. Figures (5.10 

& 5.11) show a comparison between the experimental results and the grillage model 

results. The load-displacement curves display that the grillage model was able to 

simulate the experimental behavior using the force-based element. The difference in 

the dissipated energy between the envelope of the experimental results and the 

envelope of the fibre beam grillage model was 17%.  
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Figure 5.10: Comparison between the load displacement curves of the grillage model 

and the envelope of the results retrieved from the experiment. 

 

 

Figure 5.11: Experimental load-displacement relationships for SC1, Figure from 

Epackachi et al. (2015). 
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5.3 Grillage modelling for out-of-plane loading 

In order to allow the fibre beam elements to consider out of plane loading in 

grillage modelling a new proposed technique will be adopted by transforming the 

model into a 3D one, where the grillage is defined in a 2D coordinate and the load is 

assigned in the third perpendicular coordinate. Figure (5.12) shows the difference 

between in-plane and out-of-plane forces.  

 The fibre beam elements will be used to model the longitudinal and transversal 

members separately. However, each member will be composed of 5 DOF per node 

allowing for one extra translation DOF and one extra bending DOF in the out-of-

plane direction. The elements will then be coupled at the global system in order to 

consider the 3D effect. 

 

Figure 5.12: In plane and out-of-plane loading. 
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The global five DOF per node, shown in Figure (5.13), will be reduced in the 

element internal formulation by accounting for three DOF per node for the 

longitudinal member and another three DOF per node for the transversal member. So 

that the same formulation of the fibre beam elements previously presented in chapter 

(3) and (4) of this dissertation will be applicable within the element and its 

corotational formulation. However, the directions of the DOFs forming the 

longitudinal and transversal members will be different and are shown in Figures 

(5.14) and (5.15), where the word local refer to the status of the element internal 

formulation before removing the rigid body modes. Later, the elements will be 

transformed to the corotational formulation using the same procedure previously 

explained in detail in chapter (3) and (4).  

 

 

Figure 5.13: Element degrees of freedom in global system. 

 

 



193 
 

 

Figure 5.14: Element degrees of freedom in local system for longitudinal 

member. 

 

 

Figure 5.15: Element degrees of freedom in local system for transversal 

member. 

 

In the local formulation of the transversal element, for node 1, the global DOF in 

direction (4), which is the axial force, will be stored in the local vector in direction 
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(1), while the global DOF in direction (2), the vertical DOF, will be stored in the 

local vector in direction (2). Finally, the global DOF in direction (5), representing the 

bending, will be stored in the local vector in direction (3). On the other hand, for the 

local formulation of the longitudinal element,  global DOF (1) will be stored in local 

DOF (1), global (2) will be stored in local (2) and global (3) will be stored in local 

(3).  

The resulting stiffness matrix of both elements will consist of a 10x10 matrix 

and the load vector will have a size of 10x1. 

The assembly of the global stiffness matrix is as follows: 

𝑘𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙)= 

[
 
 
 
 
 
 
 
 
 
 
𝑘11 𝑘12 𝑘13 0 0 𝑘14 𝑘15 𝑘16 0 0
𝑘21 𝑘22 + 𝜘22 𝑘32 𝜘21 𝜘23 𝑘24 𝑘25 + 𝜘25 𝑘26 𝜘24 𝜘26

𝑘31 𝑘32 𝑘33 0 0 𝑘34 𝑘35 𝑘36 0 0
0 𝜘12 0 𝜘11 𝜘13 0 𝜘15 0 𝜘14 𝜘16

0 𝜘32 0 𝜘31 𝜘33 0 𝜘35 0 𝜘34 𝜘36

𝑘41 𝑘42 𝑘43 0 0 𝑘44 𝑘45 𝑘46 0 0
𝑘51 𝑘52 + 𝜘52 𝑘53 𝜘51 𝜘53 𝑘45 𝑘55 + 𝜘55 𝑘56 𝜘54 𝜘56

𝑘61 𝑘62 𝑘63 0 0 𝑘64 𝑘65 𝑘66 0 0
0 𝜘42 0 𝜘41 𝜘43 0 𝜘45 0 𝜘44 𝜘46

0 𝜘62 0 𝜘61 𝜘63 0 𝜘65 0 𝜘64 𝜘66]
 
 
 
 
 
 
 
 
 
 

    (5.1) 

Where 𝑘 denotes the stiffness of the longitudinal member and 𝜘 denotes the stiffness 

of transversal member. 

Further the assembly of the load vector is: 
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𝐹𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) =

[
 
 
 
 
 
 
 
 
 

𝐹1

𝐹2 + ℱ2

𝐹3

ℱ1

ℱ3

𝐹4

𝐹5 + ℱ5

𝐹6

ℱ4

ℱ6 ]
 
 
 
 
 
 
 
 
 

                                                                                      (5.2) 

Where 𝐹 denotes the load of the longitudinal member and ℱ denotes the load of the 

transversal member. 

It has to be noted that the transformation matrix 𝑇, previously defined in equation 

(4.22), must be multiplied by the matrix that accounts for the member inclination, 

𝑇𝑅. 

For the longitudinal element: 

 𝑇𝑅 =

[
 
 
 
 
 
𝑐𝑜𝑠⁡𝛽 𝑠𝑖𝑛⁡𝛽 0 0 0 0
−𝑠𝑖𝑛⁡𝛽 𝑐𝑜𝑠⁡𝛽 0 0 0 0

0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠⁡𝛽 𝑠𝑖𝑛⁡𝛽 0
0 0 0 −𝑠𝑖𝑛⁡𝛽 𝑐𝑜𝑠⁡𝛽 0
0 0 0 0 0 1]

 
 
 
 
 

                                              (5.3) 

While for the transversal element 𝑇𝑅 must be modified to be in accordance with the 

local DOFs as follows:  

⁡𝑇𝑅 =

[
 
 
 
 
 
𝑠𝑖𝑛⁡𝛽 𝑐𝑜𝑠⁡𝛽 0 0 0 0
𝑐𝑜𝑠⁡𝛽 −𝑠𝑖𝑛⁡𝛽 0 0 0 0

0 0 1 0 0 0
0 0 0 𝑠𝑖𝑛⁡𝛽 𝑐𝑜𝑠⁡𝛽 0
0 0 0 𝑐𝑜𝑠⁡𝛽 −𝑠𝑖𝑛⁡𝛽 0
0 0 0 0 0 1]

 
 
 
 
 

                                              (5.4) 
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5.3.1 Two perpendicular beam models 

The 3-dimensional general-purpose structural analysis software SAP2000 is first 

used to compare its results with the new developed technique to ensure its accuracy 

in the elastic range. A simple exercise is used in the validation. Two perpendicular 

beams, shown in Figure (5.16), are connected in their middle forming a cross. Each 

beam has a total length of 10000 mm. The beams have a depth of 600 mm and a 

width of 250 mm. They are assigned a steel material with a Young’s modulus of 200 

GPa and a yield stress of 1000 MPa to ensure a linear elastic behaviour. In the 

SAP2000 model, the intersecting joint of the two beams are loaded with a vertical 

downward force of 4000 N. According to SAP2000 3D output shown in Figure 

(5.17), the intermediate joint deflection is -0.04682 mm.    

 

Figure 5.16: 3D model using SAP2000 software. 
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Figure 5.17: Displacement output at the middle joint using SAP2000. 

 

The fibre beam element is then used to model the same two interconnected 

beams to simulate a simple grillage. Same section and materials were assigned to the 

model. The cross section was divided into 10 fibres. Each node has five DOF as 

previously explained and the load is first applied as a displacement control with a 

displacement value of -0.04682 mm. The summation of the output reactions of the 

grillage model is -4.0048E+03, which mean that the error is 0.001%. When a force 

control is adopted and a force value of 4000 N is applied at the intersection point of 

the connected beams, the output displacement is -4.6820E-02 with zero percent 

error. 

This concludes that the simplified 3D grillage technique and the modified 

formulation could precisely model plane elements where the load is assigned on the 

third out-of-plane direction. The simplified 3D model can also be used to simulate 

impact and other dynamics out-of-plane loadings as discussed next. 
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5.3.2 Kishi experiment 

The experiment of Kishi et al. (2011) will be used to validate the grillage 

modelling under out-of-plane impact loading. Kishi et al. (2011) analysed 

rectangular reinforced concrete slabs subjected to impact loading. LS-DYNA 

commercial software was used in the simulation and the results were compared with 

experimental output. 

Slab S4 had a dimension of 2000x2000x180 mm. The slab was reinforced with a 

layer of Ø16 every 150 mm in both directions. The supports were restrained in the 

horizontal and vertical directions. However, they were permitted to rotate freely. A 

load of 300 kg was allowed to fall freely in the centre of the slab with a speed of 4 

m/s. The sample had a concrete compressive strength of 26.6 MPa and a yield strain 

of 1,500 μ strain and the concrete tensile strength was 2.66 MPa. The slab had line 

supports on all sides. 

The crack pattern of slab S4, retrieved from the experiment, is presented in 

Figure (5.18). The crack pattern shows that the crack progressed in both directions. 

 

Figure 5.18: Crack patterns of slab S4, Figure from Kishi et al. (2011). 
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Kishi et al. (2011) modelled the quarter of the slab using eight-node solid 

elements for the concrete and two-node beam elements for the reinforcement bars. 

The solid cylinder was also modelled using solid elements. The LS-DYNA finite 

element model is shown in Figure (5.19).  

 

Figure 5.19: LS-DYNA finite element model, Figure from Kishi et al. (2011). 

 

Slab S4 is chosen to be modelled with the explicit fibre beam element. Two 

models were created. The first model is a simple 2D model with one row of beam 

elements in the longitudinal direction and another one in the perpendicular 

transversal direction (Figure 5.20). The two beams intersect each other at the middle 

node. Each beam is divided into 8 elements, each element is also divided into five 

sections, and the sections are similarly divided into 12 concrete fibres and 1 bottom 

steel fibre. In this model, the longitudinal and transversal members were assigned a 

section of 2000x180 mm. 
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 The second model is a full 2D grillage model, where three beams are used in 

the longitudinal direction and another three beams are utilized in the transversal 

direction. The beams intersect each other at nine different nodes (Figure 5.21). In the 

second model, the longitudinal and transversal members were assigned a section of 

666x180 mm. 

The impact load, retrieved from the experiment, is applied in the middle node of 

the two grillages. The impact load is shown in Figure (5.22). The fibre beam models 

considered the strain rate effect of concrete and steel in order to model the impact 

behaviour appropriately. 

 

 

Figure 5.20: Fibre beam element 2D model (1 row/direction). 
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Figure 5.21: Fibre beam element 2D model (3 rows/direction). 

 

 

Figure 5.22: Impact force time history for sample S4, Figure from Kishi et al. 

(2011). 

The output results of the two models are shown in Figure (5.23). The models 

were able to estimate the maximum deflection value of the impact test since they 

consider the deflections in both directions. However, peak deflections were detected 

earlier than in the experimental results and the response-histories are generally 

different when compared with the experiment. The grillage modelling technique can 
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therefore be used to give preliminary estimates of the maximum deflection value and 

can save time and storage capacity when compared with solid models. 

In conclusion, the grillage technique produced reasonable estimates of the 

maximum displacement values for slab modelled under out-of-plane impact loads. 

Models that are more sophisticated might be required to capture the full response-

histories more precisely. 

 

Figure 5.23: Deflection time history for different fibre beam models compared to the 

experimental result. 

 

In the next section, the newly developed elements are used to investigate the effect 

of the different parameters affecting the impact behaviour of SC members. 
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5.4 Numerical study on SC panels 

A numerical study is developed herein using the newly developed elements to 

investigate the most effective method of increasing the safety of SC panels to resist 

higher impact loads. Five parameters were chosen to be reasonably changed one by 

one, and their effect on the resistance is studied. The SC panel tested by Sohel and 

Liew (2014) was selected as a basis for this investigation. In the experiment, the SC 

sandwich slabs measured 1200 × 1200 mm2 and were tested under the same impact 

loading previously shown in Figure (4.33). Each SC panel was modelled with 1D 

element only as it was sufficient to simulate the test as previously demonstrated in 

section 4.11.3. 

All parameter values implemented in this study are based on practical available 

supplies from the construction industry in the UK. For example, the chosen 

thicknesses for the steel plates are available in the UK market and commonly used.  

In this study, the steel plate thickness ranges between 2, 4, 5, 8, 10 and 12 mm. 

The concrete core thickness ranges between 60, 80, 100, 120 and 140 mm. The 

concrete compressive strength (𝑓𝑐) varies between 22.5, 32.5, 42.5, 52.5 and 62.5 

MPa, which present normal to high strength concrete. The concrete tensile strength 

(𝑓𝑡) ranges between 1, 3, 5, 7 and 9 MPa, which present a steel fibre percentage that 

ranges between 1 and 3%. Finally, the yield strength of the steel plates varies 

between 240, 260, 320, 340 and 400 MPa. The study only covers the effect of steel 

fibre materials, while other fibrous nanomaterials such as carbon Nano fibres will 

affect both the tensile strength and the tension softening stiffness. 
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All SC panels were chosen to be impacted using the same impact force shown in 

Figure (4.33); and the same cross section division, shown in Figure (4.32), was 

maintained. 

All other parameters were fixed with the same values as the original sample 

SLFCS6-80, except the parameter being investigated. The standard deviation, mean 

and coefficient of variation (CV) for every case were calculated at several 

displacements and finally an average coefficient of variation value for the load 

resistance of every case was determined, where the CV percentage is an adequate 

statistical tool to measure the dispersion of the probability. In the present case, the 

higher the CV, the more the studied parameter is able to affect the resistance of the 

SC panel. Such information can help the designer in choosing which parameter can 

be more efficient in increasing the resistance of the system. 

 

Table 5.1. Coefficient of variation percentage for different parameters affecting the 

resistance of SC panels against impact 

 

 

Steel plate 

thickness 

Concrete 

core 

thickness 

Steel 

plate 

yield 

strength 

Concrete 

compressive 

strength 

Concrete 

tensile 

strength 

Average 

CV (%) 

40.6 36.8 9.6 7.5 3.5 



205 
 

 

Figure 5.24: The effect of steel plate thickness on the load-deflection behaviour of 

SC panels.  

 

 

Figure 5.25: The effect of concrete core thickness on the load-deflection behaviour 

of SC panels.  
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Figure 5.26: The effect of concrete compressive strength on the load-deflection 

behaviour of SC panels.  

 

 

Figure 5.27: The effect of concrete tensile strength on the load-deflection behaviour 

of SC panels. 
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Figure 5.28: The effect of steel plates yield strength on the load-deflection behaviour 

of SC panels. 

 

Figures (5.24 to 5.28) and Table (5.1) display the results of the parametric study.  

We can establish from Table (5.1) that increasing the steel plate thickness is the most 

effective way of increasing the resistance of SC panels under impact and shock load. 

The second most effective parameter is increasing the concrete core thickness, 

followed by increasing the steel plate yield strength and then increasing the concrete 

compressive strength. 

Finally, it is clear that increasing the concrete tensile strength has a limited 

effect in increasing the resistance of the composite SC panels when compared to the 

other parameters. 
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5.5 Conclusion 

The developed fibre beam elements are successfully used to model large-scale 

walls using grillage technique for in-plane and out-of-plane loadings. For the out-of-

plane loading, a simplified 3D model is used where each node is assigned two extra 

DOF to combine the effect of longitudinal and transversal members in the global 

system. This innovative procedure allows the use of the planer formulation of fibre 

beam elements presented in chapter (3) and (4) in solving 3D models. The new 

technique was verified against a number of experiments under static and impact 

loading.  

A numerical study is finally developed to investigate the most effective method 

of increasing the safety of SC panels to resist higher impact loads. The study 

demonstrated that increasing the steel plate thickness is the most effective method of 

increasing the resistance of SC panels under impact 
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Chapter 6 

Summary and conclusions 

 

6.1 Summary 

A number of finite element models able to accurately simulate complex flexural- 

controlled structures such as composite steel concrete beams and panels under the 

effect of impact dynamic loading were developed. An explicit time integration 

approach known for its suitability for short term dynamic problems was employed 

instead of the traditional implicit method. The second order effect, that usually 

accompanies impact problems, is accounted for using the geometric stiffness matrix 

technique. The elements were formulated using displacement-based and mixed-

based formulations to consider the second order effect and the explicit time 

integration method. Another force-based first-order element that uses the explicit 

time integration method was similarly developed. The proposed elements were 

developed in the research oriented, general-purpose finite element software FEAP. 

Different RC structures containing fibrous material in the concrete mix were 

accurately simulated under impact loading and large deformations. Composite steel 

concrete panels, recently used in nuclear infrastructure, were also modelled using the 

developed fibre beam elements. In addition, a numerical study was performed on SC 

panels to investigate the most effective method of increasing the safety of SC panels 

to resist higher impact loads.  
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The recent elements were used to model different reinforced concrete beams and 

walls under impact loading and also several slender structures were simulated under 

monotonic and cyclic loading.  

Furthermore, a grillage modelling technique was adopted in order to use the 

developed planar fibre beam elements in modelling large-scale walls. The new 

technique allows the simulation of in plane and out-of-plane loading which enhances 

the capability of the model. The emerging technique can be consider as 3D 

modelling, since two dimensions define the geometry and the third perpendicular 

dimension defines the load. 

The proposed force-based and mixed elements along with the simplified 3D 

technique represent a simple and powerful tool for the analysis of complex impact 

problems efficiently while using a limited number of finite elements and avoiding 

convergence complications. The elements are computationally inexpensive when 

compared to continuum models.  

All elements developed in the present dissertation were validated against a 

considerable number of experiments and benchmark problems available from the 

literature.  

 

6.2 Conclusions and findings 

It can be concluded that the new developed elements especially the explicit 

second order mixed element has potential advantages in capturing the nonlinear 

behaviour of reinforced concrete structures. The findings can be stated as follows:  
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1. The displacement and mixed-based elements are able to precisely model 

reinforced concrete slender members with high accuracy under monotonic and cyclic 

loading. 

2. The mixed element requires less number of divisions (coarse mesh) to predict 

the curvature and load displacement curves compared to the displacement-based 

element. 

3. The developed elements allows the monitoring of the fibre, section and 

element behaviour. 

4. The developed elements can simulate the presence of steel and carbon Nano 

fibres in the concrete through the determination of the tensile strength and the 

tension softening stiffness while considering the second order effect. 

5. The explicit displacement, force-based and mixed elements are able to solve 

short-term dynamic problems and overcome the difficulties and complications that 

accompany the implicit time integration method including the need to iterate in every 

time step and the convergence provisions. 

6. The strain rate effects for steel, concrete and fibre reinforced concrete was 

successfully taken into account during the analysis of impact problems using 

available material models based on different SHPB tests. 

7. The explicit elements necessitate the use of a diagonal lumped mass matrix 

and the chosen time increment has to be smaller than the stable time increment 

required to maintain the stability of the numerical solution. 

8. In the force and mixed-based explicit approach, a new algorithm that 

eliminates the need for iterations at the element level is proposed. In addition to the 

condition of the stable time increment, if the selected time step is smaller than or 
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equal to a specific critical time step, a single iteration is sufficient to satisfy an 

element-level convergence criteria. 

9. In the explicit analysis, the elimination of the internal and external iterations 

requires considerable longer execution time as the selected time step played the 

major role in the determination of the execution time. 

10. For the explicit models, it is recommended to use a value of 𝛼 equal to 

(3.5 100⁄ ) when calculating the rotational mass at each node of beam elements. 

11. The fibre beam elements can generally be used to model large scale walls 

using a network of longitudinal and transversal beams. 

12. A simplified technique was used to employ the developed 1D planar 

elements in solving 3D problems were the geometry is defined in 2 directions and 

the load is assigned in the out-of-plane direction. The technique is very useful in 

modelling slabs when a two-direction crack pattern is expected.   

13. A numerical study was performed on SC panels subjected to impact loading. 

It can be established that the steel plate thickness is the most effective factor in 

increasing the resistance of SC panels subjected to impact loading followed by the 

concrete core thickness. The steel plate yield strength and the concrete compressive 

have a significant but lower effect, while, the concrete tensile strength has a minor 

effect on the SC panel resistance. 

14. The proposed elements can be used reliably to analyse different reinforced 

concrete structures to ensure their safety against impact loading.  

15. The accuracy of the elements is limited if the modelled beams or walls are 

dominated by shear failure.   
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6.3 Future work 

Potential future studies can extend the scope of this dissertation. Some proposed 

directions for future research can be summarised as follows: 

1. Developing an explicit fibre beam element that address the interaction 

between the axial force, shear, bending, and torsion loads while considering the 

second order effect. 

2. Using the explicit fibre beam element to evaluate blast loading. 

3. Redeveloping the elements to account for the full three-dimensional 

behaviour. 

4. Enhancing the capabilities of the elements by considering bond-slip effect, 

reinforcement and steel-plate buckling, and warping deformations. 

5. Studying the effect of different fibres on the impact resistance of RC 

structures. 

6. Implementing the developed fibre beam elements in open source software 

framework (e.g. OpenSees) to allow for wider use by the   community. 

7. Using the grillage technique to study the seismic and blast behaviour of more 

complex 3D RC structures (e.g. containment structures). 

8. Using the developed elements along with the grillage technique to conduct 

probabilistic studies (e.g. fragility analysis) on complex RC structures under the 

effect of seismic, impact, and blast loads.  
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APPENDIX 1 

THE EXTERNAL GEOMETRIC STIFFNESS MATRIX 

The external geometric stiffness matrix is composed of 6 by 6 matrix. 

𝐾𝐺 =

[
 
 
 
 
 
𝐾11 𝐾12 0 𝐾14 𝐾15 0
𝐾21 𝐾22 0 𝐾24 𝐾25 0
0 0 0 0 0 0

𝐾41 𝐾42 0 𝐾44 𝐾45 0
𝐾51 𝐾52 0 𝐾54 𝐾55 0
0 0 0 0 0 0]

 
 
 
 
 

 

The non-zero terms are defined as follows: 

𝐾11 = −(𝑄1 + 𝑄2)
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑢1

𝐿4
− 𝑄3

−𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑢1

𝐿2
 

𝐾12 = (𝑄1 + 𝑄2)
−𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑢1

𝐿4
− 𝑄3

−(𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑢1

𝐿2
 

𝐾14 = (𝑄1 + 𝑄2)
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑢1

𝐿4
+ 𝑄3

−𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑢1

𝐿2
 

𝐾15 = −(𝑄1 + 𝑄2)
−𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑢1

𝐿4
+ 𝑄3

−(𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑢1

𝐿2
 

𝐾21 = −(𝑄1 + 𝑄2)
−𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑣1

𝐿4
− 𝑄3

−(𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑣1

𝐿2
 

𝐾22 = (𝑄1 + 𝑄2)
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑣1

𝐿4
− 𝑄3

−𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑣1

𝐿2
 

𝐾24 = (𝑄1 + 𝑄2)
−𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑣1

𝐿4
+ 𝑄3

−(𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑣1

𝐿2
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𝐾25 = −(𝑄1 + 𝑄2)
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑣1

𝐿4
+ 𝑄3

−𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑣1

𝐿2
 

𝐾41 = −(𝑄1 + 𝑄2)
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑢2

𝐿4
− 𝑄3

−𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑢2

𝐿2
 

𝐾42 = (𝑄1 + 𝑄2)
𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑢2

𝐿4
+ 𝑄3

−(𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑢2

𝐿2
 

𝐾44 = (𝑄1 + 𝑄2)
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑢2

𝐿4
+ 𝑄3

𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑢2

𝐿2
 

𝐾45 = −(𝑄1 + 𝑄2)
𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑢2

𝐿4
+ 𝑄3

−(𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑢2

𝐿2
 

𝐾51 = −(𝑄1 + 𝑄2)
𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑣2

𝐿4
− 𝑄3

−(𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑣2

𝐿2
 

𝐾52 = (𝑄1 + 𝑄2)
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑣2

𝐿4
− 𝑄3

𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑣2

𝐿2
 

𝐾54 = (𝑄1 + 𝑄2)
𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿
𝜕𝑣2

𝐿4
+ 𝑄3

−(𝑥21 + 𝑢21)
𝜕𝐿
𝜕𝑣2

𝐿2
 

𝐾55 = −(𝑄1 + 𝑄2)
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿
𝜕𝑣2

𝐿4
+ 𝑄3

𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿
𝜕𝑣2

𝐿2
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Where: 

𝜕𝐿

𝜕𝑢1
= −

𝑥21 + 𝑢21

𝐿
 

𝜕𝐿

𝜕𝑢2
=

𝑥21 + 𝑢21

𝐿
 

𝜕𝐿

𝜕𝑣1
= −

𝑦21 + 𝑣21

𝐿
 

𝜕𝐿

𝜕𝑣2
=

𝑦21 + 𝑣21

𝐿
 

Such that: 

𝑦21 = 𝑦2 − 𝑦1 

𝑥21 = 𝑥2 − 𝑥1 

Similarly: 

𝑢21 = 𝑢2 − 𝑢1 

𝑣21 = 𝑣2 − 𝑣1 

And 𝑥1, 𝑥2, 𝑢1, 𝑢2, 𝑦1, 𝑦2, 𝑣1& 𝑣2 were defined in figure 3.3. 


