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Abstract  

 

Fully automated vehicles are expected to have a significant share of the road network 

traffic in the near future. Several commercial vehicles with full-range adaptive cruise 

control systems or semi-autonomous functionalities are already available in the 

market. This provides a unique opportunity to improve the acceleration behaviour of 

vehicles, and thereby, improve network’s efficiency in terms of important performance 

indicators such as fuel consumption and traffic throughput. However, automated 

driving systems usually adopt a highly conservative driving strategy to ensure safety 

and fuel efficiency for individual vehicles. The collective impacts of such strategies on 

the network level can lead to the deterioration of traffic flow and to an increase in 

fuel/energy consumption. Much of the existing research in this area either target 

driving conditions where there are no additional complexities caused by interaction 

between vehicles, or make simplistic assumptions about the dynamics of driving 

behaviour and its relationship with fuel consumption in order to formulate a feasibly 

solvable optimisation problem.  

The reduction of the question of fuel efficiency to optimisation scenarios where only a 

pair of vehicles are considered and little attention is paid to the surrounding traffic, 

leads to a user-optimal driving strategy at best, however addressing environmental 

concerns and a more efficient use of fossil fuels in road transport networks 

necessitates a system-optimal approach. A system-optimal approach means the scope 

of the problem must be broadened so that a) the complex relationship between 

individual driving styles and the dynamical features of traffic flow are incorporated 

within the optimisation framework and b) the long-term impacts of driving strategies 

on network’s performance are modelled within optimisation scenarios. The challenge 

here is to model driving behaviour and traffic flow with sufficient accuracy and devise 



 
 

an optimisation framework that is computationally efficient enough to cope with the 

complexity of the problem. 

In this study, the use of car-following models and limiting the search space for optimal 

strategies to the parameter space of car-following models is proposed. This framework 

enables performing much more comprehensive optimisations and conducting more 

extensive tests on the collective impacts of fuel-economy driving strategies. The results 

obtained in this study show that formulating the optimisation in a short-sighted way 

where merely individual vehicles are considered and no attention is paid to the 

collective impacts of a fuel-economy driving strategy, can lead to significant increase in 

fuel consumption for the whole network while delivering marginal benefits for the 

target vehicle. This study establishes a complex relationship between traffic flow and 

fuel consumption on the link level, where the former cannot be achieved without 

addressing the latter correctly in the optimisation process. 

In addition to the main research question discussed above, the present thesis proposes 

a new method for the analysis of car-following models. The conventional method in 

the analysis of car-following models relies on the cumulative error between real data 

and modelled data in order to benchmark car-following models. Although the 

cumulative error is indeed an informative measure of performance, it leaves many 

questions regarding the capacity of models for replicating driving behaviour 

unanswered. Here the use of dynamic system identification is investigated as a way to 

provide a more in-depth analysis of the strengths and weaknesses of car-following 

models in reproducing realistic driving behaviour. Subsequently, the proposed method 

is applied to compare a number of car-following models. Although the application of 

this method for the comparison of car-following models presents some challenges that 

require further research, the results are very promising. 
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1. Introduction 

 

1.1 Context and motivation 

Traffic network is a sophisticated multi-dimensional network.  Billions of trips are 

made within global cities on a daily basis. Transport for London’s report (TfL) in 2015 

estimated that the average number of trips in, to or from London on a single day in 

2014 was 26.6 million. Private cars constituted 37% of the total trips [1, 2, 3].  

Transportation demands and the number of car owners continue to increase globally. 

Although London road traffic volumes have remained stable during recent years, and 

even experienced a reduction between 2000 and 2014, the UK’s aggregate national 

figures show an increase in road traffic during the same period [4].  

London’s achievement in controlling its traffic demands is due to policies that 

encourage a shift in transportation modes from private cars to public transport and 

other modes such as cycling. The outcome of such policies has been a trend in 

reduction of road traffic volumes that has been continuing since the early 1990s. 
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Between 2000 and 2007, public transport’s share in journey stages rose from 33% to 

40% while the share of private motorised transport fell from 44% to 38% [2]. A similar 

trend continued between 2008 and 2015. In 2015, public transport accounted for 45% 

of journey stages, whereas private transport’s share fell to 32%.  Supporting public 

transport, laying down restrictions such as the congestion charge introduced in 2003, 

and encouraging the use of other modes of transport such as cycling, are some of the 

important measures taken that have contributed to the decrease in mode share of 

private cars and consequently the decrease in road traffic in London [1].  

However, it is clear that cars are going to remain a significant entity of road transport. 

Technological advancements in the design of cars, along with innovation in areas such 

as car sharing and car clubs, make this mode of transport an attractive choice. New 

technologies such as fully automated driving are expected to make private cars a 

convenient option for those who currently cannot, or prefer not to, use this mode of 

transport; namely those with physical limitations or those who would rather use their 

journey times to do things other than driving.  Therefore, improving the established 

motorised ground transport system in terms of environmental effects, energy 

consumption, safety, and efficient usage of roadways, remains a critical issue within 

the transport sector. The significant demands for car ownership, the considerable 

share of the road transport sector in fuel consumption, and the social and financial 

costs caused by inefficiencies in the road transport network indicate a need for further 

improvements in this field.  

The present study focuses on the acceleration behaviour in the car-following regime of 

driving and investigates how driving automation can contribute to a more efficient 

road network in terms of fuel consumption and traffic flow. Since this study revolves 

around the acceleration behaviour in the car-following regime, the findings presented 

here are applicable to a wide range of automation levels. Six levels of automation are 

defined by the Society of Automotive Engineers (SAE International), Table 1 

summarises the levels of driving automation. 
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Table 1. The six levels of driving automation defined by SAE International [5]. 

SAE 
Level 

Name Narrative Definition Execution of 
Steering and 
Acceleration/ 
Deceleration 

Monitoring 
of Driving 

Environment 

Fallback 
Performance 
of Dynamic 
Driving Task 

System 
Capability 
(Driving 
Modes) 

Human driver monitors the driving environment  

 
 

0 

 
No 

Automation 

The full-time performance by the 
human driver of all aspects of the 
dynamic driving task, even when 
enhanced by warning or 
intervention systems 

 
 

Human driver 

 
 

Human driver 

 
 

Human driver 

 
 

n/a 
 

 
 
 

1 

 
 
 

Driver 
Assistance 

The driving mode-specific 
execution by a driver assistance 
system of either steering or 
acceleration/deceleration using 
information about the driving 
environment and with the 
expectation that the human driver 
perform all remaining aspects of 
the dynamic driving task 

 
 
 

Human driver 
and system 

 
 
 

Human driver  

 
 
 

Human driver 

 
 
 

Some 
driving 
modes  

 
 
 

2 

 
 
 

Partial 
automation 

The driving mode-specific 
execution by one or more driver 
assistance systems of both steering 
and acceleration/deceleration 
using information about the driving 
environment and with the 
expectation that the human driver 
perform all remaining aspects of 
the dynamic driving task 

 
 
 
 

System  

 
 
 
 

Human driver 

 
 
 
 

Human driver 

 
 
 

Some 
driving 
modes 

Automated driving system monitors the driving environment   
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Conditional 
Automation 

The driving mode-specific 
performance by an automated 
driving system of all aspects of the 
dynamic driving task with the 
expectation that the human driver 
will respond appropriately to a 
request  to intervene 

 
 
 

System  

 
 
 

System 

 
 
 

Human driver  

 
 

Some 
driving 
modes 
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High 
Automation 

The driving mode-specific 
performance by an automated 
driving system of all aspects of the 
dynamic driving task, even if a 
human driver does not respond 
appropriately to a request to 
intervene 

 
 
 

System  

 
 
 

System 

 
 
 

System 

 
 

Some 
driving 
modes  
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Full 
Automation 

The full-time performance by an 
automated driving system of all 
aspects of the dynamic driving task 
under all roadway and 
environmental conditions that can 
be managed by a human driver 

 
 

System 

 
 

System  

 
 

System 

 
 

All driving 
modes 

 

In the following sections, the issues outlined above are explored in more detail. This 

chapter is then concluded by highlighting the contributions that can be made to the 

road transport network by extending the applications of Intelligent Transport Systems 

(ITS) and automated control to the area of driving.  
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1.1.1 Safety 

Annual road fatalities in the EU are reported as high as 26,000 in 2016. This is about 

the size of a medium town. Moreover, almost four times as many people as this 

sustained permanently disabling injuries (such as damage to the brain or spinal cord) 

due to road accidents, and eight times as many people were seriously injured [6, 7]. 

Such high numbers, where even one is a tragedy, point to the necessity of serious 

considerations.  

Interestingly, the EU has made great progress in reducing road fatalities. In particular, 

in the past two decades the number of fatalities has reduced by about 60%, from 

64,000 in 1995 to 26,000 in 2016. This has been due to the implementation of various 

policies and regulations targeting a variety of areas such as road infrastructure, 

emergency services, law enforcements, training, and safety features in the automotive 

industry. However, in spite of the fact that remarkable improvements have been 

brought about due in part to the introduction of such policies, there seems to be a 

natural limit to the extent to which such policies alone can be effective. From 1991 to 

2013 (except for one instance of 1995-1996), each year saw a significant reduction in 

annual road fatalities. Since 2013, however, this number has remained static. One 

could argue that further reductions in the number of road fatalities and injuries may 

require us to consider disruptive technologies, particularly since about 95% of these 

accidents are linked to driving errors and 22% of them are caused by lack of alertness 

in drivers [8]. Both advisory systems and driving automation can make a significant 

contribution to the reduction of road accidents. 

1.1.2 Environmental effects  

Between 1990 and 2011 energy consumption by all different sectors fell remarkably in 

the UK. Energy consumption in industry fell by one third (12.8 million tonnes of oil 

equivalent (mtoe)), in the domestic sector it fell by 5% (1.9 mtoe), and in the services 

sector by 4% (0.7 mtoe). However, the transport sector saw an increase in energy 
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consumption of 11% (5.4 mtoe) in the same period. The transport sector is responsible 

for 36% of total energy consumption in the UK, as reported in 2012 [9]. Road transport 

accounts for 74% (39,468 ktoe) of total energy consumption by the transport sector in 

the UK, and this figure is relatively consistent with what was reported for EU-28 

countries in 2012, when the share of road transport was almost 72% of the total 

energy consumed by the transport sector (352 mtoe) [10, 11]. This has a significant 

environmental consequence as almost all energy in the transport sector is provided by 

fossil fuels. For example, in 2012 94% of energy consumption in the transport sector in 

the EU was provided by petroleum products. The use of electricity and renewable 

energies in this sector is gaining significant attention and popularity, but the share is 

not yet comparable to that of petroleum products. Of the 68.7 mtoe rise in overall 

energy consumption by road transport between 1990 and 2006 in the EU, only 8% was 

made up by renewable and other fuels, while 92% was provided by increased 

consumption of oil fuels [10]. This figure implies worrisome ecological consequences 

associated with emissions of carbon dioxide (   ), other Green House Gases (GHG) 

(namely, methane (   ), Nitrous Oxide      ), and fluorocarbons, along with 

emissions of heavy metals and polycyclic aromatic hydrocarbons, particulate matter 

(    ) and ozone (  ) precursors. These emissions are a cause for concern due to 

their negative effects on global warming and the health of humans, animals and soil 

[10, p. 167]. Therefore, reducing these emissions is among the most important 

challenges that the world cities face. For instance, London’s outdoor air quality 

(particularly in inner London) has been continuously breaching national and EU health-

based air quality objectives [12]. The aim of the present study is to reduce fuel 

consumption in automated cars by means of modifying their acceleration behaviour, a 

direct result of this is less emissions. 

1.1.3 Traffic efficiency  

Traffic congestion and traffic jams occur as a result of traffic breakdown and capacity 

drop when the number of vehicles in a roadway (traffic density) exceeds a critical 
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value. This phenomenon causes considerable economic, social, and environmental 

costs in a lot of major cities around the globe [13]. One study suggests that the 

combined annual cost of traffic congestion in Europe and the US is about $195 billion 

[14]. The same study predicts that this cost will soar to $293 billion in 2030. In the UK 

the combined annual cost of traffic congestion was estimated to be $20.5 billion in 

2013 and is expected to rise to $33.4 billion in 2030. Londoners alone are estimated to 

face a drain of more than $200 billion on their economy from 2013 to 2030.  

Such studies calculate costs based on a number of direct and indirect factors such as 

the value of fuel, time wastage in traffic which could otherwise be spent on productive 

activities at work, and increased cost of freighting that is passed on to households. 

However, it may be even more challenging and important to assess the social, 

psychological, and health costs resulting from traffic jams and congestion.  

These staggering costs, along with the increasing demand for motorised ground 

transport, indicate the crucial importance of utilising all means possible for a more 

efficient traffic flow.    

1.1.4 Automated driving 

The introduction above points out some of the challenges arising from modern 

transportation needs. Technological developments can make a great deal of 

contribution to these issues. The advances in mathematical sciences, 

telecommunications, and mechanical and electrical engineering can merge and bring 

about new horizons in transportation.  

Subjects such as dynamic traffic signal control [15, 16], dynamic route choice and 

traffic assignment [17, 18, 19], cooperative traffic management [20], Advanced Driver 

Assistance Systems (ADAS), and Adaptive Cruise Control (ACC) systems [21, 22, 23] are 

active areas of research. They attract researchers and scientists from a wide range of 
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disciplines, including telecommunications, Artificial Intelligence (AI), control, and 

modelling, all aiming to tackle the aforementioned problems.  

Technological advances in sensory devices and computational power leading to 

affordable automated decision making, may enable technologies to tackle the existing 

challenges in road transport. In particular, ACCs and Autonomous Vehicles (AVs) are 

potentially capable of making remarkable contributions to all the challenges discussed 

above. Autonomous Vehicles perform all aspects of driving tasks without the need for 

driver intervention. In spite of the remarkable achievements of many companies in 

testing AVs, the successful commercialisation of these systems requires further 

progress in technological and legislative issues. The ACCs, however, have become 

commercially available since about two decades ago. These systems, of course, offer 

much more limited functionalities compared to AVs and require constant driver 

engagement. Nevertheless, they can potentially make a positive impact on transport 

networks through functionalities such as adjusting vehicles’ speeds and spacing 

relative to preceding vehicles and exerting partial control over the acceleration 

behaviour of vehicles in certain driving conditions.  

In addition to the safety and fuel savings that can be provided by these systems, 

numerous studies have investigated how the use of automated control can increase 

the efficiency of roadway usage and improve traffic flow. Moreover, the significant 

number of manufactured cars which now offer ACC, a form of partial automation, is an 

indicator of a remarkable potential for making contributions to road transport 

challenges through this platform. 

1.2 Aim and objectives 

Some of the main challenges that transport networks face were explored in section 

1.1. It was observed that policies and regulations can make a significant contribution 

towards a better transport network, for example in the cases of road accident 

reduction in Europe and traffic management in London. However, it was also argued 
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that such policies are likely to have intrinsic limitations, and further improvements may 

not be possible without exploiting the significant technological advances that have 

been rapidly introduced in the past decades.  

A wide range of innovations and inventions such as more efficient control methods for 

traffic signals and dynamic route choice methods that exploit real-time data, alongside 

significant advances in computer science and artificial intelligence, have made 

transport an exciting area where emerging technologies and established technologies 

can merge in order to bring about remarkable improvements. 

One of the more sought-after technologies that has received a lot of attention is 

automated driving. Partially automated vehicles with functionalities such as Adaptive 

Cruise Control (ACC) are commercially available and these systems are becoming an 

important feature of modern cars. Moreover, fully automated vehicles are expected to 

become a reality in the near future. Therefore, it is necessary to accurately examine 

the impacts and possible improvements that such systems can bring about in transport 

networks.  

Automation of driving is, of course, a broad term which encompasses a wide range of 

topics from machine vision, to decision making in complex conditions such as 

interaction with pedestrians and cyclists. In this study, the focus is on the longitudinal 

control of vehicles, that is how cars adjust their brake and throttle in different 

circumstances. The longitudinal control of vehicles can be further categorised into two 

areas; 1) the car-following regime in which the control is mainly a response to the 

actions of the lead vehicle(s), and 2) the free-flow regime in which cars are free to 

accelerate to their desired speed. The goal of this study is to build upon previous 

studies in this field and tackle the challenging question of fuel efficiency in the car-

following regime of driving. Chapter 2 explores these concepts in more detail and 

provides an overview of different subjects related to the control and modelling of 

driving. 
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Transport networks are complex systems consisting of several, sometimes conflicting, 

criteria. Therefore any improvement proposed needs to address resulting implications 

on other criteria. A thorough understanding of the important criteria for a practical 

and efficient transport network is necessary to avoid propositions that, despite 

introducing improvements in one aspect, result in poor performances in other aspects. 

For example, a driving strategy that achieves fuel savings but degrades the capacity 

usage of roadways or safety is not desirable.  The present study seeks to adopt a 

comprehensive approach to the question of fuel efficiency that appreciates the 

intrinsic sophistication and multi-objective nature of the motorised ground transport 

network. Safety, stability and the acceptance of these systems, along with other 

important considerations such as their impact on traffic flow and fuel consumption, 

have been studied in numerous studies and these subjects are still open areas of 

research. Chapter 3 provides a comprehensive overview of these important 

requirements. 

The introductory material provided in chapters 2 and 3 highlights a gap in the 

literature that is worth noting. This gap relates to finding a methodological framework 

for optimisation that is suitable for application to the car-following regime of driving, 

while having the potential to incorporate other important criteria such traffic safety, 

flow efficiency, and stability.  

In chapters 2 and 3, a number of studies related to the control of vehicles and fuel 

efficiency are explored. Most of these studies use methods such as velocity 

optimisation given the initial and terminal state; dynamic programming-based 

algorithms are often used to find the optimal velocity values at different time steps. 

However, due to the complexities that arise from interaction with other vehicles, these 

studies mainly consider interaction-free scenarios such as approaching a traffic signal 

or driving in an empty roadway. In such studies, knowledge or prediction about what 

lies ahead in terms of the topography of the roadway or the state of traffic signals is 

used to formulate energy efficiency as an optimal control problem. The interaction 
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between vehicles in the car-following regime eliminates this predictability and 

therefore, poses a challenge. Thus, the methods used in these studies are not suitable 

for the car-following regime of driving. 

Another group of studies that aim to address energy efficiency in the car-following 

regime of driving as an optimisation problem, make somewhat simplified assumptions 

about the dynamics of driving or its relationship with fuel-consumption. For instance, 

the complex, nonlinear relationship between velocity, acceleration, and fuel 

consumption may be reduced to an attempt to minimise accelerations. Some studies 

make the assumption that fuel efficiency is obtained by maintaining stable and large 

headways. This approach is based on the intuition that large headways provide 

sufficient time periods for the vehicle in order to smoothly react to the lead vehicle’s 

movements, and this reduces fuel consumption. In spite of such simplifications, fuel-

economy driving remains a complex nonlinear problem which requires 

computationally expensive, real-time, nonlinear optimisation methods. Such 

optimisations cannot be easily implemented in large-scale simulations with thousands 

of equipped vehicles. This results in a shortcoming in terms of the evaluation of their 

collective impacts on stability, traffic flow, and fuel consumption.  

This introduction indicates the need for a new framework that meets the following 

criteria. 

1. It must address the issue of computational complexity that is observed in the 

existing control methods in the car-following regime, where the unpredictability of the 

behaviour of the lead vehicle poses a challenge. 

2. It must have the potential to incorporate and address important collective features 

such as stability and traffic flow in the optimisation process. 

The aim and objectives of the present research are summarised below;  



 
11 

 

Aim: development of a control method for the acceleration behaviour in the car-

following regime of driving that is efficient with respect to fuel consumption and traffic 

flow. 

Objectives:  

1. Carrying out a comprehensive literature review in order to identify an optimisation 

framework that can appropriately incorporate the microscopic details of driving while 

allowing for macroscopic, flow-related, characteristics of traffic to be addressed.  

2. Carrying out a comprehensive literature review in order to identify different 

requirements for the longitudinal control of vehicles. 

3. Identification of a suitable car-following model. 

4. Development of a simplified fuel consumption model to be used within the 

optimisation process without adding a significant computational burden to it. 

5. Identification of the most influential model parameters on fuel consumption. 

6. Development of an optimisation framework that can deliver fuel-efficiency without 

deteriorating traffic flow. This is done through simulation-based optimisation. The 

simulations involve the modelling of traffic flow in sufficiently long stretches of 

roadways and for long durations of time in order to enable a good assessment of the 

long-term impacts of different driving strategies.  

7. Validation of the optimal control method through comparison with real data and 

implementation in the micro-simulation software PTV VISSIM. 

1.3 Structure of the thesis 

In chapter 1 the context and motivation of the present study was described and the 

aim and objectives of this research were set out. Chapter 2 provides a comprehensive 

review on different background subjects, such as traffic modelling, methodological 

approaches for the development of automated control, and energy efficiency. Chapter 

3 deals with the question of what constitutes a good control model and provides a 

review of different requirements for an efficient control. This chapter is concluded 
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with the selection of a suitable car-following model and identification of the 

parameters that have the highest influence on fuel consumption. In chapter 4, the 

proposed framework for the optimisation of fuel consumption is presented and two 

distinct formulations of the problem are considered;  

1. A microscopically-formulated problem where the movement of the vehicle with 

respect to its immediate leader is the subject of optimisation. This formulation is 

similar to numerous studies in the literature. 

2. A macroscopically-formulated problem that captures the long-term impacts of 

driving strategies.  

The results are validated using a real dataset and a discussion on the results concludes 

chapter 4. In chapter 5, the validation of the findings is carried out in an urban network 

using the micro-simulation software PTV VISSIM. Finally, chapter 6 concludes this 

thesis by highlighting the conclusions, contributions and future directions of research.  
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2. Literature review  

 

This chapter provides an overview of some of the fundamental concepts in traffic 

modelling, development of automated driving, and energy efficiency. In section 2.1, 

traffic flow theory and microscopic and macroscopic approaches to simulation are 

briefly discussed. In section 2.2, an overview of car-following models which constitute 

an important entity of micro-simulation is given. Some of the methodologies used in 

the development of automated control for the task of driving are explored in section 

2.3. Energy-efficiency and fuel consumption are discussed in section 2.4, and finally, 

section 2.5 concludes this chapter by identifying a gap in the literature. 

2.1 Background on traffic modelling 

Congested traffic giving rise to capacity breakdown is typically caused by bottlenecks 

(e.g. uphill gradient, lane closing, on/off-ramps, etc.) [24]. In [25], about 400 

congestion patterns on a German freeway were investigated and no evidence of a 

traffic breakdown without a bottleneck was found. The bottleneck usually stimulates a 

traffic breakdown upstream of it with a stationary downstream front at the location of 
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the bottleneck. Capacity breakdown can be associated with a drop of about 20% in 

capacity [26], and hence it is important to take all measures possible to avoid capacity 

breakdown, or manage capacity breakdown once it occurs.  

Since automated control systems introduce changes in driving dynamics, it is necessary 

to analyse how these changes affect traffic flow. The applicability of a control module, 

therefore, may be restricted to particular scenarios where it does not cause negative 

impacts. For instance, in [27], different traffic conditions are identified and a 

longitudinal control module is selected accordingly.  

Since ACCs are expected to function in a wide range of traffic conditions, it is necessary 

to accurately identify and analyse different factors that give rise to congested traffic. 

This analysis could establish a foundation on the basis of which mechanisms for 

congestion avoidance or delaying capacity breakdown could be suggested. It is 

therefore necessary to provide an insight into the fundamentals of traffic flow theory 

before proceeding to the formulation of problem. In this section important concepts 

such as the fundamental diagram, traffic bottlenecks, the formation of traffic jams, 

phase diagrams and different types of congested traffic are explored.  

2.1.1 Fundamental diagram and congestion  

The simplest and most conventional depiction of collective traffic characteristics is 

done by the well-known fundamental diagram which sets up a two-phase relation 

between density and flow for stable equilibrium traffic. The two phases are free flow, 

where vehicles can freely move with their desired speed, and congested flow, in which 

the movement of vehicles is constrained due to the surrounding traffic. Important 

parameters of the fundamental diagram such as maximum traffic flow,     , and 

maximum free-flow density,       
, can be associated to drivers’ attitudes (e.g. 

conservative or aggressive driving), characteristics of roadway (e.g. design, quality, and 

gradient), and environmental factors (e.g. weather conditions). It has been suggested 

that traffic velocity,  , which is a function of traffic density,  , and consequently traffic 
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flow,  , are determined by drivers’ collective perception of safe distance and risk 

readiness, and environmental factors such as road condition and speed limits are other 

contributory factors that need to be considered [28].  

 

Figure 1. A depiction of the fundamental diagram derived from a car-following model, namely 

the IDM (a) Coefficient   determines how fast cars accelerate to their desired speed (b) 

Coefficients   and    represent safe headway and desired velocity respectively. Finally,    and  

and   are the standstill bumper to bumper spacing between vehicles and vehicle lengths. Only 

one parameter is varied at a time and the rest of the parameters are default parameters given 

in [26]. 

Another extension of this theory is Kerner’s three-phase diagram which can 

successfully explain some of the observed phenomena in empirical data. This new 

understanding of the behaviour of traffic flow could entail new principles for the 

control of traffic flow [29]. Therein, a congestion region is assumed whereas in the 

two-phase fundamental diagram congested traffic is denoted by a line, that is the right 

branch of the curve. Moreover, using the three-phase diagram a more in-depth 

understanding of the formation of congested traffic can be provided.  

1. The local transition from free flow to synchronised flow usually takes place due to a 

bottleneck. A bottleneck refers to a drop in the capacity of the roadway due to 

phenomena such as lane blockage or traffic flow merging from an on-ramp.  

The downstream boundary of the synchronised flow usually remains fixed at the 

bottleneck while the upstream boundary propagates in the upstream direction. 
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2. Several moving and growing narrow jams occur in the upstream direction of the 

bottleneck and inside the region with synchronised flow patterns. This would happen 

in a region of motorway where the state of the synchronised traffic can be described 

by a point above the characteristic line    in the flow-density plane.  

The line   is a characteristic line in the flow-density diagram that represents the 

steadily propagation of the downstream front of a wide moving jam.  The slope of the 

characteristic line   represents the mean velocity of the downstream jam front. The 

two ends (coordinates) of this line are the pair (         ) on the top-left end and ( 

    , 0) on the bottom-right end, where       and      are the density and flow rate 

of the outflow of the wide moving jam if this outflow is in the form of free flow. The 

coordinates at the bottom-right end of line   are related to traffic variables within a 

jam, that is the maximum density and the minimum flow which is assumed to be equal 

to zero. 

The formation of narrow moving jams inside the region with synchronised flow is 

referred to as the pinch effect. This is linked to the spatial compression, otherwise 

known as self-compression, of synchronised flow where the average speed and density 

are respectively lower and higher compared to the synchronised flow in the 

surrounding neighbourhood. Therein, in spite of the low speed and high density, traffic 

flow can increase. The region where the pinch effect takes place in is called the pinch 

region. 

The downstream boundary of the pinch region is usually in the vicinity of the location 

on the motorway where the synchronised flow is maintained (usually bottleneck) and 

the upstream boundary is where narrow jams are transformed to wide jams. 

3. Several narrow jams occur in close proximity to each other and move with a speed 

more negative than the downstream front of wide jams, i.e. between 1.1   to 1.3   

[30], where   is the velocity of the downstream front of the wide jam. Some of these 

narrow jams grow as they propagate in the upstream direction and are consequently 

transformed into wide moving jams. The remaining narrow jams near the wide jam 

either catch up with the wide jam and merge or dissipate. Only a narrow jam far 
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enough from the wide jam downstream front (2.5-5km which is much larger than the 

mean distance between narrow jams) can continue to grow and form another wide 

jam. Once a sequence of wide jams is formed, no narrow jam occurs in between wide 

jams, even if the outflow of the wide jam upstream of another wide jam is 

synchronised flow.  

4.  Free or synchronised flow can be formed in the downstream front of a wide jam. In 

the latter case, the flow rate of the traffic stream that is being discharged out of the 

jam,     
   

, and the vehicle density in the outflow stream,     
   

,  are usually respectively 

lower and higher than the former case. Moreover these values,     
   

 and     
   

, can 

change significantly over time [30]. 

 

Figure 2. Three-phase diagram [30]. 

5. Motorway capacity depends on the phase that traffic is in and the related maximum 

capacity usually satisfies the following equation; 

    
    

    
                                

   
     

       
(2.1) 

where          
   

  and     
     are wide jam downstream outflow, maximum 

synchronised traffic flow, and maximum free flow respectively. 

6. Metastable states of free flow range from      to      
    

 

7. The line J separates homogenous states of both free flow and synchronised flow 

into two regions. In states below the line   no jam can occur. This can be explained in 

the following way. By drawing a characteristic line from any state below line   to 
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         the velocity of the upstream front of a wide jam can be derived as the slope 

of the characteristic line. Since this slope would have a less negative value than that of 

the upstream front,   , this would suggest that the width of the jam would gradually 

decrease. On the other hand, for states above the line   the same analysis suggests the 

width would increase. Therefore, the states above the line   are metastable and 

fluctuations with amplitudes exceeding a critical value can result in formation of wide 

jams. The further the states are above the line   in the metastable region, the higher 

the probability of exciting a wide jam with smaller fluctuation [30]. 

8. The velocity of the downstream front of the wide jam,   , is independent of the 

state of flow that is formed in the outflow of jam (in the upstream of the jam 

downstream front) and is given by:  

    
 

        
    

(2.2) 

where      is the average time delay between two successive vehicles escaping traffic 

jam after one another and 
 

    
 is the average distance between vehicles including an 

average length of vehicles. 

9. The mean distance between centres of emerging narrow jams,        , increases 

with vehicle speed in the pinch region. 

 

 

Figure 3. Relation between the mean distance between centres of narrow jams and the 

average vehicle speeds between jams in the pinch region. 
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10. The frequency of wide jams increases as the density in synchronised flow 

increases  

Furthermore, the concept of over-acceleration and speed adaptation play an 

important role in Kerner’s theory. Over-acceleration is defined as accelerating in spite 

of preceding vehicles’ slower speeds. This can be interpreted as overtaking in a multi-

lane road. Speed adaptation refers to slowing down and speed adjustment to the lead 

vehicle. The probability of each can be related to the speed as well as the regime of 

driving. For instance, given the same speeds, one would expect higher probabilities of 

over-acceleration in free-flow traffic compared to traffic with synchronised flow [29].  

Local disturbances can be suppressed if over-acceleration is stronger than speed 

adaptation. However, if the opposite holds transition from free flow to synchronised 

flow may occur. Moreover, the existence of a region of synchronised flow in the flow-

density plane, as opposed to a line, can be justified by the following explanation.  

For gaps below a certain value,      , drivers will decelerates to avoid collision. For 

gaps greater than another threshold,  , drivers will accelerate. Within t range 

between,          , drivers adapt their speed to the lead vehicle without paying 

attention to the precise “desired gap”.   

2.1.2 Phase-diagram and different types of congested traffic 

The mechanisms resulting in congestion and traffic breakdown as explained by the 

three-phase traffic theory were discussed in subsection 2.1.1. In this subsection, 

different types of traffic congestion are discussed.  

The state of traffic can be classified into four types namely, free flow, moving localised 

cluster, pinned localised cluster, and extended congested traffic that may occur in 

different patterns. The emergence of a particular traffic pattern depends on two 

important factors; the volume of inflow into the freeway section, and the “bottleneck 

strength” which characterises an inhomogeneity in the roadway capacity [31] [26] [27]. 
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For a given set of inflow,    , and bottleneck strength,   , one or more of the 

following patterns may occur due to a perturbation in the downstream traffic; 

 Free flow: This regime occurs in low traffic densities where interaction between 

vehicles is not the main influential factor in defining longitudinal behaviour of drivers 

and, therefore, drivers have a relative freedom to drive with their desired velocity. For 

a region characterised by the pair (      ), with relatively low inflow and low 

bottleneck strength, initial perturbations will dissipate and free-flow will persist. 

 Moving Localised Cluster (MLC): The perturbation triggers a localised cluster that 

moves through the inhomogeneity and neither dissipates nor triggers new 

breakdowns. 

 

Figure 4. Spatio-temporal representation of an MLC  [32]. 

 Pinned Localised Cluster (PLC): A traffic breakdown will be triggered that remains 

localised near the inhomogeneity. This could be stationary or oscillatory. 
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Figure 5. a) Stationary PLC  b) Oscillatory PLC [26].  

 Extended congested traffic (CT): The downstream end of congestion is fixed at the 

bottleneck and the upstream end of congestion propagates in the upstream direction. 

Such congested traffic can be either homogenous (HCT), oscillatory (OCT), or consist of 

triggered stop-and-go waves (TSG). TSG can be distinguished from OCT by the 

existence of a permanently congested state at the bottleneck in OCT, whereas in TSG 

each wave triggers a new isolated cluster as it crosses the inhomogeneity. Additionally, 

a signature characteristic of an OCT is the existence of congested traffic between the 

waves whereas in TSG free traffic can emerge between the clusters. Finally, another 

characteristic that can be attributed to OCT, compared to HCT, is that the exact regions 

of free-flow and congested flow cannot be separated for the former in empirical data.  

a) b) 
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Figure 6. HCT  [32]. 

 

Figure 7. STG and OCT [32]. 

  

Since the same patterns are reported for identical bottlenecks and control parameters 

(density in the closed-system and inflow in the open system) one can qualitatively 

represent the relation of these patterns with the bottleneck strength and the inflow by 

means of a phase diagram. It is worth mentioning that for an accurate identification of 

the different congestion patterns, the hysteresis effect needs to be taken into account 
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[33]. This adds to the complexity of visualisation of the relationship between 

bottleneck strength, inflow (or density in the closed system), and different congested 

traffic patterns since for different histories different phase diagrams may be derived. 

 

Figure 8. Phase diagram of an open system simulated with a car-following model, the 

intelligent driving model [26]. 

2.1.3 Traffic modelling 

Transport networks play a crucial role in modern society. With the growth of urban 

populations around the world in the past century and the increasing number of cities 

with populations of millions, it is crucial to address the question of effective movement 

of people. The costs incurred on countries around the world as a result of inefficiencies 

in transport networks include a significant variety of economic, environmental, health-

related, and social costs. This subject was touched on in chapter one. Providing 

efficient transport networks is, therefore, an important challenge faced globally. 

However, this cannot be achieved without an accurate and in-depth understanding of 

transport networks. Transport modelling addresses this need. It provides a platform 

for more educated planning for future demands, be it preparing for an international 

event at a major city, addressing increasing travel demands of a city with a growing 

population, planning and designing new roadway infrastructure, investigating new 
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solutions in urban design such as dedicated cycle lanes and shared spaces, or 

understanding the implications of new technologies such autonomous vehicles and 

connected vehicles.  

Three distinguishable approaches to roadway traffic simulation are macroscopic, 

mesoscopic, and microscopic models. Macroscopic models view traffic as a whole and 

ignore interactions between individual vehicles. They provide a description of the 

collective vehicle dynamics in terms of the spatial vehicle density,       , and the 

average velocity,         as a function of roadway location and time [34, 35]. 

Microscopic traffic models, on the other hand, provide a more detailed account of 

individual vehicles’ movements and their interactions with one another. A comparison 

of the approaches can be found in [36]. Mesoscopic simulation models fall in between 

the two; meaning the flow of vehicles is broken down into groups of neighbouring 

vehicles where all the vehicles within a group are considered homogenous. There is a 

number of commercial software based on the three aforementioned approaches; 

SUMO, MATSim, CORSIM, and Quadstone Paramics for micro-simulation, PTV Vissum 

for macro-simulation, PTV Vissim for microscopic and mesoscopic simulation, and 

AIMSUN for an integrated micro-meso-macro simulation to name a few. 

The importance of micro-simulation in the analysis of new technologies and transport 

planning has significantly increased in the past decade. New technologies can 

potentially change transport networks as we know them and micro-simulation plays an 

important role in the assessment of the impacts of these technologies. The great 

potential of micro-simulation traffic is the reproduction of subtle characteristics and 

more detailed behaviours of individual drivers which are simply ignored or averaged 

out in macro-simulation models. 

Nowadays, with increased computational power, more and more complex micro-

simulation models can be implemented and used for the simulation and study of 

different aspects of transport networks such as network design, transport planning, 
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and the investigation of new solutions and technologies. As a result, this field has 

emerged as a crucial entity in the evaluation of traffic policies and technological 

developments within the transport sector. Automated driving is one of the areas 

where micro-simulation has a lot to offer. Micro-simulation with its potential to 

capture and analyse subtle traffic-related phenomena can play an important role in the 

investigation of different issues arising from ACCs and the validation of different 

proposals relating to their application. Moreover, acceleration models and lane-

changing models that are fundamental aspects of micro-simulation can be considered 

as a foundation on which ACCs and autonomous vehicles can be built. For instance, the 

question of “what are the required explanatory variables in order to plausibly model 

driving behaviour?” that is highly relevant to micro-simulation, can also be directly 

linked to the sensory requirements of ACCs. The control and decision making processes 

[37] are some of the other subjects widely investigated within modelling driving 

behaviour that can lay down the basis for the development of automated driving.  

In order to derive a microscopic model of driving behaviour one needs to address the 

question of the variables that motivate drivers’ actions. However, the trade-off 

between simplicity and accuracy plays an important role in this issue. For instance, 

consider the process of lane. In a congested road where sufficient gaps in order to 

allow a lane-changing manoeuvre to be performed may not always be available, and in 

a scenario where a car from the most right lane needs to go to the most left lane in 

order to enter an off-ramp, forced merging and courtesy yielding plays a critical role. 

One can even go as far as to discuss the impacts of drivers’ attitudes and personalities 

in such a process. While such complex models could be potentially developed,  

1. They may not necessarily lead to a more accurate reproduction of the reality. The 

problem of calibration and over-fitting will be discussed in chapter 3. 

2. They may require immense computational resources, making large-scale 

simulations excessively time consuming. 
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Acceleration models or car-following models could be categorised based on their 

complexity and their methodology. For instance, the Intelligent Driver Model (IDM) 

[26], Gipps’ model [38], and Herman’s model [37] provide relatively simple equations 

with only a few model parameters in order to describe the driving behaviour, while the 

Wiedemann model [39, 40] and the model used in the MITSIMLab simulation software 

[41, 42] have more complex structures and a larger number of model parameters [26]. 

Another way of categorising microscopic models could be based on the 

methodological approaches from which they are derived. Such classification can be 

found in [43] where car-following models are classified into models based on stimulus-

sensitivity (Heman’s model), safety distance or collision avoidance models (Gipps’ 

model), linear models, psychophysical or action point models (Wiedemann model), 

and fuzzy logic based models.  

Besides acceleration models and car-following models, another important subject that 

defines the movement of vehicles in the operational level of driving is lane-changing. 

Lane-changing manoeuvres consist of two important entities. Firstly, lane-changing as 

a decision-making process where a driver decides that he or she should change lane. 

The modelling of this decision-making process includes a description of it as a 

procedure, with a certain structure and a number of parameters. Secondly, gap 

acceptance models which pertain to the possibility of lane-changing in terms of safety 

considerations and the desirability of lane-changing. Gap acceptance models can be 

thought of as a criterion through which the admissibility or desirability of performing 

lane-changing manoeuvres is evaluated. This evaluation stage is an important step 

within the hierarchy of the lane-changing decision-making process. Gap acceptance 

models are sometimes explicitly based on underlying car-following models and appear 

as constraints on its parameters such as braking imposed on the subject vehicle and/or 

its follower [44, 45]. A significant body of conventional studies in this area are 

dedicated to modelling drivers’ gap acceptance as a distribution that represents 

drivers’ perception of critical gaps. The following are important issues arising in this 

framework. 
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1. The capability of a model to project drivers’ inconsistencies and inhomogeneities. In 

this context, inconsistency refers to variations in gap acceptance that is observed in a 

given driver in similar situations, while inhomogeneity refers to inter-driver variations 

in gap acceptance. For instance, a conservative driver may on average recognise 10 

seconds of time gap as acceptable while merging onto a motorway from an on-ramp, 

whereas for an aggressive driver this value in average could much less. 

2.  The capability of a model to capture variations in the perception of the critical gap 

in different situations.  In other words, a model should be able to produce different 

gap acceptance behaviour in different traffic situations, such as lane-changing in 

congested traffic, merging onto a motorway, merging to the major leg in a stop-

controlled T-intersection from the minor leg, and etc.  

Two types of lane-changing are widely accepted and addressed by researchers in 

transportation [44, 46, 47, 48, 45]: 

1. Discretionary lane-changing: This refers to lane-changing manoeuvres that are 

performed by drivers in order to improve their driving condition.  For instance, longer 

headways in an adjacent lane could motivate a lane-changing manoeuvre. However, 

performing the lane-changing would still be subject to satisfying some criteria such as 

availability and safety.  

2. Mandatory lane-changing: This type of lane-changing may motivated by the 

strategic level of driving such as route choices or may be the result of lane blockage or 

lane drops. 

A more-detailed survey on this subject can be found in [47, pp. 38-43]. 

In section 2.2, car-following models are described in more details and some of the car-

following models mentioned in this section are described. More comprehensive 

reviews on car-following models and other related topics can be found in [43, 49, 37, 

50] and references therein. 
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2.2 Car-following models 

An important step in describing the longitudinal behaviour of vehicles is the choice of 

different parameters that affect the driving behaviour. These parameters could be 

different attributes such as what driver perceive as a safe headway, their desired 

speed, their relative speed to the leading vehicle, and the speed of the subject car, to 

name a few. A car-following model describes the relationship between such 

parameters, some of which are variables and some constants, and drivers’ actions in 

different driving conditions. The drivers’ actions or the output variable of a car-

following model is typically given in the form of acceleration or velocity. Since the 

driving behaviour in the free-flow regime and in the car-following regime are expected 

to be different, sometimes different models are used for the two regimes. It is 

important to bear in mind that each of the aforementioned regimes of driving, the car-

following regime and the free-flow regime, consists of a wide range of possible 

scenarios. For instance, a driver is expected to decelerate when the spacing between 

its car and leading vehicle is perceived to be low. This braking happens even when the 

relative speed to the leading vehicle is zero. A driver is also expected to brake when 

the leading vehicle has a lower velocity. Another example of common driving 

behaviour is a tendency to accelerate to a certain speed whenever possible. These are 

only a few examples of the common phenomena that car-following models should be 

able to reproduce. What follows provides a brief review of some of the well-known 

micro-scale car behaviour models. Additional requirements and considerations in 

micro-scale modelling of drivers’ behaviours are also discussed.     

2.2.1 Car-following regime 

This regime of driving has been studied since 1950s with the pioneering works of 

Herman [51], Gazis [52], Chandler [53], Pipes [54], Kometani and Sasaki [55] . A wide 

class of conventional car-following models can be formulated as in [47, 26, 37]:  

                                       (2.3) 
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where       is the acceleration of the     vehicle within a platoon of   vehicles at 

time  ,   denotes driver’s reaction time, stimulus is usually the relative speed to the 

leading vehicle, and sensitivity is a function of spacing, the subject vehicle’s speed and 

other model-specific parameters. The model developed by Gazis et al. (1961) [52] 

known as the General Motors (GM) Nonlinear Model, or the Gazis-Herman-Rothery 

model, is one of the most popular and well-studied models of this type. This model is 

as follows, 

       
     

 

          
   

              
(2.4) 

where, 

       is the speed of the subject vehicle,  

           denotes the net bumper-to-bumper spacing,  

              , (2.5) 

lagged by a reaction time,   . The parameters    and      are the positions of the 

front bumpers of the subject vehicle and the preceding vehicle respectively,    is the 

length of the vehicle   [26]. The fraction in the equation with the velocity as its 

numerator and the spacing as its denominator represents the sensitivity parameter in 

equation (2.3).  

    
            is the perceived relative speed to the leading vehicle given by,  

   
               

                      (2.6) 

and represents the stimulus, and 

     and  , are model parameters.  

Several empirical and theoretical studies on the estimation of the model’s parameters, 

extension of the model, and incorporation of other influential parameters into the 
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model are addressed in [47]. Some of the most relevant results are briefly summarised 

below. 

 In 1968, Bexelius [56] suggested extending the influence of leading vehicles from 

merely immediate leader to more vehicles in front. This can be mathematically 

formulated as  

      ∑     
                 

 

   

 
 
(2.7) 

where    is the sensitivity associated with the influence of     leading vehicle,   
  

denotes its speed, and   is the number of leading vehicles that their influence are 

taken into account.   

 A typical reaction time of about 1.5 seconds was reported in [57, 58] . 

 Preferred headway values ranging from 1.1 to 1.9 seconds with a mean of 1.47 

seconds were reported by Aycin and Benekohal in 1998 [59]. 

 In 1968, Leutzbach [60] pointed out different sensitivities in deceleration and 

acceleration decisions, that is to say different reaction behaviours were observed for 

negative relative speeds and positive relative speeds. This supported the motivation of 

having two distinct sets of estimated parameters for deceleration and acceleration, an 

approach that was also pursued by others like Ozaki in 1993 [61], Subramanian in 1996 

[62], and Yang in 1997 [46].   

 In 1993, Ozaki [61] also pointed out that the reaction time,   , is influenced by 

other factors such as the spacing and the leader’s acceleration. 

 A spacing threshold was used by some of the researchers (Subramanian in 1996 [62] 

and Yang in 1997 [46]) in order to identify the regime of driving (car-following or free 

flow), while Aycin and Benekohal [59] suggested a headway-based threshold. This was 

supported by the following observations a) equal spacing will result in identical driving 

regimes regardless of the subject vehicle’s speed and its relative speed to the lead 

vehicle and b) studies have shown that drivers tend to maintain headways 

independent of speeds in a steady-state car-following regime [59, 47, pp. 48-49]   
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 In the free flow regime the main objective is to achieve the desired speed. 

Mathematical equations are usually obtained based on simple laws of motion while 

taking into account constraints such as maximum acceptable acceleration, safe gap, 

and comfortable and minimum decelerations [46, 62, 38].  

 One of the noteworthy and more recent works on the calibration of the GHR model 

is [63] where multiple data sources are used. 

In [26], some of the issues arising as a result of formulation of car-following behaviour 

as denoted by equation (2.4) are pointed out. 

1. Since the acceleration depends on a leading vehicle, this model is not applicable to 

very low densities. In the case of no leading vehicles (    ), a driver is expected to 

accelerate to a desired speed, whereas in this model the acceleration is either not 

determined or is equal to zero.   

2. Moreover, in high densities the model produces somewhat unrealistic behaviour, 

since the gap,          ,  does not necessarily relax to an equilibrium value. Even 

small gaps do not lead to a brake if    
     

 is equal to zero, while this is necessary in 

order to maintain a safe distance to the lead vehicle.  

The Newell model [64] and the Gipps’ model [38] addressed these issues [64, 47]. The 

Gipps’ model is described in details in section 2.2.1. The Newell model is a collision-

free model that incorporates a mechanism for accelerating to a desired velocity,   , in 

low densities. Additionally, a safe headway parameter,  , characterises the car-

following behaviour in the equilibrium traffic.  

             
 
       
     

 
(2.8) 

However, the model still fails to produce realistic driving dynamics. In particular, 

positive or negative deviations of the velocity from the equilibrium velocity produce 

similar decelerations. Moreover, in some scenarios accelerations with an unrealistically 

high magnitude of 
  

 
 may be produced. For instance, for a car with the speed of 
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, in the presence of no leading vehicles (   ), and assuming the values of 

      and      
 

 
 , an acceleration of   

 

   is obtained [26]. 

2.2.2 Gipps’ general acceleration model 

Gipps was the first to propose a general acceleration model capable of describing cars’ 

behaviours in both free flow and car-following regimes [47, p. 34]. The Gipps’ model 

can also be classified as a collision-free model. In the derivation of the Gipp’s model 

firstly an inequality was obtained that represents the following facts;  

1. the driver’s desired speed set the upper bound for vehicle’s speed, and 

2. free acceleration is initially an increasing function of vehicle’s speed, due to the high 

engine torque. As the vehicle approaches its desired speed acceleration smoothly 

drops to the value of zero.  

In order to find a mathematical relationship encompassing the previous criteria, an 

envelope was fitted to the plot of instantaneous speeds and accelerations that was 

obtained from a single vehicle. As a result, the following inequality  

(2.9) was obtained: 

                        (  
     

  
)(      

     

  
)

 
 

  

 
(2.9) 

where        ,  , and    are maximum desired acceleration, apparent reaction time, 

and desired speed in free flow, respectively. 

The second constraint arises from safety considerations. If vehicle     (the vehicle 

followed by vehicle  ) is incited to brake with the maximum desired braking,       , 

at time   and come to rest, taking into account the natural reaction time,  , and an 

additional safety margin  , vehicle   has to come to rest behind vehicle     without 

violating the safe distance in standstill. This led to the inequality [38]: 
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(2.10) 

where      represents the effective size of the vehicle    , denoting the physical 

length as well as the distance margin that will be kept even in standstill. It is worth 

mentioning that the parameter    introduces some kind of anticipative behaviour into 

the model as addressed by Treiber [26]. Without this parameter, the vehicle would 

drive with its desired speed until it reaches the point where it has to brake with the 

maximum desired deceleration.  

Rearrangement of the aforementioned constraints leads to Gipps’ model: 
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(2.11) 

where  ̂ is an estimation of the lead vehicle’s braking magnitude     . Finally, in this 

equation   was replaced by 
 

 
 as a sensible value.  

The validation of the model was carried out for a set of selected parameters by the 

evaluation of a) the macroscopic features of the model, i.e. the speed-flow diagram, 

that were obtained through simulations, and b) examining the braking behaviour of a 

platoon of seven vehicles in the car-following regime. The conclusions made are as 

follows. 

1. The flow-speed curve is relatively insensitive to changes in the values of           

and   , but varies with changes in      and  ̂. In particular, the mean and the standard 

deviation of the distribution of desired speeds affect the position and the shape of the 

upper arm of the speed-flow curve. The parameters   and  ̂, on the other hand, 

determine the maximum flow. This is justified by the fact that the behaviour of 
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vehicles is typically governed by their leaders and they do not have the freedom to 

accelerate to their desired speeds, therefore the speed-flow diagram is insensitive to 

      . The same logic can be applied to the parameter   , since the following 

vehicles in a platoon do not reach the maximum braking value unless they have 

underestimated the braking willingness of their leaders. Finally,    is usually much 

smaller than the actual gap in between the vehicles, therefore even errors in the 

estimation of it would affect neither the collective characteristic, e.g. the speed-flow 

diagram, nor the individual behaviour except in nearly stationary conditions.  

2. The parameter  ̂ also determines the response of the following vehicles to 

disturbances. This parameter defines whether the disturbances that are passed on to 

the following vehicles are damped or amplified. If the estimation of the preceding 

vehicle’s   value, i.e.  ̂, is  greater than the actual  , that is to say that the follower 

overestimates the leader’s braking tendency (conservative driving), disturbances are 

damped. Alternatively, if the leading vehicle’s breaking tendency,  , is underestimated, 

then disturbances are amplified. This is illustrated in Figure 9. 

 

 

Figure 9. Speed-time plots for seven successive vehicles using Gipps' model with following 

parameters:     
 

        
 

        
 

 
       

 

 
    when a)  ̂      

 

    b) 

 ̂      
 

     [38]. 

For more details the reader is referred to [38]. 

a) b) 
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Gipps proposes the following decision-making procedure for lane-changing 

manoeuvres [44].  

1. Choosing a target lane according to drivers’ paths or with the expectation of 

improving the driving experience (mandatory and discretionary lane-changing). 

2. Evaluating the feasibility of performing the lane-changing by taking into account the 

drivers’ sense of urgency. For instance, more intense braking may be acceptable for a 

driver that is getting closer to its turn or a lane blockage. In such a scenario, forcing a 

lane-changing manoeuvre and imposing relatively high decelerations on the following 

vehicles might become more likely. This step relies on the underlying car-following 

model. 

3. Performing the lane-change manoeuvre with respect while meeting a safety 

criterion.   

Gipps’s proposed procedure covers many aspects of lane-changing in urban traffic. 

This model uses a multi-layered decision tree in order to assess the priorities and 

criteria before initiating the lane-changing manoeuvre. More details on this subject can 

be found in [44]. However, as pointed out in [47], such prioritised decision-making 

process overlooks the variety in drivers in terms of handling conflicting goals. Yang’s 

model [65], implemented in the software MITSIMLab, incorporates variety in drivers’ 

decision-making upon encountering conflicting goals by adopting a stochastic 

framework.  

2.2.3 Benekohal’s model 

Benekohol [66] [67] adopts a somewhat different approach in modelling drivers’ 

acceleration behaviour. In this model, a number of driving conditions are identified 

and different acceleration models are developed accordingly. An overview of these 

conditions sheds light on the complexity of modelling driving behaviour. These 

conditions are as follows. 
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1. Vehicles are merely constrained by their physical dynamics, as opposed to 

constraints imposed by the traffic flow, to accelerate to their desired speeds. In order 

to model the driving behaviour under this condition, a table was constructed from the 

data related to maximum accelerations for different speed ranges [68]. The 

accelerations are then selected according to different speed ranges.  

2. Vehicles are deviated from their desired speed as a result of a disturbance. In this 

case, they accelerate/decelerate in order to reach that speed again. A courtesy factor 

is assigned to account for the percentage of vehicles that respect speed limits when 

they are below their desired speed. 

3. For the specific situation where a following vehicle comes to rest and begins to 

move again, accelerations of  
  

   ( 0.61
 

  ) for passenger cars and  
  

   ( 0.3 
 

  ) for 

trucks were assumed in the first time instance of movement, and thereafter 

acceleration is governed by the car-following algorithm. The vehicle will not start to 

move immediately after its leader has moved but will have a “start-up” delay. Twenty 

percent of vehicles which are considered faster (with a short surprise reaction time of 

0.68 sec) wait for       before moving while others will experience start-up delays of 

up to        . 

4. The maximum acceleration that satisfies the spacing constraint can be calculated 
using equation below, 

 

   (        
 

 
     )        

(2.12) 

where    is the time period between successive reassessments, and    represents the 

effective length. Similar to the Gipps’ model, the parameter    does not merely denote 

the length of the vehicle, but includes the safe spacing between the pair of vehicles as 

well. Herein, the safe spacing parameter changes with traffic density. For near 

standstill conditions a 5 to 7-foot (1.5 to 2.13 meters) buffer space is assumed.  
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5. The maximum acceleration that satisfies the non-collision constraint in the 

following regime is calculated using the following inequality, 

   (        
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(2.13) 

where the following constraint for collision-free driving is applied, 

(       )  
(       )

 

       
 

  
 

       
      

(2.14) 

The acceleration for each vehicle is selected according to equation  

(2.13) in each time step .For deceleration, an additional comfortable deceleration is 

considered. This value is selected from a table with different speed ranges. Finally, the 

deceleration is selected by comparing the values obtained in mode 2, mode 5 as given 

by equation  

(2.13), and the comfortable deceleration obtained from the table.   

    {

                                          

                                                

                                                                       

  

 
(2.15) 

 

2.2.4 Ahmed’s model 

In [47], a detailed study of modelling and model estimation based on remarkable prior 

works is provided. Therefore, a review of this work can shed light on some important 

issues in modelling and model estimation.  

The main contributions of Ahmed’s work in modelling are stated as follows [47].  
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1. Ahmed’s probabilistic lane-changing model was a significant improvement over 

conventional deterministic rule-based lane-changing models.  

2. In this model, the stimulus (Equation (2.3)) is a nonlinear function of the relative 

speed to the leading vehicle, whereas in most known models prior to this, a linear 

relationship was assumed. 

3. Traffic conditions ahead of the driver are taken into account. This was consistent 

with Ozaki’s observations in 1993 [61]. 

4. A headway threshold determines the regime of driving. This threshold is given as a 

distribution and according to its value the style of driving may differ in terms 

aggressiveness or conservativeness.  

5. A reaction time is integrated within the model. 

6. Forced merging and courtesy yielding is addressed in the model. 

2.2.4.1 The acceleration Model 

Ahmed’s acceleration model is an extension of Subramanian’s work in 1996 [62]. The 

model distinguishes the car-following and free flow regimes based on a headway 

threshold, as opposed to a spacing-based threshold.  

      
      

     
            

(2.16) 

In Equation (2.16), the parameter    is the headway for vehicle  ,     is the spacing 

between the two vehicles, and    is the speed of the subject vehicle.  

The use of headway over spacing was justified on the basis that a) some of the 

previous works in this area recommended the use of headway, and b) in high speeds, 

the behaviour of drivers is expected to be more conservative and therefore more 

responsive to their leading vehicles.  

2.2.4.2 The headway threshold distribution  

As mentioned earlier, the headway threshold specifies the regime of driving. This 

parameter defines whether the driver’s acceleration is a response to its leading 

vehicle, or is according to his objective of attaining his desired speed. However, this 
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behaviour is expected to vary among different drivers, e.g. conservative drivers and 

aggressive drivers. Moreover, although drivers do not always choose exact values for 

this purpose, and inconsistencies are expected from a given driver, one expects a 

correlation between such values for a specific driver. These characteristics give rise to 

following truncated normally distributed   
  with truncation on both sides, 
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(2.17) 

where, 

       is the probability density function of a standard normal random variable,  

      is the cumulative distribution function of a standard normal random variable,  

       are the mean and standard deviation of the untruncated distribution,  

     
      

  are minimum and maximum values of   
 . 

Hence, the probability of the vehicle   being in the car-following regime is given by, 
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(2.18) 

2.2.4.3 The reaction time 

In order to accurately model drivers’ reaction times, one may suggest many 

explanatory variables that lie along a broad spectrum of attributes; the driver’s age, 

mental condition, visibility, environmental factors like weather condition, roadway 

geometry, traffic condition, and finally vehicle’s characteristics and speed [47]. Ahmed 

uses the following generic framework used by Subramanian [62] to deal with this issue.  
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All the aforementioned explanatory variables are considered to form a vector,   
 . This 

vector is then multiplied by a vector of model parameters,   , in order to linearly 

weight the explanatory variables and derive a single measure. This measure can then 

be related to the mean value of observations. Subramanian [62] suggests a truncated 

lognormal distribution for this purpose, giving rise to following model, 
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(2.19) 

where, 

    is the reaction time of driver  , 

    is equal to   
     and is the mean of the distribution of       , 

    is the standard deviation of the distribution of        , and 

      is the upper bound of the distribution of   . 

The car-following regime  

In the car-following regime, the stimulus-sensitivity generic formulation based on the 

GM model is used. However, the following extensions are made; 1. a nonlinear 

function of relative speed is used as the stimulus, and 2. traffic conditions are taken 

into account. These extensions are discussed below. 

1. Stimulus is a nonlinear function of relative speed. 

In the GM model, Equation (2.4), the impact of the relative speed is modelled linearly. 

This corresponds to the simplistic stimulus depicted in Figure 10.a), while in Ahmed’s 

model the following assumptions have given rise to the stimulus depicted in Figure 

10b). 

 Perception of low relative speeds is difficult, hence drivers avoid large acceleration 

rates in this area 



 
41 

 

 In intermediate relative speeds, high acceleration rates are adapted to keep up with 

the leader 

 In high relative speeds, drivers’ motivation for high acceleration rates are 

suppressed by mechanical constraints, resulting  in decreasing acceleration rates 

 

Figure 10. The impact of the relative speed on drivers' acceleration decisions [47, p. 50]. 

This is mathematically formulated by Equation (2.20), 

 [         ]            
  
 
            

  
 
            

  
 
  ,      (2.20) 

 where, 

                |         | |   | , 

 ||                  

                      |         |  |   | |   |  |   |  , and 

                  |         |  |   | . 

The terms |   | and |   | represent the thresholds depicted in Figure 10. The power 

exponent   defines the acceleration rate for the aforementioned phases. The 

superscript   denotes the acceleration mode which could either be acceleration or 

deceleration, so that as mentioned earlier, different parameter sets can be used for 

acceleration and deceleration processes. In order to apply what was previously 

discussed with regard to the properties of the acceleration response below and above 

    and above    , the thresholds    
 

 and   
 

 must be greater than one. This 
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corresponds to increasing acceleration rates. The parameter   
 

 must be less than one, 

corresponding to decreasing acceleration rates until reaching a maximum acceleration 

value. Furthermore, due to the insignificant effect of stimulus below    ,   
 

 needs to 

be less than   
 

. 

2. Traffic condition ahead of the driver is taken into account.  

Most of the car-following models do not incorporate the traffic condition into the 

model explicitly. Nevertheless, the influence of traffic condition is implicitly addressed 

through the flow-density relationship and its impacts on other model parameters, e.g. 

the safe headway in the IDM model [26, pp. 6-7]. While this may be sufficient for 

modelling purposes and macro-scale properties of the homogenous traffic may be 

reproduced through such approaches, a more accurate modelling of the micro-scale 

driving dynamics may be necessary for the investigation of the impacts of new 

technologies such as Adaptive Cruise Control (ACC) systems or autonomous vehicles, 

especially if such models are intended to be the basis for the control of vehicles. The 

driving dynamics in congested traffic are likely to be different from those in 

uncongested traffic and it is appropriate to reflect this in the model.  

Ahmed delineates the impact of traffic condition by extending the sensitivity term in 

the GM according to Equation (2.21), 
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where,       

 

(2.21) 

  [] is the the sensitivity term, 

   
            is the vector of explanatory variables for the vehicle   in the car-

following regime (  ), given the acceleration mode specified by   (acc/dec), and as 

perceived at time        , 

    is the reaction time, 
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    [   ] is a parameter denoting a sensitivity lag, 

           is the perceived traffic condition ahead of the driver and in the form of 

traffic density, and 

             are model parameters. 

In addition to the density term added to the original GM model and the superscript   

that allows different model parameters in acceleration and deceleration modes, the 

parameter   is introduced. This parameter represents a relaxation of the sensitivity lag 

in the GM model and generalises the GM model in this aspect. In particular, in the GM 

model the perception of spacing and relative speed are lagged by a reaction time,   , 

and    , whereas for the perception of own speed,   is zero. Furthermore, in the 

specific case where     the stimulus and the sensitivity are lagged by the same 

amount, while for values smaller than 1 the sensitivity can be updated within the 

response time to the stimulus.    

The addition of a random term that accounts for omitted variables and the stochastic 

nature of driving finalises the model yielding, 
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(2.22) 

where,   
        is a normally distributed random variable with the mean of 0, 

  
           (   

     
 )        (2.23) 

and is assumed to be independent for a given driver at different times as well as for 

different drivers, 
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(2.24) 

The expected correlation for a driver’s acceleration decisions is modelled by the 

reaction time and the headway threshold distributions as discussed earlier.  

Free flow regime 
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In free flow regime, the objective is to attain the driver’s desired speed. This is 

modelled by using the difference between the current speed and the desired speed, 

lagged by a time delay, as stimulus. A constant sensitivity is associated with the 

stimulus.  

  
         [                ]    

       (2.25) 

where    is the constant sensitivity and          is the desired speed, 

              
          (2.26) 

Moreover, a normally distributed random term,   
  

   , is added to the equation in 

order to account for the anticipated inconsistency in drivers’ acceleration behaviour.  

2.2.5 Intelligent Driver Model 

The Intelligent Driver Model (IDM) [26] is a continuous, deterministic model with 

important merits. In this model both the car-following and free flow regimes are 

modelled by a single equation. This means a smooth and differentiable transition 

occurs between the two driving regimes which is consistent with the intuition. This 

also provides a significant simplicity in various aspects such as the implementation and 

the calibration of the model. The IDM has a small number of parameters with intuitive 

meanings. This facilitates the calibration and behavioural analysis of the model. 

Moreover, the model has a good performance in terms of modelling microscopic 

behaviour and subtle macroscopic phenomena. For instance, different types of 

congested traffic states such as triggered stop-and-go waves, oscillatory congested 

traffic, and homogenous congested traffic can be modelled with the IDM while the 

model parameters remain within sensible ranges.  Furthermore, the IDM is a collision-

free model and it has been tested on a real car, with some improvements, as the basis 

of an ACC [69, 70]. Last but not least, the availability of numerous analytical and 

empirical studies on different aspects of the model facilitates further investigations. 

For instance, the stability [71], calibration [63, 72, 73, 74, 75, 76], collective 
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characteristics [26], time-related parameters of driving and how they influence 

stability [77], are some of the aspects of this model that have been addressed in the 

literature.  

The model is given by, 

 ̇    [  (
  

  
 )

 

 (
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]   
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 √    

   

 
 
 

(2.27) 

 

where,    is maximum acceleration,    is desired speed,   is free acceleration 

exponent,    and    determine jam distances in fully stopped traffic and in high 

densities respectively,   is safe headway,    is comfortable deceleration, and they are 

all model parameters. Input variables are relative speed,           , speed of the 

subject vehicle,   , speed of the preceding vehicle,     , and spacing,   . Finally, the 

output variable,  ̇ , determines the acceleration of the subject vehicle. 

This function produces four distinguished driving behaviours according to different 

driving modes:  

 Equilibrium traffic (    ̇   ) where the collective behaviour and the 

corresponding fundamental diagram can be derived. 

 Acceleration to desired speed where the term   [  (
  

  
 )

 

] dominates. 

 Braking as a reaction to high approaching rate where the term 
      

    
 dominates. 

 Braking in response to small gaps where the term   
         

   dominates. 
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Figure 11. A depiction of the fundamental diagram derived from a car-following model, namely 

the IDM (a) Coefficient δ determines how fast cars accelerate to their desired speed (b) 

Coefficients T and v_0 represent safe headway and desired velocity respectively. Finally,    

and  and   are the standstill bumper to bumper spacing between vehicles and vehicle lengths.  

Only one parameter is varied at a time and the rest of the parameters are default parameters 

given in [26]. 

In Figure 11,   is the acceleration component that specifies the acceleration behaviour 

when a driver is accelerating to its desired speed. This component becomes especially 

important in the free flow regime when the spacing parameter,  , has large values. In 

this model, when the parameter   tends to infinity, acceleration will happen with a 

constant value of  , whereas     corresponds to an exponential relaxation to the 

desired speed with the relaxation time of   
  

 
    

2.3 Adaptive cruise control methodologies 

As of today, adaptive Cruise Control systems are entering their third decade of 

commercial use. The idea of enforcing control upon throttle for improving drivers’ 

comfort and achieving steadier speeds and thereby reducing fuel consumption was 

introduced around the 1950s by Ralph Teetor. This invention found its way into 

manufacturing and commercial use for the very first time only a couple of years later in 

1958 [78], coining the term cruise control. However, with regard to the technology 

used and the functionality, Adaptive Cruise Control (ACC) can be distinguished with the 

introduction of the system developed by Mitsubishi in 1995 [79]. Mitsubishi’s “Preview 

a) b) 
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Distance Control” used laser radar to measure spacing and produced audible and 

visual alarms as unsafe conditions were detected. Additionally, the system 

encompassed multiple cutting edge Advanced Driver Assistant Systems (ADAS), with 

features such as Lane Departure Warning System (LDWS) and rear side view system 

producing warning alarms when the vehicle was strayed from its lane, and when there 

were vehicles approaching from the rear side, known as drivers’ blind spot. The two 

systems, namely LDWS and rear side monitoring, used Charged Couple Device (CCD) 

video camera and image processing algorithms for detection of line marking and 

approaching vehicles.  Audible alarm, vibration of the steering wheel and a corrective 

steering torque were used for the LDWS. Audible and visual alarms were used as 

cautionary means in the case of detecting approaching cars or motorbikes in the 

driver’s blind spots [80]. These systems have been developing ever since and currently 

numerous varieties with remarkable features are available including Collision 

Avoidance Systems (CAS), Collision Warning Systems (CWS), and Lane Keeping Assist 

(LKA) systems. 

ACCs are capable of bringing about significant changes to traditional ground 

transportation. Automation of the function of driving, which is carried out by humans, 

is the revolutionary core of ACC systems. As in many other fields, automation of driving 

is intended to improve motorised ground transport in terms of efficiency, safety, and 

comfort. Moreover, driving behaviours that are caused by bad habits or limitations in 

human perception and decision-making give rise to inefficiencies with respect to fuel 

consumption and emissions, utilisation of roadway capacity, and safety.  

The operational level of driving consists of the two functions - lane-changing, and 

longitudinal control. Advisory systems inform the driver about the best course of 

action or produce warnings in critical situations in order to increase the driver’s 

awareness. Intervening systems, on the other hand, enforce certain actions such as 

emergency braking or producing steering torque in order to maintain a safe distance or 

keep vehicles in the middle of the lane.  
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The remarkable advances in computational power and sensory capabilities over the 

past decade have enabled researchers and car manufacturers to take the concept of 

automation of driving beyond advisory and intervening systems. Autonomous vehicles 

and full automation of driving builds upon the previous achievements of ACCs and 

ADAS and may be seen as the natural evolution of this technology.  

The progress in the commercialisation of autonomous vehicles, the technological 

inheritor of the ACCs, has been exponential. Numerous companies and projects have 

successfully tested their working prototypes. A brief summary of some of these 

achievements and milestones follows. 

 VisLab launched the VisLab Intercontinental Autonomous Challenge (VIAC) where a 

fleet of four autonomous vehicles were used in a journey from Italy to China, facing all 

possible kinds of difficulties [81, 82].  

 Mercedes-Benz demonstrated 100 km of fully autonomous driving in urban areas 

and motorways in 2013 [83].  

 Nissan demonstrated a series of autonomous driving in motorways and urban roads 

in 2013 [84]. 

 Google announced 300,000 miles of accident free autonomous driving in August 

2012, 700,000 miles in 2014 [85, 86], and 2 million miles in October 2016 [87]. 

 Many companies including, Google, Tesla, BMW and Intel, Daimler and Bosch, 

General Motors, Volvo & Uber, Nissan and Ford, have made announcements about 

testing fleets of autonomous vehicles in 2017 [88, 89, 90]. 

However, due to the fierce commercial competition in this area important details 

remain confidential and researchers cannot get but a glimpse of the methodological 

details, technological advances, and the current state of research from the general 

announcements made by the companies that work on this technology. 

Partially and fully automated driving aim at providing different degrees of enhanced 

safety, comfort, and efficiency compared to human drivers. The control theory, 
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optimisation, and modelling play a crucial role in achieving the objectives of maximised 

safety, robust acceleration behaviour, maximised comfort, optimal utilisation of the 

traffic capacity, and efficient use of the source of energy.  

The transport network is a complex system with opposing objectives such as safety and 

traffic throughput. An efficient automated transport network must meet a wide range 

of complex micro-scale and macro-scale requirements such as drivers’ comfort and 

string stability. These difficulties, along with modelling complexities, render the 

application of multi-objective optimisation challenging. However, an understanding of 

different optimisation approaches, their applications, advantages, and limitations 

facilitates the selection of a method that is fit for purpose. This section provides a 

review of some of the optimisation methods that have been put forward by 

researchers in the field of automation of driving. Herein, different aspects of these 

methods, namely their potentials, limitations and main areas of applications, are 

briefly discussed. 

2.3.1 Fuzzy logic  

The fuzzy logic, as known and recognised today, was developed and proposed by 

Zadeh in 1965 [91]. Even though the notion of fuzzy sets, as an abstract idea, existed 

prior to Zadeh, he was one of the key pioneers in the development of the 

mathematical framework for fuzzy sets and their operations. This was a necessary step 

for the validition of the concept and bringing the notion of fuzzy sets to the realm of 

scientific applications and engineering. Prior to Zadeh, the necessity of such 

conceptual development in mathematics was understood and expressed by 

mathematicians and philosophers such as Bertrand Russell, Wittgenstein, and Max 

Black. Moreover, mathematicians such as Jan Lukasiewicz, H. Weyl , Kaplan, and Schott 

had taken the initial steps in the formulation of this concept, even though the concept 

was referred to by different terms, namely consistency and vagueness. For a detailed 

conceptual and historical review on the subject, the reader is referred to [91, 92].  
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The revolutionary contribution of fuzzy logic is based on the existence of a continuum 

of grades of membership for an object in different sets. This is in contrast with the 

crisp and binary essence of the classical set theory where an object is either a member 

of a given set or not, where a statement is either true or false. In this subsection, the 

fundamentals of fuzzy logic are explored and its application in modelling and control of 

transport systems is briefly discussed. More details on the subject can be found in [93]. 

Assuming a space of points or objects,  , with a generic element      , a fuzzy set, 

 , associated with an attribute can be defined and characterised by a membership 

function      . This membership function maps the elements of   to their grade of 

membership in  . These memberships are normalised to take values in the interval of 

[   ]. This can be seen as a generalisation of the classical sets since the special cases of 

        and         correspond to the classical notion of either belonging or not 

belonging to a set, respectively.  

For instance, consider the problem of Adaptive Cruise Control system. One can simplify 

the model of behaviour or control to the following descriptive form, “drivers 

accelerate when the relative distance to the preceding vehicle is sufficiently large and 

decelerate when the opposite is perceived”. This statement describes different actions 

for different conditions or states. A crisp and binary interpretation of this statement, 

based on the classical set theory, yields states with either “high” or “low” relative 

distances. Instances of such mathematical formulations were seen in section 2.2, 

where based on a criterion a car was assessed to be either in the free flow regime or in 

the car-following regime.  

A fuzzy-based interpretation of this statement would suggest that the “relative 

distance to the preceding vehicle” can be considered as a continuous space of 

quantitative values,  , and the adjectives of “sufficiently large” and “small” are 

attributes that should be considered as fuzzy sets,   and   respectively. Given this 

interpretation, each element of  , i.e.  , may have different degrees of memberships 
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of the attributes   and    For instance, the spacing of     could be 90% small and 10% 

large, while the spacing of       could be 80% large and 20% small. The levels of 

memberships are defined by the corresponding membership functions       and 

     . It is clear that the fussy-based perspective better models the perception of 

humans. This logic can also be the basis of a robust control algorithm that provides a 

smooth transition between different states and is more compatible with human 

driving. Additionally, since this approach is very closely related to the human 

perception of various attributes and the way in which we exert control to maximise 

desired outcomes, fuzzy logic provides a good framework to integrate the experts’ 

knowledge base in the automation process. For this purpose, once the input values 

consisting of  ,  , and      , are established, fuzzy rules can be used to form the rule 

base and implement the control. The fuzzy rules are defined using logical operators. 

For instance, the control of vehicles in the car-following regime can be implemented 

using the following rule: 

If the spacing is small and the approaching speed is high, then             

where      is the maximum deceleration. In this fuzzy rule, a situation that is 

perceived as dangerous by drivers (human knowledge base) and the corresponding 

action, i.e. intense braking, is implemented by a fuzzy rule. The action of braking with 

the maximum deceleration will only be performed if the spacing is 100% “small” and 

the approaching speed is 100% “high”, i.e. the membership of the value of spacing in 

the set of “Small Spacing” is                
       and                         

      . 

In this example, the rule base is incomplete because all of the different possibilities 

have not been covered and, for example, it has not been defined what the acceleration 

should be if the spacing is large and the approaching speed is small.  

One of the first attempts in the application of fuzzy logic to car-following models was 

carried out by Kikuchi and Chakroborty [94, 95] where the Gazis-Herman-Rothery 
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(GHR) [52] model was fuzzified. The motivation for this study was to deal with multiple 

shortcomings of the GHR model in reproducing, 

 a natural, approximate car-following behaviour, 

 an asymmetric response to stimuli,  

 the closing-in and shying-away phenomenon, and 

 the phenomenon of drifting around the steady-state spacing that is observed in the 

empirical evidence. 

The fuzzy logic based model proposed by Kikuchi and Chakroborty successfully 

reproduced these features and, as a result, produced a more realistic car-following 

behaviour. Similar works were conducted in fuzzifying the MISSION model [96] and 

other models as addressed by [43]. The micro-simulation model, FLOWSIM, uses fuzzy 

logic for both its longitudinal control and lane-changing models [97]. One of the 

important stages in the application of fuzzy logic is the calibration of the membership 

functions. The calibration of the aforementioned simulation models is addressed in 

[98, 99, 95]. 

Some other interesting applications of this method in ADAS are car parking [100], 

control of a model car based on an expert’s driving actions [101], and the investigation 

of the trajectory stabilisation features of a nonlinear car model approximated from the 

Takagi-Sugeno fuzzy model [21].  

2.3.2 Adaptive cruise control as an optimal control problem  

A different approach in developing ACCs is the optimal control theory and Dynamic 

Programming. Optimal control theory and Dynamic Programming (DP), in essence, 

seek the sequence of actions that result in the maximised cumulated reward (or 

minimised cumulated penalty) over the course of time. Richard Bellman and Lev 

Pontryagin developed the mathematical formulation of this concept and thereby not 

only introduced a useful tool in dealing with various problems in finance and economy, 
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engineering, and control, but also laid down the foundation for numerous methods in 

Artificial Intelligence such as Reinforcement Learning (RL).  

A dynamic programming problem in its general form, can be formulated as [102]: 

         ∫  (           )            
 

 

     
(2.28) 

where  

    is the smaller of    and the exit time of (      ) from   ̅    [     ]     ̅, where 

   is the upper bound of the time interval [      ] within which control takes place 

    is the state space (      ̅) and    ̅   and    are interior, closure, and 

boundaries of the set      

   ̅ is a closed cylindrical region of dimension     . 

  (           ) is the so-called running cost, 

      is the state of the system          with either of the following definitions of 

the state space,  : 

             

       is a compact manifold of class     

       represents all the  -times continuously differentiable functions on   , 

        is the control input form the control space        where          , 

  (      )  is the so-called terminal cost, and 

The optimisation is also subject to the natural evolution of the system. In other words, 

the dynamics of the systems impose a constraint in the optimisation problem. This 

constraint is sometimes referred to as the equation of motion, given in the form of:  

  

  
                  

(2.29) 
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The objective of the control is to find the optimal control    that minimises the cost 

function         .  

                    
   

∫  (           )            
 

 

 

            
  

  
                 

 (2.30) 

where        is the so-called value function. 

Due to the difficulties associated with defining the terminal cost, which represents the 

optimal cumulative cost from the terminal time   up to infinity, in many problems a 

plausible alternative would be discounting the running cost in time and cumulating it 

(integration in time) up to infinity rather than considering a terminal time  . By doing 

so, the difficulty associated with the assignment of terminal cost can be resolved. 

Furthermore, the discount factor eases the process of defining the running cost, since 

the value function need not be bounded. For an autonomous system, the discounted 

cost infinite time horizon problem can be written in the form of: 

                
   

∫      (           )  
 

 

 

            
  

  
  (         )   

(2.31) 

where,   is the discount factor with a value within the range of  [    .  The special 

case of     is equivalent of not discounting at all since in this case future costs, for 

s  [     , and the current cost will be weighted with the same weight of 1. Large, 

non-zero values of   would result in giving smaller weights to future rewards, which is 

known as a short-sighted optimisation. For a more detailed review of applications and 

solving methods the reader is referred to [103, 104]. 

Solving a dynamic programming problem in closed-form becomes difficult as the 

complexity of the system exceeds that of systems with linear dynamics and quadratic 

cost functions (LQ). Moreover, stochastic systems whose dynamic equations are 
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defined via transition probability functions introduce additional layers of complexity. 

Approximate, numerical methods provide a good solution for dealing with such 

complex systems. For instance, Q-learning and its numerous algorithms that are 

proposed for different types of problems are a form of reinforcement learning that 

deal with such systems. In what follows, a review of some of the applications of these 

methods in ADAS and ACC is provided. 

Wang [105] formulated the problem of ACC as an optimal control problem, an 

approach that can also be seen in earlier works [106].  Therein, the multi-criteria 

nature of the traffic network is modelled with a simple weighted sum function that 

represents the running cost for safety, desirability, and comfort. This is shown in the 

top branch of Equation (2.32). In this model, the intrinsic differences between the car-

following and free flow regimes have been modelled by defining two different running 

cost functions for each regime. In the free flow regime, the term that represents the 

cost for safety has vanished. This is due to the fact that safety is only defined in 

relation to other vehicles and avoiding short gaps. Additionally, the desired speed in 

the car-following regime is considered as a function of the headway, whereas in the 

free flow regime it could be a preset desirable speed. The two regimes are 

distinguished by the gap threshold   . 

    [      ]      

  {
   

   
    

              
  

 

 
  

                        

         
  

 

 
  

                                                

    

(2.32) 

where   is the running cost function,          are user-defined free speed, user-

defined desired time gap, and distance between two vehicles at standstill, respectively.  

The optimal acceleration model that minimises the cost in each regime is then found 

as a function of own speed, relative speed, and spacing.  
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Moriarty and Langley propose a distributed cooperative lane selection method based 

on the principles of RL and supervised learning [22]. Therein, the objective of lane 

selection is defined as increasing traffic throughput and reducing the average deviation 

from desired speeds among drivers. The objective of increasing traffic throughput is 

achieved by minimising the number of lane changes since this could reduce the 

number of shockwaves that are initiated as a result of unnecessary lane changes. 

These objectives are reflected in the performance function given by, 

     
∑ ∑ (       

 )
  

   
 
   

  
 

    ∑   
 
   

  
   

 
(2.33) 

where       and   are the number of lane-changes per second, time horizon, and 

number of vehicles, respectively, and      is the performance measure for a set of 

cars,  .  

Solving the optimisation problem is carried out by a multi-level learning approach 

based on the principles of RL and supervised learning by making use of Neural 

Networks (NN). It was shown that the learnt strategy successfully outperforms the two 

“selfish” and “polite” lane-changing behaviours that were used as benchmarks. 

Therein, selfish driving represents the self-interest-maximising behaviour that can be 

related to frequent lane changes at the cost of others and traffic throughput, whereas 

polite driving means obeying the following rule “slower traffic yield to the right”.  

The subject of lane-changing was also investigated in [23] with a similar approach and 

formulation. In this study, the performance of two algorithms, the Distributed Q-

learning (DQL) and Approximate Piecewise Policy Iteration (APPIA), in finding the 

optimal policy was evaluated. However, both methods illustrated inferior performance 

compared to the hand-crafted “selfish drone” strategy. 

In [107], Adaptive Dynamic Programming (ADP), a method combining Neural Networks 

and RL to deal with continuous time nonlinear DP problems, was combined with 

supervised learning to overcome training time deficiencies of the former. The resulting 
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method, Supervised ADP (SADP), was then applied to the problem of ACC and 

produced promising results.   

In [108], Cooperative ACC (CACC) was considered where both the longitudinal control 

and lane-changing behaviour are coordinated between adjacent vehicles and the 

optimal policy is learnt using an implementation of Q-learning. Discretisation of the 

action and state spaces is a necessary step in the implementation of this method and 

this gives rise to a trade-off between computational complexity and accuracy. This 

trade-off is a well-known issue in this context. A precise presentation of a multi-

dimensional state-space, especially in a cooperative multi-agent setup, gives rise to the 

“curse of dimensionality”. However, integration of Q-learning with other techniques 

such as NN and supervised learning, as already investigated in other works [22, 107], 

was shown to be a good way forward.    

The applications of DP in transport systems can also be found in other areas such as 

route choice [109, 110] and traffic signal control [15, 16, 111]. For a more detailed 

review the reader is referred to [112]. 

2.3.3 Concluding remarks 

Development of a reliable fully (or partially) automated vehicle involves finding 

concrete solutions to numerous problems in the strategic, tactical, and operational 

levels of driving. For instance, the tactical level of driving concerns short-term 

objectives such as overtaking a slow leading vehicle and performing driving 

manoeuvres. This was addressed in [113], as a part of the PATH project, conducted by 

University of Berkeley. Therein, a distributed reasoning system was used in 

conjunction with Population-Based-Incremental-Learning (PBIL) in order to deliver a 

good performance in different scenarios. Other interesting projects that deal with 

different aspects of automated driving are “HAVE it” [8] and VisLab [81].  More 

detailed reviews on international projects and other related topics can be found in 

[114, 115] and their references. 
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Different approaches may be used to find an optimal, or an acceptable suboptimal 

solution, to different problems related to automated vehicles. These approaches may 

be relatively simple, heuristic models such as the Gipps’ decision tree for lane 

changing, or more complex hybrid machine learning algorithms such as the integration 

of RL and NN [22]. Before selecting one method over another, one has to take the 

problem-dependant requirements and objectives into account. Therefore, an educated 

choice of approach requires sufficient knowledge of the problem domain and methods 

that are well-suited to the problem.  

The optimal control theory and Dynamic Programming provide an important 

mathematical basis for solving optimal control problems. For systems that can be 

approximated by simple dynamical systems, such as Linear Quadratic (LQ) systems, a 

closed-form solution can be obtained. However, when the complexity of the system 

increases or when the stochastic features of the system become non-negligible and 

problems such as identification of the probability transition function arise, machine 

learning and numerical approaches such as Reinforcement Learning, Q-learning, 

Monte-Carlo methods and Temporal Difference (TD) can be used.  

A number of applications of dynamic programming based algorithms, such as 

reinforcement learning, in the field of Intelligent Transport Systems (ITS), especially 

ACCs, were investigated. It was seen that these approaches can provide promising 

solutions to challenging problems in a wide range of subjects, such as cooperative 

driving, longitudinal control, lane-changing and tactical reasoning. However, one needs 

to be aware of the limitations of this approach and formulate the problem accordingly. 

The curse of dimensionality arises as a result of large state-action spaces. This means 

that an exponential increase in the number of possible courses of actions/states leads 

to a problem that cannot be solved within the required time frame. The modelling of 

complex systems, where a wide range of possibilities may occur at any given time and 

a wide range of actions may be considered accordingly, is highly susceptible to this 

issue. For instance, the problem of coordinating vehicles’ lane-changing and 
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acceleration decisions as a collaborative, multi-agent, DP problem is likely to lead to 

unaffordable computational complexities. However, it was seen in the literature that 

promising results can be obtained by using complementary methods such as 

supervised learning, NN, distributed algorithms, and limiting the state-action spaces to 

manageable sizes. 

Supervised learning methods alone may not be capable of finding efficient longitudinal 

control or lane-changing behaviour since producing a training set that would prepare 

the inference backbone, e.g. NN, to converge to the optimal solution across a wide 

range of scenarios and different driving conditions could be quite challenging. 

However, as seen in the literature, this method can be used in conjunction with RL to 

speed up the learning process.  

In addition to the curse of dimensionality, another factor that may limit the application 

of DP based, machine learning methods in a stochastic environment is that DP based 

methods rely on evaluation of different strategies by examining them a number of 

times. In a stochastic setting, the rule of “large number of experiments” must be 

satisfied before meaningful solutions can be obtained. For instance, RL approaches 

require learning from experience. In a safety critical task such as driving, the process of 

learning cannot take place in real experiments. The alternative is a simulated 

environment. This gives rise to two fundamental issues. Firstly, derivation of a general 

policy for automated driving needs an accurate modelling of environmental factors, 

including complex features such as different driving styles and the impact of weather 

conditions and roadway-related features on driving, to name a few.   This is clearly a 

challenging task. Secondly, developing a precise simulation of environment requires 

more processing times for each trial.  

To conclude, although RL may be suitable for finding solutions, it is unable to do so 

efficiently in time-critical situations, such as real-time decision-making for longitudinal 

control and lane-changing. The application of the method is particularly challenging in 
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the presence of unpredictable agents such as pedestrians or other drivers. Therefore, 

while RL may not be a good choice as the sole method in the automation of driving, it 

can still play an important role in conjunction with other supervised learning 

approaches or heuristic methods, to deal with specific tasks such manoeuvring in a 

scenario of complex road curvatures and in the absence of complex interactions with 

other vehicles, or for lane-keeping assist [22, 104, 23, 15, 16, 112, 116, 117, 118].  

2.4 Energy-efficiency and fuel consumption  

Since the aim of this research is to address the question of fuel-efficiency in automated 

driving, modelling fuel consumption plays an important role in the framework of this 

research. In this section, some of the subjects related to fuel consumption models are 

explored.    

2.4.1 Fuel consumption models 

Emission and fuel consumption models play a key role in the evaluation of the 

environmental impacts of different transportation policies. This includes a wide range 

of subjects from vehicle-related technologies and driving strategies to roadway design 

and assessment of new policies. Depending on the area of study and the required level 

of accuracy, macroscopic or microscopic models may be used. In the former case, 

detailed microscopic behaviour of individual cars is not considered and the input 

variables are usually collective variables such as average speeds and densities. In the 

microscopic case the driving parameters of individual vehicles are used. The choice of 

parameters depends on the subject of study and may be categorised into travel-

related, weather-related, vehicle-related, roadway-related, traffic-related, and driver-

related factors [119].  

Macroscopic models may be used to approximate the aggregate level of energy 

consumption in a link. These models are useful for planning and route choice 

applications, but cannot capture the delicate dynamics of individual vehicles in 

sufficient detail necessary for the analysis of microscopic driving strategies, since for 
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instance, the impacts of excessive acceleration/decelerations are typically averaged 

out in these models. An example of this is the macroscopic model proposed in [19], 

Equation (2.34), which only takes the average cycle speed in a link,  , as its input 

variable; 

               
       

 
                                    

(2.34) 

Microscopic models, on the other hand, aim to produce a more accurate estimation of 

the fuel consumption of individual vehicles. However, this could come at the cost of 

more model parameters, for example the model demonstrated by Equation (2.35), 

proposed in [120]. 

     ∫  
        

           
 

    

     
   

 

  

                
(2.35) 

Where, 

      is the instantaneous energy consumption, 

      is the simulated vehicle speed and is given by Equation (2.36), 

                                 
           ,  (2.36) 

where       is vehicle’s speed,       and       are the maximum and minimum 

allowable speed in the target road segment, and      is the level of humidity. 

      Is the road force given by, 

                 
        

 
       

       

   
    (2.37) 

where       is the rolling friction coefficient and is calculated from Equation (2.38), 

     denotes the vehicle mass at time  ,   is the gravity acceleration rate (9.8     ), 

the three coefficients  ,  , and   represent air density, air resistance coefficient, and 

vehicle cross area respectively, together determining the aerodynamic drag force, and 

      is the linear acceleration force. The last term of the equation estimates the 

rotational acceleration force provided by the motor to propel the wheels of the 
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vehicle, where   is the moment of the inertia of the rotor of the motor,      is the 

acceleration rate, and the remaining three parameters  ,  , and    represent gear 

ratio, tire radius, and the gear efficiency indicator respectively.  
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(2.38) 

       and       are effiency indicators of vehicle’s motor and battery respectively, 

and 

      is the power consumed by onboard devices.  

For a detailed definition of the other parameters the reader is referred  to [120]. 

The level of detial required in such a model may not be available or necessary when 

the subject of interest is the longitunal control of cars. Moreover, such complex 

models can potentially impose an excessive computational complexity on the 

evaluation process for subjects where roadway friction or external environmental 

factors such as humidity are not the focus of study. Therefore, the level of 

computational complexity, type of input variables, and estimation accuracy are all key 

factors to take into account and depend on the area of study.  

In [121], a model based on instantaneous speed and acceleration, the Virginia Tech 

microscopic (VT-micro) model, was proposed. This model was specifically developed 

for the investigation of problems relating to the operational level of driving. The data 

used for the derivation of the model consisted of 1305 observations of instantaneous 

fuel consumptions and emissions for six light-duty cars and three light-duty trucks. 

Numerous model structures were examined and the one demonstrated by Equation 

(2.39) was reported to deliver promising microscopic and aggregate estimates.   
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(2.39) 

where   is acceleration (  ,   denotes speed ( ), and   denotes whether the subject 

car is accelerating or decelerating as the model has different coefficients for each 

mode. 

Some of the key advantages of this model for applications related to the operational 

level of driving are; a minimal number of input variables, relatively simple and 

differentiable model structure, and acceptable accuracy at the microscopic and 

macroscopic levels. This model has been used in multiple studies related to energy 

efficiency in the longitudinal control of vehicles [122], investigating the impacts of 

different driving behaviour on fuel consumption [123], and optimisation of 

acceleration behaviour with respect to fuel consumption while approaching signalised 

intersections [124]  to name a few. 

2.4.2 Fuel efficient driving strategies  

In this subsection, some of the works that focus on energy efficiency in the longitudinal 

control of vehicles are reviewed and the key aspects related to methodology and 

conclusions are highlighted. 

In [122], improving acceleration behaviour with the help of an advisory system led to 

reductions of between 12-31% in fuel consumption. This saving was achieved during a 

simulated acceleration and deceleration processes in a scenario where drivers with 

and without the advisory system approach a signalised intersection. Therein, 

environmental factors, namely speed limit, spacing, distance to traffic light or other 

road signs, and dynamic vehicle variables, namely speed and acceleration, are were 

used as input variables to produce the optimal acceleration. The optimal acceleration 

could then be suggested to the driver via an in-car Human-Machine Interface (HMI) or 
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be applied directly in automated vehicles. The main application of the module was 

considered to be in the free flow regime since in congested traffic conditions safety 

considerations have the priority and the method does not explicitly address these 

considerations. An extension for the car-following regime was also proposed without 

validation. The objective of the optimisation was set to minimise the cumulative fuel 

consumption, given by VT-micro instantaneous fuel consumption model [119], while 

environmental factors such as own speed and the distance to traffic signal were taken 

into account as constraints. Within the time interval of interest, namely the 

deceleration/acceleration period, the environmental factors were combined with the 

discretised function of cumulative fuel consumption and the resulting function was 

optimised using the Lagrange Multiplier Method (LMM).  

In [125], the speed trajectory that leads to energy efficiency was calculated based on 

the principles of DP and making use of Dijkstra algorithm. In this study discretised 

velocities were represented as a graph where nodes represent speed values. The 

acceleration rate and the choice of fuel efficient deceleration mechanisms such as 

coasting in neutral and fuel cut-off, was included in the action space. The graph 

consisted of nodes that represented discrete velocity values along the route and edges 

that represented the cost or utility. In order to facilitate drivers’ acceptance of the 

longitudinal control, the utility function (the weight of edges) was not rigidly defined 

based on fuel consumption, but drivers’ preference in the trade-off between fuel 

efficiency and trip time was incorporated in the utility function through equation 

below.   

                                    (2.40) 

where      is the utility value,      is the fuel consumption,      is the trip time,   is 

the weighting coefficient set by the drivers for sporty or fuel efficient driving, and    is 

a normalisation parameter that automatically adjusts to the current traffic condition. 
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The problem was then formulated as a single-pair shortest-path problem and the 

optimal path was sought between the current velocity in the origin (current time) and 

the predicted velocity that the driver is assumed to have in the prediction horizon. In 

order to predict the driver’s velocity, a model that was developed in the framework of 

eCoMove and eSiM research projects was used. This model considers a number of 

factors related to the vehicle, driver, environment, and traffic and subsequently 

produces a prediction of the future velocities. The optimisation approach discussed 

above is presented in Figure 12. 

 

Figure 12. Optimisation of a single speed profile [125]. 

In [126], a similar approach was implemented with the exception that a genetic 

algorithm was used for optimisation. A more commercial application of this 

optimisation approach can be found in Porsche’s InnoDrive ACC [127, 128] where 

reduction of about 10% in fuel consumption was reported. In this study the cost 

associated with each edge was defined by: 
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                  (2.41) 

where   represents fuel consumption,    represents different cost elements 

accounting for comfort, the difference between maximum allowable speed and the 

calculated one, etc.,  and    is a weighting factor for each cost element.  

 

Figure 13. A schematic representation of Porsche InnoDrive ACC a) the upper and lower limits 

on the optimisation space due to different environmental factors b) the optimal path 

representing the optimal velocity plan within a road section [127]. 

In [129] a fuel-optimal control algorithm was proposed for trucks. The control 

algorithm was based on the optimisation of fuel consumption and gear-shifting 

according to the topography of the roadway. In this study the problem was formulated 

as a Dynamic Programming optimisation. In [130] a Proportional-Integral-Derivative 
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(PID) controller was designed for the car-following regime of driving. The method 

delivered fuel-economy driving by avoiding unnecessary accelerations and 

decelerations. The objective of the controller was set to track the velocity of the 

preceding vehicle while maintaining a specified range of gaps. In [131], a model 

predictive control algorithm was proposed in order improve the vehicle’s tracking 

capability in the car-following regime while delivering fuel-efficiency. The reduction in 

fuel consumption was obtained by the minimisation of accelerations while tracking the 

leading vehicle’s speed. The system was then tested in urban and motorway driving 

scenarios and fuel savings of 8.8% and 2% were obtained in each scenario respectively.  

The use of advanced technologies has also been widely investigated in the literature in 

order to achieve fuel efficiency. For example, in [132] the potential of technologies 

such as hybrid electric powertrains and telematics for the provision of traffic-related 

information was considered, and in [133] pulse and gliding was shown to provide 

significant savings in fuel consumption.  

The body of research that concerns driving behaviour can be categorised into two 

groups. One group seeks to optimise fuel consumption for simple scenarios where 

there are no additional complexities caused by interactions between vehicles. In this 

case, information about roadways’ topography or positions of traffic signals are used in 

the formulation of the optimisation problem; solving the optimisation yields the 

optimal velocity profile.  The second group targets the car-following regime of driving. 

In these studies often simplistic assumptions are made about the relationship between 

fuel consumption and acceleration or the dynamics of driving. Moreover, due to the 

complexity associated with the car-following regime these works narrow down the 

optimisation framework to a single pair of vehicles and overlook the potential negative 

impacts of the proposed control strategies on the traffic flow and fuel consumption of 

the network. 
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The studies that have been reviewed so far mainly aim at individual vehicles and ways 

to reduce their fuel consumption irrespective of the complex, mutual relationship 

between traffic flow and individual driving behaviour. In [134], the negative impact of 

congestion on fuel consumption was studied based on a trajectory dataset obtained 

from a 640-meter long US motorway, namely the NGSIM I-80 dataset [135]. The 

NGSIM I-80 dataset is an open source trajectory data that is collected from an 

interstate motorway in the San Francisco Bay area, CA. An enhanced version of the 

dataset has been made available to the public through the MULTITUDE project [136]. 

In [134], it was reported that congestion could lead to an increase of about 80% in fuel 

consumption along with about four times longer travel times. This finding makes it 

clear that there is a significant potential for reducing fuel consumption for the whole 

network by pursuing traffic management policies that efficiently use the roadway 

capacity and, therefore, avoid or delay traffic congestions. Such policies could consider 

the potential of connected, automated vehicles in the provision of more efficient 

driving behaviours. 

2.5 Summary 

In this chapter a brief review of the control approaches related to automated driving 

was given. Three fundamental approaches to modelling and control of driving 

behaviour were discussed, namely fuzzy logic, optimal control theory, and car-

following models. It is worth mentioning that although car-following models were 

primarily developed for modelling purposes, instances of them being used as the 

foundation of a control algorithm were addressed in this chapter. Fuzzy logic allows a 

relatively simple way of integrating experts’ knowledge in the control process. 

However, this method has not been widely used for longitudinal control. To the best of 

the author’s knowledge most of the fuzzy logic-based controllers that are proposed in 

the literature lack a thorough discussion on stability, and collective properties. One of 

the main reasons for this could be the sophistication of validation in terms of the strict 

microscopic and macroscopic requirements which are necessary for a valid control 

strategy. Looking at longitudinal control as an optimal control problem mostly results 
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in the same issue. Solutions based on machine learning methods, namely RL and NN, 

cannot be systematically analysed or validated with respect to collective behaviour and 

stability requirements. Furthermore, for these methods to work, sometimes the 

problem is oversimplified or constrained to very specific driving scenarios.  

On the contrary, modelling car-following behaviour has been a vast and active body of 

research for some decades. Simple models that are intended to describe the 

microscopic and macroscopic features of traffic have been widely studied and 

developed. As a result, a good understanding of different aspects of these models, 

namely collective behaviour and stability characteristics, is established. Therefore, it is 

no surprise to see the use of such models in practical applications. In section 2.2, a 

review of some of the well-known car-following models was provided. The car-

following models have been mostly developed in order to passively explain and model 

existing driving-related and traffic flow-related features, and little focus has been given 

to utilising these models as active control methods for partially and fully automated 

vehicles. These models largely came into existence out of a need to understand and 

predict traffic-related phenomena and plan for transport networks. Therefore, a large 

number of these models do not necessarily meet safety requirements, nor do they 

produce completely realistic driving behaviour when individual drivers are considered. 

Therefore, before evaluating these models as the basis of control for automated 

driving, it is necessary to have a comprehensive look at the requirements of a safe and 

efficient road network. This enables us to have more tangible criteria for the 

evaluation of different car-following models as the basis of control. This is carried out 

in chapter 3. 
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3. Using car-following for automated vehicle control 

 

In chapter 2, different approaches relating to the control of vehicles were explored and 

the use of car-following models was put forward as a simple yet effective approach for 

the purpose of investigation of fuel-efficient driving strategies. The objective of this 

chapter is to provide a comprehensive account of different requirements in the 

automation of vehicles. This review will enable the author to select a car-following 

model that better meets the requirements of importance. Additionally, these 

requirements will contribute to the formulation of the optimisation framework that is 

discussed in chapter 4. The chapter is concluded by the choice of the car-following 

model that is going to be used in this study.  

A longitudinal control model must meet numerous criteria before being considered for 

implementation. Some of these criteria are essential, for example safety and platoon 

stability, while others are desirable improvements that can be achieved with 

automated control, for example energy efficiency. These criteria are of great 
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importance in the design and implementation of control methods since they can be 

used as benchmarks in the evaluation and development of different models. However, 

to the best of the author’s knowledge, no research work has addressed these criteria 

in a united way while highlighting methodological approaches for evaluation of these 

criteria. As a result of this lack of standardisation of requirements, many existing 

models are forced to rely on assumptions which may have not been validated, and 

could lead to undesired outcomes. 

An extensive literature review was conducted in order to identify important model 

requirements, and to identify methods used for testing models against these 

requirements. Section 3.1 highlights these criteria and therefore, fills the 

aforementioned gap in the literature. Section 3.2 provides a detailed description of 

sensitivity analysis, an important step in the optimisation framework used within this 

study as well as in the evaluation of car-following models. Section 3.3 addresses some 

of the shortcomings of the existing studies in the comparison of car-following models. 

A new method for the comparison of car-following models is proposed in this section. 

This method demonstrates a much more robust performance compared to the existing 

comparison criterion. Finally, this chapter is concluded by a description of the car-

following model that will be used in this study and a short summary. 

3.1 Criteria of importance 

3.1.1 Safety 

The subject of safety is imperative in the automation of vehicles. Advanced 

technologies such as ADAS and autonomous vehicles are intended to improve the 

safety of driving and, if possible, avoid human errors that lead to dangerous situations. 

This may be achieved by relying on advanced sensory and communication capabilities 

and prioritising safety in automated decision-making processes. Safety is also critical 

for the acceptance of these technologies [137].   However, ensuring safety is by no 

means trivial and numerous other criteria discussed in this chapter are closely tied 
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with this criterion. In this section some of the considerations with respect to safety and 

assuring safe control are discussed.  

One approach to ensuring safety in control models is to assign exponentially increasing 

decelerations as spacing is closing. This approached is used in multiple car-following 

models such as the GM family of models [47, 52] and the IDM [26], and ACC models 

derived from the principles of optimal control and dynamic programming [105, 108]. In 

car-following models, this is typically done explicitly with an inverse relationship 

between the spacing and the magnitude of deceleration while in control models that 

are based on optimal control an exponentially increasing penalty is usually associated 

with closing gaps in the objective function.  

Another approach in order to guarantee safety is to always ensure a safe spacing 

relative to the preceding vehicle to avoid collisions even in unexpected emergency 

braking situations. This can be seen in models proposed by Gipps and Benekohal [66, 

38]. Such models are categorised as collision avoidance models. Some 

implementations of collision avoidance models in simulation-related projects and 

software products are mentioned in [43].  

A control model must always be able to safely manage critical traffic conditions. The 

following scenarios have been addressed in the literature [138, 107]. 

 Emergency braking: the lead vehicle performs a sudden stop manoeuvre.   

 Cut-in situation: a vehicle cuts in between a platoon of vehicles from an adjacent 

lane. 

Platoon stability is another criterion of importance that is closely related to safety. This 

will be discussed in subsection 3.1.2.  

3.1.2 Stability  
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Two distinct features of car-following models which are of critical importance may be 

addressed under the subject of stability. Although both features can be distinguished 

by their definition and implications on traffic flow, they are bounded by the concept of 

stability of dynamical systems. These two features are platoon stability and string 

stability, where the former pertains to how disturbances are dealt with within a 

platoon and the latter relates to the response of a long string of vehicles to 

disturbances. In particular, platoon stability assures that deviation of the velocity of 

the leading vehicle will not be escalated into intense fluctuations in the velocity of the 

following vehicle. String stability, on the other hand, investigates the response of a 

long platoon of vehicles to an initial disturbance in the velocity of the leading vehicle. 

The initial disturbance would typically be passed along to the following vehicles, 

however it is important that the resulting disturbances are not significantly magnified 

and do not lead to traffic breakdowns and safety critical situations. After a brief 

discussion on the stability of dynamical systems, platoon stability and string stability 

will be discussed in more details in subsections 3.1.2.1 and 3.1.2.2 respectively.  

In this section the focus is on autonomous (time-invariant) systems given by:  

 ̇  
  

  
                           

 
(3.1) 

where        is state space and        is the nonlinear equation of the 

system. It is worth mentioning that in a wide group of car-following models the 

function   maps the state space, usually consisting of speed, relative speed, and 

spacing, into a single control variable, typically acceleration or velocity.  Equilibrium 

points of the system depicted by Equation  

(3.1) may be obtained by setting the time derivative of the state equal to 0,  

 ̇|    
                                              (3.2) 

The theory of linear stability can now be applied to analyse the behaviour of the 

system in reaction to small perturbation around equilibrium points [139, 24, 71].  
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A small perturbation around the equilibrium point can be introduced using, 

 ̃                                                                              (3.3) 

Due to the assumption that the deviation is of a small magnitude, linearisation around 

the equilibrium point can be carried out, Equation (3.4), to investigate the response of 

the system. This essentially results in a constraint on the magnitude of the deviation 

for the analysis to remain valid.  

   ̃          |  
                                                                                 (3.4) 

Since the first term on the right-hand side equals zero, Equation (3.4) can be reduced 

to,  

   ̃    |  
                                                                                                            (3.5) 

where   |  
 is the Jacobean of    at the equilibrium point    and local stability of the 

system at this point can be evaluated using its eigenvalues.  If all of the eigenvalues 

have negative real parts then by Lyapunov’s first theory the system represented by 

linearisation of the dynamical system is globally asymptotic stable (in fact 

exponentially stable) and the corresponding nonlinear system is locally stable within a 

neighbourhood called the domain of attraction.  

Even linear stability is somewhat overlooked among the transportation community, 

and especially within micro-simulation community [71], hence an extensive review of 

the concepts and methods developed in the area of stability analysis of dynamical 

systems and investigating possible applications of them in car-following models will be 

beneficial. For instance, the concept of domain of attraction may provide a way for 

quantitative evaluation of the magnitude of deviations for which the system remains 

stable.   

This brief overview of linear stability is concluded by highlighting some of the 

limitations of linear stability analysis. Subsequently, the application of this method to 

platoon stability and string stability follows. 
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 As mentioned earlier, neglecting nonlinear terms in the linearisation process limits 

the validity of the linear stability analysis to deviations with very small magnitudes. 

 Even finding an estimate of the neighbourhood for the equilibrium point for which 

the system remains stable, the so-called domain of attraction, becomes significantly 

challenging when the system takes more complicated nonlinear forms. The second 

theory of Lyapunov provides a way of dealing with this problem, however, finding 

Lyapunov functions for different types of state equations (dynamical systems) is not a 

straightforward task [140, 141]. In general, methods for estimating the region of 

attraction are categorised into Lyapunov and non-Lyapunov methods. 

 “Large perturbation” and its implications on the system is beyond the realm of this 

analysis.  

3.1.2.1 Platoon stability 

Platoon stability or local stability is an important criterion that is directly related to 

safety and therefore is a necessary part of development and validation of car-following 

models. Consider a finite platoon of vehicles driving in homogenous, i.e. steady state, 

traffic. This corresponds to the state given by: 

  ̇                                                                                         (3.6) 

For homogenous traffic consisting of identical cars and drivers this corresponds to the 

situation where all the vehicles are driving at the same speed,   , and keep the same 

spacing to preceding vehicles,   . This is called a uniform flow. A solution that relates 

   to    can then be derived using Equation (3.6). This solution, given in the form of     

as a function of   , is then translated into a relationship between densities and flow, or 

the so-called fundamental diagram. The relationship between flows and densities for 

homogenous traffic is a very important feature of a car-following model. From a 

modelling point of view, it is expected that this diagram to some extent reproduces our 

observations and knowledge of traffic flow. From a control point of view, the diagram 

gives good insight into how a control method affects the collective features of traffic 
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flow such as the maximum capacity. This translation is carried out by considering 

equations (3.7) and (3.8),  

  
 

  
               

(3.7) 

 

                                                                                                                       (3.8) 

where   and Q are density and flow respectively.  

 

Figure 14. Fundamental diagram: relationship between density and flow a,b) empirical 

observations [142, 143] c) two-phase fundamental diagram derived from IDM model with 

specified critical densities [32]. 

For platoon stability a small perturbation in the speed, and consequently the spacing, 

of one of the leading vehicles in the platoon is considered.  
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                                                                                     (3.9) 

This perturbation can be caused by a lane-change or an emerging vehicle from an on-

ramp and it will result in deviation of the immediate follower from the equilibrium 

point. The following vehicles will also react to this perturbation in the same manner.  

The platoon stability criterion ensures that the resulting fluctuations in the speed and 

spacing of the following vehicle must eventually decay and the pair of follower-leader 

must reach an equilibrium state. If this necessary requirement is satisfied the system is 

said to be platoon stable.  

The IDM car-following model and its merits were discussed in chapter 2. The 

application of platoon stability to IDM is discussed here in order to provide a better 

understanding of the subject. A more detailed discussion on this subject can be found 

in [71, 74]. The IDM is defined by Equation  

 

(3.10).  
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(3.10) 

Linearisation at equilibrium point yields,   

   ̇                ̇            (3.11) 

Subtracting Equation (3.11) from that for the immediate lead vehicle yields: 

   
                

                   
           (3.12) 

Since a car-following model is expected to be platoon stable, as is the case in real 

traffic, the following conditions must be satisfied [144]. 
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                           (3.13) 

This intuitively means the following. 

 As the spacing increases acceleration must increase. It would be more accurate to 

limit this statement to car-following situations as one expects that the dependency on 

the front vehicle should diminish when the spacing is very large. 

                      

 As the approaching speed to the preceding vehicle becomes larger, acceleration 

must decrease. What was stated for spacing in terms of the diminishing impact of 

spacing for large values, holds true for relative speed, therefore; 

                        

 

 As speed increases acceleration must decrease. 

Taking the right-hand side of Equation (3.12) as input perturbation,     , and applying 

Laplace transformation yields: 

      
    

                 
        

(3.14) 

where       and      are Laplace transformations of     and      respectively. 

It can be seen that since the IDM satisfies condition (3.13), the poles of Equation (3.14) 

will always have negative real parts corresponding to a stable system. This can be seen 

in Figure 15 where the lead vehicle at a single point in time is slightly deviated from its 

equilibrium speed and immediately restored back to it. Following introduction of this 

perturbation, the spacing of the following vehicle deviates from its equilibrium point, 

however, platoon stability ensures that the vehicle will eventually restore to its initial 

condition.  
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Figure 15. Response of the immediate following vehicle to a perturbation in the speed of the 

lead vehicle when its speed drops to by 2 
 

 
 and immediately restores to the equilibrium speed 

of 20 
 

 
 after 2    s. The response is simulated using IDM model with default parameters. 

3.1.2.2 String stability  

String stability is related to the change in the characteristics of fluctuations, caused by 

an initial perturbation in the lead vehicle, as they are passed along to the following 

vehicles. Platoon stability ensures small perturbations will eventually fade away. 

However, if deflections from the equilibrium state grow in magnitude while moving in 

the upstream direction, this could lead to large enough perturbations that would 

trigger nonlinear effects such as stop and go waves. 

 Although string instability in traffic flow leading to phenomena such as stop and go 

waves is not desirable from a traffic management point of view, they may be required 

from a modelling point of view since such phenomena are frequently observed in real 

traffic.  

Figure 16, demonstrates an example of a somewhat chaotic behaviour that can be 

linked to string instability for platoon of nineteen vehicles simulated using the IDM 

model. 
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Figure 16. a) Response of the platoon of 18  vehicles to a perturbation in the speed of lead 

vehicle when its speed drops to by 2 
 

 
 and immediately restores to the equilibrium speed of 

10 
 

 
 after 2    s. The response is simulated using the IDM model with default parameters 

except for      
 

   ,     
 

     b) trajectories of all vehicles other than the second and last in 

line are eliminated.  

Ring road analysis provides an effective way to investigate string stability features and 

the capacity drop phenomenon in a closed system. For this purpose, a simulation 

environment was developed to investigate the formation of stop and go waves. Figure 

17 illustrates the formation of a cluster after the introduction of a small disturbance in 

the velocity of the leader. Here, each circle denotes a vehicle and those with spacing 

less than the equilibrium spacing are coloured in red. Due to the instability of the 

system in high densities the system does not restore to its equilibrium condition and 

the cluster continues to exist. The initial equilibrium condition prior to the introduction 

of the disturbance is shown in the plot on the left-hand side.  

a) 

b) 
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Figure 17. Formation of a cluster after the introduction of a small disturbance in the velocity of 
one of the vehicles. The default parameters for the IDM where chosen. Other simulation 

parameters used are; number of vehicles=38, length of the road=1793  , equilibrium velocity 
and density prior to the introduction of the disturbance were 22.3     and  21.2         

respectively. 

The formation of clusters and the circulation of disturbances can also be observed 

from the velocity, acceleration, and spacing plots. As shown in Figure 18, after the 

introduction of the disturbance the magnitude of fluctuations in spacing keeps 

increasing rather than being damped.  

 

Figure 18. The spacing plots for the test scenario above. In the plot on the left-hand side, 
fluctuations for a short period are magnified for a better illustration of details. 

More details on methodological approaches for investigation of string stability can be 

found in [71, 24]. 

a) b) 

a) b) 



 
82 

 

3.1.2.3 Convective string stability  

String stability can be categorised into three types based on the direction of 

propagation of the perturbation relative to a reference point in the road. These 

fluctuations may propagate in the upstream, downstream or in both directions. This is 

illustrated in figures below.  

 

Figure 19. a,b) Propagation of the traffic jam in the upstream direction of a highway [24]. 

 

Figure 20. The direction of propagation of disturbances in a) convectively downstream (string) 
instability  b) absolute string instability  c) convectively upstream (string) instability   where 

   and    are the velocities of the moving congestion fronts [71]. 

In real observations, only propagation in the upstream direction has been reported 

[71, 24], therefore, a similar collective behaviour is expected from car-following 

models. Consequently, for a given car-following model, the model parameters should 

a) b) 

a) b) c) 
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be selected from the region in the parameter space where only convectively upstream 

(string) instability occurs.  

For mathematical frameworks for investigation of convective instability one can refer 

to [71, 24]. 

3.1.2.4 Concluding remarks 

The importance of stability analysis as a tool for the investigation of car-following 

models and driving strategies was discussed. The definitions of platoon stability, string 

stability and convective stability were given and linear stability analysis, a relatively 

simple and useful method for the investigation of local stability of dynamical systems, 

was described. The works of Wilson and Ward [144, 145, 71] lay down a framework for 

linear stability analysis of a certain group of car-following models, although it is not 

applicable to all classes of car-following models and does not include reaction-time 

delay. Reaction-time delay has been fully studied in other studies such as [77, 146, 73] 

and the following findings were reported; 

 There are three characteristic time constants that influence the dynamics of driving 

and stability of traffic flow namely; reaction time, update time, and the velocity 

adaptation time.  

I. Reaction time is the time delay incorporated in the acceleration model as an 

explanatory variable. 

II. Update time pertains to simulations and determines when the system is re-

evaluated. This is the time step in which the accelerations and velocities of vehicles 

are updated.  

III. Velocity adaptation time is the time required for adaptation to a new desired 

velocity.  

 The first two may be considered as somewhat equivalent. In [77] it was found that 

the numerical update time is equivalent to about half the value of reaction time.  
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 Velocity adaptation time plays the main role in long-wavelength string instabilities, 

while large enough reaction times (or update time) chiefly influence short-wavelength, 

local instabilities. 

 Velocity adaptation time for the IDM model is mainly influenced by the parameters 

of maximum acceleration,  , and the desired velocity,   .  

 For a non-zero reaction time there is a certain range of values for   (or equivalently 

adaptation time) that maximises the stability and this range depends on the reaction 

time. Higher and lower values would result in less stability. Values above the range will 

result in less platoon stability as this type of instability favours agile driving, while 

values below the range will result in string instability as this type of instability favours 

sluggish driving. When the reaction time is zero, the system is always platoon stable 

and higher acceleration always contributes to string stability.  

 The introduction of an additional explicit time delay in the IDM model as an 

explanatory variable does not improve the fit to the real trajectory data. This is due in 

part to the “anticipative intelligent braking” mechanism of the IDM [26] and the fact 

that drivers compensate for their reaction-delay time by anticipation which is gained 

from experience [73]. 

The author thinks that the application of the concepts and methods developed in 

stability analysis of dynamical systems, which is indeed a very fruitful area, remains 

somewhat neglected within the transport community. In particular, a very interesting 

subject of research would be the introduction of a new dimension to stability analysis 

of car-following models by taking the stability analysis from the qualitative “small 

perturbations” to a more quantitative level. The subject of region of attraction is well-

studied in dynamical systems and the application of it to the behavioural analysis of 

car-following models is likely to lead to fruitful results.  

3.1.3 Traffic flow  



 
85 

 

An ACC system can consist of different modules each applicable in a specifically 

defined condition. For instance, in [122] a module for energy efficient driving is 

proposed that can only be utilised when the vehicle is heading towards a traffic signal 

and there are no vehicles in front of it, or in [27] different traffic conditions are 

identified and a longitudinal control module is selected accordingly. However, for an 

ACC system which is targeted for application in congested traffic flow (where 

interactions with other vehicles occur frequently) it is crucial that the system is 

validated in terms of its impacts on traffic flow in addition to other important factors 

such as safety and stability. High levels of emissions and traffic instabilities may be 

linked to the stop-and-go phenomenon in the traffic regime, ACC can contribute to the 

regulation of flow and, thereby, help reduce emissions. Some of the important topics 

related to traffic flow and the impacts of driving strategies on traffic flow were 

discussed in sections 2.1 and 3.1.2.  

3.1.4 Practical implementation aspects 

Besides safety, stability, and impacts on traffic flow, there are a wide range of practical 

considerations that must be taken into account in the development of automated 

vehicles. This section gives an overview of these requirements.  

3.1.4.1 Comfort 

It is important to also consider the comfort of drivers in the context of ACCs or 

autonomous vehicles. The feeling of discomfort has been linked to jerk and 

acceleration [147, 130, 148, 105], therefore appropriate values for these variables 

should be considered and unnecessarily high accelerations and jerks should be 

avoided. In terms of the methodologies used to assure comfort for drivers, one 

approach is to associate a cost to high accelerations, along with other factors, in the 

objective function that is defined to produce the optimal control policy [105, 149]. 

Alternatively, the values of jerk and acceleration may be constrained [148, 130]. 
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3.1.4.2 Compatibility  

Fully and partially automated driving raises numerous questions and challenges 

regarding the compatibility of drivers with these systems. In the short term, while not 

all vehicles are fully automated, it is necessary that even fully automated cars produce 

a similar driving behaviour as humans. On the one hand, the automated systems may 

potentially possess some enhanced capabilities compared to drivers, such as shorter 

reaction times, more comprehensive perception of the surrounding environment, and 

execution of optimal actions. On the other hand, some studies suggest that one of the 

challenges for automated systems to address is a superior “anticipation” behaviour in 

drivers which is the result of experience and knowledge [77]. However, while due to 

different capabilities and characteristics one may expect completely different efficient 

driving styles in the extreme cases where all vehicles are driven manually or 

automatically, in the intermediate levels, where they coexist, automation must not 

result in driving styles that are unexpected to drivers. This also puts a limit on the 

extent to which the automated systems can be more efficient than drivers.   

It has been argued that the desirability of these systems depends on the extent to 

which they could be customised to drivers’ driving preferences. In some studies this 

has been reduced to taking the driver’s desired speed into account and minimising the 

difference between the actual driving speed and the desired speed when possible [22, 

105, 26]. However, this is likely to entail more strict requirements [150] and, therefore, 

further limit deviations from the existing driving norms towards more efficient driving 

patterns.  

Other human factors such as the acceptance of these systems, degree of responsibility 

and mental workload required from users of partially and fully automated systems, 

overreliance and trust are active areas of research [151, 152].  
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3.1.4.3 Dynamics of the vehicle  

The kinematics of vehicles and their mechanical constraints in tracking control 

commands is an important consideration in the realisation of automated driving. 

Numerous acceleration models may produce plausible driving behaviour yet the 

execution of the acceleration suggestions requires taking the mechanical dynamics of 

vehicles into account. Including even simplified models of vehicle dynamics in the 

derivation of control strategies, as in [138, 153], could lead to more realistic results. 

More details on vehicle dynamics can be found in [154, 155]. 

3.1.4.4 Adequate reactions to different driving scenarios 

Producing an acceptable transient response to sudden changes in driving conditions is 

a necessity for any control strategy. The examination of the driving behaviour 

produced by models has traditionally been one of the ways to validate car-following 

models and driving strategies [138, 26, 107]. The following test scenarios are 

frequently used in the literature; 

 Cut-in situations  

 Change in the equilibrium speed 

 Emergency braking and stopping 

 Approaching a stationary vehicle  

 Stop-and-go situation 

3.1.4.5 Robustness of calibration 

This criterion is specifically important for car-following models. These models have a 

number of model parameters that may be calibrated using specific trajectory data. The 

calibrated model is intended to produce a similar driving behaviour as represented by 

the trajectory data. Two important subjects may be raised within this context,  

1. Universality of the model: To what extent the estimated parameters can reproduce 

driving behaviour consistent with that of real drivers in different traffic conditions and 

driving scenarios. 
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2. Relationship between model parameters and driving styles: It is expected that 

somewhat similar driving styles yield similar model parameters after the calibration 

process. For instance, ideally, calibration of a model using two different datasets from 

the same driver should yield similar results. 

In [73], a study of these subjects, among other things, is given. Therein, the IDM model 

and the Velocity Difference Model (VDIFF) were compared and it was concluded that 

IDM achieves a better performance. 

3.1.5 Environmental impacts 

Another important subject that is the focus of this work is fuel efficiency and reducing 

the footprints of ground transport networks by leveraging the potentials of automated 

driving. This topic was reviewed in section 2.4 and the importance of efficient driving 

strategies along with an effective traffic management was highlighted. 

3.1.6 Summary 

In section 3.1, the requirements for an efficient longitudinal control system in the light 

of the literature were explored. In this study, the objective is to adopt a 

comprehensive approach to the question of fuel efficiency. Therefore, an extensive 

study was conducted to identify the important criteria for automated driving in the 

literature.  The requirements were categorised into five areas, namely safety, stability, 

traffic flow, practical implementation aspects, and environmental impacts. In addition 

to providing a brief description of each requirement, methods used in the literature for 

testing these criteria were mentioned where possible and related references were 

given.  

Having a comprehensive approach to the validation of control methods is very 

important, yet it is somewhat overlooked. The criteria such as safety and comfort are 

clearly crucial, but driving behaviour produced by automated vehicles can also have 

significant impacts on other important criteria such as traffic capacity. If and when 
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automated cars gain high shares of the motorised ground transport, neglecting the 

question of their impacts on traffic capacity could lead to unsatisfactory outcomes. For 

instance, the string stability properties of a platoon of ACC-equipped cars do not 

merely concern the platoon but also may have strong implications on the flow of the 

non-equipped cars. Therefore, it is necessary to identify the collective impacts of the 

automated driving strategies and seek to improve them or, alternatively, limit the 

application of automated driving to the scenarios where they do not degrade the 

collective performance of traffic. Table 2, at the end of this subsection, summarises the 

criteria discussed in this chapter.  

Given the discussion provided in section 3.1 along with the analysis of different car-

following models that was provided in chapter 2, the IDM car-following can be seen as 

a strong candidate for the evaluation of energy-efficient driving strategies. This model 

provides a simple deterministic structure for the longitudinal behaviour of vehicles 

both in free flow and car-following regimes. This simplicity becomes of great 

importance in computationally demanding analyses that will be carried out in this 

study such as the sensitivity analysis in section 3.2, the application of nonlinear, 

dynamic system identification methods in section 3.3, and last but not least, the 

optimisation that is carried out in chapter 4. The IDM has a small number of 

parameters with intuitive interpretations. This facilitates the calibration and 

behavioural analysis of the model. Moreover, the capability of the model to reproduce 

complex congested states and other microscopic driving features was demonstrated in 

section 2.1  and discussed in subsection 2.2.5. The model’s collision-free structure 

ensures safety and the fact that it has already been tested on a real car demonstrates 

its reliability [66, 67]. Finally, the existence of a large number of studies on different 

aspects of the model from stability [71] and calibration [63, 72, 73, 74] to collective 

characteristics [26] facilitates further investigations.    



 
90 

 

Several modifications of the IDM model where discussed in subsection 2.2.5. After a 

more detailed analysis of these models in section 3.3, the model that best matches the 

requirements of this study will be selected. 
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Table 2. The criteria of importance in the automation of driving 

Criteria  Description  Comment  

Safety  Collision-free driving.  

Stability (platoon) Pertains to damping the 
fluctuations around the 
equilibrium point caused by 
changes in the speed of the 
leading vehicle. 

Linear stability analysis/ 
numerical methods 

String stability Propagation of disturbances along 
a long platoon of vehicles and 
occurrence of nonlinear effects 

Linear stability analysis/ 
numerical methods  

Traffic flow Max flow, critical density, traffic 
flow behaviour  

The fundamental diagram 
and phase diagram  

Comfort Jerky acceleration behaviour must 
be avoided 

Constrain or penalise high 
accelerations 

Compatibility Automated vehicles must be 
compatible with drivers 

Human factors  

Desirability  Driving behaviour should be 
customised to different drivers  

 

Dynamics of the 
vehicle 

Vehicle-related mechanical 
constraints in the implementation 
of driving strategies 

The use of car models in the 
derivation of driving 
strategies 

Adequate 
reaction to 
different driving 
scenarios 

Testing the dynamic (transient) 
response of the system in 
different driving scenarios  

Platoon stability mainly 
concerns asymptotic 
behaviour rather than 
transient response 

Robustness in 
calibration 

Pertains to how robust model 
parameters are in modelling a 
consistent driving behaviour while 
driving conditions change  

This is important for the 
representation of different  
strategies through changing 
the model parameters 

Environmental 
effects  

Reductions in fuel consumption 
and emissions 

The trade off with other 
criteria such as traffic flow 
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3.2 Sensitivity Analysis 

Sensitivity analysis is an important part of many mathematical analysis methods such 

as calibration and optimisation. This analysis identifies the parameters with the highest 

level of influence to the problem and establishes the correlation between the 

parameters. Sensitivity analysis may be used both as a pre-optimisation measure and 

as a post-optimisation measure [156, 157].  

The aim of this work is to explore the extent to which one can improve fuel 

consumption in the car-following mode of driving by finding a driving style that is not 

only fuel efficient but also satisfies other important criteria of the longitudinal control 

of vehicles namely, safety, traffic throughput, and traffic stability. This is to be 

achieved by exploring the parameter space of the car-following model that was 

selected for this study, the IDM, as the space where different driving styles can be 

represented.  

Optimisation will be used to find the set of model parameters that result in the least 

fuel consumption. However, by considering the space of all the available model 

parameters there will not be any further model parameters, or degrees of freedom, 

left to be tuned for traffic throughput and stability. Some of the model parameters 

might have negligible impacts on fuel consumption while possibly having significant 

impacts on the other criteria. Therefore, it is important to identify the parameters that 

have the highest impact on fuel consumption and focus on them in the optimisation 

process. If the most influential parameters on fuel consumption turn out to be the 

parameters with marginal implication on traffic throughput and stability, this would 

mean that a fuel economy driving style can be obtained without deterioration of the 

traffic throughput and stability. However, if there is a significant overlap between the 

parameters with the most impact on fuel consumption and those which have a high 

impact on traffic flow and stability, then a trade-off has to be made.  
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Another reason for the use of sensitivity analysis before optimisation is related to 

computational efficiency. The inclusion of the model parameters with negligible 

impacts in the optimisation could result in significantly higher computation times.  

It is worth mentioning that sensitivity analysis can also be used as a post-optimisation 

process, to investigate the robustness of optimisation with respect to small changes in 

the value of optimal parameters.  

In what follows, some of the methods and concepts related to this subject will be 

briefly explored and the two fundamental approaches in sensitivity analysis, local 

sensitivity analysis and global sensitivity analysis, will be discussed.   

In what follows, the generic model denoted by equation below is used, 

                , (3.15) 

where the variables or model parameters that are the subject of sensitivity analysis are 

           and the output is denoted by  . 

3.2.1 Local sensitivity analysis  

In this analysis, the sensitivity of output to changes in the model parameters is 

examined for one parameter at a time. This approach is also known as one-at-a-time 

(OAT) technique. This means that a single point in the k-dimensional space of 

parameters is considered and the impact of changes along the different dimensions 

are analysed one at a time. For instance, a measure of sensitivity is based on the 

calculation of the output variance,  , with respect to the parameter   , when the rest 

of the parameters,    , are kept constant .  

      
  |     

 

(3.16) 

The ratio of this figure to the mean value is known as the Relative Deviation (RD).  

       
  |        

  |     

 

(3.17) 
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Another widely used measure of sensitivity is the Sensitivity Index (SI) where the 

percentage of change in the output is calculated when varying one parameter from its 

maximum value to its minimum value.  

    
    

                
       

                
  

    
                

  
    

(3.18) 

where the parameter    
 are set to the values of interest    

 .  

Local sensitivity analysis cannot be considered as a reliable method for the evaluation 

of the influence of an input on the output in complex, nonlinear systems. In such 

systems the surface of the objective function can be highly complex and nonlinear. 

Since the local sensitivity analysis merely explores a fraction of the parameter space in 

the vicinity of a pre-selected point, it does not reflect the overall influence of an input 

on the output. Therefore, the use of local sensitivity techniques as a measure of the 

sensitivity of nonlinear systems could lead to misleading results. More robust local 

sensitivity techniques include derivative-based methods and relative deviation. A more 

detailed review of such techniques can be found in [156]. 

Visualisation techniques are useful tools in the analysis of the sensitivity of systems to 

changes. A simple and common method for this purpose is to plot the output against 

the input parameters one at a time, while keeping the rest of the parameters constant 

according to the point of interest. An extension to this technique is to plot three-

dimensional graphs where two input parameters can vary at a time. These graphs can 

provide a good picture about the shape and surface of the function. In [74], this 

visualisation technique was used a post-optimisation step in order to demonstrate the 

robustness of optimisation.  

In the context of this study, it is important to investigate the relationship between fuel 

consumption and IDM’s model parameters. Therefore, a visualisation technique is 

used to demonstrate this relationship. Figure 21 illustrates the surface of the objective 

function,  , which in this case is the amount of fuel consumption for a car that drives 
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according to the IDM car-following model. The fuel consumption is calculated using the 

VT-micro model that was described in subsection 2.4.1. 

In terms of experimental setup, a single pair of follower-leader is considered. The 

leading vehicle drives according to a real trajectory, namely the trajectory of the 

vehicle with ID 234, in the Naples dataset 25B [158]. This dataset provides information 

on the velocities, spacing, and accelerations of a platoon of four sensor-equipped 

vehicles that drive through a number of roadways in Naples, Italy. A more details 

description of this dataset is postponed to chapter 4. In this local stability analysis, 

while two parameters are changing at a time the rest of the model parameters are 

fixed to their default values [26], as seen in Table 3. The values for the parameters   

and    are set to 4 and 0 respectively. This is consistent with the recommendations 

made in [74, 73].  

Table 3. IDM default model parameters 

Parameters Default 
Values 

   [    ] 0.73 

  [    ] 1.67 

   [   ] 33.3 

   [ ] 2 

  [s] 1.6 

 

The result of this local sensitivity analysis is demonstrated in Figure 21. From this 

figure, one can conclude that in the vicinity of IDM’s default values, the parameters   

and   , which represent headway and jam spacing, have the highest level of influence 

on fuel consumption and the rest of the model parameters have only marginal 

impacts.  

The figure that depicts fuel consumption as a function of acceleration and headway 

reveals an interesting result. There is a range of values for the parameter  , between 

[        ][
 

  ], where it has a significant impact on fuel consumption. However, this 
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impact diminishes for larger values of  . The same phenomenon could be observed for 

the parameter    which represents the desired speed. This can be a good indicator of 

the complexity of the optimisation surface which renders a merely local sensitivity 

analysis unreliable. 

 

 

 

    

  

Figure 21. 2D visualisation of the local sensitivity of fuel consumption to different model 
parameters of the IDM car-following model. The results are derived from simulations where 
the subject vehicle is driving according to the IDM car-following model. The trajectory of the 

leading vehicle is obtained from the Naples dataset 25B, particularly vehicle with ID 234.  

Min gap,    [m] 



 
97 

 

 

 

3.2.2 Global sensitivity analysis  

Local sensitivity analysis evaluates changes in the output of a system when one 

parameter varies while the rest of model parameters are kept constant. Additionally, 

the magnitudes of changes are assessed around a single point in the space of model 

parameters. As a result of this, the method cannot adequately capture variations of 

the output along all the dimensions and it does not allow comprehensive exploration 

of the whole space of parameters. Therefore, the application of local sensitivity 

analysis in nonlinear systems could lead to misleading results. Global sensitivity 

analysis is a more reliable measure of the sensitivity of nonlinear systems. What 

follows provides a brief overview of this concept.   

A useful technique in the visualisation of sensitivity, in the global sense, is the use of 

scatter plots. Scatter plots illustrates the distribution of different values of the 

output   for different values of      along an axis  representing the values of   . Figure 

22 illustrates scatter plots for the scenario described in subsection 3.2.1. In these plots 

the function   is the amount of fuel consumption in the scenario where a vehicle that 

is driving according to the IDM car-following model is following another vehicle. The 

trajectory of the leading vehicle is obtained from the Naples dataset 25B and is related 

to the vehicle with ID 234.  
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Figure 22. Scatter plots representing the fuel consumption of a vehicle that is driving according 
to the IDM car-following model. The trajectory of the lead vehicle is obtained from the Naples 

dataset 25B, particularly, vehicle with ID 234. 

The parameter boundaries used for this analysis and throughout this section are 

reported in Table 4. 

Table 4. Lower and upper boundaries used.  

Parameters LB UB 

  0.5 5 

  0.5 5 

    10 50 

    0.5 5 

𝑻 0.5 5 
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It can be clearly seen that this analysis sets the parameter T as the most influential 

parameter as no significant pattern of increase or decrease in fuel consumption can be 

seen when other model parameters vary.  

A measure to represent the existence of shape or pattern in Figure 22 can be 

formulated based on conditional variance; 

       
(      |   )   (3.19) 

where the expectation operator is calculated over the     dimensions of the space 

of model parameters while the parameter    is kept constant and the variance 

operator is calculated over all the possible values of   . The conditional variance, 

   
(      |   ), is known as the first-order effect of    on    Large values of 

   
       |     imply that changes in the value of the corresponding parameter,   , 

result in significant changes on the expectation       |    and therefore, this 

parameter has high influence on the output. Using the well-known formula 

    
(      |   )     

(      |   )      ,                        (3.20) 

one can normalise the first-order effect to derive a sensitivity measure known as the 

first-order sensitivity index of    on    [157],  

    
   

(      |   )

    
  .       

(3.21) 

In linear models, this measure would produce a reliable means to assess the impact of, 

  , on the output. However, in nonlinear models one also needs to take into account 

the interactions between different factors or higher-order effects of a factor on the 

output. Equation (3.22) applies to linear models. 

      ∑   
(      |   )

 

   

 
 
(3.22) 

In these models the contribution of each factor to the overall variance can be a 

representative measure of its influence. For a nonlinear model, however, this is not 
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necessarily the case and the same first-order sensitivity indices can lead to misleading 

results; an example of this can be found in [157, pp. 25-30]. In general, the summation 

 ∑    
 
    is not necessarily equal to one for nonlinear models.  

The so-called ANOVA-HDMR decomposition (ANalysis Of VAriance with High 

Dimensional Model Representation) can be applied to nonlinear systems.  

     ∑  

 

 ∑∑   

    

                
(3.23) 

where  

       
(      |   ), 

          
(      ( |    ))       , and 

             
(        ( |      ))                                        

By dividing both sides of Equation (3.23) by     , Equation (3.24) is obtained. 

  ∑     ∑ ∑                      (3.24) 

Equation (3.24) provides a good framework to evaluate the composition of the 

variance of   in terms of first-order and higher-order effects of individual parameters. 

In particular, by subtracting all the first-order and higher-order terms except for the 

parameter of interest,   , from the total variance, one could assess the effects of the 

factor    on the output. This measure is an indicator of the overall impact of any given 

factor on the output of nonlinear systems and is referred to as the total sensitivity 

index. 

   
   

    
(   

  |    )

    
  

  (∑     ∑ ∑                             )                          

 
(3.25) 

Using Equation (3.20) and (3.25),    
 can be written as, 
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(   

  |    )

    
                                 

 
(3.26) 

3.2.2.1 Variance estimators 

The next step in performing sensitivity analysis is to find appropriate variance 

estimators. This topic has been the subject of numerous works in statistics. A 

comprehensive review of different estimators is beyond the scope of this work, but 

more details on this subject can be found in [159] and references therein. What 

follows describes an estimator that has been applied to the subject of car-following 

models [76].  

Firstly, two matrices   and   both of dimensions     need to be randomly selected 

from the space of parameters, where   is the number of model parameters and    is 

the number of simulations.   

    [

       

   
       

]                         [
       

   
       

]                                
 
(3.27) 

Each row of matrices   and   constitute a complete set of model parameters and can 

be used in a simulation. Therefore,    simulations are needed to find the 

corresponding output values for the rows of   and  . These simulations map the space 

of parameters to a single output denoted by     . For instance, since the matrix   has 

  rows, i.e.   sets of parameters, a vector of   outputs could be associated with this 

matrix;  

      [

     
     

 
     

], 

 
(3.28) 

where the indices denote the corresponding row of the matrix  . 

A number of additional matrices, specifically   matrices, are formed from matrices   

and   by swapping one column of   with   at a time; 
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    [

           

     
           

]                                   ,                                     
 
(3.29) 

All the elements of   
  remain the same as  , except for the  -th column that is 

replaced with  -th column of  . Subsequently, the estimators given by equations (3.30) 

and (3.31) can be used. 

 ̅  
(      |   )  

 

 
∑      ( (  

   )
 
      )

 
     

 

(3.30) 

 ̅   
(   

  |    )  
 

  
∑ (       (  

   )
 
) 

                                                               (3.31) 

The bar symbol is used to emphasise that the values on right-hand side of the 

equations are estimations of variance and expectation. 

Finally, the variance of the output,       is calculated using the column vectors      

and      according to: 

     
 

  
∑( ([
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)

 

  

 
(3.32) 

where [
 
 
] is the matrix resulting from vertical concatenation of the two matrices   

and  . 

An important question in this context is the number of samples required,  , for the 

sensitivity indices to be reliable. Plotting graphs of the sensitivity indices against the 

number of samples is a convenient way to ensure the stability of these indices [76].   

This subsection is concluded by applying the global sensitivity analysis to the scenario 

that has been used throughout section 3.2. In this scenario, a pair of vehicles is 

considered where the follower is driving according to the IDM and the leader is driving 

according to the trajectory of vehicle with ID 234 in the NGSIM Naples dataset 25B. 

The result is illustrated in Figure 23 and summarised in Table 5. 
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Figure 23. Total sensitivity indices for the effects of the IDM model parameters on fuel 
consumption in a simulation scenario where the vehicle with ID 234 from the Naples dataset 

25B is the leading vehicle. 

Table 5. Lower and upper boundaries used and total sensitivity indices. 

Parameters LB UB  𝑻 

 [
 

  ] 
0.5 5 9% 

 [
 

  
] 0.5 5 0% 

  [
 

 
] 10 50 3% 

  [ ] 1 5 22% 

𝑻[ ] 0.5 0.5 73% 

 

Based on this analysis it is clear that the parameter   has the highest impact on fuel 

consumption. The parameter    comes second in terms of its influence, however 

unlike what was suggested by the local sensitivity analysis, this parameter has much 

less influence on fuel consumption compared to parameter    This is also consistent 

with the implications of Figure 22. 

More details on the subject of sensitivity analysis and its application to car-following 

models can be found in [76, 159, 160]. 

3.2.3 Summary 
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Section 3.1 was concluded with the choice of the IDM car-following model for the 

present study. The objective of this section was to identify the parameters of this 

model that have the highest impact on fuel consumption. For this purpose, sensitivity 

analysis was discussed as an important step in any optimisation process. This analysis 

can be used to identify the parameters with the highest relevance to the objective 

function, by doing so it can; 1) simplify the optimisation by eliminating the parameters 

with negligible impacts on the objective function, and 2) leave a certain degree of 

freedom to fine-tune other model parameters according to other requirements.  

Two distinct approaches to sensitivity analysis were discussed, namely local sensitivity 

analysis and global sensitivity analysis. The former could be used as an indicator of the 

sensitivity of the output function to changes in the value of model parameters around 

a single point. The latter delivers a much better understanding of the overall impact of 

each parameter on the output. 

Both local and global sensitivity analyses were applied to the IDM car-following model 

in order to find the parameters with the highest influence on fuel consumption. Both 

methods pointed to the importance of the parameter  , representing the headway, for 

fuel consumption. This parameter was followed by parameters    and   that represent 

jam spacing and maximum acceleration respectively.  

It is important to bear in mind that the experimental setup and the driving scenario 

that was used also affect the results of sensitivity analysis. The driving scenario was 

related to a single pair of follower-leader. The trajectory of the leader was selected 

from the Naples dataset 25B in which a variety of driving conditions are experienced. 

Therefore, this dataset provides the sufficient diversity that is required for the 

conclusions to be relevant to urban driving in a more general sense. However, the 

investigated scenario focuses on a single pair of vehicles and considers the fuel 

consumption of the follower in relation to the trajectory of the leader. This limits the 

extent to which the conclusions could be generalised to other operational scenarios 

where, for instance, the objective is to optimise fuel consumption for the whole 
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network and not only for individual vehicles. This topic will be further explored in 

chapter 4. 

3.3 A new approach to the comparison of car-following models 

The IDM car-following was highlighted as a strong candidate for the present study on 

the basis of its merits, such as simplicity, availability of studies on different aspects of 

it, and implementation in an ACC. The objective of this section is to provide a more 

detailed account of the differences between the IDM model and another widely known 

car-following model that was also considered for this study, namely the GHR car-

following model. Both models were described in chapter 2. 

In chapter 2, it was discussed that the car-following models and the application of 

them in micro-simulations is of great importance in a broad range of fields from 

roadway design to conducting various investigations related to intelligent transport 

systems. Nonetheless, on the one hand these models are far from ideal and incautious 

use of them might cause misleading results in certain applications. On the other hand, 

in spite of fundamental differences in the mathematical structures of different car-

following models, many studies have failed to give a reliable account of the strengths 

and weaknesses of different car-following models in modelling driving behaviour. Such 

studies typically rely on the calibration of different car-following models and compare 

them on the basis of the cumulative errors that they produce. But, it is often found 

that different car-following models have only somewhat marginal differences in terms 

of cumulative errors [72, 74, 161, 162].  

The use of cumulative errors alone does not give an accurate assessment of the 

fundamental differences of the car-following models. Moreover, important questions 

such as the source of error and deficiencies of car-following models in accounting for 

certain driving behaviour remain unexposed in cumulative errors. Hence, a more 

meaningful framework for the analysis and evaluation of different car-following 

models is necessary. In this section a method based on parameter tracking and 
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unscented particle filtering is proposed in order to enable a more accurate assessment 

of the fundamental differences of car-following models and their deficiencies in 

accounting for driving behaviour. The method is then applied to the IDM and Gazis-

Herman-Rothery (GHR) models and the results are compared. In order to add more 

depth to this analysis, two of IDM extensions, the Extended IDM (EIDM) and IDM with 

Variance-Driven Time headways (VDT), are also included in this study.  

It is worth mentioning that car-following behaviour may be seen as random 

realisations of a stochastic process and this means there is an intrinsic limit to the 

extent to which car-following behaviour can be modelled using deterministic models.  

The rest of this section is organised as follows. Subsection 3.3.1 provides a brief 

description of the four car-following models that were selected for this study. The 

calibration of car-following models is discussed in subsection 3.3.2. Subsection 3.3.3 

gives an overview of Particle Filtering (PF) and its application for dynamic parameter 

tracking. This subsection is concluded by demonstrating the successful application of 

PF to the problem of tracking IDM model parameters. Prior to the application of the 

method for the comparison of the models, a sensitivity analysis is conducted to 

identify the parameters with the highest influence on the driving scenario used, the 

results are described in subsection 3.3.4. The comparison of the car-following models 

using the proposed method is carried out in subection 3.3.5. Finally, concluding notes 

and potential future directions are discussed in subsection 3.3.6. 

3.3.1 Car-following models 

The GHR model is one of the most studied car-following models. Multiple 

modifications of this model along with studies on its calibration were discussed in 

chapter 2.  This model is given by: 
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The model parameters and variable where previously defined in chapter 2, p.p. 28. 

The IDM is another car-following model that was selected for this study. This model 

and its merits were discussed in chapters 2 and 3. Unlike many other car-following 

models, there is no explicit time delay in the IDM car-following model. Interestingly, in 

[73] it was shown that the introduction of an additional explicit time delay in the IDM 

does not improve the fit to real trajectory data. This is due in part to the “anticipative 

intelligent braking” which is incorporated in the IDM. In [26], it was argued that drivers 

compensate for their reaction time by their anticipation skills which are gained from 

the experience. For convenience, the equation defining this model is repeated here: 
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(3.33) 

Several modifications to the IDM have also been proposed. The Human Driver Model 

(HDM) extension to IDM [146] incorporates some human driving attributes into the 

model, namely the reaction time, imperfect estimation capabilities, and temporal and 

spatial anticipation. The IDM with Memory (IDMM) [163] is another modification to 

this model that accounts for slow adaptation of drivers to the traffic condition. In 

[164], the unrealistic behaviour of IDM in cut-in situations is addressed and the 

Enhanced IDM (EIDM) was proposed. Among different modifications of the IDM, the 

model that incorporates Variance-Driven adaptation of the Time headway (VDT), IDM-

VDT, [165] is of particular interest as it adds an additional mechanism to the 

behavioural capabilities of IDM in order to account for the observed change of 

behaviour in congested and free traffic regimes. The change of driving behaviour in 

different traffic conditions is known as adaptive driving behaviour and is addressed by 

a number of studies [166, 167, 168]. In the IDM-VDT, this is modelled by including 
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additional information about local variations of speed among neighbouring vehicles in 

the time parameter that represents headway,  .  

The EIDM and IDM-VDT models are selected for the present study. The former is given 

by, 
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(3.34) 

where the additional parameter   can be interpreted as a coolness factor. For     

the model reverts to the IDM, while for     the sensitivity with respect to changes of 

the spacing vanishes in driving conditions where the spacing is small and velocity 

difference is equal to zero [164]. Here, the value of        which was recommended 

in [164] is used. The variable      is a Collision Avoidance Heuristic that represents the 

maximum acceleration that does not result in crashes. This value is given by, 
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(3.35) 

where  ̃             and      is the step function. 

The IDM-VDT model modifies the parameter   of the IDM according to, 
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(3.36) 

 

where   is the sensitivity of the time headway to increasing velocity variations,   
    

denotes the maximum multiplication factor for the time headway found for traffic 
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flows of maximum unsteadiness,    is the variation coefficient for a platoon of   

vehicles, ̅  is the local average velocity, and    is the local variance in velocities. 

3.3.2 Calibration of car-following models 

The main purpose of car-following models is to reproduce driving behaviour observed 

in real traffic. The calibration plays a critical role in this process. The car-following 

models attempt to describe the underlying driving dynamics through a number of 

explanatory variables, typically own velocity, relative velocity to preceding vehicle, and 

spacing between vehicles, and a mathematical structure relating these variables to 

acceleration or velocity. However, as there is a significant difference in the driving 

behaviour observed in different traffic conditions, one needs to adjust a given car-

following model to the scenario of interest by means of calibration. These calibrated 

models can then be assessed based on the accuracy of predictions made by them for a 

separate dataset.  

Interestingly, it is known that in spite of the considerable differences in the structures 

of different car-following models, they produce somewhat similar cumulative errors. 

For example, in [72] it was reported that the differences in validation errors across 

different car-following models are marginal. Moreover, it was found that one car-

following model may best describe the trajectory of a certain driver when a certain set 

of trajectories is used, while another car-following model could best fit the trajectory 

of the same driver when a different set of data is used. 

The two aforementioned observations may suggest that no car-following model is 

preferable over another since 1) the error produced by them is somewhat similar and 

2) each of them describe a certain driving style more accurately. However, validation 

error or fitting quality alone cannot be a good indicator of the accuracy of car-

following models. In [72], it was reported that a complex model may be more 

vulnerable to over-fitting compared to a simpler model. In [74], important criteria such 

as robustness, sensitivity to changes in the model parameters, model completeness, 
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and parameter orthogonality were put forward for benchmarking different car-

following models. Comprehensive reviews on different aspects of car-following models 

and their calibration can be found in [74, 169]. 

Some of the studies that deal with microscopic calibration of the IDM model are [63, 

72, 74, 73]. Some of these results are summarised in Table 6: 

Table 6. Calibration results for the IDM car-following model using trajectory data 

  Source   [
 

  
]   [

 

  
]   [

 

 
]   [ ]   [ ]  [ ]   

Hoogendoorn (2010)* [63] 1.30 0.54 28.33 6.93  0.94  

Punzo (2007) [72] 2.57 1.69 28.36 0.74 0.56 0.69 2.84 

Kesting (2009) [73] 0.76 1.58 16.1 1.68  1.30  

Treiber (2013) [74] 1.39 0.65 16.1 1.53  1.20  

*This study provides multiple estimates for the parameters. The one used in table is 

selected as it was derived based on empirical data.   

In [73], different estimates are given with great variations compared to one another. 

The reason for this variation could be related to the use of a single vehicle trajectory 

for deriving each of the estimates and unlike [72] and [63], neither a data-fusion 

method for calibration nor a diverse dataset was used in order to ensure the 

robustness of calibration. This gives rise to the possibility of over-fitting and less 

reliable results for cross validation. 

It should be noted that the estimates provided in the table above vary in the use of 

methodology, dataset, driving scenarios, and the set of parameters that were 

calibrated. In [72] all seven model parameters are calibrated, while in [63, 73] five 

model parameters are calibrated and the remaining two parameters are set to zero. In 

[63], a data fusion technique based on maximum likelihood is used in order to estimate 

a single set of model parameters that best reproduce the flow of traffic as seen in the 

real data, while in [72] different sets of model parameters are obtained for individual 

vehicles. 
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Two of the important factors in calibration that are somewhat overlooked are; 1) 

accounting for the correlations between the model parameters and 2) recognising that 

not all datasets are suitable for the calibration of all the model parameters. A dataset 

may be lacking any information on a certain driving attribute, for example desired 

speed in free-flow. Such a dataset must not be used for calibration of a parameter that 

denotes desired speed [74, 170]. 

In the next subsection the dynamic system identification is introduced as a powerful 

method for the analysis of car-following models.  

3.3.3 Dynamic system identification using Particle Filtering 

Calibration is a form of system identification for systems with a known model. This is 

known as the “grey-box system identification problem”. In this type of problems a 

model exists, for example a mathematical model, but certain elements of the model 

need to be determined from the data. By the application of system identification on 

car-following models, one finds a set of model parameters that result in the most 

plausible fit; the minimum cumulative errors is often used to determine the most 

plausible fit. However, as pointed out in previous sections, the goodness of fit alone 

cannot be a representative measure of the accuracy of a model.  

In order to deal with the issue raised above, the use of dynamic system identification is 

proposed. This approach provides an answer to the question of “how do the 

parameters of a given car-following model need to change in time so that the 

modelled behaviour matches the real data?” The answer to this question could shed 

light on many different properties of car-following models, including the question of 

“what constitutes a good model?” A good car-following model should not only achieve 

a good fit to real data, but also does not need many changes to cope with different 

driving scenarios.  

Model coefficients are meant to be constants, therefore dynamic system identification 

allows us to identify the shortcomings of car-following models by observing the 



 
112 

 

changes in the model parameters that are necessary in order to obtain an accurate 

match with the real data. In this study, the method of sequential Monte-Carlo filter or 

Particle Filter (PF) has been used for this purpose due to its merits in dealing with 

nonlinear non-Gaussian systems with complex dynamics [171, 172, 173].  

The PF is a family of methods where a set of samples are used to approximate the 

posterior distribution in an online fashion and based on the Bayesian recursion. 

Initially, candidate estimates of the parameters are extracted from a prior distribution. 

These samples, or the so-called particles, are fed into the model and produce 

prediction values. The predictions are compared to the observed values in order to 

calculate weighted samples of the posterior, or the so-called importance weights. 

Subsequently, particles are drawn from the posterior, in order to produce an 

unweighted estimate of the posterior. This sequence is repeated in every time step, 

upon the reception of new data, in order to produce a more accurate estimate.  

This method has been previously applied to car-following models in order to jointly 

estimate the traffic state and model parameters [168]. Therein, dynamic parameter 

estimation was used in order to track changes in the model parameters of two delayed 

car-following models, namely the GHR and Helly models. Additionally, a discussion of 

the impact of filter configuration on the parameter estimates was given. While this 

paper was among the sources of inspiration to the present study, the present work 

diverges from [168] in methodology and objectives, in the following ways:  

1) The objective of [168] was stated to generalise dynamic parameter estimation to 

include reaction time in delayed car-following models. Moreover, application of this 

method to empirical data is served as evidence of dynamic driving behaviour, i.e. 

changes of the driving attributes in real driving conditions. The present study, 

however, employs dynamic parameter estimation as a technique for the comparison of 

car-following models. Inspired by the field of “Quantitative Model-Based Fault 

Detection and System Diagnosis” [174, 175, 176], the author intends to link dynamic 

model estimates to the robustness of models. In the field of fault detection and system 
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diagnosis, changes in the model parameters are linked to the occurrence of faults. 

While, due to limited modelling capabilities, avoiding false detection of faults is a big 

challenge, a good and robust model generally is expected to be more immune to the 

false detection of faults that result from drastic changes in the model parameters that 

do not correspond to an actual change in the system. Herein, the comparison of car-

following models is carried out according to this concept. 

2) Simultaneous tracking of multiple model parameters is problematic for three 

particular reasons:  

a) The correlation of model parameters means that errors in the estimation of one 

model parameter [177] can be compensated for by additional errors in the estimation 

of another. This issue is reflected in dynamic estimation of multiple parameters when 

in successive applications of the method, different dynamic estimates are obtained. 

Inconsistent estimates in successive applications undermines the meaningfulness of 

the estimates.  

b) It is not meaningful to consider all of the model parameters as variables. A model 

parameter that represents maximum acceleration, or comfortable deceleration, is 

expected to remain steady for longer periods, whereas a parameter that represents an 

inherently random attribute such as headway might change more rapidly.  

c) It is neither useful nor correct to estimate all of the model parameters while some of 

them are almost irrelevant to a particular scenario. This relevance can be examined by 

sensitivity analysis [74, 170].  

For all of the aforementioned reasons, in this study, unlike [168], the investigation is 

focused on the most important parameter of a car-following model in the scenario of 

interest.  
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As mentioned above, PF can be used to tackle the difficulty associated with the 

estimation of states or parameters in nonlinear, non-Guassian systems. The state-

space representation of such system is given by; 

                
                                                                           

(3.37) 

where    is the state of the system that evolves under the nonlinear function        

The  previous state of the system is denoted with,     , and      is an independent, 

identically distributed (i.i.d) random noise, that is known as the process noise. The true 

state of the system is almost always hidden from the observer. The objective of 

filtering is to deduce a good estimate of the state of the system through successive 

observations and measurements,         . These observations are dependant on 

the control input,   , the true state of the system,   , and an i.i.d noise,     known as 

the measurement noise. This dependency is denoted by the function          

The method of PF is based on the principles of Bayes theorem, which provides a 

mechanism for updating knowledge about the underlying system upon the reception 

of new data at each time instance. In Bayesian estimation, the quantity of interest is 

the probability distribution function of the state variable,     |      , given the 

sequence of observations made. This is known as the posterior. 

In algorithms such as the Kalman Filter and the Extended Kalman Filter (EKF), the 

following two assumptions are made:  

1. The system is linear or the locally linearised system (in the case of EKF) provides a 

good enough approximation of the system. 

2. The underlying noise is Gaussian.  

Under these assumptions the characteristics of the posterior, namely the mean and 

covariance, can be optimally derived. The term optimal in this context means that the 

resulting estimator leads to Minimum Mean-Square Error (MMSE). However, when the 

system of interest exhibits highly nonlinear behaviour and the noise is non-Gaussian, 
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the performance of KF and EFK deteriorates. PFs provide an alternative way to the 

linearisation of nonlinear systems and making assumptions about the underlying noise 

distribution. In these methods, a number of samples, which are referred to as 

particles, are propagated through the nonlinear systems using simulation techniques. 

The transformed samples are then used to extract the characteristics of the posterior.  

An important step in this method is importance sampling where the importance 

weights are estimated. 

   
      |            

      |     
                                   

(3.38) 

where,    is the importance weight,       |      is conditional probability of 

observations,  , given the states,  ,         is the probability distribution of the states, 

and       |      is a known, easy-to-sample proposal distribution.  

A sequential relationship for the importance weight is given by [171]; 

       

    |       |     

    |            
                                                                         

 
(3.39) 

A popular choice of the proposal distribution, , in order to simplify this equation is: 

    |                 |                                                 (3.40) 

In PF, the estimate of the posterior is obtained from a number of randomly selected 

weighted samples. The great potential of this method in dealing with complex 

nonlinear non-Gaussian systems was pointed out by [171, 172].  

Figure 24 provides a schematic representation of the PF method. At the first step of 

the algorithm, sampling,   random particles (samples) are drawn from a proposal 

distribution. These particles are then propagated through the nonlinear system and 

are subsequently associated with weights,  ̃, according to their fitness that is 

estimated by Equation  
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(3.39). This step is known as the importance sampling. Subsequently, a resampling of 

particles with respect to their associated weights is carried out. As a result of this, 

particles with high weights are split into a number of unweighted particles and 

particles with low weights are eliminated. Finally, at the third step a random noise is 

applied to the group of particles in order to introduce local variety in the samples, this 

process is visualised in the fourth row of particles in Figure 24. Since this step provides 

an unweighted distribution of particles that mimics the prior distribution, it is referred 

to as the prediction step.  

 

 

Figure 24. The visualisation of the three stages of importance sampling, resampling, and 
sampling (prediction) in PF, figure from [178]. 

 

More details and a pseudo-code of the method can be found in [171, 168, 172] . 

In this study, the application of this method for parameter tracking is of particular 

interest. Given a car-following model and a time series, the estimates of model 

parameters can be updated at every time step. As a result, time-varying estimates of 
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the model parameters could be obtained. Of course, the time-varying estimates 

cannot be used for modelling and simulation purposes, however, they can provide a 

good insight into some of the very important characteristics of the model that may 

remain hidden in cumulative error terms.  

In applications of models in simulations the parameters are constant. The use of a 

parameter tracking method provides information about the extent to which a model 

parameter should deviate from its nominal value in order to compensate for the 

model’s deficiencies. This concept is closely related to model-based fault detection 

[174, 175].  If general patterns of changes are observed in the dynamic estimates, e.g. 

significant increase or decrease in the value of a model parameter in an identifiable 

driving phase, this information could be used in order to improve the quality of 

modelling and simulation.  

3.3.4 Sensitivity analysis  

In [74] it was pointed out that parameter non-orthogonality can cause misleading 

results in the calibration process. Parameter non-orthogonality refers to the existence 

of high correlations between the parameters. In this study, a global sensitivity analysis 

is performed in order to minimise the impact of parameter non-orthogonality. This is 

achieved by the identification of the model parameter that has the highest influence 

on driving behaviour in the simulation scenario and subsequently using the identified 

parameter in the parameter tracking process.  

In [170] a global sensitivity analysis was applied to the IDM in order to identify the 

model parameters that have the highest influence on the calibration process. Therein, 

the trajectories of 2037 follower-leader pairs from the NGSIM-I80 dataset [136] were 

used. Moreover, in addition to the IDM’s six model parameters, each leader/follower 

pair was assigned an ID and this ID was also included in the analysis. Finally, the Root 

Mean Square Error (RMSE) of spacing was used as the Measure of Performance (MoP) 

in the calibration process. It was found that the ID of the pair has the highest influence 



 
118 

 

on the calibration with the total sensitivity index of 80%.  The IDM parameters  ,  ,  , 

  ,   and    obtained total sensitivity indices of 45.27%, 22.47%, 9.41%, 1.24%, 1.15%, 

and 0.91% respectively.  

In the present study, the same parameter boundaries as [170] are used for the three 

IDM-based car-following models. These values are given in Table 7. 

Table 7. The lower and upper boundaries used in this study. 

Parameters LB UB 

 [
 

  ] 
0.5 4 

 [
 

  ] 
0.5 2.5 

  [
 

 
] 21.7 30.7 

  [ ] 0.1 3 

𝑻[ ] 0.1 3 

 

For the GHR car-following model, the following boundaries are used;   [   ] for the 

sensitivity parameter, and    [     ] for the time delay. These boundaries are 

selected in order to include the values reported by different studies [43]. Figure 25 

shows the total sensitivity indices of the IDM car-following model with respect to the 

calibration error where the calibration error is defined as the sum of squared errors for 

velocity, acceleration, and distance:   

    ∑   
    

       
    

       
    

   
 

   

  

                                           

 
(3.41) 

where   is the acceleration,   is the velocity,   is the spacing,   is the number of 

samples, and the superscripts   and   denote modelled and real values respectively. 

This figure demonstrates the total sensitivity indices in a driving scenario where the 

trajectory of the leader is that of the vehicle with the ID 362 from the NGSIM-I80 

dataset.  
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Figure 25. Total sensitivity indices of the IDM car-following model w.r.t. the calibration error in 
a simulation scenario where the trajectory of the lead vehicle is that of the vehicle with ID 362 

from the NGSIM-I80. 

In order to examine the consistency of the results, different trajectories were also 

used, namely the trajectories of the vehicles with ID numbers {362, 368, 378, 381, 391} 

and the results were cross-checked. For the three IDM-based car-following models, 

values consistent with the ones observed above were obtained. For the GHR car-

following model, however, while in the majority of cases the parameter   obtains a 

sensitivity index higher than parameter   , in some cases parameter    is identified as 

the most influential parameter. The values of the total sensitivity indices of    and  , 

averaged for the five aforementioned trajectories, are 0.69 and 0.85 respectively. 

Unlike the sensitivity indices for the IDM which clearly highlight the parameter   as the 

most influential parameter on the calibration error, the sensitivity indices of the GHR 

model are not conclusive enough as to which one of the model parameters has the 

highest influence, therefore, for simplicity the parameter   is considered in this study.  

Along with the sensitivity analysis, the choice of the model parameters   for the IDM 
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and   for the GHR could also be justified by their physical interpretations and by the 

scenario under investigation. For instance, the parameter representing reaction time in 

the GHR,   , may not be expected to have high frequency, intense changes in a short, 

car-following scenario whereas for the sensitivity parameter such changes could be 

expected and would convey more information about the deficiencies of the model.  

These criteria may be seen as additional requirement for such system identification 

studies [74].  

The sensitivity indices obtained in this study are consistent with the ones reported in 

[170] except for one marginal difference. In the set of trajectories investigated in this 

study, the parameter    has a higher influence compared to the parameter  , whereas 

in [170] the total sensitivity index of the parameter   is greater than that of   . This 

minor difference might have arisen from the fact that in this study the sensitivity 

analysis was conducted on a much smaller number of trajectories compared to [170]. 

Additionally, in this study all of the investigated vehicles remain within a platoon for 

the whole period of observation, while the occurrence of lane-changes, which is quite 

common in the NGSIM-I80 dataset, could be the source of the difference observed.  

Table 8. The comparison of the total sensitivity indices obtained in this study with the ones 
reported in [170]. 

IDM 
parameter 

Trajectory 
362 

Trajectory 
368 

Trajectory 
378 

Trajectory 
381 

Trajectory 
391 

Results 
in  
[170] 

  9% 10% 5% 2% 2% 9% 

  1% 2% 1% 0% 1% 1% 

   0% 0% 0% 0% 0% 1% 

   10% 11% 5% 2% 6% 1% 

  95% 95% 99% 95% 97% 45% 

 

3.3.5 Results  
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Prior to the application of the method to the comparison of the car-following models, 

PF is applied to a set of simulated data in order to demonstrate the potentials and 

shortcomings of PF in tracking model parameters.  

The simulated data are obtained from the following scenario; a leader-follower pair 

was considered. The data, i.e. velocity and position time series, related to a specific 

vehicle from the NGSIM I-80 dataset, namely the vehicle with ID 368, were associated 

with the leading vehicle. The following vehicle was simulated using the IDM with 

parameters that changed at certain points in time. Particle filtering is then applied to 

the simulated dataset in order to generate dynamic estimates of the parameter  . The 

objective is to assess the extent to which the parameters and the times of change 

could be detected using PF. Figure 26 illustrates the data used.  

 

 

Figure 26. a) Trajectory of the lead vehicle selected from the NGSIM I-80 dataset, Lane 2   
b,c,d) trajectories, velocities, and accelerations of the lead vehicle and the modelled follower 

in dashed red line and blue solid line respectively. 

The parameter profiles used in the simulation are as follows. The values reported in 

[63] were used up to the time       , i.e.  

      
 

  ,       
 

  ,        
 

 
,            ,       , and         .  

 a) b) 

 
 a) 

c) d) 
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At       , the parameter          were changed to the following values, 

   
 

        
 

        
 

 
         ,  

in order to include the case of having erroneous estimates of some of the model 

parameters while one of the parameters is being tracked. The value of the parameter, 

 , was changed again to       and     s at times        and       , 

respectively. 

The artificially generated dataset is then used to track the parameter   of IDM. While 

the value of the parameter   is being dynamically estimated, the rest of the model 

parameters are assumed to have fixed values similar to those used in the simulation, 

during the first time interval,        . Figure 27 shows the result of the 

application of the particle filtering to the simulated dataset.  

 

Figure 27. The result of the estimation of the parameter T. The blue shadow denotes the 
distribution of particles at each time instance while the red curve is the selected particle. 

It can be seen that until      s, the estimates of the parameter   (demonstrated by 

the red line) are almost error-free and stable. Within this interval,   [     ]  , the 

estimates are very close to 1.17 which is, indeed, the value used in the generation of 

the simulated dataset. It is worth mentioning that within this interval, the correct 

values of the other model parameters were used in the estimation process. Therefore, 

it can be concluded that when:  
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a) the correct assumption is made about the underlying model in the estimation 

process (since the IDM was used in the generation of the dataset and in the estimation 

process) and,  

b) one parameter is being tracked while the values of the other model parameters are 

correctly identified, 

then PF can successfully detect and track the correct value of a parameter.  Moreover, 

the PF has successfully identified the occurrence of changes in the value of the 

parameter   at the times       ,       , and       . At these times, the value of 

the parameter   was changed to    ,  , and   respectively in the simulation process. 

The PF has correctly identified these times and they are easily noticeable as “jumps” in 

the parameter estimates at       ,       , and        (Figure 27).  

However, after       , the estimates of the parameter  , unlike before, are unstable 

and fluctuate around a certain value. This is due to the fact that in the simulation stage 

after      s some other model parameters, namely      and   , were also changed. 

Therefore, the fixed values of the parameters      and    that are used in the 

estimation are no longer correct. As a result, the effect of assigning incorrect values to 

these parameters in the estimation is compensated for by overestimations and 

underestimations of the parameter  . Nevertheless, interestingly the estimates still 

seem to fluctuate around the correct value of the parameter  . 

Using the dynamic estimates of the parameter  , while keeping the rest of the model 

parameters constant and equal to their initial values throughout the simulation, leads 

to an almost perfect reproduction of the spacing (        ), velocity (        ) 

and acceleration (       ) in spite of the fact that the values of the parameters      

and    do not match the actual ones after      . This is shown in Figure 28.  
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Figure 28. The comparison of the actual data with the simulated data when the dynamic 

estimates of the parameter 𝑻, given by particle filtering, is used. 

 

It should be noted that in the investigated application of PF for parameter tracking, the 

IDM car-following model was used to generate the data related to the follower and the 

same car-following model was used in the parameter tracking process. In the 

application to real data, this is the equivalent of having a perfect knowledge of the 

model underlying the behaviour of drivers. Although this is obviously not the case, the 

findings of [169] suggest that the characteristics of the follower’s behaviour can be 

recovered even when the model used to generate data and the model that is fit to the 

data are different.  

So far, it was demonstrated that the PF can successfully identify changes in driving 

related attributes. This topic is investigated further in the appendix where after the 

application of PF and identification of the points where abrupt changes take place, i.e. 

a) b) 

c) 
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the “jump” points, a calibration is carried out in order to estimate the exact value of 

the parameter   within each interval between the jump points. It is shown that when 

this calibration is carried out, the actual value of the parameter   in different intervals 

can be almost exactly recovered. This method is then applied to real data in order to 

evaluate whether patterns of changes in driving attributes could be detected in 

different driving conditions. 

In this section, however, a different application is considered. As mentioned before, 

the objective is to apply dynamic system identification in order to assess the goodness 

of a model. In this subsection, some of the model parameters were fixed and one of 

them was tracked. It was demonstrated that using erroneous estimates for the fixed 

model parameters after      , leads to fluctuations in the values of the tracked 

parameter. In a similar way, a model that does not sufficiently describe the underlying 

dynamics of driving behaviour is expected to cause intense fluctuations in the values of 

the tracked parameter. These fluctuations happen in order to compensate the 

shortcomings of a model. In this section, this effect is used in order to assess and 

compare different models. If the method is applied to two different models and one of 

the models produce much more unstable estimates, this could be an indicator of an 

inferior modelling goodness.  

Here, PF is applied to the four car-following models that were described in 

subsection 3.3.1, The IDM, IDM-VDT, EIDM, and the GHR models. The inclusion of the 

two modifications of the IDM provide a good insight into the question of “how does 

each additional mechanism that is integrated within the IDM to produce the 

corresponding modified car-following model affect the accuracy of modelling?” The 

GHR model is included to provide variety in the mathematical structure of the subject 

car-following models, the model suggested by Ozaki [61] is used in this study. 

Subsequently, the analysis of the fluctuations and pattern of changes in the model 

parameters will provide insights into the fundamental differences of the four car-

following models.  
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For the driving scenario certain trajectories from the real NGSIM I-80 dataset are used. 

In order to exclude lane-changing from the factors that influence the capability of a 

model to generate accurate acceleration behaviour, the trajectories of five vehicles are 

chosen that remain within a platoon for the whole period of observation, namely 

vehicles with IDs {362, 368, 378, 381, 391}.  

 

Figure 29. The trajectories of the five vehicles selected for comparison.  

The parameter tracking method that was described earlier is then applied to each of 

the car-following models for a given trajectory.  Figure 30 illustrates the simulated data 

using dynamic parameter estimates against the real ones for the IDM car-following 

model. The data depicted in this figure is also indicative of the traffic condition in 

which the platoon of vehicles is driving in. It can be seen that in spite of the short 

period of observation the data includes a variety of speeds and gaps.  
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Figure 30. The comparison of real trajectories with the simulated ones for the vehicle ID 362 
when the dynamic estimates of the parameter 𝑻, produced by PF, is used for the IDM car-

following model. 

Similar to the application of the method to the simulated data, an almost perfect 

match between the real data and the ones obtained using dynamic parameter 

estimates can be observed and this points to the accuracy of the estimation. 

Figure 31 shows the dynamic estimates of the parameter   for the three IDM variants 

and the parameter   for the GHR model when the trajectory of the vehicle with ID 362 

is used. 

 

Figure 31. Dynamic parameter estimates for the for the vehicle ID 362 and the car-following 

models: a) IDM-VDT b) EIDM  c) IDM d) GHR-Ozaki 

a) b) 

a) b) 

c) d) 
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According to the proposed criteria, the IDM-VDT outperforms the other models as only 

minor fluctuations around a nominal value can be seen in the dynamic estimates of the 

parameter   for this model compared to the other car-following models.  

In the dynamic estimates for the IDM and EIDM car-following models, changes in the 

average value of   can also be observed. This observation is confirmed by the 

application of the method to the trajectories of some of the other vehicles in the same 

platoon and applying a moving average filter to highlight the trend. 

 

Figure 32. The application of a simple moving average filter, with the averaging time widow of 
    , to the dynamic estimates of the parameter 𝑻 for the IDM and a) vehicle with ID 368 b) 

vehicle with ID 378. 

Although the same increase is not observed in all other investigated trajectories, it can 

be seen in a significant number of them. The rise and drop in the average value of the 

estimates seem to be highly correlated with the changes of speed and/or spacing. This 

could, therefore, point to a deficiency in the car-following models in accounting for a 

behavioural aspect of driving.  

In order to investigate this further, the same method was applied to a longer time 

series; that is the NGSIM Naples dataset 25B which provides data on the spacing and 

velocities of a number of follower-leader pairs for about five minutes. The results are 

demonstrated in Figure 33. 

a) b) 
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Figure 33. The comparison of the trends of the parameter 𝑻 with the velocities and spacing for 
the IDM car-following model and NGSIM Naples dataset 25B. 

The existence of a correlation between the three time series can be clearly observed in 

Figure 33. This points to a shortcoming in the IDM as its mathematical structure does 

not incorporate an observed driving behaviour, therefore this deficiency is 

compensated by the rises and drops in the dynamic estimates of the parameter  . The 

key advantage of the proposed method for the comparison of car-following models is 

that it captures such aspects of modelling.  

The changes in the sensitivity parameter of the GHR model that occur with high 

magnitudes and a high frequency are an indicator of its poor performance compared 

to the other investigated car-following models. Since the GHR’s mathematical 

structure is incapable of reproducing detailed driving behaviour as observed in real 

a) 

b) 

c) 
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trajectories, frequent jumps, with high magnitudes, in the dynamic parameter 

estimates take place in order to provide a good fit to the real trajectories.  

In order to better visualise the differences of the four investigated car-following 

models, the histograms of their corresponding parameter estimates are demonstrated 

in Figure 34. 

 

Figure 34. Histograms of the values of the tracked parameter for the vehicle ID 362 and car-
following models a)IDM-VDT b)EIDM c)IDM d)GHR. 

In these histograms a sharp normal distribution is advantageous over a broad and 

skewed distribution with multiple peaks.  

Table 9 summarises the results of the application of the proposed method to the 

investigated trajectories and models.   

 

 

a) b) 

c) d) 
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Table 9. The means and standard deviations of the dynamic parameter estimates 

 

It can be seen that while the traditional Sum of Squared Residuals (SSR), as the 

criterion of comparison, is completely inconclusive as to which car-following model 

performs better, the proposed method consistently points to the dominance of the 

IDM-VDT.  This is due to the fact that while in some cases the least SSR is achieved by 

the GHR car-following model, the magnitudes of changes in the dynamic parameter 

estimates of this model still remain higher than rest of the models. 

3.3.6 Conclusion and future work 

Numerous studies that conduct a comparison of car-following models overlook the 

provision of a systematic way to pinpoint the shortcomings and fundamental 

differences of different models in terms of the accuracy of the behaviour reproduced. 

This may be due to the reduction of the criteria of comparison to the single measure of 

the cumulative error, which, while being very informative itself, results in important 

Car-following 
model 

Vehicle ID Mean Standard 
deviation 

SSR 

 IDM-VDT  362 0.68 0.28 2.79   Best 

368 0.81 0.31 3.63    

378 0.24 0.46 3.43    

381 0.45 0.44 2.51   Worst 

391 0.72 0.39 4.05 

EIDM 362 0.92 0.47 3.13 

368 0.95 0.39 2.68 

378 0.43 0.48 3.17 

381 0.76 0.53 2.06 

391 1.11 0.50 5.96 

IDM 362 0.85 0.66 3.13 

368 0.89 0.45 2.76 

378 0.41 0.59 2.75 

381 0.75 0.77 2.07 

391 1.06 0.54 5.92 

GHR 362 1.69 1.46 3.87 

368 0.21 0.96 2.37 

378 0.78 1.28 1.96 

381 0.37 0.90 1.74 

391 0.59 1.24 4.63 



 
132 

 

behavioural differences among different car-following models being omitted.  

As a contribution of this research, the use of a new method for the comparison of car-

following models based on parameter tracking has been proposed. The use of the 

proposed method enables a more comprehensive analysis of the fundamental 

deficiencies of car-following models in reproducing real driving behaviour.  

In order to demonstrate the application of the method, a comparison of four car-

following models was carried out, namely the IDM, the EIDM, the IDM-VDT and the 

GHR models. The results show that the IDM-VDT outperformed the other models with 

a narrow, normal-shaped distribution of parameter values. This means that the 

introduction of a parameter in this model that considers the local variations of speeds 

in the neighbouring traffic, indeed contributes to the a more accurate modelling of car-

following behaviour. The EIDM comes second after the IDM-VDT. Although the EIDM 

has a much more complex model structure compared to the IDM, its performance is 

only marginally better that then the IDM. The author’s initial investigations confirm 

that the EIDM copes much better with lane-changes; which is indeed one of the stated 

purposes behind this modification of the IDM. Finally, the GHR model was shown to be 

significantly inferior in performance despite its structural complexity that arises from 

explicitly including a time delay in the model as well as its dual regime, and despite the 

fact that for certain trajectories it produces the least SSR among the four investigated 

car-following models.  

Such a conclusive comparison of the car-following models, to the best of the authors’ 

knowledge, was never carried out before since most of the comparison studies are 

based on cumulative errors, which as shown in this study and other studies cited in this 

work, fail to provide definitive results.  

The main contribution of section 3.3 is proposing a method that overcomes the 

shortcomings of the traditional cumulative error for the analysis of driving behaviour 

and car-following models. The merits of the proposed method were illustrated using a 
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set of five different trajectories and it was shown that where the traditional 

comparison criterion, the Sum of Squared Residuals (SSR), falls short on providing any 

conclusive evidence for the comparison of car-following models, the proposed method 

provides a consistent measure of performance. 

More interesting applications are envisaged for this method, as it may also be used as 

a valuable tool for the investigation of the behavioural aspects of driving that a car-

following model fails to capture. For instance, a car-following model may lack the 

mathematical structure to cope with the changes observed in driving behaviour as a 

result of encountering different traffic conditions. This could be identifiable using the 

proposed method by looking for systematic changes and common patterns in the 

parameter estimates during particular driving conditions. The application of the 

method to a five-minute long dataset clearly demonstrated its potentials for this 

purpose. The application of this method to large datasets where a variety of driving 

conditions are explored could be an interesting direction of research.  

An important question to be addressed in this context is finding a way to deal with the 

fact that car-following behaviour may be seen as random realisations of a stochastic 

process. This gives rise to inherent difficulties in modelling a stochastic process 

through a deterministic model. Distinguishing between the effect of this randomness 

on the dynamic parameter values and the fundamental deficiencies of a car-following 

model to produce realistic behaviour is another subject that could be explored further. 

The method that was presented relies on tracking a single model parameter. The 

comparison made between the three modifications of the IDM is particularly 

meaningful as 1) the parameter   was identified as the most influential parameter and 

2) this parameter corresponds to the same physical attribute in the three IDM-based 

models. Even though the intense variations in the value of the parameter   are an 

indicator of the GHR’s structural shortcomings, the two aforementioned conditions do 

not hold in the comparison between the parameter   from the IDM and   from the 

GHR. The generalisation of the method in order to simultaneously track a number of 
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parameters and the normalisation of the variances of the parameters, perhaps with 

respect to their physical interpretation, sensitivity, or simply the number of 

parameters, could be an interesting subject for further investigation.  
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4. Energy Efficient Driving 

 

Fully automated vehicles are expected to have a significant share of the road network 

traffic in the near future [179]. Several commercial vehicles with full range adaptive cruise 

control systems or semi-autonomous functionalities are already available in the market. 

The potential of these systems to address the challenges of the ground motorised 

transport network was highlighted in chapter 1.  

In chapter 2, some of the methodologies related to the automation of driving and 

ensuring energy efficiency were explored, their advantages and disadvantages were 

discussed, and it was seen that the extensive computational requirements of a system-

optimal driving strategy often leads to the formulation of fuel efficiency as a user-optimal 

problem by researchers. In the system-optimal approach the fuel efficiency of the 

network is considered whereas in the user-optimal approach individual vehicles seek to 

minimise their fuel consumption without necessarily prioritising network-wide reductions 

in fuel consumption. Numerous studies in this area either target driving conditions where 

there are no additional complexities caused by the interactions between vehicles, or 
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make simplistic assumptions about the dynamics of driving behaviour and its relationship 

with fuel consumption in order to formulate a feasibly solvable optimisation problem. 

These systems consequently adopt highly conservative driving strategies. The collective 

impacts of such strategies can lead to the deterioration of traffic flow and increased 

energy consumption in the network.  

In chapter 2, it was argued that the use of car-following models as the basis of control 

could resolve some of the issues related to computational cost. Moreover, the availability 

of an extensive body of research on the properties of car-following models facilitates the 

analysis of their collective impacts and stability features. In chapters 2 and 3 the IDM car-

following model was presented as a suitable candidate for the present study and using a 

sensitivity analysis the most influential parameters of this model on fuel consumption 

were determined.  

In this study, the objective is to limit the search space for optimal strategies to the 

parameter space of the IDM. This framework enables performing much more 

comprehensive optimisations and conducting more extensive tests on the collective 

impacts of fuel-economy driving strategies. The results demonstrated in this chapter 

show that the formulation of the optimisation in a short-sighted way, where merely 

individual vehicles are considered and no attention is paid to the collective impacts of a 

“fuel-economy” driving strategy, can lead to a significant increase in the fuel consumption 

of the whole network while delivering marginal benefits for the individual vehicles that 

adopt such driving styles. By doing so, this study establishes an important relationship 

between traffic flow and fuel consumption on the network level. It is, therefore, 

concluded that a network-wide reduction of fuel consumption cannot be achieved 

without correctly addressing the implications of fuel-efficient driving strategies on the 

flow of traffic in the network. The proposed method is presented in the next section.  

4.1 Methodology 

4.1.1 Optimisation framework 
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Given a sufficient number of model parameters in a car-following model, a variety of 

driving strategies could be modelled by adjusting the values of parameters. One set of 

model parameters can produce a sporty driving style with intense accelerations and 

braking while another set of model parameters can produce a conservative driving style 

that is less sensitive to the lead vehicle’s braking by maintaining sufficiently large gaps. In 

other words, a car-following model with   model parameters provides a    space where 

each point in the space may be regarded as a distinctive driving strategy. Therefore, one 

could search the space of model parameters for a set that minimises an objective 

function of interest. In this light, the calibration studies could be seen as an attempt to 

find the driving strategy in the space of model parameters of a given car-following model 

that best describe a particular trajectory or speed profile. This is done by the minimisation 

of the Euclidean distance between the modelled driving behaviour and the real one. 

It is important to bear in mind that the space of strategies that is represented by the 

space of model parameters for a given car-following model is only a subspace of all the 

possible driving strategies. Constraining the search space to the one provided by a car-

following model has advantages and disadvantages. On the one hand, this approach has 

the advantage of limiting the search space to one that could satisfy important criteria 

such as safety and stability while producing acceptable driving behaviour. Moreover, 

while in DP based algorithms the choice of actions requires evaluating the sequence of 

actions/states in future time steps which grow exponentially as the length of the time 

horizon increases, in car-following models, actions (acceleration decisions) are only 

dependant on the present value of the explanatory variables such as spacing, velocity, 

and relative velocity to the leader; therefore leading to a significant reduction in 

computational effort. On the other hand, the car-following models have shortcomings, for 

instance, a single set of model parameters cannot always produce realistic driving 

behaviour. Similarly, one cannot expect a single set of model parameters to provide a 

fuel-efficient driving strategy in all driving condition. Nevertheless, similar to calibration 

studies, one can obtain model parameters that can deliver fuel efficiency in particular 

driving conditions. 
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In this chapter two new and distinctive approaches in achieving fuel efficiency are 

investigated:  

1. The optimisation of the fuel consumption of a platoon of vehicles by imposing 

microscopic constraints on headways in order to ensure an efficient traffic flow. 

2. The optimisation of the average fuel consumption in a roadway by imposing a 

macroscopic constraint on the traffic throughput.  

Due to the highly nonlinear formulation of the problem, simulation based optimisation is 

carried out to investigate the two approaches. 

4.1.2 Microscopically formulated optimisation 

Firstly, the problem of a single pair of vehicles in the car-following regime is considered. 

The objective is to find the optimal parameters for which fuel efficiency is achieved. For 

this purpose, the problem is formulated as follows. Given a particular trajectory,   , the 

objective is to find the set of model parameters,  , for the IDM car-following model that 

result in the minimum fuel consumption for the following vehicle. 

          
      

   |     (4.1) 

where,   is the fuel consumption of the following vehicle calculated by the VT-micro 

model [119] and    represents the minimum possible value of fuel consumption for the 

subject vehicle to follow the trajectory of the leader,   . This value could be close to zero 

if the subject vehicle simply comes to a standstill therefore it is important to incorporate 

the requirements of traffic flow into the optimisation. In order to obtain efficiency in 

traffic flow, a wide range of constraints were considered based on different criteria 

suggested in the literature [180, 181, 115]. The following constraints produced good 

results and are used in this study.  

      
̅̅ ̅                        , (4.2) 
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where    is the time series of headways for the following vehicle,   
̅̅ ̅ is the mean value of 

this time series,     and    are constants.  

This type of problem formulation is similar to the works related to the car-following 

regime of driving that were addressed in the literature review section. In this approach, 

the objective is to minimise fuel consumption for the following vehicle while considering 

the requirements of an adequate tracking capability or traffic flow in order to ensure that 

a sluggish driving style is not produced.  

The results obtained using this approach were observed to be highly sensitive to the 

initial conditions and the trajectory of the lead vehicle. Therefore, the optimisation 

framework was modified to include a platoon of vehicles that follow the trajectory of the 

lead vehicle.  

          
      

∑    |   

 

   

                                         
 
(4.3) 

subject to   

  
 ̅̅ ̅   

 ̅̅̅̅       
 ̅̅̅̅              

      
         

           
                                                                                     

 
 

where   is the number of vehicles in the platoon. Additionally, since the trajectory data 

used in this study have short time intervals, a number of trajectories from the same 

dataset and a similar driving condition were combined so the optimal set of parameters 

found is more robust to variations in the lead vehicle’s driving style.   

  (        
)     

      
∑  ( |             )

 

   

                                       
 
(4.4) 

 

This optimisation formulation is depicted in Figure 35. 
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Figure 35. Schematic representation of the microscopic optimisation scenario. 

 

4.1.3 Macroscopically formulated optimisation 

The microscopically formulated optimisation problem that was presented in 

subsection 4.1.2, depicts the type of user-optimal driving solutions that were discussed in 

chapter 2. In chapter 2 it was mentioned that this approach could result in conservative 

driving styles, and therefore, the deterioration of traffic flow and increased fuel 

consumption for the network. Therefore, a second optimisation problem was formulated 

in order to broaden the horizon of the microscopic optimisation problem, to include the 

impacts of interactions between vehicles in a broader sense, and to produce a system-

optimal solution. In this approach, the flow-related constraint could be simply reduced to 

a loose constraint on the traffic throughput, as opposed to the headway-based 

constraints that were previously used. 

The optimisation problem is modified in the following way. Given a particular trajectory, 

  ,  for a stretch of a roadway of particular length,  , for the simulation time   seconds, 

and given the inflow rate at the beginning of the roadway,  , the objective is to find the 

model parameters,  , for the IDM car-following model that result in the minimisation of 

the average fuel consumption for all of the vehicles that travel through the roadway. 

            
      

 [   |         ]                                                            (4.5) 

subject to, 

                , 
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where the operator  [ ] denotes the expected value,      is the fuel consumption of a 

vehicle that enters the scenario and is calculated by the VT-micro model, and   is a 

coefficient that sets a minimum threshold for the acceptable throughput as a percentage 

of the expected number of vehicles that enter the scenario,    . The intervals at which 

vehicles enter the simulation scenario is modelled with the exponential distribution 

function with the average of         Finally,    is the minimum expected fuel 

consumption for vehicles that drive through the simulated roadway and is dependent on 

the trajectory of the first vehicle that enters the scenario,   , and the average inflow of 

vehicles.  

This is a stochastic optimisation problem which is quite difficult to solve, however using 

simulation-based optimisation an upper bound can be obtained for the optimal value.  

 

Figure 36. Schematic representation of the macroscopic optimisation scenario. 

The simulations are developed in MatLab and in the following way:  

1. The first vehicle that enters the roadway drives according to a real trajectory. This 

trajectory is obtained from one of the datasets used in this study. 

2. At every time step firstly it is evaluated if there is a new arrival at the upstream 

end of the roadway. The arrivals are modelled using an exponential function with 

the average of  . 

3. In the case of a new arrival, the vehicle will be assigned a random velocity 

obtained from a truncated normal distribution. The distribution has the mean of 

    , which is the velocity of its preceding vehicle, and the standard deviation of 

 
 

 
 . The tails of the distribution are truncated at       

 

 
  and       

 

 
. If 

the vehicle will not produce a deceleration greater than   
 

 
 according to IDM, it 
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will enter the road section, otherwise it will wait in queue until this condition is 

satisfied. 

4. The accelerations of all vehicles in the road are calculated based on IDM with the 

candidate set of model parameters  . 

5. The velocities and positions of the vehicles are updated based on the one-

dimensional equations of motion and the calculated accelerations. These 

velocities and positions will be used in the next time step to calculate the new 

accelerations.  

6. It is checked if any of the vehicles have reached the end of the roadway section. 

7. This process is repeated every     seconds until the simulation end time is 

reached. 

4.1.4 Sensitivity Analysis  

In order to further reduce the complexity of the optimisation, the global sensitivity 

analysis that was described in section 3.3 is applied to identify the parameters that have 

the highest impact on fuel consumption. In this analysis, the microscopically formulated 

simulation scenario is considered where the trajectories of the vehicles with IDs 362 , 368 

, 378, and 381  from the NGSIM-I80 dataset are used as the trajectories of the lead 

vehicle and the number of following vehicles in the platoon is assumed to be    .  The 

total sensitivity indices are demonstrated in Table 10. The lower and upper bound values 

in this table are also used for the selected parameters in the optimisation process, 

namely,     and  . 
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Table 10. Total sensitivity indices for the effects of the IDM model parameters on fuel 
consumption in the microscopically formulated simulation scenario. 

Parameters LB UB  𝑻 

  0.5 5 13% 

  0.5 5 2% 

   20 33 0% 

   0.5 5 6% 

𝑻 0.5 2 78% 

 

It can be seen that the parameter   has the highest impact on fuel consumption followed 

by parameters       and  . The parameter    has a negligible impact on fuel consumption 

and is, therefore, set to its default value of           throughout this study. The 

parameter    has a higher impact on fuel consumption compared to the parameter  . 

This parameter,   , along with the parameter  , define the spacing preferences between 

the vehicles in the car-following regime and the two parameters are correlated [177]. 

Since the parameter   is included in the optimisation process, the parameter    is set to 

its default value of 2 meters. 

4.1.5 Fuel consumption  

In the present study, a fuel consumption model has been developed based on the VT-

micro fuel consumption model. The VT-micro was specifically developed for the 

investigation of fuel consumption at the operational level of driving. However, its 

exponential structure and the inclusion of 32 terms added a high computation overhead 

to the optimisation. The new model is a simplified form of VT-micro. Various polynomial 

model structures were examined with the objective of reducing the computation time 

without compromising the accuracy. A suitable model structure was identified that 

produced a good fit over the whole envelope of accelerations and velocities. The new 

model delivers accurate predictions of fuel consumption for the tested drive cycle, 
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namely the US Motor Vehicle Emissions Federal Test Procedure (FTP) [182], as well as the 

whole envelope of accelerations and velocities compared to the VT-micro predicted 

values (        and            respectively). This is illustrated in Figure 37. 

 

Figure 37. The comparison of fuel consumption prediction between VT-micro and the new model. 

a, b) Fuel consumption for the whole envelope of velocities and accelerations using VT-micro and 

the new model respectively. c) Instantaneous fuel consumptions for the FTP drive cycle. 

The new model significantly reduces the computation overhead required for the 

estimation of fuel consumption. It reduces the dual-regime structure of the original VT-

micro model, for positive and negative accelerations, to one. Moreover, in the new model 

the VT-micro’s exponential function is accurately estimated with a simple polynomial. 

Finally, the 32 terms in the original model are reduced to only seven terms in the new 

model.  

a) b) 

c) 
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4.2 Dataset  

Two datasets are used in this study. The NGSIM-I80 [136] dataset provides trajectory data 

from a 500-meter long stretch of a six-lane motorway. Figure 38, demonstrates the 

spatio-temporal velocity of the traffic. 

  

 

 

 

Figure 38. The spatio-temporal velocity of the traffic in lanes 1-6 in the NGSIM-I80 dataset. 

Lane 1 

Lane 6 Lane 5 

Lane 4 Lane 3 

Lane 2 

a) b) 

c) d) 

e) f) 
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It can be seen that while lane two remains quite congested and numerous stop waves can 

be identified that travel in the downstream direction at the well-known speed of -14 
  

 
 , 

the traffic flow in lane one is almost free of shockwaves. Therefore, the focus is placed on 

two sets of trajectories in different lanes. The first set is drawn from lane one and 

pertains to a platoon of four vehicles, namely vehicles with IDs 441, 452, 453, and 467, 

that drive with high speeds, i.e. about 90 
  

 
, and are not interrupted with any 

shockwaves. Set two on the other hand is extracted from lane 2 and represents a 

congested motorway section. This set of trajectories is obtained from vehicles with IDs 

362, 368, 378, 381. Herein, the first set of vehicles is referred to as trajectories 441-467 

and the second set of vehicles is referred to as 362-381. 

 

Figure 39. Trajectories of a) the platoon of vehicles with IDs 441, 452, 453, and 467 and b) the 
platoon of vehicles with IDs 362 , 368 , 378, 381. 

The use of this dataset provides the opportunity to examine the impact of diverse driving 

conditions on the optimisation process. Moreover, once the optimal parameters are 

obtained it is possible to compare the results with the real scenario in terms of the 

collective impacts on fuel consumption and traffic flow. In order to exclude the influence 

of lane-changes and traffic conditions in the neighbouring lanes from the calculation of 

fuel consumption, only vehicles that remain within the same lane for the whole period of 

observation are considered; this is demonstrated in Figure 40. In this figure, the vehicles 

that follow the trajectory of the vehicle with ID 391 and remain within the same lane for 

a) b) 
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the whole period of observation are identified; consequently, the average fuel 

consumption for these vehicles could be calculated. 

 

Figure 40. Vehicles that remain within the lane for the whole period of observation are denoted 
with red. 

Another dataset that is used in the present study is the NGSIM Naples dataset. This 

dataset is obtained by instrumenting four vehicles and measuring their velocities and 

gaps while they drive through three different routes.   It consists of five different sets of 

data. Three of the five sets, report spacing and velocity values for the platoon of vehicles 

while driving in three different roadways. The remaining two sets of data report 

measurements obtained from two previously examined routes on different dates. While 

this dataset does not provide any information about the surrounding traffic conditions for 

the subject platoon, it provides sufficient diversity in the driving conditions. Moreover, 

the dataset provides a better insight into the car-following behaviour compared to the 

NGSIM-I80 dataset due to its longer period and the absence of lane changes. Each set of 

data is about five minutes long. Figure 41, demonstrates the routes where the sets of 

data are obtained for the Naples dataset. More information on this can be found in [158].  
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Figure 41. Data collection sites for the Naples dataset (figure from [158]). 
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Figure 42. Velocity and spacing measures of the first to fourth vehicles in the platoon in three 
Naples dataset, a,b) 25B, c,d)25C, and e,f) 30B. 

a) b) 

c) d) 

e) f) 
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4.3 Results  

4.3.1 Microscopically formulated optimisation 

In this section the results relating to the microscopically formulated optimisation problem 

denoted by Equation (4.4) are reported. In order to ensure that the results are as robust 

as possible and deliver fuel efficiency in a wide range of driving conditions, all the 

trajectories available within the five Naples datasets are used as the trajectory of the lead 

vehicle in the optimisation. Also, the number of vehicles in the platoon is set to 4, and 

parameters    and    are set to 3 and 0.5 seconds respectively.  

The setting of the values of    and    is a result of a thorough investigation conducted in 

order to examine the mean and standard deviation of the headways in different driving 

conditions and for different drivers within the Naples dataset. The mean and standard 

deviation of headways averaged over the five Naples datasets and all drivers are        

and       respectively. These values are highest for the third driver in all five datasets and 

reach the values of       and       respectively in dataset 25B. Additionally, numerous 

combinations of    and    have been tested and it has been confirmed that        and 

         produce a conservative, yet acceptable driving behaviour.  

Due to the highly nonlinear nature of the problem, the optimisation is carried out using a 

genetic algorithm [183]. The applications of this method to solving highly nonlinear 

optimisation problems related to the calibration of car-following models and finding 

optimal driving strategies was discussed in chapter 2. Two conditions were used as the 

stop criteria 1) reaching the maximum number of generations of    , and 2)  insignificant 

changes in the optimal value found in    successive generations. The optimal parameters 

obtained for trajectories 441-467,                   , and a platoon of three 

vehicles,    , following the lead trajectory is given in Table 11. 

The results for trajectories 362-381 are similar to those for trajectories 441-476 and are 

summarised in Table 14 at the end of this section. 
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Table 11. The optimal parameters obtained for a platoon of three vehicles when the trajectory set 
441-467 is used for the lead vehicle. 

 

 

The optimal set of model parameters results in a significant 48% improvement in the fuel 

consumption of the three following vehicles compared to the real trajectory, 0.0412 litres 

in the simulated scenario and 0.0788 litres in the real case. Moreover, a 23.7% reduction 

in fuel consumption is achieved with the optimal parameters compared to the case where 

the IDM’s default set of model parameters are used, fuel consumptions of 0.0412 litres 

and 0.0540 litres respectively.  

It is worth mentioning that due to the high level of sensitivity of fuel consumption to the 

parameter  , that represents the desired headway, a significant proportion of this saving, 

41%, is caused by the increase in  . In order to estimate the share of   from the overall 

saving, the default values of the parameters   and   with the optimal value of   were 

used and it was observed that the fuel consumption was reduced to 0.0487 litres. The 

calculation below reveals the share of parameter   in the saving obtained by using the 

optimal parameters compared to the default values. 

                         
             (          )

             (              )
 

 

 
(4.6) 

Figure 43 demonstrate the driving behaviour produced by the optimal set of model 

parameters. 
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 [    ] 5    
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Figure 43. a) position, b) velocity, c) acceleration and d) spacing values produces using the optimal 
parameters compared to the real ones for the vehicles with IDs 441-467. 

It can be seen that the high value of the parameter   has resulted in a more conservative 

driving style which is likely to have negative impacts on traffic flow in high densities. 

Negative impacts on traffic flow are likely to cause shockwaves and stop waves which 

could in return result in higher fuel consumptions for the traffic. Therefore, the collective 

impact of adopting such a driving strategy is investigated in a simulation were the 

trajectory of the lead vehicle is that of the vehicle 441 and the average inflow is set to be 

equal to that of lane one between times 170 [s] to 470 [s], that is 22.2 
   

   
. Figure 44 

compares the spatio-temporal velocities in the real scenario with the simulated one. 

a) 

 

 a) 

 a) 

b) 

 

 a) 

 a) 

c) 

 

 a) 

 a) 

d) 

 

 a) 

 a) 
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Figure 44. Comparison of the spatiotemporal velocities of the modelled scenario with the real 
data. The trajectory of the lead vehicle is  𝑻  = 441.  

It can be seen that the simulated scenario shows improvement over the real one in terms 

of the smoothness of traffic flow. It should be noted that homogenous driving in the 

simulated scenario and the lack of lane-changing could be one of the main contributory 

factors to this improvement. However, the analysis of the fuel consumption in both 

scenarios reveals an interesting result. The amount of fuel consumption for the first 40 

vehicles following the vehicle 441 in the real scenario is 1.05 litres (average of 0.02625 for 

each vehicle) while for the simulated dataset this is equal to 0.99 litres (average of 0.0248 

litres for each vehicle in 100 simulations). This means that despite the significant saving 

that is obtained for the immediate followers, the collective fuel consumption has only 

improved by an average of 6%. This value is obtained for a penetration rate of 100% 

automated vehicles and by excluding lane-changing manoeuvres. Increasing the number 

of following vehicles for which the average fuel consumption is calculated from 40 to 900 

results in a drastic increase of 41% in the average fuel consumption (average of 0.0371 

litres per vehicle in the simulation scenario compared to 0.02625 litres per vehicle in the 

real data). It can be concluded that such microscopic optimisations remain oblivious to 

the collective impacts of a driving strategy on a grand scale. To address this issue two 

approaches were investigated; 

1. Increasing the number of vehicles in platoon,  , in the microscopically formulated 

optimisation problem.  

a) b) 
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2. Performing large scale optimisation scenarios where instead of microscopic constraints 

on headways, constraints on the actual traffic throughput are put in place. This is done in 

subsection 4.3.2. 

Prior to performing the optimisation with the setup that was described above, the 

microscopic optimisation was carried out on a single follower-leader pair, Equation (4.1). 

The results obtained using this formulation were highly inconsistent, that is to say the 

optimal values obtained a) varied significantly when the trajectory of the lead vehicle in 

the optimisation scenario changed, and b) the optimal values obtained sometimes led to 

highly string unstable traffic flows. In order to address these issues, the number of 

follower vehicles in the optimisation scenario was extended to a platoon of 3 vehicles. 

This resulted in an improvement in terms of obtaining robust and consistent optimal 

parameters for different lead trajectories. This modification also led to a better string 

stability. The stability was improved due to the fact that the inclusion of a platoon of 

vehicles in the scenario incorporates the platoon dynamics and stability features in the 

optimisation framework. Nevertheless, as shown above, this framework delivers marginal 

savings for the immediate followers while significantly increasing the overall fuel cost in 

the link. This is due to the negative impacts that such a conservative driving style imposes 

on the traffic flow. While immediate followers benefit from fuel savings, the capacity drop 

that is caused by large headways leads to congestions and traffic breakdowns which in 

return increase the total fuel consumption.  

In order to address this issue, the optimisation scenario was further extended to include a 

greater number of vehicles in the platoon, namely 10, 20, and 40 following vehicles. 

However, these modifications did not change the value of the optimal parameters and 

were, therefore, unable to resolve the issue of increased overall fuel consumption in the 

link. 

The microscopic simulation-based optimisation as described above has its potential 

shortcomings: 
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1. While the optimal values obtained produce savings for the immediate followers, up to 

40 following vehicles, they may lead to increased total fuel consumption in the network. 

Figure 45 depicts the collective impacts of this driving style on traffic flow. It can be seen 

that in the case of       , after about 15 minutes a traffic breakdown takes place that 

leads to a decrease in the average velocities.  This causes a significant drop in the traffic 

throughput and the formation of large queues in the upstream direction of the section. In 

the case of       , since the trajectory of the leading vehicle was selected from a 

congested section of the roadway and it was subject to a number of slowdowns, the 

breakdown occurs early on. 

  

Figure 45.  Two-hour-long simulation with the inflow of 1333 
   

  
 and with the microscopic 

optimal parameters. a) 𝑻 =441  b) 𝑻 =362. 

2. This type of optimisation based on only a single pair of vehicles is highly sensitive to 

initial conditions in the optimisation scenario. For instance, changes in the initial velocities 

of the immediate following vehicles or their positions could reduce the amount of fuel 

savings obtained and the optimal parameters. Increasing the number of following vehicles 

to values more than one addresses this issue to some extent, however as seen above, it 

still cannot correctly capture the broader impacts of the driving strategies on the traffic 

flow and the total fuel consumption.  

3. The results that were reported in this section bring into question the plausibility of 

headway-based constraints in ensuring an efficient traffic flow.   

a) b) 
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However, it can be seen from the results obtained in this section that a user-optimal fuel 

efficient driving strategy for motorways can be characterised by high headway values 

combined with low acceleration parameter values and high deceleration parameter 

values. These parameters have the combined effect of maintaining large spacing between 

the vehicles in order to afford less sensitivity to minor brakes/accelerations of the lead 

vehicle. Such a strategy, therefore, produces much smoother acceleration behaviour. In 

terms of stability, low values of the parameter   and high values of the parameter   lead 

to more instability, however, this is compensated for by the increased values of the 

parameter  . 

 It is clear that for large values of  , roadway capacity is reduced. This may have a 

negligible impact on traffic flow when the inflow of vehicles is low and congested traffic 

states are not formed. This was shown in section 2.1.1, Figure 1, where it was shown that 

an increased parameter   does not change the shape of the left branch of the 

fundamental diagram for the IDM car-following model. However, as seen above, such 

microscopic optimisation setups cannot capture the broader impacts of a driving strategy 

on the traffic flow and, therefore, the driving strategies obtained using such narrowly 

framed optimisation frameworks can lead to the reduction of the traffic capacity and 

traffic breakdowns, which in return increase the cost of trip in terms of fuel consumption 

for other vehicles.  

In what follows, the formulation of the optimisation framework is modified in order to 

factor in the macroscopic impacts of the driving strategies on traffic flow. The results are 

then compared with what was obtained in this subsection. 

4.3.2 Macroscopically formulated optimisation 

The objective of this section is to address the shortcomings of the microscopic 

optimisation raised above. For this purpose, it is necessary to broaden the horizon of the 

optimisation scenario in order to:  
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1. Directly impose macroscopic constraints on the traffic flow, as opposed to the 

microscopic, headway-based constraints that were used in subsection 4.3.1. 

2. Capture the fuel efficiency aspects of the driving strategies in a broader sense than just 

a pair or a platoon of vehicles.  

3. Reduce the sensitivity of the optimal parameters to the initial conditions such as initial 

gaps between vehicles and initial velocities. 

For this purpose, the optimisation framework described in subsection 4.1.3 was 

performed.  The following parameters were used in the simulation setup. 

Table 12. Optimisation parameters for the macroscopically formulated optimisation. 

  [ ] 2000-2500  
  [   ] 10-60 

         [
   

 
] 

different values are 
used 

   Datasets 25B, 25C, 
30A, 30B, 30C NGSIM 
I80 dataset 

      70% 

 

Similar to the user optimal approach, the optimisation is carried out using a genetic 

algorithm. Running the optimisation takes between one to three days on a High-

Performance Computing (HPC) cluster. Each cluster node consists of two 2.5Ghz Intel 

Xeon E5-2670v2 processors, with 40 processors dedicated to the task.   

The NGSIM Naples dataset is used for the macroscopic optimisation. The results are then 

validated using the NGISIM-I80 dataset. Additionally, the impact of different inflow rates 

is investigated by changing the value of  . Table 13 demonstrates the optimal parameters 

obtained in each case.  
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Table 13. The macroscopic optimal parameters obtained for different trajectory sets from the 
NGSIM Naples dataset and different inflow rates when         . 

 Dataset used in the optimisation 

Inflow rate 

[
    

  
] 

25B 25C 30A 30B 30C 

1080  [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] 

1296 [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] 

1548  [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] 

1872  [5, 0.6, 0.5] [5, 0.5, 0.5] [5, 0.5, 0.5] [5, 0.7, 0.5] [5,0.6,0.5] 

2232  [5, 0.5, 0.5] [5, 0.6, 0.5] [5,0.6,0.5] [5, 0.5, 0.5] [5, 0.7, 0.5] 

2664 [5,1,0.5] [5,0.8,0.5] [5,0.7,0.5] [5,0.8,0.5] [5, 0.9, 0.5] 

A few things are worth noting from the results reported in table above:  

1. The optimal parameters obtained are highly consistent for different driving conditions, 

produced by different trajectories sets, and different inflow rates.  

2. The results obtained here completely contradict the microscopic optimal parameters 

reported in subsection 4.3.1 and also the fuel-economy driving strategies seen in the 

literature.  

While the lower bound value was previously found to be optimal for parameter  , here 

the upper bound value is found to be optimal. Similarly, in the microscopically formulated 

problem the upper bound values were found to be optimal for the parameters   and  , 

whereas here the lower bound values are found to be optimal.  

The combination of the parameters obtained here promotes a highly agile driving style 

with small headway values. This is somewhat counterintuitive as a fuel-economy driving 

style is usually characterised by keeping a large distance to the lead vehicle so that the 

following vehicles have enough time to smoothly respond to changes in the velocity of 

the leader. A smooth response means avoiding intense accelerations and decelerations 

which is perceived to be beneficial to fuel consumption. Interestingly though, the 

macroscopic optimal values produce an acceleration performance that would be much 

more intense compared to the microscopic optimal values under similar circumstances.  



 
159 

 

The key to understanding the contradiction between the microscopic optimal values and 

the macroscopic optimal values lies in the collective characteristics produced by each set. 

Small headways ensure increased capacity of traffic flow. Moreover, a large value for the 

acceleration parameter,  , together with a small value for the deceleration parameter,  , 

compensate for the instability that arises from the low value of  . This combination of 

parameters means that the maximum capacity of the roadway is utilised in order to avoid 

congested traffic states that lead to increased fuel consumptions. Figure 46 demonstrates 

the spatio-temporal velocity diagram when the macroscopic parameters are used. 

 

Figure 46. Spatio-temproal diagram when the macroscopic optimal parameters are used. The 

inflow rate is 1333 
   

 
  , and the trajectories of the lead vehicle are a)     441  b)    = 362.  

It can be seen that unlike what was previously observed in the simulations with the 

microscopic optimal parameters in Figure 45, the traffic flow remains stable and there are 

no traffic breakdowns. The use of the new optimal parameters results in an average 

traffic throughput of about 1333 
   

 
 and an average fuel consumption of about 6.4 

     

          
 for an inflow rate of 1333 

   

 
. These values are obtained in an hour-long 

simulation and are averaged over 100 independent simulations. 

A comprehensive comparison of the results obtained so far for different model 

parameters and with normalised values is presented in Table 14.  

 

a) b) 
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Table 14. Results obtained for the microscopic and macroscopic optimisation frameworks. 

Parameters’ 
values  
And results 

Micro 
 

Macro  
t=10 min 

Macro 
t=1 hour 

Real 

Dataset used,    441 362 441 362 441 362 441 362 

 [    ] 0.5 0.5 0.6 0.6 5 5 NA NA 

 [    ] 5 5 4.7 4.5 0.5 0.5 NA NA 
 [ ] 2 2 2 2 0.5 0.5 NA NA 

AFC [
   

          
]  10.5 13.5 10.1 13.7 6.4 6.5 6.74 10 

TTh [      ]¹ 972 932 1069 855 1333 1333 1333 NA² 

¹AFC=Average Fuel Consumption, TTh= Trafic Throughput 

²  Not possible to estimate due to the large number of lane-changes 

The top row of the table shows the type of optimisation carried out. The second row of 

this table depicts the set of trajectories used in the optimisation. The number 441 in the 

second row denotes that the four trajectories pertaining to vehicles with IDs 441, 452, 

453, and 467 are used in the microscopically formulated optimisation (user-optimal 

approach). Similarly, 362 represents vehicles with IDs 362, 368 , 378, and 381.  

In the macroscopically formulated optimisation (system-optimal approach) only one 

trajectory is used, i.e. the trajectory of the first vehicle that enters the simulated roadway. 

The number on the second row represents this trajectory for the macroscopically 

formulated problem. Simulation results are obtained in a similar way and require only one 

trajectory (the trajectory of the first vehicle that enters the scenario) which is presented 

in the second row.  

Rows number three to five show the optimal values of the parameters obtained for the 

specified optimisation and trajectories. Finally, the fourth and fifth rows show the 

average value of fuel consumption and traffic throughput obtained in the simulations. 

The simulations are similar to the one described in section 4.1.3 and are also used in the 

simulation-based optimisation for the system-optimal problem.  
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The results reported pertain to one-hour-long simulations and are averaged over 100 

simulation runs. The real fuel consumption values are the average of fuel consumptions 

for 100 vehicles that follow the vehicle with the specified ID and remain in the same lane 

for the whole period of observation. 

It is worth noting that the optimal parameters obtained when the simulation time in the 

macroscopic optimisation is 10 minutes,            are similar to the ones obtained in 

the microscopic optimisation. The reason for this observation is that the microscopic 

optimal set of parameters result in decreased fuel consumptions for the immediate 

followers. However, as seen in Figure 45, this set of parameters result in traffic 

breakdowns which in return lead to increased fuel consumptions. Therefore, only when 

the simulation time in the macroscopic optimisation is extended to one hour,       , 

are such long term impacts captured and a different set of model parameters is obtained.    

4.3.3 Impacts on traffic flow 

In order to investigate the capacity utilisation in each case, similar simulations are 

conducted where the trajectory of the lead vehicle is that of the leader in the NGSIM 

Naples 30C dataset. This dataset provides a longer period of observation for individual 

vehicles and, as a result, a longer stretch of the roadway can be simulated with the use of 

this trajectory. Additionally, multiple stops take place in this dataset and this gives rise to 

shockwaves. It is of interest to evaluate the impacts of such shockwaves on the traffic 

flow when the different optimal parameters are used.  

Figure 47 shows the spatio-temporal velocity obtained when the microscopic and 

macroscopic sets of optimal parameters are used and for different inflow rates. 
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Figure 47. The comparison of the simulation results for different sets of model parameters when 
the trajectory of the lead vehicle from Naples 30C dataset is used. Macroscopic optimal 

parameters are used for diagrams on the left-hand-side and microscopic optimal parameters are 
used for diagrams on the right-hand-side. 

From  

Figure 47, it is clear that the macroscopic optimal parameters result in a much more 

efficient traffic flow and the shockwaves are more effectively contained. Table 15 

summarises the measurements related to the average fuel consumption and traffic 

throughput. The values are averaged over 100 simulation runs. 

Table 15. The comparison of the traffic throughput and average fuel consumptions when the 
micro and macro optimal parameters are used.  

 Macro-optimal Micro-optimal 

Inflow rate [
   

 
] Fuel [

   

     
] Throughput[

   

 
]  Fuel [

   

     
] Throughput[

   

 
]  

1333 6.4 1333 9.5 1000 
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2664 7.8 2664 9.5 1000 

In the case of micro-optimal parameters, since the maximum capacity has already 

 

Figure 48 demonstrates the flow-density diagram for each of the four figures above. 

These results are obtained by placing three virtual detectors at positions 500  , 1     

and 1.5    in the roadway and measuring the flow,     average velocity,  ̅ , and density, 

  , for different time intervals,  , according to, 

   
  

 
                   ̅  

 

  
∑  

  

   

                        
 ̅ 

  
   

 
(4.7) 

where   is the time interval equal to   minute,    is the vehicle count at time interval  , 

and    is the velocity of vehicle   that crosses the detector during interval  . 
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Figure 48. Comparison of flow-density diagrams for the micro and macro optimal parameters. 
Macroscopic optimal parameters are used for the diagrams on the left-hand-side and microscopic 

optimal parameters are used for the graphs on the right-hand-side. 

It can be clearly seen that both the maximum capacity and the traffic flow are improved 

when the macroscopic optimal parameters are used.  

4.3.4 Stability features 

In order to analyse the stability features of the micro and macro optimal parameters, a 

ring road analysis is carried out as described in subsection 3.1.2. 

For this purpose, a ring road is simulated with 600 vehicles. All the vehicles drive 

according to the IDM with the model parameters that are under investigation. After 

allowing a sufficient time for the system to reach its equilibrium point, an instantaneous 

disturbance of magnitude   
 

 
 is imposed on the velocity of one of the vehicles. This 

appears as a spike in the velocity of the subject vehicle in Figure 49.  

 

Figure 49. Response to a disturbance for the default set of model parameters when the 
circumference of the road is 500 meters. 

The objective here is to evaluate the density at which the system becomes string 

unstable. Therefore, the length of the road is reduced in subsequent runs and the critical 

density at which the system becomes unstable is reported.  The length of all the vehicles 

in the scenario is set to 5 meters.  

a) b) 
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The default set of model parameters remains stable regardless of the density. By reducing 

the length of the road below a certain threshold vehicles simply remain stationary. In 

other words, the equilibrium velocity of zero is obtained. Similar results can be observed 

for the micro optimal parameters. However, the macroscopic optimal parameters 

become string unstable at the density of 133 
   

  
. An interesting result though is seen by 

observing the equilibrium velocity at which traffic breakdown takes place. A density of 60 

   

  
, equivalent to equilibrium spacing of 11.7  , leads to an equilibrium velocity of 17.3 

  

 
  for the microscopic optimal parameters,  20.6 

  

 
 for the default set of model 

parameters, and 65.9 
  

 
 for the macroscopic optimal set of model parameters. This 

means that more than three times the flow could be achieved using the macroscopic 

optimal parameters. This is due to the increased capacity that is obtained when the 

parameter   is decreased. 

It is also interesting to compare the stability features when the parameter   is set to a 

certain value. In Figure 50, the microscopic and macroscopic optimal values of   and   are 

once used with           and once with        . This figure demonstrates the 

relationship between the values of the parameters       and stability. A combination of 

low values of   and   clearly destabilises the system, Figure 50b [24]. High values of   

increase the stability of the traffic flow while reducing the capacity, and consequently the 

average velocity and flow rate, Figure 50c,d. Therefore, the maximum utilisation of the 

capacity is achieved when a combination of high values of   and low values of   is used.   
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Figure 50. Fluctuations in velocities of the platoon when road length is equal to 10 km, 600 
vehicles are used along with following parameters a)    ,       , 𝑻       b)      ,  

   , 𝑻       c)      ,     , 𝑻   2  d)    ,       , 𝑻   . The velocities of the first 
20 vehicles are shown here. 

4.4 Conclusion and summary 

In this study, two new frameworks for conducting optimisation with respect to fuel 

consumption were presented. These frameworks build on the extensive literature 

available on car-following models and limit the search space of optimisation to a 

subspace of possible driving strategies that is modelled by a particular car-following 

model. Depending on the car-following model, this subspace could represent a search 

space where important criteria of driving such as stability, safety, comfort and drivers’ 

acceptability are satisfied. This approach provides the opportunity to perform large-scale, 

scenario-based optimisations, and test the impacts of the optimal strategies on the 

b) 
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collective features of traffic flow through extensive simulation-based tests. Performing 

such complex optimisation tasks and large-scale validation scenarios is made possible due 

to the reasonable required computational effort of the proposed framework. While fuel 

consumption was the primary focus of the present study, other objectives can also be 

investigated within this framework. 

The microscopically formulated optimisation with respect to fuel consumption 

corresponded to the body of research that seeks to find optimal control models for the 

car-following regime of driving while focusing on the dynamics of driving of a single pair 

of vehicles. In this line of research, techniques based on the optimal control theory are 

typically used, such as receding horizon and dynamic programming. However, due the 

complexity of the problem, the requirements of an efficient traffic flow as well as the 

relationship between speed/acceleration and fuel consumption are often simplified. 

Moreover, most of these approaches are highly computationally demanding and, 

therefore, the collective features of such control strategies in terms of traffic flow and 

stability cannot be easily investigated by means of large-scale simulations. Due to the 

aforementioned limitation, the effectiveness of control models is often demonstrated 

through simple, small-scale scenarios which do not address the collective features. For 

instance, these studies typically rely on the investigation of the response of the equipped 

vehicle when it follows a leader for validation purposes. While these approaches could 

produce efficient, user-optimal control models that indeed deliver significant fuel savings 

for individual vehicles, they could have negative impacts on the network and increase the 

cost of trips in terms of both fuel consumption and trip time. 

The proposed approach, however, allows extensive, large-scale testing due its 

computational simplicity. The optimal parameters found using the proposed approach 

produce a control model that is consistent with other user-optimal control methods in 

the literature, in the sense that the optimal parameters yield a driving behaviour that 

ensures a sufficient spacing between vehicles, consequently it could afford to be less 
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sensitive to minor accelerations/decelerations of the lead vehicle and, therefore, 

produces a smoother acceleration behaviour. 

The collective impacts of this strategy were investigated through one-hour long 

simulations. It was observed that the conservative driving style produced by the 

microscopic optimal parameters leads to significant savings of up to 48% for the 

immediate followers. However, such strategy also leads to a drastic deterioration of the 

traffic capacity. Consequently, traffic breakdowns were observed that lead to a reverse 

impact on the fuel consumption of the other vehicles in the network, namely the average 

fuel consumption in the system could increase by about 56% as observed in the 

simulations. In other words, conservative, user-optimal, fuel-economy driving strategies 

could lead to intense traffic congestions, thereby increasing the fuel cost of trip through 

links.  

In this chapter it was seen that the relationship between fuel consumption and traffic 

flow is a complex one and overlooking the collective impacts of a fuel-economy driving 

strategy by adopting a framework that does not appropriately take such collective 

impacts into account can lead to negative consequences. In order to address this, another 

optimisation framework was proposed which is based on large scale simulations. Such 

optimisation framework was made possible by limiting the search space for optimal 

strategies to the parameter space of a car-following model, namely the IDM car-following 

model.  

It was shown that a fuel economy driving strategy that takes the long-term, collective fuel 

consumption for the whole link into account varies significantly from the one that only 

considers a pair of vehicles or even a large number of immediate followers. In particular, 

the latter, user-optimal approach, encourages a more sluggish driving style with large 

gaps between the vehicles while the former, system optimal approach, produces a more 

responsive driving behaviour. The system-optimal driving strategy was validated by 

evaluating the average fuel consumption in the network when the vehicles in the NGSIM-

I80 dataset are replaced with equipped vehicles that drive according to the system-
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optimal driving strategy. It was demonstrated that the system-optimal driving strategy 

produces a more stable and efficient traffic flow, and as a result, delivered savings of 

about 6% in a free flow condition and up to 36% in a congested condition. 

The application of the proposed optimisation framework on different car-following 

models and for different objectives could be an interesting direction for future work. 
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5. Validation in an urban network 

 

In chapter 4 the proposed control algorithm was validated by the simulation of a single-

lane roadway and comparison of the fuel consumption in the simulated scenario with the 

NGSIM-I80 dataset, even though the two systems were not completely equivalent. In 

particular, the stretch of motorway in the NGSIM-I80 dataset consists of six lanes and lane 

changes frequently occur, while lane changing was clearly absent in the simulated 

scenario. Additionally, the validation scenario demonstrated the potential of the 

proposed method in motorway driving, but its impacts on urban driving remained 

untested. It is, therefore, interesting to examine the impacts of the proposed control 

method in an urban network. For this purpose, the PTV VISSIM micro-simulation software 

is used. The use of this software allows the simulation of more comprehensive and 

realistic scenarios. 
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5.1 Simulation setup 

The simulation scenario consists of a large network depicting Milton Keynes city centre 

which was developed by Transport Systems Catapult. The signalised junctions are 

calibrated according to the real values. Such a calibrated network with a wide range of 

driving conditions provides a good opportunity to evaluate the effectiveness of the 

driving strategy in an urban scenario.    Figure 51, depicts the network layout.  

 

Figure 51. Milton Keynes city centre. 

VISSIM’s External Driver Model add-on gives users access to the driving attributes that are 

necessary to define new car-following models. A program was developed in C++ in order 

to bypass VISSIM’s default car-following model and implement the proposed driving 

strategy.  
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The lane changing manoeuvres and the movement of the vehicles around junctions are 

handled by VISSIM’s default models. The author acknowledges that this might lead to 

incompatibilities as VISSIM’s default models are not fine-tuned to the proposed driving 

strategy, however, the investigation of suitable tactical and strategic decision making 

processes for the proposed control model is beyond the scope of the present work. In 

fact, one of the problems encountered in the simulations related to such 

incompatibilities. In particular, the shorter gaps and increased velocities that resulted 

from the proposed driving strategy led to issues with regard to performing lane changing 

manoeuvres. In order to address this issue the parameter representing jam distance was 

increased to the value of 5, i.e.         It is expected that this modification would 

reduce the benefits of the proposed control strategy, particularly in low velocities, 

however, this was necessary in order to cope with the aforementioned problem with 

respect to lane changing manoeuvres.  

Since the interactions between the equipped vehicles and pedestrians, cyclists and other 

vehicle types such as heavy goods vehicles are outside the scope of the present study, the 

simulated traffic is fully composed of cars. 

Each simulation run has a period of one hour. The inflow of vehicles from the 17 vehicle 

input locations are increased in 5 minute intervals until they reach their maximum values 

halfway through the simulation. Vehicle inflows are then consecutively decreased until 

they reach the value of 0 at time,        or         . Figure 52 depicts the inflow 

rates from six of the vehicle input locations. 
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Figure 52. A representative sample of the inflow levels from 6 input section. 

The use of VISSIM’s default car-following model provides the base case against which the 

efficiency of the proposed strategy is investigated. As mentioned in subsection 2.1.3, the 

software uses the Wiedeman model for the car-following regime. 

5.2 Simulation results 

The results reported in this subsection are averaged over 10 independent simulations. 

The initial 300 seconds was considered as the warm-up period and values related to the 

remaining time intervals are reported. Two sets of performance results are reported in 

this section; 

1. The performance results related to the whole Milton Keynes city centre network. 

2. The performance results related to a 1.6 km stretch of a two-lane roadway, namely 

Grafton Street. 
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Figure 53. Grafton Street. 

While frequent lane-changes and multiple junctions are expected to reduce the benefits 

of the proposed driving strategy in the network, these phenomena are less present in 

Grafton Street.  

 

Figure 54. Average fuel consumption in a) the whole network b) Grafton Street. 

From Figure 54 it can be seen that the proposed driving strategy leads to significant 

savings in fuel consumption, particularly savings of 7.95% and 16.18% are obtained for 

the network and Grafton Street respectively. This also produces proportional reductions 
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in emissions, namely Nitrogen Oxides (NOx), Carbon Monoxide (CO), and Volatile Organic 

Compounds (VOCs). 

 

Figure 55. Total Emissions in the network and Grafton Street. 

As discussed in chapter 4, the proposed model achieves fuel savings by establishing a 

more efficient traffic flow. This can be demonstrated by considering network 

performance measurements such as average velocities, travel times and delays. For the 

calculation of the total delay, in addition to the times spent behind traffic signals or in 

traffic jams, VISSIM also considers the difference between the desired speed and the 

actual speed using equation below,  

                       
                                    

             
   

 
(5.1) 

Figure 56 demonstrates the network performance measurements when the system-

optimal driving strategy is used and in the base case.  
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Figure 56. The comparison of the network performance measurements between the 
proposed driving strategy and base case. 

All the measurements illustrate clear improvements when the proposed system-optimal 

driving strategy that was found in chapter 4 is used compared to the reference case, in 

particular the total network travel time and the network total delay are improved by 15% 

and 38% respectively.  
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5.3 Conclusion 

In chapter 4, the proposed driving strategy was validated by replacing the stream of 

vehicles that follow a certain vehicle in the NGSIM-I80 dataset with modelled vehicles 

that drive according to the proposed driving strategy. This validation approach has a 

number of advantages and disadvantages. On the one hand, the use of real trajectory 

data clearly provides a reliable reference point for the evaluation traffic flow-related 

characteristic as well as fuel consumption and the NGSIM-I80 dataset is particularly 

suitable for this purpose. On the other hand, the short period of the dataset and the 

existence of frequent lane changes in the base case, while lane-changing was not 

modelled in the simulated scenario, were some of the limitations of the validation 

method in chapter 4. Moreover, the NGSIM-I80 dataset pertains to motorway driving and 

the impacts of the proposed driving strategy in urban areas remained untested in 

chapter 4.  

In order to provide a comprehensive evaluation of the impacts of the proposed driving 

strategy in an urban network validation was carried out using the PTV VISSIM simulation 

software. A calibrated urban network, namely Milton Keynes city centre, was used for this 

purposed. The results reported were related to a) the whole network and b) a 1.6 km 

stretch of a two-lane local street were the traffic was less interrupted by traffic signals 

and junctions, namely Grafton Street. It was shown the proposed driving strategy offers 

remarkable savings both in terms of traffic flow-related performance measures and fuel 

consumption. As expected, due to the additional factors considered in the simulation, 

such as lane changes and numerous junctions, the saving was less than values reported in 

chapter 4. In particular, the savings of 8% and 16% were achieved for the whole network 

and the Grafton Street respectively. 

One aspect that needs further investigation and could potentially increase the benefits of 

the proposed driving strategy could be the use of  lane-changing and traffic signal control 

models that fit better with the changes in the driving behaviour that are brought about by 

the proposed model.  
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6. Conclusion and Future work 

 

6.1 Summary of work 

In chapter 1 it was pointed out that recent technological advances in the automation of 

driving could be leveraged in order to significantly improve different aspects of the 

ground motorised transport network. In chapter 2, some of the important aspects of 

traffic modelling were explored and a literature review on different methodologies 

relating to the efficient control of vehicles was carried out. It was discussed that the 

reliance on computationally expensive optimisation frameworks leads to problem 

formulations that may not effectively incorporate the requirements of an efficient 

network. Therefore, the user-optimal driving strategies that are developed in this way 

could have negative impacts on the transport network. The chapter was concluded by 

highlighting the potential of car-following models to fill the gap in the existing 
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methodologies and be used as the basis of control. The key advantages of car-following 

models are computational simplicity and the availability of an extensive body of research 

on microscopic and macroscopic aspects of these models. 

In chapter 3, a comprehensive literature review was carried out in order to identify 

different requirements for an efficient control model. Additionally, sensitivity analysis was 

described as an important step in optimisation processes. The application of global 

sensitivity analysis determined which IDM model parameters have the most influence on 

fuel consumption. The chapter was concluded by demonstrating the merits of the IDM 

car-following model compared to another well-known model, the GHR model. The 

comparison was done using a new method that builds on the available literature on 

dynamic system identification and process diagnosis and fault detection.   

In chapter 4, a new optimisation framework was presented. The new method is based on 

searching the parameter space of the selected car-following model in order find the 

driving strategy that minimises fuel consumption. An estimation of the fuel consumption 

was carried out using a modified version of the VT-micro model that provides accurate 

estimates of fuel consumption with much less computational requirements.  

Using the proposed framework, firstly an optimisation problem was formulated that 

represented the type of user-optimal control models that could widely be found in the 

literature. In this approach, the focus is placed on the dynamics of a single pair of 

vehicles. The application of the optimisation produces a driving strategy that is consistent 

with the findings of similar studies, in the sense that the optimal control model produces 

large gaps and a smooth acceleration performance, and as a result, reduces fuel 

consumption for the following vehicles.  

Due to the reasonable required computational effort of the proposed control model, it is 

possible to investigate the application of the driving strategy in large-scale simulations for 

testing purposes. A number of simulations were carried out and it was demonstrated that 

the user-optimal fuel economy results in a drastic capacity drop as demonstrated in 
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section 4.3 and, consequently, deterioration of the traffic flow. As a result of the reduced 

capacity, traffic breakdowns and congestions take place more easily and this leads to 

increased fuel consumptions for the whole network.   

In order to address the shortcomings of the user-optimal driving strategy a second 

optimisation problem was formulated which minimised the average fuel consumption 

within the link over a one-hour simulation. Interestingly, the optimal driving strategy that 

was found using this approach produces a highly agile driving style with short gaps 

between the vehicles. Although this is somewhat counterintuitive, the increase in the 

traffic capacity that is results from the system-optimal driving style avoids or postpones 

traffic breakdowns and by doing so reduces the overall fuel consumption within the 

network. The validation of the system-optimal driving strategy was carried out using the 

NGSIM-I80 dataset and the micro-simulation software PTV VISSIM in chapter 5. The 

former demonstrated the benefits of the proposed strategy in motorways and the latter 

showcased how the system-optimal driving strategy could improve urban traffic and 

contribute to the reduction fuel consumption within the network. 

6.2 Contributions and future work 

On the basis of the findings, the major contributions of this research, along with potential 

directions of future work, are outlined next. 

6.2.1 A new method for the comparison of car-following models 

In chapter 3, it was noted that one of the challenges in the comparison of car-following 

models is that it is often found that different models fit different trajectories best, even 

when multiple trajectories from a single driver are considered. This makes the 

comparison of car-following models problematic as no particular car-following model can 

be definitely shown to be superior over others.  

In order to provide a more detailed analysis of the strengths and weaknesses of car-

following models, a new method of comparison was proposed based on dynamic system 
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identification. The new method builds on the existing research into process fault 

detection and diagnosis. In section 3.3 the new method was used for the comparison of 

car-following models. It was shown that while the conventional comparison criterion, the 

cumulative error, did not provide a conclusive measure of performance when different 

trajectories are used, the proposed method produced consistent rankings across different 

trajectories.  

The cumulative error has a clear advantage that may explain its widespread usage, that is, 

regardless of the number of model parameters or their physical interpretations, the 

cumulative error provides a single measure of performance for a given model. This means 

that it is simple and straightforward. However, it has the clear deficiency that it is often 

not informative. 

The proposed method relies on the evaluation of the necessary changes in a model 

parameter to produce an almost perfect match between the modelled trajectory and the 

real one. One of the questions that needs further investigation relates to the diversity of 

coefficients in different models. In particular, model coefficients in different models do 

not always correspond to similar physical attributes, and more than one model parameter 

may have a high influence on the driving behaviour in a given driving condition. This poses 

a challenge on the application of the proposed method since, unlike the cumulative error, 

for a model with   parameters it is not straight forward to provide a       mapping 

between the parameters and the goodness of fit.  

The normalisation of parameter variations with respect to their physical interpretations, 

their sensitivities, or the number of parameters in the model might provide the required 

     mapping to obtain a single measure of goodness of fit for a given model. For 

instance, suppose there are two models   and  , one of the following strategies could 

help obtain a single measure of goodness of fit. 

1. A common model parameter in both models, e.g. headway ( ), might refer to a 

measurable physical attribute. Denote this parameter in model   by    and in   by   . If 
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empirical studies show that such a parameter should have a certain range or an expected 

value, e.g.   [    ]  or  [ ]    , then the model   may be perceived as a better 

model compared to   if the dynamic estimates of    best match the empirical 

observations. 

2. The proposed method captures all of the structural deficiencies of a given model in 

producing real observations by assessing the variations in one of the model parameters 

(e.g. Figure 33). Suppose that    is a parameter from model   and    is a parameter from 

model  . Comparing variations in    and    becomes problematic if the two do not have 

the same sensitivity indices. One question worth investigating is; how could the variation 

of    and    be normalised with respect to their corresponding sensitivities?  

3. In the proposed method a single model parameter was tracked to explore model 

deficiencies. This could be extended to simultaneous tracking of multiple model 

parameters. However, this would require a post-parameter-tracking step where the 

variations of different parameters are mapped into a single measure of performance. An 

additional question that would require addressing in this context is; how could two 

models with different numbers of parameters be compared?  

6.2.2 A quantitative approach to behavioural analysis of drivers  

In section 3.3 it was stated that dynamic system identification could be used in order to 

investigate driving behaviour and highlight the shortcomings of car-following models in 

the representation of driving dynamics. It was argued that the model that fits real 

trajectories with minimal variations in its tracked parameter should be favoured, and 

different car-following models were compared on this basis.  

Another direction of application for this method would be to focus on the patterns of 

changes for the tracked parameter. In subsection 3.3.5, the method was applied to track 

the parameter   of the IDM using the NGSIM Naples 25B dataset. In Figure 33 it was 

demonstrated that the pattern of changes in the parameter resembles the velocity and 

spacing time-series. This is an indication that the IDM model is not ideally suited to 

modelling a feature of driving behaviour that is present in the investigated trajectory.  
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There are two possible strategies which could take advantage of information. One is to 

establish a relationship between the patterns and the explanatory variables and to modify 

the model accordingly. Another strategy would be to identify the driving conditions 

where drastic changes take place and investigate the impacts that such driving conditions 

have on static parameter estimates. The latter approach was investigated in [184] 

(Appendix 1) and it was demonstrated that a correlation between the occurrence of 

abrupt changes in the parameter estimates and change of driving conditions may be 

established. Further research on this subject is necessary. Firstly, the method should be 

applied to much larger datasets where external factors such as lane-changes are not 

present. Secondly, more conclusive results could be obtained with the automation of 

pattern recognition. 

6.2.3 Fuel efficiency: system-optimal vs. user-optimal 

The main gap that was identified in the literature relates to the computational cost of the 

existing optimisation methods in the analysis of fuel-economy driving strategies. The high 

computational cost leads to the formulations of problems that merely consider the 

dynamics between a follower-leader pair and overlook the impacts of driving strategies 

on the traffic flow.  

In order to address this issue, a new optimisation framework was proposed that uses the 

parameter space of car-following models, the IDM in this study, as a space where 

different driving strategies could be represented. The main advantages of this approach 

are computational efficiency, and the ease of investigating important features such as 

stability and impacts on traffic flow for car-following models due to the extensive body of 

research on these topics.  

Two user-optimal and system-optimal formulations of fuel efficiency were presented and 

it was shown that reducing the subject of fuel efficiency to individual users could lead to 

drastic negative impacts on the network in terms of fuel consumption and network 

performance measures such as trip time. In particular, a conservative driving style 
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produced by a user-optimal driving strategy could deliver fuel savings for the immediate 

followers, however, it causes a significant drop in the traffic capacity which could 

consequently result in severe traffic breakdowns, increased fuel consumptions, and 

increased trip times in high and even moderate traffic inflows. 

The system-optimal driving strategy was validated, first using the NGSIM-I80 dataset, and 

then using the micro-simulation software PTV VISSIM. It was shown that this driving 

strategy can deliver significant savings in the average fuel consumption of the network 

while improving the traffic flow and trip times in both urban areas and motorways. 

The proposed driving strategy introduces fundamental changes in vehicles’ longitudinal 

behaviour. In particular, it produces highly agile driving behaviour and short gaps with 

respect to the leading vehicle. In section 5.1, it was mentioned that this gave rise to 

problems with regard to lane changes in VISSIM simulations. The development of a 

suitable lane changing model that fits well with the proposed longitudinal control model 

could be the subject of future research.  

Another interesting direction of research is the investigation of the potential of Vehicle to 

Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications to support the 

proposed system-optimal, fuel-efficient driving strategy. The role of traffic signal control 

in facilitating a more steady flow of vehicles around junctions and minimising unnecessary 

shockwaves is also worth further investigation.   

Finally, a thorough analysis of the interactions between automated vehicles and human-

drivers, pedestrians, cyclists, and other vehicle types such as busses and HGVs is an 

important step in the realisation of an efficient road traffic network.  

6.3 Concluding remarks 

The author believes that it is sometimes necessary to take a step back and re-evaluate the 

way in which problems are addressed within the scientific community. The application of 

machine learning approaches and control models based on optimal control theory, such 

as model predictive control, have become more and more popular in the field of 
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automated vehicles. The author acknowledges the significance of the existing body of 

research on these subjects; such methods will most likely play an important role in future 

transport systems. However, over-reliance on them could restrict the scope of the 

solutions according to their methodological limitations.  

In this study, it was shown that the computational cost of some of these methods 

essentially limits the scope of the problems to individual leader-follower pairs while 

neglecting the complex nature of traffic. The road transport network is an 

interconnected, complex system; the author believes that if methodological and 

technological advances are to be leveraged in order to revolutionise and effectively 

improve it, it is important to define the expectations on the network’s different entities in 

relation to the system’s efficiency.  

The proposed fuel efficient driving strategy introduced in this study is clearly 

distinguishable from the body of literature on this subject in terms of its underlying 

implications and requirements and it puts forward an alternative way of considering the 

problem of fuel efficiency. Interestingly, in this framework fuel efficiency and traffic flow 

are not opposing objectives; on the contrary, they could be seen as one.   
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Appendix – A quantitative approach to behavioural analysis of drivers in 

motorways using particle filtering 

 

The analysis of driving behaviour is a challenging task in the transport field that has 

numerous applications, ranging from highway design to micro-simulation and the 

development of advanced driver assistance systems (ADAS). There has been evidence 

suggesting changes in the driving behaviour in response to changes in traffic 

conditions, and this is known as adaptive driving behaviour. Identifying these changes 

and the conditions under which they happen, and describing them in a systematic way, 

contributes greatly to the accuracy of micro-simulation, and more importantly to the 

understanding of the traffic flow, and therefore paves the way for introducing further 

improvements with respect to the efficiency of the transport network. In this paper 

adaptive driving behaviour is linked to changes in the parameters of a given car-

following model. These changes are tracked using a dynamic system identification 

method, called particle filtering. Subsequently, the dynamic parameter estimates are 

further processed to identify critical points where significant changes in the system 

take place.  

1. Introduction 

A look at the more than six-decade-long body of studies on micro-simulation points to 

the difficulty of representing the dynamics of driving under different traffic conditions 

and for different drivers by a single mathematical equation. There have been studies 

reporting that the behaviour of different drivers is best represented using different 

model structures (Punzo and Simonelli 2007, Ossen and Hoogendoorn 2007), which in 

essence means that different drivers drive according to different models. Furthermore, 

individual drivers also exhibit different driving patterns in different traffic conditions, a 
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phenomenon that has been identified by many researchers (Munoz and Daganzo 2002, 

Ma and Andréasson 2007, Hoogendoorn, et al. 2006). The very fact that the calibration 

of car-following models is highly dependent on the driving condition, as confirmed by 

numerous studies (such as Punzo and Simonelli (2007), Ossen and Hoogendoorn 

(2008) and Kesting and Treiber (2009)) is further testimony of the existence of this 

phenomenon.  

Much research has partly addressed the issue of adaptive driving behaviour by 

developing multi-regime car-following models, which are able to achieve greater 

accuracy in the reproduction of the driving behaviour. Notable examples include the 

models proposed by Wiedemann (1974), Yang and Koutsopoulos (1996) and Fritzsche 

(1994), implemented in the VISSIM, MITSIM, and Paramics micro-simulation software 

tools, respectively. However, while the passive reproduction of driving behaviour is a 

significant improvement, important questions that remain open are whether it is 

possible to actively identify the conditions under which changes in driving behaviour 

happen, and in what way these conditions may be affecting the driving behaviour. As a 

matter of fact, being able to identify and represent the drivers’ adaptive behaviour in 

micro-simulation would bring about even greater improvements in terms of modelling 

accuracy and would deliver a better insight into the traffic flow.  

Some previous research in the direction of identifying and modelling adaptive 

driving behaviour exists. Notably, Ma and Andréasson (2007) used data collected from 

an instrumented vehicle to identify different regimes of driving and applied a fuzzy 

clustering method to a combination of accelerations and velocities of lead and follower 

vehicles, as well as to their spacing, in order to group the data into different regimes. 

Thiemann, Treiber and Kesting (2008) calculated probability density functions for 

headways from a large dataset of vehicle trajectories and identified a significant 

correlation between the headway and driving-behaviour-related variables, such as 

speed, approach speed and traffic condition. Treiber, Kesting and Helbing (2006) 

proposed a general adaptation method that can be integrated within a wide range of 
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car-following models, which essentially states that the headway in smooth traffic flow 

increases linearly with variations in the local traffic conditions; a measure for 

representing these variations was then given, and the model was calibrated empirically 

using data from a Dutch highway. And Hoogendoorn et al. (2006) used a method called 

particle filtering to calibrate two car-following models dynamically (the Gazis-Herman-

Rothery (GHR) and the Helly models), which allowed the model parameters to vary at 

each time instance in order to minimise the estimate error, as opposed to static 

system identification methods requiring the whole set of time series data to be used to 

find the single set of parameters resulting in least error.  

Building on the work of Hoogendoorn et al. (2006), the aim of the present study 

is to investigate the possibility of utilising particle filtering for purposes beyond the 

simple demonstration of variations in model parameters. Specifically, the main 

objective is to analyse whether a link between changes in the model parameters and 

external stimuli or driving conditions can be established. Deriving a conclusion in this 

regard will deliver two significant benefits: on one hand, such information will help 

gain a better insight into traffic dynamics and dynamic driving behaviour, with 

corresponding improvements in micro-simulation modelling; on the other hand, it will 

enable the assessment of the capabilities of car-following models on the basis of the 

robustness of their parameter estimates and of their ability in accounting for different 

driving phenomena. For instance, if a car-following model fails to account for a certain 

driving phenomenon, this deficiency will exhibit itself in the form of systematic 

changes in the model parameter estimates, when the phenomenon becomes present. 

The rest of this paper is organised as follows: the background of the study, 

including an overview of previous relevant work on the topics of car-following models, 

calibration methods and particle filtering is given in Section 2. Section 3 presents the 

application of particle filtering to a simulated dataset and proposes a simple method 

for the discretisation of the dynamic parameter estimates, so as to facilitate the 

identification and analysis of dynamic driving behaviour. Section 4 then applies the 
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proposed method on a vehicle trajectory dataset from a real highway and discusses 

the results. Finally, Section 5 summarises the conclusions and identifies areas of future 

work.  

2. Background 

Car-following models, and acceleration models in general, describe the behaviour of 

human drivers. These models, integrated in simulation software, are used to assess 

policy-making in various fields related to transport networks, ranging from highway 

design to the evaluation of advanced driver assistance systems (ADAS). However, not 

all of these models are developed for the same purpose, and different levels of 

accuracy might be required accordingly, and so different car-following models may 

best serve different purposes. A large number of car-following models have been 

developed over several decades, and comprehensive reviews of the topic are given by 

Brackstone and McDonald (1999) and by Ahmed (1999). 

System identification is an important aspect for car-following models, as such 

models may describe the structure of the stimuli-response processes underlying the 

car-following behaviour in a mathematical form, but they need to be adjusted and 

tailored if they are to be applied in a specific scenario. This may be done through 

calibration using an appropriate dataset. In this section, the Intelligent Driving Model 

(IDM) car-following model, used in this work, is presented, followed by a discussion of 

some of the considerations related to calibration that need to be made, and by a brief 

description of the particle filtering method.  

2.1 The IDM car-following model 

The IDM car-following model is selected for the present study on the basis of a number 

of advantages that it presents over other models. Namely, in addition to being 

computationally simple and relying only on a small number of parameters, each with 

an intuitive meaning, the IDM has also been found to perform well in terms of both 

macroscopic and microscopic calibration (Treiber, Hennecke and Helbing 2000, Treiber 
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and Kesting 2013, Punzo and Simonelli 2007). Numerous studies on different aspects 

of the IDM have been carried out, including calibration, stability and other microscopic 

and macroscopic properties, and the advantages have been confirmed (Wilson and 

Ward 2011, Kesting and Treiber 2009). 

The IDM is given by the following general equation: 

 

 ̇   [  (
 

  
)
 

 (
        

 
)
 

]                                                                                                                              

               √
 

      
   

 √  
    

         

which calculates the value of the output variable  ̇, denoting the acceleration of the 

subject vehicle, as a function of the following input variables: the speed of the subject 

vehicle  ; the speed of the preceding vehicle     and the distance headway  . The 

model is then also dependent on a number of parameters, including: the maximum 

acceleration  ; the desired speed   ; the acceleration exponent  ; the jam distances 

in fully-stopped and in high-density traffic    and    respectively; the safe time 

headway  ; and the comfortable deceleration  . 

2.2 Calibration of car-following model 

Many factors must be taken into account in the calibration of a car-following model, 

including the choice of the dataset, the calibration method employed and the purpose 

for which the calibrated model is to be used. When a certain level of accuracy in the 

collective behaviour or traffic flow is required to reproduce the same flow-density 

characteristics as observed in the real data, a certain set of model parameters for a 

given car-following model may work best (Treiber, Hennecke and Helbing 2000). 

However, for the different purpose of modelling microscopic behaviour of individual 
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drivers, including details such as the velocity and spacing of individual vehicles, 

another set of model parameters may work best, which would be different from the 

former (Treiber and Kesting 2013). Even for the same driver, significant inconsistencies 

between the calibration results with different trajectory data can be found. This means 

that if one intends to reproduce accurate trajectories for a given driver in a specific 

driving condition on a specific highway (e.g. upstream of a bottleneck, taking into 

account the traffic flow and density, weather conditions, etc.), the data used for the 

calibration must match the specific scenario under investigation in terms of traffic 

characteristics.  

Even excluding the question of intra-driver inconsistencies, this gives rise to the 

so called phenomenon of over-fitting, which means that the model is so accurately 

adapted to a given specific scenario that it loses its generality, delivering inaccurate 

results even for very slight variations in the driving scenario. Over-fitting means that 

the resulting model is rendered unreliable for making any predictions, which makes 

the trade-off between accuracy and robust calibration evident. Other considerations 

regarding calibration include the choice of error measurement (e.g. travel time, 

spacing, velocity, acceleration), system identification method (e.g. Maximum-

Likelihood Estimation (MLE), Least Squares Estimation (LSE), nonlinear optimisation 

methods), and error tests (e.g., Root Mean Square error (RMSe), Root Mean Square 

Percentage error (RMSQe), and Theil’s inequality coefficient (U)). Comprehensive 

reviews of some of these considerations have been carried out by Punzo and Simonelli 

(2007), Ossen and Hoogendoorn (2008), Treiber and Kesting (2013), and Ranjitkar, 

Nakatsuji and Asano (2004).  

2.3 Particle filtering 

Sequential Monte-Carlo filtering or particle filtering (PF) can be used to tackle the 

difficulty associated with the estimation of states or parameters in nonlinear, non-

Guassian filtering. The state-space representation of such a system is denoted below: 
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where    is the state of the system that evolves under the nonlinear function        

The  previous state of the system is denoted by     , and      is an independent and 

identically distributed (i.i.d) random noise, that is known as the process noise. The true 

state of the system is almost always hidden from the observer, however one can 

deduce a good estimate of it through successive observations and measurements 

        . This, in fact, is the ultimate purpose of filtering. These observations are 

dependant on the control input   , the true state of the system   , and an i.i.d noise 

    known as the measurement noise. This dependency is denoted by the function  

        

The method of PF is based on the principles of Bayes theorem, which provides 

a mechanism for updating knowledge about the underlying system upon receipt of 

new data on the observed states of the system at each time instance. In Bayesian 

estimation, the quantity of interest is the probability distribution function of the state 

variable given the sequence of observations made     |      , which is known as the 

posterior distribution.  

In algorithms such as the Kalman Filter and the Extended Kalman Filter, the following 

two assumptions are made: the system is linear, or a locally linearised system provides 

a good enough approximation (in the case of EKF); and the underlying noise is 

Gaussian. Under these assumptions the characteristics of the posterior, namely the 

mean and covariance, can be optimally derived. The term optimal in this context 

means that the resulting estimator leads to Minimum Mean-Square Error (MMSE). 

However, when the system of interest exhibits highly nonlinear behaviour and the 

noise is non-Gaussian, the performance of KF and EFK deteriorates.  

PFs provide an alternative way to linearisation and holding assumptions about 

the underlying noise distribution. In these methods a number of samples, that are 

referred to as particles, are propagated through the nonlinear system using simulation 
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techniques, and then these samples are used to extract the characteristics of the 

posterior. An important step in this method is importance sampling, where an 

estimate of the ratio below is calculated: 

   
      |            

      |     
                                                                                                                

where    is the importance weight,       |      is the conditional probability of the 

observations   given the states  ;         is the probability distribution of states; and 

      |      is a known, easy-to-sample proposal distribution.  

A sequential relationship for the importance weight can be drawn, as shown by 

van der Merwe, et al. (2000), namely: 

       

    |       |     

    |            
                                                                                                   

which gives rise to the popular choice of the proposal distribution 

    |                 |                                                                                                                                                                                                                  

which results in the simplification of equation (4). 

In PF the estimate of the posterior is based on a number of randomly selected 

weighted samples.  The great potential of this method in dealing with complex 

nonlinear non-Gaussian systems has been pointed out by van der Merwe et al. . (2000) 

and by Arulampalam et al. (2002), and a schematic representation is given in Figure 1. 

At the first step of the algorithm (sampling)   random particles (samples) are drawn 

from a proposal distribution. These particles are then propagated through the 

nonlinear system and are subsequently associated with weights  ̃ according to their 

fitness, i.e. equation (4). This step is known as importance sampling. Subsequently, a 

resampling of particles with respect to their associated weights is carried out, as a 

result of which particles with high weights are split into a number of unweighted 

particles and particles with low weights are eliminated. Finally, the introduction of a 
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random noise to the group of particles at the third step results in local variety in the 

samples. This process is visualised in the fourth row of particles in Figure 1. Since, this 

step provides an unweighted distribution of particles that mimic the prior distribution, 

it is referred to as the prediction step.  

 

Figure 1. Illustration of the three stages of importance sampling, resampling, and prediction in 

PF, figure from van der Merwe et al. (2000). 

In the present study, the application of PF for parameter tracking is of particular 

interest. Given a car-following model and a set of data, one can update the estimates 

of model parameters upon the receipt of new data. As a result, one will obtain time-

varying estimates of the model parameters. Naturally, these time-varying estimates 

cannot be used for modelling and simulation purposes, but they can provide a good 

insight into some of the very important model characteristics that may otherwise 

remain hidden in cumulative error terms. In particular, in simulation-based 

applications the parameters are constant, and hence the use of a parameter tracking 

method gives information about how a model parameter should deviate from its 

nominal value to compensate for modelling flaws. This concept is closely related to 

model-based fault detection (Isermann 1984, Venkatasubramaniana, et al. 2003). 
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There is a possibility that in some cases general patterns in changes of the model 

parameters are observed (e.g. significant increase or decrease in the value of a model 

parameter in an identifiable driving phase), and this type of information can then be 

used to improve the quality of modelling and simulation.  

3. Methodology 

In this section PF is applied to simulated data to investigate the extent to which the 

properties of the adaptive driving can be identified using this method. The section first 

introduces the simulated dataset, and then goes on to present the results of the 

application. The choice of the objective function for the calibration is also described, 

and a simple method for the discretisation of the estimates is proposed. The 

discretisation of the dynamic estimates is an important step in the interpretation of 

the raw estimates obtained initially and in the linkage of the changes in the model 

parameters to the traffic conditions.  

3.1 Simulated dataset 

In this section the application of particle filtering to simulated data is investigated to 

illustrate the extent to which this method can be utilised for the purpose of 

“meaningful” parameter tracking in car-following models. The additional constraint 

arising from the term “meaningful” refers to the fact that, sometimes by calibrating a 

number of model parameters simultaneously, an error in the estimate of one model 

parameter may be compensated by an error in another. This could happen due to the 

existence of correlation between model parameters and the fact that the information 

available is less than what is required for the determination of the unknowns uniquely, 

thus causing erroneous tracking of model parameters. 

For the data simulation, the trajectories of a specific vehicle from the enhanced 

NGSIM I-80 dataset (Montanino and Punzo 2013) were selected. The NGSIM I-80 

dataset is an open source trajectory data that has been collected from a 500-m long 

stretch of an interstate freeway in the San Francisco Bay area, CA (Halkias and Colyar 
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2006), and the enhanced dataset has been made available by the MULTITUDE project 

(Montanino and Punzo 2013). The selected trajectories were then used to generate 

trajectories for follower vehicles with the IDM model proposed by Treiber, Hennecke 

and Helbing (2000), and a specific parameter profile was used for this purpose. In the 

profile used, certain parameters were varied at certain points in time, and particle 

filtering was applied to the simulated trajectories to generate dynamic estimates of 

the model parameters. Figure 2 illustrates the trajectories used for the leader vehicle.  

 

 

Figure 2. a) Trajectory of the lead vehicle selected from NGSIM data Lane 2    b,c,d) Position 

trajectories, velocities, and accelerations of the lead vehicle and synthetized follower in 

dashed red line and blue line respectively. 

The parameter profiles used for the simulation of the trajectories shown were as 

follows: the default model parameters reported by  Treiber, Hennecke and Helbing 

(2000) were used up to Time       , i.e.       
 

  ,       
 

  ,        
 

 
,      

      ,       , and        ; then, at       , the following parameters were 

changed to the given values:       
 

       
 

        
 

 
         . As such, 

the simulation includes the case of having erroneous estimates for some of the model 
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parameters while another one is being tracked. Additionally, the value of the 

parameter   changes again to the values       and     s at time points        

and       , respectively. 

3.2 Sensitivity analysis 

One important consideration in the model calibration is addressing the question of 

how the dataset used reflects the characteristics of the model parameters. This is 

especially of importance in models, such as IDM, where some degree of orthogonality 

between model parameters exists, and different model parameters are best set 

according to different types of data in different regimes of driving  (Treiber and Kesting 

2013). If this question is not addressed, misleading estimates of model parameters or 

unnecessary high computational complexity may result (Ciuffo, Punzo and Mon 2014). 

Global sensitivity analysis is used for this purpose, and the more representative 

“total sensitivity indices” are used, that capture the impact of parameters across all the 

feasible region in the hyperspace of parameter values (Ciuffo, Punzo and Mon 2014, 

Saltelli, et al. 2010, Jacques , Lavergne and Devictor 2006). Figure 3 illustrates the 

results for total sensitivity as a function of the number of samples used for the same 

trajectory as above. As expected, the results for other vehicles were also found to be 

consistent with the ones illustrated, as well as those reported by Ciuffo, Punzo and 

Mon (2014). The parameter related to headway,  , has the highest impact with a total 

sensitivity index value of 0.788, and the parameter related to spacing in jam traffic,   , 

has the second highest impact, with a total sensitivity index value of 0.268. The rest of 

the indices have values very close to zero and can be seen as a horizontal line roughly 

coinciding with the x-axis. The upper boundary (UB) and lower boundary (LB) values 

for parameters are given in Table 1. 



 
217 

 

 

Figure 3. Total sensitivity indices for the simulation scenario. 

Table 1. Lower and upper bound values of the model parameters in the global sensitivity 
analysis. 

Parameters LB UB 

  1 3 

  1 3 

   20 50 

   2 10 

𝑻 0.5 3 

 

As pointed out by Ciuffo, Punzo and Montanino (2014), since the assumption of 

parameter independence for such models is unlikely to hold, the results may be 

subject to bias. Nonetheless, the conclusions were also verified through a local 

sensitivity analysis around the calibrated parameter values, as well as through 

investigation of the use of different parameter values and different combinations 

thereof for parameter tracking. Furthermore, an additional justification to the choice 

of the parameter used in this study is the physical meaning of it. 

3.3 Application of particle filtering to simulated data 

Figure 4 shows the results of the application of particle filtering to the simulated 

dataset. For this purpose, all of the model parameters are set to their default values, 

except for parameter T, which is to be estimated dynamically. 
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As was seen, a reason for focusing on T in parameter tracking is that it was 

found that no other parameter was capable of tracking the changes in driving 

behaviour for multiple trajectories when selected alone.  Also, variations in this model 

parameter remain low compared to other model parameters. Furthermore, one of the 

advantages of IDM is that the parameters have intuitive meanings, and if one 

parameter is to be selected among others representing comfortable deceleration, 

maximum acceleration, desired velocity, etc., the choice of parameter T, representing 

headway, is most sensible. This parameter was also used in Treiber, Hennecke and 

Helbing (2000) to generate variations in traffic conditions, and hence driving 

behaviour, and by doing so the empirical data related to the formation of traffic jams 

were successfully simulated. 

 

Figure 4. The result for estimation of the parameter T. The blue shadow denotes the 

distribution of particles at each time instance while the red curve is the selected particle. 

It can be seen that up to time      s, the estimation of parameter T is almost 

error-free and stable. Also, the subsequent changes at the times       ,       , 

and        can be identified from Figure 4 by “jumps” in the values of the parameter 

at these times, compared to the smooth curves in the intervals between the changes. 

The estimations of parameter T at times after       , unlike before, are unstable and 

fluctuate around a certain value. This is due to the fact that beyond time      s, 

other model parameters were changed to values other than the ones used in the 
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estimation process. As a result, the effect of this false estimation needs to be 

compensated by overestimations and underestimations of parameter T. 

Using the parameter estimation given by the application of particle filtering 

(Figure 4), an almost perfect estimation of the spacing (        ), velocity 

(        ) and acceleration (       ) can be derived, despite the errors in the 

other model parameters from        onwards). This is shown in Figure 5.  

 

Figure 5. The comparison of real trajectories with simulated trajectories when the dynamic 

estimation of the parameter T, given by particle filtering, is used. 

It should be noted that the IDM car-following model was used to generate 

trajectories for the follower vehicles, and the same car-following model was used in 

the calibration process. In the application to real data, this is the equivalent of 

assuming knowledge of the model underlying the behaviour of human drivers. 

Although this is obviously not the case, the findings of Ossen and Hoogendoorn (2008) 

may justify use of such simulated data. Therein, it was found that the characteristics of 
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the followers’ behaviour can be recovered by calibrating a car-following model to the 

data, even when the real model is different to the model used for calibration.  

3.4 Objective function 

The objective function defines a measure of error that is intended to be minimised. For 

this purpose, one needs to choose among measures of performance (MOPs), such as 

spacing, speed, and acceleration, in addition to an appropriate error test (functional 

form of the defined error), such as root mean square error (RMSe) and root mean 

square percentage error (RMSPe), as outlined in numerous studies in the literature 

(Punzo and Simonelli 2007, Ossen and Hoogendoorn 2008, Treiber and Kesting 2013, 

Ranjitkar, Nakatsuji and Asano 2004).  

In Punzo and Simonelli (2007) the inter-vehicle spacing was suggested as the 

most reliable MOP. In this work, however, it was found that the best result is obtained 

when a combination of errors on spacing, velocity, and acceleration was used in the 

objective function instead of a single variable. This is due to the use of the information 

available on all variables, which avoids outliers and non-smooth modelled data in any 

of the three measures individually. In Ossen and Hoogendoorn (2008), in addition to 

the different variables for calibration, the use of a combination of speed and spacing in 

the objective function was investigated. Therein, despite the fact that the use of a 

combinatory objective function including both the spacing and the velocity was found 

to be dependent on the specific model used, it was, concluded that when such prior 

information about the model is lacking, the use of an objective function including both 

speed and spacing could be advantageous. Here, a uniformly weighted sum of squared 

errors of all three variables was used, which is an extension to the suggestion made by 

Ossen and Hoogendoorn (2008). The accuracy of the acceleration trajectories in the 

NGSIM data is somewhat questionable, as pointed out by Thiemann, Treiber and 

Kesting (2008), but excluding the acceleration error between the predicted values and 

the real values from the objective function results in randomly fluctuating estimates of 

acceleration with unrealistically large values of jerk. This can be avoided by including 
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the acceleration error in the objective function with a low weight to suppress the 

significant influence of these inaccurate data on the estimation process. Figure 6 

illustrates the simulated acceleration trajectory when the acceleration error is 

excluded from the objective function. Although in this case a slight improvement in the 

simulated velocity and spacing trajectories is obtained, this improvement comes at the 

cost of the acceleration, as can be seen from the figure.  

 

Figure 6. Comparison of the simulated accelerations with the real values when the acceleration 

error is: a) excluded from the objective function; b) included in the objective function. 

3.5 Interpreting dynamic parameter estimations 

As was shown in Figure 4, although the “jumps” in the values of the model parameters 

are visually identifiable, the resulting estimates are much harder to interpret when the 

method is applied to real data. This makes the identification of the points where 

sudden changes in the model parameters take place difficult, which is due to two 

reasons: 1) the actual underlying model is not known in advance; and 2) the changes 

are much smaller but more frequent. As one would expect from human drivers, they 

do not drive in a crisp and deterministic fashion, and neither do they immediately 

change their underlying driving attributes as soon as they reach a different traffic 

condition; instead a smooth and gradual change in driving behaviour is to be expected 

from them.  
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Hence, a way to identify significant changes and to filter out the smooth 

fluctuations from the dynamic model parameter estimate is required. A simple 

approach is adopted here for this purpose, whereby the points where maximum 

changes in the subsequent values of the parameter under estimation are identified. 

These points are referred to as “breaking points”. Following that, the model parameter 

under investigation is separately calibrated for each interval between the breaking 

points.  

The detection of breaking points is governed by two conditions, both of which 

must hold for a breaking point to exist:  

1) The change in the value of model parameter is greater than a certain value, set to 

be         for parameter   here.  

2) The distance between each two breaking points is greater than a certain value. This 

condition is imposed to avoid frequent changes of the parameter in a short interval, 

and its implementation may also be justified by the fact that frequent and sudden 

changes in driving behaviour and driving parameters in a short time interval are highly 

unlikely among human drivers. The value of 5 seconds (50 time steps for the NGSIM 

dataset) is used here.  

The application of the proposed discretisation method to the result illustrated in Figure 

4 leads to the correct identification of the jumps. Subsequently, parameter T is 

recalibrated in separate time intervals: [0, 300], [300, 400], [400, 500], and [500, 600]. 

Figure 7 shows the promising results obtained using this method.     
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Figure 7. Comparison of the simulated trajectories when averaging between the breaking 

points is applied with real results for: a) the estimation of parameter T; b) spacing; c) speed; d) 

acceleration. 

It can be seen that not only the points where the parameter is changed are 

identified correctly, but also that the values of the parameter within corresponding 

intervals are estimated with very high accuracy. Hence, the acceleration, velocity, and 

spacing trajectories are generated with significantly better accuracy than any 

conventional calibration method.   

4. Results 

In the previous section it was shown that using the particle filtering along with the 

proposed discretisation method, the changes in the model parameters can be 

identified and consequently the changes in the driving behaviour can be captured. In 
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this section, this method is applied to the NGSIM trajectory dataset to investigate the 

question of the identification of the adaptive driving behaviour.  

4.1 Application to the NGSIM dataset 

The functionality of the proposed method was illustrated using simulated data. In this 

section the proposed method is applied to a platoon of nine vehicles driving in the 

second lane to investigate the following two issues: 1) whether the assumption of 

systematic changes in driving attributes can be validated; and 2) whether these 

changes can be identified using car-following models, such as the IDM, and a dynamic 

system identification method, such as particle filtering. The procedure is as follows: 

1. The five model parameters {           } are calibrated using a genetic algorithm 

to minimise the sum of squared errors across all the three variables, namely, spacing, 

speed, and acceleration (Equation 6). 
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where: the abbreviations “obs” and “model” denote the observed value and the 

modelled value respectively;   is the number of sample points; and      and   denote 

the spacing, velocity, and acceleration respectively. The objective function above is the 

sum of the squared Euclidean distances between the three-dimensional observed 

states and the modelled states. 

2. At the second step, the parameters {         } are fixed to their calibrated values, 

while parameter   is being tracked given the lead vehicle’s trajectory and the real 

trajectory of the follower vehicle. The calibrated values for all the vehicles in the 

platoon are reported in Table 2.  
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3. The dynamic estimates of parameter   in several runs are then analysed using the 

method described in Section 3.5 to identify the breaking points.  

4. Once the breaking points are identified, parameter   is then calibrated once more 

for each time interval between the breaking points. 

Table 2. The calibrated values of the parameters 

Parameters V348 V343 V354 V362 V368 V378 V381 V391 

  1.598  0.886 1.620 1.688  2.681 0.815      0.824 1.087 

  5.000 0.602 5.000 5.000 0.500 1.509 0.500 5.000 

   11.412 33.298 12.903 10.000 33.300 33.298 33.299 15.929     

   1.000 2.529 5.000 3.319 4.843 4.848 3.164 1.000 

𝑻 1.094 0.400 1.952 0.903 0.881 0.400     0.695 1.146 

 

All the vehicles observed remain in the platoon for the whole duration of the 

experiment, which means that the dynamics are undisturbed by any lane changing 

attempts. Figure 8 illustrates the application of the proposed method to one of the 

vehicles, and the top-left graph illustrates the discretised parameter estimate.  

It should be noted that when applied to the dynamic parameter estimates for 

real trajectories, the proposed discretisation method yields breaking points that are 

less robust compared to the investigated case of simulated data. In other words, the 

breaking points are not always uniquely identified, and while some are detected with a 

high level of certainty, others may only be detected in a small percentage of cases. 

Herein, only the points that were detected in more than 50% of cases were selected.    

The discretised parameter profile is subsequently used to simulate the driving 

behaviour for the follower vehicle. The comparison of the simulated states (spacing, 

speed, and acceleration) with the real states points to the accuracy of the simulated 

behaviour. The reason why the acceleration estimates are less solid than the spacing 
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and speed estimates is due to the low weight of the acceleration variable in the 

objective function, as explained earlier.  

An interesting finding of this work that can be identified from Figure 8, is the 

correlation between the estimate of parameter T, and speed. This will be explained 

further in the following section. 

 

Figure 8. Trajectories resulting from application of the proposed method to vehicle no. 348 of 

the NGSIM data. 
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4.2 Analysis of the parameter estimates  

Figure 9 illustrates the resulting parameter estimates for the vehicles, based on which 

highly accurate estimates of the spacing and velocity trajectories can be obtained. 

Table 2 summarises the errors in the estimation of velocity and spacing. 

 

Figure 9. Parameter estimates for the eight vehicles following vehicle no. 329 in the NGSIM 
data. The position of each vehicle inside the platoon is specified in front of the vehicle ID no. 
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Table 3. Measures regarding quality of fit for each of the vehicles in the platoon 

 V348 V343 V354 V362 V368 V378 V381 V391 

Average absolute 
error for spacing 

 
0.7366 

 
0.8333     

 
1.8907 

 
1.0251 

 
0.5108     

 
0.7039     

 
0.8268     

 
1.7798     

Average absolute 
error for speed 
 

 
0.3885 

 
0.5072     

 
0.6117 

 
0.5066 

 
0.4249 

 
0.5032 

 
0.4805 

 
0.6909     

 

One of the interesting findings is that in the majority of investigated 

trajectories, a noticeable relationship between the average speed and estimate of 

parameter T can be observed. In particular, from the parameter estimates related to 

vehicles with IDs 348, 354, 362, and to a lesser extent 343, 378, 391, it can be seen 

that with the increases in the average speed, the estimate of parameter   increases, 

and that sudden drops in the average speed results in drops of parameter    The 

detection of common patterns is an encouraging result, as it points to a driving 

phenomenon that the car-following model fails to account for.  

However, interestingly, two other patterns can be observed within the 

estimates for this platoon: 1) the inverse relation with the average speed, as in the 

case of vehicle no. 368; and 2) irrelevant or no changes in the estimated parameter 

with respect to average speed, which is the case for vehicle no. 381. Similar patterns 

are observed in many other examined vehicles, and can be most likely be attributed to 

differences in driving styles, intentions (such as preparation for performing a lane 

change), or maybe a more complicated relation between the average speed and 

spacing, which could describe the changes in the model parameter better. Moreover 

interestingly, in a statistically significant number of cases, the breaking points are 

detected at a point in time where there has been a change in the driving conditions. 

For instance, considering the velocity profile of the vehicle no. 348 (Figure 8), it can be 

seen that the two breaking points identified correspond to points where: 1) there is a 

transition from driving through a shockwave into more homogeneous congested 

traffic, at about       ; and 2) there is a transition from homogenous congested 
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traffic to a less congested state where the vehicle starts accelerating at about   

    .  

It should be acknowledged here that, indeed, the random nature of driving may 

be amplified at low speeds and under stop-and-go conditions, and therefore decisive 

conclusions can only made when sufficiently large numbers of suitable data are 

analysed. A suitable dataset for this purpose would be one consisting of trajectories 

with long observation times, where large enough numbers of drivers can be tracked 

through different driving conditions. The implementation of the proposed framework 

on such a dataset would enable the analysis and interpretation of the jumps in the 

parameter values in a broader perspective, and would allow the modification of the 

method and its parameters for better performance. The further investigation of these 

topics and the application of the method to more trajectories will shed more light on 

some of these issues. 

5. Conclusion and future work 

In this paper, particle filtering was utilised to examine the dynamic behaviour of 

drivers in different traffic conditions. In order to interpret the estimates given by the 

particle filtering process, a simple discretisation method was used, and promising 

results from its application to simulated and real data were obtained. This helped 

isolate minor fluctuations, which could be due to the fuzzy and stochastic nature of 

human driving, or minor errors in the modelling of car-following behaviour, and to 

convert the raw estimates given by the particle filtering process to an interpretable 

form.  

The application of this method to real data delivered interesting results. 

Specifically, for a large number of cases, an interesting relationship between average 

speed and the parameter under investigation was observed. This frequent pattern may 

point to a common driving behaviour that may not be addressed by the mathematical 

structure of the model under investigation. Moreover, two additional patterns were, 
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interestingly, observed: 1) an inverse relation with the average speed; and 2) no 

relation with average speed. Additionally, in a significant number of cases the points 

that were detected as breaking points seemed to be the ones where, indeed, a change 

in the driving condition took place. Therefore, the employed framework was found to 

have great potential in investigating the properties of traffic flow, as well as in 

examining the robustness and performance of car-following models.  

In future work, the application of suitable clustering methods, such as 

consolidated fuzzy clustering (Ma and Andréasson 2007) will be considered for 

grouping the estimation results. Moreover, due to the stochastic nature of particle 

filtering, the values of the breaking points identified are subject to changes in 

consecutive runs. The uncertainty arising from this issue could be tackled by 

calculating confidence intervals for these values. Finally, in order to draw reliable 

conclusions about how driving behaviour may change with reference to car-following 

models, an analysis of larger groups of trajectory data needs to be carried out.  
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