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Abstract 

The rapid progress in Adaptive Optics (AO) imaging, in the last decades, has had a 
transformative impact on the entire approach underpinning the investigations of retinal 
tissues. Capable of imaging the retina in vivo at the cellular level, AO systems have revealed 
new insights into retinal structures, function, and the origins of various retinal pathologies. 
This has expanded the field of clinical research and opened a wide range of applications for 
AO imaging. The advances in image processing techniques contribute to a better observation 
of retinal microstructures and therefore more accurate detection of pathological conditions. 
The development of automated tools for processing images obtained with AO allows for 
objective examination of a larger number of images with time and cost savings and thus 
facilitates the use of AO imaging as a practical and efficient tool, by making it widely 
accessible to the clinical ophthalmic community. 

In this work, an image processing framework is developed that allows for enhancement of 
AO high-resolution retinal images and accurate detection of photoreceptor cells. The 
proposed framework consists of several stages: image quality assessment, illumination 
compensation, noise suppression, image registration, image restoration, enhancement and 
detection of photoreceptor cells. The visibility of retinal features is improved by tackling 
specific components of the AO imaging system, affecting the quality of acquired retinal data. 
Therefore, we attempt to fully recover AO retinal images, free from any induced degradation 
effects. A comparative study of different methods and evaluation of their efficiency on 
retinal datasets is performed by assessing image quality. In order to verify the achieved 
results, the cone packing density distribution was calculated and correlated with statistical 
histological data. From the performed experiments, it can be concluded that the proposed 
image processing framework can effectively improve photoreceptor cell image quality and 
thus can serve as a platform for further investigation of retinal tissues. Quantitative analysis 
of the retinal images obtained with the proposed image processing framework can be used 
for comparison with data related to pathological retinas, as well as for understanding the 
effect of age and retinal pathology on cone packing density and other microstructures. 
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1.  Introduction 

1.1 Overview of the Problem Statement 

In ophthalmology, there are some diseases which do not present any immediate visual 

problems to the patient when they initially appear, but without treatment can cause 

permanent and irreversible damage to the visual system. According to the World Health 

Organization [1], the estimated number of visually impaired people in the world is 285 

million, 39 million blind and 246 million having low vision. Cataract (51%) remains the 

leading cause of blindness globally, followed by glaucoma (8%), corneal opacities (4%), 

trachoma (3%) and retinal disorders such as age-related macular degeneration (5%) and 

diabetic retinopathy (1%) [1]. More than 82% of all blind persons are 50 years of age or 

older. With the decline in mortality and fertility rates, both contributing to a rapid aging of 

population in most countries, by 2020 the number of individuals with blindness might reach 

76 million [2]. The data from global epidemiological studies indicated that up to 75% of all 

cases of blindness can be avoided through regular testing and careful treatment plan [3]. For 

this reason, it is of vital importance to develop powerful imaging techniques and tools, 

capable of detecting the signs of retinal degeneration and thereby assisting the diagnosis of 

eye pathologies during the early stages of their development.  

Optical imaging is a common tool in ophthalmology that permits non-invasive, in vivo 

visualisation of the retina. However, due to inherent imperfections of the human eye, 

incoming light travelling through the optical components of the eye suffers from deviations, 

creating spatial and dynamic variations termed aberrations [4]. These ocular aberrations limit 

the acquisition of high quality retinal images and inevitably lead to poor resolution of the 

microscopic mosaic structure of the retina. In order to achieve more accurate visual 

reconstruction of the retina, it is imperative to correct the aforementioned aberrations. 

AO is a technology aimed at minimising aberrations in optical systems and providing 

diffraction-limited imaging [4]. Initially developed to remove the effect of atmospheric 

turbulence for astronomical telescopes, it has been applied to ophthalmology and 

progressively developed over the past 20 years. The breakthrough in this area took place in 
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1997 [5], when images of the photoreceptor mosaic with optical compensation of aberrations 

were acquired in vivo by using a fundus camera equipped with AO. Since that time much 

effort has been applied to optical hardware improvement and new technologies. These 

innovations improved spatial resolution to the level necessary to distinguish individual 

retinal cells and retinal microstructures to assist eye professionals in recovering information 

required for studying normal and pathological living retinas. The development of AO 

systems has opened up new possibilities for visualizing the mosaic of the photoreceptor cells, 

capillaries and nerve fibre bundles with greater resolution. The benefits from AO technology 

have had an impact in a large range of different applications for clinical research [6-11]. 

Nowadays a number of imaging devices have an embedded AO system to enhance the 

quality and resolution of retinal images, including conventional fundus imaging [12, 13] 

scanning laser ophthalmoscopy (AOSLO) [9], [14], and spectral domain optical coherence 

tomography (AO-SDOCT) [15, 16]. AOSLO and AO flood-illuminated system offer a high 

lateral resolution which allows capturing individual photoreceptor cells of size down to ~2 

µm [12], [17]. The lateral resolution of AO-SDOCT is at least twice as less, however this 

system has a greater axial resolution (3-6 μm) compared with >60 μm for AOSLO and AO 

flood-illumination systems, that allows assessment of retinal lamination [18]. High-

resolution retinal imaging with a combination of existing visual tests enables correlation of 

function and spatial integrity at cellular level, which is essential in early detection of eye 

degeneration and disease. Further improvement of the quality of AO retinal images as well 

as development of automated diagnostic tools will ease visual interpretation of the images 

and promote AO imaging as a regular tool in clinical practice. Therefore, development of 

highly accurate and reliable image processing techniques is required in order to maximize 

the value of the acquired retinal data and to make the AO retinal imaging technology 

accessible to the clinical ophthalmic community.  

The first chapter presents an overview of the concepts required for understanding this thesis. 

Firstly, an introduction to the human visual system is given, which focuses on the origins of 

wave aberrations obstructing high-resolution imaging and visualisation of the retina. A brief 

history of the development of ophthalmological instruments is also included, concentrating 

mostly on the invention of AO technology and its further progress. In the subsequent part, 

the most prominent applications and directions for AO imaging are presented. The benefits 

gained in clinical research as a result of the advances in image processing are also discussed 

along with the motivation which drives the research in the field of retinal image processing. 
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The final part of this chapter presents the aim and objectives of this project as well as the 

main contributions of the implemented work. 

1.2 The Optical System of the Human Eye  

1.2.1 Anatomy of the Eye 
The human eye is a unique optical instrument. It represents a compound optical system that 

brings the outside world into focus on the retina, and thereby enables us to see [4]. The main 

optical components involved in the imaging process are illustrated in Figure 1.1. When the 

incoming light enters the eye, it firstly travels through the cornea, which together with the 

crystalline lens represents the refracting system of the eye. The amount of light is controlled 

by the iris, a coloured group of circular and radial muscles [19], which act as the aperture 

stop [20]. In bright light conditions, the circular muscles contract, whilst the radial muscles 

relax, so that the pupil shrinks to restrict light entering the eye. On the contrary, in dim light 

conditions the circular muscles relax and the radial muscles contract, resulting in dilation of 

the pupil, which allows more light to pass into the eye [21].  

 

Figure 1.1:  The optical system of the human eye [22]. 
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The cornea has a greater index of refraction than surrounding air or covering tear film and is 

therefore responsible for the largest refractive change of incoming light rays. The crystalline 

lens has less optical power, but by contracting or relaxing the ciliary muscles surrounding 

the lens, it is able to change its shape and as a result its focal length [23]. This function of 

the lens is called accommodation. It allows the lens to adjust the refractive power of the eye, 

in order to project a focused image on the retina. The image produced on the retina is an 

inverted version of the real object. (For an aberration-free schematic drawing of the ideal 

image pathway within the eye, see Figure 1.2).  

The retina is a light-sensitive layer at the back of the eye, an extension of the central nervous 

system connected to the brain via the optic nerve. When light focused by the lens reaches 

the retina, it is converted into neural signals which are then transferred to the brain via the 

optic nerve and perceived as images [24]. The processing of the incident light energy in the 

retina starts with the absorption of photons in the outer segments of photoreceptor cells. 

 

 

Figure 1.2:  Image formation within the human eye [25]. 

The photoreceptors are essentially light-sensitive cells called rods and cones. Rods and cones 

can be distinguished by the shape of their outer segments, size, distribution across the retina, 

and functionality [26]. The distribution of photoreceptor cells is inhomogeneous across the 

retina. The concentration of cones is maximal at the fovea of the eye and decreases rapidly 

towards the peripheral areas (Figure 1.3 and Figure 1.5). The fovea and its centre, the 

foveola, are referred to as the centre point of image focus (0° eccentricity). The fovea is the 

small dimple in the inner retinal surface surrounded by the parafoveal belt and the perifoveal 
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outer region (Figure 1.3 and Figure 1.6). It is responsible for the sharpest vision due to the 

concentration of cones and no presence of scattering tissue above this specialised area 

(Figure 1.4). The fovea is devoid of rods and blood vessels. The population of rod receptors 

is concentrated in the periphery of the retina and it reaches its peak at about 20 degrees from 

the fovea. In total, there are approximately 5 million cones and about 120 million rods in the 

human retina [27]. 

Figure 1.3:  Angular distribution of rods and cones in the retina [28]. 

 

Figure 1.4:  Light microscopic image depicting a retinal cross-section [29]. 
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Figure 1.5:  En face sections of human retina acquired with differential interference contrast 

microscopy showing (a) cones at the fovea and (b) cones near the periphery 

(scale bar = 10 µm) [30]. 

For descriptive purposes, the surface of the retina and its corresponding visual field are 

divided by vertical and horizontal lines into four quadrants (Figure 1.6). The vertical line 

divides the retina into nasal and temporal meridians and the horizontal line divides the retina 

into superior and inferior quadrants [26]. 

 

Figure 1.6:  Schematic diagram of the retina for the right eye showing fovea, parafovea 

and perifovea in four retinal quadrants [31]. 

The rods are taller due to the longer outer segment, a structure filled with disks in which the 

light sensitive visual pigment (photopigment) is embedded (Figure 1.7). The photopigment 

of rods and cones is different. The rods’ outer segment disks contain the photopigment 

rhodopsin. This absorbs a wide bandwidth of light which is then separated at light levels 
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lower than those required to breakdown cone photopigments. Hence, rods are highly 

sensitive to light and consequently, they are almost entirely responsible for night and 

peripheral vision [26]. 

 

Figure 1.7:  Structural differences between rods and cones [22]. 

Cones contain opsin as their photopigment, and based on the colour of light they absorb are 

separated in three types. One type of cones responds best to long wavelengths of light (L), 

another to medium wavelengths of light (M) and the last one to short wavelengths of light 

(S). The peak absorption of these cone cells is at 437, 533 and 564 nm, correspondingly [32]. 

Therefore, cones are responsible for colour vision and eye colour sensitivity. Also, cones 

have high spatial resolution and they are activated at the brighter light levels. On the other 

hand, rods respond best to white light, they do not mediate the colour, and have low spatial 

acuity.  

1.2.2 Optical Aberrations 
In an ideal optical system, all rays of light from a point in the object plane converge to a 

single focal point in the image plane (Figure 1.8-a). However, such performance of an optical 

system is predicted only by paraxial approximation, simplified geometrical optics [33]. An 

aberration is a deviation of a ray from the behaviour predicted by the simplified rules of 

geometric optics. Aberrations can be caused by the lens shape, placement of optical elements 
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within a system, inhomogeneity of the optical media or due to the wave nature of light [34]. 
Optical systems are typically designed using paraxial optics which does not take aberrations 

into account; it treats light as a ray, and therefore omits the wave phenomena that cause 

aberrations. If not compensated for correctly, aberrations decrease the image quality of an 

optical system [35]. 

Aberrations are mainly divided into monochromatic (present with a single wavelength of 

light) and chromatic aberrations (present in multi-wavelength light). Chromatic aberrations 

result from dispersion of light, when different wavelengths of light pass through media at 

different speeds. Thus, a lens fails to focus all colours to the same convergence point [36]. 

Chromatic aberrations are further classified into two types: transverse and longitudinal. 

Longitudinal Chromatic Aberration (LCA) occurs when different wavelengths of colour do 

not converge at the same point after passing through a lens (Figure 1.8-b). Imaging with 

lenses that have LCA problems result in fringing around objects throughout the image [37]. 

Transverse Chromatic Aberration (TCA) occurs when a lens focus different wavelengths of 

light at different points along the focal plane (Figure 1.8-c). TCA are only visible towards 

the corners of the image in high-contrast areas [37]. Achromatic doublets and apochromatic 

lenses are usually employed in an optical setup in order to minimize the effects of chromatic 

aberrations [35]. 

Monochromatic aberrations do not account for the effect that the frequency of light has on 

its propagation through a system. Therefore, they are not caused by dispersion but by the 

geometry/irregularity of the lens or mirror and occur both when light of narrow band is 

reflected and refracted. The optical systems are designed based on the paraxial 

approximation, which assumes that all rays entering the system are nearly parallel to each 

other and perpendicular to the lens. However, the actual path of a ray deviates from what the 

paraxial approximation predicts, giving a rise to monochromatic aberrations [38].  
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a 

 
b 

 
c 

Figure 1.8:  Schematic drawing showing (a) a perfect lens with no chromatic aberration, 

(b) longitudinal chromatic aberration and (c) transverse chromatic aberration 

[37]. 

Optic imperfections occur even in normal eyes. Wavefront aberrations define optical errors 

of the eye that prevent light from focusing perfectly on the retina, resulting in defects in the 

visual image (Figure 1.9) [39]. The cornea (the tear film–cornea interface, i.e. the surface 

between cornea and tear film, coating of the outer surface of the cornea) and the crystalline 
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lens, as the most powerful refractive components, are the main sources of aberrations in the 

human eye. The size of the pupil also influences the magnitude of wave aberrations in the 

eye. As the pupil enlarges, more peripheral rays enter the eye causing an increase in overall 

wave aberrations [27]. 

  

a b 

Figure 1.9:  Schematic drawing showing wavefront (WF) (a) in perfect and (b) aberrated 

(normal) eye [40]. 

In general, the magnitude of ocular aberrations is strongly dependent on individual factors 

such as age, state of accommodation, eye movements, tear film, and variations in the retinal 

shape, which can interact with the above factors [41]. 

Optic imperfections of the eye can be measured and expressed as wave aberration errors. 

Zernike polynomials can be used to quantify the aberrated wavefront of an optical system 

[42]. These polynomials represent a mathematical description of 3-dimensional (3D) 

wavefront deviation from the ideal planar wavefront located in the plane of the eye’s pupil. 

Each polynomial characterises a specific form of surface deviation; while the sum of a set 

of weighted Zernike terms can produce a large number of more complex surface shapes, 

which can be fit to specific forms of wavefront aberrations. In principle, by including 

sufficient numbers of Zernike polynomials, any wavefront deformation can be described to 

a desired degree of accuracy [43]. Figure 1.10 presents the first 21 Zernike polynomials. 

Details on the mathematical description of aberrations using Zernike polynomials are given 

in Section 4.3.  
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Figure 1.10:  The first 21 Zernike polynomials [44].  

Ocular aberrations can be classified into low-order (LOA) and high-order aberrations 

(HOA). LOA are defined as the first two orders of Zernike coefficients. Such LOA as 

defocus and astigmatism are the prevailing optical aberrations and they account for 

approximately 90% of the overall aberrations of the eye [45, 46]. Coma and spherical 

aberration of higher order are examples of terms describing the HOA commencing with third 

order Zernike coefficients. Even though HOA contribute just 10% of errors to the total 

variance of optical aberrations, their presence also results in the reduction of visual 

performance. LOA and HOA not only have an effect on vision, they in turn influence retinal 

imaging as well, as they distort the information present and reduce the maximum resolution 

obtainable by the imaging system [47].  

In the last 20 years, advances in wavefront technology have allowed rapid and accurate 

measurements of wave aberrations of the eye with instruments termed aberrometers. On the 

other hand, an AO ophthalmic instrument is capable of measuring as well as correcting for 
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the imperfections of the eye, thus bringing the resolution of images down to the cellular 

level. 

1.3 Adaptive Optics Imaging 

1.3.1 History of AO Retinal Imaging 
The development of adaptive optics originated from the astronomical and military 

communities. Astronomer Horace Babcock was the first to propose the idea of correction for 

the effects of atmospheric turbulence on images acquired with ground-based telescopes in 

1953 [48]. By tracing individual rays of light through the optical system of a large telescope, 

he concluded that an adaptive optical element could remove the blur in stellar images from 

the time-varying aberrations produced by the turbulent atmosphere. However, Babcock was 

unable to realize his idea due to lack of advances in the technology of correction and 

measurement of wave aberrations [49]. The development of deformable mirrors for AO 

systems started in the early 1970s mainly driven by military contracts. The first practical 

system was introduced in 1973 at Itek, United States, and was described by Hardy et al. in 

1974 [50]. In 1977, Hardy summarized in his review paper the advances made in the field of 

adaptive optics and analysed the performance of existing AO systems at that time [51]. Now 

adaptive optics is widely embedded in all advanced ground-based telescopes around the 

world. 

Long before that, Smirnov was the first to start measuring the wave aberrations of the eye 

back in 1961 [49]. He used a subjective Vernier task to measure the retinal misalignment of 

rays entering through different parts of the pupil, providing a description of the third- and 

fourth-order aberrations [52]. These calculations were very time consuming and could not 

be applied in everyday practice, until advances in computing power made it possible to 

measure and compute the eye’s wave aberrations in a few tens of milliseconds. 

Advances in building wavefront measurement devices were accompanied by the 

development of ophthalmological equipment. In 1851, a breakthrough in the field of 

ophthalmology was made by Helmholtz, a German physician and physicist who invented the 

ophthalmoscope [53]. This design was further enhanced by Anagnostakis, who came up with 

the idea of making the instrument hand-held by adding a concave mirror [54]. In 1899, 
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Thorner further modified the ophthalmoscope which was later adapted as a camera objective. 

In 1910, Gullstrand developed the fundus camera, a device still used to image the retina 

today. After that, further improvements were made by Nordenson in 1925 [55]. The fundus 

camera model was commercialized by the Zeiss company in 1926 [56]. Since then it has 

been adopted by ophthalmologists in regular clinical practice. Advances in the initial design 

of the fundus camera comprised of blocking the redundant reflection from the corneal 

surface, increasing film sensitivity, and the electronic flash lamp, which allowed exposures 

brief enough to avoid eye movement blur [57]. 

The first in vivo images of human retina were acquired by Jackman and Webster in 1886. 

For this purpose, they used a system of an ophthalmoscopic mirror in conjunction with a 

two-inch microscope objective that was attached to the patient’s head. Although filming 

required a 2.5 minutes exposure time, the resulting images were still very blurry [58]. The 

first useful photographic images of the retina, showing blood vessels, were obtained in 1891 

by the German ophthalmologist Gerloff [59]. 

The invention of the scanning laser ophthalmoscope (SLO) by Robert Webb [60] advanced 

retinal imaging to the level of microscopic resolution. Having a higher degree of spatial 

sensitivity due to the use of such detectors, as the avalanche photodiode or the 

photomultiplier tube [61], this system was capable of imaging distinct layers of the living 

eye. This raster scanning instrument used confocal methods to reject extra light through a 

small pinhole, thus providing an optical sectioning capability. The application of optical 

coherence tomography (OCT) to the eye enabled even greater improvements in axial 

resolution, ranging as high as 1 to 3 µm in-vivo [57]. However, it was still not possible to 

resolve individual retinal cells due to optical aberrations in the eye. 

The correction of optical aberrations of the eye was limited to only second order Zernike 

coefficients until the development of the Shack–Hartmann wavefront sensor. The Shack-

Hartmann wavefront sensor is a technology evolved from the Hartmann Screen test invented 

by Johannes Hartmann (1865-1936), a German astrophysicist. To improve the quality of 

astronomical images, he constructed a screen with a series of holes in it, and placed the mask 

over the aperture of the 80 cm refracting telescope. A collimated beam shone through the 

mask effectively creates a discrete set of ray bundles that pass through the system. As a 

result, photographic plates exposed on either side of focus represent a “spot diagram” of the 
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telescope. By shifting the location of the observation plane by fixed amounts and tracking 

the movements of the spots, the trajectory of each ray can be determined. In this way, 

Hartmann was able to refigure the lens of the refracting telescope and spectrographically 

identify calcium clouds with the system [62]. 

Further advances in adopting the Hartmann test to astronomical and military applications 

were made by Aden Meinel and Roland Shack. Meinel suggested measuring atmospheric 

aberrations while satellite images are captured using the Hartmann test. Roland Shack 

modified the technique by replacing the holes in the plate with lenses. In this way, it was 

possible to concentrate the light passing through the apertures to a focal spot. This resulted 

in a higher photon density and consequently allowed the spot pattern to be recorded. Given 

the sufficient diameter of the lenses, all the photons incident on the screen find their way to 

a focal spot. This design offered better photon efficiency than the Hartmann test. The next 

step in the implementation of the technique was to obtain a suitable array of lenses. In 1971, 

Roland Shack and Ben Platt modified the Hartmann sensor by replacing the array of hard 

apertures that Hartmann had used with an array of discrete micro-lenses [63]. 

In 1980s, Josef Bille and Roland Shack started using the lens array for measuring corneal 

topography [64]. This was the first noted application of the Shack-Hartmann technique in 

ophthalmology. Later, Bille and Liang showed that the Shack-Hartmann sensor can be 

adapted to measure aberrations of the eye [65]. These findings led to the development of 

closed-loop AO systems for the eye.  

In 1989, Dreher et al. employed AO technology in ophthalmological imaging [66]. A 

deformable mirror was embedded in a scanning laser ophthalmoscope in order to correct the 

astigmatism in the subject’s eye based on a prescription provided by conventional refraction. 

In 1993, at the University of Heidelberg, Liang developed a high resolution wavefront sensor 

which provided a more complete description of the eye’s wave aberrations, measuring up to 

10 radial Zernike orders [67]. The first AO closed-loop system built in 1997 [5] was not fully 

automated and required 15 min for each loop of wavefront calculation and correction. Since 

then, AO technology has advanced dramatically. The Shack–Hartmann wavefront sensor 

was automated, which led to its wide use in research and rapid commercialization. 

Nowadays, the AO system is integrated almost in all existing ophthalmic modalities, with 
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each offering different benefits [68]. Figure 1.11 shows a comparison of retinal images 

acquired with and without AO correction.  

  
a b 

Figure 1.11:  Retinal images for one subject (a) with and (b) without AO correction, 

acquired at 1.25 degree eccentricity on the temporal retina [69].  

 

 

Figure 1.12:  AO retinal imaging system [4]. 

The AO system consists of three key parts: the wavefront sensor, the wavefront corrector 

and the control computer. The wavefront sensor measures the eye's wave aberrations. The 

wavefront corrector − this can be a deformable mirror, a phase modulator, a spatial light 
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modulator, or liquid lenses − performs the correction of the eye’s aberrations using actuators 

that deform/deflect its reflective surface. The AO controller, programmed with a computer, 

controls the interaction between the wavefront sensor and the wavefront corrector. The 

wavefront corrector interprets the measurements from the wavefront sensor and computes 

the appropriate commands that are sent to the wavefront corrector. In this way, the system 

operates in a feedback loop manner. This closed-loop mechanism is presented in Figure 1.12. 

At each iteration, the wavefront sensor measures the eye’s aberrations and calculates the 

error between the current data and the target wavefront, which is transferred back to the 

controller. Based on this residual, the controller produces the signal for the wavefront 

corrector to further reduce aberrations in the next iteration, theoretically correcting retinal 

images up to the diffraction limit [4]. There are two sources of infrared non-coherent flood 

illumination in AO system. One is used for measuring and correcting the wavefront 

aberration of the eye, while the second source is used for retinal imaging. The AO-corrected 

retinal image is captured by a high-resolution imaging camera. 

There are various wavefront sensing techniques available to measure the ocular aberrations 

of the human eye. The most common among them are the spatially resolved refractometer, 

the laser ray tracing technique, and the Shack–Hartmann wavefront sensor. The working 

principle of all wavefront sensors in the field of vision science and ophthalmology is the 

same, i.e. indirect measurement of local wavefront slopes and the reconstruction of the 

original wavefront by integrating these slopes [57]. 

The Shack–Hartmann wavefront sensor contains a lenslet array that consists of a two-

dimensional (2D) array of a few hundred lenslets, all with the same diameter and focal 

length. The light directed from a laser beam is projected on the retinal field; when the light 

gets reflected from the retinal surface, it is deviated due to aberrations of the eye. In order to 

detect these deviations and calculate the wavefront, the reflected light is spatially sampled 

into many individual beams by the lenslet array forming multiple spots in the focal plane of 

the lenslets. A CCD camera placed in the focal plane of the lenslet array records the spot 

array pattern for the wavefront calculation. For a perfect eye (i.e., an aberration free or 

diffraction-limited eye), light reflected from the retina emerges from the pupil as a 

collimated beam, and produces a regularly spaced grid of spots in the focal plane of the 

lenslet array (Figure 1.13, Figure 1.14-a). On the contrary, for an aberrated eye, the light 

rays are deviating while passing through the eye’s optics and therefore are displaced from 



39 

the optical axis of each lenslet (Figure 1.13, Figure 1.14-b). The displacement of each spot 

is proportional to the wavefront slope at the location of that lenslet in the pupil and is used 

to reconstruct the wave aberration of the eye. 

 

Figure 1.13:  Principle of measuring ocular aberrations with a wavefront sensor [70]. 

 

Figure 1.14:  Schematic diagram of the measurement principle of a Shack–Hartmann 

wavefront sensor. F is the focal length of the lenslet. Two Shack–Hartmann 

images for (a) perfect and (b) real eyes are also shown [57]. 

1.3.2 The rtx1 Adaptive Optics Retinal Camera 
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Currently there are two types of AO imaging systems which provide en face images of retinal 

photoreceptor layer: the AOSLO [14] and flood-illuminated (flash) AO fundus camera [13]. 

In this thesis, a series of high-resolution retinal images have been acquired using a 

commercially available AO flood-illuminated instrument −  rtx1, Imagine Eyes, Orsay, 

France (Figure 1.15). The core components of the system include a Shack-Hartmann 

wavefront sensor (HASO 32-eye, Imagine Optics, Orsay, France), a deformable mirror 

(MIRAO 53, Imagine Optics), and a low-noise high-resolution CCD camera (Roper 

Scientific, Tucson, AZ). The resolution of the CCD camera for a retinal image of 4˚x4˚ is 

750x750 pixels, which corresponds to an area approximately 1.2 ݉݉ x 1.2 ݉݉ in the retina 

for an emmetropic eye. This yields a pixel to retina ratio for a raw single image frame of 

1:1.6 μ݉ . For measurement and correction of wavefront aberrations, a 750 ݊݉  super 

luminescent emitting diode (SLED) (A-IL) is used. An array of ten 950 ݊݉ light emitting 

diodes (LEDs) is employed to uniformly illuminate the iris. To provide an illumination field 

on the retina, the system is equipped with a 850 ݊݉ LED (R-IL). A LED miniature monitor 

is used as a fixation target in order to minimize eye movements during measurements. The 

rtx1 imaging system requires 9	݉ݏ of exposure time. The total acquisition time for the 40 

frames is approximately 4 seconds with 105 ݉ݏ time-intervals between the frames [71]. 

 
Figure 1.15:  Commercially available AO flood-illuminated instrument: rtx1, Imagine 

Eyes, Orsay, France [12].  
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1.4 Applications of AO Retinal Imaging 

For the last decades, the capabilities of AO systems have been continuously exploited, 

opening up new areas of clinical research and revealing new insights into retinal structures, 

function, and the origins of various retinal pathologies. In this section, we review the most 

prominent clinical findings, the leading applications of AO imaging which assisted this effort 

as well as possible future prospects. 

Much of research and analysis of cellular-level retinal structures promoted by AO is captured 

in various papers [72-81]. As cones are easier to image due to their larger size and 

reflectivity, the major part of the research, especially in the early years, was devoted to the 

study of the cone mosaic (Figure 1.16), examination of cone features and its topological 

structure [5], [82]. Cone spacing, directionality and its reflectance were investigated in 

different regions of the retina [83-85]. This allowed researchers to establish the correlation 

between photoreceptor arrangement and retinal eccentricity; the findings showed a decrease 

in packing density of photoreceptor cells from the region of the fovea, towards the periphery 

[86]. Validation of the estimated density distribution of cone photoreceptors and associated 

spacing against histology measurements demonstrated good agreement [75], [87]. In some 

cases, additional statistical functions were derived in order to correlate the density and spatial 

distribution of the cone photoreceptors with the visual performance of the eye [73, 74]. Cone 

spacing and Nyquist limit were calculated across the retina in an attempt to understand the 

physical aspects of visual resolution of the human eye [65], [84], [86], [88]. A number of 

studies showed that the Nyquist sampling limit of the cone mosaic declines with the increase 

of eccentricity [65], [88, 89]. 

Further research in AO imaging focused on the optical properties of the cone mosaic [16], 

[47], [90-96]. By measuring the directional tuning of individual cones it was found that these 

cells are not randomly aligned, but tightly clustered pointing toward the pupil centre [97]. 

Moreover, it was demonstrated that the reflectance of individual cones is a dynamic property 

of the mosaic and independent from cone to cone. Factors which influence the intensity 

variation of the cone mosaic were studied in [97-100]. 
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Figure 1.16:  (A) Cone photoreceptor mosaic imaged with an AO fundus camera at 1 

degree eccentricity on the temporal retina and (B) pseudocolor image of the 

same location with blue, green, and red representing the S, M, and L cones, 

respectively [73]. 

Apart from cone cells, other retinal microstructures were also imaged with the help of AO, 

including retinal pigment epithelium (RPE) cells [10], leukocyte blood cells [101], the 

smallest retinal blood vessels [11] and retinal ganglion cells (RGCs) [102, 103]. However, 

imaging of RGCs still remains a challenge due to the near transparent nature of these cells 

[104]. 

The aforementioned research studies provided a valuable collection of data on normal 

populations. This data represents a basis for characterizing the density, spacing distribution 

and brightness of healthy photoreceptor cells in vivo. The study of the retinas in healthy 

subjects assists medical professionals because normative data is the backbone for analysis 

and correlation with diseased eyes. The estimated normal ranges can be used for comparison 

with the data related to pathological photoreceptors, and can be employed for understanding 

the effect of age and retinal pathology on cone packing density and other microstructures. In 

this way, it is possible to characterise the microscopic structure of the diseased retina in vivo 

and as a result monitor and examine the progression of the eye disease and the efficacy of 

the proposed therapies over time in individual subjects. 

The most common diseases that have been proved to cause vision loss are considered to be 

diabetic retinopathy (DR), age-related macular degeneration (AMD), cone-rod dystrophy 

and glaucoma [1]. DR is a chronic disease of the retinal microvasculature, which develops 

as a complication of diabetes [105]. In this case, AO retinal imaging has been used to detect 

pathological changes occurring in the early stages of DR. Several studies in DR patients 
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reported significant structural abnormalities across the retinal tissue, including the fovea 

[106-108]. Theoretically, the reconstruction of the entire retinal capillary network – 

including appearing abnormalities – can be accomplished by non-invasive imaging 

modalities, the key one being AO integrated into SDOCT. This could represent a valuable 

advantage of AO retinal imaging in comparison with current non-invasive imaging 

modalities [4]. 

Apart from vascular abnormalities, degenerative changes can also occur beyond the retina 

in DR. These changes are considered to be neurodegenerative and are linked to the functional 

loss in vision that patients undergo in the early stage of diabetes. Although it has not been 

yet proven, neuronal dysfunction is believed to be an early sign of DR [105], [109-111]. The 

application of AO in this field provides valuable information regarding the cellular changes 

as a function of mosaic geometry and reflectance in these retinal pathologies. Results on this 

subject were published by Parravano et al. [112]. In this study the authors demonstrated 

differences in intensity variation of healthy eyes and patients with DR. In particular, they 

found that the parafoveal cone photoreceptors appeared to have a higher variation in 

intensity, especially in the areas of intraretinal focal oedema. Similar findings are also 

reported in the work of Duncan et al. [113].  

AO imaging is also used for prognosis of AMD. This disease manifests as a deterioration of 

retinal structure in the macula – a small area near the centre of the retina, the part of the eye 

which is responsible for sharp, central vision [4]. One of the first clinical signs in the 

progression of AMD is the appearance of soft drusen (Figure 1.17). Drusen are extracellular 

deposits that accumulate between the RPE and Bruch’s membrane [114-116]. Their 

formation is thought to disrupt the overlying photoreceptors, leading to subsequent loss of 

vision. 

Recently, AO imaging provided researchers with the capability to capture retinal nerve fibre 

layer (RNFL) and detailed images of the optic nerve head (ONH) [8, 9], [117]. Clinical 

evaluation of the structural changes at the ONH/RNFL level is valuable for the early 

diagnosis of glaucoma [118, 119]. The World Health Organization reports glaucoma as the 

second leading cause of blindness globally [120]. Glaucoma is a chronic disease causing 

progressive regional or diffuse thinning of the RNFL [121]. Axonal tissue loss in the RNFL 
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has been reported to be one of the earliest detectable glaucomatous changes, preceding 

morphologic changes of the optic nerve head. 

 

Figure 1.17:  Example of photoreceptor layer with drusen. The scale bar is 104 µm. 

AO imaging techniques are also applied for the examination of congenital diseases, such as 

dichromacy [77], [122], oligocone trichromacy [123], Stargardt disease [124] and Cone–

Rod Dystrophy [125]. In most of those studies, retinal disorders were interpreted via 

quantitative correlations, based on the measurements of photoreceptor loss. For example, in 

the work of Carroll et al. [77] areas with defected cones have been linked with colour 

blindness. Despite a significant loss of foveal cones, the patient’s visual acuity appeared to 

be normal. Similar findings were observed in the work of Talcott et al. [126], where patients 

with inherited retinitis pigmentosa had no changes in visual acuity or visual field, however 

significant differences in cone density and spacing were detected between control groups. 

The results in these studies showed that AO imaging has the capacity to detect retinal 

degeneration well before conventional clinical tests. 

Likewise, AO imaging can be used to discriminate eye disorders which primarily affect rods, 

for example retinitis pigmentosa [127] and age-related macular degeneration [128]. Rod 

photoreceptors are characterised by their small diameter and broad angular tuning (the angle 

of the photoreceptor cell apertures with respect to the pupil), which restricts the amount of 

light necessary for imaging to be transferred back through the pupil [49]. For this reasons, it 
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is more difficult to image rod photoreceptor cells, even though similar studies concerned 

with in vivo imaging of the foveal cones, which are similar in size, have proved that this is 

possible [129]. However, a few studies have successfully managed to capture single rods in 

the living human eye and furthermore correlated the performed image analysis with existing 

histological data [72], [130]. As a separate problem, there is still a great degree of uncertainty 

regarding the distinction of cones and rods which occurs due to their difference in depth of 

focus [131]. Thus, the engagement of more sophisticated image processing procedures is 

required to get both, rods and cones, in focus. 

To summarize, various studies have shown that AO can be successfully used in imaging the 

living human retina of healthy subjects as well as patients with progressive eye disorders. 

The quantitative analysis of high-resolution retinal images helps to understand the cellular 

basis of the phenotypic variability commonly observed in retinal disorders [123]. AO 

imaging combined with molecular genetic data can explain the aetiology of various retinal 

degenerations [68]. AO retinal imaging – if employed routinely in a clinical setting – could 

bring an important contribution to the process of treatment of eye diseases and the evaluation 

of prevention strategies. By observing the same retinal area over time with AO instruments, 

clinicians can now evaluate long-term effects that treatments have on individual 

photoreceptor cells [15], [83], [113]. Therefore, future applications of AO high-resolution 

imaging will include assisting clinicians in tracking retinal diseases and controlling the 

efficacy of specific therapy with great accuracy, helping to accelerate the search for new 

strategies to prevent serious visual loss.  

1.5 Retinal Image Processing 

Advances in image processing methods contribute to the progress of ophthalmic studies as 

well as any routine clinical medical application. Images obtained with AO instruments 

require post-processing before they can be of clinical use to aid prognosis or diagnosis. Post-

processing procedures include enhancing the contrast [129], extracting the background of 

the image [71], image montaging [80], suppressing noise [72], registering a sequence of 

frames [129], [132], image deblurring [133], etc. Moreover, any quantitative image analysis 

requires automated models for an objective assessment. Some of the methods in high-

resolution retinal imaging still imply manual interpretation of data, which may affect the 
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repeatability of the produced results. Other methods are based on the use of commercial 

graphics packages such as Adobe® Photoshop® (Adobe Systems, Mountain View, 

California) and ImageJ (National Institutes of Health, Bethesda, Maryland) [77], [125], 

[129], which are not specialized in processing high-resolution retinal images and therefore 

cannot provide high accuracy results.  

AO retinal imaging technology integrated with automated post-processing techniques for 

high-resolution retinal images can provide an efficient diagnostic tool. Automated 

evaluation of retinal images using digital image analysis offers great potential benefits to 

both research and clinical environments. In a research setting, it allows to examine a large 

number of images time and cost-effectively, thereby offering more objective measurements 

than current observer driven techniques [134]. Advantages in a clinical context include the 

potential to perform larger number of automated tests enabling quantitative analysis of 

retinal tissue including identification of structural abnormalities. In particular, the wide field-

of-view obtained by montaging images from different retinal locations assists clinicians to 

visually inspect a larger area of the patient’s retina [80]. Accurate and reliable image 

processing techniques for automated tracking of photoreceptor cells and their counting 

provide means for quantitative assessment of retinal mosaic in healthy and pathological 

retinas [135]. Furthermore, detection of retinal features, extraction and quantitative 

measurements of retinal vascular topography allow analysis of morphological alterations in 

patients with diseases such as DR and glaucoma [134]. Combining these tools for processing 

high-resolution retinal images in a unified framework can significantly improve the accuracy 

of patient’s diagnosis and efficiency of treatment process via monitoring the disease 

progression.  

It is of utmost importance to develop highly efficient algorithms while providing the best 

image quality. Poor image quality can adversely affect the accuracy of automated detection 

algorithms as well as complicate visual interpretation of the images. As a result, evaluation 

of images with poor quality can lead to unreliable quantitative data, misdiagnosis, difficulty 

with treatment decisions, and inability to follow the disease progression due to limitations 

in reproducibility [136]. Improvements in contrast and resolution of retinal images allow for 

better observation of retinal microstructures and thus facilitate more accurate detection of 

desired retinal features. Methods for automated assessment of the image quality can provide 

a feedback to the operator during image acquisition and therefore improve the likelihood 
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that a good quality image will be employed in the interpretation of clinical studies. 

Development of retinal image processing techniques will eventually lead to regular use of 

automated diagnosis tools based on AO imaging, proving them to be a practical and efficient 

alternative to commonly used ophthalmic diagnostics.  

A more detailed analysis of image processing techniques for AO high-resolution retinal 

images is presented in Chapter 2.  

1.6 Research Aim and Objectives  

The aim of this research project is to develop an automated computer vision system 

comprised of different image processing tools for enhancement of AO high-resolution retinal 

images and accurate detection of photoreceptor cells. The visibility of retinal features is 

improved by tackling specific components of the AO system, affecting the quality of 

acquired retinal data (Figure 2.1, Chapter 2). Enhancing the quality of retinal images 

maximizes the value of the retinal data and thus assists clinicians in the examination of the 

living retina and the diagnosis of different types of eye pathologies. Quantitative analysis of 

the final images obtained with the proposed image processing framework provides tools for 

characterization of the density and spacing distribution of photoreceptor cells in vivo. By 

collecting the associated retinal statistics, clinicians will be able to assess the effects of age 

and retinal pathologies on cone packing density. Moreover, by implementing the 

aforementioned image processing framework, a platform will be developed which can 

facilitate further post-processing and investigation of retinal microstructures (Chapter 6). 

The main research objectives of the thesis are summarized below: 

 To automatically measure the quality of high-resolution retinal images in order 

to ensure the appropriate selection and evaluation of image enhancement 

techniques in a way that correlates with human perception. 

 To correct for uneven illumination in retinal images without corrupting the 

retinal features.  

 To compensate for involuntary eye movements during image acquisition by 

implementing image registration. 
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 To suppress the noise present in the images, while preserving the integrity of 

retinal structures. 

 To remove the residual optical aberrations by performing image deconvolution. 

 To enhance the visibility of photoreceptor cells over other retinal 

microstructures, thus facilitating estimation of associated statistics. 

 To implement detection and segmentation of photoreceptor cells for statistical 

correlation with histological data. 

1.7 Contributions 

A number of image processing frameworks have been designed for AO-corrected retinal 

images [71, 72], [80], [137, 138], however, still no significant progress has been made in 

order to compensate for the variety of possible degradation processes, interfering with the 

imaging system. In the current work, a novel image processing framework is implemented 

in an attempt to compensate for the identified degradation sources in AO system, at each 

step gradually improving the quality of AO retinal images and thereby recovering the true 

image. The main stages of the framework required the design and implementation of novel 

image processing techniques. 

 In the illumination correction method, the selection of decomposition level is 

automated; this allows us to maintain the number of input variables in the system for 

each retinal image. To preserve the integrity of retinal features during illumination 

correction, we propose to apply a wavelet-Fourier filter to the restored images. 

 The image registration stage is customized specifically for the compensation of eye 

saccadic movements in high-resolution retinal images. It allows for the detection of 

minor rotation and translation parameters. In order to take into account intra-frame 

variability, the transformed images are averaged using the so-called “lucky 

averaging” scheme. 

 To address complex distortion of retinal images acquired with an AO instrument, a 

novel method for blind image deconvolution is proposed based on a multi-variate 

Random Forest regressor. A compact representation of the point spread function 

(PSF) significantly reduces the degree of uncertainty in image deconvolution as well 

as allows inference of a blur kernel without compromising its resolution. The feature 
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extraction technique is specially developed to allow for better generalization on a 

large set of retinal images, acquired at different retinal locations. To our knowledge, 

learning-based methods have not been previously used for AO retinal images. 

 An automated algorithm based on the Hessian-Laplacian of Gaussian filter (LoG) is 

developed which allows for enhancement and detection of photoreceptor cells. In 

comparison with available state-of-the-art automated methods, the scale-based 

Hessian-LoG filter integrates both geometric and intensity image information in the 

process of cone detection. As a result, the proposed method provides highly accurate 

estimation of cone density. 

Effectively, the implemented image processing framework will serve as a basis for further 

investigations of retinal tissue, thus contributing to the advance of image processing 

techniques in the field of ophthalmic clinical research.  

1.8 Publications 

The following is a list of peer-reviewed research papers published/prepared based on the 

work developed during this doctoral research. 

JOURNAL PAPERS: 

1. A. Lazareva, P. Liatsis, and F. G. Rauscher, “Hessian-LoG filtering for enhancement and 

detection of photoreceptor cells in adaptive optics retinal images,” J. Opt. Soc. Am. A, vol. 

33, no. 1, p. 84, Dec. 2015. 

2. A. Lazareva, M. Francke, G. Slabaugh, L. L. Kernevez, W. Kiess, P. Liatsis, F. G. 

Rauscher, “Analysis of cone photoreceptor distribution in an emmetropic children and 

adolescent population,” Ophthalmology, Manuscript in preparation. 

CONFERENCE PROCEEDINGS: 

1. A. Lazareva, P. Liatsis, and F. G. Rauscher, “An automated image processing system for 

the detection of photoreceptor cells in adaptive optics retinal images,” in 2015 International 

Conference on Systems, Signals and Image Processing (IWSSIP), 2015, pp. 196–199. 
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2. A. Lazareva, M. Asad, G. Slabaugh, “Learning to Deblur Adaptive Optics Retinal 

Images,” in Karray F., Campilho A., Cheriet F. (eds)  Image Analysis and Recognition. 

ICIAR 2017, Lecture Notes in Computer Science, vol. 10317, Springer, Cham. 

1.9 Thesis Structure 

This chapter provided a brief introduction into the field of AO retinal imaging and its current 

challenges. Chapter 2 presents a literature review on image processing techniques currently 

used for high-resolution retinal images, acquired with AO instruments. The survey covers 

different degradation sources which originate in the AO system and affect quality of high-

resolution retinal images as well as image processing techniques employed to accurately 

compensate for the degradation effects. Chapter 3 gives a description of the chosen 

methodology for the image processing framework. A comparative analysis of different 

image pre-processing methods and evaluation of their efficiency on four representative 

retinal datasets is performed by assessing image quality. Following the stages of illumination 

compensation, noise suppression and image registration, the obtained final images are 

restored with the proposed image deconvolution method. Chapter 4 introduces a model for 

blind image deconvolution specifically designed for AO high-resolution retinal images. This 

model is validated on synthetically generated images as well as real AO high-resolution 

retinal images. The results are compared against the ground truth and state-of-the-art image 

deconvolution method.  

Chapter 5 presents a fully automated method for enhancement and detection of 

photoreceptor cells. The performance of the proposed technique is evaluated on both 

synthetic and high-resolution retinal images, in terms of packing density. The results on the 

synthetic data are compared against the ground truth as well as cone counts obtained by the 

state-of-the-art algorithm. The packing density estimates calculated on the real retinal 

datasets are validated against manual counts collected by four independent observers and the 

results obtained by a commercial software and the state-of-the-art algorithm. In order to 

verify the resulting images with enhanced photoreceptor cells, the cone packing density 

distribution is also correlated with statistical histological data at the corresponding retinal 

locations.  
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Finally, chapter 6 summarizes the work presented in this thesis, discusses limitations of the 

framework, suggests refinements for optimisation of the implemented methods and proposes 

further steps for future research.   
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2.  Literature Review: 

Retinal Image Processing 

2.1 Introduction  

Nowadays, digital image technologies for medical applications are developing at a fast pace 

due to the optimization of post-processing algorithms as well as the availability of powerful 

computers. The advancements made in ophthalmic imaging have offered new powerful tools 

enabling clinicians to investigate the structures and details of the eye previously unavailable 

to conventional clinical examination. The integration of AO in imaging systems 

compensates for wave aberrations, thus greatly improving retinal image resolution. The 

improvement in retinal image contrast and resolution allow better observation of retinal 

microstructures providing clinicians with the means to analyse their integrity and reveal 

pathological abnormalities. However, despite advances in optical system hardware, there has 

been modest development in software for post-processing and automatic analysis of retinal 

images. Advances in image processing methods are required to maximize the value of the 

acquired retinal data and to make the AO retinal imaging technology widely accessible to 

the clinical ophthalmic community. Accurate automated models are also mandatory, when 

the analysis requires post-processing of large quantities of data.  

In this chapter, a literature review is undertaken with regards to the image processing 

techniques introduced so far for the acquired retina photography using AO imaging systems. 

In particular, image registration, image filtering, image restoration and automated methods 

for cone counting are discussed. For this purpose, different components of AO systems, 

which degrade the quality of retinal images are initially discussed and appropriate image 

processing algorithms for tackling the imposed distortions are suggested. The advantages, 

limitations and different aspects of existing AO imaging techniques are then discussed; 

moreover, refinements for the optimization of the imaging process are also suggested, which 

aim to compensate for the inherited resolution degradation effects, thus facilitating high 

fidelity results. In order to focus the scope of this overview, only image processing 

techniques applicable to high-resolution retinal images are presented. Details regarding 
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formulation of each image processing problem presented here are discussed in Chapters 3-

5. 

2.2 Image Acquisition in AO Systems 

During acquisition, retinal images undergo a degradation process. This process can be 

separated into two types grouped by their origin: (a) distortions caused by eye movements 

or poor alignment of the eye with the system, i.e., due to human factors; and (b) degradation 

caused by the opto-electronic characteristics of the acquisition system such as illumination 

sources, lenses, the CCD array and the deformable mirror, i.e., caused by the optical system 

[139]. In order to minimize the effects of these degradation sources, a restoration process 

must be performed. To facilitate a better understanding of the origins of the specific 

degradation effects in terms of the components of an AO system, Figure 2.1 provides a 

functional block diagram of its main parts. 

During the image acquisition, while the images are being captured, the human eye constantly 

performs saccadic movements [140] and as a result geometric transformations occur in the 

acquired image sequence. These motions include rapid jerks or saccades, slower drifts, and 

high frequency tremor, and are collectively referred to as “physiological nystagmus” or 

fixational eye movements. Fixational eye movements typically produce gaze instability of 

10 or 15 arc minutes during sustained periods of attempted steady gaze [141]. These 

movements are too small to be registered with the naked eye, but they introduce significant 

distortion and artefacts to the image, especially when imaging at a high resolution. 

Therefore, we need to compensate for saccadic eye movements and calculate the performed 

geometric image transformations, in other words to register images, putting them into spatial 

alignment. 
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Figure 2.1:  A scheme of AO embedded in an imaging system, showing origins of the 

specific degradation processes. 

The AO imaging system is a complex system that suffers from various photoelectric noises, 

such as thermal noise, photon noise, dark current noise, CCD readout noise as well as camera 

background noise and so on [137]. Therefore, the resulting retinal images undergo a 

degradation process, which results in low signal-to-noise ratio (SNR) and low contrast. It is 

very important to choose suitable denoising methods according to the sources of noise, 

however, it is hard to decouple these in the AO system. Partially, noise can be tackled by 

image registration. By lining up multiple exposures of the same scene on top of each other 

and averaging pixel values, thermal and speckle noise can be significantly supressed and the 

signal-to-noise ratio increased [142]. For further improvements in image quality more 

sophisticated image enhancement and noise suppression algorithms are required.  

Due to imperfections in the image formation process, high-resolution retinal images exhibit 

spurious intensity variations that do not exist in the original scene. This effect is commonly 

called shading or intensity inhomogeneity [143]. Identified experimental set-up limitations, 
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which possibly contribute to the aforementioned image corruption effects are non-uniform 

illumination, uneven spatial sensor sensitivity, camera imperfections, imperfections in the 

imaging optics, spatial inhomogeneity of the illuminating light source, light from 

nonuniformities in the human cornea or lens, natural vignetting, or artificial vignetting (due 

to misalignment of the subject’s eye) [144]. Shading does not only alter the visual perception 

and analysis of the image, but more importantly, it may adversely affect automatic image 

processing procedures, such as segmentation, registration and feature extraction. For this 

reason, global intensity uniformity, i.e., the correction of shading over the entire image, is a 

necessary pre-processing step.  

The AO system performs wavefront calculation and correction of high-order ocular 

aberrations, but due to limitations of the wavefront corrector, such as the finite degree of 

freedom of the deformable mirror, the latency of the AO loop, the measurement error in the 

wavefront sensor and so on, the estimated correction is not perfect [137]. Therefore, there 

are residual errors in the AO system, resulting in blurry images, characterised by low 

contrast. Additional improvements in the contrast and resolution of retinal images can be 

obtained, by introducing deconvolution algorithms in the image post-processing framework, 

that are intended to recover the true image.  

2.3 Image Registration 

2.3.1 Classification  
Image registration is a fundamental task in image processing. The registration process 

represents a computational method for determining a mapping function, which establishes 

the correspondence between a pair of images of the same scene taken at different times, from 

different viewpoints, and/or by different sensors. Components of the image registration 

process include test and reference image datasets, transformation model, similarity criteria, 

and optimization method. In order to perform registration, firstly a corresponding 

registration model should be established. After a transformation function is found, it is 

applied to the test image, thus mapping it onto the reference image. Then, these images are 

combined depending on the final task objectives.  
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Image registration transformation models are classified into two main categories: rigid and 

deformable (or non-rigid). Rigid image registration models assume that the transformation 

that maps the test image to the reference image consists only of translations, rotations and 

scaling. While such models are sufficient for many applications, it is clear that many 

registration problems, particularly in medical imaging, are non-rigid [145]. Non-rigid 

transformations are appropriate for structures that tend to deform naturally [146]. Due to the 

alterations in the eye between acquisitions, there can be subtle non-rigid deformations 

present in the fundus images that become apparent when performing rigid registration [147]. 

In the case of high-resolution retinal images, these non-rigid transformations are so minor 

that they do not appear to introduce any visible distortions in the registration process. For 

this reason, in most of the studies performed, registration methods recover rigid 

transformations only [71], [80], [148]. In some of the cases, only translation parameters were 

calculated so that the possible rotation and scaling deformations are omitted [72], [108], 

[129]. 

The next component of image registration – similarity measure – is used to establish the 

spatial correspondence between the pair of images. It represents a comparison measure to 

establish the closeness of fit between the two images under the current transformation. Then, 

the parameters of the spatial transformation that optimize the chosen similarity metric have 

to be determined.  

Based on the similarity metric, image registration methods can also be classified into 

intensity-based and feature-based [149, 150]. Intensity-based approaches generally optimize 

a similarity metric function based on intensity differences, cross-correlation, gradient 

correlation, and mutual information of the images [149]. Usually, the optimization procedure 

in this approach requires high computation cost in order to find the global maximum or 

minimum, especially in the case of higher order transformation models. Besides that, 

intensity-based methods require information from the entire image to perform the 

registration process. If image quality is quite low or the overlap region between the images 

is small, intensity-based methods may fail to align the images. In high-resolution retinal 

images, frames with little overlap region are caused by large eye movements during image 

acquisition. These frames are usually characterized by a low quality and therefore discarded 

from a dataset prior to image registration.  
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Feature-based methods include a prior segmentation step, where the image features are 

firstly extracted. Examples of such features include vascular bifurcation points, intersection 

points, the entire vasculature network, and other feature points extracted by point detectors 

[149], [151]. The objective function of this group of methods is based on the 

correspondences of the extracted landmark points or feature curves that have to be optimized 

to find the best transformation parameters. Compared to intensity-based methods, feature-

based methods are faster and more robust. However, feature-based methods are highly 

dependent on accurate and repeatable extraction of features [152]. Blood vessel bifurcation 

points are usually used for the control-point matching stage on fundus images and 

angiograms [153, 154]. Manual selection of control points is a less preferable but relatively 

straightforward approach in feature-based registration. This method of registration is best 

suited for images that have distinct common features that would allow the mapping of pixels 

at the same location [146], [155]. However, it is difficult to automatically choose adequate 

control points for the registration of high-resolution retinal images. This is because blood 

vessels lie in a different layer on the retina, thus extraction of blood vessels and image 

registration with reference to blood vessels will blur the photoreceptors [35]. Moreover, 

depending on the retinal eccentricity, the vascular structure differs in size and concentration, 

typically decreasing towards the fovea, which forms an avascular zone. The appearance of 

photoreceptor cells in each frame may also vary due to light scattering and the angle of 

incident light. As a result, in high-resolution retinal images which are not rich in detail and 

features are difficult to be distinguished from one another, the feature-based approach may 

not perform effectively. This problem can be overcome by the intensity-based approach. 

Therefore, intensity-based similarity metric is more appropriate for registration of high-

resolution retinal images. However, intensity-based methods are generally based on pixel 

intensities and demonstrate poor performance in the case of varying illumination across the 

images. Thus, as previously stated, shading correction should be included in the pre-

processing stage of high-resolution retinal images. 

2.3.2 Image Registration in High-Resolution Retinal 
Imaging 

The most common similarity measure used for high-resolution retinal images is cross-

correlation [156]. This type of registration involves calculation of the cross-correlation 

between a template from the reference image and various parts of the test image. Since it is 
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purely a measure of the closeness of fit between the pixel intensities in two frames, it is only 

useful when lighting conditions remain reasonably constant over the images, there is little 

white noise, and the sensors are of similar nature. In the most recent works, where imaging 

of cones and rods with scanning ophthalmic instruments was performed [75], [131], [157], 

a well-established approach for registration was used [158]. As the scanning process of the 

retina in the AOSLO is very fast (~25 μs), a single scanline represents a snapshot of the 

retina, unaffected by fixational eye motions, and therefore it can be aligned on a line-by-line 

basis. To find the rigid translation, normalized cross-correlation between each strip of 

scanlines and the reference image was calculated. The position of the peak of normalized 

cross-correlation matrix corresponds to the translation shifts of the strip with respect to the 

reference frame. Another approach to control saccadic eye movements is to introduce an eye 

tracking system so that fixational eye movements in the horizontal and vertical axes are 

recorded and compensated afterwards [141].  

In high-resolution retinal images acquired with an adaptive optics ophthalmoscope, a 

correlation-based registration algorithm was also used [13], [72], [129, 130], [159-160]. This 

method is able to track the retinal position with accuracy better than a fifth of the size of the 

smallest foveal cone photoreceptor. The retinal images are separately cross-correlated in the 

horizontal and vertical directions, achieving subpixel registration. Therefore, small shifts 

and any torsional eye motion between images are removed and then registered images are 

summed together, thereby reducing the photon noise. Although the cross-correlation 

approach shows successful results, there are a few drawbacks such as the flatness of the 

similarity measure maxima and high computational complexity, which make the 

performance of cross-correlation methods more sensitive to noise, changes in image 

intensity and the size of the overlapping area [71].  

Another correlation similarity metric that is used for high-resolution retinal images is phase 

correlation. Unlike the cross-correlation technique, it uses the frequency-domain 

representation of the images to estimate the transformation parameters. It allows for more 

robust and computationally efficient image registration due to the use of the Fast Fourier 

Transform (FFT). Both correlation techniques tend to fail when there are large changes in 

scale and rotation between the reference and test images. The Fourier-Mellin approach 

proposes a combination of the phase correlation technique with the log-polar transform 

(LPT) that apart from translation allows the scale and rotation parameters to be retrieved 
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[161]. This method is based upon the rotation and scaling properties of the Fourier 

Transform. It consists of mapping the spectral magnitudes of both test and reference images 

onto log-polar coordinates and utilising them as inputs in the phase correlation. The location 

of the peak corresponds to the rotation and the logarithm of the scaling parameters. However, 

when used to calculate rotation, phase correlation produces false peaks near 0 deg, which 

may be higher than the true peak. As a result, the magnitude of the peak at the correct position 

is reduced due to the fact that the sum of the peaks is equal to unity in normalized phase 

correlation function. Therefore, presence of false peaks diminish the ability to discover small 

angular differences in images because they might be hidden within the false peak [162]. In 

order to minimize these effects, it is typical to perform a filtering operation before the FFT 

is employed. However, while attenuating low frequencies reduces aliasing errors, it also 

results in smoothing the edges in an image. This can adversely affect the accuracy of image 

registration as it is often dependent on tight registration of sharp edges [163]. Therefore, the 

Fourier-Mellin approach is suitable for recovery of large rotation and scale parameters, and 

insufficient when dealing with the finer transformations that are present in high-resolution 

retinal images.  

Despite the wide range of correlation techniques combined with image transformation 

algorithms to recover and compensate for the presence of affine transformations [164-167], 

there has been little progress reported on their application in high-resolution retinal images. 

In [168], Li et al. proposed the use of the Scale-Invariant Feature Transform in order to 

automatically detect stable point features from retinal images and then perform their tracking 

using the Kanade-Lucas-Tomasi algorithm. With the tracked features, the image distortion 

in each frame is removed by the second-order polynomial transformation, and frames are 

averaged to enhance the image quality.  

In the work of Kulcsar et al. [148], a new method for registration of high-resolution retinal 

images acquired with an AO flood illumination system was proposed. The Harris-Stephens 

interest point detector [169] was used to detect the feature points in the retinal sequence. The 

corresponding matches were found by using cross-correlation in small windows around the 

detected points in the test and reference images. In order to prevent false matches, forward-

backward matching was performed and a voting system based on the Hough transform was 

used to account for the successful matches. The parameters which received the maximum 

number of votes were considered as a rough estimate of translation. Next, an affine motion 
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model was used to minimize a least-squares criterion between the reference and input images 

in order to estimate translation, rotation and scale. 

Ramaswamy and Devaney [71] described a method where the registration process was 

divided into coarse and fine stages. In coarse registration, an initial estimate of the translation 

parameters was calculated using cross-correlation. Then, a peak tracking algorithm was used 

to locate the brightest points of the image and use their position as control points. The 

translation parameter was refined by parabolic interpolation about the brightest pixels and 

the angle of rotation was measured using a Procrustes transformation [170]. 

Another problem that has to be taken into account in image registration is the number of 

frames that have to be combined in order to calculate the resulting image. In general, this 

decision depends on the specific medical application and acquisition conditions. For 

example, parameters that need to be considered include eye motions, the SNR of each 

particular image series, the choice of image registration algorithm, the errors during AO 

correction, etc. [131]. The optimal number of images to register should be established 

experimentally and presents a compromise between computational cost, accuracy of 

registration method and other involved pre-processing filtering techniques. If the number of 

images is insufficient, assuming perfect image registration and AO correction, the image 

quality is limited by the noise introduced by the optical system and the acquisition process. 

If the number of averaged images is adequate, then only diffraction or residual aberrations 

would limit the resulting image resolution. Finally, when the number of images is too high, 

the accumulation of imperfectly registered images would blur the average frame of the 

registered images, and thus the resolution would be limited by the registration algorithm 

itself [131].  

Based on the reviewed works, it can be concluded that although image registration is a 

popular topic in retinal imaging, a limited number of methods are applicable for AO high-

resolution retinal images. High-resolution retinal images are characterised by large 

homogenous nonvascular regions that weaken the capabilities of both feature-based and 

intensity-based techniques. On the contrary, applying standard correlation techniques for 

registration of the retinal images with large scale features such as the blood vessels will blur 

the photoreceptors, since they lie at a different depth of focus. Therefore, more precise 

registration algorithms are required to bootstrap the ability of recovering individual 
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photoreceptors cells. Moreover, non-uniform contrast/intensity distributions due to 

imperfect illumination conditions, noise in the AO system and residual aberrations during 

image acquisition deteriorate the performance of intensity-based techniques. Thus, 

appropriate image processing techniques should be included prior to registration of retinal 

images. 

2.4 Image Filtering  

Due to the imperfections of imaging systems, a recorded digital image undergoes a 

degradation process, which results in a loss of spatial resolution, blur, noise, and aliasing 

effects. The factors that influence the quality of the resulting images are manifold: optical 

distortions due to camera misfocus or diffraction limit, motion blur due to limited shutter 

speed, sensor noise, insufficient sensor density and others [171]. Image restoration 

techniques are aimed at recovering a degraded image to produce a high quality image. 

2.4.1 Noise Suppression  
Image noise produces a random variation in image brightness or colour information that is 

not present in the real object being imaged. In imaging systems, there is a variety of noise, 

which originates from photoelectric components of the system, such as CCD camera, 

imaging screen, controller circuits, etc. Various classifications are used for the noise 

depending on its statistical characteristics, origin and type of imaging. The most common 

types of noise affecting digital images are photoelectronic, impulse and structured noise 

[172]. Photoelectronic noise such as photon noise refers to the variation of the incident 

photon flux. Photoelectrons collected by a CCD exhibit a Poisson distribution and have a 

square root relationship between signal and noise. The noise is therefore directly dependent 

on the number of photons recorded in a real image. A very bright feature emitting many 

photons have relatively little noise. A very dim feature has a "granular" appearance, 

revealing that not many photons were averaged during its acquisition. Impulse noise such as 

salt and pepper noise is caused by sudden changes in image signal due to dust particles in 

the image acquisition. This type of noise manifests itself as black and white dots in an image 

[173]. Line drop impulse noise presents itself as faint horizontal or vertical lines. Structured 

noise is caused by interference between electronic components, and characterized by a 
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varying or fixed amplitude, frequency and phase. As a result, images are corrupted by 

blotchy gradients and periodic patterning [174]. 

Noise can occur when the image is captured, transmitted or processed and may be dependent 

or independent of the image signal. When noise magnitude depends on the signal noise, this 

degradation is called multiplicative noise. Image independent noise can often be described 

by an additive noise model, where the recorded image is the sum of the true image and the 

noise [175]. In many cases, additive noise is evenly distributed over the frequency domain, 

whilst image content is prevailing in low frequencies. Hence, noise is dominant in high 

frequencies and its effects can be reduced using low-pass filters. This can be done using 

either a frequency filter or a spatial domain filter [176]. In practice, the noise model is usually 

more complex, but it is often simplified to the additive noise model, multiplicative noise 

model or Gaussian noise, which appear to be good approximations to noise that occurs in 

many practical cases [137]. 

In order to increase contrast and remove high-spatial-frequency noise, a band-pass filter can 

be applied. A band pass filter attenuates very low and very high frequencies, but retains a 

mid-range band of frequencies. Thus, it enhances edges by suppressing low frequencies, 

while reducing noise by attenuating high frequencies at the same time. In high-resolution 

retinal images, frequency filtering is a common tool for enhancing the microstructures of the 

retina. For example, Doble et al. [72] used the power spectrum of the image to obtain the 

cone and rod spatial frequencies. Using a Gaussian high-pass filter, the image was 

decomposed into a low-angular frequency background and a high-angular frequency image 

containing the cones and rods. The visibility of photoreceptor cells was equalized by using 

a power-law enhancement of angular frequency power [177]. Additionally, the 2D 

Chebyshev filter was applied to pass the desired structures and suppress noise-dominated 

spatial frequencies. Finally, the power was normalized and the enhanced image was added 

back to the background. 

In other research studies, high-pass or band-pass filters were used in a similar way to supress 

the influence of noise in the system and enhance the contrast of retinal images [5], [65], [88], 

[178]. In order to compensate for the edge of the imaging field as well as eliminate the high 

frequency noise above the diffraction limited cut-off frequency of the eye’s optics, a 

Difference of Gaussians can be applied to retinal images. Further visual improvement can 
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be done by stretching the grayscale histogram [129]. A problem with fixed-pattern noise in 

the retinal image was tackled by Nassif et al. [179]. For each image, two background spectra 

were generated, one by averaging all spectra from that image and the second by subsequently 

low-pass filtering this averaged spectrum to represent a smooth source spectrum. Each 

spectrum was then divided by the averaged background spectrum and then multiplied by the 

smoothed spectrum. 

Another approach to image denoising was implemented by Rao et al. [137]. Assuming that 

the noise model in AO imaging is a “combined” type of noise, hybrid filtering techniques 

were used. Firstly, considering that combined noise in real applications is more in line with 

the characteristics of multiplicative noise, the logarithm of the image was taken to transform 

the noise model into additive noise type. Then, bilateral filtering [180] was applied to 

suppress large scale noise from the image. To remove noise efficiently, the parameter of this 

filter – the average noise intensity – was calculated from the background area of the retinal 

image. As a second step of image denoising, edge smoothing by coherent diffusion was 

performed. In order to smooth the photoreceptor cell edges corrupted by noise, linear 

geometric anisotropic diffusion controlled by a purpose-built, two-dimensional structure 

tensor was implemented. As a final stage of the filtering framework, image contrast was 

enhanced by merging image edges and image brightness into a coherent diffused image. The 

resulting images following hybrid filtering were compared to the images processed by 

frequency domain filtering, and demonstrated higher contrast. 

2.4.2 Illumination Compensation 
As it was mentioned in Section 2.2, retinal images are commonly corrupted by spurious 

intensity variations which relate to shading or intensity inhomogeneity [71]. As a result, the 

inhomogeneous illumination across the retina can limit the useful information accessible 

within the acquired image. Illumination correction methods are intended to remove the 

global shading from the images. They can be categorized in two groups, prospective and 

retrospective [143]. The prospective method requires an additional background image 

obtained during image acquisition. This can be either an image of the scene background 

acquired with no light or an image acquired with light but without objects. In case of post-

processing of high-resolution retinal images, additional background images are not 

available, therefore retrospective illumination correction methods are required. In 
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retrospective shading correction, an illumination model has to be estimated from the 

information present in the image. Methods based on spatial filtering have the advantage of 

simple and fast implementation and they are widely used for recovering high-resolution 

retinal images. Assuming that the illumination is an additive and/or multiplicative 

component in the image signal and considering that illumination is low frequency spatial 

variations, the low-pass image is used as a rough estimate of a plain background. The 

background image is usually obtained by a low-pass filter with a very large scale: median 

filter, mean filter or Gaussian filter. By convolving the image with a kernel of a large scale 

high frequencies components in an image are attenuated, which results in a loss of edge 

definition and averaging of intensity values. Then, the smoothed version of the image is 

either subtracted from the original or the original is divided by the smoothed image in order 

to compensate for illumination variations and emphasize high-frequency content.  

Despite the simplicity of shading correction methods based on spatial filtering, these 

methods tend to perform poorly in situations where the shading function and retinal features 

have overlapping spatial frequency content [144] and therefore, this type of illumination 

correction might affect the features within the image. Ramaswamy and Devaney [71] used 

a wavelet-based approach for correcting the uneven illumination. The Discrete Wavelet 

Transform (DWT) was applied to decompose the image into ‘approximation’ and ‘detailed’ 

information at different levels [172]. Image illumination was estimated by the approximation 

coefficients at the last level of decomposition, where they contain only low frequency 

information. The approximation coefficients were set to a constant value in order to impose 

a uniform background, and then the image with compensated illumination was reconstructed.  

2.5 Image Restoration 

2.5.1 Deconvolution from Wavefront Sensing  
Direct observation of the retina suffers from various optical aberrations of the eye. A 

wavefront sensor in an AO instrument performs calculation and compensation of high-order 

ocular aberrations thus providing a high level of resolution when imaging the retina. Despite 

this, due to hardware limitations of the wavefront corrector, this correction is not perfect. 

Therefore, the acquired retinal images are still corrupted by residual aberrations resulting in 

blur. Additional improvements in the contrast and resolution of retinal images can be 
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obtained a posteriori, by using an image restoration technique such as image deconvolution. 

In AO, the degradation function of the system can be estimated partially from wavefront 

sensing (WFS), assuming that the measurements of the deformable mirror are accurate [137]. 

Based on the information about the residual errors after AO correction, the system's PSF and 

Optical Transfer Function (OTF) can be reconstructed and employed in the deconvolution 

process [181, 182]. If information about the residual errors after AO correction is accessible, 

then the OTF can be computed based on the residual Zernike coefficients. The image 

restoration can be performed using the Wiener filter [183], an inverse filter that works in 

frequency domain trying to minimize the noise impact when the image is deconvolved. 

Additionally, to avoid noise amplification a correction filter can be clipped to maximum 

complex amplitude while retaining its phase. The resulting filter is applied in the spatial 

frequency domain and Fourier-transformed back to the angular image space [72]. These 

algorithms which employ data measured by the wavefront sensor have been proposed as an 

alternative technique to adaptive wavefront corrections [184, 185].  

However, the WFS is not a reliable source of data due to multiple types of noise in the AO 

imaging system, mentioned in Sections 2.2 and 2.4. Also, in practice the frame rate and 

exposure time of the camera taking the corrected image frames are different from those of 

the WFS camera. As a result, the obtained WFS data does not always correspond to the 

acquired set of frames. Therefore, ordinary deconvolution from WFS is not a suitable method 

for post-processing of AO images [137].  

2.5.2 Blind Deconvolution 
When the PSF is not available, ‘blind’ deconvolution (BD), a more general technique, can 

be applied to the images. This type of image deconvolution permits recovery of the object 

and the PSF distributions simultaneously from a series of measurements. This is made by 

the use of physical constraints about the target and knowledge of the imaging system [133].  

Blind deconvolution approaches can be classified into two categories according to the stage 

at which the blur is identified: a priori blur identification methods and joint estimation, 

where the original image and blur kernel are identified simultaneously. The Bayesian 

framework is usually employed in order to present and compare different BD approaches. 

The main differences between them are the choice of the function to be optimized and the 

prior distributions used to model the original image and the degradation process. A 
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fundamental principle of the Bayesian approach is to regard all parameters and observable 

variables as unknown stochastic quantities, assigning probability distributions. Thus in BD, 

the original image, the blur and the noise are all treated as samples of random fields, with 

corresponding prior probability density functions [186].  

A few blind deconvolution methods have been reported in the literature for restoring AO 

high-resolution retinal images. In the work of Blanco et al. [138], a joint estimation of PSF 

and original image within the Bayesian framework is used. The global PSF is modelled as 

an unknown linear combination of the PSF for each plane. To estimate the coefficients of 

this combination and the object, a marginal estimation of unknown hyperparameters (PSF 

coefficients, object Power Spectral Density and noise level) followed by a Maximum a 

posteriori (MAP) estimation of the object was employed. Despite such a marginal estimation 

proving to have better statistical convergence properties, the restored images appear to be 

oversmoothed. 

In [137] Rao et al. proposed a hybrid deconvolution for the partially-corrected AO images, 

in which the WFS data was employed and revised while the AO system performs the closed-

loop correction on the given object. As the actual PSF is related to the PSF measured by 

WFS, it was used to reduce the uncertainty of blind deconvolution. The criterion function 

was composed of fidelity term and two regularization functions, imposing smoothness to the 

estimated blur kernel and original image. The choice of the regularization function is critical 

for the convergence of the image deconvolution method as well as the accuracy of the 

restoration process itself. During the process of joint estimation, the PSF is revised using the 

blurred image and estimation of undistorted image; consequently, the revised PSF allows for 

a better estimation of undistorted image. 

In the same paper, a method of multi-frame blind deconvolution was proposed for enhancing 

stellar images partially corrected by AO. In this method, the multiple short-exposure 

degraded images captured during AO closed-loop were used for the joint estimation of the 

real object and PSF. This algorithm does not use any a priori knowledge, it only imposes a 

positivity constraint and band-limit constraint to the iterative process for the convergence of 

the algorithm. The multi-frame joint estimation transforms the problem of “knowing one - 

deriving two” to the problem of “knowing M - deriving M+1”, thereby reducing the degree 

of uncertainty. The greater the number of frames used, the greater the stability and 
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convergence of the blind deconvolution algorithm, and more importantly the greater the 

possibility that the recovered image approaches to the real solution. In order to ensure a good 

selection of frames, the Shannon entropy was taken as the quality evaluation standard [187]. 

Li et al. [188] report a blind deconvolution technique based on the Incremental Wiener Filter 

[189] to recover the AOSLO images in real time. The PSF measured by a wavefront sensor 

is only used as an initial value for the blur kernel. Then, the initial estimate for the restored 

image is calculated using the Wiener filter. Both estimates are updated iteratively while 

minimizing the fidelity term. For convergence, positive constraints are imposed on both, 

image and PSF. 

Close examination of AO high-resolution retinal images reveals that raw images are also 

dominated by an important background. As a result, the blur caused by light scattering has a 

non-uniform effect on the recorded image. This can be explained by the fact that the object 

under examination, i.e. the retina, is a 3D volume, and thus a recorded image is in fact a 

result of superimposed retinal layers, each one interacting differently with the optics of the 

instrument, absorbing and reflecting the light. Therefore, out-of-focus planes of the object 

also contribute to the image formation, bringing additional blur and distortions in a recorded 

image. A deconvolution step, taking into account the 3D nature of the object, is therefore 

necessary to restore the lateral resolution of the retina images. Chenegros et al. [190] 

proposed a myopic 3D deconvolution method in the Bayesian framework in order to account 

for realistic PSF in AO retinal images. As opposed to blind deconvolution, in myopic 

deconvolution the PSF is partially known by making assumptions on a PSF model or 

providing an initial estimate. Following the Bayesian MAP approach, the deconvolution 

problem consisted of finding the most likely object, given the observed image and a priori 

information on the object, which was summarized by a probability density function. The 

noise component was modelled as nonstationary white Gaussian. A quadratic edge-

preserving prior for small gradients and linear for large ones was chosen to avoid 

oversmoothing. A joint estimation of the true object and the PSF was performed for an N-

plane 3D object, 3D image, and the 3D PSF. As the 3D PSF is composed of 2N−1 layers, 

the problem is more underdetermined than in two dimensions. To overcome this, the whole 

3D PSF was parametrized by a common pupil phase plus a known defocus phase that 

depends on the considered PSF plane. This helped to dramatically reduce the number of 

unknowns.  
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Although the latter method accounts for the true nature of the recorded AO high-resolution 

retinal images, it requires a 3D volume of the retina. So far, the proposed method [190] has 

been only validated on a synthetic retinal volume, generated so as to comply with the overall 

structure of a retina. 

2.5.3 Learning Methods 
While deconvolution methods that rely on the WFS data are highly restricted by the detection 

accuracy of the wavefront detector, conventional blind deconvolution has the drawback of 

being prone to getting stuck in a local minimum [137]. An alternative to conventional image 

deconvolution can be learning techniques. In [191], Fanello et al. proposed a method based 

on ‘filter forests’ which allows for predicting continuous variables given a signal and its 

context. The proposed framework is effective in different application domains, including 

image deconvolution, where an optimal convolution kernel is found with the use of Random 

Forest regressor [191]. During the learning stage, the image is partitioned into image patches 

such that within each partition a simple linear convolution produces the lowest error in the 

optimisation function. The cost function is composed of a fidelity term and a special data-

dependent regularization term. During the training, the model learns to adjust the weights of 

the data-dependent regularization term so as to preserve the edges in the image. Random 

Forests are fast and efficient learners, particularly suitable for high dimensional data 

problems [192]. They are easily distributable on parallel hardware architecture and thus offer 

computational cost savings.  

In the last years, deep convolution neural networks have become a new trend in computer 

vision. Deep learning models are representation-learning methods with multiple levels of 

abstraction. They are composed of simple non-linear modules that transform the 

representation of data at one level into a representation at a higher, slightly more abstract 

level [193]. Given the composition of enough such transformations, very complex functions 

can be learned. As a result, these models have made major breakthroughs in solving 

problems such as classification, pattern and speech recognition. In [194] Schuler et al. 

introduced a method for blind image deconvolution which utilizes deep layered architecture. 

The proposed deblurring network consists of three modules, feature extraction, kernel 

estimation and image estimation, which can be stacked several times. The neural network is 
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trained end-to-end with back-propagation, while learning different parameters of each 

module.  

Despite showing impressive results, the aforementioned learning-based methods require a 

very large number of training samples. Moreover, they rely on generalized models and 

therefore their accuracy is limited to specific types of blur. In addition, in most of the 

reported methods the achieved resolution of the recovered blur kernel is often found to be 

restricted by size. 

2.6 Automated Cone Detection 

The disruption of the photoreceptor mosaic and loss of photoreceptor cells are considered 

early signs of retinal degeneration, which can lead to serious visual dysfunctions [106], [111, 

112], [116]. Quantitative analysis of high-resolution retinal images provides vital 

information on the pathophysiology of various retinal degenerative conditions. The packing 

density, spacing distribution, and brightness of photoreceptor cells in vivo have been 

investigated in several studies, in an attempt to establish a correlation with the visual 

performance of the eye [83, 84], [86]. To date, manual interpretation of data with the aid of 

commercial graphics packages has commonly been used in clinical studies [77], [125], [129]. 

However, manual counting relies on the expertise of observers, and therefore the accuracy 

of this method is subject to human error. Moreover, this procedure is obviously time and 

labour intensive since it requires human resources. On the other hand, automation of the 

photoreceptor counting procedures will allow for a larger number of tests to be performed 

simultaneously and thus will help to strengthen the basis for objective judgment on the 

diagnosis. Figure 2.2 shows an example of automated cone counting using the commercially 

available software from Imagine Eyes (CK v0.1 and AO detect v0.1, Imaging Eyes, France). 
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Figure 2.2 Illustration of cone packing density and Voronoi tessellation calculation using 

the software program provided by Imaging Eyes (CK v0.1 and AO detect v0.1, 

Imaging Eyes, France) in a patient with rod-cone dystrophy [195]. 

A number of algorithms have been reported in the literature for the automated identification 

of cones in AO-corrected images. Cones capture light based on the principles of optical 

waveguiding and support a single waveguide mode [79]. Therefore, they reflect a portion of 

the unabsorbed light back through the pupil, appearing as peaks with a higher intensity than 

other parts of the retinal image. Based on this optical property, Li and Roorda [79] and Xue 

et al. [80] identified the location of photoreceptor cells as the regional maxima of the image. 

In the Li and Roorda method [79] the local maxima are found using the imregionalmax built-

in function of Matlab® (Mathworks Inc). If two or more maxima are closer than the minimum 

cone separation their centroid is taken as the final location. This is achieved with a dilation 

operator, which merges two closely located cones into a single one. This might introduce a 

systematic error in the identification of cone coordinates, especially in the images taken at 

areas closer to the fovea. Xue et al. [80] suggested to use a histogram analysis of the retinal 

images in order to find cone coordinates. The image histogram is divided into intensity 

ranges. For each intensity range, from the highest to the lowest, the algorithm searches for 

pixels with intensity values within the range. Once cone coordinates are established for a 

certain range, all the pixels within the square defined by the smallest center-to-center cone 

spacing are colour coded. 
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The aforementioned methods cannot be considered as fully automated as they require 

manual input for parameters, such as the intensity threshold and inter-cell spacing. This can 

adversely affect the inter-rater reliability of cone density calculations and thus objective 

judgment on the patient’s diagnosis. Based on similar principles, Loquin et al. [196] 

developed an interactive tool based on watershed immersion algorithm which allows 

observers to adjust the parameters of the algorithm to achieve optimal cone detection. 

Although this is useful as it allows for the expert knowledge of physicians to be utilised, it 

is generally an impractical solution in regular clinical examination where a large number of 

images needs to be processed. 

A recently proposed approach automatically calculates the photoreceptor cell density in 

retinal images by employing the frequency-based local content-adaptive filtering method 

[197]. A frequency domain of the retinal images is used to determine cell spacing. Based on 

the identified parameters, a circularly symmetric band-pass filter is designed for filtering the 

image. Once the AO retinal image is filtered cell coordinates are found as image maxima 

with constraints on cell separation based on the frequency domain analysis. Since the filter 

parameters are established automatically, this method is adaptable to different frequencies, 

which are indicative of various cell spacing in the image. However, the performance 

comparison of the results of this method with manual counts shows that there is a systematic 

error in the calculation of cone density [197]. 

2.7 Literature Review Synopsis; Motivation for 

Research in Retinal Image Enhancement 

The above literature review showed that relatively little research has been done on image 

processing techniques in application to AO high-resolution images. In fact, little effort has 

been put in pursuing all sources of image degradation present in AO imaging system; 

therefore, there is potential to further develop and optimize image post-processing 

techniques, allowing for better distinction of photoreceptor cells.  

Intensity-based registration techniques have been applied in order to compensate for eye 

motions during the acquisition of high-resolution retinal images. Retinal images are 

characterized by the presence of both, avascular regions and areas with large scale vessels; 
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therefore, appropriate image registration algorithm should perform well in both cases. The 

performance of intensity-based image registration can be weakened by the presence of large 

structures in the image. Blood vessels captured in high-resolution images do not have sharp 

edges as in fact they are the shadows cast by the blood vessels overlying the cone mosaic. 

This can cause inaccuracy in calculation of transformation parameters and as a result blur 

out photoreceptor cells on the resulting averaged image. Traditional approaches for recovery 

of rotation and scaling parameters, such as LPT and the Fourier-Mellin, cannot be used in 

high-resolution retinal images, as they fail to detect minor translation parameters. Therefore, 

a highly accurate image registration technique is necessary for recovering minor 

transformation parameters in high-resolution retinal images.  

Given that intensity-based registration techniques are sensitive to noise and illumination 

variations, the calculation of transformation parameters requires additional image processing 

techniques prior to image registration, e.g., noise suppression, image enhancement and 

illumination correction.  

In the literature, due to its simplicity, spatial filtering is the most common approach for 

shading correction. This type of illumination correction has a major disadvantage due to poor 

performance in cases when illumination and retinal features have overlapping spatial 

frequencies. This can cause a corruption of useful information in the image. Therefore, more 

realistic illumination models have to be taken into consideration, which allow preserving the 

integrity of retinal structures whilst correcting for uneven illumination. 

Data from the WFS can be useful when deconvolving AO high-resolution retinal images. 

Nevertheless, image deconvolution methods that rely on this this data are subjected to the 

accuracy of wavefront sensor. The PSF reconstructed from measurements of the wavefront 

sensor is affected by various kinds of noise as well as the unsynchronized process of image 

capturing and wavefront calculation. In addition, wavefront measurements acquired with a 

Shack-Hartmann sensor lack information on the ocular scatter which may give rise to 

wavefront measure errors [198, 199]. Moreover, in AO high-resolution retinal images out-

of-focus planes of the retina also contribute to the image formation, resulting in additional 

blur and distortion. Therefore, an adequate image deconvolution model is required for 

addressing complex distortion in AO high-resolution retinal images. 
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To assist the diagnosis of various retinal diseases, an automated procedure is required that 

can provide estimation of cone density distribution in agreement with statistical histological 

data or manual counting. The literature review on this subject has revealed that most state-

of-the-art methods are solely based on the intensity information of image. In case of a good 

quality image of a healthy subject, these methods perform well. But when dealing with the 

images altered by blur and noise, more factors have to be taken into account. Moreover, 

these methods cannot be considered as fully automated as they require manual input for 

parameters, such as the intensity threshold and inter-cell spacing, thus affecting the 

agreement between the results obtained by different observers. Despite the rapid 

development of automated methods for cone density calculation, manual counting is still 

used as the reference for performance evaluation of automated cone counting methods [78], 

[200, 201]. Thus, the implemented model should correlate well with the results obtained by 

observers.  
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3.  Techniques and Analysis: 

Image Pre-processing 

3.1 About This Chapter 

In this work, an image processing framework is developed that allows for enhancement of 

AO high-resolution retinal images and accurate detection of photoreceptor cells. In this 

framework, the visibility of retinal features is improved by tackling specific AO system 

components, which affect the quality of the acquired retinal data (Figure 2.1). The proposed 

image processing framework consists of several stages: uneven illumination correction, 

noise suppression, image quality assessment, image registration, image deconvolution, 

enhancement and detection of photoreceptor cells (Figure 3.1). Each step is designed to 

improve the quality of the retinal images while preserving retinal features content. As a 

result, accurate detection of photoreceptors cells is achieved. A comparative study of 

different image processing methods and evaluation of their efficiency on retinal datasets is 

performed by assessing image quality. The proposed set of algorithms is applied to datasets 

of high-resolution retinal images, obtained with a commercial AO-assisted flood 

illumination system, the rtx1 from Imagine Eyes (see Section 1.3.2 for the details). The 

proposed framework was implemented under Windows using MATLAB® 2015b 

(Mathworks Inc., USA). 

In this chapter, a description of the chosen methodology for the image pre-processing steps 

is presented. This includes image quality assessment, uneven illumination correction, noise 

suppression followed by two-stage image registration. As a result, an averaged registered 

image is produced with a higher contrast.  

3.2 Image Processing Framework 

The proposed image processing framework consists of six stages designed to compensate 

for the variety of degradation processes in an AO system. At each stage the visibility of 
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photoreceptor cells is gradually improved thereby allowing for photoreceptor cell detection 

at the last stage of image processing framework. Figure 3.1 presents the block-diagram of 

the framework.  

To facilitate the accuracy of image registration, firstly a dataset of 40 unprocessed frames is 

corrected for uneven illumination and noise. Thereafter, image quality assessment is 

performed on the enhanced dataset. The frame with the highest sharpness measure is chosen 

as the reference frame, used for mapping test frames at the following stage of image 

registration. The frames with a quality measure lower than the 0.15 quantile of the overall 

image quality distribution are eliminated from the image sequence prior to registration.  

The obtained dataset with a reduced number of frames is further employed in two-stage 

image registration. At the coarse stage, only translation vectors are calculated. At the fine 

stage, the transformation model is refined by finding rotation angles and residual translation. 

The frames are compensated for the detected transformation parameters, and lucky 

averaging is performed on the aligned dataset. Consequently, a single image of a higher 

contrast is obtained. 

At the next stage of image processing framework, the averaged image is used for predicting 

the PSF of a system. To compensate for the residual optical aberrations, the image is restored 

with the estimated blur kernel.  

At the last stages of image processing framework, photoreceptor cell enhancement is 

performed on the deblurred image. Increased contrast between the cones and the background 

facilitates the next stage of cone detection. As a result, the proposed image processing 

framework produces a final retinal image with a significantly improved image quality which 

may assist in visual interpretation of retinal mosaic, and provide estimation of cone density 

distribution required for quantitative assessment of retinal images.  
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Figure 3.1:  The block-diagram of the proposed image processing framework. 

3.3 Image Quality Assessment  

One of the most relevant issues in image processing and analysis is a choice of reliable image 

quality assessment. Image quality is a characteristic of an image that measures the extent to 

which the image data records the observed scene faithfully [202]. Objective evaluation of 

image quality has a fundamental importance for various image processing applications, 

where quantitative measures for automatic perception of the image are required. To this 

purpose, numerous image quality assessment methods have been proposed over the past 

years. These can be broadly classified into full-reference (FR) and no-reference methods 
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(NR). FR methods are based on comparison with a complete reference image that is assumed 

to be of perfect quality. NR quality assessment is a common method for many practical 

applications, where the reference image is not available. There is also a third type, where the 

reference image is given as a set of extracted features. This quality assessment method is 

known as reduced reference method [203]. 

Retinal images exhibit variations in contrast and blur due to multiple sources of distortion in 

the AO system. Even within a single dataset, the difference in image quality can be easily 

observed. Therefore, prior to the registration stage, it is important to exclude poor quality 

images from the sequence so as to avoid accumulation of noise and blur in the resulting 

averaged image. We also need a reliable measure to benchmark the image processing 

algorithms of the proposed framework, by evaluating the extent of image quality 

improvement achieved at each step. As the reference image is not available in this study, we 

focus on NR quality assessment metrics only.  

The choice of an adequate image quality measure depends on the requirements of the 

considered application. The aim of this research project is to facilitate better distinction of 

photoreceptor cells. Therefore, while compensating for degradation effects present in the 

image the integrity of the photoreceptor edge has to be preserved. Following this 

requirement, we base our image quality assessment on the assumption that for a good quality 

image the intensity difference between adjacent regions must be very high. In case of blurry 

images, the intensity difference between adjacent regions will therefore be lower in 

comparison to sharper images. This quality measure model known as Blur Measure (BM) 

has been proposed by Kanjar and Masilamani [204] and proved to be close to human’s 

perception of image quality.  

Human beings are the ultimate users of most of the image processing applications, therefore 

evaluation of IQA models is commonly performed by comparing their performance with 

human visual perception [204, 205]. To this purpose, different image databases have been 

proposed. They contain reference images, their corresponding distorted images, and 

subjective scores which represent ground truth information obtained by human observers. 

Information on the perceived quality is reported as mean opinion scores or differential mean 

opinion scores [206]. In this work, the efficiency of BM is evaluated in high-resolution 

retinal images and compared with other well-known image quality measures. Since there is 
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no reference data available for high-resolution retinal images, the performance of IQA 

models is evaluated by assessing their correlation with average human ratings.  

3.3.1 Blur Measure 
Edges characterize the intensity discontinuities in an image and represent important features 

in computer vision [172], [207]. In [204], Kanjar and Masilamani estimated image sharpness 

from the edge information of the image ܫ, using the following equation: 

ଵܯܤ = 	
∑ ට∑ (ݕ,ݔ)ܫ} − ଶூ(௫ᇲ,௬ᇲ)∈ேೣ{(ᇱݕ,ᇱݔ)ܫ ห ௫ܰ௬ห⁄ூ(௫,௬)∈ா

∑ ூ(௫,௬)∈ா(ݕ,ݔ)ܫ
		, (3.1)

where E is a set containing all edge pixels in the image computed with the Sobel filter; ௫ܰ௬ 

is a set of 8-neighbours of a pixel (ݕ,ݔ)ܫ, where (ݕ,ݔ)ܫ ∈ and ห ;ܧ ௫ܰ௬ห is a number of pixels 

in the set ௫ܰ௬. The threshold in the Sobel filter is calculated automatically as ඥ4	ܫ,̅ where ܫ ̅

is the mean intensity of the image.  

The higher the change in intensity around the edges of the image, the higher the BM1 score 

gets, signifying higher sharpness. If the image is blurred, then the intensity variation along 

the edges of the image is low which results in low scores of BM1. 

A different approach for calculating the amount of blur in the image was proposed by Crete 

et al. [208]. This method works independently from any edge detector, based on the 

comparison between the original image and its low-pass filtered copy. If there is high 

variation between the original and the blurred image that means that the original image was 

sharp, whereas a slight variation between the original and the blurred image means that the 

original image was already blurred.  

In order to calculate the blurred copy of the original image ܫ  of size of ܯ	×	ܰ  pixels, 

horizontal ܪ  and vertical ܪ௩  strong low pass-filters are applied; thus two blurred 

images are modelled: ܤ௩ and ܤ: 

௩ܤ	 = ܫ	 ∗ ௩ܪ 		and		ܤ = ܫ ∗  		,	ܪ

where		ܪ௩ =
[1	1	1	1	1	1	1	1	1]

9
		and	ܪ = ௩்ܪ . 

(3.2)
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In this manner, the absolute difference of the images ∇Iver, ∇Ihor, ∇Bver and ∇Bhor is calculated 

as follows: 

∇I୴ୣ୰(ݕ,ݔ) = (ݕ,ݔ)ܫ| − ݔ)ܫ − ݔ	ݎ݂,|(ݕ,1 = ܯ:1 − ݕ,1 = 0:ܰ − 1 

(ݕ,ݔ)୦୭୰ܫ∇ = (ݕ,ݔ)ܫ| − ݕ,ݔ)ܫ − 1)|, ݔ	ݎ݂ = ܯ:0 − ݕ,1 = 1:ܰ − 1 

∇B௩(ݕ,ݔ) = (ݕ,ݔ)௩ܤ| − ݔ)௩ܤ − ݔ	ݎ݂,|(ݕ,1 = ܯ:1 − ݕ,1 = 0:ܰ − 1 

∇B(ݕ,ݔ) = (ݕ,ݔ)ܤ	| − ݕ,ݔ)ܤ	 − ݔ	ݎ݂,|(1 = ܯ:0 − ݕ,1 = 1:ܰ − 1. 

(3.3) 

In order to evaluate the extent of blur present in the image, the following variations are 

calculated: 

௩ܸ = max൫0,∇ܫ௩(ݕ,ݔ) − ൯(ݕ,ݔ)௩ܤ∇ , ݔ		ݎ݂ = ܯ:1 − ݕ,1 = 1:ܰ − 1 

ܸ = max൫0,∇ܫ(ݕ,ݔ) − ൯(ݕ,ݔ)ܤ∇ , ݔ		ݎ݂ = ܯ:1 − ݕ,1 = 1:ܰ − 1. 
(3.4) 

Variations in the original image are expressed as the sum of the coefficients as follows: 

௩ܫ_ݏ = 	  ௩ܫ∇

ெିଵ,ேିଵ

௫,௬ୀଵ

ܫ_ݏ 							(ݕ,ݔ) = 	  ܫ∇

ெିଵ,ேିଵ

௫,௬ୀଵ

 (ݕ,ݔ)

(3.5) 

_ݏ ௩ܸ = 	  ௩ܸ

ெିଵ,ேିଵ

௫,௬ୀଵ

_ݏ 			(ݕ,ݔ) ܸ = 	  ܸ

ெିଵ,ேିଵ

௫,௬ୀଵ

 .(ݕ,ݔ)

In order to get the result measure in the range between 0 and 1, where 0 signifies sharp image 

and 1 blurred, normalization is used: 

௩ܫ_ݎݑ݈ܾ =
௩ܫ_ݏ 		− _ݏ ௩ܸ

௩ܫ_ݏ
 

ܫ_ݎݑ݈ܾ =
ܫ_ݏ 		− _ݏ ܸ

ܫ_ݏ
	. 

(3.6) 

Following this logic, the blur value is calculated as the maximum of variations in horizontal 

and vertical direction:  
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ଶܯܤ = max	(ܾ݈ܫ_ݎݑ௩ ,  ). (3.7)ܫ_ݎݑ݈ܾ

3.3.2 Image Contrast  
Contrast is defined as the difference in brightness values between two structures, such as 

regions or pixels [202]. There are various measures of contrast used in different situations, 

for example Weber contrast and Michelson contrast [209]. In this work, we use Root Mean 

Square (RMS) contrast, which is defined as image variance ߪூ over average image intensity 

  :[209]̅ ܫ

ܿோெௌ = 	
ூߪ
ܫ ̅
	. (3.8) 

 

3.3.3 Image Variance 
The image variance measures the amount of variation of pixel brightness values in the image. 

Therefore, it can be used as a sharpness measure when image noise is assumed to be 

relatively constant. As the blurriness of the image increases, the edges are smoothed and the 

transitions between the grayscale levels in the image decrease, thus the variance decreases. 

The measure is expressed as the average of the square of the difference of each image pixel 

 :with the following expression̅ ܫ from the mean (ݕ,ݔ)ܫ

ଶߪ =
1
ܰܯ

((ݕ,ݔ)ܫ − ଶ̅(ܫ
ெ

௬ୀଵ

ே

௫ୀଵ

. (3.9) 

 

3.3.4 Evaluation of Image Quality Measures 
The effectiveness of the image quality assessment models has been tested on the high-

resolution retinal images. In the first study, a rotationally symmetric Gaussian low-pass filter 

was applied to gradually blur the retinal image (Figure 3.2), using different values for the 

standard deviation ߪ (from 1 to 1.8) and kernel size ݇ (from 2x2 to 10x10). The standard 

deviation controls the width of spread in the Gaussian function. Increasing the standard 

deviation results in more neighbourhood pixels used for averaging, and thus greater 
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smoothing of an image. To accurately represent the Gaussian shape of the filter, the total 

size of the kernel should be at least six times larger than the selected standard deviation. In 

this study, the aim was to produce a series of images with a small variation in blur 

comparable to what can be observed in AO retinal images. To this purpose, the size of the 

kernel was intentionally set to small values. To eliminate the ambiguity of the performance 

of image quality measures in the presence of noise and uneven illumination, the dataset of 

raw frames was processed with the software program provided by the system manufacturer 

(CK v0.1, Image Eyes, Orsay, France) as shown in Figure 3.2-a. For each of the blurred 

images, the image quality was calculated using the equations for image contrast (Equation 

(3.8)), variance (Equation (3.9)) and image blur (BM1, Equation (3.1) and BM2, Equation 

(3.7)). The resulting plots in Figure 3.3 show a similar trend for all four IQA models with a 

gradual decrease in image quality as the image becomes more blurred. For comparison 

purposes, the plot of BM2 was inverted. Therefore, this test has not been able to reveal a 

significant difference between the tested image quality measures. 

In the second study, in order to compare the chosen image quality measures with human 

visual perception, 10 independent observers (PhD students at School of Mathematics, 

Computer Science, and Engineering, City, University of London) were asked to visually 

rank four retinal datasets acquired with AO instrument and sort them in descending order in 

accordance to their perception of image quality. The obtained answers were averaged and 

compared against corresponding values calculated with the image quality measures (Table 

3.1). To ease the evaluation process for the examiners, this task was simplified by reducing 

the sample to seven images in each dataset acquired from different retinal locations. For the 

sake of clarity, the images were processed to correct for uneven illumination and noise as 

described in Sections 3.4 and 3.5. Figure 3.4 shows the images from one retinal dataset which 

was used for evaluation by the observers and four IQA models. 
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a 
 

b 
 

c 

Figure 3.2:  Gradually blurred high-resolution retinal images. (a) Original high-

resolution retinal image with corrected illumination; (b) image (a) blurred 

with the Gaussian low pass filter with ݇ =4, 1.2 = ߪ; (c) image (a) blurred 

with the Gaussian low pass filter with ݇ =10, 1.8 = ߪ. 
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Figure 3.3:  Image quality variations for the gradually blurred retinal image sequence 

calculated with four different IQA models. 

Figure 3.5 illustrates scatter plots of image quality measures versus human ratings for four 

retinal datasets. The Spearman rank correlation coefficient was calculated for each 

comparison with the human ratings. The average human ranks were obtained by sorting the 

images in descending order where “1” represents the best image quality and “7” corresponds 

to the image with the worst quality for a given dataset. Therefore, the image quality model 

with the highest negative Spearman coefficient is expected to have the highest correlation 

with the human ratings. As it can be seen from Figure 3.5, only “blur measure 1” evaluates 

the images in accordance to the human choice except for images three and four in the retinal 

dataset 4 (highlighted with red in Table 3.1). This deviation can be explained by the fact that 

these images are very similar in quality and this difference is hardly distinguishable by 

human eye. This fact is also confirmed in Figure 3.6, by comparing the values of blur 

measure for image three and four. 
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Figure 3.4:  High-resolution retinal images selected from one dataset for image quality 

evaluation. The scale bar is 40 µm.  
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Retinal dataset 1 

Image 
Number 

Contrast 
Value (ି) 

BM1 Value 
(ି) 

Variance 
Value 
(ି) 

BM2 
Value1 

Human 
Ranking 

Im_1 0.1861 0.135 0.1675 0.2251 7 
Im_2 0.1953 0.151 0.1708 0.2225 5 
Im_3 0.1859 0.137 0.1650 0.2267 6 
Im_4 0.2066 0.169 0.1806 0.2149 3 
Im_5 0.1925 0.155 0.1681 0.2213 4 
Im_6 0.2091 0.172 0.1843 0.2122 2 
Im_7 0.2049 0.174 0.1775 0.2141 1 

Retinal dataset 2 

Im_1 0.2821 0.2655 0.2067 0.1789 2 
Im_2 0.2882 0.2649 0.2123 0.1821 3 
Im_3 0.2936 0.2717 0.2175 0.1808 1 
Im_4 0.2489 0.2070 0.2125 0.1728 6 
Im_5 0.2555 0.2210 0.2046 0.1776 5 
Im_6 0.2668 0.2358 0.2061 0.1794 4 
Im_7 0.2485 0.2000 0.2259 0.1671 7 

Retinal dataset 3 

Im_1 0.3503 0.2298 0.2964 0.2070 1 
Im_2 0.3487 0.2294 0.2892 0.2096 2 
Im_3 0.3338 0.2061 0.2897 0.2112 3 
Im_4 0.3320 0.2044 0.2852 0.2145 4 
Im_5 0.3007 0.1785 0.2716 0.2112 7 
Im_6 0.3262 0.1976 0.2925 0.2085 6 
Im_7 0.3346 0.2036 0.2936 0.2127 5 

Retinal dataset 4 

Im_1 0.3723 0.2998 0.2600 0.2154 1 
Im_2 0.3038 0.1951 0.2354 0.2501 6 
Im_3 0.3642 0.2847 0.2596 0.2135 3 
Im_4 0.3506 0.2835 0.2406 0.2183 2 
Im_5 0.3249 0.2553 0.2375 0.2235 4 
Im_6 0.1836 0.1611 0.1419 0.2383 7 
Im_7 0.2524 0.2022 0.1868 0.2312 5 

Table 3.1: Comparison of different image quality measures with human ratings in four retinal 

datasets acquired at different locations. 

  

                                                 
1 For BM2 the smaller the value the sharper the image is. 
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Retinal dataset 1 

  

  

Retinal dataset 2 

  

  
Figure 3.5:  Scatter plots of different image quality measures versus human ratings for four 

retinal datasets acquired from different locations. Human ranking corresponds 

to the image quality sorted in descending order, from high (equal to one) to low 

(equal to seven).  
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Retinal dataset 3 

  

  

Retinal dataset 4 

  

  
Figure 3.5 (Cont.): Scatter plots of different image quality measures versus human ratings 

for four retinal datasets acquired from different locations. Human ranking 

corresponds to the image quality sorted in descending order, from high (equal to 

one) to low (equal to seven). 
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Figure 3.6:  Retinal dataset 4 evaluated using BM1. 

Based on the results of the performed investigation, “Blur Measure 1” was chosen to perform 

quality assessment of high-resolution retinal images within the proposed image processing 

framework. Since BM1 measures the extent of sharpness in the images, as opposed to BM2 

which calculates the amount of blur, we will call BM1 metric as an image sharpness in the 

following chapters of this thesis. 

3.4 Retrospective Illumination Correction  

Due to imperfections in the imaging optics and image formation process in general, the 

visibility of retinal features is altered by the inhomogeneous illumination component of the 

AO-corrected retinal image. In order to improve visualization of retinal structures and to 

facilitate next steps of the image processing framework, correction of uneven illumination 

is required. Given that additional background images are not available for high-resolution 

retinal images, a comparative evaluation of retrospective illumination correction methods is 

performed.  

3.4.1 Image Model  
Illumination compensation requires estimation of various parameters of image models that 

consist of three essential parts: illumination of the scene by a light source, reflection of the 

light by the objects’ surfaces and acquisition of an image by a camera. Existing shape-from-

shading algorithms assume Lambertian reflectance, a uniform reflection of a light from the 

surface with no directional dependence on observer position. Under this assumption, in a 
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scene illuminated by a single distant light source, the observed luminance image (ݕ,ݔ)ܫ is 

the product of the reflectance image ܴ(ݕ,ݔ) and the shading image ܵ(ݕ,ݔ) [210]: 

(ݕ,ݔ)ܫ = (ݕ,ݔ)ܴ ∗  (3.10) .(ݕ,ݔ)ܵ

The reflectance component characterizes physical properties of the object surfaces in the 

scene – the albedo of the object surfaces The shading component includes the geometric 

properties of the scene, for example, intensity of a light source which falling on the object 

[211]. By reducing the contribution of illumination, the details of the image can be enhanced. 

This requires a method which is able to separate two components of the image. Inference of 

shading and reflectance images is an ill-posed problem, because the observed image (ݕ,ݔ)ܫ 

can be produced by various combinations of ܴ(ݕ,ݔ) and ܵ(ݕ,ݔ). To this purpose various 

assumptions and simplifications were proposed for discriminating between illumination and 

reflectance components of an image. Most commonly, it is assumed that the shading 

component of an image is generally characterized by slow variations with no discontinuities, 

while the reflectance component is discrete sharply at the edges and varies abruptly. The 

frequency spectrum of shading component shows that this component prevails mostly in the 

low-frequency domain, while the high-frequency components are assumed to represent 

mostly the reflectance in the scene.  

3.4.2 Retrospective Illumination Correction using Low-
pass Filtering and Division/Subtraction 

Assuming that the illumination component of an image is additive or multiplicative and 

considering that illumination variations mainly lie in the low-frequency band, the low-pass 

filter can be used to obtain an estimate of illumination component of an image. By 

convolving the image (ݕ,ݔ)ܫ with a Gaussian kernel of a large scale (ߪ,ݕ,ݔ)ܪ, the spatial 

frequencies in an image are delimited, which results in a loss of edge definition and 

averaging of intensity values. The rotationally symmetric Gaussian function (ߪ,ݕ,ݔ)ܪ is 

defined by: 

(ߪ,ݕ,ݔ)ܪ =
1

ଶߪߨ2
݁ି

(௫ି௫)మା(௬ି௬)మ
ଶఙమ , (3.11) 

where ݔ and ݕ represent the mean of the Gaussian function, ߪ is the effective spread of the 

function; the larger the value of ߪ, the greater the smoothing effect. The optimal size of the 
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Gaussian filter is dependent upon the scale of the objects in the image and the size of the 

image.  

After the smoothed version of the image is obtained, it is either subtracted from the original 

image or the original image is divided by the smoothed one, depending on the assumptions 

on the illumination component of an image. Hence, the image with compensated 

illumination variations ܱ(ݕ,ݔ) is obtained as follows: 

(ݕ,ݔ)ܱ = (ݕ,ݔ)ܫ − (ݕ,ݔ)ܫ ∗  (3.12)   (ߪ,ݕ,ݔ)ܪ

or 

(ݕ,ݔ)ܱ =
(ݕ,ݔ)ܫ

(ݕ,ݔ)ܫ ∗  (3.13) ,	(ߪ,ݕ,ݔ)ܪ

where symbol * represents convolution. 

3.4.3 Retrospective Correction using Homomorphic 
Filtering 

Homomorphic filtering is a generalized technique for image enhancement. It simultaneously 

normalizes the brightness across an image and increases the contrast [212]. Homomorphic 

filtering is based on the transformation of the multiplicative illumination component of an 

image into additive, by taking the logarithm of Equation (3.10): 

(ݕ,ݔ)ܫ = (ݕ,ݔ)ܴ ∗  (ݕ,ݔ)ܵ

log൫(ݕ,ݔ)ܫ൯ = log൫ܴ(ݕ,ݔ) ∗  ൯(ݕ,ݔ)ܵ

log൫(ݕ,ݔ)ܫ൯ = log൫ܴ(ݕ,ݔ)൯ + log൫ܵ(ݕ,ݔ)൯. 

(3.14) 

Using the assumption that illumination varies slowly across different locations of the image 

and the local reflectance changes quickly across different locations, high-pass filtering can 

be performed on the logarithm of the image (ݕ,ݔ)ܫ. By adopting this process, we reduce the 

luminance part, which is the low frequency component of the image, and amplify the 

reflectance part, which corresponds to the high frequency component [213]. High-pass 
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filtering can be performed both in spatial and frequency domains. The processing may be 

described as shown below:  

ℎ ∗ log൫(ݕ,ݔ)ܫ൯ = ℎ ∗ log൫ܴ(ݕ,ݔ)൯ + ℎ ∗ log൫ܵ(ݕ,ݔ)൯, (3.15) 

where ℎ is the kernel of the filter and * indicates convolution. 

As a final step, the exponential function is applied to invert the log-transform and yield the 

enhanced image ܱ(ݕ,ݔ): 

(ݕ,ݔ)ܱ = exp൫ℎ ∗  ൯൯. (3.16)(ݕ,ݔ)ܫ൫݈݃

 

3.4.4 Wavelet-based Filtering 
The Fourier transform (FT) is a fundamental tool used to analyse the frequency content of 

the signal. Although the FT provides information about the strength of individual frequencies 

present in the signal, it does not provide information regarding the point of occurrences of 

these frequencies in time. Lack of temporal information is a serious drawback of the FT 

when applied to non-stationary signals, therefore an alternative transformation which can 

give time-frequency representation is necessary to obtain time localization of the spectral 

components [214]. The wavelet transform has been introduced to solve this problem. 

Wavelet transforms are based on small wavelets with limited duration. The translated-

version wavelets locate the differences in time, whereas the scaled-version wavelets allow 

analysis of the signal in different scales. 

The wavelet transform is a multi-resolution image decomposition tool that provides a variety 

of channels representing the image feature by different frequency sub-bands at multi-scale 

[211]. A discrete signal can be approximated by [215]: 

݂[݊] = 	
1
ܯ√

 ఝܹ[݆,݇]


߮బ,[݊] +
1
ܯ√

 టܹ[݆,݇]


߰,[݊]
ஶ

ୀబ

	, (3.17) 

where f [݊] , ߮బ,[݊], ߰,[݊] are discrete functions defined in the range [0,ܯ − 1] with ܯ 

points; ݇ and ݆ correspond to translation and scale values, respectively. ߰, is the wavelet 

function or the mother wavelet; it serves as a prototype for generating the daughter wavelets 
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which are the translated and scaled versions of the mother wavelet. ߮బ,  is the scaling 

function associated with the wavelet. The translation refers to the window location along the 

signal, while the scaling corresponds to either dilation or compression of a signal [216]. The 

scale parameter is defined as the inverse of the frequency, thus high scales (low frequencies) 

correspond to a global view of the signal, and low scales (high frequencies) correspond to 

detailed characteristics of the signal.  

The sets ߮బ,[݊] and ߰,[݊] are orthogonal to each other, thus the wavelet coefficients can 

be represented by their inner product:  

ఝܹ[݆,݇] =
1
ܯ√

݂[݊]߮బ,[݊]


 (3.18) 

టܹ[݆, ݇] =
1
ܯ√

	݂[݊]߰,[݊]


, ݆ ≥ ݆	. (3.19) 

Equation (3.18) defines approximation coefficients and Equation (3.19) defines detailed 

coefficients.  

The DWT has the potential to decompose the signal into approximation and detailed 

information for analysing the signal at different frequencies and resolutions. For 2D signals 

like images, this kind of 2D DWT scheme provides a decomposition of the image into a low-

frequency approximation component (LL) and a high-frequency detail component, which 

can be further divided into LH, HL and HH, known as horizontal, vertical and diagonal 

components, respectively. High-pass and low-pass filtering is used for decomposing the 

signal. The filtering operation changes the resolution of the signal, i.e. the amount of detailed 

information present. Up-sampling and down-sampling (subsampling) operations are used to 

control the scale, by increasing/reducing the sampling rate or adding/removing samples from 

the signal, respectively [216]. 

This first level of decomposition can be expressed as follows [211]: 
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(݊,݉)ܮܮ = ቂܪ௫ ∗ ௬ܪൣ ∗ ିଵ൧↓ଶ,ଵܮܮ
ቃ
↓ଵ,ଶ

(݉,݊) 

HL	௩௧(݉,݊) = ቂܪ௫ ∗ ௬ܩൣ ∗ ିଵ൧↓ଶ,ଵܮܮ
ቃ
↓ଵ,ଶ

(݉,݊) 

LH	௭௧(݉,݊) = ቂܩ௫ ∗ ௬ܪൣ ∗ ିଵ൧↓ଶ,ଵܮܮ
ቃ
↓ଵ,ଶ

(݉,݊) 

HH	ௗ(݉,݊) = ቂܩ௫ ∗ ௬ܩൣ ∗ ିଵ൧↓ଶ,ଵܮܮ
ቃ
↓ଵ,ଶ

(݉,݊) , 

(3.20) 

where * denotes the convolution operator, ↓ 2,1  subsampling along the rows, ↓ 1,2 

subsampling along the columns and ܪ and ܩ are low-pass and high-pass filters, respectively. 

When the original signal is convolved with a half band low-pass filter ܪ , half of the 

frequencies are eliminated or in other words half of the information is lost. Thus, after the 

filtering operation the frequency resolution is reduced to half but the scale remains unaltered. 

Then according to the Nyquist’s rule, half of samples in the signal can be eliminated with no 

loss of information. This decomposition subsamples the signal by two, as only half of 

samples are used to represent the entire signal. However, it doubles the frequency resolution 

for each frequency band as the corresponding range of the frequencies is reduced to half at 

the previous time interval. The above procedure is known as the sub-band coding and can 

be repeated for many levels [216]. Similarly, a half band high-pass filter ܩ removes the low 

frequencies and after the process of subsampling produces the first level DWT coefficients 

or detail coefficients.  

The low-frequency component can be decomposed again in the same manner, thereby 

producing even more sub-bands. After ݊  applications of wavelet decomposition, this 

procedure results in one low-frequency component and ݊ horizontal detail components, ݊ 

vertical detail components and ݊ diagonal detail components [217]. Figure 3.7 illustrates the 

process of 2-level wavelet decomposition. 

In order to utilize wavelet decomposition in the illumination correction problem, the same 

assumptions are made as for the previously discussed methods, i.e. the illumination 

component is a low-pass component while the reflection component represents the detailed 

structure of the image. The logarithm function is applied to transform the product of 

illumination-reflection model into a sum with two components. To separate these 



94 

components, a multi-level DWT is applied. The more the decomposition scheme is being 

repeated, the more the approximation image concentrates in the low frequencies energy. At 

the last level of image decomposition, the approximation coefficients contain only low 

frequency information, which is expected to correspond to the image illumination. The 

coefficients in the wavelet approximation sub-band are set to a constant value in order to 

impose a uniform background. Consequently, the recovery process is performed using 

inverse of the DWT (IDWT) over the DWT and inverse of logarithm (exponential function) 

[211]. 

 

 
 a b c  

Figure 3.7:  Wavelet decomposition of an image into sub-bands. (a) Original image; (b) 1-

level wavelet decomposition; (c) 2-level wavelet decomposition. LL stands for 

the approximate image, the detailed information is represented by three 

components: horizontal (LH), vertical (HL), and diagonal (HH). 

 

3.4.5 Implementation of Retrospective Illumination 
Correction Methods 

High-resolution retinal images acquired with an AO instrument are characterized by a bright 

illumination pattern which gradually is falling off at the edges. The surface plot of 

unprocessed retinal image is illustrated in Figure 3.8. In order to choose the appropriate 
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method for illumination compensation in high-resolution retinal images, four retrospective 

illumination correction methods were implemented. 

  
a b 

Figure 3.8:  (a) Original high-resolution retinal image and (b) its surface plot. 

I. Illumination Correction using Low-pass Filtering and 

Division/Subtraction 

For illumination correction using low-pass filtering, the optimal size of the Gaussian filter 

was firstly specified. Blood vessels are the largest object in retinal images. Depending on 

the retinal eccentricity, their scale varies and can reach the size of 750 pixels in length and 

60 pixels in width (Figure 3.8-a). Therefore, a Gaussian filter with a large kernel needs to be 

used to eliminate detailed information corresponding to the vessels from retinal image. The 

standard deviation ߪ equal to 100 and kernel size of 100 pixels was used to produce an 

estimate of the illumination component. The obtained background was subtracted/divided 

from the original retinal image to compensate for illumination (Equation (3.12) and (3.13)).  

II. Illumination Correction using Homomorphic Filtering 

In the case of homomorphic filtering, a Gaussian high-pass filter was constructed directly in 

the frequency domain. The standard deviation of the Gaussian was set to 10 to eliminate the 

low frequency variations corresponding to the illumination component. The standard 

deviation in the frequency domain is the inverse of the standard deviation of the mask in the 
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spatial domain, and vice versa. That means that the standard deviation of 10 pixels 

corresponds to the cut-off frequency of 0.1 cycles/pixel. Given that photoreceptor cell spatial 

frequencies are in the range of 0.2 – 0.49 cycles/pixel (Section 3.5), this choice of cut-off 

frequency allows to preserve retinal features while compensating for illumination variations 

in low-frequency band. In frequency domain filtering, we have to deal with wraparound error 

which comes from the fact that DFT treats a finite-length signal (such as the image) as an 

infinite-length periodic signal, where the original finite-length signal represents one period 

of the signal. Therefore, there is interference from the non-zero parts of the adjacent copies 

of the signal. To avoid this, prior to filtering the original image was padded with a mirror 

reflection of itself.  

III. Wavelet-based Illumination Correction 

In order to successfully use the wavelet decomposition for illumination correction, the 

appropriate wavelet transform and the level of decomposition should be established. To this 

purpose, the original retinal image (Figure 3.8-a) was decomposed at ten levels using 

different wavelet families: Daubechies (DB); Coiflets, Haar, Symlets and Biorthogonal 

(bior), ReverseBio (rbio), implemented in Matlab® Wavelet Toolbox ™. Experimentally, it 

was found that Daubechies approximates illumination better, while other wavelet types 

introduce some obvious artefacts to the reconstructed image as it is shown in Figure 3.9. 

These artefacts occur as a result of the change in the approximation coefficients in order to 

impose a uniform background. The number next to the wavelet name defines the 

approximation order of the wavelet transform. In the wavelet family such as biorthogonal, 

there are two scaling functions, which may generate different multiresolution analyses, and 

accordingly two different wavelet functions. Therefore, there are two numbers defining the 

approximation order of the wavelet transform. 
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bior 1.5 bior3.1 

haar rbio2.2  

Figure 3.9:  Retinal image reconstructed using different types of wavelet transform. 

In Figure 3.10 the original retinal image is reconstructed using the approximation 

coefficients at different decomposition levels. Retinal features become more smoothed at 

each decomposition level, and at levels 6–10 the images do not contain any retinal features. 

Figure 3.11 shows the result of uneven illumination correction using DB6 wavelet at 

decomposition levels 1–10. As it can be observed uneven illumination correction at a single 

level of decomposition leads to elimination of most of the image information leaving only 

noise. Decomposing the images too far leads to almost a constant value in the approximation 

sub-band and thus does not allow for efficient illumination correction. 
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Level 1 Level 2 

  
Level 3 Level 4 

  
Level 5 Level 6 

Figure 3.10:  High-resolution retinal images reconstructed using the approximation 

coefficients at decomposition levels 1-10. 
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Level 7 Level 8 

  
Level 9 Level 10 

Figure 3.10 (Cont.): High-resolution retinal images reconstructed using the approximation 

coefficients at decomposition levels 1-10. 
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Level 1 Level 2 

  
Level 3 Level 4 

  
Level 5 Level 6 

Figure 3.11:  High-resolution retinal images with corrected illumination using DB6 

wavelet at decomposition levels 1–10. 
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Level 7 Level 8 

  
Level 9 Level 10 

Figure 3.11 (Cont.): High-resolution retinal images with corrected illumination using DB6 

wavelet at decomposition levels 1–10. 

Since the purpose of illumination correction is to remove brightness variation from the 

images, a measure of local brightness variation [218] can be used in order to compare 

different illumination correction methods as well as to choose the appropriate level of 

decomposition in wavelet-based filtering. The local brightness variation is defined as 

follows: 

ߪ = ටଵ
ே
∑ ߤ) − ఓ)ଶߤ 	, (3.21) 

where ߤఓ = ଵ
ே
∑ ߤ  is the mean brightness of the entire image, ܰ  is the size of non-

overlapping blocks that the image is divided into and ߤ is the local mean image brightness 
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in the block ݅. In this work, the size of block was set to 20x20 pixels, which represents a 

local region with around 10 to 15 photoreceptor cells, depending on the retinal eccentricity. 

In this way, we were able to capture intensity variations of both, photoreceptor cells and the 

background.  

Images reconstructed using the approximation coefficients represent the estimated 

background information, which would be removed from the original image in order to 

compensate for uneven illumination. Therefore, the level of decomposition at which 

background contains no retinal features is supposed to be appropriate for illumination 

correction. However, while decomposing the images at high levels may produce an estimate 

of the background with no retinal features (Figure 3.10, level of decomposition 7-10), 

reconstruction of the images at the corresponding levels does not necessarily allow for 

efficient illumination correction (Figure 3.11, level of decomposition 7-10). The process of 

finding the appropriate level of decomposition is therefore a trade-off between the local 

brightness variation of the reconstructed images (Figure 3.11), as a measure of illumination 

correction performance, and information encoded by the approximation coefficients at each 

level of decomposition (Figure 3.10), to ensure that the estimated background contains no 

retinal features. As homogeneity reflects the uniformity of the image intensity distribution, 

it was used as a measure of smoothness of the approximated background at each level of 

decomposition (Equation (3.22)).  

H	 = 	
,݅)ܯܥܮܩ ݆)
1 + (݅ − ݆)ଶ

ெ

ୀଵ

ே

ୀଵ

	, (3.22) 

where GLCM signifies the grey level co-occurrence matrix, the second-order histogram 

[219]. 

The appropriate level of decomposition was chosen as the level at which multiplicative 

combination of two parameters, homogeneity and the inverse of local brightness variation, 

reaches its maximum (Figure 3.12-c). In this way, the balance is found between effectively 

removing illumination background and preserving retinal features. Prior to the multiplication 

step, these values were normalized to the range of [0,1] (Figure 3.12-a, b). Experimentally, 

it was found that generally at the decomposition levels of 5−6 the function of homogeneity 

and inverse local brightness variation reaches its peak. Figure 3.13 illustrates the process of 
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the proposed wavelet-based illumination compensation with the automated selection of 

decomposition level. 

-Local brightness variation Homogeneity of approximated background 

  
a b 

(-Local brightness variation)*(Homogeneity of approximated background)  

 
c 

Figure 3.12:  Calculating the appropriate level of decomposition using (a) negative of local 

brightness variation, (b) homogeneity of approximated background and (c) 

their multiplication. 
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Figure 3.13:  Flowchart showing the process of wavelet-based illumination correction 

with the automated selection of the decomposition level. 

To test the approach, an artificial illumination pattern was modelled as a multi-variate 

Gaussian distribution, which was multiplied with the retinal image with corrected 

illumination (Figure 3.14-a, b). The surface plot of the resulting image (Figure 3.14-d) shows 

a similar appearance with the surface plot of the original raw image (Figure 3.8-b). The 

generated image (Figure 3.14-c) was decomposed with different types of Daubechies 

wavelet transform. The images reconstructed from the approximation coefficients were 

compared against the artificially created illumination pattern. Figure 3.15 shows the 

difference calculated between the predefined illumination pattern and the illumination 

component obtained with different types of Daubechies wavelets. As it can be noticed from 

the images, there are some artefacts introduced by the wavelet decomposition, which can be 

defined as horizontal/vertical stripes (DB3, DB6, DB10) and checkerboard pattern (DB3, 

DB45). Wavelet coefficients are calculated using iterative discrete operations with the non-

ideal high and low-pass filters. Therefore, aliasing can appear. IDWT cancels aliasing as 

long as the coefficients are not changed. The idea of illumination correction using wavelet 
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transform is based on changing the low-pass band information of the image with no changes 

over the reflection component (high frequencies). But the recovered image is obtained using 

both approximation coefficients and detailed coefficients; therefore, it is obvious that 

changing the coefficients in the approximation sub-band to a constant value brings up the 

same artefacts to the recovered image. Figure 3.16 shows an example of the retinal image 

reconstructed using DB3, where horizontal and vertical stripe artefacts are apparent. 

  
a b 

 
 

c d 

Figure 3.14:  (a) Predefined illumination pattern; (b) high-resolution retinal image with no 

illumination background; (c) retinal image (b) multiplied with the illumination 

pattern (a) and (d) its surface plot. 
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DB3 DB6 

DB10 DB45 

Figure 3.15: Difference between the predefined illumination pattern and illumination 

estimated using approximation coefficients at level 6 obtained with different 

types of Daubechies wavelet transform. 
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Figure 3.16: Retinal image reconstructed using DB3 showing horizontal and vertical 

artefacts. 

IV. Wavelet-Fourier Filtering 

Münch et al. [220] proposed a combined wavelet-Fourier filter for elimination of horizontal 

and vertical stripes in images. If an image impaired with vertical and horizontal lines is 

decomposed using wavelet transform, the information from vertical and horizontal stripes 

will concentrate in the vertical sub-band components HL  and horizontal sub-band 

components LH at different resolution scales, accordingly. After applying the 2D Fourier 

transforms to these bands, the information of the striping noise will be completely condensed 

to the abscissa for vertical stripes and to the ordinate for horizontal stripes. By eliminating 

the Fourier coefficients at the abscissa and ordinate, the entire information arising from ideal 

vertical and horizontal stripes will be erased. For this purpose, vertical and horizontal 

components are transformed to frequency domain and multiplied with the Gaussian damping 

functions: 

(ݕ,ݔ)݃ = 1 − exp ቀ− ௫మ

ଶఙమ
ቁ  and  ݃(ݕ,ݔ) = 1 − exp ቀ− ௬మ

ଶఙమ
ቁ. (3.23) 

The standard deviation σ defines the width of the filter in x and y-directions, accordingly, 

and is selected based on the spatial frequency spectrum of the stripes in vertical and 

horizontal directions, which correlates with the stripe width. At each level of decomposition, 

the Fourier transformed vertical and horizontal sub-band components of the image are 
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multiplied with the Gaussian functions (Figure 3.17). In this way, the coefficients close to 

the x and y-axis in the Fourier domain are eliminated. The recovery process is performed 

using inverse FFT (IFFT) and IDWT.  

Figure 3.18 and Figure 3.19 illustrate this algorithm. For the presentation purposes, the 

wavelet-Fourier filter was applied to the illumination component of the retinal image, 

reconstructed from approximation coefficients. As the background image is smooth, the 

artefacts are more apparent. In the proposed framework, the wavelet-Fourier filter (with 

 is applied to the retinal image obtained after wavelet-based illumination correction (2=ߪ

(Figure 3.20). 

  
a b 

Figure 3.17: Gaussian filter used for eliminating the Fourier coefficients (a) at the 

abscissa for vertical stripes and (b) at the ordinate for horizontal stripes at 

the second level of decomposition.  
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a 

 
b 

Figure 3.18: Wavelet-Fourier filter applied to the illumination component of the retinal 

image. (a) Illumination component estimated using approximation 

coefficients; (b) 2-level wavelet decomposition of (a) showing that vertical and 

horizontal stripes concentrate in the vertical and horizontal sub-band 

components, respectively. 
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a b 

 
c d 

Figure 3.19:  Result of wavelet-Fourier filter applied to the illumination component of the 

retinal image. (a) Illumination component with vertical stripes eliminated 

using the wavelet-Fourier filter; (b) vertical stripes that have been eliminated; 

(c) illumination component with horizontal stripes eliminated using the 

wavelet-Fourier filter; (d) horizontal stripes that have been eliminated.  
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a b 

Figure 3.20:  High-resolution retinal image (a) before and (b) after applying the wavelet-

Fourier filter.  

Experimentally it was established that DB10 introduces smoother vertical and horizontal 

artefacts on the reconstructed retinal image. Moreover, the image processed with DB10 

yields a slightly higher sharpness for the restored retinal image. Therefore, in the proposed 

image processing framework DB10 wavelet is chosen for correcting uneven illumination 

where the level of decomposition is found automatically as a function of homogeneity and 

brightness variation. 

3.4.6 Results of Uneven Illumination Correction 

I. Visual Comparison of Uneven Illumination Correction Methods 

An effective retrospective shading correction method compensates for the illumination 

component of the image without corrupting its information content. Figure 3.21 presents the 

results of illumination correction using four different methods: wavelet-based filtering, low-

pass filtering and division, low-pass filtering and subtraction and homomorphic filtering. 

Even by visual comparison with the original unprocessed image, it can be seen that most of 

variation in the background illumination has been removed by all four methods.  
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Unprocessed retinal image 

 
Wavelet-based filtering Low-pass filtering and division 

  
Homomorphic filtering Low-pass filtering and subtraction 

 

Figure 3.21:  Results of illumination correction showed on a section of high-resolution 

retinal image using four methods: wavelet-based filtering, low-pass filtering 

and division, homomorphic filtering, low-pass filtering and subtraction. 
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Unprocessed retinal image 

 
Wavelet-based filtering Low-pass filtering and division 

 
Homomorphic filtering Low-pass filtering and subtraction 

 

Figure 3.21 (Cont.): Results of illumination correction showed on a section of high-

resolution retinal image using four methods: wavelet-based filtering, low-pass 

filtering and division, homomorphic filtering, low-pass filtering and 

subtraction. 



114 

Based on the surface plots in Figure 3.22 it can be concluded that the background of the 

resulting images became even after illumination correction performed by the four methods. 

The corresponding averaged intensity profiles in Figure 3.22 reveal the differences in 

illumination correction methods. The wavelet-based approach together with the method 

based on low-pass filtering and subtraction seem to remove background of a higher intensity 

in comparison with the rest of the methods, which yields a darker resulting image. The 

wavelet-based approach resulted in the highest range of intensity variations (peaks) in the 

average intensity profile. These peaks are the cumulative sum of the photoreceptor cones. 

This becomes clear if calculations of the image sharpness are considered (Figure 3.24). 

Given these results, it would be reasonable to presume that this method will facilitate better 

discrimination of cones for further segmentation and counting routines. 

Wavelet-based filtering 

  
Low-pass filtering and division 

  
Figure 3.22:  Surface plots and corresponding intensity profiles of retinal image processed 

by four different illumination correction methods. 
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Homomorphic filtering 

  
  

Low-pass filtering and subtraction 

  

Figure 3.22 (Cont.): Surface plots and corresponding intensity profiles of retinal image 

processed by four different illumination correction methods. 

II. Quantitative Assessment of Uneven Illumination Correction Methods 

In order to compare different illumination correction methods and choose the appropriate 

scheme for our retinal image processing framework, a valid quantitative measure for 

evaluation of the performance of illumination correction is required. 

Local brightness variation [218] introduced in the Subsection 3.4.5 is one of the measures 

that is used in order to quantitatively validate different methods of illumination correction. 

This measure is interpreted as the average amount of variation in each section of the image 

over the entire image. A lower value of local brightness variation corresponds to a more 

uniform image luminosity, and therefore it is expected that a successful illumination 
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correction would be associated with a reduction in the value of ߪ  (Equation (3.21)). 

Calculating this measure for the four different illumination methods demonstrated that the 

wavelet-based approach provides the smallest value of local brightness variation than the 

rest of the methods (Figure 3.23). 

 

 
Figure 3.23:  Local brightness variation of the images obtained with different methods of 

illumination correction. 

 

 
Figure 3.24:  Sharpness measure of the images obtained with different methods of 

illumination correction. 

A sharpness measure can be also used to evaluate the performance of the illumination 

correction methods. It is expected that successful illumination compensation increases the 

contrast between the object edges and the background, thus the sharpness of the image will 



117 

be improved. In Figure 3.24, wavelet-based filtering again provided the optimum results, 

showing the highest sharpness measure amongst the methods. To confirm the obtained 

results, this analysis was repeated for 10 different retinal images processed with four 

illumination correction methods (Table 3.2). Based on these calculations, the wavelet-based 

approach proved to be the most suitable method for correcting illumination in retinal images. 

 Local brightness 
variation 

Sharpness  
measure 

Wavelet-based fileting 0.0162 0.2699 

Low-pass filtering and division 0.0425 0.1887 

Homomorphic filtering 0.0475 0.1732 

Low-pass filtering and subtraction 0.0339 0.2191 

Table 3.2. Performance evaluation of four illumination correction methods in terms of local 

brightness variation and sharpness measure averaged for 10 retinal images. 

Overall, the results of shading correction show that all four methods significantly reduce 

uneven illumination present in raw high-resolution retinal images. The wavelet-based 

approach as well as low-pass filtering and subtraction correct retinal images better than other 

two methods, based on the quantitative measures of local brightness variation and sharpness. 

This implies that shading in high-resolution retinal images is mainly additive. Since the study 

indicated that the wavelet-based approach provided the best results according to the chosen 

metrics, we use this method to correct for uneven illumination in the proposed retinal image 

processing framework. As described in Subsection 3.4.5, it was found that Daubechies 

wavelets of type DB10 provide a good illumination correction with minimum artefacts 

introduced during the reconstruction of the image. Using the function of homogeneity and 

local brightness variation it is possible to automatically find the level of decomposition 

appropriate for approximating the background for each dataset. Additionally, a wavelet-

Fourier filter is applied to the reconstructed retinal images in order to eliminate vertical and 

horizontal artefacts corrupting the retinal image content.  
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3.5 Noise Reduction 

In an AO imaging system, there are many sources of noise that affect the quality of acquired 

retinal images. Correcting for uneven illumination is not sufficient to restore the true image 

signal; therefore, additional noise suppression methods should be included in the image 

processing framework. 

Rao et al. [137] described the noise in retinal images acquired with an AO flood-illuminated 

instrument as a “combined” type of noise and assumed that it is additive. To estimate the 

noise intensity, a small section in the background of retinal image was cropped. The 

histogram of this area showed a Gaussian distribution. Therefore, it can be summarized that 

the noise model in AO instrument is an additive Gaussian noise.  

In this study, a frequency method is used in order to increase contrast and remove high-

spatial-frequency noise. The choice of cut-off frequencies is very important in this 

processing step, as incorrect estimation of the spatial frequency of imaging objects can 

amplify the level of noise in the image. In high-resolution retinal images, the cone is the 

smallest object to be imaged; therefore the information beyond the cones’ frequencies 

correspond to noise which should be filtered out. For the human eye, the spatial frequency 

of photoreceptor cones can be estimated based on the angular size of the photoreceptor cells, 

 :as follows [137] ,ߠ
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where ܨ௬ is the magnitude of the front focal length of the test human eye and ݀ is the 

photoreceptor cell diameter. ܨ௬  is set to 17 ݉݉, which is an average focal length for 

human eye. The photoreceptor cell diameter depends on the retinal eccentricity, where the 

image was taken. For the retinal images acquired at 1–4° eccentricity from the fovea, the 

cone diameter varies between 3–8 μm [30], which corresponds to 2–5 pixels (the camera 

pixel resolution is 1.6 μm). Therefore, the corresponding photoreceptor cell spatial 

frequencies are in the range of 40 – 100 cycles/degree or 0.2 – 0.49 cycles/pixel. 



119 

a b 

 
c 

Figure 3.25:  Calculation of cut-off frequencies for the band-pass filter. (a) High-resolution 

retinal image after illumination correction; (b) its power spectrum, and (c) 

radially averaged power spectrum with cut-off frequencies for the Gaussian 

band pass filter shown with red markers. 

Modal frequency of the cone mosaic can be estimated by analysing retinal images in Fourier 

domain [221]. Yellott [222] discovered that the power spectrum of the retinal mosaic has an 

annular appearance. The radius of this annulus corresponds to the modal frequency of the 

cone mosaic. This method was successfully used by Cooper et al. [223] to estimate the cell 

spacing in retinal images. The following correlation has been observed in Yellott’s ring: the 
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power spectrum from more irregularly packed mosaics has a ring with a wider cross-

sectional profile than that from more uniformly packed mosaics. 

Figure 3.25-a and b shows the high-resolution retinal image after illumination correction and 

its power spectrum. In Figure 3.25-b, the dark lines along the abscissa and ordinate are the 

results of wavelet-Fourier filtering performed at previous stage for eliminating the vertical 

and horizontal stripes. Due to a relatively irregular cone mosaic, the power spectrum is 

characterized by a wide Yellott’s ring. In Figure 3.25-c, a radially averaged power spectrum 

is shown, where Yellott’s ring is represented by a small bump centred around 40 

cycles/degree. 

The Gaussian band-pass filter is employed to suppress high frequency noise, above 

photoreceptor cell stop frequency and enhance the image energy, within the start frequency. 

The Gaussian filters are rotationally symmetric filters with a smooth attenuation of desired 

frequencies. Moreover, Gaussian filters have weights specified by the probability density 

function of a bivariate Gaussian, or normal distribution which give higher significance to 

pixels near the edge, therefore reducing edge blurring [224]. These properties make the 

Gaussian filter a suitable choice for denoising retinal images. Since the retinal eccentricity 

is known based on the imaging protocol, the corresponding scale of photoreceptor cells 

݀ can be found using the histological data of Curcio et al. [30]. Using Equation (3.24), 

we estimate the cone stop frequency which corresponds to the outer edge of Yellott’s ring. 

Depending on the eccentricity where the image was taken, the stop frequency of the 

photoreceptors will vary. In the work of Cooper et al. [223], the inner edge of Yellott’s ring 

was used for estimating the dominant low frequency of photoreceptor cells. However, in 

retinal images with a larger field of the view apart from photoreceptor cells, there are other 

large scale objects, such as vessels. Therefore, in the Fourier domain slow variations in 

intensity corresponding to the blood vessels are represented by the frequencies lower than 

the inner edge of Yellott’s ring. This information is valuable and should not be discarded. 

After illumination correction, low frequency variation corresponding to the illumination 

component of the raw image has been removed from the image, resulting in a sharp cut of 

low frequencies. The peak located right after these frequencies is supposed to indicate the 

start point of the frequencies corresponding to the large scale variations. This point can be 

used as the start frequency for the Gaussian band pass filter and can be easily found from 

the plot of radially averaged power spectrum (Figure 3.25-c).  
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Figure 3.26 illustrates the result of band-pass filtering on four different retinal images which 

were corrected for uneven illumination. For visualization purposes, brightness of the images 

was increased. Qualitative comparison of the images before and after applying the Gaussian 

band-pass filter reveals that this process supressed the noise and improved the visibility of 

retinal features. However, the calculated BM1 measure showed that image sharpness has 

been slightly decreased after the denoising step. This happens due to smoothing introduced 

by the Gaussian band-pass filter, which reduces the noise and thus the amount of edges 

detected by the Sobel operator. In order to evaluate the amount of noise suppressed during 

this stage, the Power Spectral Ratio was additionally calculated as a function of the 

frequency between the images before and after image denoising (Figure 3.27). A ratio greater 

than one indicates a higher spectral power for the images after noise suppression, at a given 

frequency. Overall, the improvement is within the range of cut-off frequencies; beyond the 

cut-off frequencies, the ratio is less than one, indicating that the high-frequency noise has 

been suppressed. 
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Retinal images after illumination 
correction 

Retinal images after noise       
suppression 

Retinal dataset 1 

 
BM1 = 0.1631 BM1 = 0.1244 

 
Retinal dataset 2 

 
BM1 = 0.2028 BM1 = 0.1701 

Figure 3.26:  Retinal image frames before (left) and after noise suppression (right) in four 

representative datasets. The scale bar is 40 µm. 
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Retinal dataset 3 

 
BM1 = 0.2891 BM1 = 0.2082 

 
Retinal dataset 4 

 
BM1 = 0.2065 BM1 = 0.1753 

Figure 3.26 (Cont.): Retinal image frames before (left) and after noise suppression (right) in 

four representative datasets. The scale bar is 40 µm. 
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Retinal dataset 1 Retinal dataset 2 

 

Retinal dataset 3 Retinal dataset 4 

  
  

Figure 3.27:  The spectral power ratio of the retinal images before and after image denoising. 

Black lines show the cut-off frequencies in the band-pass filter. 

 

3.6 Image Registration 

3.6.1 Introduction 
The AO flood-illuminated instrument, rtx1, requires approximately four seconds for 

acquiring a retinal dataset of 40 frames. Despite fast acquisition, there are still geometric 

transformations in the acquired dataset due to fixational eye movements. Image registration 

is used to calculate the performed geometric image transformations and obtain a high quality 

image from multiple copies of the same retinal location. Moreover, registration of the images 

captured at different retinal eccentricities allow for a wide field-of-view which may assist 
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clinicians in visual inspection of a larger area of the patient’s retina. Registration of the 

retinal images acquired at different times can help clinicians in tracking the progression of 

the patient’s disease as well as monitoring the efficacy of specific therapy. Therefore, image 

registration is an essential image processing tool for the analysis of high-resolution retinal 

images which allows improvement in the image quality as well as facilitates patients’ 

treatment process.  

Mathematically, the registration process represents a mapping function ܶ, which establishes 

spatial correspondence between the coordinates of the test image ்ܫ and the reference image 

 .ோ, taken potentially at different times, from different viewpoints, and/or by different sensorsܫ

After a transformation function is found, it is applied to the test image in order to map the 

spatial coordinates onto the reference image such that [139]:  

(ᇱݕ,ᇱݔ)ோܫ =  (3.25) ,	{(ݕ,ݔ)்ܫ}ܶ

where (ݔᇱ,ݕᇱ)  and (ݕ,ݔ)  are the coordinate spaces of the reference and test images, 

respectively. 

As discussed earlier, in high-resolution retinal images, due to multiple sources of noise and 

rapid eye motions, the quality of single frames may vary within an image sequence. Image 

registration does not only correct for the motion between the frames, but also compensates 

for the thermal and speckle noise. After the transformation model is applied to the sequence 

of frames, the final image of a higher contrast is produced by averaging co-registered frames.  

A rigid transformation model is used to calculate the transformation function between the 

retinal frames. We consider scaling as a minor transformation that does not cause any 

distortions in the registration process, therefore in this study the transformation model 

consists of translation and rotation only. In order to establish spatial correspondence between 

the pair of retinal images, the Phase-Only Correlation (POC) similarity metric [225] is used. 

Phase correlation is a robust and computationally effective metric. It can be used for noisy 

images as it is resilient to changes in spectral energy as well as changes in brightness. Despite 

this, as a correlation technique, POC may fail if the reference and test images have large 

scale and rotation variations [225]. To this purpose, the registration process is divided into 

coarse and fine stages. At the coarse stage, translation parameters are calculated with sub-

pixel accuracy using POC. At the fine stage, the Procrustes algorithm is employed to refine 
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the transformation model. By minimizing a least-squares criterion between reference and 

input image, rotation and remaining finer translation parameters are found. 

3.6.2 Coarse Registration 
During the coarse image registration stage, the POC technique is used to determine 

translation parameters between retinal frames. Let ்ܫ be a translated replica of a reference 

image ܫோ , then ்ܫ and ܫோ are related by the following transformation: 

(ݕ,ݔ)்ܫ = ோܫ ൬
ݔ
ݕ
൨ −  , (3.26)	൰ݐ

where t – is translation vector: ݐ = ቂ௫బ௬బቃ. Then: 

(ݕ,ݔ)்ܫ = ݔ)ோܫ − ݕ,ݔ −  ). (3.27)ݕ

The POC similarity metric is based on the Fourier transform and the Fourier Shift Theorem, 

which states that when a function is translated in the image domain, the magnitudes of its 

corresponding Fourier representation remain unaltered, but the phases in the frequency 

domain are translated proportionally to the translation in the image domain. Therefore, the 

translation vector ݐ can be estimated from the Cross-Power Spectrum. 

Let ்ܨ(u, v)  and ܨோ(u, v)  be the Fourier transform of the test and the reference image 

respectively, represented as: 

,u)்ܨ v) = න න 	ݕ݀ݔ݀ଶగ(௨௫ା௩௬)ି݁(ݕ,ݔ)்ܫ
ஶ

ିஶ

ஶ

ିஶ

 (3.28) 

,ோ(uܨ v) = න න .ݕ݀ݔ݀ଶగ(௨(௫ି௫బ)ା௩(௬ି௬బ))ି݁(ݕ,ݔ)ோܫ
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ିஶ
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ିஶ

 (3.29) 

According to the Fourier Shift Theorem	்ܨ(u, v) and ܨோ(u, v) are related by: 

,u)்ܨ v) = ,ோ(uܨ v)݁ିଶగ(௨௫బା௩௬బ) (3.30) 

and the Cross-Power Spectrum can be defined as: 
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,ݑ)ܥ (ݒ =
,ோ(uܨ v)ݑ)∗்ܨ, (ݒ

,ோ(uܨ| v)ݑ)∗்ܨ, |(ݒ = ݁ଶగ(௨௫బା௩௬బ)	, (3.31) 

where * stands for complex conjugate. Taking the inverse Fourier Transform of the Cross-

Power Spectrum, the result is a Dirac delta function centred at ݐ , the location of the 

translation vector. This is mathematically expressed as: 

ℑିଵ{ݑ)ܥ, {(ݒ = ݔ)ߜ + ݕ,ݔ +  ). (3.32)ݕ

Therefore, the POC is obtained by computing the IFFT of the cross-power spectrum, and the 

translational vector (x0; y0) is determined as the coordinates of the highest peak. Subpixel 

accuracy of the translation vector is achieved by performing parabolic interpolation of an 

array with finer sampling around the peak of the cross-power-spectrum [226]. The obtained 

vector is used as an initial estimate and progressively refined in the next stage of registration. 

3.6.3 Fine Registration 
At the fine stage of registration, similar to the work of Ramaswamy and Devaney [71], we 

use tracking of control points in order to calculate the residual displacements between the 

test and reference images. As control points, the brightest cones in the test and reference 

image pairs are used. There are various hypotheses with regards to the factors that influence 

the appearance of the brightest cones, such as molecular differences within the cones and 

differences in cone outer segment length [4]. From the visual inspection of retinal images of 

healthy patients, the location of the brightest cones within a dataset doesn’t change. This 

allows us to use the brightest cones as control points at the fine stage of image registration. 

It is assumed that the centre of cones can be represented by the brightest pixels; this way the 

coordinates with the highest intensities are tracked in the test and reference images. In order 

to refine the position of brightest cones, we crop small windows of size 20x20 pixels centred 

at the pixels with the highest intensities. Then, these windows are upsampled using parabolic 

interpolation and refined coordinates of the brightest cones are calculated. The size of the 

window is used as a distance criterion for finding the putative matches between two sets of 

cone coordinates in the reference and test frames. After the putative matches are established, 

the POC is employed to find the additional displacement between the corresponding cone 

windows. The obtained translation vector is used to refine the coordinates of the brightest 

cones in the test image. If for the selected control point in the reference frame more than one 
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cone candidate was found in the test image, the cone candidates with the lowest peak of 

cross-correlation are discarded.  

After two sets of cone coordinates are found, the rotation parameters can be estimated by 

employing Procrustes alignment. In statistics, Procrustes analysis is a form of statistical 

shape analysis used to compare the distribution of two or more shapes. In the context of 

image processing, Procrustes alignment compares two shapes defined by landmark 

configurations [214]. In this work, landmark configuration is defined by two sets of cone 

coordinates. If the coordinates of the brightest cones from the reference image are stored in 

vector ܻ and corresponding coordinates of the brightest cones from the test image are stored 

in vector ܺ, then the transformation parameters (rotation	ܴ, translation ܶ and scaling ܥ) can 

be found using the least squares estimation [227] as:  

݁ଶ(ܴ,ܶ,ܥ) =
1
ܰ
‖ ܻ − ܴܥ) ܺ + ܶ)‖ଶ
ே

ୀଵ

. (3.33) 

As mentioned previously, in high-resolution retinal images the scaling parameter ܥ	  is 

omitted in the registration process, thus it is set to 1 in Equation (3.33). The translation 

parameter ܶ between the two shapes is defined by the differences in the coordinates of the 

control points. The rotation matrix ܴ  is given by ்ܸܷ , where ܷ  and ܸ  are obtained by 

singular value decomposition (SVD) of the matrix XY் (i.e.	XY் = ்ܷܸܵ), where  

ܵ = 	 ൜ ,																										ܫ ݂݅ det(ܷ) det(ܸ) = 1
݀݅ܽ݃(1,1. .1,−1), ݂݅	 det(ܷ) det(ܸ) = −1,  

with ܫ denoting the identity matrix.  

3.6.4 Lucky Averaging  
Typically, after performing the registration the transformed frames are summed together to 

compensate for the photon and thermal noise and as a result produce a final averaged image 

with a better contrast. Given that image frames are of similar quality, the more frames used 

for the averaging, the greater the increase in signal to noise ratio [41]. However, in real time 

image sequences, image quality usually exhibits slight variations in both temporal and spatial 

dimensions. The common averaging scheme is frame-based and does not account for the 

intra-frame variation in contrast. As a result, averaging across the image sequence can 
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degrade the overall image quality, i.e. produce a final image with a contrast lower than the 

best images in the dataset.  

The so called “lucky averaging” scheme was previously proposed for stellar images taken 

from a ground based telescope. The method selects only those image frames for averaging 

in which the atmospheric turbulence along the line of sight is minimal. Thus, this process 

takes advantage of lucky moments when turbulence has a minimal effect and has therefore 

been called “lucky imaging”. Huang et al.[41] adopted this method for averaging AOSLO 

retinal images. Due to the nature of the point-scanning mechanism of AOSLO, the image 

quality varies both across the dataset as well as within each frame. Thus, including the pixels 

with the best regional quality allows us to take the best advantage of inter and intra-frame 

variance and reduces regional variance in the final image. 

Unlike in AOSLO, flood-illuminated images are instantaneous and do not measure the retina 

point-by-point. Nevertheless, the variance in local regions of one image can be attributed to 

dynamic changes in human eye aberrations such as the tear film, accommodation, local 

retinal shape changes due to ocular pulse, etc. Thus, this type of averaging can also be 

beneficial for high-resolution retinal images acquired with the AO flood-illuminated system.  

After performing two-stage registration, the co-registered image sequence is analysed. Each 

image is divided into small blocks which can be considered as short-exposure areas with no 

intra-region quality variance. Based on the sharpness measure (BM1), the region quality is 

evaluated across the image frame and sequence. As a result, a 3D quality measure is built. 

The final image is remapped by only including those regions that have the highest image 

quality. In this way, we can take advantage of the local variation in image quality and 

construct the final image without accumulation of blur in local regions.  

3.6.5 Implementation and Results 

I. Coarse Registration 

The core of the image registration process consists of determining the horizontal and vertical 

translation vectors between the reference and test images. For this purpose, the FFT of both 

images is computed, then the cross-power spectrum is calculated and the POC is obtained 

by computing the IFFT of the cross-power spectrum. Finally, the highest peak is located and 
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its coordinates define the translation shifts. Figure 3.28-a, b illustrates the result of the cross-

power spectrum calculation for the raw images (Figure 3.28-c) and images after illumination 

compensation and noise suppression (Figure 3.28-d). In this example the test image was 

translated by 18.5 pixels to the east and 3.7 pixels to the south. Due to noise and intensity 

variation present in the retinal images, the peak of power spectrum is less distinct (Figure 

3.28-a). This can lead to inaccurate estimate of the translation parameters. This problem has 

been minimized by introducing uneven illumination correction and noise suppression at the 

previous stages of our image processing framework.  

 
a b 

  
c d 

Figure 3.28:  (a) Magnitude of cross-power spectrum for raw retinal images (c) and (b) for 

the images after illumination compensation and noise suppression (d). 

The recovered translation parameters serve as an initial estimate and are further refined by 

upsampling only in a small neighbourhood of that estimate by means of a matrix-multiply 
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DFT [226]. Based on the new coordinates of the cross-power spectrum, residual translation 

parameters are found and added to the previous estimate. In this way, subpixel accuracy is 

achieved (Figure 3.29).  

 

Figure 3.29:  Magnitude of the cross-power spectrum interpolated onto an array with finer 

sampling. 

The POC approach was tested by translating the test image by a known amount with subpixel 

accuracy. The POC approach shows good precision as long as the retinal images have 

relatively good quality. The average error for 100 predefined shifts, varying from 0.11 to 10 

pixels, was found to be 0.01 which is within a range of values 0.002 – 0.02 previously 

reported in the study of Esteban and Torres [228]. In order to avoid miscalculations of the 

translation vector, as well as to prevent accumulation of blur at the stage of image averaging, 

retinal images with critically low quality were excluded prior to performing the coarse 

registration. The sharpness measure (BM1), described in Subsection 3.3.1, was used in order 

to sort retinal datasets in descending order according to their quality (Figure 3.30). The 

image with the highest score is chosen as a reference frame for the POC registration. At this 

stage, only frames that do not contain any useful information are removed. The frames which 

have quality measure lower than the 0.15 quantile of the overall sharpness measure 

distribution are eliminated from the image sequence. Figure 3.31 gives an example the 

translation vectors found at the coarse stage of image registration for one of the retinal 

datasets acquired with the AO instrument. 
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Figure 3.30:  Sharpness measure for the sequence of images in the retinal dataset sorted in 

descending order. 

 
 

a b 

Figure 3.31:  Translation detected at the coarse stage of image registration in one of the 

retinal datasets: (a) horizontal and (b) vertical translation vectors.  

II. Fine Registration 

The fine stage of image registration includes tracking control points in order to recover the 

residual translation displacements and rotation angle between the test and reference images. 

As control points, the coordinates of the brightest cones in the image are used. To find the 

coordinates of the brightest cones we also tried the circular Hough transform [229] followed 

by centroid calculation and moment estimation (intensity weighted centroid). It was found 

that due to background noise and light scattering both methods fail to calculate the correct 
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location of the cone centre. We can assume that the centre of cones can be represented by 

the brightest pixel and use these coordinates as control points. But again, due to scattering 

effects the intensity profile of the same cone can vary significantly from frame to frame. This 

implies that the coordinates of the detected brightest pixels cannot be used directly. Figure 

3.32 shows an example when the coordinates of the brightest pixel (shown with the red 

circle) in the reference and test frame differ. 

  
Reference image Test image 

Figure 3.32:  Control points in the reference and test image, showing the difference in 

coordinates of the brightest pixel. 

Therefore, the coordinates of the brightest pixels are used only as initial estimate of the cone 

location. To refine the coordinates of the control points, the small regions (20-by-20 pixels) 

centred at the initial approximation of the brightest pixels are cropped from the reference 

and test images. Based on the minimum spacing between the cones defined by a window 

size, regions with matching cones from the reference and test images are established. Then, 

the POC is used to register matching windows with subpixel accuracy and update the 

coordinates of the control points in the test image accordingly. Finally, when two sets of 

control points are established for each pair of images (Figure 3.33) the rotation parameter 

and residual translation are found using the Procrustes alignment. 
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Reference image Test image 

Figure 3.33:  Control points for the reference and test images. 

 

Figure 3.34:  Rotation angles calculated at the fine stage of image registration for one of the 

retinal datasets. 

In order to estimate the accuracy of the proposed approach, we performed a parametric study 

on images rotated by a predefined angle and compared this rotation angle with the one 

obtained using the proposed approach. The sampling rate and number of control points were 

varied in these experiments. In high-resolution retinal images the average rotation angle is 

around 0.1 degree, which would result in the shift of less than 1 pixel at the image border. 

Therefore, the up-sampling of the retinal images will facilitate the detection of even minor 

rotation angles. It was found that an upsampling rate equal to 5 using bicubic interpolation 
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around the brightest cones and 200 control points are sufficient parameters to precisely 

calculate the rotation angle with an error in the 4th significant figure (Table 3.3). In 

comparison with the fine registration performed on the original scale of the image, this 

sampling rate allows to increase the accuracy of detection on an average by 77%. The order 

of this error in the rotation angles implies that the corresponding translation error at the 

border of the image is reduced down to the 2nd significant figure. In this way, the information 

at the border of the image is preserved thereby facilitating calculation of a wide field-of-

view obtained by montaging images at the adjacent retinal locations. 

Using the aforementioned approach, the rotation angles and residual translations were 

detected (Figure 3.34) and retinal image sequence was corrected accordingly.  

Sampling rate = 5, Number of points = 200 

Rotation angle Detected angle |Error| 
1 0.9993 0.0007 

0.5 0.4996 0.0004 
0.4 0.4001 0.0001 
0.3 0.2999 0.0001 
0.2 0.1996 0.0004 
0.1 0.0096 0.0004 
0.05 0.0505 0.0005 
0.04 0.0392 0.0008 
0.03 0.0307 0.0007 
0.02 0.0206 0.0006 
0.01 0.0092 0.0008 
0.005 0.0045 0.005 
0.001 0.0013 0.0003 

Average error: 0.0008 

Table 3.3: Results of parametric study, showing rotation angle tests, model approximations 

and absolute error. 

III. Lucky Averaging 

Following the coarse and fine stages of image registration, the final image was calculated 

using the “lucky averaging” scheme. For each stack of retinal images, a 3D sharpness 

measure map was firstly created. Since in retinal images acquired with an AO flood-
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illuminated instrument there is no pixel wise exposure difference, regional variation in image 

sharpness is related to residual optical aberrations and light scattering effects. Therefore, in 

a relatively small region, the image quality does not vary a lot. For this reason, instead of 

performing window sliding with a one pixel shift as in the work of Huang et al. [41], here a 

3D sharpness measure map is calculated for non-overlapping regions of the size of 20-by-

20 pixels. This also helps to significantly decrease computational costs. Figure 3.35 shows 

an example of a 2D sharpness measure map, calculated for each frame in the co-registered 

retinal dataset, thereby forming a 3D matrix. Once the sharpness measure map is built, the 

indexes of the frames are sorted in descending order in respect to the values of BM1 of each 

block. The final image is remapped from the local regions with the best sharpness measure. 

The number of frames used for averaging of each block is also chosen based on the BM1 

measure. At each local region, the block of the next best frame is added for averaging as 

long as the overall BM1 increases. Thus, for different regions there will be a different number 

of the best frames to be averaged. Figure 3.36 shows an example of a number of frames used 

for mapping a final image. The use of non-overlapping regions in lucky averaging may cause 

some border effects when there is a large difference between the number of blocks in the 

adjacent areas (Figure 3.36). To minimize these effects, histogram equalisation was 

performed in the retinal blocks. To avoid this problem, the final image should be composed 

by including the pixels with the best regional quality as in the original algorithm by Huang 

et al. [41]. 

  

Figure 3.35:  Sharpness measure map calculated in 20-by-20 pixel blocks for two retinal 

frames. 



137 

  

Figure 3.36:  Image showing number of blocks used in the lucky averaging scheme for 

calculating one of the final images. 

The proposed approach for image registration was validated on four representative retinal 

datasets, obtained after the illumination and noise compensation stages. The resulting images 

where only the translation vector was compensated were compared with the images where 

both rotation and translation were corrected in the retinal datasets (Figure 3.37). Figure 3.38 

shows a difference between the normal averaging scheme and the proposed lucky averaging 

approach. Averaging of the frames leads to reduction of thermal and photon noise, therefore 

in addition to the sharpness measure, a peak-signal-to-noise ratio (PSNR) was calculated. 

Both, quantitative and qualitative comparison of the resulting images indicated that 

compensation for rotation is a necessary step in the registration of high-resolution retinal 

images and leads to an increase of sharpness in the images, especially at the edges of image. 

In comparison with the normal averaging of frames, the lucky averaging scheme provided 

additional improvement in the contrast of the retinal images. For visualisation purposes the 

intensity ranges in all resulting images were stretched. The final images were upsampled by 

the ratio of two using bicubic interpolation.   
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Averaged image with translation 
correction 

Averaged image with translation and 
rotation correction 

Retinal dataset 1 

BM1 = 0.1723 BM1 = 0.1966 

Retinal dataset 2 

BM1 = 0.1788 BM1 = 0.1817 

Figure 3.37:  Average images after coarse registration (left) and fine registration (right) in 

four representative datasets. The scale bar is 40 µm. 
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Retinal dataset 3 

 
BM1 = 0.2361 BM1 = 0.2408 

Retinal dataset 4 

BM1 = 0.1973  BM1 = 0.2073 

Figure 3.37 (Cont.): Average images after coarse registration (left) and fine registration 

(right) in four representative datasets. The scale bar is 40 µm. 
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Normal Averaging Lucky Averaging 

Retinal dataset 1 

  
BM1 = 0.1966 BM1 = 0.2110 

PSNR = 38.03 
 

Retinal dataset 2 

  
BM1 = 0.1817 BM1 = 0.1892 

PSNR = 19.33 

Figure 3.38:  Sections of retinal images from each dataset showing the difference between 

normal averaging scheme (left) and lucky averaging (right). The scale bar is 

60 µm. 
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Retinal dataset 3 

  
BM1 = 0.2408 BM1 = 0.2471 

PSNR = 28.53 
 

Retinal dataset 4 

  
BM1 = 0.2073 BM1 = 0.2085 

PSNR = 33.80 

Figure 3.38 (Cont.): Sections of retinal images from each dataset showing the difference 

between normal averaging scheme (left) and lucky averaging (right). The scale 

bar is 60 µm. 

3.7 Analysis and Discussion 

In this chapter, we presented essential image pre-processing methods required for the 

enhancement of the retinal images. The improvement in image quality of retinal images is a 

prerequisite step since it allows better observation of retinal microstructures and thus 

facilitates the next stages of image processing framework. We gave a brief description of the 

chosen methodology, implementation details as well as quantitative comparison of the extent 

of quality improvement in the retinal images obtained at each stage.  
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Firstly, a comparison analysis of four IQA models was performed in order to establish the 

appropriate measure of quality improvement in retinal images. The effectiveness of the IQA 

models was tested on high-resolution retinal images. Sharpness measure based on Sobel 

filter (BM1) showed the highest correlation with the human ratings and thus was chosen as 

a benchmark measure for quality evaluation in the proposed image processing framework.  

In the second section of the chapter, four methods for illumination compensation were 

compared by assessing the local brightness variation and sharpness measure. The optimum 

parameters were found for each method. For the wavelet-based filtering it was established 

that the level of decomposition can be found automatically as a function of the local 

brightness variation and homogeneity measure of the estimated background. Based on the 

performed evaluation study, the wavelet-based approach proved to be the most effective in 

correcting the illumination component of retinal images. Nevertheless, this illumination 

correction method imposes artefacts in the restored images. In order to minimize distortion 

of the recovered images, the DB10 type of Daubechies wavelet was used. Amongst the tested 

wavelets, this type showed a higher sharpness measure as well as introduced minimum 

artefacts to the reconstructed images. The artefacts imposed by Daubechies wavelet 

decomposition can be described as vertical and horizontal lines. In order to eliminate these 

effects and thereby preserve the retinal features from corruption, the wavelet-Fourier filter 

was applied to the reconstructed retinal images.   

To further increase the quality of high-resolution retinal images and thereby facilitate better 

distinction of photoreceptor cells, noise suppression was performed on the retinal datasets. 

To this purpose, a Gaussian band-pass filter was employed. Based on the scale of the retinal 

features the corresponding spatial frequencies of photoreceptor cells were calculated and 

used as the stop frequency of the band-pass filter. The start frequency was found 

automatically as the first peak in the plot of radially averaged power spectrum of the retinal 

images. The power spectral ratio was calculated between the images before and after image 

denoising. Overall, the images within the range of cut-off frequencies have been improved 

by 150%. 

In the last section of the chapter, a two-stage image registration was performed on the retinal 

datasets. At the coarse stage, the translation parameters were found using the POC with 

subpixel accuracy. At the fine stage, the transformation model was refined by finding 



143 

rotation angles and residual translation with the use of Procrustes alignment, where landmark 

configuration was defined by the coordinates of the brightest cones in the test and reference 

frames. To ensure high accuracy of rotation detection, a parametric study was performed on 

the proposed image registration method. This study showed that upsampling the regions 

around brightest cones up to 5 times and 200 control points allow to detect even minor angles 

between the frames, dropping the error to the 4th significant figure (1e-4). In order to take 

advantage of intra-frame variability in image quality, a “lucky averaging” scheme was 

proposed for calculating the final averaged image. The calculated sharpness measures 

indicated that this approach outperforms the common averaging, allowing enhancement of 

the retinal image over the larger field of view.  

In conclusion, the contribution of this chapter includes the proposed pipeline of image pre-

processing methods designed for enhancement of AO retinal images. The wavelet-based 

illumination correction method has been automated by finding the optimal level of 

decomposition as a function of homogeneity of the approximated background and local 

brightness variation of the restored image. This essentially allowed us to minimize the 

number of input variables in the system for each retinal image. To preserve the integrity of 

retinal features, we proposed to apply a wavelet-Fourier filter to the restored images. The 

image registration stage was customized specifically for the compensation of even minor 

rotation and translation parameters in high-resolution retinal images. Through detailed 

experimentation the optimal parameters of the model were established such as number of 

control points and sampling rate. In order to take into account intra-frame variability in 

image quality, the “lucky averaging” scheme was proposed for calculating final averaged 

images. Figure 3.39 summarizes the results of this chapter by illustrating the transformation 

of retinal image at the proposed pre-processing stages. 

Following the stages of illumination compensation, noise suppression and image 

registration, the obtained final images are restored with the proposed image deconvolution 

method. The next chapter of the thesis presents a model for blind image deconvolution 

specifically designed for AO high-resolution retinal images. The performance of the 

proposed method is validated on synthetically generated and AO retinal images. 
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a b 

c d 

Figure 3.39:  Comparison of retinal images obtained at the pre-processing stages: (a) raw 

image, (b) image after illumination compensation, (c) image after noise 

suppression and (d) averaged registered image. The scale bar is 40 µm. 
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4. Image Restoration 

An AO instrument performs wavefront detection and correction of low and high-order ocular 

aberrations, which allows imaging at the cellular level. Yet, this correction is only partial 

due to hardware limitations of the wavefront corrector. As a result, the acquired retinal 

images are still corrupted by residual aberrations. This chapter describes a novel image 

restoration technique for image deconvolution that was included in the image processing 

framework. In theory, the information about the degradation function of the system can be 

partially obtained from WFS. However, due to lack of synchronization between image 

capturing and the wavefront calculation, the WFS data can be used only as an approximation 

to the real PSF of the system. Unfortunately, this data is not available in the commercial AO 

flood-illuminated instrument. Therefore, in this work we developed a blind deconvolution 

method for restoring high-resolution retinal images. 

4.1 Introduction 

Many tasks in image processing can be formulated as a regression problem where we learn 

a mapping function ௪݂:	ܺ → ܻ from the input space ܺ  to the output space ܻ , which is 

parametrized by a learned parameter or a vector of parameters [231 ,230] ,[191] ݓ. Ideally, 

in imaging, light from a single point in the scene should be mapped to a single position on 

the sensor. But this is not the case in real applications, where the imperfections of the optical 

system, or movement of the camera affect the quality of the recorded image. Thus, the 

degradation process can be described by the PSF, representing the response of the imaging 

system to a point input. In this sense, the task of image deconvolution requires estimation of 

an original image ܺ from its degraded observations ܻ obtained as a result of convolution 

with the system’s PSF ݓ and additive noise, ݊. Mathematically, general image formation 

model can be expressed as follows: 

ܻ	 = 	ܺ ∗ 	ݓ + 	݊	. (4.1) 
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In the simplest case, the image and noise are assumed to be uncorrelated random variables, 

which implies that their joint probability distribution does not change in time. In this case, 

the minimum mean square error estimator (Wiener filter) ܩ can be used [172]: 

ܺ ≈ ℑିଵ{ܩ	ℑܻ} = ℑିଵ ൞
ℑݓഥ	ℑܻ

|ℑݓ|ଶ + ܲ
௫ܲ

ൢ	, (4.2) 

where the overbar denotes a complex conjugate and the Fourier Transform is indicated by 

variable ℑ;	 ܲ  and ௫ܲ  correspond to frequency-dependent power spectral densities of the 

noise and the signal, respectively. This filter assumes a circular convolution and that the 

system’s PSF ݓ is appropriately zero-padded to the size of ܺ. 

In many applications, neither the noise nor the PSF of the system are known. In this case, in 

order to restore the original image a blind deconvolution has to be performed. In addition to 

being ill-posed with respect to the image, blind deconvolution is also ill-posed with respect 

to the kernel. That means the solution to the problem may not exist or may not be unique. In 

practice, an approximate solution to the problem can be estimated; however, the non-

uniqueness and the sensitivity of the solution to the noise are still serious problems [186]. 

One way to solve ill-posed inverse problems is by regularization. This process introduces 

additional information in the system that distinguishes between wanted and unwanted 

solutions. In blind deconvolution, regularization of both the original image and the kernel is 

required. Given a problem described by Equation (4.1), we want to find the optimal ܺ and 

 such that they minimize ݓ and	knowing only ܻ. One solution to this problem is to find ܺ ݓ

the squared norm of the difference of the two sides of the equation: 

݉݅݊,௪‖ܺ ∗ ݓ −ܻ‖ଶଶ	. (4.3) 

In order to find a feasible solution, additional regularization terms should be added to a 

fidelity term in Equation (4.3). A classic approach to this problem is to solve the following 

regularized minimization expression:  

݉݅݊,௪‖ܺ ∗ ݓ −ܻ‖ଶଶ + (ܺ)ܬ	ߣ +  (4.4) ,	(ݓ)ܩ	ߛ
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where the fidelity term enforces the data fitting, the regularization terms ܬ(ܺ) and (ݓ)ܩ are 

the smoothness priors for ܺ and ݓ, and ߣ and ߛ control the weight of their contributions. 

Increasing the parameter ߣ would make the recovered image smoother, at the expense of 

lower fidelity and a narrow kernel. Increasing the parameter ߛ results in a smoother kernel, 

at the expense of lower fidelity and ringing effects in the restored image [232] . Additional 

constraints on the system’s PSF can be applied, such as positivity of its entries and 

integration to one. 

A number of regularization constraint terms have been suggested in the literature: Tikhonov 

regularization [233], total variation [234], regularization introduced by Chan and Wong 

[235] and You and Kaveh [236]. Such approaches impose only mild constraints on the shape 

of the reconstructed kernel and as a result the distribution of edge directions in the image 

can affect the shape of the recovered kernel, via the trade-off between the fidelity and kernel 

smoothness terms. 

In order to facilitate the recovery of the original image ܺ, generally two approaches can be 

taken. One is to constrain the solution and the other is to add relevant data. Given that the 

ground truth (GT) is provided in the form of training data ܶ composed of ܰ input and output 

image pairs ( ܺ , ܻ
ீ்)ୀଵே , the optimal convolution kernel ݓ∗ can be inferred by learning the 

mapping of blurred retinal images { ܻ
ீ்} onto the space of corresponding PSFs {ݓ}. In this 

work, we propose solving this problem with a multi-variate Random Forest regressor.  

As already mentioned in Section 2.5, Random Forests are fast and efficient learners. In 

particular, due to good scalability they can be used to train large datasets as well as handle 

high-dimensional problems such as image deconvolution. Given the appropriate 

representation of the training data, Random Forest methods are capable of learning complex 

non-linear mapping with great accuracy and generalisation [237]. Randomness induced into 

the trees during the training stage (Section 4.2) makes them highly resistant to overfitting 

[238]. Moreover, they are easily distributable on parallel hardware architecture and can be 

easily deployed to real-time systems with no specialized hardware requirements. These 

properties render Random Forest an appropriate tool for learning a convolution blur kernel 

in AO retinal images. 

Random Forest is an ensemble machine learning method that allows computers to learn 

without being explicitly programmed. Generally, machine learning techniques are classified 
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as supervised and unsupervised. In an unsupervised task, the training is done using only 

input data with no corresponding output variables, letting the algorithm model the underlying 

structure or distribution in the data itself. In a supervised task, the learning is performed on 

a training data of input and output variables, which allows the machine to produce an inferred 

function used for mapping new examples. In this work, a supervised type of learning is used. 

Since no GT data is available for AO retinal images, the training data is synthetically 

generated.  

  

a 

 
b 

Figure 4.1:  Flowchart showing (a) the process of training, (b) prediction and image 

restoration in the proposed model for blind image deconvolution based on 

Random Forest. 

The training of the Random Forest is performed on large dataset of synthetically generated 

retinal images and blur kernels replicating the PSF of the flood-illuminated AO system. The 

blur kernel is modelled by the physics/optics of the AO flood-illuminated system and thus 

constrained as a member in a class of parametric functions. This allows us to significantly 

reduce the number of unknowns in the regression target, transforming the blind image 

restoration problem to a semi-blind restoration. Since the noise component in the AO 

instrument has been tackled in the previous stages of image processing framework (Sections 
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3.5 and 3.6), we can neglect term ݊ in Equation (4.1) and assume that images are corrupted 

only by convolution blur kernel ݓ. In this work, the PSFs of the AO system {ݓ} are defined 

by the vectors of Zernike coefficients {ࢇ}2 and the blurred images { ܻ} are represented by 

Histograms of oriented Gradients (HoG) {ࡴ} [239]. A mapping function ݂:	{ࡴ} →  is {ࢇ}

then learnt with the aid of the Random Forest. Figure 4.1 illustrates the flowchart of the 

proposed deconvolution method based on the Random Forest regressor. Details regarding 

the formulation of the implemented model are discussed below. 

4.2 Multi-variate Random Forest 

The forest can be realized as a collection of ܶ decision trees which are trained independently 

using a training dataset ܷ	 = 	 ࡴ}   is the desired outputࢇ  is the input andࡴ }, whereࢇ,

variables. In this work, the training data is composed of a set of HoG feature vectors {ࡴ} 

extracted from the synthetic blurred images { ܻ}  (Section 4.4.1) and a set of Zernike 

coefficients {ࢇ}, where each vector represents a combination of different types of optical 

aberrations in the eye. Each tree consists of non-terminal split nodes and terminal leaf nodes. 

The split nodes are responsible for performing a binary split on the input dataset, whereas 

the leaf nodes store the probability distribution of data arriving at their terminal position. 

This process is illustrated in Figure 4.2.  

 

Figure 4.2:  Basic notation in the Random Decision Forest Model. 

                                                 
2 In this chapter, bold characters are used to represent a vector of variables.  
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At the jth split node, depending on the subset of the incoming training data, the splitting 

function ݂൫ ܷ ,Θ൯ learns the optimal parameter ߆ = (݇, ߬), where ݇ is the index of the test 

image feature and ߬  is its corresponding learned threshold defining the split. The data 

arriving at the jth node is split using a splitting function ݂൫ ܷ ,Θ൯, defined as: 

݂൫ ܷ ,Θ൯ = 	 ൜
,ݐ݂݈݁ ݂݅		 ܷ(݇) < ߬
,ݐℎ݃݅ݎ  (4.5) .݁ݏ݅ݓݎℎ݁ݐ		

During training, the optimal parameter ߆ is selected from a pool of randomly generated 

parameters. For each candidate, the set of training data is partitioned accordingly into left 

and right child sets { ܷ
௧ , ܷ

ோ௧}. The problem of learning the “best” parameter θ is 

formulated as maximization of an objective function. In order to find an optimal split 

parameter at jth split node, an objective function is defined as the information gain ܳ( ܷ ,Θ): 

ܳ൫ ܷ ,Θ൯ = ൫ܧ ܷ൯ − 
ห ܷ

ห
ห ܷห

൫ܧ	 ܷ
൯

∈{௧,௧}

	, (4.6) 

where ܧ൫ ܷ൯ = log ൬ ଵ
หೕห

∑ ቀࢇ
 − ቁࢇ

ଶ
ே
ୀଵ ൰ is the multi-variate differential entropy [240] for 

the target vector of Zernike coefficients ࢇ
 with mean ࢇ of data ܷ and ݍ defines the data 

for child nodes. 

Training continues until a maximum depth ܦ  is reached or the data arriving at jth node 

contains a minimum number of samples required for creating a leaf node. During the 

prediction stage (Figure 4.3), a given input feature vector ࡴ 	 propagates down the branches 

of each tree ܶ, where a leaf node gives a posterior probability ௧(ࡴ|ࢇ). The prediction from 

all the trees is aggregated as: 

(ࡴ|ࢇ) =
1
ܶ
௧(ࡴ|ࢇ)
்

௧ୀଵ

. (4.7) 

Then, the optimal vector of Zernike coefficients ࢇ∗ is defined by MAP estimate as: 

∗ࢇ = arg max
ࢇ

 (4.8) .(ࡴ|ࢇ)
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Figure 4.3:  Prediction of target vector in the Random Forest Model. 

The performance of the Random Forest depends on model parameters such as: 

 the number of trees ܶ; 

 the maximum depth of the trees ܦ; 

 the choice of image features; 

 the amount of randomness. 

These parameters directly affect the accuracy of prediction, computational efficiency and 

inference of the target vector on previously unseen data, a property known as generalization 

[240]. It has been established that very deep trees can lead to overfitting, while shallow trees 

yield under-fitting [241]. In the work of Criminisi et al. [242], it was shown that the 

prediction accuracy increases monotonically with the forest size ܶ.  

Randomness is introduced into the trees during the training stage via bagging and 

randomized node optimisation. In bagging, a random subset of training data is selected for 

training of each tree. This helps to increase training speed, but more importantly, the 

controlled variation induced in a collection of decision trees makes them highly uncorrelated 

thus improves generalization and robustness. In the randomized node optimisation, instead 

of using the entire space of input data, only a random subset is made available for the splitting 

function at each node. This helps to significantly improve the efficiency of the optimisation 
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process and controls the amount of correlation between different trees in the forest. Together 

with bagging, randomized node optimisation introduces even more variability in the 

Decision Forest and makes the trees more diverse thus yielding better training accuracy 

[243]. 

The choice of image features usually depends on the application of the problem. The 

justification and details on the parameters used in Random Forest model for predicting blur 

kernels in AO system are explained in Section 4.4. 

4.3 Model of Point Spread Function in AO System 

The main sources of blur in AO high-resolution retinal images are caused by the residual 

errors of wavefront correction, light scatter and out-of-focus planes of the retina (Chapter 2). 

When AO system works in a closed-loop, the transfer error function is the transfer function 

of wavefront phase perturbation caused by optical errors of the eye. Low-order aberrations 

such as astigmatism, defocus and prism are usually well compensated with the Badal system 

embedded in the AO instrument [244]. These aberrations are represented by the first six 

Zernike polynomials (as defined by Noll [42]). In this manner, the pupil phase of the PSF is 

expanded on Zernike polynomials of higher order aberrations. An additional term 

corresponding to defocus is added so as to account for residual blur coming from different 

layers of the retina [190]. Mathematically this model of PSF is presented as: 

(ݕ,߮)ݓ = ฬℑ ൜ܲ(ݑ)	݁ି୨ቀ
ଶగ
ఒ ቁ୷	୳݁ 		൫ఝ(௨)ାఝ(௨)൯ൠฬ

ଶ
, (4.9) 

where  

(ݑ)ܲ = ൜	1, ,݁ݎݑݐݎ݁ܽ	ℎ݁ݐ	ℎ݅݊ݐ݅ݓ						
0,  (4.10) ݁ݏ݅ݓݎℎ݁ݐ																											

is the pupil function, ߣ is the central wavelength of imaging beam; ݈ is the focal length of 

the optical system; ݕ  defines the coordinates of two-dimensional focal plane, ߮(ݑ) =

	∑ ܼܽ(ݑ)ெ
ୀ  is the wavefront phase error, ߮ௗ(ݑ) = ܽସܼସ(ݑ) is the defocus phase, ܽ 

and ܼ are Zernike coefficients and Zernike polynomial. 
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The Zernike polynomials represent a complete set of orthogonal functions with angular 

harmonics over the unit disc. On a continuous unit circle, normalized Zernike polynomials 

(ZPs) are described as [245]:  

ܼ
(ߩ,߮) = ൞	

ඥ2(݊ + 1)	ܴ
cos	(݂߮), ݂	ݎ݂						 > 0, ݏܼܲ	݊݁ݒ݁

ඥ2(݊ + 1)	ܴ
 sin(|݂|߮) ݂	ݎ݂									, < 0, ݏܼܲ	݀݀

ඥ(݊ + 1)	ܴ
	,																																															݂ݎ	݂ = 0,

 (4.11) 

where ܴ
 are radial polynomials, ߩ is the radial distance 0	≤ ߩ	1 ≥, ߮ is the azimuthal angle, 

|݂| ≤ n and หܼ
(ߩ,߮)ห ≤ 1. The radial polynomials can be computed as shown below:  

ܴ
(ߩ) = 	 

(−1)(݊ − ݇)!

݇! ൬݊ + |݂|
2 − ݇൰ ! ൬݊ − |݂|

2 − ݇൰ !
ିଶߩ

ି||
ଶ

ୀ

. (4.12) 

In this manner, Zernike polynomials are identified by two integers ݂	and ݊ representing 

azimuthal degree and radial order respectively. In this thesis, we use Noll’s sequential 

indexing [42], which maps the two indices ݊	and ݂ to a single index ݉. Table 4.1 shows the 

relationship between single and double-index notation and corresponding Zernike terms 

expansion. 

The wavefront aberration function is expressed as a weighted sum of Zernike polynomials, 

therefore each Zernike coefficient indicates a weight of a particular aberration in the 

wavefront. The RMS error is the most used pupil plane metric and is defined as the squared 

root of the sum of the squares of the deviation of the wavefront from the ideal wavefront. 

Since the normalized Zernike polynomials form an orthonormal basis, the squared root of 

the sum of the square of all non-zero coefficients of the Zernike terms is used to define the 

RMS wavefront error [246].  

To our knowledge there is no data recorded on the residual optical aberrations of AO flood-

illuminated instruments. For this reason, the values of the Zernike coefficients were sampled 

from a statistical model of the wavefront aberrations reported by Thibos et al. [247]. This 

model was obtained from 200 healthy eyes measured with a Shack–Hartmann wavefront 

sensor. Figure 4.4 presents the statistical behaviour of wavefront aberrations in a pyramid 

representation. Each histogram shows the frequency of occurrence of values for a specific 
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Zernike coefficient ܽ
 . Each row specifies a given radial order ݊  and column denotes 

meridional frequency (azimuthal degree) ݂ of Zernike polynomial. A Gaussian probability 

distribution function was fit to each histogram. 

Noll’s 
index 
(m) 

Radial and 
Azimuth  

degree (n, f) 
Zernike polynomial Classical name 

1 (0, 0) 1 Piston 
 Tip (lateral position) (X-Tilt) ߮ݏܿߩ	2 (1 ,1) 2
 Tilt (lateral position) (Y-Tilt) ߮݊݅ݏߩ	2 (1-,1) 3
ଶߩ2)3√ (0 ,2) 4 − 1) Defocus (longitudinal position) 
 Oblique astigmatism 2߮݊݅ݏଶߩ6√ (2-,2) 5
 Vertical astigmatism 2߮ݏଶܿߩ6√ (2 ,2) 6
ଷߩ3)8√ (1-,3) 7 −  Vertical coma ߮݊݅ݏ(ߩ2
ଷߩ3)8√ (1 ,3) 8 −  Horizontal coma ߮ݏܿ(ߩ2
 Vertical trefoil 3߮݊݅ݏଷߩ3	8√ (3-,3) 9
 Oblique trefoil 3߮ݏଷܿߩ3	8√ (3 ,3) 10
ସߩ6)5√ (0 ,4) 11 − ଶߩ6 + 1) Primary spherical 
ସߩ4)10√ (2 ,4) 12 −  Vertical secondary astigmatism 2߮ݏܿ(ଶߩ3
ସߩ4)10√ (2-,4) 13 −  Oblique secondary astigmatism 2߮݊݅ݏ(ଶߩ3
 Oblique quadrafoil 4߮ݏସܿߩ	10√ (4 ,4) 14
 Vertical quadrafoil 4߮݊݅ݏସߩ	10√ (4-,4) 15

Table 4.1 Normalized Zernike polynomials in single (first column) and double-index 

notation (second column). 
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Figure 4.4:  Frequency histograms of Zernike coefficients in a normal population of human 

eyes compared with Gaussian probability distribution (solid line). Physical 

units of Zernike coefficients are in µm. Pupil diameters is 6 mm [247]. 

Based on the values in the statistical model of ocular aberrations [247], the range of Zernike 

coefficients was quantized between [݉݁ܽ݊ − ௦௧ௗ
ଶ

,݉݁ܽ݊ + ௦௧ௗ
ଶ

] with the step size of 0.01 

µm. The range of values of Zernike coefficients was chosen so as to include the most likely 

combinations of optical aberrations which would produce synthetic images with the quality 

representative of those acquired with the AO flood illuminated instrument in healthy eyes. 

According to Valeshabad et al. [248] and Rha et al. [249], the RMS of the wavefront in 

healthy controls after AO correction fluctuates between 0.1− 0.16 µm; the chosen values 

fall within the specified range. In order to account for partial compensation of aberrations 

with the AO system, these values were scaled by 0.42 [248]. Imaging wavelength and focal 

plane sampling were set according to the specifications of AO instrument, rtx1 (750	݊݉ and 

1.6	μ݉, respectively). The pupil diameter was assigned to 6 mm and axial length to 24 mm. 
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Since all parameters defining the PSF were fixed to constant values, the PSF of the AO 

system can be represented by a vector of Zernike coefficients only, i.e. {ࢇ}. 

Figure 4.5 presents a few examples of PSFs of AO system generated using Equation (4.9). 

   

   

Figure 4.5:  Example of simulated blur kernels replicating PSFs of the imaging system after 

AO correction. 

4.4 Implementation  

4.4.1 Generation of Training Data 
The Random Forest was trained on a large dataset of synthetically generated blurred retinal 

images and blur kernels, replicating the PSF of the flood-illuminated AO system. For a 

training dataset	ܷ, a set of convolutional blur kernels {ݓ} was generated using Equation 

(4.9) so as to simulate optical aberrations of the eye. In order to generate a set of synthetic 

blurred retinal images { ܻ}, we created an ideal retinal image ܺ of size 126x126 pixels (100 

x100 µm on the retina), using the algorithm described by Mariotti and Devaney [250]. Figure 

4.6 illustrates the process of synthetic data generation. 
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(a) Image with disks (b) Image (a) blurred with the 
Gaussian filter 

(c) Voronoi diagram of image 
(a) 

(d) Image (c) blurred with the 
Gaussian filter 

(e) Image (b) summed with 
image (d) 

(f) Image (e) downscaled by a 
factor of 3  

Figure 4.6:  Step-by-step process of synthetic image generation. 

Initially, an image was created with disks placed in a hexagonal arrangement. The radii of 

the disks and the centre-to-centre distance were set according to the size of the photoreceptor 

cells and inter-cell spacing at the chosen retinal location [30], [75]. In order to simulate the 

regularity of cone packing so as to demonstrate characteristics similar to a real retina, a 

random displacement was added to each of the disks. In the next step, the overlapping disks 

were merged and their centroids were calculated and used as new coordinates of the cones 

(Figure 4.6-a). The intensity values of the disks were assigned to the values at the 

corresponding locations of the reference image. The reference image was chosen from a 

stack of retinal images, acquired with the AO instrument and processed with the proposed 

imaging framework. To emulate the background, a Voronoi diagram of the image with 

randomly distributed disks was used (Figure 4.6-c). The cells of this diagram were assigned 

to the corresponding intensity values of the reference image. Both the background and the 

image with disks were blurred with a Gaussian filter, before being summed together (Figure 

4.6-b, d, e). The cut-off frequencies were set to 0.11 and 0.22 cycles/pixel, respectively. 
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Additionally, the intensity levels of the background image were multiplied by a factor of 0.5 

in order to reduce its effect in the final image. In order to account for non-integer centring 

of cones, the initial image was generated three times larger, while retaining the parameters 

of the cone mosaic (disc radii and inter-cell spacing) in proportion. Finally, the last stage of 

synthetic data generation included resizing the image by a factor of three (Figure 4.6-f). A 

set of synthetic blurred retinal images { ܻ} was obtained by convolving the generated ideal 

retinal image ܺ with each PSF from the set {ݓ}.  

Depending on the application, various feature representations can be used for training the 

Random Forest. In this work, HoG was chosen as the image feature vector. This descriptor 

represents a local shape within an image subregion quantized into bins. Each bin in the 

histogram represents the number of edges that have orientations within a certain angular 

range. In this sense, the HoG representation captures edge or gradient structure that is 

characteristic of the local shape. Therefore, the HoG feature vector can capture the 

alterations in cone shape due to blur. Apart from HoG features, other descriptors were also 

tested, such as Gabor features and principal component analysis. However, these feature 

descriptors were not able to generalize on the training dataset. An advantage of the HoG 

features over other descriptors is that the this method is invariant to local geometric and 

photometric transformations [239]. These properties render the HoG an appropriate feature 

descriptor to discriminate between the blurred retinal images and thus allow their mapping 

onto the space of blur kernels. 

HoG feature vectors were extracted around the strongest corners in small regions of size 

10x10 pixels, centered at photoreceptor cell locations, using the ‘extractHOGFeatures’ 

built-in function of Matlab® (Mathworks Inc). Since the cone coordinates are known through 

the process of synthetic image generation, locating windows with photoreceptor cells is 

straightforward. In addition to distinct variations caused by different types of optical blur, 

the retinal mosaic has a unique pattern, varying across the retina as well as human eyes. By 

extracting features from small windows containing a single cone, we limit the nature of 

variations down to the corruption of cone shape due to blur, thus assuring the inference of 

PSFs for any retinal image, taken at different locations of the retina. Moreover, due to light 

scattering and the angle of incident light, photoreceptor cells appear with different intensity 

levels in the acquired image. This phenomenon is called an optical Stiles–Crawford effect 

[97], the property of the photoreceptor cells that is related to the changes in their directional 
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sensitivity. To eliminate these variations, for each blurred image HoG features were 

extracted from 50 windows containing the brightest cones only. The resulting vector {ࡴ} 

of size 36x1 was obtained by averaging HoG features across 50 windows. In this way, the 

resulting vector characterizes the mean gradient structure of cone shape for a given blurred 

retinal image. The comparison analysis showed that including information from only 

brightest cones in the images significantly decreases the mean error between the training 

 ∗ by 82.5% in comparison withࢇ and predicted target vectors of Zernike coefficients {ࢇ}

the results where HoG features were extracted from all photoreceptor cells. Figure 4.7 shows 

an example of synthetic data generation and image feature extraction. 

  
(a) Ideal retinal image (b) Generated PSF 

  
(c) Synthetic blurred retinal image (d) HoG features extracted from cone windows 

Figure 4.7:  Results of synthetic data generation and feature extraction, showing (a) ideal 

synthetic retinal image, (b) generated PSF, (c) the result of convolving image 

(a) with PSF (b), (d) HoG features extracted from windows centred at 50 

brightest cones. 

4.4.2 Training and Prediction 

In this work, Random Forest consisted of ܶ = 80 trees with a maximum depth ܦ = 15. The 

parameters of the Random Forest were established by performing greedy optimization, 

where the mean error between the training {ࢇ}  and predicted target vector of Zernike 

coefficients ࢇ∗ was evaluated (Figure 4.8).  
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Figure 4.8:  Mean error of predicted Zernike coefficients as a function of number of the 

trees in the Random Forest (left) and maximum depth of the trees (right). 

Training is done offline using the training dataset: HoG feature vectors {ࡴ}, extracted from 

a set of blurred retinal images { ܻ}  and Zernike coefficients {ࢇ} , where each vector 

represents a combination of different types of optical aberrations in the eye (Figure 4.1-a). 

The choice of the number of terms to be retained in Zernike polynomials is a trade-off 

between computational time, allocated memory and the accuracy of prediction. In the case 

when the PSF is defined by 10 Zernike coefficients and the range of these values is equally 

quantized to 10 levels, we obtain 1010 combinations of optical aberrations. This means that 

the Random Forest would have to be trained on at least 10 billion synthetic blurred retinal 

images and blur kernels to cover all combinations. In order to reduce the computational time, 

the values of the Zernike coefficients were sampled with a fixed step size equal to 0.01 µm. 

Based on this, the number of values defining each type of aberration depends on the range 

of the Zernike coefficients in the statistical model [247]. According to this model, the 

probability density functions of oblique secondary astigmatism (ܼସିଶ) and vertical secondary 

astigmatism (ܼସଶ) have a low variance and a mean value which is lower than the sampling 

step size (0.0014 µm and -0.0056 µm after AO correction, correspondingly). For this reason, 

it was decided to approximate the corresponding Zernike coefficients with their mean values. 

Driven by compromise between the complexity of the PSF model and computation time, we 

have retained the first 15 Zernike terms, as defined by Noll [42]. Accordingly, the PSF model 

utilized in this work was approximated by 10 coefficients and consisted of the following 

combinations: 
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(ݑ)߮ = 	 ܽସܼସ +  ܼܽ(ݑ),
ଵହ

ୀ

 (4.13) 

where ܽସ was defined by 15 values, ܽ by 5, ଼ܽ by 7, ܽଽ by 4, ܽଵ by 4, ܽଵଵ by 2,	ܽଵଶ by 1, 

ܽଵଷ  by 4, 	ܽଵସ  by 1 and ܽଵହ  by 2 values, resulting in 	134,400  combinations of optical 

aberrations. Therefore, the target vector in the Random Forest model is of size 10x1 and the 

Random Forest is trained on 134,400	 image pairs of generated PSFs and corresponding 

blurred retinal images. 

During the training stage, the Random Forest learns the optimal split function by maximizing 

the information gain as defined in Equation (4.6). The branches in the tree terminate with 

leaf nodes that contain the probability distributions of the Zernike coefficients as a result of 

the splitting process and the corresponding data.  

The prediction is done online using the same feature extraction method as for the training 

stage (Figure 4.1-b). In case of real AO retinal images, the cone coordinates are found 

automatically, using the algorithm based on the Hessian-LoG filter described in Chapter 5. 

Blob detection followed by the LoG filter is employed in order to enhance circular objects 

in the image. As a result, a binary mask is created, which is used for segmentation of 

photoreceptor cells from the image. The cone coordinates are calculated from the local 

maxima of the original image within the cone locations specified by the binary mask. From 

the set of identified cone coordinates, only the 50 brightest cones are used to calculate the 

averaged HoG feature vector. During the prediction, a given image feature vector ࡴ 

propagates down the branches of each tree where a leaf node gives a posterior probability 

(ࡴ|ࢇ)௧  and the corresponding data. An optimal vector of Zernike coefficients ࢇ∗  is 

usually found by averaging all tree predictions into a single forest prediction, as shown in 

Equation (4.7) and (4.8).  

Figure 4.9 and Figure 4.10 show examples of calculating one of the Zernike coefficients in 

the target vector ࢇ∗  at the prediction stage. In the first case (Figure 4.9), the posterior 

probability distributions of 80 regression trees were simply averaged. As a result, for a GT 

training defocus coefficient of 0.1992 ݉ߤ, the predicted value was 0.2019 ݉ߤ. 
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Figure 4.9:  The posterior probability distributions of 80 regression trees (shown with 

different colours). The thick green line shows an ensemble posterior (ࡴ|ࢇ) 

obtained by averaging all tree posteriors with values showing the MAP 

(Y=41.1) and the corresponding predicted Zernike coefficient for defocus 

aberration (X=0.2019 ݉ߤ). 

 

Figure 4.10:  The posterior probability distributions of 80 regression trees (shown with 

different colours). The thick green line shows an ensemble posterior (ࡴ|ࢇ) 

obtained by performing KDE on the data from all the leaf nodes showing the 

MAP (Y=70.05) and the corresponding predicted Zernike coefficient for 

defocus aberration (X=0.1986 ݉ߤ). 
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Alternatively, Kernel Density Estimation (KDE) can be used on the data aggregated from all 

the leaf nodes to find an optimal vector of Zernike coefficients ࢇ∗ with the highest posterior 

probability (Figure 4.10). In this case, for a GT training defocus coefficient of 0.1992 ݉ߤ, 

the predicted value was 0.1986 ݉ߤ which is slightly closer to the target value than in Figure 

4.9. Given a correctly chosen bandwidth for the kernel smoothing window, KDE can be 

useful in the case of outliers, produced by poorly trained trees. In this work, experimentally 

it was found that KDE performed on the data from all trees with the bandwidth of 0.005 

generally gives better results than averaging, reducing prediction error by 39%. 

4.4.3 Image Restoration  

Following the aforementioned prediction stage, the corresponding PSF ݓ∗  was 

reconstructed with the estimated optimal vector of Zernike coefficients ࢇ∗, using Equation 

(4.9). The obtained PSF was employed in the restoration of the blurred retinal image using 

the Lucy-Richardson deconvolution algorithm [251, 252], built in Matlab® (Mathworks Inc). 

The Lucy-Richardson algorithm is a well-known iterative procedure for image deblurring. 

The algorithm maximizes the likelihood of the restored image by using the expectation-

maximization algorithm [253]. At each iteration step the previous estimate of the original 

image is multiplied by the correction factor ܥ (Equation (4.14)). As a result, a more clearly 

deblurred image ܺାଵ is generated for each time of iteration. 

ܥ ≈ ℑିଵ ൜ℑݓഥ
ℑܻ

ℑݓ	ℑܺ
ൠ	, (4.14) 

where ݓ is the PSF, ܻ is the blurred image, the overbar denotes a complex conjugate and 

the Fourier transform is indicated by variable ℑ.  

Despite the fact that this method was originally developed for the restoration of astronomical 

images, where the noise is mainly Poisson-distributed, the Lucy-Richardson algorithm 

shows a sufficiently good performance with any type of noise in the image. Moreover, this 

algorithm does not require any prior knowledge of the original image. 
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4.5 Results and Evaluation 

4.5.1 Experimental Validation using Synthetic Data 
To evaluate the accuracy of the PSF estimation, the synthetic dataset was divided into two 

subsets used for training and testing. The training set was obtained by convolving blur 

kernels { ܻ} with a single uncorrupted retinal image X, as described in Section 4.4.1. To test 

whether the trained Random Forest has generalized well for the inference of convolution 

blur kernels in any retinal images, test data was generated separately. Blur kernels were 

produced by taking random intermediate values from the range of Zernike coefficients and 

reconstructing corresponding PSFs. 10 ideal retinal images X were generated so as to 

reproduce mosaics at different retinal eccentricities and convolved with 100 PSFs obtained 

from the randomly generated vectors of Zernike coefficients. In this way, 1000 synthetic 

retinal images in the training dataset show variation in both, image quality and characteristics 

of cone mosaic. The HoG features were extracted from the obtained blurred images and 

stored for the prediction stage. This procedure provided test data composed of 1000 image 

pairs, representing the unseen data to evaluate the generalization of the Random Forest. 

Table 4.2 presents a few examples obtained at the prediction stage, where vectors of Zernike 

coefficients predicted with the Random Forest are compared against the GT test data. The 

average absolute difference between the predicted Zernike coefficients and the GT was 

found to be 0.0061 ݉ߤ. 

Figure 4.11 illustrates few examples of the predicted PSFs, corresponding blurred images 

and restored retinal images. These results are compared with the GT data: the PSFs obtained 

from the training vectors of Zernike coefficients, corresponding blurred images and 

uncorrupted synthetic retinal images ܺ . To evaluate the performance of the proposed 

method, quantitative assessment was performed on 1000 synthetically blurred retinal images 

in terms of the root-mean-square error (RMSE). All images were normalized from the 

original range of intensities to [0,1]. The mean RMSE between the predicted convolutional 

blur kernels and the GT PSFs was found to be 0.0051 across 100 samples of each synthetic 

image ܺ. The mean RMSE between the restored retinal images and original synthetic images 

across 100 samples of each test data was 0.0464. This represents 0.5% and 4.6% of 

generalization error, respectively. 
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Randomly generated vectors of Zernike coefficients (GT) 

 PSF number 
Zernike 

coefficients 1 2 3 4 5 6 7 

ܽସ 0.0723 0.1340 0.1364 0.1071 0.1379 0.1656 0.1620 
ܽ -0.0347 -0.0380 -0.0178 -0.0086 -0.0048 -0.0219 -0.0089 
଼ܽ 0.0107 0.0005 0.0101 0.0239 0.0249 0.0157 -0.0064 
ܽଽ 0.0048 0.0116 -0.0311 -0.0047 -0.0295 -0.0282 -0.0319 
ܽଵ -0.0046 0.0106 -0.0091 0.0022 0.0085 0.0131 0.0123 
ܽଵଵ 0.0382 0.0349 0.0371 0.0369 0.0258 0.0259 0.0351 
ܽଵଶ -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 
ܽଵଷ 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 
ܽଵସ -0.0087 -0.0088 -0.0115 -0.0166 0.0003 -0.0168 0.0000 
ܽଵହ -0.0122 -0.0079 -0.0164 -0.0157 -0.0021 -0.0091 -0.0120 

Predicted vectors of Zernike coefficients 

 PSF number 
Zernike 

coefficients 1 2 3 4 5 6 7 

ܽସ 0.0687 0.1300 0.1348 0.1053 0.1351 0.1641 0.1627 
ܽ -0.0349 -0.0362 -0.0178 -0.0058 -0.0045 -0.0229 -0.0097 
଼ܽ 0.0124 -0.0010 0.0123 0.0234 0.0249 0.0162 -0.0053 
ܽଽ 0.0057 0.0092 -0.0302 -0.0062 -0.0315 -0.0250 -0.0323 
ܽଵ -0.0051 0.0107 -0.0077 0.0038 0.0097 0.0125 0.0120 
ܽଵଵ 0.0395 0.0338 0.0378 0.0354 0.0257 0.0253 0.0345 
ܽଵଶ -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 
ܽଵଷ 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 
ܽଵସ -0.0120 -0.0070 -0.0129 -0.0155 0.0001 -0.0092 -0.0097 
ܽଵହ -0.0119 -0.0089 -0.0108 -0.0116 -0.0106 -0.0098 -0.0096 

Table 4.2: Comparison between the GT and predicted vectors of Zernike coefficients. Each 

column represents a vector of 10 coefficients used for reconstructing the PSFs 

(ܽସ,∑ ܽଵହ
ୀ ) and the row gives a value of Zernike coefficient ܽ  for a 

corresponding type of aberration. 
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Absolute difference between the GT and predicted Zernike coefficients 

 PSF number 
Zernike 

coefficients 1 2 3 4 5 6 7 

ܽସ 0.0036 0.004 0.0016 0.0018 0.0028 0.0015 0.0007 
ܽ 0.0002 0.0018 0 0.0028 0.0003 0.001 0.0008 
଼ܽ 0.0017 0.0015 0.0022 0.0005 0 0.0005 0.0011 
ܽଽ 0.0009 0.0024 0.0009 0.0015 0.002 0.0032 0.0004 
ܽଵ 0.0005 1E-04 0.0014 0.0016 0.0012 0.0006 0.0003 
ܽଵଵ 0.0013 0.0011 0.0007 0.0015 1E-04 0.0006 0.0006 
ܽଵଶ 0 0 0 0 0 0 0 
ܽଵଷ 0 0 0 0 0 0 0 
ܽଵସ 0.0033 0.0018 0.0014 0.0011 0.0002 0.0076 0.0097 
ܽଵହ 0.0003 0.001 0.0056 0.0041 0.0085 0.0007 0.0024 

Table 4.2 (Cont): Comparison between the GT and predicted vectors of Zernike 

coefficients. Each column represents a vector of 10 coefficients used for 

reconstructing the PSFs (ܽସ,∑ ܽଵହ
ୀ ) and the row gives a value of Zernike 

coefficient ܽ for a corresponding type of aberration. 

Qualitative analysis of the results indicated that most of the errors come from the images 

that were significantly distorted (e.g., the last column in Figure 4.11). In such cases, a larger 

number of iterations are required in order to reach convergence in the Lucy-Richardson 

deconvolution algorithm. In clinical practice, images with such poor quality would be rarely 

used for quantitative assessment of cone photoreceptor distribution. Retinal images where 

photoreceptor cells cannot be resolved are usually discarded from analysis or attributed to 

eye pathologies.  
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Predicted PSFs 

    
GT PSFs 

    
RMSE= 0.0020 RMSE= 0.0021 RMSE= 0.0031 RMSE= 0.0038 

Predicted blurred images 

    
GT blurred images 

    
RMSE= 0.0058 RMSE= 0.0060 RMSE= 0.0133 RMSE= 0.0106 

Figure 4.11:  Results at the prediction stage showing the predicted PSFs, corresponding 

blurred images, images restored with the estimated PSFs and compared with the 

GT data in terms of RMSE. 
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Restored images 

    
Original images 

    
RMSE= 0.0132 RMSE= 0.0322 RMSE= 0.0347 RMSE= 0.0574 

Figure 4.11 (Cont.): Results at the prediction stage showing the predicted PSFs, 

corresponding blurred images, images restored with the estimated PSFs and 

compared with the GT data in terms of RMSE. 

4.5.2 Experimental Validation using Real AO Retinal 
Images 

The trained Random Forest was used for predicting convolutional blur kernels for high-

resolution retinal images, acquired with the flood-illuminated AO instrument. The generated 

synthetic retinal images of size 126x126 pixels represented 101 ݉ߤ of the retina. For this 

data, it was established that 50 windows with cones of size 10x10 pixels is a sufficient 

number of samples for extracting information regarding the object shape. For the entire AO 

retinal image, which covers 1.2 mm of the retina, the aforementioned resolution analogously 

translates to 594 windows that need to be extracted. Figure 4.12 shows high-resolution 

retinal images before and after applying the proposed restoration process at different scales. 

As it can be seen from these images as well as the calculated image quality measures (BM1 

and PSNR), the visibility of the photoreceptor cells has been significantly enhanced and the 

image contrast improved. 
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Retinal images after 
image registration 

Retinal images after image 
deconvolution 

Retinal dataset 1 

BM1 = 0.2110 BM1 = 0.3820 
PSNR = 14.71 

Figure 4.12:  Comparison between retinal images obtained after image registration (left) and 

image deconvolution (right) in four representative datasets in terms of sharpness 

measure (BM1) and PSNR, showing retinal images at different scales: 1.2mm, 

154 µm and 40 µm. 
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Retinal dataset 2 

BM1 = 0.1892 BM1 = 0.4129 
PSNR = 21.48 

Figure 4.12 (Cont.): Comparison between retinal images obtained after image registration 

(left) and image deconvolution (right) in four representative datasets in terms 

of sharpness measure (BM1) and PSNR, showing retinal images at different 

scales: 1.2mm, 154 µm and 40 µm. 
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Retinal dataset 3 

BM1 = 0.2471 BM1 = 0.4714 
PSNR = 20.07 

Figure 4.12 (Cont.): Comparison between retinal images obtained after image registration 

(left) and image deconvolution (right) in four representative datasets in terms 

of sharpness measure (BM1) and PSNR, showing retinal images at different 

scales: 1.2mm, 154 µm and 40 µm. 
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Retinal dataset 4 

BM1 = 0.2085 BM1 = 0.4140 
PSNR = 20.28 

Figure 4.12 (Cont.): Comparison between retinal images obtained after image registration 

(left) and image deconvolution (right) in four representative datasets in terms 

of sharpness measure (BM1) and PSNR, showing retinal images at different 

scales: 1.2mm, 154 µm and 40 µm. 

  

40 µm 

154 µm 
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In the case of real retinal images, there is no GT data for quantitative evaluation of the results. 

For this reason, we performed an extensive study, assessing the performance of the proposed 

method in terms of image quality measures in 25 processed high-resolution retinal images 

acquired from different subjects and at various eccentricities. Additionally, the obtained 

results were compared with the images restored with a blind deconvolution method by 

Sroubek and Milanfar [254]. In this method, blind deconvolution is represented as a l1-

regularized optimization problem, where a solution is found by alternately optimizing with 

respect to the image and kernel blurs. For a faster convergence, minimization is addressed 

with an augmented Lagrangian method (ALM) [255]. Table 4.3 presents the results of this 

study averaged for 25 AO retinal images. The ALM shows a higher PSNR than the proposed 

method. Despite this, the proposed method surpasses the ALM in terms of the image 

sharpness and contrast. From the retinal images processed with the two methods (Figure 

4.13), it becomes apparent that the proposed method preserves better the edges of 

photoreceptor cells as well as achieves better differentiation of individual cells, while the 

ALM seems to blur the photoreceptor cells with weak edges. The power spectral ratio 

between the images restored with the two methods and images obtained after registration 

stage shows that the ALM gives a rise to the frequencies below and beyond the spatial 

frequencies of cone mosaic, which results in a lower contrast and sharpness (Figure 4.14).  

 
Images obtained 
after registration 

stage 

Images restored 
with the proposed 

method 

Images restored 
with the ALM  

Image contrast 0.0216 0.0638 0.0479 

Sharpness 
measure (BM1) 0.2076 0.4100 0.3601 

PSNR  19.66 25.09 

Table 4.3: Quality assessment of the AO retinal images obtained after image registration, 

image deconvolution performed with the proposed method and image restoration 

with the ALM averaged for 25 images. 
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BM1 = 0.4140 BM1 = 0.3835 

 
BM1 = 0.3461 BM1 = 0.3006 

Figure 4.13:  Sections of AO retinal images restored with the proposed method (left) and 

the ALM (right). The proposed method shows better separation of individual 

photoreceptor cells, while the ALM seems to blur the photoreceptor cells with 

weak edges. The scale bar is 154 µm. 

 

  

154 µm 
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a b 

Figure 4.14:  Power spectral ratios (a) between the images restored with the ALM and 

obtained after the registration stage and (b) between the images restored with 

the proposed deconvolution method and obtained after the registration stage. 

Black lines show the spatial frequencies of cone mosaic.  

4.6 Analysis and Discussion 

In this chapter, we proposed a novel method for blind image deconvolution based on a multi-

variate Random Forest regressor designed for the restoration of AO high-resolution retinal 

images. A convolution kernel was estimated through non-linear regression of HoG features 

extracted from retinal images onto the space of PSFs expressed in terms of Zernike 

coefficients. This was achieved by training the Random Forest on a large dataset of 

synthetically generated retinal images and PSFs. The mathematical model of the PSF was 

parameterized through the pupil phase, retaining the first 15 Zernike terms. In AO high-

resolution retinal images, out-of-focus planes of the retina also contribute to the image 

formation, resulting in additional blur and distortion. To account for this, apart from high-

order aberrations the PSF’s model also included the defocus phase. The parameters of the 

PSF model were set based on the specifications of the AO flood-illuminated system, rtx1 

from Imagine Eyes. Such a compact representation of the PSF significantly reduced the 

degree of uncertainty in image deconvolution as well as allowed inference of convolution 

blur kernel for AO retinal images without compromising the resolution of the PSF.  
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Across the retina, due to light scattering and difference in incident light, photoreceptor cells 

exhibit variations in intensities. By extracting the information regarding the object shape 

from photoreceptor cells of similar intensities across the image, we limited the nature of 

variations present in retinal images down to the corruption of cone shape due to blur. This 

reduced the generalization error and allowed for the inference of PSFs from unseen retinal 

images of various quality, taken at different locations of the retina. 

The proposed method has been tested on 1000 synthetic retinal images and 25 AO high-

resolution retinal images. The validation study on synthetic data showed an average error of 

0.0051	for the predicted blur kernels and 0.0464 for the reconstructed images, compared to 

the GT. Qualitative analysis of the results indicated that most of the errors come from the 

images which were significantly distorted (Figure 4.11). This happens when Zernike 

coefficients such as defocus and trefoil are set to the maximum values within their range. As 

a result, these coefficients have a dominating influence on the gradient structure of the local 

shape, masking the effects from other optical aberrations. This adversely affected the ability 

of the Random Forest to discriminate HoG features extracted from severely distorted 

photoreceptor cells. While in this study the Random Forest was trained on the model of 

healthy eyes, images with such a poorly resolved photoreceptors cells would be usually 

attributed to the diseased conditions. In case of pathological retinas, a different model may 

need to be used for setting the range of values of Zernike coefficients. 

The obtained results proved that the proposed approach is applicable for the enhancement of 

real AO retinal images. We have shown how the images in four representative retinal 

datasets are transformed at this stage of the image processing framework (Figure 4.12). From 

the calculated image quality metric, we can see that the image sharpness has been improved 

by almost 100%. To benchmark the proposed method, a comparison analysis was performed 

using 25 processed retinal images restored with the proposed method and the ALM (Table 

4.3). The results demonstrated that the method based on Random Forest regressor 

outperforms the ALM in terms of image contrast and sharpness. Visual comparison of the 

restored images (Figure 4.13) indicated that ALM method tends to blur photoreceptor cells 

with weak edges. 

Despite significant improvement in the image quality, the proposed approach could not 

always restore the regularity of photoreceptor cell shape. This can be attributed to the 
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limitations of the proposed method, such as fixed axial length and pupil diameter as well as 

compensation of aberrations up to the 4th radial order of the Zernike polynomial expansion. 

Blur in the recorded retinal images, coming from multiple sources, also contributed to these 

residual distortions. However, even with these limitations the Random Forest was still able 

to generalize to most cases. This shows the promise of the proposed method, where future 

work can focus on modelling more complex blur kernels (see Chapter 6). 

In conclusion, the contribution of this chapter includes the proposed framework for 

convolution blur kernel regression designed for the restoration of AO high-resolution retinal 

images. The performed validation studies showed that the proposed method can successfully 

restore even severely blurred images, thereby improving the differentiation of photoreceptor 

cells. As a result, this facilitates the next stage of image processing framework, allowing for 

more accurate detection of photoreceptor cells. To our knowledge, learning-based methods 

have not been previously used for AO retinal images. 

In the next chapter, an automated algorithm is proposed, based on the use of the Hessian-

LoG filter, which allows enhancement and detection of photoreceptor cells. The performance 

of the proposed technique is evaluated on both synthetic and high-resolution retinal images, 

in terms of packing density.  
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5. Enhancement and Detection 

of Photoreceptor Cells 

5.1 Hessian-LoG Filtering 

Histological images of en face sections of retinas demonstrate that photoreceptors cells 

resemble circular structures clustered in a hexagonal pattern [30]. However, light scattering 

during image acquisition as well as optical limitations of the AO system degrade the 

resulting image resolution when imaging in vivo. Thus, the observed structures suffer from 

blur and aliasing errors. In order to facilitate better distinction of photoreceptor cells and 

more accurate photoreceptor cell quantification, blob enhancement methods can be used. 

Multiscale analysis of the Hessian matrix is a common tool in many biomedical applications, 

when enhancement or detection of specific geometric structures is required [256, 257]. For 

a 2D image ݂(ݕ,ݔ), the Hessian matrix ܪ is defined as a square matrix of second-order 

partial derivatives in orthogonal directions at each pixel	(ݕ,ݔ):  

ܪ = 	 ቚೣ ೣ
ೣ
	 ೣ 

ቚ , where  ௫݂௬ = 	 ௬݂௫ for a symmetric matrix (5.1) .ܪ 

In 2D space, the two eigenvalues of the Hessian matrix can be calculated as follows: 

ଵߣ = ܭ + ඥܭଶ − ܳଶ 

ଶߣ = ܭ − ඥܭଶ − ܳଶ, 
(5.2) 

where ܭ = (ೣ ೣା)
ଶ

 and ܳ = ඥ	 ௫݂௫ ௬݂௬ − ௫݂௬ ௬݂௫ . 

The eigenvalues of the Hessian matrix contain geometric information of the image. Based 

on the relationships between the eigenvalues, a local pattern can be classified as plate-like, 

line-like or blob-like structure. Koller et al. [256] were the first to introduce this method for 

the purpose of segmentation and analysis of line structures. Lorenz et al. [258] and Frangi et 

al. [257] further refined and modified this method for enhancing vessel structures. Based on 
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the same principles, Sato et al. [259], and Li et al. [260] introduced selective enhancement 

filters for blob, line and plane structures. 

The enhancement filters for blob structures described by Zhenghao et al. and Liu et al. [261, 

262] require object scale calculation, prior to conducting the Hessian analysis. The object 

scale at every image pixel is defined as the radius of the largest hyperball centred at the pixel, 

such that all pixels within the ball satisfy a predefined image intensity homogeneity criterion 

[263]. The object scale is employed in a blobness response measure, in this way imposing 

constraints on both circularity and size of local structures. Thus, the detection response of 

any non-circular structure will have zero values at all pixels within the object. In our case, 

this method is not suitable, as the average cone shape is generally not sufficiently sharp for 

accurate detection and moreover the intensity homogeneity criterion does not hold within 

the local structure. 

At this stage of the image processing framework, we use a blobness detection response 

measure, proposed by Li et al. [260]. Since there is prior knowledge on the size of objects to 

be enhanced, i.e. cone size distribution, this information can be utilised in the enhancement 

filter to compensate for the residual image noise and at the same time preserve objects with 

a defined scale. This can be achieved by convolving the object with a Gaussian smoothing 

function which can serve as a matched filter to preserve an object of the specific scale, as 

long as the appropriate Gaussian kernel is chosen. The optimum scale of the Gaussian 

function (i.e. Gaussian kernel) for an object of size ݀ is defined as ݀/4 as it accounts for 

95.4% of the area of the Gaussian function [260].  

The size of photoreceptor cells depends on the retinal eccentricity. To make the method 

applicable for any retinal image, multiscale enhancement filter is required. If there are 

multiple objects in the image with the scale range [݀,݀ଵ], then in order to enhance all 

objects within the scale range, the corresponding Gaussian kernels ߪ are calculated in the 

following way: 

ଵߪ = 	 ௗబ
ସ
	 ଶߪ, = ଷߪ,ଵߪݎ = ,ଵߪଶݎ ேߪ… = ଵߪேିଵݎ = 	 ௗభ

ସ
	, (5.3) 

where ݎ = 	ௗభ
ௗబ

ଵ/(ேିଵ)	
 and ܰ	is the number of smoothing scales. 
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For each scale ߪ , the original image is filtered with the second-order partial derivatives of 

the corresponding Gaussian function. Figure 5.1 illustrates the second-order partial 

derivatives of the Gaussian function ௫݂௫ , ௬݂௬ and ௫݂௬ with σ =5. 

  
a b 

 

c 

Figure 5.1:  Second-order partial derivatives of the Gaussian function: (a) ௫݂௫, (b) ௬݂௬ and 

(c) ௫݂௬. The scale of the Gaussian function, σ, is equal to 5. 

The resulting smoothed images are corrected for scale by multiplying with	ߪଶ. The two 

eigenvalues of the Hessian matrix are calculated using Equation (5.2) and the blob 

enhancement filter is computed as: 

ܼ(ߣଵ, (ଶߣ = 	 ቐ
ଶ|ଶߣ|

|ଵߣ| 	 , if	ߣଵ < ଶߣ	݀݊ܽ	0 < 	0;	

0	, 												.݁ݏ݅ݓݎℎ݁ݐ
 (5.4) 

For each pixel, the final output is the maximum value from the results of applying the filters 

of all N scales. 

In the multiscale object enhancement, excessive blurring can lead to low contrast between 

objects and as a result false detections. To avoid this problem, a LoG filter is proposed in 

the work of Zhenghao et al. [261]. After applying the blob enhancement filter, the resulting 

image is convolved with the LoG operator. This can significantly increase the contrast of 

circular objects and thereby facilitate more accurate object detection. 
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The LoG operator of an image (ݕ,ݔ)ܫ centered on zero is expressed as: 

(ݕ,ݔ)ఙܩܮ =
1
ସߪߨ

ቆ1 −
ଶݔ + ଶݕ

ଶߪ2
ቇ ݁ି

௫మା௬మ
ଶఙమ . (5.5) 

The LoG filter is a circular-symmetric filter with a high central lobe (Figure 5.2-a) which 

allows for a high intensity transmission. The filter has a shape of a circular centre region 

with positive weights, surrounded by another circular region with negative weights (Figure 

5.2-b, c). As expected, the response of this filter is stronger for circular image structures with 

radii corresponding to the filter scale. Thereby, applying this kernel on images with circular 

objects increases the contrast between the region of interest and the background [207]. 

  
a b 

 

c 

Figure 5.2:  The LoG filter. (a) 3D plot of the LoG; (b) cross-section of (a); (c) the LoG 

displayed as an image [264]. 

5.2 Implementation and Results 

5.2.1 Hessian-LoG filtering on Synthetic Image 
In order to verify the performance of the proposed enhancement algorithm, experiments were 

carried out on both synthetic data and real high-resolution retinal images. 
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Figure 5.3:  Hessian-LoG filter applied to a synthetic image. (a) Original image; (b) image 

processed with the Hessian enhancement filter; (c) LoG filtered image of (b); 

(d) binary image of (c) with the threshold equal to 0.09. 

Firstly, an experiment was performed to test Hessian-LoG filtering on the synthetic image. 

Figure 5.3-a shows an example consisting of four idealized blobs of different scales and 

three lines with different thickness. In Figure 5.3-b the image processed with the Hessian-

blob enhancement filter is illustrated. As expected, the filter produced output values mostly 

within the blob-like structures. To further increase contrast of circular structures, this image 

was processed with the LoG filter. The intensity values around the blob-like structures in 

Figure 5.3-c became negative, while the intensity values within the region of interest 

increased. Therefore, the contrast of blob structures was significantly improved with the use 

of LoG filter and blobs can be easily detected and segmented (Figure 5.3-d).  

This experiment shows that while the multiscale Hessian-blob enhancement filter produces 

response for blob-like structures of various scales in the image, the following stage of LoG 

filtering facilitates their segmentation. Combining these two filters is essential for detecting 

photoreceptor cells, given that the objects to be detected are densely packed, vary in scale 

and have low contrast. 
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5.2.2 Synthetic Data Generation 
The performance of the proposed cone counting method was validated on two sets of 

synthetic images. To this purpose, we employed the algorithm for artificial retinal image 

simulation described by Mariotti and Devaney [250]. The outline of this method was 

described in Subsection 4.4.1. 

The density of the human photoreceptor mosaic peaks in the fovea and declines rapidly when 

moving away from the fovea [30]. Therefore, in the images representing the section of retina 

closer to the fovea, the cones are densely packed and image quality is generally poorer due 

to optical limitations, thus it is harder to identify photoreceptor cells [83], [200]. The amount 

of blur in the retinal images has a much greater effect on the accuracy of cone detection 

[250]. Therefore, in order to choose reference images for the synthetic data generation, the 

sharpness measure (BM1) was calculated for each image in the processed AO retinal dataset. 

According to these calculations, we chose two images from two different retinal locations: 

the image with the lowest sharpness measure value taken at the area closer to the fovea and 

the image with the highest sharpness measure acquired in the parafoveal area. Based on these 

images, two sets of ten artificial retinal images of size 222 x 222 pixels were generated, 

resembling the properties of the retina at 0.59 mm (set A), i.e. closer to the fovea, and at 1.1 

mm (set B) eccentricity from the fovea respectively, i.e. in the parafoveal area. In this way, 

we were able to perform evaluation of the cone counting methods at the two extremes, i.e. 

when retinal image quality is low and high.  

To verify that the proposed method is applicable on retinal images of various quality, we 

neglected the previous stage of image deconvolution and as a reference took an image quality 

produced after the registration of retinal datasets. The discussion on how the image 

deconvolution facilitates the automated cone counting is presented in Subsection 5.2.6. 

Synthetic images were produced from the background image − a Voronoi diagram − and 

images with randomly distributed disks. Both the background and the image with disks were 

blurred with a Gaussian filter. To accommodate for the residual blur after AO correction, the 

cut-off frequencies were set to 0.11 and 0.17 cycles/pixel for the background and the image 

with disks correspondingly. The intensity levels of the blurred image with disks were scaled 

by 0.5 before being summed with the background image. To account for residual noise, 

Gaussian noise −with a mean of 0 and a variance of 0.0001 − was added to the resulting 
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image, which was normalized from the original range of [0, 216-1] to [0, 1]. Figure 5.4 shows 

an example of generated synthetic images with the corresponding AO-corrected retinal 

images, processed as described. 

  
a b 

  
c d 

Figure 5.4:   A set of processed AO-corrected and synthetic images at different retinal 

locations. (a) AO retinal image at 0.59 mm eccentricity; (b) synthetic image 

imitating the retina at 0.59 mm eccentricity; (c) AO retinal image at 1.1 mm 

eccentricity; (d) synthetic image imitating the retina at 1.1 mm eccentricity. The 

scale bar is 31 µm. 

The generated stack of images was further analysed by calculating the sharpness measure 

[204], image contrast [209] and variance of the generated images for ten images in each set. 

Comparison between synthetic and reference AO retinal images, obtained after illumination 

compensation, noise suppression and image registration, shows a similar range of values for 

the two image datasets (Table 5.1). 

In high-resolution retinal images, the scale of the photoreceptor cones varies across the 

retina. Depending on the retinal eccentricity, the cone diameter can be between 2 to 4 pixels, 

thus the corresponding Gaussian kernels of the smoothing function in Equation (5.3) are set 

31 µm 
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in the range of 0.5 to 1. It was found that N = 20 for a number of smoothing scales is sufficient 

to capture photoreceptor cells of all sizes. The kernel and the size of the LoG filter were set 

to 0.5 and 20, respectively. 

 Image contrast 
(mean±SD) 

Image variance 
(mean±SD) 

Sharpness measure 
(mean±SD) 

Retinal images, 
0.59 mm 0.0179±0.0013 0.0072±0.0006 0.1680±0.0114 

Synthetic images, 
0.59 mm 0.0203± 0.0023 0.0081±0.0009 0.1632±0.0197 

Retinal images, 
1.1 mm 0.0176±0.0016 0.0024±0.0002 0.2815±0.0105 

Synthetic images, 
1.1 mm 0.0198±0.0017 0.0027±0.0002 0.2368±0.0131 

Table 5.1: Quality assessment of 10 processed AO-corrected and 10 synthetic retinal images. 

The values are shown as mean ±standard deviation (SD). 

Figure 5.5 illustrates the steps of the proposed blob enhancement filter applied to one of the 

synthetic retinal images. Initially, the synthetic retinal image (Figure 5.5-b) is generated from 

the image with randomly distributed disks (Figure 5.5-a) and processed with the blob 

enhancement filter (Figure 5.5-c). The obtained image is convolved with the LoG operator, 

resulting in negative values for the pixels surrounding the cones (Figure 5.5-d). By setting 

these values to zero, the photoreceptor cells can be easily segmented (Figure 5.5-e). A binary 

mask is obtained by thresholding the image. A global image threshold value was calculated 

using the Otsu’s method [265]. Experimentally, it was determined that a choice of 60% of 

this global image threshold value suffices for cone segmentation from the background. The 

resulting binary image (mask), using 60% of the global threshold value, is shown in Figure 

5.5-f. Finally, the corresponding cone coordinates are calculated as the local maxima of the 

original image (Figure 5.5-b) within the cone locations specified by the binary mask (Figure 

5.5-f). The detected cones overlaid on the synthetic retinal image are presented in Figure 

5.5-g. For visualization purposes, the detected cone locations are also shown on the image 

with disks, produced at the first step of the synthetic retinal image generation (Figure 5.5-h). 

The photoreceptor cells located at the boundaries of the image are excluded from the 

counting procedure. 
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Figure 5.5:  Step-by-step results of Hessian-LoG filtering for cone detection on a synthetic 

retinal image. (a) Image with randomly distributed disks; (b) synthetic retinal 

image; (c) image (b) processed with the blob enhancement filter; (d) image (c) 

convolved with the LoG operator; (e) image (d) with negative values set to 0; 

(f) binary mask with the boundary cones excluded; (g) result of cone detection 

overlaid on image (b) without the boundary cones; (h) result of cone detection 

overlaid on image (a) without the boundary cones. 
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5.2.3 Cone Counting on Synthetic Data 
The proposed cone counting algorithm was tested on two sets of 10 synthetic images (each 

of size 222 x 222 pixels which corresponds to 178x178 µm on the retina), imitating the 

properties of the retina at 0.59 mm (set A) and 1.1 mm (set B) eccentricity from the fovea. 

The calculated cone density estimates are compared against the results obtained with the Li 

and Roorda algorithm [79]. This method was chosen as a benchmark for this study as it is 

one of the most commonly used cone counting methods. Moreover, a comparison study 

carried out by Mariotti and Devaney [250] using the free response operating characteristic 

curves showed that the Li and Roorda algorithm performs better than the method of Xue et 

al. [80] and a software package used for stellar imaging IRAF/DAOPHOT [266]. As the 

cone density and cone location are known through the process of synthetic image generation, 

it is straightforward to evaluate the accuracy of cone detection methods. The number of 

correctly identified cones (true positives, TP), the number of missed cones (false negatives, 

FN) and the number of objects that have been incorrectly identified as cones (false positives, 

FP) were calculated for each image in the two sets using the proposed method and the Li and 

Roorda algorithm. The image with randomly distributed disks (Figure 5.5-a) was used to 

discriminate between the TP and FP counts as shown below: 

If   ݔ)ܫ (ݕ, > 0, ݅ =  ܯ:1
(5.6)

Else  
ܶܲ = ܶܲ + 1 

ܲܨ = ܲܨ + 1, 

where ܫ is the image with randomly distributed disks used for the generation of synthetic 

image, (ݔ  ) stands for the i-th set of the detected cone coordinates, defined as the localݕ,

maxima of the original image within the cone locations specified by the binary mask, and ܯ 

is the total number of cones detected by the algorithm. 

Despite the rapid development of automated methods for cone density calculation, manual 

counting is still used as the reference for performance evaluation of automated cone counting 

methods [78], [200, 201]. For this reason, four qualified researchers from Leipzig University 

Hospital were asked to carry out manual counting on the generated synthetic datasets (sets 

A and B). Equation (5.6) was used for calculating the number of TPs and FPs in the 

automated cone counting methods. However, it is not applicable for the manually labelled 

images. Due to the difficulty of accurate localization of cone coordinates by the observers, 
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a visual comparison between manually labelled synthetic images and the images with disks 

used for generation of the corresponding synthetic images (as shown in Figure 5.5-a) was 

used to calculate the number of TPs and FPs. The values of TPs, FPs and FNs obtained from 

four observers were averaged and compared with the results of the automated cone counting 

methods. 

The corresponding percentages of TP, FP and FN were calculated according to Equation 

(5.7) and averaged for each set: 

ܶ ܲ௧ = 	
ܶܲ
ܰ

×100%, 

ܨ ܲ௧ = 	
ܲܨ
ܰ

×100%, 

ܨ ܰ௧ = 	
ܰ − ܶܲ
ܰ

×100%, 

(5.7) 

where ܰ is the predefined number of cones in the synthetic image. Table 5.2 summarizes the 

results for sets A and B. 

 TP ratio FP ratio FN ratio 
Proposed method, set A 98.1% 0.06 % 1.9% 
Li and Roorda, set A 89.8% 2.3% 10.2% 

Manual Counting, set A 95.6% 0.009% 4.4% 

Proposed method, set B 99.4% 0.2% 0.6% 

Li and Roorda, set B 97.9% 1.7% 2.1% 

Manual Counting, set B 98.5% 0.001% 1.5% 

Table 5.2: Average TP, FP and FN ratios for sets A and B obtained by the proposed method, 

the algorithm of Li and Roorda and manual counting. 

As shown, in set B where the cone distribution is sparser and the image quality is generally 

better, the accuracy of correct cone identification is very high for both automated methods. 

Out of an average of 1521 cones, 1513 are correctly detected by the proposed algorithm and 

1489 cones are detected by the Li and Roorda algorithm, which is equivalent to 99.4% and 

97.9% accuracy, respectively. In set A, the photoreceptor cells are closely clustered and the 

image sharpness is significantly poorer. This results in a lower detection rate for both 
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automated cone counting methods. Out of 2179 cones, 2138 are detected by the proposed 

method and only 1957 by the approach of Li and Roorda, which corresponds to 98.1% and 

89.8% accuracy, respectively. Apart from having a significantly lower detection rate, the Li 

and Roorda algorithm produces a high number of false positives. Figure 5.6 illustrates the 

results of cone detection using both methods on a section of two synthetic images. False 

negatives and false positives are marked with white solid and white dotted circles, 

respectively.  

Proposed method Li and Roorda 

  
a b 

  
c d 

Figure 5.6:  Results of cone detection obtained by the proposed method and the algorithm of 

Li and Roorda; (a) and (b) cone coordinates overlaid on the image with disks 

from set A; (c) and (d) cone coordinates overlaid on the synthetic retinal image 

from set A; (e) and (f) cone coordinates overlaid on the image with disks from 

set B; (g) and (h) cone coordinates overlaid on the synthetic retinal image from 

set B. 
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Figure 5.6 (Cont.): Results of cone detection obtained by the proposed method and the 

algorithm of Li and Roorda; (a) and (b) cone coordinates overlaid on the image 

with disks from set A; (c) and (d) cone coordinates overlaid on the synthetic 

retinal image from set A; (e) and (f) cone coordinates overlaid on the image with 

disks from set B; (g) and (h) cone coordinates overlaid on the synthetic retinal 

image from set B. 

The manual counts obtained by the observers showed a similar dependency between 

detection rate and retinal location. Overall, the performance of manual counting appeared to 

be lower than the proposed Hessian-LoG filter, but higher than the Li and Roorda algorithm. 

This can be explained by human error as well as the difficulty of differentiating between the 

cones in the human eye, particularly in the images with densely populated cones (set A). In 

order to assess the inter-observer reliability in this experiment, the coefficient of variation 

(CoV), defined as the ratio of the standard deviation to the mean, and Cronbach’s alpha 

coefficient [267] were calculated for the manual counts from four observers in set A and B. 

The CoV defines the amount of dispersion in the observers’ ratings. Cronbach’s alpha 

coefficient is useful for understanding the extent to which the ratings from a group of 
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observers hold together to measure a common dimension. The inter-observer counts 

demonstrated a moderate variation and reliability, with the CoV of 2.4% and Cronbach’s 

alpha coefficient of 0.77 for set A. In set B, the inter-observer variation was found to be 

lower, with the CoV of 1.3% and reliability coefficient of 0.95. This correlates with the fact 

that in set A, cones are harder to be identified due to their dense arrangement, therefore a 

larger variation between the observer’s counts is expected. 

 
Figure 5.7:  Box-and-whisker plot showing the cone detection error expressed as 

percentage difference between the proposed method, the Li and Roorda 

algorithm, manual counting and GT. The size of each bar is defined by a 

minimum (Min) and a maximum (Max) cone detection error. Q2 represents 

the median error; Q1 and Q3 are the lower and upper quartiles, respectively. 

Box-and-whisker plot was used to further analyse the performance of the examined cone 

counting methods. The cone detection error was calculated for each image and expressed as 

percentage difference between the number of TPs obtained by the proposed method, the Li 

and Roorda algorithm, manual counting and GT (Figure 5.7). The proposed method appeared 

to have the smallest median error in cone detection (1.4%) as well as the smallest variance. 

The upper quartile of the detection error (Q3) by the proposed method, corresponding to 

75% of the data, is well beyond the median values produced by the Li and Roorda algorithm 

and manual counting. Due to a large number of FNs obtained in the set A, the algorithm of 

Li and Roorda showed the largest variance and median detection error (5.6%) amongst the 

tested methods. The results obtained by the observers showed a moderate detection error of 

2.5%.  
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 Proposed method Li and Roorda Manual counting 

  0.996 0.858 0.959ߩ

p-value p<0.001 p<0.001 p<0.001 

95% CI 0.993–0.997 0.781–0.909 0.930–0.977 

(a) 

CoV 0.6% 3.2% 1.5% 

(b) 

t-value  6.43>2.09 5.72>2.09 6.14>2.09 

t crit 2.09 2.09 2.09 

p-value p<0.001 p<0.001 p<0.001 

Mean Difference 2.46 12.68 5.85 

95% CI 1.66–3.26 8.04–17.31 3.86–7.84 

(c) 

Table 5.3: Results of the reproducibility test showing (a) the concordance correlation 

coefficient ߩ with p-values and confidence intervals (CI); (b) CoV; (c) results 

of the paired t-test showing associated t-test statistics and mean differences for 

the cone count estimates obtained by the proposed method, the algorithm of Li 

and Roorda and manual counting in respect to the GT. 

To evaluate the reproducibility of the measurements, Lin’s concordance correlation 

coefficient [268] was calculated for cone counts obtained by the tested methods and GT 

(Table 5.3-(a)). The advantage of this measure over the Pearson correlation is that in addition 

to assessment of how close the data points are distributed about the line of best fit, 

concordance correlation also measures how far that line is to equality, i.e. 45-degree line 

representing perfect agreement. Overall, the tested models displayed good agreement with 

regards to the GT counts, with the concordance correlation coefficients of 0.996, 0.858, 

0.959 (p<0.05) and CoV of 0.6 %, 3.2% and 1.5% for the proposed method, the Li and 

Roorda algorithm and manual counting, respectively. In addition, a paired t-test was 

performed in order to analyse whether there is a systematic difference between the 

measurements obtained with the examined methods and the GT (Table 5.3-(c)). This test 

checks for acceptance or rejection of the null hypothesis which states that any differences 

between the sets of measurements are due to random rather than systematic errors. In all 
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cases, the calculated t-test statics appeared to be higher than the corresponding t-critical 

values, t crit, with p-values < 0.05. Significant outcome implies that the null hypothesis is 

rejected thus there is an evidence of a systematic difference in the cone density 

measurements. Table 5.3-(c) summarizes the estimated mean differences and corresponding 

CIs for each pair of measurements. As in previous studies, the mean difference between the 

cone counts obtained with the proposed methods and the GT appeared to be smaller than 

those estimated by the Li and Roorda algorithm and manual counting. 

5.2.4 Cone Counting on AO Retinal Images 
The proposed algorithm was tested on ten datasets of AO high-resolution retinal images. 

Each set of images was processed in order to compensate for the noise in the system with 

the proposed image processing framework as described in Chapter 3. Cone density was 

calculated on sampling windows of 120 x 120 µm in 10 processed high-resolution retinal 

images acquired at different retinal locations. The performance of the proposed method was 

compared with the algorithm of Li and Roorda [79] and a proprietary software from Imagine 

Eyes (AOdetect v0.1, Imagine Eye, Orsay, France). As manual counting was used as a 

reference for performance evaluation on the synthetic data, the results obtained by the three 

methods on the AO retinal images were also validated against manual counts of cone density, 

calculated by four independent observers. The cone counting method developed by Imagine 

Eyes was chosen as a benchmark for this study as there is a growing number of clinical 

studies based on the first commercially available compact AO instrument (rtx1, Imagine 

Eyes,Orsay, France) and its dedicated software for automated cone counting. Due to the 

proprietary nature of the software, only retinal images acquired with the AO instrument can 

be processed with the automated cone counting procedure of Imagine Eyes software. Hence, 

this method was excluded from the previous evaluation study on the synthetic data. 

The cone density estimates obtained by the three automated methods and average numbers 

of manual cone counts for each image are presented in Table 5.4. The inter-observer counts 

showed a CoV of 2.7% and Cronbach’s alpha coefficient of 0.99. However, a high reliability 

measure in this experiment might be attributed to unequal variances in the scores across the 

images, due to difference in retinal eccentricity.  
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Image 
number 

Retinal 
Location 

(mm) 

Imagine 
Eyes 

Proposed 
method 

Li and 
Roorda 

Manual 
counting 

1 1.27 Na 215 215 194 205 
2 0.75 N 207 208 212 210 
3 0.67 N 228 219 227 218 
4 0.59 N 289 307 264 296 
5 0.59 N 304 301 270 302 
6 0.84 N 231 227 230 220 
7 0.84 Tb 339 344 311 346 
8 0.89 N 259 267 245 242 
9 0.89 N 250 260 244 262 
10 0.89 T 334 326 294 319 

a   Nasal retina 
b  Temporal retina 

Table 5.4: Cone density estimates obtained by the three automated methods and the average 

values of manual cone counts from four observers for 10 AO-corrected retinal 

images.  

Image 
number Imagine Eyes, % Proposed method, % Li and Roorda, % 

1 4.9 4.9 5.4 
2 1.4 1 1 
3 4.6 0.5 4.1 
4 2.4 3.7 10.8 
5 0.7 0.3 10.6 
6 5 3.2 4.5 
7 2 0.6 10.1 
8 7 10.3 1.2 
9 4.6 0.8 6.9 
10 4.7 2.2 7.8 

Table 5.5: Percentage differences between cone density estimates obtained by the three 

automated methods and average manual cone counts for 10 AO-corrected retinal 

images. 

Table 5.5 shows cone detection errors expressed as percentage differences between cone 

density estimates obtained by the three automated methods and average manual cone counts 
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for 10 AO-corrected retinal images. Amongst the evaluated images, the proposed cone 

counting method showed the largest error with respect to manual counting for the image 

number eight (Table 5.4). This can be explained by the low contrast of the image and 

therefore difficulty for the observers to identify some poorly resolved cones, while the 

proposed method as well as Imagine Eyes software were able to detect more cones. To ease 

the interpretation of the results, the performance of the automated cone counting methods 

was evaluated as a function of the error expressed as percentage difference with respect to 

manual counting and presented as a box-and-whisker plot (Figure 5.8). It can be seen that 

the proposed method has the smallest median error in cone detection (1.6%). The software 

of Imagine Eyes has the smallest variance, thus showing a more consistent detection rate 

amongst the tested methods with a median detection error of 4.6%. The upper quartile of the 

detection error by the proposed method, corresponding to 75% of the data, is well beyond 

the median values produced by the Li and Roorda algorithm and the Imagine Eyes software. 

Overall, the tested models displayed good agreement with regards to the cone counts 

obtained by the observers, with the concordance correlation coefficient of 0.975, 0.979 and 

0.876 (p<0.05) and CoV of 1.8%, 1.3% and 3.2% for the Imagine Eyes software, the 

proposed method and the Li and Roorda algorithm, respectively (Table 5.6-(a), (b)). 

 
Figure 5.8:  Box-and-whisker plot showing the cone detection error expressed as percentage 

difference between the proprietary software of Imagine Eyes, the proposed 

method, the Li and Roorda algorithm and manual counting. The size of each bar 

is defined by a minimum (Min) and a maximum (Max) cone detection error. Q2 

represents the median error; Q1 and Q3 are the lower and upper quartiles, 

respectively. 
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A reproducibility study performed using a paired t-test (Table 5.6-(c)) resulted in 

insignificant t-statistics for the cone densities obtained by the software of Imagine Eyes and 

the proposed method, with the mean differences of 3.6 and 5.4 cones, respectively. 

Therefore, there is no evidence to reject the null hypothesis that the mean difference is zero, 

and the observed variations between the manual counts and the cone estimates obtained by 

the two methods are due to a random error. However, the Li and Roorda algorithm showed 

a statistically significant error in respect to manual counts, with the mean difference of 12.9 

cones. This means that in comparison with the proposed method and the software of Imagine 

Eyes, the Li and Roorda algorithm produces a systematic bias in the cone density 

measurements in respect to manual counts. 

 Imagine Eyes Proposed method Li and Roorda 

  0.975 0.979 0.876ߩ

p-value p<0.001 p<0.001 p<0.001 

95% CI 0.926–0.992 0.937–0.993 0.744–0.942 

(a) 

CoV 1.8% 1.3% 3.2% 

(b) 

t-value 1.10 1.98 2.28 

tcrit 2.26 2.26 2.26 

p-value 0.29 0.078 0.048 

Mean difference 3.6 5.4 12.9 

95% CI -3.79–10.99 -0.76–11.56 0.11–25.68 

(c) 

Table 5.6: Results of the reproducibility test showing (a) the concordance correlation 

coefficient ߩ  with p-values and CIs; (b) CoV; (c) results of the paired t-test 

showing associated t-statistics and mean differences for the cone density 

estimates obtained by the three automated methods and average manual counts. 

To conclude, the proposed method and the software of Imagine Eyes showed a similar 

performance in terms of agreement with manual counting. While the software of Imagine 

Eyes produces more consistent results, with low variance and mean cone difference, the cone 
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estimates obtained by the proposed method are in closer agreement with the manual 

counting, based on the concordance correlation coefficient and median detection error 

expressed as a percentage difference. 

In Figure 5.9 a few examples are presented of cone detection using the proposed method and 

the algorithm of Li and Roorda. White circles highlight the cones detected by one of the 

examined methods but missed by another. From these images, it becomes apparent that the 

algorithm of Li and Roorda tends to merge two closely located cones into a single one, due 

to the use of the dilation operator and therefore introduces a systematic error in the 

identification of cone coordinates.  

The information content in the image produced after Hessian-LoG filtering is solely related 

to the photoreceptor cones (Figure 5.10-b), and therefore it can be used to produce an image 

where other retinal features remain preserved, while the contrast of photoreceptor cones is 

significantly increased. For this purpose, the intensity levels of the Hessian-LoG filtered 

image were firstly shifted by unity and the resulting image was multiplied with the 

corresponding retinal image obtained after following the stages of illumination 

compensation, noise suppression and image registration. Figure 5.10 illustrates the result of 

this process. Visual inspection of the images enhanced with the Hessian-LoG filter and the 

corresponding retinal images confirms that the intensity values are increased at the cone 

locations after adopting this process. 
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Proposed method Li and Roorda 

  
a b 

  
c d 

  
e f 

Figure 5.9:  Results of cone detection on the AO high-resolution retinal images with the 

proposed method and the Li and Roorda algorithm at different retinal locations: 

(a) and (b) at 0.89 mm Nasal, (c) and (d) at 0.89 mm Temporal eccentricity, (e) 

and (f) at 0.6 mm Nasal. White circles correspond to the cones missed by one 

of the examined cone counting methods but detected by another one. 
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a b c 

 
a b c 

Figure 5.10:  Image enhancement with the Hessian-LoG filter. (a) Processed retinal image; 

(b) Hessian-LoG filtered image; (c) image (a) multiplied with image (b). The 

scale bar is 21 µm. 

 

5.2.5 Validation of Hessian-LoG Filtering on the 
Emmetropic Data Population 

As part of the LIFE Child study conducted in Leipzig, Germany [269], cone packing 

arrangement was investigated in children and adult populations in order to reveal any 

differences in two groups related to age and retinal development. The thirteen subjects that 

participated in this study were classified into two groups based on their age. Group 1 was 

composed of nine healthy children (age range 9-18 years, mean 13.7) and group 2 consisted 

of four healthy adults (age range 30-34 years, mean 32.5). All subjects in groups 1 and 2 
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received a complete eye examination. Exclusion criteria for the participation in this study 

were any retinal pathology or media opacity and myopia/hyperopia. Spherical equivalent 

(calculated as mean spherical equivalent of three measurements per subject) refractive errors 

ranged from +0.50D to -0.50D with astigmatism less than -0.50D when referenced to the 

spectacle plane. All subjects had visual acuity of at least 20/20 or better, obtained with result 

of wavefront-based autorefraction. 

 

Figure 5.11:  Example of retinal montage composed of six AO high-resolution retinal 

images. Sampling windows where cone packing density was assessed are 

shown with red and green rectangles. 

An AO flood-illuminated instrument (rtx1, Imagine Eyes, France) was used to acquire high-

resolution retinal images. To examine the distribution of cone packing arrangement across 

the retina, for each subject six images were taken at 3° eccentricity in the superior, inferior 

and nasal quadrants and at 0°, 3° and 6° eccentricities along the temporal meridian. A stack 

of raw images was processed with a software provided by the system’s manufacturer (CK 

v0.1 and AOdetect v0.1, Imagine Eyes). Using that software, image frames were registered 

using a cross-correlation method [156] and averaged to produce a final image of a better 

contrast. Image frames affected by an eye blink or saccadic movements therein were 
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automatically excluded from the averaging. Then, images of adjacent areas were stitched 

with the use of pairwise stitching tool in Image J package (version 1.48v, NIH, Bethesda, 

MD). The obtained retinal montages were used to collect the associated retinal statistics with 

the proposed Hessian-LoG filter.  

The number of cones and cone spacing were measured in windows of size 100x100 μm 

sampled at 0.3-1.2 mm along the nasal, superior and inferior meridian and 0.3-2.2 mm in 

temporal meridian, with the step of 0.1 mm. For each subject, eccentricity was computed as 

the distance between the center of each window and the fovea in pixels (fixation coordinates: 

x = 0°, y = 0°) and converted to mm based on the pixel to object size ratio, provided by the 

manufacturer for a reference axial length. Figure 5.11 shows an example of a montage image 

with the sampling windows where cone density was assessed. 

A number of factors influence the accuracy of cone density estimation [270], one of which 

is the size of a sampling window. Even a slight shift in retinal location can adversely affect 

the reliability of this correlation. In this study, a smaller sampling window was chosen. This 

allowed easy localisation of an area on the retina that is not obstructed by any blood vessels 

without deviating too far from the designated eccentricity. The sizes of the windows were 

corrected for differences in axial length of each subject, based on the derived individual pixel 

to object size ratio.  

The sampling windows were processed with the Hessian-LoG filter. As a result, a binary 

image was produced and the cone coordinates were calculated as the local maxima of the 

original image within the cone locations specified by the binary mask. The photoreceptor 

cells located at the boundaries of the image were excluded from the counting procedure. The 

obtained cone counts per window were then recalculated as cone density in cell/mm2 by 

multiplying a cone number by the proportion of the 1mm2 to the sampling window size. The 

inter-cell distance (ICD) was determined under the assumption that photoreceptor cells are 

hexagonally arranged [84]. In this way, the cone spacing can be calculated based on the cone 

density as follows: ܦܥܫ = 		 ቂ1000 √ଷ
ଶ
ቃ
ଵ/ଶ

, where ܦ  is the number of cones per square 

millimetre. 
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Figure 5.12:  Variation of cone packing densities with eccentricity in the nasal (N), 

temporal (T), superior (S) and inferior (I) quadrants obtained from the study 

of Curcio et al. [30] (black line), Chui et al. [84] (blue line) and data from 

the two age groups.  

The variation of cone packing density with retinal eccentricity averaged for subjects in group 

1 and group 2 is shown in Figure 5.12. The data for the children and adult population showed 

a significant decrease in cone density at the retinal eccentricities of 0.30 mm to 1.40 mm 

along the nasal, superior and inferior meridians, respectively, and at the retinal eccentricities 

of 0.30 mm to 2.20 mm along the temporal meridian (Table 5.7). Overall, the cone 
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distribution of the two investigated groups appeared to be very similar, with the average CoV 

of 1.6%, 1.6%, 2% and 1.1% and p-values < 0.05 in the nasal, temporal, superior and inferior 

quadrants, respectively. 

 
0.3 – 1.4mm 

Nasal 

0.3 – 2.1mm 

Temporal 

0.3 – 1.4mm 

Superior 

0.3 – 1.4mm 

Inferior 

Group 1, 

cells/mm2 

17 800 ± 618 – 

30 900 ± 1 205 

17 200 ± 1 066 – 

29 550 ± 2 211 

16 850 ± 607 – 

29 800 ± 2 860 

16 550 ± 826 – 

30 400 ± 2 302 

Group 2, 

cells/mm2 

18 450 ± 476 – 

31 650 ± 1 258 

16 300 ± 698 – 

31 500 ± 1 699 

16 800 ± 1 329 – 

31 500 ± 694 

15 600 ± 1 023 – 

31 050 ± 512 

Table 5.7: The range of cone densities for group 1 and group 2 at the retinal eccentricities of 

0.30 mm to 1.40 mm along the nasal, superior and inferior meridians, 

respectively, and at the retinal eccentricities of 0.30 mm to 2.20 mm along the 

temporal meridian. The values are expressed as mean ± SD. 

Since the ICD was calculated based on the cone density measurements, the cone spacing 

distribution graphs showed the same trends but inversely proportional to the ones of cone 

density. The ICD values (expressed as mean ± SD) varied from 5.36 ± 0.19 μm to 7.04 ± 

0.16 μm for retinal eccentricities of 0.30mm to 1.40mm as an average across four meridians 

in group 1 and from 5.25 ± 0.09 μm to 7.08 ± 0.18 μm in group 2. 

In order to verify the results obtained with the Hessian-LoG filter, the data in the current 

study was compared with cone density established based on the histology data of Curcio et 

al. [30] (black line in Figure 5.12) and results of an AOSLO study by Chui et al. [84] (blue 

line in Figure 5.12). The measurements in the study of Curcio et al. were collected from the 

retinas of 49 healthy eye bank donors (age range 20-44 years). Eye examination performed 

prior to the surgery showed visual acuity of 20/20 in each eye. Cone counts were made using 

NDIC-video images of the photoreceptor layer at the level of inner segments. In the study of 

Chui et al., eleven healthy subjects (age range 21–31 years, mean, 26.6) participated in the 

experiment. A complete eye examination showed that all subjects had best corrected visual 

acuity of 20/20 or better. Spherical equivalent refractive errors varied from +0.50 to −7.50 

D with astigmatism less than −1.00 D when referenced to the spectacle plane. In order to 

investigate the correlation between the refractive error and cone density distribution, subjects 

were separated into three groups –five subjects with emmetropia, four subjects with low-to-
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moderate myopia and two subjects with high myopia. Refractive errors in three groups 

ranged from −2.75 to −4.50 D, −2.75 to −4.50 D and −6.00 to −7.50 D, respectively. For 

comparison purposes, we used only measurements acquired from emmetropic eyes in the 

study of Chui et al. Therefore, it can be concluded that the data in three studies is comparable 

since cone density was measured in healthy emmetropic subjects of similar age at the same 

retinal eccentricities. 

 Chui et al. Group 1 Group 2 

Nasal 

 0.839 0.810 0.255 ߩ
p p<0.001 p<0.001 p<0.001 

95% CI 0.091–0.405 0.657–0.899 0.725–0.909 
CoV 20.0% 2.2% 2.7% 

Temporal 

 0.749 0.664 0.937 ߩ
p p<0.001 p<0.001 p<0.001 

95% CI 0.879–0.968 0.502–0.782 0.597–0.850 
CoV 4.6% 10.6% 9.9% 

Superior 

 0.872 0.869 0.889 ߩ
p p<0.001 p<0.001 p<0.001 

95% CI 0.759–0.951 0.717–0.942 0.768–0.931 
CoV 5.8% 4.5% 4.3% 

Inferior 

 0.807 0.809 0.609 ߩ
p p<0.001 p<0.001 p<0.001 

95% CI 0.359–0.777 0.589–0.918 0.567–0.921 
CoV 12.7% 7.9% 8.2% 

Table 5.8: Results of the reproducibility test showing the concordance correlation coefficient 

  with p-values and CIs, and CoV for the measurements acquired in the study ofߩ

Chui et al. and two age groups in respect to the histology data of Curcio et al. at 

four retinal meridians. 

According to Curcio et al. [30], cone density falls steeply with increasing eccentricity and is 

an order of magnitude lower 1 mm away from the foveal center. The slope of the obtained 

cone distribution data follows the Curcio graph well, showing a steep decrease in the central 

area and a slow change rate at parafoveal eccentricities. Due to resolving power limitations 

of the AO instrument used in the current study, the foveal cones are very difficult to capture 

due to their small size, thus there is a larger difference in the data when compared to 0.3 - 

0.5 mm eccentricities. If this area is excluded (0.3-0.5 mm), the average concordance 

correlation coefficient for the two age groups and histological data of Curcio et al. is 0.825, 
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0.707, 0.8705 and 0.808 (p<0.05) in the nasal, temporal, superior and inferior quadrants, 

respectively (Table 5.8). The data from the study of Chui et al. showed a lower agreement 

with the histological measurements, with the correlation coefficients of 0.255, 0.937, 0.889 

and 0.609 (p<0.05). When the Pearson correlation is used, the correlation coefficients for 

the measurements of Chui et al. are higher than in two groups which means that there is a 

stronger linear association between the two sets of cone density measurements. Indeed, as 

can be seen in Figure 5.12 the cone density measurements of Chui et al. follow the curve of 

histological data in a more linear fashion. However, it can be also observed that the data 

obtained with the AOSLO has a larger error margin than the cone density distribution in 

groups 1 and 2, apart from the temporal meridian. This resulted in a lower concordance 

correlation, as this reproducibility index also accounts for the distance of regression line to 

a line of equality. To quantitatively analyse these differences, the CoV was calculated for 

the two studies (Table 5.8) in four retinal meridians. The average CoV between the results 

of Curcio et al. and the examined groups of the current study was found to be 2.5%, 10.2%, 

4.4%, 8% in the nasal, temporal, superior and inferior quadrants, respectively. The 

corresponding results published by Chui et al. [84] showed the average CoV of 20%, 4.6%, 

5.8%, 12.7% in the nasal, temporal, superior and inferior quadrants, respectively.  

 Chui et al. Group 1 Group 2 

t-value -7.54 -4.08 -4 

t crit 2.017 2.017 2.017 

p-value p <0.001 p <0.001 p <0.001 

Mean difference -3865 -1744 -1828 

95% CI -4899 – -2830 -2606 – -881 -2608 – -1048 

Table 5.9: Results of the paired t-test showing associated t-statistics and mean differences 

for the cone density distribution obtained in the study of Chui et al. and two age 

groups in respect to the histology data of Curcio et al. across four retinal 

meridians. 

 



206 

 

  

  
 

 

Figure 5.13:  Bland-Altman plots showing differences between cone density 

measurements obtained from the study of Chui et al. and two age groups in 

respect to the histology data of Curcio et al.  

Bland-Altman plots were employed to further analyse the agreement between the 

measurements of our study, results of Chui et al. and histological data of Curcio et al. Figure 

5.13 shows the difference of the two paired measurements plotted against the mean of the 

two measurements. In all cases, most of the data points lie within ± 1.96 SD of the mean 

difference. The positive trend in the Bland-Altman plots (inclined line of the corresponding 

colour) implies that the higher the expected cone density the larger the error between two 

sets of measurements. The bias is represented by the gap between the x-axis, corresponding 

to the zero differences (red dotted line) and the mean difference in each pair of measurements 

(black dashed line). The bias in the measurements of Chui et al. (3865 cones) is larger than 
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in the group 1 and 2 (1744 and 1828 cones, respectively). Also, the limits of agreement 

defined as the mean difference ± 1.96 SD of differences (black lines) in the measurements 

of Chui et al. are higher than those in group 1 and 2. This correlates with the previously 

calculated values of CoV for the study Chui et al. and two age groups with respect to the 

histology data of Curcio et al. A paired t-test confirmed the significance of the bias in the 

measurements of Chui et al. and two age groups (Table 5.9). 

The obtained cone densities in the measured parafoveal region showed a slower decrease 

rate than the data by Curcio et al., resulting in higher cone counts for the current data. Curcio 

et al. noted that at 1.3–1.4 mm cones are larger and circular in shape and rods encircle these 

cones. Due to resolution of the rtx1 AO device it is difficult to delineate the rods at these 

eccentricities. However, when examining further away from the fovea (1.5-2.2mm), rods are 

easier to be distinguished based on their larger size and therefore can potentially be detected 

by the automated cone counting algorithm. Moreover, when comparing in-vivo cone 

counting as presented here with histology findings of postmortem tissues, one should take 

into account a shrinkage effect commonly present as part of the preparation for histology. 

As the shrinkage does not have a uniform effect on the retina, it is difficult to factor it out 

during post-processing. Retinal tissue can shrink up to 10-20% during the measurements 

[271], thus the cone densities in the Curcio et al. paper could potentially represent data for 

the retina at eccentricities shifted by 0.1-0.2 mm towards the fovea. These two effects, the 

presence of rods and the shrinkage effect of histology, could have possibly contributed to a 

larger difference in parafoveal locations (1.5-2.2 mm) between the cone density estimates 

obtained in this study and the histology data.  

In summary, the results presented here provide a baseline for analysis of cone photoreceptor 

packing distribution in an emmetropic child and adult population. Based on the calculated 

cone packing densities, further statistical correlations can be derived, such as correlation of 

cone packing density with axial length, age and spherical refractive error as well as 

investigation of regularity of cone packing arrangement. These analyses allow us to 

quantitatively assess the differences in cone distribution attributed to the age and retinal 

development in an emmetropic child population. The obtained results can be used for 

comparison with the data related to pathological photoreceptors in pediatric eyes. 
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5.2.6 Image Deconvolution followed by Hessian-LoG 
Filter 

To evaluate how the proposed image deconvolution stage (Chapter 4) facilitates the 

automated cone counting we performed two studies, on the synthetic retinal data and real 

AO images. For the first part of this study, the test data generated for the performance 

evaluation of the Random Forest was used (see Section 4.4.1 and 4.5.1). The cone counts 

were estimated with the use of the Hessian-LoG filter in 1000 synthetically blurred images 

of size 126x126 pixels. Then, these images were restored with the trained Random Forest as 

described in Section 4.4 and the cone counts were estimated again. The number of TPs, FPs 

and FNs were calculated for each image as described in Section 5.2.3. Table 5.10 

summarizes these results averaged for 1000 images.  

 TP ratio FP ratio FN ratio 

Cone Counting before 
Image Deconvolution 97.9% 0.69 % 2.1% 

Cone counting after 
Image Deconvolution 98.4% 0.44% 1.6% 

Table 5.10: Average TP, FP and FN ratios for 1000 synthetic images obtained by the 

proposed cone counting method before and after image deconvolution stage. 

Despite the images being significantly distorted by convolution with the randomly generated 

blur kernels, the proposed cone counting method still performs well in both cases, with and 

without image deconvolution step. Successful restoration of synthetically blurred images 

facilitates better differentiation of cones and thus helps to reduce number of FPs and FNs, 

especially in the images where cones are more densely packed (Figure 5.14-g). Figure 5.14 

illustrates the process of cone detection in two images, imitating the retina at 1.2 mm (Figure 

5.14-a) and 0.9 mm (Figure 5.14-g) before and after performing image deconvolution. To 

ease interpretation, the obtained results are overlaid on the images with disks used for 

synthetic data generation. FNs and FPs are marked with red solid and red dotted circles, 

respectively. In this experiment, the boundary cones, excluded from the counting procedure, 

were found based on the distance criterion from the edge of the image. A shift during image 

deconvolution led to a few number of false positives related to the missed boundary cones. 

Despite that, the proportion of FPs is still low according to Table 5.10. 
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Cone detection in the synthetic images 
before image deconvolution  

Cone detection in the synthetic images 
after image deconvolution 

  
(a) Synthetic image at 1.2 mm (b) Restored image (a) 

  
(c) Cone coordinates detected in the image 

before deconvolution (a) 
(d) Cone coordinates detected in the image 

(a) and overlaid on the image with disks 

  
(e) Cone cone coordinates detected in the 

image after deconvolution (b) 
(f) Cone coordinates detected in the image 
(b) and overlaid on the image with disks 

Figure 5.14:  Cone detection in two synthetic images, imitating the retina at 1.2 mm and 0.9 

mm eccentricity before and after image restoration. Solid red circles and red 

dotted circles indicate FNs and FPs, respectively. 
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(g) Synthetic image at 0.9 mm (h) Restored image (g) 

  
(i) Cone cone coordinates detected in the 

image before deconvolution (g) 
(j) Cone coordinates detected in the image 
(g) and overlaid on the image with disks 

  
(k) Cone cone coordinates detected in the 

image after image deconvolution (h) 
(l) Cone coordinates detected in the image 
(h) and overlaid on the image with disks 

Figure 5.14 (Cont.): Cone detection in two synthetic images, imitating the retina at 1.2 

mm and 0.9 mm eccentricity before and after image restoration. Solid red 

circles and red dotted circles indicate FNs and FPs, respectively. 

In addition, the cone density distribution was analysed in retinal datasets of four adult 

subjects processed with the proposed image processing framework. The cone density was 
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estimated in a window of size 100x100 μm taken at 0.9 - 2.1 mm temporal meridian with the 

step size of 0.3 mm. The window size was adjusted according to the axial length of each 

subject. For comparison purposes, the sampling windows were cropped from the images 

obtained after the image registration and image deconvolution. The cone density was 

estimated in two sets of images and the obtained cone counts per window were then 

recalculated as cone density in cell/mm2. The photoreceptor cells located at the boundaries 

of the image were excluded from the counting procedure. In Table 5.11 the results of this 

study are presented and validated against the histology data of Curcio et al. [30] at the same 

eccentricities. Measurements acquired from the image before and after image deconvolution 

step are in close agreement with the histological values, with the concordance correlation 

coefficients of 0.99 and 0.982, correspondingly. The calculated CoV between the 

measurements before image deconvolution and histology data of Curcio et al. appeared to 

be lower than that obtained after image deconvolution. The CoV increased from 0.9% to 

1.7% when cone density was assessed after performing image deconvolution. However, 

given a small number of samples, it is difficult to interpret the differences in the 

measurements with statistical significance. Despite that, as in the previous study on synthetic 

images, here the image deconvolution stage detects a slightly higher number of cones. Figure 

5.15 shows an example where the cone counts in the restored image outnumber those 

obtained from the image after registration stage 

 Before image 
deconvolution 
(mean ± SD) 

After image 
deconvolution 
(mean ± SD) 

 

Curcio et al. 

(mean) 

0.9 Temporal 20 825 ± 746 21 550 ± 568 21 184 

1.2 Temporal 17 750 ± 250  18 225 ± 238  17 786 

1.5 Temporal 15 137 ± 491 15 600 ± 291 15 603 

1.8 Temporal 13 225 ± 843 14 375 ± 834 13 542 

2.1 Temporal 11 400 ± 809  12 550 ± 712 11 613 

Table 5.11: Comparison of cone density estimated in the images at different retinal 

eccentricities before and after image deconvolution with the histological data 

of Curcio et al. [30]. 
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Figure 5.15:  Cone coordinates detected in the retinal images before (left) and after image 

deconvolution (right) and overlaid on the AO retinal image acquired at 0.9 

mm. Red solid circles show the cones detected after image deconvolution but 

missed in the image after registration stage. Red dotted circles show the cones 

detected before image deconvolution but missed after the image was restored. 

Figure 5.16 presents the results of image enhancement with the Hessian-LoG filter 

performed on four representative AO retinal images, obtained after image deconvolution. 

These images are compared with those obtained at the previous stage of image processing 

framework in terms of sharpness measure. As it can be noticed, the enhancement with the 

Hessian-LoG filter further increases the image sharpness and facilitates more circular 

appearance of photoreceptor cells. 
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Retinal images after image 
deconvolution 

Retinal images enhanced with  
Hessian-LoG filter 

Retinal dataset 1 

BM1 = 0.3820 BM1 = 0.6097 

Figure 5.16:  Comparison between retinal images obtained after image deconvolution (left) 

and enhancement with the Hessian-LoG filter (right) in four representative 

images in terms of sharpness measure (BM1), showing retinal images at 

different scales: 1.2mm, 40 µm (upper row) and 154 µm (bottom row). 
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Retinal dataset 2 

BM1 = 0.4129 BM1 = 0.6218 

Figure 5.16 (Cont.): Comparison between retinal images obtained after image deconvolution 

(left) and enhancement with the Hessian-LoG filter (right) in four representative 

images in terms of sharpness measure (BM1), showing retinal images at 

different scales: 1.2mm, 40 µm (upper row) and 154 µm (bottom row). 
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Retinal dataset 3 

BM1 = 0.4714 BM1 = 0.6247 

Figure 5.16 (Cont.): Comparison between retinal images obtained after image deconvolution 

(left) and enhancement with the Hessian-LoG filter (right) in four representative 

images in terms of sharpness measure (BM1), showing retinal images at 

different scales: 1.2mm, 40 µm (upper row) and 154 µm (bottom row). 
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Retinal dataset 4 

BM1 = 0.4140 BM1 = 0.6129 

Figure 5.16 (Cont.): Comparison between retinal images obtained after image deconvolution 

(left) and enhancement with the Hessian-LoG filter (right) in four representative 

images in terms of sharpness measure (BM1), showing retinal images at 

different scales: 1.2mm, 40 µm (upper row) and 154 µm (bottom row). 

  

40 µm 

154 µm 
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5.3 Analysis and Discussion  

In this chapter, an automated algorithm is proposed for the detection of photoreceptor cones 

in high-resolution retinal images. Blob detection followed by LoG filtering are employed in 

order to enhance circular objects in the image. As a result, a binary mask is created, which 

is used for segmentation of photoreceptor cells from the image. This subsequently transforms 

cone counting into a straightforward process. The corresponding cone coordinates are 

calculated as the local maxima of the original image within the cone locations specified by 

the binary mask. In comparison with state-of-the-art automated methods, the Hessian-LoG 

filter allows for both geometric and intensity image information to be integrated in the 

process of cone density estimation. 

Two sets of synthetic images were generated to assess the performance of the automated 

cone counting methods. The calculated image quality measures (sharpness measure, image 

contrast and variance presented in Table 5.1) indicated that the generated synthetic images 

resemble characteristics of real AO high-resolution retinal images. The validation tests on 

the synthetic data showed that the proposed approach performs better than the algorithm of 

Li and Roorda, with an average TP ratio of 98.8% in both synthetic sets. When testing the 

images where cones are densely packed, the algorithm of Li and Roorda does not only show 

a lower number of correctly identified cones but also a high number of false positives. This 

generally occurs as a result of merging closely located cones due to the use of the dilation 

operation, employed in this method. Overall, the average TP ratio of the Li and Roorda 

algorithm was found to be 93.9% , which is within a range of 93% - 96% reported in the 

original study [79]. 

In order to benchmark the manual counting procedure implemented in this part of the thesis, 

four observers carried out manual labeling of cones on the synthetic data. The average 

performance of manual counting appeared to be lower than that of the proposed Hessian-

LoG filter, but higher than the one of the Li and Roorda algorithm. In set A, where the 

differentiation between cones proved to be harder especially for the human eye, the detection 

rate of correctly identified cones by manual counting falls to 95.6% in comparison with 

98.1% by the proposed method. In set B, all the methods showed satisfactory detection rates 

with a variance of 0.38%. 
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The cone packing density was calculated on ten AO high-resolution retinal images acquired 

at different retinal eccentricities using the proposed cone counting algorithm, the algorithm 

of Li and Roorda and the proprietary software of Imagine Eyes. The results were compared 

against manual counts provided by the four observers. To ease the interpretation of the 

results, the data were presented with a box-and-whisker plot as a function of the error with 

respect to manual counting. Amongst the methods under consideration, the proposed 

approach demonstrated the closest agreement with manual counting, with an average CoV 

of 1.3%. The results obtained by the software of Imagine Eyes showed the smallest variance 

in the box-and-whisker plot, thus proving to be more consistent, with an average CoV of 

1.8%. The Li and Roorda algorithm produced the highest detection error as well as the 

highest variance amongst the methods, with an average CoV of 3.2%.  

The main advantage of the proposed method is that the Hessian-LoG filter can be used for 

enhancement of high-resolution retinal images as well as cone detection. By multiplying the 

Hessian-LoG filtered images with the corresponding retinal images obtained after the stages 

of illumination compensation, noise suppression and image registration, the contrast of 

photoreceptor cells can be significantly enhanced. The corresponding improvement in the 

quality of the retinal images will ease visual interpretation, thus facilitating clinicians in the 

visual examination of the living retina and the diagnosis of different types of eye diseases.  

The proposed cone counting method was further tested in a clinical study investigating cone 

packing distribution in children and adult emmetropic population. It was found that results 

obtained from both age groups were in good agreement with the histology data reported by 

Curcio et al. [30], once again proving the accuracy of the proposed automated cone counting 

method.  

In this chapter, we also investigated how the image deconvolution influences the accuracy 

of the cone detection. The evaluation studies on the synthetic and real retinal images 

confirmed that the restoration process allows for a higher number of cones to be correctly 

identified with the automated method based on the Hessian-LoG filter. By removing the 

residual blur from the retinal images during the deconvolution process, a better separation 

of the photoreceptor cells is achieved. This facilitated further improvement in the image 

sharpness when the restored images were enhanced with the Hessian-LoG filter (Figure 

5.16), increasing the sharpness measure on average by 50%.  
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Interpretation of the results reported in this chapter should also account for a number of 

limitations, attributed to the methods as well as the lack of validation studies in this field. To 

our best knowledge, there are limited validation results available on the proprietary software 

of Imagine Eyes. Moreover, the Imagine Eyes software only processes custom-made image 

files, acquired by the Imagine Eyes AO instrument, and therefore it has not been possible to 

test this method on synthetic images. In regards to the proposed method, the main weakness 

and cause of the variability in the produced results lies in the use of a user-defined 

thresholding for localization of photoreceptor cells. While in the retinal images used in this 

research, 60% of the global threshold was sufficient to successfully segment the cones from 

the background, this parameter may need to be adjusted for the images acquired in 

pathological cases. 

In conclusion, the contribution of this chapter includes the proposed automated cone 

counting algorithm. Our goal was to employ both geometric and intensity image information 

in order to ensure correct identification of photoreceptor cells. Various validation studies 

confirmed that in comparison with the state-of-the-art methods the proposed algorithm 

achieves better detection rate in the retinal images of various quality and can provide 

quantitative statistics of cone packing density close to histologic reference data. 

The next chapter concludes the work presented in this thesis, provides limitations of the 

framework, suggests refinements for optimisation of the implemented methods and proposes 

further steps for future research. 
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6. Discussion and 

Conclusions  

6.1 Summary of the Thesis Work  

In this work, we have presented an automated computer vision system developed for 

enhancement of high-resolution retinal images acquired with the AO flood-illuminated 

instrument and accurate detection of photoreceptor cells. The AO instrument is a complex 

system, which includes a number of photoelectric components, corrupting the quality of 

acquired retinal images. The human factor and dynamic nature of eye optics also contribute 

to distortions in the retinal images. The proposed image processing framework was 

developed in attempt to tackle each of identified sources of degradation in the AO system 

and thereby gradually improve the quality of AO retinal images at each step in order to 

recover the true image. To this purpose, the implemented framework included a number of 

different image processing procedures such as illumination compensation, noise 

suppression, image registration, image deconvolution, enhancement and detection of 

photoreceptor cells. 

In order to objectively evaluate the extent of improvement in retinal images at each stage, a 

reliable image quality assessment method is required. To this end, four different image 

quality measures were examined: two blur measures, image contrast and image variance. 

The aim of this research project is to facilitate better distinction of photoreceptor cells which 

potentially can assist clinicians in the examination of the living retina. In this manner, the 

fidelity of an image quality measure is effectively appreciated according to human visual 

perception. In the performed experiments, the measure based on the edge detection operator 

− Blur Measure, BM1 (or sharpness measure as we refer to it in the thesis) − showed the 

ability to predict image quality in a manner that agrees with human ratings (Section 3.3). 

Therefore, it was chosen as the quality assessment measure for high-resolution retinal images 

in the proposed image processing framework. We were able to successfully use this 

sharpness measure to evaluate the level of improvement at each stage of the proposed image 

processing framework and benchmark different image processing methods. The sharpness 
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measure was also used to eliminate bad quality frames prior to image registration as well as 

select local regions for mapping the final image in lucky averaging scheme.  

However, this measure is not suitable for measuring the noise levels, as generally, the noisier 

the image the more spurious intensity variations it contains and therefore the more edges are 

detected by the Sobel filter. This problem occurred at the stage of noise suppression, when 

the quality measure of processed retinal images appeared to be lower than the one resulted 

after the stage of illumination compensation (Section 3.5). To this purpose, apart from 

evaluating the amount of blur we also need to correctly quantify the amount of noise in the 

image. To achieve this, the Power Spectral Ratio was calculated between the images before 

and after applying a band-pass filter in order to evaluate the amount of improvement at the 

image denoising stage. Ideally, a generalized measure which is sensitive to both noise and 

blur, should be used for accurate estimation of image quality in the proposed image 

processing framework. Such measure is especially needed for processing images depicting 

pathological retinas, where the AO loop does not function perfectly and thus the acquired 

frames in dataset are generally much noisier than those acquired in healthy subjects.  

High-resolution retinal images acquired with AO instrument are characterized by a bright 

illumination pattern which is gradually falling off at the edges. This impairs the visibility of 

retinal features, and moreover, adversely affects the next steps of the image processing 

framework. To surpass this problem, a retrospective illumination correction method was 

embedded in the proposed image processing framework. Spatial filtering is typically used 

for correction of uneven illumination in images. However, despite its simplicity and fast 

implementation, this type of illumination correction can perform poorly when illumination 

and reflectance content have overlapping spatial frequencies. In this thesis, the existing 

wavelet-based illumination compensation model was adopted in order to correct for the 

intensity inhomogeneity present in high-resolution retinal images (Section 3.4). The 

comparative study showed that this method provides the minimum of local brightness 

variation and the highest value of sharpness measure amongst other methods, thus proving 

to successfully decompose the retinal image into the luminance and reflectance components. 

To ensure high fidelity estimation of the illumination component, the level of decomposition 

and the type of wavelet were carefully chosen. The optimal level of decomposition was 

found based on homogeneity of the approximated background and local brightness variation 

of the restored image, in an automated manner. This allowed to minimize the number of 
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input variables in the system for each retinal image. Generally, five to six levels of 

decomposition are appropriate for approximating the background of retinal images since at 

these levels the recovered image shows the lowest local brightness variation and the 

estimated background has the highest homogeneity.  

Daubechies wavelets are the popular choice in many image processing tasks as they are real 

and continuous in nature and have least RMS error compared to other wavelets [272]. 

Nevertheless, the decomposition of the image into approximation and detailed sub-bands 

with this type of wavelets still imposes some aliasing errors. By changing the coefficients of 

approximation component to a constant value the same artefacts appear in the recovered 

image. The artefacts caused by Daubechies wavelet decomposition can be described as 

vertical and horizontal lines (Subsection 3.4.5). DB10 type of Daubechies wavelets was 

chosen for decomposition of retinal images in this framework as it showed a slightly higher 

sharpness measure as well as introduced minimum artefacts to the reconstructed images. To 

prevent even a minor corruption of the integrity of the retinal features, a wavelet-Fourier 

filter was applied to reconstructed retinal images in order to eliminate block artefacts, 

imposed during the reconstruction process. 

In order to compensate for the eye saccadic motions inflicted between the frames as well as 

suppress thermal and photon noise, image registration was performed on the dataset of 

retinal frames. Feature-based methods are not suitable for the registration of high-resolution 

retinal images as it is not feasible to choose adequate control points. Since blood vessels lie 

in a different layer of the retina, extraction of these features and performing image 

registration in reference to them will blur the photoreceptor cells. Therefore, the phase 

correlation method known as the POC was used to calculate transformation parameters in 

retinal images.  

However, in high-resolution images large scale vessels can negatively affect the 

performance of correlation-based image registration method as well. Located in a different 

layer of the retina, these vessels do not have sharp edges and this can cause inaccuracy in 

calculation of transformation parameters. Moreover, as a correlation technique, the POC 

may fail when there are large changes in scale and rotation between reference and test 

frames. For these reasons, the registration process was divided into coarse and fine stages 

(Section 3.6). At the coarse stage, the POC with sub-pixel accuracy was employed to find 
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the translation parameters between the frames. At the fine stage, the transformation model 

was refined by calculating rotation angles and residual translation with the use of Procrustes 

alignment, where landmark configuration was defined by the coordinates of the brightest 

cones in the test and reference frames. While finding the matching control points in 

unregistered frames is a challenging task, after performing coarse registration it becomes 

possible. Now, the minimum cone spacing can be used to establish the matches between the 

brightest cones in test and reference frames. However, due to the angle of incident light and 

light scattering, the coordinates of the brightest pixel within the photoreceptor cell may 

change from frame to frame. For this reason, the coordinates of the brightest pixels in the 

reference frame were updated with the translation vector found using the POC performed on 

the windows cropped around candidate cone locations in the reference and test frames. Final 

matching points were used in Procrustes algorithm to refine the transformation model with 

the rotation and residual translation vectors.  

Both stages of the image registration approach were tested by translating and rotating the 

image by a known amount. In both cases the proposed image registration method showed 

good accuracy as long as the examined pair of frames is of good quality. To this purpose, 

the retinal image sequence was sorted according to the sharpness measure. The frames with 

quality measure lower than the 0.15 quantile of the overall sharpness measure distribution 

were eliminated from the retinal dataset prior to the image registration. To ensure high 

accuracy of rotation detection, a parametric study was performed on the model of fine 

registration. It was established that sampling the regions around brightest cones up to 5 times 

and 200 control points allow for high fidelity estimation of transformation model, dropping 

the error to the 4th significant figure (1e-4) (Subsection 3.6.5). Qualitative comparison of the 

averaged images where only the translation vector was compensated with the images where 

both rotation and translation were corrected showed that the details in the latter are sharper, 

especially at the edges. Calculated image quality metric confirmed that the sharpness has 

been increased by 6% for all the images where rotation was additionally corrected. 

To account for intra-frame variability in image quality, the “lucky averaging” scheme was 

employed. The final retinal image was constructed by averaging the local regions with the 

best sharpness measure in co-registered frames. The calculated sharpness measure indicated 

that a “lucky averaging” approach provides an additional improvement of 4% in the contrast 

of the retinal images in comparison to a typical averaging of frames. 
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In the images of pathological retinas, the use of brightest cones as control points can be 

problematic. Often, the brightest pixels correspond to the part of retina which was severely 

distorted due to the disease. This is caused by the changes in the reflectance properties of 

the photoreceptor mosaic in pathological retinas [112]. For example, in patients with DR it 

was found that the parafoveal cone photoreceptors appeared to have a higher variation in 

intensity, especially in the areas of intraretinal focal oedema [113]. Also, due to poor 

correction with AO, the retinal content may vary even more from frame to frame than in 

healthy retinas. Thus, it becomes more difficult to find appropriate matches. To facilitate 

this process, an additional criterion for choosing control points can be added in the 

framework, such as circularity of the photoreceptor cells. This will guarantee that the chosen 

cones are the least damaged by the disease and thus have more regular appearance in the 

recorded frames. 

Given that intensity-based registration techniques are generally sensitive to the noise and 

illumination variations, the calculation of transformation parameters requires additional 

image processing techniques prior to image registration. In the proposed model, the fine 

stage of image registration is highly sensitive to the image noise, therefore the prior stage of 

noise suppression has a great impact on the resulting image and success of rotation detection 

in general. In this study, a Gaussian band-pass filter was used in order to increase contrast 

and remove high-spatial-frequency noise (Section 3.5). The choice of cut-off frequencies is 

very important in frequency processing, as wrong estimation of the spatial frequency of 

imaging objects can amplify the level of noise in the image. In high-resolution retinal images 

the cone is the smallest object to be imaged; therefore, the frequencies beyond the cones’ 

frequencies correspond to the noise and should be filtered out. Based on the scale of the 

retinal features the corresponding frequencies were calculated and used as the stop frequency 

of the band-pass filter. The start frequency was found automatically as a first peak in the plot 

of radially averaged power spectrum of the retinal images. 

In this work, the spatial frequencies of photoreceptor cones were derived from visual angles, 

as a projection of the image on the retina [137]. This formula requires knowledge of the focal 

length of human eye and photoreceptor cell diameter. This adds up two variables in the image 

processing framework, on which the accuracy of image restoration depends. Alternatively, 

the spatial frequency of photoreceptor cones can be estimated directly from the radially 

averaged power spectrum of the retinal image. However, in pathological cases, the Yellott’s 
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ring will be less defined due to irregularly of cone packing, which makes it harder to 

automatically estimate the cones’ spatial frequency. 

The sharpness measure and image contrast were calculated before and after image denoising. 

While image contrast was significantly improved, the sharpness measure was slightly 

decreased due to smoothing introduced by the Gaussian band-pass filter. Therefore, in order 

to evaluate the amount of noise suppressed, the Power Spectral Ratio was calculated between 

the images before and after image denoising. Overall, the signal within the range of cut-off 

frequencies has been improved by 150%. 

Even though the AO system performs wavefront detection and correction of high-order 

ocular aberrations, due to hardware limitations of the wavefront corrector, the acquired 

retinal images are still corrupted by residual aberrations. Therefore, an image restoration 

technique such as image deconvolution was included in the image processing framework. 

Prior knowledge on the blur kernel can significantly improve the accuracy as well as 

convergence of the deconvolution method. In AO, the degradation function of the system 

can be estimated partially from WFS. However, due to lack of the synchronization between 

image capturing and wavefront calculation, the WFS data cannot be used directly. However, 

it could serve as initial estimate of the true PSF of the system in the deconvolution process. 

Unfortunately, this data is not available in the commercial AO flood-illuminated instrument. 

Therefore, in this work a blind deconvolution method was proposed. 

Conventional blind deconvolution methods are more prone to getting trapped in local 

minima, especially when there is only a single blurred image to be restored. In this work, for 

computational cost-saving, the restoration process was performed on final images obtained 

after registration of retinal frames. To this purpose, we developed a learning method based 

on a multi-variate Random Forest regressor (Section 4.2). Although a number of learning-

based techniques have been proposed in the literature for the purposes of image 

deconvolution [193, 194], [237], these methods rely on generalized models and therefore 

their accuracy is limited to specific types of blur. In addition, in most of the reported methods 

the achieved resolution of the recovered blur kernel is often found to be restricted by size. 

In our work, the system’s PSF was modelled by the physics/optics of the AO flood-

illuminated system and thus constrained as a member in a class of parametric functions 

(Section 4.3). Parametrization of the PSF through the pupil phase allowed to significantly 
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reduce the degree of uncertainty in image deconvolution. The mathematical model of the 

system’s PSF was defined through the wavefront phase error retaining the first 15 Zernike 

terms, where all parameters were fixed according to the specifications of the AO flood-

illuminated system, rtx1. This allowed to represent the blur kernel in a compact form as a 

vector of Zernike coefficients in the implemented framework, and thus estimate a 

convolution blur kernel for AO retinal images without compromising resolution. In AO high-

resolution retinal images, out-of-focus planes of the retina also contribute to the image 

formation, resulting in additional blur and distortion. To account for this, apart from high-

order aberrations the PSF’s model also included the defocus phase. 

Across the image and the retinal dataset, single cones imaged with AO show a certain 

variability in reflectance, appearing with different intensity levels. This is caused by the 

changes in their directional sensitivity, the so-called optical Stiles–Crawford effect [97]. In 

addition, the visibility of the retinal features is also altered by other factors, which are more 

difficult to single out. As mentioned previously, the retina is a 3D volume, where retinal 

layers interact differently with the optics of the imaging instrument. This results in a non-

uniform blur across the recorded retinal images. 

Due to the aforementioned variations in image quality it is difficult to restore retinal image 

with a single PSF. In the proposed method for image deconvolution, we attempted to tackle 

this problem by extracting the features from small windows containing a single cone. In 

order to capture structural changes in the local shape caused by blurring, the HoG features 

were used (Subsection 4.4.1). To limit the nature of variations down to the corruption of 

cone shape due to blur, the HoG features were extracted from only the brightest cones and 

then averaged across the image. Experimental analysis showed that this approach reduced 

the generalization error by 82.5% in comparison with the case where HoG features were 

extracted from all photoreceptor cells. Moreover, this feature extraction technique allowed 

for the inference of PSFs from unseen retinal images of various quality, taken at different 

locations of the retina. 

In the proposed model, a convolution kernel was estimated through non-linear regression of 

HoG features extracted from retinal images onto the space of PSFs expressed in terms of 

Zernike coefficients. This was achieved by training the Random Forest on a large dataset of 

synthetically generated retinal images and PSFs. For the estimation of the target vector of 
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Zernike coefficients, KDE was used on the data aggregated from all the leaf nodes of the 

trained Random Forest (Subsection 4.4.2). In comparison with the commonly used averaging 

of the posterior probablity distributions, the KDE allowed to further decrease the prediction 

error by 39%. 

The proposed deconvolution method was validated on 1000 synthetic retinal images 

(Subsection 4.5.1). This study showed an average error of 0.5% for the predicted blur kernels 

and 4.6% for the reconstructed images, compared to the GT. The performance of the 

proposed deconvolution method was also tested on 25 AO retinal images, processed with 

the proposed image processing framework (Subsection 4.5.2). In comparison with the 

previous stage of the image processing framework, the deconvolution stage significantly 

increased the image sharpness by almost 100%. These results were also compared with the 

images restored with the state-of-the-art method by Sroubek and Milanfar [254]. The 

qualitative comparison indicated that the proposed deconvolution approach preserves better 

the edges of the photoreceptor cells as well as facilitates better separation of individual cells, 

while the ALM method seemed to blur the cones with poorly defined edges. This was 

confirmed also by the higher values of sharpness measure and contrast in the images restored 

with the proposed method. 

Overall, the validation studies showed that proposed image deconvolution method can 

successfully restore synthetic retinal images and significantly improve the quality of the real 

AO images. Despite that, the implemented model provides only an approximation to the real 

PSF of the AO system, as it does not account for all the spectrum of variations present in 

AO retinal images. Fixed parameters in the PSF model, such as axial length and pupil 

diameter, also contribute to the limitations of the proposed method. As there is no statistical 

model of the residual aberrations in pathological retinas, the implemented model is designed 

to restore images of healthy retinas. 

For enhancing photoreceptor cells in AO high-resolution retinal images the Hessian-LoG 

filter was employed (Chapter 5). This method allows for segmentation and detection of 

photoreceptor cells, thus providing the means for quantitative analysis of retinal images. In 

comparison with state-of-the-art automated methods, the proposed method integrates both 

geometric and intensity image information in the process of cone detection. As a result, the 

proposed method provides highly accurate estimation of cone density. Visual analysis 
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revealed that the proposed cone counting method can detect photoreceptor cells even in the 

areas where image is significantly blurred or obstructed, such as borders of the image and 

vessels. 

The performance of the Hessian-LoG filter was evaluated on both synthetic and high-

resolution retinal images, in terms of packing density. The results on the synthetic data were 

compared against the GT as well as cone counts obtained by the Li and Roorda algorithm 

(Subsection 5.2.3). For the synthetic datasets, our method showed an average detection 

accuracy of 98.8%, compared to 93.9% for the Li and Roorda approach. The approximated 

packing density, calculated on the retinal datasets, was validated against results obtained by 

a proprietary software from Imagine Eyes and the Li and Roorda algorithm (Subsection 

5.2.4). To quantify the accuracy of cone detection, four independent observers performed 

manual counting on the corresponding high-resolution retinal images. Among the tested 

methods, the proposed approach demonstrated the closest agreement with manual counting, 

with an average percentage difference of 2.7%. 

With the use of the proposed cone counting method, the cone packing distribution was 

investigated in children and adult emmetropic populations (Subsection 5.2.5). The cone 

density was calculated across the retina in four meridians for all subjects in two age groups. 

In order to verify the results obtained with the Hessian-LoG filter, the calculated density 

distributions were compared with cone density established based on the histology data by 

Curcio et al. [30] and results of AOSLO by Chui et al. [84]. The cone density distribution 

obtained with the proposed cone counting method appeared to be in closer agreement with 

the postmortem measurements, than the data obtained with AOSLO. The average CoV 

between the results by Curcio et al. [30] and the examined two age groups of the current 

study was 2.5%, 10.2%, 4.4%, 8% (with p < 0.05) in the nasal, temporal, superior and 

inferior quadrants, respectively.  

To verify that the image deconvolution stage is beneficial for the image processing 

framework, two studies were performed where cone counts were calculated on synthetic and 

real retinal images before and after image deconvolution (Subsection 5.2.6). Both studies 

proved that the restoration of the images with the proposed method based on the Random 

Forest allows for a better separation of the photoreceptor cells and as a result leads to a higher 
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number of cones to be correctly identified with the automated method based on the Hessian-

LoG filter. 

The main advantage of the proposed cone counting method is that the Hessian-LoG filter 

can be used for the enhancement of high-resolution retinal images as well as cone detection. 

The images produced after Hessian-LoG filtering were used as a mask multiplied with the 

images obtained at the previous stage of image processing framework. Adopting this process 

resulted in a more circular appearance of photoreceptor cells and facilitated further 

improvement in the image quality, increasing sharpness measure on average by 50%. 

Most of existing methods for cone detection methods cannot be considered as fully 

automated as they require manual input for parameters, such as the intensity threshold and 

intercell spacing, thus affecting the agreement between the results obtained by different 

observers. Due to the use of multi-scale Hessian filtering, the proposed cone counting 

method can be successfully used on a wide range of retinal images, taken at different retinal 

locations. However, the choice of a threshold value for localization of photoreceptor cells 

can play an important role. While in the retinal images used in this research, 60% of the 

global threshold was sufficient to successfully segment the cones from the background, this 

parameter needs to be thoroughly investigated on a larger dataset, including images of 

varying quality, spanning over retinas with different pathologies. 

The execution time of the implemented framework on an average PC with two cores is 

around seven minutes, which makes it suitable for performing image post-processing in 

clinical practice. The most expensive functions in the framework are rotation detection and 

lucky averaging. The runtime complexity of rotation detection is ܱ൫ܯ(ܰଶ +  ଶ)൯, whereܮଶܭ

 is the number of ܭ ,is the number of frames to be registered, ܰ is the size of the image ܯ

control points and ܮ  is the dimension of the window centred at cones. The runtime 

complexity of lucky averaging is ܱ൫ܯ(ܰଶ + ܲଶ) + ܲଶ(ܯ݈݃ܯ +  is the ܯ ଶ)൯, whereܲܯ

number of frames to be averaged, ܰ is the size of the image, ܲ is the size of the blocks. 

Further optimisation steps could be made in order to cut the computation time, such as use 

of parallel loops in lucky averaging and registration stage. 
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BM1 = 0.3619 BM1 = 0.6097 

Figure 6.1:  Comparison of retinal images produced by the commercial software of Imagine 

Eyes (left) and the proposed image processing framework (right). 

In comparison with the existing image processing frameworks designed for AO-corrected 

retinal images [71, 72], [80], [137, 138], the proposed framework was implemented in an 

attempt to compensate for the variety of possible degradation sources, interfering with the 

system. One of the commercially available programmes for the enhancement of AO retinal 

images is CK v0.1 from Imagine Eyes. To justify the potentials of the proposed image 

processing framework, the output image of the developed processing framework was 

compared with the image produced by the commercial software of Imagine Eyes (Figure 

154 µm 

40 µm 
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6.1). Based on the calculated image quality measure, the proposed image processing 

framework produces the final image with sharpness higher by 68%. Sharpness measure map, 

calculated for the retinal images produced by the software of Imagine Eyes and the proposed 

image processing framework (Figure 6.2), demonstrated that the proposed framework 

enhances the retinal image over the larger field of view. 

  

Figure 6.2:  Sharpness measure map calculated for retinal images produced by the 

commercial software of Imagine Eyes (left) and the proposed image processing 

framework (right). 

In this thesis, we only showed retinal images of healthy subjects processed with proposed 

image processing framework. However, in practice the implemented framework can be 

adapted for enhancement and detection of photoreceptor cells in pathological retinas. Figure 

6.3 shows the retinal image of glaucoma patient obtained with the proposed image 

processing framework and compared with the image produced by the software of Imagine 

Eyes. Due to the lack of data on the residual aberrations in pathological eyes after AO 

correction, the proposed deconvolution method was not able to remove the residual blur 

completely as well as restore the regularity of cones. Nevertheless, the calculated image 

quality measure has shown that the resulting image produced with the proposed framework 

is of higher sharpness than the one produced with the Imagine Eyes software. 
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BM1 = 0.4130  BM1 =0.2327 

Figure 6.3:  Resulting retinal image of the pathological retina obtained with the proposed 

image processing framework (left) and the software of Imagine Eyes (right). 

To conclude, in this thesis we have implemented an image processing framework that allows 

for gradual improvement of AO high-resolution retinal images and accurate detection of 

photoreceptor cells. Enhancement of retinal images with the implemented framework will 

assist eye professionals in visual interpretation of the data. Accurate quantitative assessment 

of retinal images will allow to examine a large number of images with significant time and 

cost-savings. This essentially brings benefits to both research and clinical environments, 

facilitating more clinical research studies devoted to characterisation of the density and 

spacing distribution of photoreceptor cells in-vivo. Moreover, based on the work presented 

here, a framework can be developed for characterisation of density and spacing distribution 

of photoreceptor cells in the diseased eyes. This will help clinicians in examination and 

tracking of the progression of the eye diseases at cellular level and evaluation of the efficacy 

of the proposed therapies over time. Eventually, development of such frameworks will 

promote AO imaging in regular clinical practice, changing the usual treatment process of 

eye pathologies. 

6.2 Contributions  

To summarize, the work presented in this PhD thesis resulted in the following contributions: 

60 µm 
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 A learning-based method was developed for deconvolution of high-resolution retinal 

images using a multi-variate Random Forest regressor. The proposed method allows 

for efficient prediction of blur kernels in a large range of high-resolution retinal 

images. Restoration of the retinal images with the estimated PSFs compensates for 

the residual optical aberrations thereby facilitating differentiation of photoreceptor 

cells.  

 An automated cone counting algorithm based on the Hessian-LoG filter was 

proposed. Integration of geometric and intensity image information by the scale-

based Hessian-LoG filter proved to provide accurate estimation of cone density. 

Moreover, the implemented method can be also used for enhancement of AO retinal 

images. Applying this filter to the retinal images results in significantly improved 

image sharpness and more circular appearance of photoreceptor cells. 

 The implemented image processing system may bring benefits to research and 

clinical applications by allowing easier visual interpretation of high-resolution retinal 

images and providing quantitative assessment of cone density distribution. 

6.3 Limitations of the Implemented Model 

Based on the discussion in Section 6.1, the following limitations of the implemented model 

were identified: 

 The chosen image quality measure can only effectively evaluate the extent of blur 

present in the retinal images. 

 The fine stage of image registration may not perform well in the retinal images with 

certain pathologies (for example in AMD subjects, where the retina has drusen). 

 The proposed deconvolution method is designed to compensate optical aberrations 

up to the 4th radial order of the Zernike polynomial expansion. 

 The accuracy of the PSF estimation depends on the parameters of the eye such as 

axial length and pupil diameter. 

 The proposed image deconvolution model doesn’t account for spatially varying blur 

and 3D nature of the retinal image.  

 The intensity threshold in the proposed cone counting methods has to be adjusted for 

the images of pathological retinas. 
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6.4 Proposal for Future Work 

To date a lot of effort has been applied to optical hardware improvement and development 

of new technologies in order to provide non-invasive retinal imaging at cellular resolution. 

Further advances in retinal image processing would maximize the potential of AO imaging 

in clinical practice. The work presented here has the capacity to be transformed into a highly 

efficient diagnostic tool; this will assist ophthalmologists in the interpretation of retinal data 

as well as provision of quantitative statistics. Based on the conclusions and identified 

limitations of the undertaken research, the following improvements as well as future research 

studies are suggested for further advancing the proposed image processing framework: 

 To develop a generalized measure sensitive to both, noise and blur, which can be 

used to assess the quality of high-resolution retinal images and therefore to 

benchmark the performance of image processing techniques performed on retinal 

images. The difficulty to correctly quantify noise and blur when both are present in 

the image arises due to their contradicting effects on image properties. In the 

frequency domain, noise affects the whole frequency band and mainly increases the 

higher-frequencies, while blur mainly supresses the higher-frequencies. For this 

reason, in many practical application image quality assessment methods account for 

only one of these impairments ignoring the other [273]. 

 Driven by compromise between the complexity of the PSF model and computation 

time spent for the training of the Random Forest, we have retained the first 15 Zernike 

terms in the implemented model of PSF. This model can be further refined by 

including information on positive correlation between certain optical aberrations. 

This analysis can reveal a joint probability distribution of different types of optical 

aberrations after AO correction loop. This would allow to reduce the range of values 

for certain optical aberrations and therefore bring down the number of training 

samples in the Random Forest, or alternatively allow to include more terms in the 

model of PSF. While in this study it was assumed that the AO correction is uniform 

across all aberrations, investigation on the partial compensation for each type of 

aberrations with AO system can improve the accuracy of PSF estimation as well as 

limit the number of training data for the Random Forest. 
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 In a commercial AO instrument, rtx1, the WFS data is not available. However, it 

would be useful for setting the range of values in the PSF model. As a result, this 

would allow to significantly reduce the space of valid PSFs, since the “real” PSF 

does not deviate too far from the values measured by WFS.  

 One could notice that at the borders of retinal images, the photoreceptor cells are 

generally worse resolved than in central parts. Such a difference in image quality is 

caused by isoplanatic field [274], which defines the area within which the variation 

of optical aberrations is considered negligible. Thus, the PSF in the central region of 

the retinal image and at the borders will be different. To account for spatially varying 

blur, the PSF in the central region and at the borders of retinal images should be 

calculated separately. In order to segment these two areas, the isoplanatic field of the 

retina needs to be calculated. 

 Based on the proposed model of image deconvolution, it is possible to develop a 3D 

deconvolution method, which accounts for true nature of the recorded AO high-

resolution retinal images. For this, a 3D volume of the retina is required. Up to date, 

this remains a challenge for the AO flood-illuminated instrument. 

 To develop an automated thresholding method for the images processed with the 

Hessian-LoG filter, robust to the intensity variations present in the images of healthy 

and pathological retinas. 

 The developed image processing framework can be used for further investigation of 

retinal tissues. Various research studies can be carried out on the images obtained 

from different regions of the retina in healthy and pathological subjects. A 

comparison study between image quality analysis of pathological (retinal tissue with 

lesion, microanerusym, drusen or glaucoma) and healthy eyes can be performed to 

understand the suitability of methods. The cone counting algorithm based on the 

Hessian-LoG filter can be used for analysing the integrity of cone photoreceptor 

mosaic, its density, spacing and reflectance. The performed image analysis can help 

to reveal cellular changes of retinal pathologies. This will eventually allow clinicians 

to track the progression of diseases and to evaluate the treatments applied to 

individual photoreceptor cells for inherited and acquired retinal degenerative 

diseases. 
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