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Abstract 

Vibration-based structural health monitoring (VSHM) is an automated method for assessing 

the integrity and performance of dynamically excited structures through processing of structural 

vibration response signals acquired by arrays of sensors. From a technological viewpoint, wireless 

sensor networks (WSNs) offer less obtrusive, more economical, and rapid VSHM deployments 

in civil structures compared to their tethered counterparts, especially in monitoring large-scale 

and geometrically complex structures. However, WSNs are constrained by certain practical issues 

related to local power supply at sensors and restrictions to the amount of wirelessly transmitted 

data due to increased power consumptions and bandwidth limitations in wireless communications.  

The primary objective of this thesis is to resolve the above issues by considering sub-Nyquist 

data acquisition and processing techniques that involve simultaneous signal acquisition and 

compression before transmission. This drastically reduces the sampling and transmission 

requirements leading to reduced power consumptions up to 85-90% compared to conventional 

approaches at Nyquist rate. Within this context, the current state-of-the-art VSHM approaches 

exploits the theory of compressive sensing (CS) to acquire structural responses at non-uniform 

random sub-Nyquist sampling schemes. By exploiting the sparse structure of the analysed signals 

in a known vector basis (i.e., non-zero signal coefficients), the original time-domain signals are 

reconstructed at the uniform Nyquist grid by solving an underdetermined optimisation problem 

subject to signal sparsity constraints. However, the CS sparse recovery is a computationally 

intensive problem that strongly depends on and is limited by the sparsity attributes of the 

measured signals on a pre-defined expansion basis. This sparsity information, though, is unknown 

in real-time VSHM deployments while it is adversely affected by noisy environments encountered 

in practice. 

To efficiently address the above limitations encountered in CS-based VSHM methods, this 

research study proposes three alternative approaches for energy-efficient VSHM using 

compressed structural response signals under ambient vibrations. The first approach aims to 

enhance the sparsity information of vibrating structural responses by considering their 

representation on the wavelet transform domain using various oscillatory functions with different 

frequency domain attributes. In this respect, a novel data-driven damage detection algorithm is 

developed herein, emerged as a fusion of the CS framework with the Relative Wavelet Entropy 

(RWE) damage index. By processing sparse signal coefficients on the harmonic wavelet 

transform for two comparative structural states (i.e., damage versus healthy state), CS-based RWE 



x 

damage indices are retrieved from a significantly reduced number of wavelet coefficients without 

reconstructing structural responses in time-domain.  

The second approach involves a novel signal-agnostic sub-Nyquist spectral estimation 

method free from sparsity constraints, which is proposed herein as a viable alternative for power-

efficient WSNs in VSHM applications. The developed method relies on Power Spectrum Blind 

Sampling (PSBS) techniques together with a deterministic multi-coset sampling pattern, capable 

to acquire stationary structural responses at sub-Nyquist rates without imposing sparsity 

conditions. Based on a network of wireless sensors operating on the same sampling pattern, 

auto/cross power-spectral density estimates are computed directly from compressed data by 

solving an overdetermined optimisation problem; thus, by-passing the computationally intensive 

signal reconstruction operations in time-domain. This innovative approach can be fused with 

standard operational modal analysis algorithms to estimate the inherent resonant frequencies and 

modal deflected shapes of structures under low-amplitude ambient vibrations with the minimum 

power, computational and memory requirements at the sensor, while outperforming pertinent CS-

based approaches. Based on the extracted modal information, numerous data-driven damage 

detection strategies can be further employed to evaluate the condition of the monitored structures.  

The third approach of this thesis proposes a noise-immune damage detection method capable 

to capture small shifts in structural natural frequencies before and after a seismic event of low 

intensity using compressed acceleration data contaminated with broadband noise. This novel 

approach relies on a recently established sub-Nyquist pseudo-spectral estimation method which 

combines the deterministic co-prime sub-Nyquist sampling technique with the multiple signal 

classification (MUSIC) pseudo-spectrum estimator. This is also a signal-agnostic and signal 

reconstruction-free method that treats structural response signals as wide-sense stationary 

stochastic processes to retrieve, with very high resolution, auto-power spectral densities and 

structural natural frequency estimates directly from compressed data while filtering out additive 

broadband noise.   
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WMSEŝ   optimum design of the multi-coset sampling pattern, s 
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Chapter 1 

 Introduction 

1.1. Structural Health Monitoring  

Structural Health Monitoring (SHM) of civil engineering structures such as buildings, 

bridges, dams, masts, etc., aims to assess their structural integrity and performance either 

periodically or following extreme events/actions (i.e., floods, earthquakes, structural upgrades, 

blast loading) (e.g., Brownjohn (2007)). Periodic structural assessment is pursued by long term 

SHM seeking to capture the gradual structural changes due to operational and environmental 

conditions (aging, degradation, thermal loading, etc.) and to provide useful information for 

structural maintenance and retrofitting, as well as validation of design models (e.g., Brownjohn 

(2007)). In the occurrence of extreme events, short term SHM involves rapid and real-time 

monitoring to provide information for intermediate structural integrity. Ideally, SHM should 

extract the maximum information at minimum time without interrupting the structure’s normal 

functionality. 

For most of the existing structures, apart from visual inspections which tend to be qualitative 

and non-continuous, vibration-based SHM (VSHM) is arguably the most commonly used method 

for global condition assessment (e.g., Lynch & Loh (2006); Lynch (2007); Nagayama & Spencer 

(2007); Spencer & Yun (2010)). It relies on acquisition and processing of structural dynamic 

response signals (e.g., acceleration responses) measured by sensors placed on structures exposed 

to time-varying loads, for the purpose of (i) estimating the inherent dynamic/modal properties of 

linearly vibrating structures under operational conditions, and (ii) detecting potential structural 

damage from vibration measurements.  

The first purpose above concerns the so-called modal identification problem, which is divided 

into experimental and operational modal analysis depending on the type of the excitation force, 

i.e., measured-deterministic signals or unmeasured-stochastic processes, respectively (e.g., 

Reynders (2012)). Traditional Experimental Modal Analysis (EMA) measures both input 

(excitation) and output (response) signals to infer structural vibration characteristics (i.e., natural 

frequencies ωr, damping ratio ζr, mode shapes φr). It is mainly applicable to laboratory 

experiments where controllable excitation forces (e.g., impact testing, harmonic excitations) are 

applied to sub-structures and structural components (e.g., Zhang et al. (2005); Reynders (2012)). 
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On the antipode, Operational Modal Analysis (OMA) – also known as ambient, natural excitation 

or output-only modal analysis – utilises unmeasured ambient/natural excitation forces (e.g., wind, 

vehicle, and pedestrian traffic), assumed to be wide-sense stationary stochastic processes 

observing a sufficiently flat spectrum across a wide frequency band that can be approximated as 

Gaussian white noise (i.e., stochastic quantities with unknown parameters but with known 

behaviour) (e.g., Zhang et al. (2005); Reynders (2012)). OMA is suitable for real-time monitoring 

of large-scale and complex structures with the minimum cost and network disruption, being 

particularly useful in cases where it is difficult or unaffordable to measure the input forces, and/or 

when controllable excitation of structures is not possible in practice (e.g., Amezquita-Sanchez & 

Adeli (2016)). However, OMA may encounter bias errors, measurement noise, and other un-

modelled effects and thus validation criteria are employed to assess the quality of the extracted 

modal estimates (e.g., Zhang et al. (2005)). 

Moving next to the structural damage detection problem in the VSHM framework, four 

different aims are normally set, i.e., (1) identification of the existence of structural damage; (2) 

detection of its location; (3) damage classification, and (4) quantification of damage severity in 

terms of structural serviceability/durability (e.g., Ewins (2000); Humar et al. (2006)). A plethora 

of damage detection algorithms have been proposed, capable to derive damage-sensitive indices 

by processing dynamic response signals, measured between the current (potentially damaged) and 

a past baseline (“healthy”) structural state (e.g., Sohn & Farrar (2001); Worden et al. (2007)).  

Traditional model-based damage indices can infer damage by measuring changes in 

physically meaningful properties, such as natural frequencies, mode shapes, mode shape 

curvature, etc., that describe the global structural response (e.g., Humar et al. (2006)). However, 

these quantities are adversely affected by environmental noise while they are not very sensitive 

to local damage (e.g., Doebling et al. (1988)). In fact, damage is a local phenomenon mainly 

captured by higher frequency modes that are not adequately excited in most cases, and thus rarely 

measured with sufficient accuracy (e.g., Doebling et al. (1988)). Further, these global features 

show little changes due to stress re-distribution in damaged structures, rendering the damage 

localisation problem a difficult task. On the contrary, the above limitations can be efficiently 

addressed by considering data-driven non-physical damage indices, derived from signal 

processing techniques on vibration signals (e.g., Humar et al. (2006)). Notably, these techniques 

enable direct operations on real-time monitored structural responses to optimally extract the 

carrier information. Among others, transformation operations can be particularly useful in VSHM 

deployments, allowing the signal representation in various domains and co-domains (e.g., time, 

space, frequency domain). Examples include the Wavelet Transform in the joint time-frequency 

or space-frequency domain (plane) (e.g., Goswami & Chan (1999)), being a powerful signal 

analysis tool capable to identify abrupt and cumulative damages (e.g., Sun & Chang (2004); Taha 

(2006)). 
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1.2. Conventional Wireless Sensor Networks (WSN) in VSHM  

Over the last two decades, the consideration of wireless sensor networks (WSNs) has been an 

important development in VSHM of civil structures (e.g., Lynch & Loh (2006); Lynch (2007); 

Nagayama & Spencer (2007); Spencer & Yun (2010)). It has emerged as a viable alternative to 

cabled sensor networks which are restricted by costly and labour-intensive installations of long 

coaxial wires. Specifically, WSNs enable dense structural instrumentation and access to remote 

locations on structures, offering less obtrusive, rapid, and more economical VSHM 

implementations, especially in monitoring large-scale and geometrically complex civil 

engineering structures. Compared to arrays of wired sensors, the reduction in cost is reported to 

be one to two orders of magnitude per sensing channel in real life applications (e.g., Spencer & 

Yun (2010)). Thus, WSNs are particularly suited for periodic VSHM of the large stocks of existing 

structures and for VSHM in the aftermath of natural disasters in densely populated areas.  

Nonetheless, wireless sensors are mainly powered by batteries in need of frequent 

replacement (e.g., from few weeks to few months depending on the application and the sampling 

considerations). Apart from the environmental impact, this has a direct impact on the maintenance 

cost of “permanent” VSHM in large-scale deployments and poses constraints to the rapid 

assessment of large number of structures. Alternatively, energy harvesting solutions can be used 

to power WSNs by exploiting environmental energy sources (e.g., wind, solar, thermal, etc.) – 

however, such solutions increase the overall cost for sensor deployment and pose restrictions in 

sensors placement. Thus, the consensus is that WSNs will become the preferred way for low-cost 

VSHM in civil structures once its major limitation – energy supply and power consumption – is 

addressed in a cost-effective manner (e.g., Lynch & Loh (2006); Lynch (2007)). 

A typical WSN used for VSHM is composed of wireless sensors – equipped with a sensing 

interface, computational core, and wireless transceiver – and a server (base station) that collects 

the transmitted measurements for further processing. In each component, the following operations 

are performed (see also Figure 1.1(a) and Lynch & Loh (2006); Lynch (2007); Nagayama & 

Spencer (2007); Novakovic et al. (2009); Spencer & Yun (2010)):  

• Sensing interface (wireless sensor): Traditional analog-to-digital converters (ADCs) are 

utilised to acquire structural responses at the uniform Nyquist rate, which is defined as 

twice the highest frequency component in the measured signals (i.e., twice the signal’s 

bandwidth, e.g., Jerri (1977)). In practical applications, though, faster sampling rates are 

employed followed by low-pass filtering to eliminate any potential aliasing and to increase 

resolution.  

• Computational core (wireless sensor): The acquired measurements are then stored at the 

sensor and locally processed by on-board micro-processors that typically perform off-line 
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lossy or lossless data compression (e.g., Duarte et al. (2012)). The main goal of this 

operation is to address the increased power demands and bandwidth limitations in wireless 

transceivers.  

• Wireless Transceiver (wireless sensor): This building block is responsible for the wireless 

communication between sensors and server by wirelessly transmitting and receiving the 

measured data. Notably, wireless data transmission is by far the most power consuming 

operation in WSNs ((e.g., Lynch (2007)), being inextricably linked with the local energy 

harvesting and/or battery replacement requirements in wireless sensors. The wireless 

transceivers are also constrained by the limited available wireless transmission bandwidth, 

posing limitations on the amount of data that can be reliably transmitted within WSNs. 

• Server (base station): After wireless data transmission to the server, the encoded 

measurements (i.e., compressed data) are de-compressed to retrieve the originally acquired 

signals, or an estimate of them in case of lossy compression schemes. The recovered 

measurements can be further processed by standard VSHM algorithms to retrieve the 

salient features of the monitored structures.  

Despite these efforts, the power resources of current WSNs are limited by the technical 

specifications of conventional wireless sensors, associated with the power consumption in the 

above operations (i.e., sampling and analog-to-digital conversion; computational and memory 

requirements; wireless communications among sensors and server, e.g., Lynch & Loh (2006); 

Lynch (2007); Nagayama & Spencer (2007); Novakovic et al. (2009); Spencer & Yun (2010)). 

Within this context, the most important factors are:  

• the sampling considerations, i.e., the sampling rate and resolution, continuous or periodic 

sampling and the pertinent duration of each monitoring interval, the length of the acquired 

dataset and the number of transmitted data;  

• the computational efficiency, i.e., the on-board hardware and software to be executed; 

• the network size, i.e., the number of wireless sensors within the network;  

• the network topology and the wireless communication protocol, controlling the power 

consumption by minimising the wireless transmission range and increasing the 

communication reliability by addressing the problem of information loss (i.e., due to 

missing data packets and/or multipath fading when radio waves are masked by obstacles, 

etc.);  

• the power supply and resources, i.e. the battery type, capacity, and drainage ratio due to 

ageing, or the energy harvesting requirements; and 
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• other issues related to errors due to inherent measurement noise in sensors, as well as spatial 

issues associated with the positioning of sensors.  

 

Figure 1.1: Comparison of four different data acquisition schemes in wireless sensors for VSHM: 

 (a) conventional; (b) CS-based; (c) PSBS-based; and (d) co-prime based approach 

1.3. Sub-Nyquist Data Acquisition Schemes for Low-Power WSNs in 

VSHM  

Recent advances in sub-Nyquist sampling schemes have paved the way for the development 

of Analog-to-Information Converters that involve simultaneous signal acquisition and 

compression at the sensor front-end prior to wireless transmission (e.g., Tropp et al. (2006), 

(2010); Bajwa et al. (2007); Mishali & Eldar (2010); Baraniuk et al. (2011); Jingchao et al. 

(2015); Moon et al. (2015)). Arguably, this technological breakthrough can offer viable 

alternatives for low-power WSNs in VSHM deployments, leading to significant savings in 

wireless communications (e.g., O’Connor et al. (2014)). The latter is accomplished by 

considering low-rate non-uniform sampling strategies (below the Nyquist rate) capable to: 

• Reduce the sampling and power requirements in the sensing interface; 

• Minimise the dimensions of transmitted data, yielding drastic reductions in the consumed 

power during wireless communications while efficiently addressing the pertinent bandwidth 

limitations;  

• By-pass the computational requirements for on-sensor data storage and local on-board data 

processing before wireless transmission; and  

• Transfer most of the data post-processing and the associated computational burden from the 

sensors to the server (e.g., Duarte et al. (2012)). 



Chapter 1 - Introduction 

 
 

6 

Motivated by the above advances, this thesis focuses on the development of novel algorithmic 

approaches based on compressive/sub-Nyquist data acquisition and processing techniques to 

address the power constraints in WSNs used for operational modal analysis and data-driven 

damage detection in civil engineering structures.  

This line of research has been primarily triggered by developments in the field of Compressive 

Sensing (CS) (e.g., Candès et al. (2006); Donoho (2006); Baraniuk (2007)) – a recently proposed 

sub-Nyquist sampling scheme that exploits the signal’s sparsity (i.e., the non-zero signal 

coefficients) on an orthonormal basis to achieve dimensionality reduction. Based on random non-

uniform in time data acquisition techniques at average sampling rates below Nyquist, Candès 

proved that any sparse signal can be reconstructed, with high probability, at the uniform Nyquist 

grid from a relatively small number of random measurements by solving an underdetermined 

system of linear equations subject to sparsity constraints (e.g., Candès (2008)).  

Interestingly, the CS theory is valid within the VSHM framework since structural vibration 

responses preserve a compressible (i.e., nearly sparse) structure in various domains and co-

domains (e.g., noiseless response acceleration signals from linear vibrating structures tend to be 

appreciably sparse in the frequency domain, since their Fourier coefficients with non-negligible 

magnitudes are clustered around their natural frequencies). These important findings have 

motivated numerous VSHM research studies in the literature over the last decade, aiming to 

provide quality structural estimates from compressed data while efficiently addressing the WSN 

challenges related to bandwidth constraints, limited power resources, and loss of information due 

to wireless data transmissions. In this respect, O’Connor et al. (2014) developed the CS-based 

approach shown in Figure 1.1 (b), which was implemented in the first long-term VSHM field 

deployment using customised Analog-to-Information Converters. Given its successful 

implementation, the approach of O’Connor et al. is treated herein as a paradigm of CS-based 

VSHM using low-rate randomly sampled measurements; thus, it is adopted in this study for 

comparative purposes. Nonetheless, the CS sparse recovery is a computationally intensive 

problem that strongly depends on the sparsity attributes of the measured signals on a pre-defined 

vector basis. This sparsity information, though, is unknown in real-time VSHM deployments while 

it is adversely affected by noisy environments encountered in practice (e.g., Bao et al. (2011); 

O’Connor et al. (2014); Huang et al. (2016)).  

1.4. Aims and Objectives 

The current research study aims to circumvent the above CS limitations by setting three goals. 

The first goal is to improve the CS-based VSHM approaches by examining the sparsest 

representation of vibrating responses on the wavelet transform domain using various oscillatory 

functions with different frequency domain attributes. In this respect, a novel CS-based damage 
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detection algorithm is developed herein, capable to retrieve data-driven damage indices directly 

from compressive data without reconstructing structural responses in time-domain. The proposed 

method couples the CS framework with the Relative Wavelet Entropy (RWE), a well-established 

in the literature damage-sensitive index (e.g., Ren & Sun (2008); Yun et al. (2011); Lee et al. 

(2014)) derived by wavelet transforming response acceleration signals obtained from a 

healthy/reference and a damaged state of a given (linear) structure subject to broadband 

excitations. 

The second goal is to develop a novel signal-agnostic sub-Nyquist spectral estimation strategy 

(Figure 1.1 (c)) free from sparsity constraints, which is proposed herein as a viable alternative for 

power-efficient WSNs in VSHM applications. The developed strategy relies on Power Spectrum 

Blind Sampling (PSBS) techniques (see also Leus & Ariananda (2011)) together with a 

deterministic non-uniform-in-time sampling scheme, known as multi-coset sampling (e.g.., 

Venkataramani & Bresler (2001)), which can be implemented by utilising M  interleaved ADCs 

each operating N  times slower than the Nyquist rate  M N . Ultimately, this novel approach 

in Figure 1.1 (c) can retrieve auto/cross power spectral estimates of non-sparse wide-sense 

stationary random signals (i.e., stochastic processes) directly from compressed measurements, by-

passing the computationally demanding signal reconstruction operations in time-domain. This is 

achieved based on a weighted least-squares optimisation criterion (e.g., Tausiesakul & Gonzalez-

Prelcic (2013)) which mathematically defines an overdetermined system of linear equations that 

can be easily solved.  

The third goal is to introduce a sub-Nyquist pseudo-spectral estimation method (Figure 1.1 

(d)) for structural natural frequency estimation and/or damage detection using compressed signals 

contaminated with broadband noise. This approach couples the deterministic sub-Nyquist co-

prime sampling scheme proposed by Vaidyanathan & Pal (2011) with the multiple signal 

classification (MUSIC) algorithm for spectral estimation (e.g., Marple (1987)) – a framework 

that was originally developed in radar applications to address the bandwidth limitations in 

wireless communications and detect unoccupied bands in telecommunication signals buried in 

high level noise. Similar to the developed approach in Figure 1.1 (c), the adopted sub-Nyquist 

MUSIC-based approach does not rely on signal sparsity conditions while it treats structural 

response signals as wide-sense stationary stochastic processes. However, co-prime sampling is 

significantly different from the multi-coset sampling as it considers two sensors per acceleration 

channel operating at different sub-Nyquist rates and accumulating collectively in time a much 

smaller number of measurements than a single sensor operating at the Nyquist rate. With the aid 

of the spatial smoothing technique (e.g., Pal & Vaidyanathan (2011)), the method in Figure 1.1(d) 

can extract structural resonant frequencies (i.e., locations of pseudo-spectral peaks) from a 
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significantly reduced number of measurements with super-high resolution while filtering out 

additive broadband noise.   

1.5. List of Referred Papers 

Parts of this thesis, indicated in the next sub-sections, have already been published, or 

submitted for publication, in the following peer-reviewed journal papers and conference 

proceedings. 

1.5.1. Journal papers 

[J1] Gkoktsi, K. & Giaralis, A., 2015. Effect of frequency domain attributes of wavelet 

analysis filter banks for structural damage localization using the relative wavelet entropy 

index. International Journal of Sustainable Materials and Structural Systems (IJSMSS), 

2(1/2), pp.134–160. 

[J2] Gkoktsi, K. & Giaralis, A., 2017. Assessment of sub-Nyquist deterministic and random 

data sampling techniques for operational modal analysis. Structural Health Monitoring: 

An International Journal, 16(5), pp.630–646. 

[J3] Gkoktsi, K. & Giaralis, A., 2018. A multi-sensor sub-Nyquist power spectrum blind 

sampling approach for low-power wireless sensors in operational modal analysis 

applications. Mech. Syst. Signal Process. (under review, submitted September 2017). 

1.5.2. Conference proceedings 

[C1] Gkoktsi, K. & Giaralis, A., 2014. On the influence of frequency selectivity of wavelet 

bases for relative wavelet entropy-based structural damage localization. In 6th World 

Conference on Structural Control and Monitoring (6WCSCM). pp. 1366–1378. 

[C2] Tausiesakul, B., Gkoktsi, K. & Giaralis, A., 2014. Compressive Sensing Spectral 

Estimation For Output-Only Structural System Identidication. In 7th International 

Conference on Computational Stochastic Mechanics. pp. 1–12. 

[C3] TauSiesakul, B., Gkoktsi, K. & Giaralis, A., 2015. Compressive power spectrum sensing 

for vibration-based output-only system identification of structural systems in the presence 

of noise. In SPIE Sensing Technology + Applications. 

[C4] Gkoktsi, K., TauSiesakul, B. & Giaralis, A., 2015. Multi-channel sub-Nyquist cross-

Spectral Estimation for Modal Analysis of Vibrating Structures. In International 

Conference on Systems, Signals and Image Processing (IWSSIP 2015). 

[C5] Gkoktsi, K., Giaralis, A. & TauSiesakul, B., 2016. Sub-Nyquist signal-reconstruction-free 

operational modal analysis and damage detection in the presence of noise. In J. P. Lynch, 

ed. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health 

Monitoring. International Society for Optics and Photonics, p. 980312. 

[C6] Gkoktsi, K. & Giaralis, A., 2016. Assessment of sub-Nyquist deterministic and random 

data sampling techniques for operational modal analysis. In 8th European Workshop On 

Structural Health Monitoring (EWSHM 2016). Bilbao, Spain. 

[C7] Gkoktsi, K., Giaralis, A., Klis, R.P., Dertimanis, V. & Chatzi E., 2017. Vibration-based 

structural performance assessment via output-only sub-Nyquist / compressive wireless 

sensor data. In 4th International Conference on Smart Monitoring, Assessment and 

Rehabilitation of Civil Structures (SMAR). 
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[C8] Gkoktsi, K., Giaralis, A. & Tausiesakul, B., 2017. A reconstruction-free sub-Nyquist 

sensing approach for earthquake damage detection using the MUSIC algorithm. In 16th 

World Conference on Earthquake Engineering. 

1.6. Thesis Organisation  

This thesis is divided into eight chapters. The current introductory chapter (§1. Introduction) 

gives a general overview of the notion of the vibration-based structural health monitoring 

(VSHM) in civil engineering structures using wireless sensor networks (WSN) and reports the 

limitations encountered in conventional and advanced approaches, concluding with the scope of 

this thesis and the aims and objectives set. Chapter 2 (§2. Compressive Sensing: Basic Concepts 

& Applications in VSHM) presents the basic principles of the Compressive Sensing (CS) theory 

and reviews the state-of-the-art in CS-based VSHM approaches for civil structures, underlying 

the main factors that limit their performance. Recognising that CS is constrained by signal sparsity 

requirements on a pre-defined vector basis, a comprehensive numerical study is undertaken in 

Chapter 3 (§3. CS-based Damage Detection Using the Relative Wavelet Entropy) to define the 

“sparsest” representation of structural responses on the wavelet transform domain using various 

wavelet analysis filter banks with different frequency domain attributes. From these findings, a 

novel CS-based RWE damage detection algorithm is further proposed for data-driven VSHM 

deployments using dense arrays of wireless sensors with reduced power demands. (Parts of 

Chapter 3 have been published in the journal paper [J1] of §1.5.1, and in the conference 

proceedings [C1] of §1.5.2).  

Chapter 4 (§4. Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: 

Theory) provides the theoretical development of the multi-sensor PSBS-based strategy –a signal-

agnostic compressive auto/cross power spectrum estimation approach that enjoys numerous 

advantages over the state-of-the-art CS-based approaches used for low-power WSNs in OMA 

applications. The effectiveness of the proposed strategy is numerically evaluated in Chapter 5 

(§5. Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: Applications) 

using four examples. Firstly, the recovery performance of the PSBS-based approach is 

numerically assessed under the influence of signal compression and noise levels, which is further 

verified with field-recorded data obtained from an operational wind turbine. Next, the modal 

identification and damage detection capabilities of the developed method are examined with 

simulated compressed (multi-coset sampled) data originating from finite element models of 

benchmark structures. In Chapter 6 (§ 6. Assessment of the Proposed PSBS Approach vis-à-vis 

CS-Based Approachfor OMA), the proposed multi-sensor PSBS-based approach is comparatively 

assessed vis-à-vis the Compressive Sensing (CS) based approach developed by O’Connor et al. 

(2014) for OMA. Comparative numerical results are presented for both synthetic (i.e., computer-
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generated signals with different sparsity levels) and field-recorded (i.e., from an operational 

bridge in Zurich, Switzerland) wide-sense stationary structural acceleration response datasets. 

Estimates of the anticipated energy savings achieved by the proposed approach are further 

provided using the second dataset (i.e., real data), assuming a battery-operated wireless multi-

coset sampler. (Parts of Chapters 4 – 6 have been published, or submitted for publication, in the 

journal papers [J2, J3] of §1.5.1, and in the conference proceedings [C2 – C7] of §1.5.2). 

Next, Chapter 7 (§ 7. A Novel MUSIC-Based Approach for Structural Damage Detection 

from Sub-Nyquist Measurements) reviews the theoretical background of the co-prime MUSIC 

strategy proposed by Pal & Vaidyanathan (2011) and explores its applicability and usefulness in 

VSHM of civil engineering structures. Special focus is given in OMA applications susceptible to 

the modal coupling effect in the presence of noise. A significant contribution of this chapter is the 

development of a novel damage detection approach aiming to infer structural damage due to low-

intensity earthquake excitations by monitoring small shifts to the resonant frequencies directly 

from compressed (co-prime sampled) response acceleration data contaminated with noise. (Parts 

of Chapter 7 have been published in the conference proceedings [C8] of §1.5.2). 

 Finally, Chapter 8 (§ 8. Conclusions) summarises the contributions achieved by this doctoral 

thesis and highlights areas for future research.  
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Chapter 2 

 Compressive Sensing:  

 Basic Concepts & Applications in VSHM 

2.1. Preliminary Remarks 

This chapter presents the rudiments of Compressive Sensing (CS) (e.g., Candès et al. (2006); 

Donoho (2006); Baraniuk (2007)) – a recently emerged sub-Nyquist random sampling scheme 

that offers reliable and low-power wireless data transmissions, gaining increasing popularity in 

various research fields (e.g., Qaisar et al. (2013)), including the VSHM framework for civil 

engineering structures. 

In a nutshell, the CS theory asserts that a discrete-time finite length signal (e.g., an analog 

response acceleration signal uniformly sampled in time) can be recovered, with high probability, 

from a relatively small number of randomly acquired samples/measurements in time, by solving 

an underdetermined system of linear equations. Importantly, the number of random (compressed) 

measurements required for a faithful signal recovery is governed by the “sparsity” information of 

the acquired signal on some known pre-specified vector basis rather than the signal’s bandwidth 

as dictated by the Nyquist/Shannon sampling theorem (e.g., Jerri (1977)). The above CS 

theoretical developments have been widely used for structural modal identification and damage 

detection purposes (e.g., Bao et al. (2014)), and also fused with other signal processing tools (e.g., 

Nagarajaiah & Yang (2017)) to efficiently address various VSHM challenges.  

In this respect, an extended literature review of the CS-based VSHM approaches for civil 

structures is presented herein, classified into three categories depending on the application at hand 

(i.e., sub-sections §2.4.1. CS-based operational modal analysis, §2.4.2. CS-based damage 

detection, and §2.4.3. CS for recovery of missing data in WSNs for VSHM applications). It will 

be recognised that the efficiency of the CS-based approaches is limited by the sparsity level of 

the monitored signals, which is practically unknown and adversely affected in noisy 

environments, while it strongly depends on the suitability of the adopted expansion basis. These 

observations are discussed at the end of this chapter, raising some open issues to be addressed in 

the succeeding chapters.  
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In this chapter, the mathematical background of the CS theory is briefly reviewed in section 

§2.2 (§2.2. Overview of Basic Theoretical Aspects of Compressive Sensing). The next section 

(§2.3. CoSaMP - CS Sparse Signal Reconstruction Algorithm) presents a CS sparse recovery 

algorithm for noisy signals (i.e., the CoSaMP algorithm developed by Needell & Tropp (2009)) 

that has been adopted in the numerical work undertaken in Chapter 3 (§3. CS-based Damage 

Detection Using the Relative Wavelet Entropy) and Chapter 6 (§6. Assessment of the Proposed 

PSBS Approach vis-à-vis CS-based Approach for OMA). The current state-of-the art in CS-based 

VSHM applications is next reviewed in section 2.4 (§2.4. Overview of Compressive Sensing in 

Structural Health Monitoring), while their limitations are discussed in section 2.5 (§2.5. CS 

Limitations & Conclusions) followed by concluding remarks.  

2.2. Overview of Basic Theoretical Aspects of Compressive Sensing  

2.2.1. Signal sparsity on a given basis matrix  

Consider a deterministic N-long discrete-time (response acceleration) signal x[n]
N  

having a “sparse” structure on a given vector basis 
 N NΨ . Examples of such a basis include 

the discrete Fourier transform (DFT) basis used for representation of vectors in the 

Fourier/frequency domain, a wavelet transform basis for the time-frequency analysis of signals, 

or, more generally, a “dictionary” of vectors basis (e.g., Rubinstein et al. (2010)). The signal 

expansion on the adopted basis Ψ is written in the form 

[ ] [ ]x n u nΨ , (2.1) 

where u[n]
N is the vector collecting the signal coefficients on the considered basis, 

having S entries with significant magnitude, where S N.  

By definition, an S-sparse signal has only S non-zero expansion coefficients on some vector 

basis/dictionary. For illustration, consider a discrete-time multi-tone signal x[n] of length N=256, 

comprising 2 harmonic components at f1=121 Hz and f2=223 Hz, which is sampled from a 

continuous signal, x(t)= sin(2π f1 t)+ sin(2π f2 t), at a sampling rate Fs=1000 Hz (T=0.001s). Figure 

2.1 plots the considered multi-tone signal x[n] both in time (Figure 2.1(a)) and frequency domain 

(Figure 2.1(b)– single-sided Fourier spectrum). It is readily observed that the adopted discrete-

time signal has a sparse structure on the Fourier/frequency domain attaining only S=2 non-zero 

spectral peaks at f1=121 Hz and f2=223 Hz in the frequency range [0, 500] Hz. Assuming next 

that the multi-tone signal x[n] is corrupted with a zero-mean additive Gaussian white noise with 

a signal-to-noise ratio (SNR) at 0dB (i.e.,  2 2

1010 log xSNR     , where 2

x  and 2

  are the 
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signal and the noise variance, respectively; the extreme noise case of SNR= 0dB pertains to 

2 2

e x   ). The time and frequency representation of the generated noisy signal is illustrated in 

Figure 2.2. Note that the Fourier spectrum exhibits S=2 significant spectral peaks at the same 

frequencies as in the noiseless case; however, the remaining peaks are not exactly zero, but they 

yield considerably smaller values compared to the dominant spectral peaks.   

In practical applications, though, real signals are not purely sparse on a given domain (i.e., 

due to damping in structural systems and/or due to signal acquisition in inherently noisy 

environments, etc); instead, they are often compressible, meaning that they have certain expansion 

coefficients on a given basis/dictionary with values larger than a relatively low threshold so that 

their entries decay rapidly when sorted by magnitude. Under these circumstances, an S-

compressible signal can be well-represented by the associated S-sparse signal; therefore, these 

two terms are used interchangeably hereafter. Notably, the signals’ sparsity/compressibility is a 

key property that can lead to dimensionality reduction, enabling the simultaneous signal 

acquisition and compression within the CS framework in an efficient manner. Apparently, the 

higher sparsity level of the underlying signal (i.e., the fewer number of S values it comprises), the 

higher signal compression can be achieved, requiring the acquisition of fewer random 

measurements for its sparse recovery (i.e., estimation of the S non-zero expansion coefficients) 

as explained in what follows next.  

 

Figure 2.1:Noiseless multi-tone signal in (a) time domain and (b) single-sided Fourier spectrum in 

frequency domain  

 

Figure 2.2: Noisy multi-tone signal with SNR=0dB in (a) time domain and (b) single-sided Fourier 

spectrum in frequency domain 

(a) (b) 

(a) (b) 
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2.2.2. Random measurement matrix Θ and the restricted isometry property 

As illustrated in Figure 2.3, the CS theory (e.g., Candès et al. (2006); Donoho (2006); 

Baraniuk (2007)) asserts that the information contained in the S-sparse signal x[n] in eq. (2.1) can 

be retrieved in a robust manner from M non-uniform random measurements y[m]
M   

[ ] [ ] [ ]y m x n u n Θ ΘΨ     (2.2) 

for S<M N, and M/N defining the compression ratio (CR). The above can be achieved by 

considering a random measurement matrix Θ
M N during sampling that satisfies the so-called 

restricted isometry property (RIP) (i.e., Candès (2008))  

2 2 2

2 2 2
(1 ) (1 )    S Sx x xΘ  (2.3) 

with δS being the S-restricted isometry constant, and a
p

 denoting the p  norm of the vector a, 

i.e. 

1

a a ,      [1, ]

p

p

ip
i

p
 

   
 
 . (2.4) 

The RIP in eq. (2.3) is associated with the orthonormality level of the columns of Θ, which 

enables the exact recovery of an S-sparse signal x[n] from only M measurements in y[m] provided 

that δS yields very small values (i.e., δS <1) (i.e., Candès (2008).  

 

Figure 2.3: Compressive sensing measurement process with a random Gaussian measurement matrix Θ 

and the Inverse Discrete Fourier Transform IDFT matrix Ψ. The vector of coefficients u[n] is 

S-sparse (figure adapted from Baraniuk (2007)).  
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Conveniently, the RIP holds with high probability for several matrices Θ M N  (e.g., 

Candès (2006)). Examples include random matrices populated with independent and identically 

distributed entries sampled from a normal distribution with zero mean and variance 1/M (i.e., 

Gaussian measurements) or from a symmetric Bernoulli distribution (i.e., binary measurements) 

for which the RIP is satisfied for M of the order of S∙log(N/M),(symbolically   log ).M O S N M  

Other examples include measurement matrices 
 M N

Θ  populated with incoherent 

measurements of zero-one entries that randomly selects M rows from an orthonormal matrix 

 N NΨ . In this manner, a “partial” sampling matrix ,   M NA ΘΨ A  is defined, which 

satisfies the RIP in eq. (2.3) with high probability (i.e., 
2 2 2

2 2 2
(1 ) (1 )S Su u u    A ) on 

condition that  

 2 4log ( )M O S N  A . (2.5) 

In the above equation, A
 is derived from  

1,
max i j

i j N
N

 
A Θ Ψ  (2.6) 

and represents the mutual coherence between the i-rows of Θ and the j-columns of Ψ, taking 

values within the range 1 N A , with the limiting cases of 1 A
 and N A  pertaining 

to the maximum and minimum incoherence, respectively. Eq. (2.5) and eq. (2.6) suggest that the 

higher the incoherence between the selected pair of matrices (Θ,Ψ) is (i.e., at smaller A
 values), 

the fewer number of measurements, M, need be acquired for a faithful reconstruction of the 

unknown signal x[n] (e.g., Candès (2006)). A special case of a “partial” sampling matrix with 

incoherent measurements is the “partial” Fourier matrix, or equivalently, the partial inverse 

Fourier matrix,
1

M N

Α F M N illustrated in Figure 2.4, which is defined by randomly 

selecting M rows from the standard orthonormal inverse discrete Fourier transform (IDFT) matrix 

1
 N NΨ F  N N  in 

 1 1
exp( 2 ),  , 0,1, , 1N N i nk N n k N

N


    F      (2.7) 

to construct the re-normalised to unit-norm “partial” matrix 
1
 M NΑ F M N  

 

 

1 exp( 2 ),  0,1, , 1

0,1, , 1 .

M N

N
i mk N m M

M

k N


    

 

F     

                                                          

 (2.8) 
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Notably, eq. (2.8) satisfies the RIP with high probability (i.e., 99%) yielding 1 A  and 

M=O(S∙log4N) (e.g., Rudelson & Vershynin (2008)) (see also eq. (2.5) and eq. (2.6)). Candès 

(2006) reported that the above theoretical bound derives from sophisticated techniques and may 

be too stringent, suggesting that M should be of the order of O(S∙logN). The latter has also been 

adopted in a CS-based VSHM study by O’Connor et al. (2014), providing reasonably accurate 

sparse approximations of the signal coefficients (on the DFT basis) of field-recorded response 

acceleration signals, leading to acceptable structural modal estimates. The above theoretical 

advances combined with the ease of implementation of the “partial” Fourier matrix in practice 

(e.g., Needell & Tropp (2010)) has rendered the latter as the preferred sampling considerations in 

various CS-based VSHM applications as discussed in section §2.4.  

 

Figure 2.4: (a) Orthonormal IDFT basis Ψ
 N N

, (b) selection of M random rows from Ψ
 N N

 to 

derive (c) the partial IDFT matrix A 
 M N

 

Recent developments in hardware architecture of sensors paved the way for the design of 

Analog-to-Information Converters prototypes that support random acquisitions of compressed 

measurements in real-time. Among the most well-known CS-based Analog-to-Information 

Converters are the random demodulator (e.g., Tropp et al. (2010)), the random filtering (e.g., 

Tropp et al. (2006)), the random convolution (e.g., Bajwa et al. (2007); Romberg (2009)), the 

compressive multiplexer (e.g., Slavinsky et al. (2011)), and the random modulator pre-integrators 

(e.g., Becker (2011)). It is important to note that the above architectures typically pertain to 

reduced level of randomness using more structured matrices that satisfy the RIP (e.g., partial 

Fourier matrix) compared to a fully random matrix, since the latter is not physically realisable in 

hardware design (see also Baraniuk et al. (2011)). Despite the above advances, such Analog-to-

Information Converters are not commercially available yet.    
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2.2.3. Time-domain reconstruction of noisy measurements   

To account for the inherent noisy sensor measurements encountered in practical applications, 

eq. (2.2) can be cast in the form  

[ ] [ ] [ ]y m u n u n   ΘΨ ε A ε   , (2.9) 

where ε is the error vector added to compressed data y[m]. Such errors do not influence the 

sparsity level S of the signal x[n] and they are treated by numerous practical CS sparse recovery 

algorithms by solving the so-called “noisy” sparse recovery problem. Notably, the problem in eq. 

(2.9) defines an underdetermined system of linear equations, which yields a unique solution when 

subjected to signal’s sparsity constraint. Assuming no prior knowledge on the location and 

amplitude of the signal coefficients u[n] on a given basis, or, equivalently, in the transform 

domain, Candès proved that the dominant S coefficients in u[n] can be recovered from the 

compressed noisy measurements y[m] by solving the 
1

 convex optimisation problem (e.g., 

Candès (2008)), that is  

1 2ˆ
ˆ ˆmin      subject to   


 

Nu
u y u eA , (2.10) 

where e pertains to the upper bound of the noise energy 
2

ε . Eq. (2.10) defines a complex 

problem with increased computational demands. To overcome this issue, several faster and 

computationally more efficient sparse signal reconstruction algorithms have been developed (e.g., 

Bruckstein et al. (2009); Vaswani & Zhan (2016)) to approximate a signal x[n] and/or its 

coefficients u[n] on Ψ from the acquisition of only few noisy measurements in y[m]. Among the 

numerous sparse recovery alternatives (e.g., Vaswani & Zhan (2016)), the next sub-section 

presents the iterative matching pursuit algorithm CoSaMP developed by Needell & Tropp (2009), 

which has been adopted in the ensuing numerical work presented in Chapter 3 and Chapter 6.  

2.3. CoSaMP - CS Sparse Signal Reconstruction Algorithm  

CoSaMP is an acrostic standing from Compressive Sampling Matching Pursuit and it 

represents an iterative CS sparse recovery algorithm for noisy signals, being extremely efficient 

in practical applications while providing rigorous and fast implementations with relatively low 

computational burden and storage requirements (e.g., Needell & Tropp (2009)). CoSaMP takes 

as input the compressed observation vector y[m] and the sampling matrix A
M N  in eq. (2.9) 

together with a target sparsity level ST, which should be less than M/3, (i.e., ST<M/3), and a 
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tolerance parameter η. It returns an ST-sparse estimate ˆ[ ]u n  of the S-sparse signal coefficients 

[ ]u n  that satisfies the condition 

/22 21

1
ˆ[ ] [ ] max , [ ] [ ]

TS

T

u n u n C u n u n
S


  

     
  

ε , (2.11) 

where  /2TSu n  is the optimal ST/2-sparse approximation of u[n] – obtained by retaining the 

ST/2 largest entries of u[n] and setting the remaining entries to zero – C is a positive constant, and 

p
  is the p  norm given in eq. (2.4). In each iteration, CoSaMP captures part of the energy of 

the target signal by solving a least-squares problem involving the pseudoinverse of the matrix A

M N  in eq. (2.9), given in 
† H 1 H( )A A A A  , where the superscript “H” denotes the 

Hermitian transpose while the superscript “-1” designates matrix inversion (e.g., Needell & Tropp 

(2009)). The extracted energy is subtracted from the target signal and in the next iteration the 

residual signal becomes the target signal. This iterative process continues until any of the 

following three stoppage criteria is met: (i) the relative residual signal energy between two 

iterations is less than the tolerance η, or (ii) the total residual energy in the last iteration is smaller 

than η, or (iii) a predefined maximum number of iterations is reached. 

2.4. Overview of Compressive Sensing in Structural Health Monitoring  

Over the last decade, the vibration-based SHM community has begun to consider CS 

techniques in WSNs used for modal identification and damage detection in civil engineering 

structures, with the scope of providing quality structural estimates while efficiently addressing 

various VSHM challenges related to bandwidth constraints, limited power resources, and loss of 

information due to wireless data transmissions.  

In this context, Bao et al. (2011) were the first to examine the potential of using sub-Nyquist 

random sampling schemes in acceleration response data acquired from an operational cable-

stayed bridge in China, which was dynamically vibrating under environmental and traffic loading. 

The underlying signal sparsity was assessed in both the Fourier and the Haar wavelet transform 

domain, while signal reconstruction was achieved by solving the noisy sparse recovery 

optimisation problem in eq. (2.10). This successful implementation has triggered the development 

of a plethora of CS-based VSHM approaches, which are divided, herein, into three categories and 

reviewed in the ensuing sub-sections, that is CS-based Operational Modal Analysis (§2.4.1), CS-

based damage detection (§2.4.2), and CS for recovery of missing data (§2.4.3).   
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2.4.1. CS-based operational modal analysis 

O’Connor et al. (2013), (2014) were the first to deploy customized CS-based wireless sensors 

in a long-term monitoring field application. By randomly triggering in time conventional Analog-

to-Digital Converters (ADC), they managed to acquire non-uniform in time compressed 

acceleration responses from an overpass in Michigan, USA, attaining some level of sparsity on 

the DFT basis. The compressed measurements were wirelessly transmitted to a server and treated 

by the CoSaMP sparse signal recovery algorithm by Needell & Tropp (2009) (see also §2.3) to 

retrieve the DFT coefficients of the response acceleration signals in the uniform grid and perform 

a frequency domain-based OMA. Accurate mode shapes estimation as well as appreciable savings 

in battery energy consumption were achieved using a Wireless Sensor Network (WSN) of five 

CS-based sensor nodes operating at up to 80% slower average rate compared to a concurrently 

operating network of conventional wireless sensors sampling uniformly in time at twice an 

assumed Nyquist rate. 

A different sparse recovery algorithm was considered by Klis & Chatzi (2015) which enables 

efficient and more accurate sparse signal recovery by relying on pertinent a priori knowledge of 

the signal sparse structure on the DFT basis. This knowledge is gained from a relatively small 

network of wired sensors judicially placed onto structures which operates concurrently with the 

CS-based WSN and samples in the conventional manner (i.e., uniformly-in-time at the Nyquist 

rate or above). The sparsity of the structural response acceleration signals acquired by the 

auxiliary wired sensors and its support in the DFT domain are estimated by Fourier transforming 

the signals at the server. This information is both wirelessly communicated to the CS-based 

sensors to inform the rate of the random sampling, and stored at the server for the sparse recovery 

operation.  

More recently, a group sparse optimisation algorithm was developed by Bao et al. (2017) to 

reconstruct structural response data by exploiting their joint sparsity on the Fourier domain. Using 

nine commercial wireless sensors on the Xiamen Haicang Bridge, velocity response time-series 

were conventionally acquired at a uniform sampling rate, sub-Nyquist sampled using a non-

uniform low-rate random scheme, and reconstructed back in time-domain using the group sparse 

optimisation algorithm. The reconstructed signals were further processed with standard OMA 

algorithms to retrieve the underlying structural modal properties at the first two dominant modes 

of vibration. It was shown that smaller signal reconstruction errors occur in larger networks of 

wireless arrays compared to a single-sensor case, yielding modal estimates of higher accuracy. 

The latter was verified for compression ratios up to 10% and the processing of 90% less data. 

Compared to the previously reviewed approaches, two significantly different methods were 

proposed by Yang & Nagarajaiah (2015) and Park et al. (2014), respectively, for mode shape 

estimation from non-uniform in time random sampling of structural vibration time-histories at 
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sub-Nyquist rates. Mode shape estimated were retrieved by Yang & Nagarajaiah (2015) based 

on modal structural responses obtained by application of blind source separation directly to 

compressed measurements of structural response signals. Sparse signal recovery in the time-

domain is next applied to each compressed modal response vector to retrieve the underlying 

structural natural frequencies and modal damping ratios. Park et al. (2014) extracted mode shapes 

based on a novel singular value decomposition algorithm which was applied directly to response 

acceleration compressed measurements, without taking any signal sparse recovery step. 

Interestingly, although the theoretical development of Park et al. (2014) assumes noiseless 

undamped free vibration structural response signals (i.e., multi-tone signals), which are different 

from the typical response time-histories recorded in civil engineering structures under operational 

conditions, their algorithm performed well when applied to field recorded data from an overpass 

open to traffic. 

Parenthetically, it is noted that CS-based OMA approaches have also been proposed for lossy 

off-line signal compression in conventional wireless sensor networks (e.g., Klis & Chatzi (2017)). 

As opposed to the above-reviewed approaches, data acquisition and data compression are two 

distinct processes in such applications. In fact, conventional uniform-in-time sampling is first 

undertaken, while low-rate CS-based random sampling is conducted off-line, locally on each 

sensor, before wireless transmission. This off-line data compression step is informed by 

knowledge on the signal sparsity structure, gained via extensive on-sensor processing of the 

conventionally sampled data. The latter processing involves, at minimum, projection of the 

uniformly sampled data onto an adopted sparsifying basis and estimation of signal 

sparsity/compressibility and its support, leading to increased power, memory, and computational 

requirements onboard (see also §1.2).  

2.4.2. CS-based damage detection 

A two-stage CS-based damage classification framework was developed by Mascarenas et al. 

(2013) for low-power WSNs, aiming to detect structural damage from compressed measurements. 

The developed method relies on compressed matched filtering techniques – known as smashed 

filter – together with training sets of structural data originating from both healthy and damaged 

structural states. Assuming a user-defined threshold, this application-dependent damage detection 

method statistically tests the correlation between known sub-sampled structural responses in the 

training sets with unknown compressed measurements to classify the pertinent observations under 

the two defined structural states (i.e., healthy or damaged state). The effectiveness of the proposed 

method was experimentally tested in a lab specimen of a 3-storey frame subjected to harmonic 

excitations, using a digital prototype of a compressed sensor which first acquires structural 

responses at fast sampling rates and next performs on-board post-processing operations to 
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generate compressed data. The latter was accomplished by utilising a random measuring matrix 

Θ populated with independent and identically distributed ±1 entries.  

In a recent study by Jayawardhana et al. (2017), the applicability of the CS theory for 

structural damage localisation was experimentally tested in a laboratory test specimen pertaining 

to a reinforced concrete slab with two spans. Static load testing was first performed at various 

intensity levels to induce structural damage of increasing severity. Impact testing was further 

undertaken at three different structural damage states and acceleration responses were recorded 

from six sensors using conventional sampling schemes. De-noising techniques were considered 

to enhance signal sparsity on the wavelet transform domain using a Daubechies wavelet family, 

while various compression levels were adopted for signal compression and reconstruction as in 

(2.10). The reconstructed signals were further treated by two well-established in the literature 

damage detection algorithms, yielding highly accurate results for CR at approximately 40% (i.e., 

reduced data by a factor of 2.48).    

It is noted in passing that local structural damage has also been regarded in the literature as a 

spatially sparse phenomenon (e.g., Bao et al. (2014); Yao et al. (2016); Ganesan et al. (2017)), 

which can be treated by various well-established CS reconstruction techniques, to identify the 

location of structural damage from a limited number of sensors placed at random location along 

a structure. This concept can be viewed as compression in the space domain which lies beyond 

the scope of this research study. The theory of CS has also inspired various research studied within 

the pattern recognition and damage classification framework (e.g., Yang & Nagarajaiah (2014); 

Wang & Hao (2015)), by considering sparse signal representation on a pre-defined and 

application-dependent dictionary of structural features linked with various damage scenarios – a 

considerably different damage detection approach that does not rely on sub-Nyquist sampling of 

structural responses in time domain.   

2.4.3. CS for recovery of missing data in WSNs for VSHM applications 

CS-based approaches have also been considered to rectify the problem of data loss in WSNs 

for structural health monitoring of civil engineering structures (e.g., Bao et al. (2013); Zou et al. 

(2015); Huang et al. (2016)). This challenging issue is associated with loss of information in 

wireless VSHM communications due to various factors including sensors failure, insufficient 

power resources, bandwidth and transmission limitations, radio interference, harsh weather 

conditions, that adversely affect the communication reliability (e.g., Nagayama et al. (2007)). In 

such cases, the received signals observe gaps either at random or continuous time intervals that 

occur accidentally and, thus, they are not known in advance in real-time monitoring deployments. 

Further, the missing data are not necessarily uniformly distributed over the entire observation 

window which poses restrictions on the required amount of data for faithful CS-based 
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reconstruction operations Comerford et al. (2015). Note that these applications have a clearly 

distinguishable aim from what was reviewed in the previous cases, since the CS theory is not used 

for data compression to reduce wireless transmission costs. 

Instead, the CS-based missing data recovery problem (e.g., Bao et al. (2013), (2014); Zou et 

al. (2015); Huang et al. (2016)) relies on conventional uniform-in-time sampling schemes to 

acquire full-length structural response signals. The latter are further modulated on-sensor by 

adopting a (rectangular) random matrix capable to spread the underlying signal information across 

the entire spectrum, and subsequently stored in sequentially numbered data packets. Assuming 

data packet loss during the wireless transmission of the (full-length) modulated signal towards 

the server, the received data can be treated as compressed measurements, observing gaps in 

certain time intervals that can be easily inferred by the out-of-sequence received data packets. 

Based on the assumption of sparse structural responses on an expansion basis, CS reconstrunction 

algorithms are then employed to retrieve the original full-length signal at the uniform time-grid.  

Along these lines, the CS-based approach developed by Bao et al. (2013) relies on the Haar 

wavelet basis for the sparse representation of structural data originating from actual monitoring 

campaigns, showing promising results in rectifying up to 20% missing data (i.e., by processing 

the available 80% of the data samples) for both random and continuous packet loss, yielding more 

accurate results when de-noising operations are employed. The above CS-based approach was 

also adopted by Zou et al. (2015) and efficiently embedded in a wireless smart sensor – the 

Imote2. This was achieved based on the random demodulator method (i.e., a widely known 

approach within the CS community), incorporating appropriate modifications to address the 

limited power, memory, and computational resources onboard due to increasing requirements in 

performing the above operations (i.e., fast uniform sampling, signal modulation, and wireless 

transmission of complete datasets).   

2.5. CS Limitations & Conclusions 

This chapter outlined the current state-of-the-art in novel VSHM approaches relying on 

random sub-Nyquist data acquisition schemes for low-cost and reliable WSNs. To this end, the 

basic principles of the Compressive Sensing (CS) theory were summarised and an extensive 

review of the newly surfaced CS-based VSHM approaches was provided.  

Overall, it can be concluded that the required number of compressed measurements, M, and 

the minimum average random sampling rate for which quality CS-based signal recovery can be 

achieved depend strongly on and are limited by the sparsity/compressibility level of the monitored 

response acceleration signals on a sparsifying basis. The latter is judicially selected and has a 

key role in the efficient implementation of the CS strategy.  
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In this respect, the DFT basis has been widely used in most of the CS-based VSHM 

approaches review in the previous section. Despite the fact that the energy of linear structural 

response acceleration signals is clustered in the frequency domain around the structural natural 

frequencies, discrete- time versions of these signals, as recorded in the field, are not significantly 

sparse on the DFT basis (e.g., Bao et al. (2011); O’Connor et al. (2014); Huang et al. (2016)). 

This lack of sparsity can be attributed partly to unknown environmental excitation added to the 

compressively sensed signals and causing detrimental noise folding (e.g., Axell et al. (2012); 

Davenport et al. (2012); Huang et al. (2016)), and partly to spectral leakage (e.g., Davenport & 

Wakin (2012); Duarte & Baraniuk (2013)). The latter phenomenon is due to the fact that the grid 

points defined by the DFT basis on the frequency axis may not coincide with the (unknown) 

resonant structural natural frequencies.  

Nonetheless, the consideration of alternative expansion bases, such as the discrete Haar 

wavelet basis, does not significantly improve the sparsity of response acceleration signals (e.g., 

Bao et al. (2011)). Arguably, enhanced structural response signal sparsity can be achieved by 

considering either compactly supported in the frequency domain generalised harmonic wavelet 

bases as discussed by Gkoktsi & Giaralis (2015), or over-complete dictionaries as discussed by 

Mascarenas et al. (2013). However, the fine-tuning of harmonic wavelet bases properties and the 

composition of redundant dictionaries are strongly application-dependent. More importantly, in 

any case, low levels of signal sparsity requires a larger number of compressed measurements for 

faithful signal reconstruction and, therefore, reduced gains in terms of energy savings in wireless 

data transmission (see also O’Connor et al. (2014)). 

Further, the actual sparsity/compressibility level, S, of real-time monitored signals is not 

known in advance, unless a priori knowledge becomes available through probabilistic approaches 

(e.g., Huang et al. (2016)), or conventional uniform-in-time sampling and signal processing (e.g., 

Davenport et al. (2012); Klis & Chatzi (2015), (2017)) at the cost of increased computational, 

power, and storage/memory requirements. In the absence of such information, a target sparsity 

level ST is assumed in the CS sparse signal recovery step. Nonetheless, the optimal selection of 

the ST value is not trivial, since it is associated with a trade-off between reconstruction accuracy 

and computation complexity. In particular, choosing a relatively large value of ST (>>S) leads to 

unnecessarily high computational cost, as the latter is bounded by O(ST∙M∙N+log(||x||2/η)∙ST∙M) 

(e.g., Needell & Tropp (2009)). On the antipode, a relatively small value of ST (<<S) may lead to 

poor approximation of the vibration measurements and, therefore, to low quality structural 

estimation. In practice, a range of different ST values should be tested (off-line) to strike a good 

balance between accuracy and computational complexity.  

Finally, it is recognised that the CS framework is a potent tool for low-cost and dependable 

wireless communications that can be successfully applied to VSHM deployments once its sparsity 

limitations are addressed in cost-effective manner. Further experimental research in field-
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implementations is warranted to attest the CS-based VSHM approaches in actual wireless 

systems, which is a challenging task due to the lack of commercially available sensing units with 

embedded compressive random sampling schemes.  
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Chapter 3 

 CS-based Damage Detection 

Using the Relative Wavelet Entropy 

3.1. Preliminary Remarks   

The primary objective of this chapter is to propose a novel compressive sensing-based 

damage detection approach for low-cost and power-efficient WSNs in VSHM applications. The 

proposed method originates from the theory of Compressive Sensing (CS) in Chapter 2 (§2. 

Compressive Sensing: Basic Concepts & Applications in VSHM) fused with the Relative Wavelet 

Entropy (RWE). The latter is a well-established in the literature damage-sensitive index (e.g., Ren 

& Sun (2008); Yun et al. (2011); Lee et al. (2014)), derived by wavelet transforming response 

acceleration signals obtained from a healthy/reference and a damaged state of a given (linear) 

structure subject to broadband excitations. 

In brief, the wavelet transform represents any given signal on the time-scale plane by 

projecting it onto a collection of double-indexed localised in time oscillatory functions (wavelets) 

generated by scaling and translating in time a single “mother” wavelet function (e.g., Daubechies 

(1992)). Depending on the properties of the mother wavelet, each scale considered in the wavelet 

transform can be assigned an effective (central) frequency and an effective bandwidth. In this 

regard, if an energy-preserving analysing wavelet basis is used, the squared magnitude of the 

wavelet transform maps the energy of a signal on the time-frequency plane (see also Cohen 

(1995)). Under this condition, the damage detection capability of the RWE relies on detecting 

changes to the energy distribution of (or to the information carried by) response acceleration 

signals between the healthy and the damaged state across the different scales considered in the 

wavelet transform spanning certain frequency bands. Indeed, the definition of the RWE is closely 

related to the Shannon wavelet entropy introduced by Blanco et al. (1998) for signal 

characterisation in certain biomedical applications, based on the information carried by the 

wavelet transform in time and in frequency.  

Ren & Sun (2008) verified the potential of the RWE to serve as a damage-sensitive index by 

considering experimental data pertaining to a beam and to a composite bridge excited by 

impulsive/hammer force. In computing the RWE, the authors considered a non-smooth 
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Daubechies (or Haar) wavelet basis implemented in a wavelet analysis digital filter bank yielding 

a quite efficient to compute discretised version of the wavelet transform, the so-called discrete 

wavelet transform (e.g., Daubechies (1992); Goswami & Chan (1999)). The RWE damage index 

was adopted by Lee et al. (2014) to detect faulty/damaged connections in pin-jointed truss 

structures by considering healthy connections as a reference (healthy state), and processing 

signals recorded at all healthy and faulty connections acquired from a single vibration test. 

Recognising the potential of the RWE for damage detection in practical VSHM applications, Yun 

et al. (2011) considered arrays of battery operated wireless sensors computing locally on on-board 

micro-processors the discrete wavelet transform and, thus, being able to derive the RWE in a 

decentralised computationally-efficient manner aiming to reduce the power consumption of 

sensors and, therefore, to prolong their battery life: a very important practical consideration in 

cost-effective VSHM using wireless sensor networks Lynch (2007). In fact, as detailed in Chapter 

1 (§1. Introduction), current wireless sensors (e.g., Figure 1.1(a)) require battery replacement at 

intervals of few weeks to few months, depending on various factors such as the sampling 

frequency, the duration of each monitoring interval, the on-board hardware and software to be 

executed, while the amount of data that can be reliably transmitted within WSNs is subjected to 

bandwidth limitations (e.g., Lynch & Loh (2006); Lynch (2007)). Despite the above efforts, Yun 

et al. (2011) derived the RWE from full-length structural response acceleration signals, 

conventionally-sampled at Nyquist rate (or above), which increases the power demands due to 

wireless transmission of a large number of data, while keeping the memory and storage 

requirements at the sensor high.   

Motivated by recent advances in the field of Compressive Sensing (e.g., Bao et al. (2013); 

O’Connor et al. (2014); Park et al. (2014); Klis & Chatzi (2015); Yang & Nagarajaiah (2015)), 

the problem of increased power requirements during wireless transmission is addressed herein by 

considering a random non-uniform in time sub-Nyquist sampling scheme (e.g., Candès (2006); 

Donoho (2006); R. G. Baraniuk (2007); Duarte et al. (2012)) to acquire compressed structural 

response datasets at the sensor front-end. In this respect, wireless sensors cost and energy 

consumption can be significantly reduced, while the on-sensor data storage and local on-board 

data processing before wireless transmission can be considerably reduced, or even by-passed. A 

key issue is the derivation of a wavelet basis matrix in which the structural acceleration response 

data are sufficiently sparse (i.e., attaining only few non-zero wavelet coefficients on the adopted 

wavelet transform domain). Thus, any standard CS reconstruction algorithm can be further used 

to retrieve the underlying wavelet coefficients directly from the acquired compressed 

measurements, without reconstructing the acceleration responses in time domain. The latter 

enables the computation of the RWE and the detection of structural damage directly from the 

acquisition and processing of much fewer data compared to conventional approaches at Nyquist 

rate (e.g., Ren & Sun (2008); Yun et al. (2011); Lee et al. (2014)).  
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In the remainder of this chapter, the mathematical framework of the wavelet transform and 

the RWE are briefly reviewed in section 3.2 (§3.2. Theoretical Background of Relative Wavelet 

Entropy). Four orthogonal (energy-preserving) wavelet filter banks are further presented in 

section 3.3 (§3.3. On Frequency Selectivity of Wavelet Basis Functions), used to assess the 

influence of the wavelets’ frequency domain attributes within the RWE damage index and to 

determine the sparsest representation of structural responses on the wavelet transform domain. 

The efficiency of the proposed method is compared against the conventional approach with 

computer-simulated structural response data, while comparative numerical results are presented 

and discussed in section 3.4 (§3.4. Numerical Assessment of Relative Wavelet Entropy–based 

damage Detection for Various Wavelet Bases) and section 3.5 (§3.5. Proposed Compressive 

Relative Harmonic Wavelet Entropy Approach for Damage Detection), followed by concluding 

remarks in section 3.6 (§3.6. Concluding Remarks). 

Note that sections §3.2, §3.3, have appeared in [J1] and [C1] of section §1.5 (list of 

publications), parts of section §3.4 appeared in [J1], while section §3.5 presents novel 

contributions not being disseminated yet in the public domain. 

3.2. Theoretical Background of Relative Wavelet Entropy  

3.2.1. The continuous wavelet transform  

Consider a real signal x(t) of finite energy E in the axis of time t, or in time domain, expressed 

by 

2 21
( )  ( )  

2
E x t dt X d 



 

 
   . (3.1) 

In the above equation, X(ω) is the complex-valued Continuous-Time Fourier Transform 

defined by 

   ( ) ( ) i tX x t e dt



  , (3.2) 

in which i is the imaginary unit and the bar over a function denotes complex conjugation. The 

Fourier Amplitude Spectrum |X(ω)| maps/projects the signal x(t) onto the frequency domain, ω, 

with the sharpest possible resolution, since the non-decaying in time sinusoidal (harmonic) 

function eiω0t  with frequency ω0 becomes a “delta function” at ω0 in the frequency domain. 

Moreover, the relation eq. (3.1) implies that the transformation in eq. (3.2) preserves the signal 

energy and, therefore, the square of the Fourier Amplitude Spectrum normalised by the signal 

energy, |X(ω)|2/E, can be interpreted as the energy distribution carried by the signal x(t) on the 

frequency domain, averaged at all times (see e.g., Cohen (1995)). 
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Further, consider the Continuous Wavelet Transform defined as (e.g., Daubechies (1992); 

Goswami & Chan (1999)) 

   
1

,
t b

u a b x t ψ dt
aa





 
  

 
 , (3.3) 

which projects the signal x(t) onto a collection of localised in time oscillatory waveform 

functions (“wavelets”) generated by scaling in time, via the positive scale parameter α, and by 

translating in time, via the time position parameter b, a single finite energy function ψ(t), the so-

called “mother wavelet” (see also Figure 3.1).  

 

Figure 3.1: Generation of a family of wavelet functions by scaling and translating in time the mother 

wavelet ψ(t)   

For the purposes of this work, it is important to note that the square of the magnitude of the 

Continuous Wavelet Transform normalised by the signal energy, |u(α,b)|2/E, can be interpreted as 

an estimator of the signal energy distribution on the joint time-frequency plane (see e.g., Cohen 

(1995)). This is because: firstly, the Continuous Wavelet Transform in eq. (3.3) preserves the 

energy of the original signal; secondly, the parameter b is a time-related index defining the origin 

in time of each wavelet considered in the analysis for a fixed scale a; and, thirdly, the scale 

parameter a can be related to an effective frequency via the equation  

= c

eff

ω
ω

a
, (3.4) 

where ωc is the central or the dominant frequency of the (unscaled) mother wavelet Fourier 

Amplitude Spectrum, |Ψ(ω)|. Therefore, the Continuous Wavelet Transform in eq. (3.3) “scans” 

the signal x(t) in the time domain by varying the parameter b to detect frequency components that 

pertain to a specific effective frequency and bandwidth. The latter two frequency domain 
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attributes of Continuous Wavelet Transform depend on the scale α and on the properties of the 

mother wavelet.  

3.2.2. The discrete wavelet transform and wavelet filter banks 

In many practical numerical applications, the Continuous Wavelet Transform in eq. (3.3) is 

computed by considering a set of particular values for the parameters a and b following a dyadic 

discretization scheme. According to this scheme, the scaling parameter is expressed by α=2–j 

while the time position parameter is expressed –2 jb ka k  where j and k are integer numbers j, 

k  . The convolution integral in eq. (3.3) becomes (e.g., Daubechies (1992); Goswami & Chan 

(1999)) 

     / 21
, 2 2

2 2

j j

jj j

k
u u k x t ψ t k dt





 
   

 
 . (3.5) 

A further time discretization of the integral in eq. (3.5) to accommodate finite duration 

discrete-time N-length signals x[n]=x(n/Fs); n=0,1,…,N-1, where Fs is the sampling rate, yields 

the so-called discrete wavelet transform. Notably, the latter can be efficiently computed by means 

of a digital filter bank comprising a sufficient number of the (same) “building block” repeated in 

series as shown in Figure 3.2 in a multi-resolution analysis framework (Daubechies (1992); 

Vetterli & Herley (1992), Goswami & Chan (1999)).  

 

Figure 3.2: Typical dyadic discrete wavelet transform analysis filter bank with J=3 scales for processing 

N=8 long discrete-time signals 

Each building block corresponds to a particular scale or analysis “level” and consists of a 

high-pass filter with coefficients h[p]; p=1,2,…,P, a low-pass filter with coefficients g[p]; 

p=1,2,...,P, and a dyadic down-sampler (i.e., a mechanism of reducing the sampling rate by 

retaining every other sample of the input discrete-time signal) applied to the output of each of the 

previous filters. These filters are designed such that no energy is lost during 

transformation/processing of the input signal. At each level corresponding to the scale a=2-j the 

spectrum of the input discrete-time signal is split into two parts separating the high frequency 
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components, represented by the “detail” sequence of wavelet coefficients DJ+1-j upon down-

sampling, from the low frequency components, represented by the “approximation” sequence of 

coefficients AJ+1-j upon down-sampling (see e.g., Vetterli & Herley (1992)). The full discrete 

wavelet transform requires J=log2N total number of levels to be considered and at each level the 

number of coefficients in the output sequences upon down-sampling is N/2(J+1-j). Therefore, the 

discrete wavelet transform is non-redundant: it produces exactly N coefficients given an N-long 

discrete-time signal which preserve the signal energy E. 

In this respect, the processing of a given signal by a discrete wavelet transform filter bank 

begins by extracting, first, the highest frequency components at the lowest scale (i.e., for the 

largest j value) and proceeds at each level by extracting lower and lower frequencies, that is, the 

values of j follow a descending order: j=J, J-1,…,1 (see also Figure 3.2). The detail (or wavelet) 

coefficients at each scale capture only the part Ej of the total signal energy defined as  

 
2

j j

k

E u k , (3.6) 

where it is understood that summation is over all coefficients DJ+1-j at scale j. Then, the total 

energy of the signal is retrieved by summing the energy over all J scales, that is, 

 
2

j j

j j k

E E u k   , (3.7) 

under the assumption that the energy of the approximation coefficient at the final analysis 

level is negligible. Note that the ratio 

j

j

E
w

E
 , (3.8) 

gives the fraction of the total signal energy, contained within a particular frequency band 

corresponding to the j scale of the discrete wavelet transform analysis filter bank. It, therefore, 

characterises a discretised version of the Fourier transform-based function |X(ω)|2/E within this 

band. Notably, the width and location on the frequency axis of the frequency band corresponding 

to a scale j does not only depend on the value of j, but also on the frequency domain attributes of 

the filter h[p] or, equivalently, on the frequency domain attributes of the underlying analysis 

mother wavelet. In the following section, a structural damage sensitive index, introduced by Ren 

& Sun (2008), is briefly presented which relies on computing the ratio in eq. (3.8) of acceleration 

response signals from dynamically excited linear structures. Further, in sub-section §3.3, the 

frequency domain attributes of discrete wavelet transform filter banks using different analysing 

mother wavelets are presented, while the influence of these attributes for vibration-based 

structural damage detection is numerically demonstrated in section §3.3.  
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3.2.3. The relative wavelet entropy for structural damage detection 

Introduced by Blanco et al. (1998), the Shannon wavelet entropy is defined as 

SWE ln( )j j

j

w w  , (3.9) 

where wj is the positive ratio in eq. (3.8) with 0≤wj≤1 (i.e., wj qualifies as a probability 

distribution) and the summation involves all scales considered in an energy preserving discrete 

wavelet transform filter bank to transform a given signal x(t). The Shannon wavelet entropy was 

proved to be an effective quantitative measure to characterise the information carried by signals 

at different scales (or corresponding frequencies) and time instants in certain biomedical 

applications (e.g., Blanco et al. (1998); Rosso et al. (2006)). Interpreted from a structural 

dynamics viewpoint, the Shannon wavelet entropy of the acceleration response signal of a white 

noise-excited lightly-damped linear single-degree-of-freedom structural system will attain a 

relatively small value compared to the Shannon wavelet entropy of the response signal of a white 

noise excited structure with multiple degrees of freedom. This is because the energy of the former 

signal will be well-localised in the frequency domain around the natural frequency of the system 

and, ideally, will be captured by a single wj corresponding to the scale containing this frequency. 

The value of this particular wj will be close to unity and, therefore, its contribution to the sum in 

eq. (3.9) will be almost zero as the term ln(wj) will be almost zero, and so will be the contributions 

of the ratios from all other scales whose value will be close to zero. However, the energy of the 

response signal of a multi-degree of freedom structure will be spread around the various different 

natural frequencies of the structure. Consequently, there will be several non-zero contributions to 

the sum in eq. (3.9) and the overall value of Shannon wavelet entropy will be large. Clearly, the 

Shannon wavelet entropy is maximised for a white noise signal implying a highly “disordered” 

process, while the Shannon wavelet entropy of a very narrowband signal (close to a pure sinusoid) 

will be almost zero implying an “ordered” process.  

To this end, note that structural damage causes a shift to the natural frequencies of a structure 

and this should reflect in changes to the values of the scale-dependent energy ratios in eq. (3.8) 

obtained from linear structural response acceleration signals commonly considered in VSHM. In 

this regard, Ren & Sun (2008) proposed the use of the relative wavelet entropy defined by 

RWE ln
j

j

j j

w
w

z

 
  

 
 

 , (3.10) 

as a structural damage-sensitive index. In the last equation, wj is the scale dependent energy 

ratio in eq. (3.8) obtained from a response acceleration signal measured at a particular location of 

the damaged-state structure and zj is the scale dependent energy ratio in eq. (3.8) from a response 
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acceleration signal measured at the same point of the healthy-state structure. For structures with 

negligible damage close to the measurement location, it is expected that wj≈zj for all considered j 

scales and thus RWE attains a negligible value, corresponding to an ordered process. For damaged 

structures, it is expected that the two ratios will differ across some of the scales due to a shift to 

the natural frequencies of the system yielding a large RWE value, corresponding to a “disordered” 

process. Larger values of RWE are expected at measurements points close to the damage and, 

therefore, comparing the RWE values computed from an array of sensors may achieve damage 

localisation (Ren & Sun (2008); Yun et al. (2011). 

Note that the RWE index in eq. (3.10) is independent of time aiming to detect stationary 

structural damage. Since the underlying information for the detection of such kind of damage is 

associated with signal energy distribution in the frequency domain, it is intuitive to expect that 

the RWE is strongly dependent on the frequency domain properties of the wavelet filter bank used 

to compute the energy ratios appearing in eq. (3.10) and the quality of frequency domain 

resolution. The frequency domain properties of four different wavelet filter banks are discussed 

in the next sub-section focusing on the frequency resolution and selectivity across different scales. 

The influence of using different wavelet filter banks to the effectiveness of the RWE as a damage 

detection index for stationary damage is numerically assessed in the following sub-sections.  

3.3. On Frequency Selectivity of Wavelet Basis Functions 

3.3.1. Daubechies wavelet analysis filter banks 

Unlike the Continuous Wavelet Transform in eq. (3.3), the discrete wavelet transform 

discussed in sub-section §3.2.2 does not require an analytical definition for the mother wavelet 

ψ(t). Instead, it allows for different families of analysing wavelet functions to be indirectly defined 

by means of appropriately constructed filters g[p] and h[p]; p=1,2,…,P in Figure 3.2. This is the 

case of the Daubechies family of wavelets, denoted by DP, which are defined via a single P-length 

finite impulse response filter construction due to Daubechies (e.g., Daubechies (1992)), and are 

widely used within the discrete wavelet transform multi-resolution analysis framework. 

Daubechies wavelets are constructed to be compactly supported in the time domain forming 

orthogonal analysis bases within each scale and across all dyadic scales. Consequently, they 

achieve sharp localisation of signal energy in time domain and preserve the input signal energy.  

Nevertheless, the enhanced time domain localisation capabilities of Daubechies wavelets, 

comes at the cost of relatively poor frequency domain localisation and discrimination across 

scales in typical Daubechies discrete wavelet transform filter banks. These issues are illustrated 

in Figure 3.3(a) which plots the Fourier Amplitude Spectrum, |Ψ(ω/2j)|, of D2 Daubechies 

wavelets (defined using an P=2-long finite impulse response filter reported in Daubechies (1992) 
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for four adjacent scales. These FASs have been obtained by Fourier transforming D2 wavelets at 

different scales (Figure 3.3(b) and Figure 3.3(c) plot two such wavelets). The wavelets are 

obtained by means of a standard algorithm which constructs recursively the so-called scaling 

function, φ(t), at first, and, then, the associated wavelet function at each considered scale j by 

relying on the following two-scale equations (see  Goswami & Chan (1999)) 

1

1(2 ) [ ] (2 )j j

p

φ t g p φ t p  , (3.11) 

1

1(2 ) [ ] (2 )j j

p

ψ t h p φ t p  . (3.12) 

The sequence g1[p] in eq. (3.11) are the P coefficients of the finite impulse response filter 

defining the DP wavelets. Further, in eq. (3.12), h1[p]=(–1)pg1[1–p]. Note that the signal analysis 

finite impulse response filters appearing in Figure 3.2 for the DP wavelets are defined as g[p]=0.5

 g1[–p] and h[p]=0.5  (–1)p g1[p+1] (quadrature mirror construction). 

 

Figure 3.3: Daubechies D2 (or Haar) wavelets for four different scales j from a filter bank with J=16 total 

number of scales and Q= 0.49: (a) Normalised to the peak value Fourier Amplitude Spectrum, 

|Ψ(ω/2j)|; (b) wavelet in time domain at scale j=11; and (c) wavelet in time domain at scale 

j=14 

Figure 3.3(a) shows clearly that the FASs of a Daubechies wavelet basis, as implemented in 

a dyadic discrete wavelet transform filter bank, exhibit significant overlapping among the 

different scales and have a relatively poor frequency selectivity among scales j especially in the 

lower frequencies (see also Vetterli & Herley (1992)). In fact, being compactly supported in the 

time domain, Daubechies wavelets are infinitely supported in the frequency domain: their Fourier 

Amplitude Spectrum comprises one main dominant lobe and several lower periodic side-lobs at 

higher frequencies. This is a consequence of the so-called uncertainty principle which holds for 

any Fourier pair: enhancing the energy localisation of a function in the time domain deteriorates 

its frequency resolution (i.e., widens its effective bandwidth) and vice versa (e.g., Cohen (1995)). 

Note that the wavelets shown in Figure 3.3 attain the lowest possible order of Daubechies 

wavelets, D2, which are also known in the literature as “Haar” wavelets. Figure 3.4 provides 

similar plots as Figure 3.3 for higher-order Daubechies wavelets, D20. The latter support a rather 
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smooth structure and the side lobs of their FASs at higher frequencies are minimised (Figure 

3.4(a)). However, severe overlapping occurs between adjacent scales, especially in the lower 

frequencies where the frequency selectivity among scales is rather poor. Consequently, the use of 

such filter banks renders the task of assigning any single frequency band to the signal energy 

captured at a particular scale in eq. (3.6), Ej, a rather challenging task. 

 

Figure 3.4: Daubechies D20 wavelets for four different scales j from a filter bank with J=16 total number 

of scales and Q= 0.46: (a) Normalised to the peak value Fourier Amplitude Spectrum, 

|Ψ(ω/2j)|; (b) wavelet in time domain at scale j=11; and (c) wavelet in time domain at scale 

j=14. 

3.3.2. Meyer wavelet filter banks 

Unlike the Daubechies wavelets which are compactly supported in the time domain, the 

Meyer (mother) wavelet is compactly supported in the frequency domain defined as (e.g., 

Daubechies (1992)) 
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, (3.13) 

In the last equation, the auxiliary function v(u) controls the smoothness of the Fourier 

Amplitude Spectrum of Meyer wavelets and, therefore, their rate of decay in the time domain. A 

common smoothing function of choice is (e.g., Daubechies (1992); Misiti et al. (1997)) 

 4 2 3(35 84 70 20 ) ; 0,1
( )

                                        0  ;

u u u u u
v u

otherwise
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 


 (3.14) 

Orthogonal Meyer wavelet bases can be readily constructed and used to obtain energy 

preserving Continuous Wavelet Transform in eq. (3.3). In fact, Lee et al. (2014) considered the 

Meyer Continuous Wavelet Transform to identify the potentially damaged connections in trusses 

by relying on the RWE from signals measured at healthy and damaged connections from a single 
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excitation test. However, there exist discrete wavelet transform filter bank constructions 

comprising finite impulse response filters (as in Figure 3.2) that approximate the Meyer-based 

Continuous Wavelet Transform using a dyadic frequency domain discretisation scheme (e.g., 

Misiti et al. (1997)). Such a Meyer discrete wavelet transform filter bank is used in the numerical 

applications of the next sub-section since it is much more efficient to compute and therefore more 

likely to be adopted in computing wavelet coefficients on on-board micro-processors for wireless 

sensors used in VSHM (e.g., Lynch (2007); Yun et al. (2011)).  

Figure 3.5(a) plots the Fourier Amplitude Spectrum of Meyer wavelets at four adjacent scales. 

Compared to the Daubechies wavelets of Figure 3.3(a) and Figure 3.4(a), overlapping in the 

frequency domain is observed only between neighbouring wavelet scales and there are no side 

lobs at high frequencies. Therefore, discrete wavelet transform filter banks of Meyer wavelets 

attain enhanced frequency selectivity among scales compared to Daubechies wavelets. However, 

as in the case of Daubechies wavelet filter banks, the frequency resolution deteriorates in higher 

frequencies as the wavelets becomes better localised in time domain at lower scales (larger values 

of j). This issue is further discussed in the following sub-section.  

 

Figure 3.5: Meyer wavelets for four different scales j from a filter bank with J=16 total number of scales 

and Q= 0.68: (a) Normalised to the peak value Fourier Amplitude Spectrum, |Ψ(ω/2j)|; (b) 

wavelet in time domain at scale j=11; and (c) wavelet in time domain at scale j=14. 

3.3.3. Constant Q-analysis wavelet filter banks 

The ability of the square magnitude of the Continuous Wavelet Transform and of the discrete 

wavelet transform (i.e., of the |u(α,b)|2 and of the |uj[k]|2, respectively) to resolve the frequency 

components of any signal in time relies on the scaling operation and on the oscillatory form of 

the wavelets. Specifically, as the scaling parameter a takes on smaller values (or as j assumes 

higher values in the case of discrete wavelet transform) the wavelets are compressed in the time 

domain. However, the number of the wavelet zero-crossings (i.e., oscillations) remain the same 

and, thus, the wavelet Fourier Amplitude Spectrum becomes wider, due to the uncertainty 

principle, while it shifts towards higher frequencies since the effective frequency in eq. (3.4) 

increases. The above points can be readily observed in Figure 3.3, Figure 3.4 and Figure 3.5: the 

width of the main lobe of the wavelet Fourier Amplitude Spectrum widens as the average 
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frequency content, characterised by the central or the peak frequency of the main lobe, increases. 

This well-known property of the standard Continuous Wavelet Transform in eq. (3.5) is called 

constant-Q analysis, where Q is defined as the ratio of the effective frequency over the effective 

bandwidth at each analysis level or scale (see also Brown (1991)). Consequently, the dyadic 

discrete wavelet transform filter banks assume a constant Q across scales or analysis levels (note 

that the value of Q is reported for the filter banks of Figure 3.3 toFigure 3.5). 

In many signal analysis applications, a constant Q-analysis is favourable. This is because 

high-frequency components in time-series are usually well-localised in time, while low-frequency 

trends are well-spread in time. Nevertheless, this is not necessarily true in processing acceleration 

response signals from dynamically excited linear structures whose location of the dominant 

frequency components on the frequency domain depends on the structural natural frequencies. 

The natural frequencies of lightly damped linear structures are well-localised in the frequency 

domain and may lie anywhere on the frequency axis. In this regard, the use of non-constant Q 

wavelet analysis filter banks is a reasonable consideration in order to target natural frequencies 

related to higher modes of vibration effectively. The wavelet family presented in the next 

subsection can readily achieve custom-made non-constant Q wavelet analysis filter banks. These 

considerations have important practical implications to the effectiveness of the RWE in eq. (3.10) 

for structural damage localisation purposes as will be numerically illustrated in the following sub-

section.  

3.3.4. Harmonic wavelet filter banks 

Introduced by Newland (1994), the harmonic wavelet transform proved to be a potent tool for 

structural damage detection of yielding multi-storey building structures under severe earthquake 

excitation (e.g., Spanos et al. (2007)). The harmonic wavelet transform incorporates a basis of 

complex-valued functions with compactly supported box-like Fourier Amplitude Spectrum 

(harmonic wavelets). A “general” harmonic wavelet at scale j centred at the k/(n[j]-m[j]) position 

in time can be written in the frequency domain as (see e.g., Giaralis & Spanos (2009)) 
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(3.15) 

where Το is the total length (duration) of the time interval considered in the analysis. In the 

last equation, the sequences (vectors) m[j] and n[j] contain integer positive numbers. It was shown 

by Newland (1994), that a collection of harmonic wavelets spanning adjacent non-overlapping 
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intervals at different scales on the frequency domain forms a complete orthogonal basis. This can 

be achieved by proper definition of the m[j] and n[j] sequences. The inverse Fourier transform of 

eq. (3.15) expresses the time-domain representation of the harmonic wavelet  

 
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The harmonic wavelet transform is defined in 
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In which the harmonic wavelet coefficients uj,k[k] preserve the input signal energy.  

Importantly, note that at scale j the effective bandwidth of the harmonic wavelet transform is 

(n[j]-m[j])2π/Το and the central frequency is (n[j]+m[j])π/Το. In this respect, it can be readily seen 

that harmonic wavelet transform enables arbitrary frequency resolution within any given range 

of frequencies. Furthermore, the effective frequency band at each scale is defined directly in the 

frequency domain in a straightforward manner. Therefore, the harmonic wavelet transform 

provides for exceptional freedom in defining “frequency bins” of arbitrary width which, 

theoretically, do not overlap (note though that some overlapping does occur in practical 

computation of the harmonic wavelet transform since “ideal” band-pass filters cannot be 

numerically implemented). This is not the case for typical wavelet families (e.g., Meyer and 

Daubechies families) whose frequency content at each scale is implicitly defined by means of a 

single scalar (i.e., the scaling parameter). An example of four neighbouring scales as part of a 

basis with constant-width “frequency bins” is shown in Figure 3.6(a) where the central frequency 

of each scale is noted by a broken line. Such a basis leads to a non-constant Q-analysis. Still, 

constant Q-analysis with dyadic discretisation of the typical discrete wavelet transform can be 

accommodated by the harmonic wavelet transform by taking m[j]=2j and n[j]=2j+1. 

 

Figure 3.6: Harmonic wavelets 10Hz constant bandwidth filter bank: (a) Fourier Amplitude Spectrum for 

4 different scales with central frequencies denoted by broken lines, (b) real part harmonic 

wavelet with 15Hz central frequency, (c) real part harmonic wavelet with 35Hz central 

frequency. 
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Nevertheless, the aforementioned “freedom of choice” of harmonic wavelet transform comes 

at the cost of relatively poor time localisation as evidenced by comparing the wavelets plotted in 

time domain in Figure 3.6 compared to those in Figure 3.3 to Figure 3.5. In fact, harmonic 

wavelets can be viewed as the complex counterpart of the so-called “Shannon wavelets” 

associated with the Littlewood-Paley basis (see for example Daubechies (1992) and Vetterli & 

Herley (1992)), which are well-known for their poor time localisation properties. Still, for 

stationary damage detection, poor time-localisation attributes are of secondary importance. From 

a computational viewpoint, robust fast Fourier transform (FFT)-based algorithms have been 

proposed by Newland (1994) and Newland (1999) for the efficient computation of non-redundant 

as well as for redundant harmonic wavelet transform on the frequency domain. A custom-made 

implementation of Newland’s FFT-based algorithm is used to compute non-constant Q harmonic 

wavelet transform considered in the following section. 

An orthonormal harmonic wavelet basis matrix 
N N

N N


 Ψ  can be constructed (e.g., 

Comerford et al. (2015)) by defining first the number of wavelet scales, j, and the associated width 

of each frequency bin, ( n[j] – m[j] ), depending on the desired the time-frequency resolution of 

the problem at hand. Next, for each scale   0,1,..., 2 [ ] [ ]j N n j m j    , a discrete-time complex-

valued harmonic wavelet 
, ,[ ] ( )j k j kψ n ψ nt  is computed from eq. (3.16) for n=[0, 1,…, N-1]. The 

obtained waveform is then separated in its real,  , and imaginary, , components, each of which 

is translated in time by     –kN n j m j , with k taking values within the range  0,  [ ] – 1[ ]n j m j  . 

The generated waveforms are then inserted as column vectors in N NΨ  (see also Comerford et 

al. (2015)).  

3.4. Numerical Assessment of Relative Wavelet Entropy–based Damage 

Detection for Various Wavelet Bases  

3.4.1. Benchmark structural models 

The RWE damage detection framework is applied herein to conventionally sampled 

acceleration response signals obtained from two finite element (FE) models corresponding to a 

healthy and a damaged state of an aluminum space truss, respectively. Lab specimens of similar 

structures have also been adopted by Yun et al. (2011) to attest the applicability of the RWE for 

damage detection from linear response acceleration signals obtained by tethered and wireless 

sensors. 

In particular, the 8-bay simply supported aluminium truss of Figure 3.7 is considered, which 

is based on Humar et al. (2006), as a benchmark structure to assess the performance of various 
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vibration-based techniques for damage detection. The truss comprises 100 tubular members and 

each bay is a cube with 707mm long side. The members shown in blue in Figure 3.7 have 22mm 

diameter and 1mm wall thickness, while the members shown in grey are 30mm in diameter and 

1.5mm wall thickness. The truss is modelled in SAP2000 FE commercial software using standard 

linear one-dimensional elements. Gravitational masses of 0.44kg are lumped at each of the 36 

nodes of the FE model. Additional gravitational masses of 1.75kg are assigned to nodes 1,7,30, 

and 34, and of 2.75kg are assigned to nodes 20, 26, and 32 to produce FE models with well-

separated modes of vibration (see also Humar et al. (2006)). A damaged state of the truss structure 

is further modelled by 50% reduction of the axial rigidity of the two truss members shown in red 

in Figure 3.7(b). For the first four vertical (gravitational) in-plane modes of vibration of the 

considered FE models, the structural natural frequencies obtained by means of standard modal 

analysis are reported in Table 3-1. In all the ensuing dynamic analyses, a critical damping ratio 

of 1% for all vibration modes is assumed. 

 

Figure 3.7: Space truss FE models: (a) healthy state and (b) damaged state. 

Table 3-1: Natural frequencies corresponding to in-plane vertical bending mode shapes for the space 

truss FE models  

Natural frequencies Healthy State Damaged State 

f1 [Hz] 73.6 68.9 

f 2 [Hz] 165.4 163.9 

f3 [Hz] 294.5 291.6 

f4 [Hz] 424.3 419.0 

3.4.2. Excitation forcing functions and response acceleration signals 

Two different types of dynamic forcing functions are considered to excite the above FE 

models for reasons discussed later in the text: a 50s-long harmonic excitation with unit amplitude 

and linearly increasing frequency within the range of 0.1Hz to 320Hz (sine sweep), and a 40s-

long realization of a zero-mean Gaussian white noise process with single-sided unit-amplitude 

power spectrum band-limited to 500Hz. Both functions are sampled at 1000Hz rate. Figure 3.8(a) 

plots the first 4s of the sine-sweep excitation and Figure 3.8(b) plots the white noise sample 

excitation normalised by its peak value. Further, Figure 3.8(c) plots the Fourier Amplitude 
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Spectrum of the sine-sweep normalised by its mean value and Figure 3.8(d) plots the Fourier 

Amplitude Spectrum of the white noise. It is seen that the considered forcing functions have a 

practically flat Fourier Amplitude Spectrum within a sufficiently wide frequency range to excite 

the structural natural frequencies of the considered FE models listed in Table 3-1. Therefore, both 

functions qualify for experimental forced vibration testing for damage detection using 

electromechanical shakers (e.g., Ewins (2000)). However, in this study, forced vibration tests are 

simulated as described below. 

 

Figure 3.8: Sine-sweep (only first 4s shown) and white noise forcing functions in the time domain, (a) and 

(b), and in the frequency domain, (c) and (d), respectively 

The above forcing functions are applied to 5th node of the space truss FE models along the z-

axis (see Figure 3.7). For each individual forcing function, standard linear response history 

analyses are undertaken in SAP2000 FE software to obtain vertical acceleration response signals 

of the FE models in Figure 3.7 at 9 equidistant measurement points coinciding with the nodes 1 

to 9 of the FE model in Figure 3.7. The obtained acceleration time-histories are treated as 

structural response signals corresponding to standard forced vibration experimental testing in a 

noise-free environment and are wavelet transformed by different filter banks introduced in the 

following section. It is important to note that the two forcing functions of Figure 3.8 differ in both 

time and frequency domain. Specifically, the white noise excitation is a quasi-stationary signal 

in the time domain (i.e., a finite duration signal whose frequency and amplitude properties do not 

change in time), while the sine-sweep excitation is non-stationary in the time domain having a 

frequency content that evolves in time. Considering next the representation of these signal in the 

frequency domain, it is noted that the white noise excitation has a higher cut-off frequency at 

500Hz compared to the sine-sweep excitation which is bandlimited by a maximum frequency at 
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320Hz. Consequently, the properties of the response acceleration signals will also be different in 

the two domains (i.e., time and frequency domain) for the adopted excitations.  

Along these lines, Figure 3.9 plots the acceleration time-series obtained from the 4th node of 

the damaged space truss model under the sine-sweep and white noise excitations, respectively. 

The pertinent FASs normalised to their peak value are illustrated in Figure 3.10. Note that the 

response signal to the sine-sweep excitation is non-stationary in time, observing three prominent 

“bursts” which are located at the time instants when resonance occurs. The latter phenomenon 

happens when the frequency of the sine-sweep input coincides with the truss resonant frequencies 

of Table 3-1 (i.e., the first three natural frequencies are excited by the bandlimited sine-sweep 

input in the frequency range [0.1, 320] Hz). On the antipode, the response signal to the white 

noise excitation is stationary in time, exciting additional higher order mode shapes whose natural 

frequencies lie outside the bandwidth of the sine-sweep excitation. This additional broadband 

high frequency content may affect the interpretation of RWE values derived from different 

wavelet filter banks; the latter is examined and discussed in subsequent sections. The reason for 

considering both sets of response signals (stationary and non-stationary) is to test whether the 

above differences in the time domain might influence the potential of the RWE for damage 

detection depending on the wavelet filter bank used, given that the poor time localisation 

capabilities of certain wavelet families considered in this study (i.e., the harmonic wavelets in 

Figure 3.6). 

  

Figure 3.9: Time domain representation of the normalised to unit amplitude response acceleration signals 

recorded at node 4 of the damaged space truss in Figure 7 under (a) sine-sweep and (b) white 

noise excitation. 

 

Figure 3.10: Frequency domain representation of the normalised to unit amplitude response acceleration 

signals recorded at node 4 of the damaged space truss in Figure 7 under (a) sine-sweep and 

(b) white noise excitation. 

(a) (b) 

(a) (b) 
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3.4.3. Wavelet analysis filter banks and scale-dependent relative wavelet entropy 

Prior to the implementation of the wavelet analysis, signal pre-processing operations are 

applied to the considered acceleration response datasets of the truss FE models in Figure 3.7. 

Firstly, the structural responses are zero-padded to generate N-length time-sequences, where N is 

a power of 2. In this respect, time-sequences of N=216 data-samples are generated for both 

excitation cases considered (i.e., sine-sweep and white noise). The generated signals are further 

normalised by the energy of the corresponding forcing functions, their potential non-zero mean 

value is then subtracted, and they are wavelet transformed using various different energy 

preserving wavelet filter banks. Specifically, two 16-scale dyadic discrete wavelet transform filter 

banks are considered implementing non-smooth Daubechies D2 (or Haar) and smooth 

Daubechies D20 wavelets, attaining almost the same (constant) Q value: Q≈0.49 for the Haar 

filter bank and Q≈0.46 for the D20. Furthermore, a Meyer wavelet basis approximated by a 16-

scale dyadic finite impulse response discrete wavelet transform filter bank of approximately 

Q≈0.68 constant (i.e., significantly higher that the two Daubechies filter banks) is also considered. 

Table 3-2 reports the effective bandwidth (accounting only for the main lobes of the Fourier 

Amplitude Spectrum for the Daubechies wavelets) and the characteristic frequency at which the 

wavelet Fourier Amplitude Spectrum is maximised for the first 10 discrete wavelet transform 

analysis levels of the above three filter banks. To facilitate the interpretation of the results 

presented in the following section, Table 3-2 indicates with bold fonts the 4 analysis scales 

corresponding to the FASs in Figure 3.3, Figure 3.4, and Figure 3.5, which pertain to the D2, D20, 

and Meyer wavelets, respectively. The discrete wavelet transform for all the above filter banks is 

carried out using the built-in functions of the MATLAB-based wavelet toolbox developed by 

Misiti et al. (1997). Notably, the natural frequencies of the truss in Table 3-1 are not uniquely 

defined within the effective range of a given scale j (or analysis level) for the three discrete 

wavelet transform presented in Table 3-2, due to overlapping between adjacent scales. 

Additionally, the considered signals are also processed by means of a harmonic wavelet basis 

of 128 adjacent non-overlapping “frequency bins” (scales) of constant width equal to 3.91Hz 

spanning the range of 0-500 Hz on the frequency axis. Note that the consideration of constant 

effective bandwidth for all scales/analyses levels is a reasonable assumption in SHM cases where 

the structural natural frequencies are not known a priori. Table 3-3 reports the frequency domain 

attributes of the non-constant Q harmonic wavelet transform for 16 analysis levels, which include 

the first four truss resonant frequencies listed in Table 3-1 (both healthy and damaged states). 

Note that each natural frequency of the truss in Table 3-1 is uniquely located in a single frequency 

bin of the harmonic wavelet transform, which is rather beneficial in the computation of RWE 

index as discussed in §3.4.4. The non-constant Q harmonic wavelet transform analysis is carried 
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out by means of a custom-made code implementing the FFT-based algorithm described by 

Newland (1994) and Newland (1999).  

Table 3-2: Frequency domain attributes of the first 10 analysis levels for the considered wavelet filter 

banks 

Analysis Level 

 (scale) 

D2 Daubechies or Haar 

wavelet filter bank (Q≈0.49) 

D20 Daubechies wavelet filter 

bank (Q≈0.46) 

Meyer wavelet filter bank 

(Q≈0.68) 

Effective 

range (Hz)* 

Effective 

Frequency 

(Hz)* 

Effective 

range  

(Hz)* 

Effective 

Frequency 

(Hz)* 

Effective 

range (Hz) 

Effective 

Frequency 

(Hz) 

Level 1 (j=16) 0-1024 498.05 70.62-812.14 342.11 179.2-674.13 331.68 

Level 2 (j=15) 0-558 249.03 45.85-412.66 171.05 85.33-341.33 165.84 

Level 3 (j=14) 0-267 124.51 21.48-207.66 85.53 42.67-170.67 82.92 

Level 4 (j=13) 0-130 62.26 10.41-100.66 42.76 22.4-85.33 41.46 

Level 5 (j=12) 0-64 31.13 5.13-51.29 21.38 11.2-42.67 20.73 

Level 6 (j=11) 0-32 15.56 2.55-25.45 10.69 5.33-21.33 10.37 

Level 7 (j=10) 0-16 7.78 1.27-12.68 5.35 2.8-10.67 5.18 

Level 8 (j=9) 0-8 3.89 0.63-6.33 2.67 1.4-5.33 2.59 

Level 9 (j=8) 0-4 1.95 0.32-3.16 1.34 0.67-2.67 1.30 

Level 10 (j=7) 0-2 0.97 0.16-1.63 0.67 0.35-1.32 0.65 

*Values accounting for only the main lobe of the Fourier Amplitude Spectrum of the scaled wavelets 

Table 3-3: Frequency domain attributes of the non-constant Q harmonic wavelet transform for 16 

analysis levels (in non-consecutive order) which include the first four resonant frequencies of truss in its 

healthy and damaged state  

Analysis 

Level (scale) 

Harmonic wavelet analysis 

Analysis 

Level (scale) 

Harmonic wavelet analysis 

Frequency 

Range (Hz) 

Central 

Frequency 

(Hz) 

Frequency 

Range (Hz) 

Central 

Frequency 

(Hz) 

Level 19 425.81 - 429.69 427.75 Level 85 168.00 - 171.88 169.94 

Level 20 421.88 - 425.81 423.84 Level 86 164.06 - 168.00 166.03 

Level 21 418.00 - 421.88 419.94 Level 87 160.19 - 164.06 162.12 

Level 22 414.06 - 418.00 416.03 Level 88 156.25 - 160.19 158.22 

Level 52 296.88 - 300.81 298.84 Level 109 74.25 - 78.13 76.19 

Level 53 293.00 - 296.88 294.94 Level 110 70.31 - 74.25 72.28 

Level 54 289.06 - 293.00 291.03 Level 111 66.44 - 70.31 68.37 

Level 55 285.19 - 289.06 287.12 Level 112 62.50 - 66.44 64.47 
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For the sine-sweep excitation, the square magnitude of the wavelet coefficients, computed 

from the above wavelet filter banks (i.e., D2, D20, Meyer, and Harmonic wavelets), is illustrated 

in Figure 3.11 for a typical truss acceleration response measured at the 4th node of the damaged 

FE model in Figure 3.7. It is readily observed from Figure 3.11 that the distribution of the signal’s 

energy in the time-frequency plane depends strongly on the frequency attributes of the adopted 

wavelet filter banks. In all panels of Figure 3.11, the signal energy is time-limited at t1=11.7s, 

t2=26.8s and t3=46.1s, i.e., at the same time instants that the “bursts” in Figure 3.9 occur, 

pertaining to the first three resonant frequencies of the adopted structure (see also Figure 3.10). 

Note the considerably smaller signal energy around the 2nd resonance at t2=26.8s for all cases in 

Figure 3.11 (compared to the other two resonances at t1 and t3) due to the consideration of the 

truss acceleration response at node #4 which is close to a zero node for the 2nd modal deflected 

shape of the truss.  

For the D2, D20 and the Meyer wavelet filter banks in Figure 3.11 (a-c), it is seen that the 

signal’s energy is mainly concentrated at t1=11.7s, associated with the first natural frequency of 

the truss (see also Figure 3.10). At resonances, though, of higher frequency content (i.e., at 

t3=46.1s), the pertinent energy is not adequately retrieved by these three wavelets (D2, D20, 

Meyer) due to their poor frequency selectivity at higher frequencies. Further, significant energy 

leakage is observed in Figure 3.11 (a-c) for the D2, the D20 and the Meyer wavelet, caused by 

the significant overlapping of their frequency bands among scale (see also Figure 3.3-Figure 3.5 

and Table 3-2). Note that the Haar discrete wavelet transform observes the poorest frequency 

resolution, which is also reflected in Figure 3.11(a) with the spread of the signal’s energy over 5 

scales (i.e., j=10-15). However, the frequency resolution is improved in Figure 3.11(b) for the 

D20 wavelet, while it gets even better in Figure 3.11(c) for the Meyer wavelet. On the contrary, 

Figure 3.11 (d) reveals that the high-resolution harmonic wavelets can efficiently capture the 

signal energy at the two dominant resonances at t1=11.7s and t3=46.1s, despite their poor time-

domain localisation properties, yielding two distinct peaks at the pertinent natural frequencies of 

the damaged truss (i.e., at 68.9 Hz and 291.6 Hz in Table 3-1).  

Similar remarks hold for the white noise excitation in Figure 3.12, which plots the square 

magnitude of the wavelet coefficients for the four considered wavelet filter banks (i.e., D2, D20, 

Meyer and the harmonic wavelet transform) by employing the same truss acceleration signal as 

in Figure 3.11 for the sine-sweep excitation. Notably, the energy distribution of the truss 

acceleration response under the quasi-stationary white noise excitation (bandlimited to 500Hz) 

preserves the time and frequency domain attributes discussed in sub-section §3.4.2. The latter 

include the signal’s stationarity property along the time axis (i.e., the excited frequencies do not 

change in time) as well as the excitation of the higher modes of the vibrating truss, pertaining to 

resonant frequencies up to 500 Hz (i.e., signal energy is also concentrated around the 4th natural 

frequency of the truss at f4=419 Hz). 
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Figure 3.11:Normalised squared magnitude of wavelet coefficients pertaining to the truss acceleration 

response at node #4 (damaged state) under the sine-sweep excitation; discrete wavelet 

transform analysis with (a) D2 (Haar), (b) D20, (c) Meyer; and (d) Harmonic wavelet 

transform  

 

Figure 3.12: Normalised squared magnitude of wavelet coefficients pertaining to the truss acceleration 

response at node #4 (damaged state) under the white noise excitation; discrete wavelet 

transform analysis with (a) D2 (Haar), (b) D20, (c) Meyer; and (d) Harmonic wavelet 

transform 
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Next, the relative wavelet energy in eq. (3.8) is computed from the wavelet coefficients of the 

response acceleration signals (healthy and damaged states) at each scale of the 4 different wavelet 

filter banks. Subsequently, the following “scale-dependent” contributor to the overall RWE in eq. 

(3.10) is calculated for all measurement points of the damaged models 

 RWE ln
j

j

j

w
j w

z

 
  

 
 

. (3.18) 

In the last equation, zj is the relative wavelet energy at scale j computed from the simulated 

response signals of the “healthy” FE models, while wj is the relative wavelet energy at scale j 

corresponding to response signals of the damaged state. The consideration of the above scale-

dependent RWE(j) makes possible to discriminate the contributions to the overall RWE in eq. 

(3.10) from each wavelet analysis level. Therefore, it serves well the purpose of assessing the 

influence of the frequency domain attributes of the different wavelet filter banks considered (i.e., 

frequency selectivity among scales and Q value) to the computed values of the RWE index. 

Finally, it is noted that no hard-thresholding is applied to the RWE as has been proposed by Ren 

& Sun (2008) to sharpen damage localisation by keeping only the values of the RWE above a 

certain threshold. This is because this study focuses on gauging the influence of using different 

wavelet filter banks to the computation of the RWE across different scales, rather than the 

potential of RWE for damage localisation. The latter issue is well-established in the literature 

(Ren & Sun (2008);Yun et al. (2011); Lee et al. (2014)). Therefore, the next sub-section presents 

and discusses “raw” scale-dependent RWE(j) data obtained from the various analyses undertaken 

without any further filtering or processing.  

3.4.4. Numerical results and discussion 

Considering the uniform-sampled N-length truss acceleration responses to the sine-sweep and 

the white noise excitations, the scale-dependent RWE(j) in eq. (3.18) is computed for the four 

different wavelet bases in §3.3, and plotted in the three-dimensional bar charts of Figure 3.13(a) 

to Figure 3.20 (a). The RWE(j) bars are stacked along a scale/frequency axis corresponding to the 

wavelet analysis levels in Table 3-2 and Table 3-3, and along a spatial axis, labelled after the 

points on the FE models in Figure 3.7 at which the response acceleration signals are recorded. A 

large positive value of the RWE(j) at a particular scale/frequency and measurement point indicates 

a potential local damage. This local damage is inferred from the changes in the signals energy 

around the dominant resonant frequencies of the damaged structure (in Table 3-1) by processing 

response accelerations recorded at the given location/point in two structural states (i.e., a healthy 

and a damaged state). Further, Figure 3.13(b) to Figure 3.20(b) plot the RWE in (3.10), that is, 
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the sum of the scale dependent RWE(j) across all scales/frequencies as considered by Ren & Sun 

(2008).  

The non-stationary sine-sweep excitation case (bandlimited to 320Hz in Figure 3.8(c)) is first 

considered and the set of RWE plots in Figure 3.13 - Figure 3.16 is examined. It is noted that 

acceptable damage localisation is achieved, for all four filter banks considered in this study, 

indicated by large RWE values around the 3rd and 7th measurement points. The latter is better 

visualised in Figure 3.13(b) - Figure 3.16(b), in which a red broken line is also plotted to indicate 

the value of an assumed hard thresholding criterion for efficient damage detection. In the case of 

the Haar wavelet basis (Figure 3.13), the smooth Daubechies D20 wavelets (Figure 3.14) and of 

the Meyer wavelets (Figure 3.15), the RWE values are primarily contributed from scale at j=13 

(or analysis level 4), with effective ranges that contain the first damaged natural frequency of the 

damaged space truss (at 68.9 Hz), as shown in Table 3-2. The RWE derived from the Haar wavelet 

basis exhibits certain non-zero RWE values from scales j=9 to j=15, which can be attributed to 

the energy (spectral) leakage shown in Figure 3.11 (a) caused by the significant overlapping of 

the wavelet’s frequency bands among scales (Figure 3.3, Table 3-2). For the same reasons, non-

zero RWE values are also observed in Figure 3.14 for the Daubechies D20 wavelet, which, 

however, contribute only at scale j=15 (of higher frequency content) and at fewer measurements 

points compared to the Haar wavelet basis in Figure 3.13. Note that the Meyer wavelet case in 

Figure 3.15 exhibits spurious RWE values at lower scales (j=1,2), associated with very low 

effective frequencies below the range of interest. On the contrary, the computed RWE values 

from the harmonic wavelet transform in Figure 3.16 are confined within just two frequency bins, 

pertaining to the first and the third natural frequencies of the damaged truss. Further, it is clearly 

seen in Figure 3.16 that the structural damage is mainly attributed to the frequency shifts 

associated with the fundamental resonant frequency of the adopted structure - an observation that 

is not easily distinguished in the previous cases (Figure 3.13-Figure 3.15) due to the overlapping 

phenomenon. Therefore, the non-constant Q harmonic wavelet filter bank with, theoretically, zero 

overlapping among scales offers a more robust RWE-based damage detection compared to the 

other discrete wavelet transform filter banks as it draws information about the damage from both 

the excited mode shapes at all measurement points.  
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Figure 3.13: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using the Daubechies 

D2 (or Haar) wavelet filter bank for the space truss subject to the sine-sweep excitation 

 

Figure 3.14: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using the Daubechies 

D20 wavelet filter bank for the space truss subject to the sine-sweep excitation 

  

Figure 3.15: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using the Meyer wavelet 

filter bank for the space truss subject to the sine-sweep excitation 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 3.16: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using a 128-scale 

harmonic wavelet filter bank (3.91Hz bandwidth per scale) for the space truss subject to the 

sine-sweep excitation  

Similar remarks hold for the set of RWE plots in Figure 3.17-Figure 3.20 pertaining to the 

stationary white noise excitation (bandlimited to 500Hz in Figure 3.8(d)). A marked difference, 

though, is the partial detection of structural damage around the 7th measurement point only, where 

the largest RWE values are observed. Exception to the latter is the Meyer wavelet case in Figure 

3.19, which can also retrieve the structural damage close to the 3rd measurement point. 

Nonetheless, the RWE values derived from the Meyer discrete wavelet transform attain non-

negligible values at low scales (below j=5) which are not related to the broadband high frequency 

content in the considered truss acceleration responses (see also Table 3-1). As in the case of 

response signals from the sine-sweep excitation, the harmonic wavelet filter bank in Figure 3.20 

can resolve accurately the shifts of natural frequencies as they reflect to changes to the wavelet 

energy distribution captured by the RWE. Clearly, the fact that the two sets of response 

acceleration signals examined (i.e., due to the sine-sweep and white noise excitations) have very 

different time-domain properties does not affect the ability of harmonic wavelets to represent 

correctly the frequency content even for the highly non-stationary signals despite their relatively 

poor time localisation capabilities. 

(a) (b) 
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Figure 3.17: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using the Daubechies D2 

(or Haar) wavelet filter bank for the space truss subject to the white noise excitation. 

 

Figure 3.18: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using the Daubechies 

D20 wavelet filter bank for the space truss subject to the white noise excitation. 

 

Figure 3.19: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using the Meyer wavelet 

filter bank for the space truss subject to the white noise excitation. 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 3.20: (a) Scale-dependent RWE(j) in eq. (3.18) and (b) RWE in eq. (3.10) using a 128-scale 

harmonic wavelet filter bank (3.91Hz bandwidth per scale) for the space truss subject to the 

white noise excitation. 

Overall, the above numerical results show that the dyadic discrete wavelet transform bases 

capture structural damage from non-zero RWE(j) values manifested at various scales with 

effective/central frequencies that are not necessarily close to a structural natural frequency. 

Further, significant spectral leakage is seen across scales due to severe overlapping among various 

frequency bands, which does not facilitate the interpretation of the results. On the contrary, it is 

shown that the adopted harmonic wavelet basis, spanning non-overlapping frequency bands 

among scales and maintaining the same level of (high) resolution for the full range of frequencies 

of interest, is always able to discriminate changes to the distribution of the signal energy between 

the damaged and the healthy states caused by shifts in all excited structural natural frequencies. 

This is achieved no matter whether the recorded signals are stationary or non-stationary in the 

time domain and with negligible spectral leakage which renders the interpretation of the results a 

straightforward task.  

These promising results suggest that the adopted energy-preserving harmonic wavelet basis 

can be fused with compressive sensing data acquisition techniques (e.g., Baraniuk (2007)) to 

significantly reduce the computational cost and power consumption in wireless sensors for VSHM 

while providing quality estimates of structural damage using the RWE damage index. This issue 

is addressed in the next section. 

3.5. Proposed Compressive Relative Harmonic Wavelet Entropy Approach 

for Damage Detection 

3.5.1. Sparsity of truss acceleration responses on the harmonic wavelet basis   

This section numerically assesses the potential of using the compressive sensing data 

acquisition and reconstruction technique (Chapter 2) within the RWE-based structural damage 

(a) (b) 
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detection framework detailed in §3.2.3. This evaluation is performed for the space truss model in 

Figure 3.7 subjected to the sine-sweep and white noise excitation forces in Figure 3.8. For these 

cases, the truss acceleration response datasets in both “healthy” and damaged structural states are 

considered, while their sparsity attributes are examined on the orthonormal harmonic wavelet 

basis. As opposed to the other wavelet families presented in this chapter (i.e., non-smooth 

Daubechies/ Haar (D2), smooth Daubechies (D20) and Meyer wavelet), the high-resolution 

harmonic wavelets do not suffer for spectral leakage across scales, rendering this particular basis 

the most suitable (among the wavelet bases presented herein) for the sparsest representation of 

stationary structural responses.   

To demonstrate the above, consider Figure 3.11(d) and Figure 3.12 (d), which present the 

square magnitude of the harmonic wavelet coefficients derived from the response acceleration at 

the 4th node of the damaged truss under the sine-sweep and white noise excitation, respectively. 

The magnitude of these coefficients is sorted in descending order and plotted in Figure 3.21 to 

obtain an estimate of the signal’s sparsity on the harmonic wavelet basis. Commenting first on 

the deterministic and non-stationary sine-sweep excitation, it is seen in Figure 3.11(d) that the 

signal’s energy is mainly clustered around the 1st and 3rd natural frequencies of the space truss 

(see also Table 3-1) at the time instants when the resonance phenomenon occurs (i.e., when the 

frequency of the input excitation force coincides with the inherent resonant frequencies of the 

adopted structure). This highly sparse signal representation is also confirmed in Figure 3.21(a), 

in which the harmonic wavelet coefficients are shown to decay extremely fast when sorted by 

magnitude. Thus, it is confirmed that signal information can be captured from only S  1000 

(complex-valued) harmonic wavelet coefficients out of a total number of 32768 coefficients, 

pertaining to just the 3% of the time-frequency plane.  

  

Figure 3.21: Normalised magnitude of harmonic wavelet coefficients sorted in descending order obtained 

from the truss acceleration response at node 4 for the (a) sine-sweep excitation and (b) white 

noise excitation. 

Moving next to the random stationary white noise excitation, a less sparse signal 

representation is observed in Figure 3.12 (d) and Figure 3.21 (a) compared to the previously 

discussed sine-sweep case. This is explained by the fact that the signal energy is also retrieved in 

higher modes of vibration along the entire time axis due to the time and frequency domain 

(a) (b) 
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attributes of the white noise excitation detailed in §3.4.2. However, Figure 3.21 confirms that the 

truss acceleration responses preserve a compressible structure on the considered harmonic 

wavelet transform domain, given the quick decay in the sorted magnitude of the pertinent 

coefficients (see e.g., Needell & Tropp (2010); O’Connor et al. (2014)). Therefore, the significant 

signal information is retained in roughly S  10000 (complex-valued) harmonic coefficients 

which is still a small fraction of the total number of coefficients in the order of 30%.  

From the above observations, it can be deduced that the excellent signal sparsity attributes of 

the truss acceleration responses on the orthonormal harmonic wavelet basis allows to couple CS 

with the RWE-based damage detection framework in §3.2.3 resulting in a novel CS-based damage 

detection approach supporting inexpensive data acquisition and transmission in WSNs. In this 

respect, the significant wavelet coefficients and the RWE damage-sensitive indices can be 

retrieved directly from much fewer acquired compressed measurements compared to 

conventional signal acquisition techniques (at Nyquist sampling rates or above) without 

recovering the time-domain acceleration responses in the uniform Nyquist grid. This CS-based 

approach can significantly reduce the computational cost and power consumption in wireless 

sensors, being extremely useful in vibration-based structural health monitoring applications.  

3.5.2. Compressive sensing and partial harmonic wavelet basis  

Following that mathematical framework of the Compressive Sensing theory in Chapter 2, a 

“partial” harmonic wavelet sampling matrix 
M N

M N


 Ψ  is defined by considering a 

measurement matrix 
 M N

Θ  populated with incoherent measurements of zero-one entries that 

randomly selects M rows from an orthonormal harmonic wavelet matrix 
N N

N N


 Ψ  (e.g., 

Comerford et al. (2015)). This is a standard technique to derive a “partial” orthonormal sampling 

matrix that satisfies the RIP in eq. (2.3) with high probability (e.g., Candès (2008)). Examples 

include the “partial” Fourier matrix detailed in Chapter 2, the partial Haar wavelet basis used 

in pertinent CS-based VSHM applications in the literature (e.g., Bao et al. (2011), (2013), (2014)). 

The “partial” harmonic wavelet basis 
M N

M N


 Ψ was employed by Comerford et al. (2015) 

to address the missing data problem in environmental stochastic processes, demonstrating its 

efficacy in accurately solving the sparsity-constrained
1
 minimisation problem in eq. (2.10) and 

reconstructing sparse signals with 65% missing measurements.  

In this numerical study, an orthonormal harmonic wavelet basis 
N N

N N


 Ψ  is first 

formulated, consisting of 128 adjacent non-overlapping “frequency bins” (scales) of constant 

width equal to 3.91Hz spanning the range of 0–500 Hz on the frequency axis (i.e., the same 

assumptions were also made in §3.4.3). To efficiently compute the “fat” basis matrix of size 
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N N  and to facilitate the fast implementation of the CoSaMP sparse recovery algorithm* by 

Needell & Tropp (2010) used in subsequent sub-sections, the truss acceleration response signals 

are divided in 256 segments of length N=256.   

For all considered datasets, random signal compression is then performed by considering 

three CRs at 10%, 20%, and 30%. In this respect, compressive-sampled truss acceleration 

responses, y[m], m={1,2,…,M}, are simulated in MATLAB, by randomly acquiring M entries 

from each segment of the reference signal x[n], n={1,2,…,256} with M= {25, 51, 76} for the three 

CRs, respectively. The position of the M random measurements is associated with the unit entries 

in 
 M N

Θ  that determines the selection of the M rows in 
N N

N N


 Ψ . For illustration, 

Figure 3.22 depicts the random signal compression at CR=30% for a typical truss acceleration 

response (at node #4 of the damaged truss model in Figure 3.7) in the sine-sweep (Figure 3.22 

(a)) and the white noise (Figure 3.22 (b)) forcing cases. In these figures, the compressive-sampled 

measurements y[m] (red) are plotted against the uniform-sampled data x[n] (blue), and results are 

presented within a time-window of 0.2s.  

 

Figure 3.22: Compressive sensing at CR=30% and the acquisition of M=60 samples from acceleration 

response signal at node #4 within a time-window of 0.2sec duration with N=200 Nyquist 

samples; (a) sine-sweep excitation and (b) white noise excitation  

3.5.3. Reconstruction of harmonic wavelet coefficients 

The CoSaMP sparse recovery algorithm (see also §2.2) is further employed, to recover the 

harmonic wavelet coefficients directly from the obtained compressed measurements y[m], 

without reconstructing the time-domain acceleration responses. The CoSaMP algorithm takes as 

input the compressed accelerations y[m], the partial harmonic wavelet sampling matrix 

M N
M N


 Ψ together with an assumed value for target sparsity ST, and returns the harmonic 

wavelet coefficients for all j-scales and k-translations (i.e., 

,
ˆ [ ] CoSaMP ( [ ],   ,   ) j k Tu n y m SΨ ). Recall from Chapter 2 that the selection of the ST plays 

a crucial role in the reconstruction performance of the CoSaMP algorithm, while an upper bound 

                                                      
* The sparse recovery in CoSaMP entails the pseudo-inverse of the considered sampling matrix - a process 

that has increased computational cost depending on the size of the matrix to be “pseudo”-inverted (see 

also section §2.2) 

(a) (b) 
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is set at M/3 (e.g., Needell & Tropp (2010)). For the needs of this study, the maximum possible 

target sparsity is assumed, i.e., ST= M/3.  

For the case of CR=30% and for the two considered excitation cases, Figure 3.23 illustrates 

the square magnitude of the CS-reconstructed harmonic wavelet coefficients, obtained by 

application of the CoSaMP algorithm to compressed truss acceleration time-sequences at node 

#4. The two panels in Figure 3.23 are further compared against Figure 3.11(d) and Figure 3.12(d), 

respectively, to assess the reconstruction quality of the CS-based harmonic wavelet coefficients. 

For the sine-sweep excitation case, it is easily observed that the CS-based spectrum in Figure 3.23 

(a) closely approximates the pertinent spectrum in the non-compressive case of Figure 3.11(d). 

For this case, the time-frequency localisation of the spectral peaks is retrieved with high accuracy. 

This is not confirmed, though, for the white-noise excitation case shown in Figure 3.23(b), where 

significant energy leakage occurs in the entire time-frequency plane in contrast to Figure 3.12(d). 

Nonetheless, the maximum spectral peaks are accurately resolved around the resonant frequencies 

of truss. Notably, the quality of the CS-recovered coefficients depends strongly on the signal 

sparsity level on the considered basis, which differs in two forcing cases. As explained in §3.5.1, 

the sine-sweep case pertains to response acceleration signals that attain a sparser structure on the 

harmonic wavelet transform domain compared to the white noise excitation case. The latter 

suggests that the sine-sweep case can support higher signal compression levels (i.e., lower CRs) 

than the white noise case for the same level of accuracy on the obtained results.  

 

Figure 3.23: Normalised square magnitude of the reconstructed harmonic wavelet coefficients derived 

from the CR=30% compressed truss acceleration response (at node 4) for the (a) sine-sweep 

and (b) the white noise excitation. 

3.5.4. CS-based RWE for damage detection  

Having obtained the CS-reconstructed harmonic wavelet coefficients at the three considered 

CRs (i.e., 10%, 20%, 30%), the scale-dependent CS-based RWE(j) is then computed from (3.18) 

(a) (b) 
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and plotted in the three-dimensional bar charts of Figure 3.24(a)-Figure 3.29(a) for the two 

considered forcing cases. The CS-based RWE in (3.10) is further illustrated in Figure 3.24(b)-

Figure 3.29(b), observing roughly equal RWE amplitudes along measurement points as in Figure 

3.16 and Figure 3.20 for the conventional RWE approach in the sine-sweep and white noise 

excitation, respectively.  

More importantly, it is easily noticed in Figure 3.24-Figure 3.26 that the generated CS-based 

RWE values are not significantly affected by the signal’s compression level in the non-stationary 

sine-sweep excitation case, yielding almost identical RWE distribution in the space-frequency 

plane for all considered CRs (i.e., 10%, 20%, 30%). These exceptional results in the sine-sweep 

case, can be attributed to the highly sparse structure of truss acceleration responses on the 

harmonic wavelet basis (see also Figure 3.21 (a)), enabling the accurate CS recovery of the 

wavelet coefficients even for the limiting case of CR=10% and the processing of 90% fewer 

measurements (Figure 3.26) compared to the full-length uniform-sampled signals (at Nyquist rate 

or above) used in the conventional RWE approach presented in §3.4. This is not confirmed, 

though, in Figure 3.27-Figure 3.29 for the white noise excitation case at the three adopted CRs, 

respectively. In fact, this case pertains to less-sparse acceleration datasets, exhibiting lower 

accuracy in the reconstruction of harmonic wavelet coefficient compared to the sine-sweep case, 

as confirmed in Figure 3.23. In this respect, the generated CS-based RWE values are more 

sensitive to signal compression at lower CRs. For example, in the limiting case of CR=10% 

illustrated in Figure 3.29, certain non-zero RWE values are contributing to frequencies that are 

not related to the resonances of the damaged truss which may hinder the interpretation of the 

obtained results. Nonetheless, this rather poor performance of the CS-based RWE approach is 

significantly improved at CR=20% (Figure 3.28).  

Thus, it is confirmed that the CS-based RWE method can identify the location of structural 

damage equally well with the conventional RWE case, by acquiring and processing a significantly 

smaller number of structural data, reduced by 90% for the sine-sweep excitation and by 80% for 

the white noise case in the herein numerical study.  
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Figure 3.24: (a) Scale-dependent CS-based RWE(j) in eq. (3.18) and (b) CS-based RWE in eq. (3.10) using 

reconstructed harmonic wavelet coefficients at CR=30% for the space truss subject to the sine-

sweep excitation 

 

Figure 3.25: (a) Scale-dependent CS-based RWE(j) in eq. (3.18) and (b) CS-based RWE in eq. (3.10) using 

reconstructed harmonic wavelet coefficients at CR=20% for the space truss subject to the sine-

sweep excitation 

 

Figure 3.26: (a) Scale-dependent CS-based RWE(j) in eq. (3.18) and (b) CS-based RWE in eq. (3.10) using 

reconstructed harmonic wavelet coefficients at CR=10% for the space truss subject to the sine-

sweep excitation 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 3.27: (a) Scale-dependent CS-based RWE(j) in eq. (3.18) and (b) CS-based RWE in eq. (3.10) using 

reconstructed harmonic wavelet coefficients at CR=30% for the space truss subject to the white 

noise excitation 

 

Figure 3.28: (a) Scale-dependent CS-based RWE(j) in eq. (3.18) and (b) CS-based RWE in eq. (3.10) using 

reconstructed harmonic wavelet coefficients at CR=20% for the space truss subject to the white 

noise excitation 

 
Figure 3.29: (a) Scale-dependent CS-based RWE(j) in eq. (3.18) and (b) CS-based RWE in eq. (3.10) using 

reconstructed harmonic wavelet coefficients at CR=10% for the space truss subject to the white 

noise excitation 

(a) (b) 

(a) (b) 

(a) (b) 
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3.6. Concluding Remarks 

A novel CS-based damage detection approach is developed herein for low-cost and energy 

efficient WSNs in VSHM applications. The proposed method originates from the theory of 

Compressive Sensing (in Chapter 2) fused with the relative wavelet entropy (RWE) index. The 

latter is a well-established in the literature damage-sensitive index derived by wavelet 

transforming linear response acceleration signals obtained from a healthy/reference and a 

damaged state of a given structure subject to broadband excitations. To this end, a comprehensive 

numerical study was first undertaken to define the “sparsest” representation of structural 

acceleration responses on various wavelet analysis filter banks by assessing the frequency domain 

attributes of the adopted wavelets – a key factor that was found to significantly affect the 

computation of the RWE.  

For the numerical evaluation, two finite element (FE) models were developed, pertaining to 

a space truss benchmark structure in healthy and damage states, respectively. The adopted FE 

models were further excited by two different broadband forcing functions, i.e., a non-stationary 

sine-sweep and a stationary finite duration sample of Gaussian white noise process. Linear 

response history analyses were conducted to obtain response acceleration signals at equidistant 

locations, which were treated as the reference/full-length datasets. Four energy-preserving 

wavelet analysis filter banks with different frequency domain attributes were employed to wavelet 

transform the response acceleration signals. These operations rely on algorithms that can 

efficiently run on wireless sensors used for decentralised vibration-based structural health 

monitoring.  

Considering the conventional RWE approach using the full-length response acceleration 

datasets, RWE values were reported vis-à-vis for the four different wavelet filter banks. Focus 

was given on the scale-dependent contributors to the total RWE values to examine the ability of 

the different wavelet filter banks to resolve changes to the response signals’ energy distribution 

on the frequency domain indicative of structural damage. The reported numerical data suggest 

that frequency selectivity and resolution across the scales of the wavelet analysis filter bank, 

which are strongly dependent on the frequency domain properties of the underlying wavelet basis, 

are the key for achieving enhanced RWE-based stationary damage detection/localisation drawing 

information about damage from multiple mode shapes. It was shown that the extensively used in 

the literature Haar wavelets (or non-smooth Daubechies wavelets) in conjunction with the 

standard dyadic discrete wavelet transform suffer from significant energy leakage across scales. 

Thus, these wavelets may not be able to detect damage based on information carried at relatively 

high frequencies (or higher modes of vibration). Wavelet filter banks with enhanced frequency 

selectivity among scales (i.e., minimum overlapping of the frequency bands corresponding to 

adjacent scales), reduce spectral leakage of the signal energy, and facilitate the results 
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interpretation as the non-zero contributors to the RWE values can be clearly associated with 

different natural frequencies/ modes of vibration.  

Hence, the compactly supported in the frequency domain harmonic wavelets that achieve 

non-constant Q analysis were found to be the most effective for RWE-based stationary damage 

detection as they are not limited by the dyadic discrete wavelet transform discretisation and can 

achieve any level of frequency resolution anywhere on the frequency domain, as deemed 

appropriate. 

Thus, the harmonic wavelet basis was found the most suitable for the sparsest representation 

of stationary structural responses, and it was further employed in the numerical evaluation of the 

proposed CS-based RWE approach. To this end, simulated randomly-sampled compressed 

acceleration response datasets were generated at the three CRs ={10%, 20%, 30%}. The latter 

were treated by a standard CS-reconstruction algorithm along with a “partial” harmonic wavelet 

basis matrix to retrieve the underlying harmonic wavelet coefficients directly from the 

compressed measurements. It was shown and numerically verified that CS-based RWE can 

accurately detect structural damage equally well with the conventional RWE case, by acquiring 

and processing a significantly smaller number of structural data, reduced by 90% for the sine-

sweep excitation and by 80% for the white noise case in the herein numerical study.  

The above results suggest that the proposed CS-based RWE is a promising tool for low-cost 

and energy efficient structural damage detection. It is envisioned that this will become the 

preferred way in practice once wireless sensors supporting this technology will become 

commercially available.  

As a final remark, it is emphasised that the herein considered harmonic wavelet basis is not 

necessarily a recommended and, by no means, an optimal approach for wavelet transforming 

response acceleration signals for RWE-based damage detection. It has only been used in this study 

as an “extreme case” of a basis with good frequency domain attributes vis-à-vis the standard 

dyadic discrete wavelet transform filter banks considered in the literature. Overall, the herein 

numerical examples suggest that the adopted harmonic wavelet basis with constant frequency 

resolution across scales may be used as a reasonable approach for RWE-based damage detection 

where the natural frequencies of the (damaged) structure are not a priori known. In this case, a 

harmonic wavelet transform with coarser resolution than what has been employed in this study 

(i.e., a reduced number of scales or wider bandwidth/scale) should be considered to keep the 

computational cost low for practical implementation, especially in the case of decentralised 

VSHM using wireless sensors (Yun et al. 2011). 

 

 



 

61 

 

Chapter 4 

 Proposed Multi-Sensor Power Spectrum Blind 

Sampling Approach for OMA: Theory 

4.1. Preliminary Remarks 

This chapter presents the mathematical framework of an alternative compressive power 

spectrum estimation approach for low-power WSN in OMA applications, which builds upon the 

Power Spectrum Blind Sampling (PSBS) strategy.  

The main contribution herein is the theoretical development of the PSBS technique to the 

multi-sensor case aiming to retrieve the unknown auto/cross power spectral density matrices of 

structural responses to ambient excitations (wide-sense stationary stochastic processes) within 

WSNs, without involving signal reconstruction operations in time-domain. This is achieved by 

considering a deterministic non-uniform-in-time sampling, known as multi-coset sampling 

pattern, operating on wide-sense stationary stochastic processes/ random signals (in alignment 

with the theory of OMA). The adopted sampling scheme can measure almost all lags in a given 

observation window, which enables to recover the second-order statistics of structural responses 

directly in the compressed domain. It will be shown that, in contrast to the CS-based approaches 

presented in Chapter 2 (§2. Compressive Sensing: Basic Concepts & Applications in VSHM), the 

considered sampling strategy is applied to non-sparse signals of any structure, without being 

limited by sparsity constraints, while the undertaken spectral recovery problem mathematically 

defines an overdetermined system of linear equations that can be easily solved. The proposed 

PSBS approach can be used together with standard OMA algorithms to perform structural 

identification and damage detection with reduced power requirements.  

The motivation of the proposed method is presented in section 4.2 (§4.2. Related Work and 

Motivation), while section 4.3 (§4.3. Multi-Coset Sampling Pattern) introduces the deterministic 

multi-coset sampling scheme. The next two sections (§4.4. Cross-Correlation of Sub-Nyquist 

Measurements, §4.5. Power Spectral Matrix Recovery) cover the mathematical details of the 

proposed multi-sensor PSBS approach. Section 4.6 (§4.6. Design of the Multi-coset Sampling 

Pattern and the Weighting Matrix W) briefly reviews the mathematics governing the design of 

the adopted multi-coset sampling pattern (e.g., Tausiesakul & Gonzalez-Prelcic (2013)), which 
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relies on a weighted least square criterion, being optimal in the mean square sense. Section 4.7 

(§4.7. Frequency Domain Decomposition (FDD) for Modal Estimation) presents briefly the basic 

concepts of the standard FDD algorithm, which has been adopted in Chapter 5 (§5. Proposed 

Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: Applications) and Chapter 6 

(§6. Assessment of the Proposed PSBS Approach vis-à-vis CS-based Approach for OMA) for the 

numerical evaluation of the developed multi-sensor PSBS approach in OMA applications. 

Finally, section 4.8 (§4.8. Concluding Remarks) recapitulates the key ideas and advantages of the 

proposed method. 

The theoretical developments in sections §4.3 – §4.6 have appeared in the following 

published/submitted journal papers and conference proceedings listed in section 1.5 (§1.5. List 

of Referred Papers): a detailed description is provided in the journal paper [J3], while a brief 

review is given in [J2, C4 – C7]. This mathematical framework extends a previously developed 

PSBS case supporting single sensor deployments, which has been presented in the conference 

proceedings [C2 & C3]. 

4.2. Related Work and Motivation 

The PSBS strategy was originally developed in cognitive radio applications (e.g., Leus & 

Ariananda (2011); D D Ariananda & Leus (2012); Cohen & Eldar (2014)) to recover the power 

spectrum of sub-Nyquist sampled telecommunication signals observed by a single-sensor. Its 

primary aim was to efficiently detect unoccupied bands in a wide spectral range, i.e., recover the 

frequency support of the received signal (see also Romero et al. (2016), Axell et al. (2012) and 

the references therein). Arguably, telecommunication signals may not have a sparse structure due 

to the presence of high level noise (e.g., Axell et al. (2012)), while their wireless transmission is 

limited by bandwidth constraints, requiring a prohibitively high uniform sampling at Nyquist rate 

which, however, is beyond the state-of-the-art of current ADCs (e.g., Romero et al. (2016)).  

To overcome this issue, the PSBS strategy relies on deterministic non-uniform-in-time 

sampling schemes, known as multi-coset sampling (e.g., Venkataramani & Bresler (2000); 

Mishali & Eldar (2009); D D Ariananda & Leus (2012); Tausiesakul & Gonzalez-Prelcic (2013)), 

operating on wide-sense stationary stochastic processes (i.e., random signals). The considered 

sampling strategy is universal/signal-agnostic since it applies to non-sparse signals of any 

structure, without being limited by sparsity constraints. The acquired compressed measurements 

are then wirelessly transmitted to the server without any on-board signal processing operation, 

which directly translates in reduced computational, memory and storage requirements. However, 

the computational intensity is transferred from the sensor to the server, where the received 

compressed measurements are collectively processed to recover the second-order statistics of the 

unknown wide-sense stationary random signals (i.e., covariance and power spectrum), by-passing 
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the computationally demanding signal reconstruction operation in time-domain*. Importantly, the 

recovery operations undertaken by the PSBS strategy mathematically define an overdetermined 

system of linear equations that can be easily solved, rendering this technique a computationally 

efficient method for WSNs operating at sub-Nyquist sampling rates.  

The above single-sensor PSBS strategy was extended to a co-operative multi-sensor 

compressive power spectral estimation method (e.g.,  Ariananda & Leus (2012); Ariananda et al. 

(2014)) with the scope to achieve stronger signal compression (i.e., lower CR) while enhancing 

the wireless transmission reliability. The above aims were accomplished by considering multiple 

versions of the same incoming signal, transmitted and received by a network of wireless sensors. 

Assuming clusters of sensors operating on different multi-coset sampling patterns (but a common 

sampling pattern is considered within each cluster), Ariananda et al. (2014) managed to retrieve 

the power spectrum of the unknown input wide-sense stationary random signal at lower CRs per 

sensor compared to the single-sensor case by  Ariananda & Leus (2012). The derived 

mathematical framework by Ariananda et al. (2014) relies on the assumption that the received 

signals from all sensors observe approximately the same second-order statistics, although this 

may differ in practice due to errors and uncertainties related to wireless telecommunications (e.g., 

Akyildiz et al. (2011)). To alleviate this problem, an alternative co-operative WSN was introduced 

by Dyonisius Dony Ariananda & Leus (2012) capable to recover the unknown power spectrum 

from cross-spectral estimations computed between the acquired compressed measurements from 

the sensors, assuming prior knowledge on the channel state information. The latter can be viewed 

as the channel’s frequency response function (or the impulse response function, i.e., the Fourier 

pair of the frequency response function) carrying the information of the signal’s propagation in 

wireless transmit/receive mode, including scattering, fading, and power decay with distance (e.g., 

Bjornson & Ottersten (2010), Akyildiz et al. (2011)).  

Motivated by the above technological advances (which can be particularly useful in large-

scale sensor networks) and aiming to reduce the power requirements in densely instrumented 

structures, this study exploits the single-sensor PSBS strategy developed by Tausiesakul & 

Gonzalez-Prelcic (2013) and tests its applicability in WSNs used for OMA purposes. Similar to 

cognitive radio applications, OMA relies on wide-sense stationary stochastic processes due to 

ambient excitations, although different challenges are met. In fact, a plethora of well-established 

OMA algorithms require the exact recovery of the power spectrum of the unknown structural 

responses in terms of both frequency support and shape/amplitude to retrieve the salient features 

of the monitored systems (e.g., modal identification). Whether the above challenges can be 

efficiently met within the PSBS technique is among the major objectives of this study. 

                                                      
* The time-domain signal reconstruction operation from fewer/compressed data defines an 

underdetermined problem that yields a unique solution under certain constraints, e.g., signal sparsity (see 

also chapter 2) 
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More importantly, the prime contribution herein is the extension of the theoretical background 

by Tausiesakul & Gonzalez-Prelcic (2013) to the multi-sensor PSBS strategy to observe datasets 

of structural responses with different second-order statistics (i.e., auto/cross correlations, and 

auto/cross power spectral densities), obtained from various recording locations on a monitored 

operational structure. Assuming a centralised WSN with sensors operating on the same multi-

coset sampling scheme along their channels, compressed structural data are acquired at sub-

Nyquist rates and collectively processed to recover the auto/cross response power spectrum 

matrix directly in the compressed domain, without reconstructing the time-domain responses. The 

above theoretical developments can be further fused with standard OMA algorithms to retrieve 

the inherent structural modal properties (e.g., the standard frequency domain decomposition 

(FDD) algorithm, e.g.,  Brincker & Ventura (2015)) with substantial savings in energy/power 

requirements.   

The proposed multi-sensor PSBS approach is free from sparsity assumptions and significantly 

differs from the co-operative WSN by Dyonisius Dony Ariananda & Leus (2012) in both the 

nature of the problem and the assumptions invoked. Drawing an analogy between these two 

approaches, the co-operative framework of Dyonisius Dony Ariananda & Leus (2012) in OMA 

terms would be interpreted as the auto-power spectrum recovery of ambient excitation forces 

assuming prior knowledge on the frequency response function (FRF) of the monitored system; on 

the contrary, the OMA goal is to infer the system’s FRF assuming white-noise excitation of a 

sufficiently flat power spectrum that is not measured.   

4.3. Multi-Coset Sampling Pattern 

Let x(t) be a continuous in time t real-valued wide-sense-stationary random signal (or 

stochastic process) characterised in the frequency domain by a power spectrum band-limited by 

2π/Ts. According to the multi-coset sampling strategy (e.g., Feng & Bresler (1996); 

Venkataramani & Bresler (2000), (2001); D D Ariananda & Leus (2012)), an N-length Nyquist-

sampled discrete-time signal ( )sx n T  is divided into K blocks of N  consecutive samples (i.e., 

/K NN ) and from each block only ( )M N  samples are selected. The latter is achieved by 

considering M  different “cosets”; at the i-th (i= 0, 1, …, 1M  ) coset, the discrete-time signal 

x[n]= x(nTs) is first shifted by si samples and then uniformly sampled at 1/( )sNT . In this respect, 

an average sampling rate of )/ ( sM NT  is defined, which is associated with the compression ratio 

(CR) given in /M N , with 0% ≤ CR ≤ 100%, pertaining to smaller values at higher signal 

compression. Notably, the limiting case of CR=100% (i.e., M N ) corresponds to conventional 

sampling at the uniform Nyquist rate. The location of the M samples within each N -length block 

is defined by the sampling pattern sequence 
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T

0 1 1
[ , , , ]

M
s s s


s , (4.1) 

that applies to all K blocks, while the superscript “T” denotes matrix transposition. In the 

above sequence, the elements si, sj are placed in ascending order and do not repeat (i.e., 

i js s    i j   ). Eq. (4.1) further defines the difference set  

 , ,i j i js s s s  s . (4.2) 

that arises naturally in the computation of the correlation sequences of the discrete-time 

signals. 

The above sampling strategy can be implemented by utilising M interleaved channels of 

ADC units, operating at a sampling rate 1/ ( )sNT , (i.e., N  times slower than the Nyquist rate 

1/Ts). A discrete-time model of an ideal multi-coset sampler proposed by  Ariananda & Leus 

(2012) is illustrated in Figure 4.1. 

 

Figure 4.1: Discrete-time model of the considered multi-coset sampling device proposed by Ariananda & 

Leus (2012) 

Figure 4.1 shows that the input analog signal x(t) is first discretised with an integrate-and-

dump device with period Ts. Next, the generated discete-time signal x[n] enters M  channels and 

then convolved with the N -length sequence ci[n]  

1, ,
[ ]

0, ,

i

i

i

n s
c n

n s


 


. (4.3) 

where i={0, 1, …, M -1}, and n={1- N , 2- N , …, 0} being in descending order. The above 

is expressed as 

0

1

[ ] [ ]* [ ] [ ] [ ]i i i

p N

z n c n x n c p x n p
 

   , (4.4) 



Chapter 4 – Proposed Multi-Sensor Spectrum Blind Sampling Approach for OMA: Theory 

 
 

66 

in which the convolution operation is denoted by *. The obtained sequence is further down-

sampled by N  to generate the output/ compressed measurements 

 [ ] [ ], 0,1, , 1i iy k z kN    k K   , (4.5) 

with K being the number of compressed measurements per channel (i.e., coinciding with the 

number of blocks). For illustration, Figure 4.2(a) depicts the multi-coset sampling strategy applied 

on a discrete-time sequence x[n] of N=32 samples, which is divided in K=4 blocks of length N

=8. The adopted sampling pattern is given in the sequence  
T

0, 2, 5  s , consisting of the M =3 

shifting values, si, i={0,1,2}, shown with the circular marks in Figure 4.2(a). The considered 

sampling strategy can be implemented by utilising the 3-channel multi-coset sampler depicted in 

Figure 4.2(b). At the i-th channel, each k block of the discrete-time signal x[n] (i.e., x[k N +n] for 

N =8, k={0,1,2,3}, n={0,1,…,7}) is convolved with the filter coefficients  0 0,0,0,0,0,0,0,1c  , 

 1 0,0,0,0,0,1,0,0c  , and  2 0,0,1,0,0,0,0,0c   along the three channels respectively, and 

down-sampled by N =8 to generate the output/ compressed measurements [ ]iy k .  

In this respect, only 12 samples are acquired from the 32-length signal x[n], pertaining to a 

CR at approximately 37.5% (see also Figure 4.2). The above example confirms that the adopted 

multi-coset sampling is periodic with period N ; non-uniform since any subset of M  samples 

may be selected from a total of N  Nyquist-rate samples within each block; and deterministic 

since the position of the M  samples on the Nyquist grid is defined a priori and applies to all 

considered blocks. 

 

Figure 4.2: Multi-coset sampling pattern with M̅=3, N̅=8, K=4, and sampling sequence s=[0, 2, 5]T 

applied on a signal of 32 samples 

Recent developments in hardware architecture has paved the way for the design of sensor 

prototypes that support multi-coset sampling via the use of a bank of time-interleaved ADC units 

(channels) (see also Black & Hodges (1980)). Based on the Modulated Wideband Converter 



Chapter 4 – Proposed Multi-Sensor Spectrum Blind Sampling Approach for OMA: Theory 

 
 

67 

developed by Mishali et al. (e.g., Mishali et al. (2009); Mishali & Eldar (2010)), a discrete-time 

version of a multi-coset sampler was proposed by  Ariananda & Leus (2012) to acquire 

compressed measurements from a wideband non-sparse signal. A dual-rate hardware architecture 

was designed by Moon et al. (2015), comprising a pair of time-interleaved under-sampling ADCs 

that accommodate two different sampling patterns with a small frequency offset to iteratively 

acquire delayed versions of the same input signal at sub-Nyquist sampling rates. More recently, 

Jingchao et al. (2015) designed a prototype multi-coset sampler that can support up to 10 

interleaved sub-Nyquist ADC sampling channels, being also capable to rectify any potential error 

due to channel diversity gain and/or time synchronisation among the various ADC channels. 

Despite the above developments, such multi-coset samplers are not commercially available yet.  

4.4. Cross-Correlation of Sub-Nyquist Measurements 

Consider next a network of D identical multi-coset samplers of M  channels, operating on the 

same sampling pattern across their channels. The considered wireless sensor network is assumed 

to be placed along a structure, measuring D acceleration responses under ambient vibrations. Let 

xa[n], xb[n] (a,b={1,2…,D}) be the unknown discrete-time sequences sampled at Nyquist rate 

from the band-limited continuous-time acceleration response random signals (i.e., stochastic 

processes) xa(t) and xb(t) respectively. The ultimate goal of the multi-sensor PSBS approach is the 

recovery of the input cross-correlations 

 [ ] E [ ] [ ]a b

a b

xx x
r p x n  x n p  ,  (4.6) 

computed among all input signals xa[n], xb[n] to the a,b={1,2,…,D} devices, with 
aE {}  

denoting the mathematical expectation operator with respect to a.  

As illustrated in Figure 4.3, the above goal can be achieved through the acquisition of M D  

output/compressed sequences [ ]a

iy k , [ ]b

jy k  from all  , 0,1, , 1 i j M  channels of the 

a,b={1,2,…,D} devices, using the multi-coset sampling strategy detailed in the previous sub-

section.  

By collectively processing the acquired compressed measurements, the output cross-

correlations  

 
,

[ ] E [ ] [ ]a b
i j

a b

y i jy y
r y k  y k  . (4.7) 

can be computed, which are collected further in the output cross-correlation matrix 

2a b

M D

y y
r  given in  
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0 0 0 1 0( 1) ( 1) ( 1)

T

, , , ,
[ ] [ ] [ ] [ ] [ ]a b a b a b a b a b

M M M
y y y y y y y y y y

r r r r
  

 
  

r     . (4.8) 

The following expression is then employed 

1

0

[ ] [ ] [ ]a b a bcy y x x
p

p p


 r R r , (4.9) 

which allows to relate the output cross-correlation matrix 
2a b

M D

y y
r  in (4.8) with the 

unknown input cross-correlation matrix 
a b

N D

x x
r  in  

T

[ ] [ ] [ 1] [( 1) 1]a b a b a b a bx x x x x x x x
r N r N r N     r   , (4.10) 

using the pattern cross correlation matrix 
2M

c

NR  

0 0 0 1 01 1 1

T

, , , ,[ ] [ ] [ ] [ ] [ ]
M M M

c c c c c c c c c
  

 
 

R r r r r    . (4.11) 

The latter is populated with the pattern cross-correlation functions between the sequences 

[ ], [ ]i jc n  c n  in eq. (4.3), expressed in  

0

,

1

[ ] [ ] [ ] [ ( )]
i j

i j i jc c
n N

r p c n  c n p p s s
 

     . (4.12) 

The above expression depends only on the difference set Ω given in eq. (4.2), with     being 

the Dirac delta function (i.e., δ[p]=1 for p=0, and δ[p]=0 for p≠0).  

 

Figure 4.3: Workflow of the multi-sensor PSBS approach for OMA 

It is assumed further that the input cross-correlation sequences [ ]a bx x
r N  in eq. (4.10) take on 

negligible values outside the range ,[ ] LN LN  (for [ , ]L L  ), which will hold true for some L 
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depending on the level of damping of the monitored structural system. In this respect, the 

input/output relationship in eq. (4.9) can be cast in matrix form  

c=a b a by y x x
r R r , (4.13) 

where the output matrix 
 2 2 1

a b

M L D

y y


r  is defined as  

y y y y

T T T T[0] [ ] [ ] [ 1]a b
a b a b a b a by y y y

y y L L


   
  

r r r r r    , (4.14) 

and the input matrix 
 2 1

a b

N L D

x x


r  is given in a similar way as above, i.e., 

T T T T[0] [ ] [ ] [ 1]a b
a b a b a b a bx x x x x x x x

x x L L


   
 

r r r r r    . (4.15) 

Further, the pattern matrix 
   2 2 1 2 1M L N

c

L  
R  supports a sparse structure as in  

c

[0] [1]

[1] [0]

[1] [0]

[1] [0]

c c

c c

c c

c c

 
 
 
 
 
 
 
 

R O O R

R R O O

R O R R

O

O O R R

, (4.16) 

with O  being the zero matrix. Notably, the assumption on the unique sampling pattern for all 

multi-coset samplers enables to define eq. (4.11) regardless of the sensor indices a, b, which 

further allows to derive the input/output cross-correlation function in eq. (4.9) as an extension of 

the single-sensor case (e.g.,  D D Ariananda & Leus (2012); TauSiesakul et al. (2015)). Further, 

eq. (4.13) defines an overdetermined system of linear equations which can be solved for 
a by y

r  

without any sparsity constraint provided that 
cR  is full column rank (i.e., having at least one entry 

in every column). The latter condition is satisfied for 2M N .  

4.5. Power Spectral Matrix Recovery  

Let ( )a bx x
G  be the cross-power spectrum of xa[n], xb[n] given in  

  i[ ] e , 0 2a b a b

p

x x x x
p

G r p      






    (4.17) 

Where 1 i . The latter expression is further discretised in the frequency domain and cast 

in matrix form   
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(2 1)a b a bL Nx x x x
G F r . (4.18) 

where 
   2

(2

2 1

1)

1N

L N

L N L 


F  is the standard discrete Fourier transform (DFT) matrix with 

properties 

T

(2 1) (2 1)L N L N 
F F  (4.19) 

1

(2 1) (2 1)

1

2 1
L N L N

L



 



F F , (4.20) 

and  2 1
a b

N L D

x x


G  (in eq. (4.18)) is the input power spectrum matrix computed at the 

discrete frequencies         0,  2 2 1 ,   ,  2 2 1 1 2 1  L N L N L N           , with a 

frequency resolution at  

2

(2 1)L N


 


. (4.21) 

Given a signal compression level and the associated pair of values ( ),M N , it is readily 

observed in eq. (4.21) that the frequency resolution, Δω, is determined by the parameter L. The 

latter is associated with the support of the auto/cross correlation sequences in eq. (4.10), and it 

can be freely selected depending on the application and the damping of the monitored system (see 

also D D Ariananda & Leus (2012)). For example, consider a lightly-damped vibrating structure, 

pertaining to discrete-time acceleration responses whose auto/cross correlation sequences decay 

slowly within the range [ ],LN LN . The pertinent power spectral density estimates yield 

relatively sharp peaks in the frequency domain, being efficiently captured through the 

consideration of a relatively small   in eq. (4.21), requiring the selection a sufficiently large L 

value.  

Consider next the unbiased estimator of the output cross-correlation function 
,

[ ]a b
i jy y

r  in eq. 

(4.7) given in 

 

 1 min 0,

,
max 0,

1
ˆ [ ] [ ] [ ],a b

i j

K

a b

i jy y
k

r y k y k    L L
K

 



    


 . (4.22) 

The weighted least square criterion is then adopted, i.e.,  
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   

2

2

c

T

c c

ˆ ˆarg min

ˆ      arg min

ˆ ˆ      arg min

a b a b a b

a bx x

a b a b

a bx x

a b a b a b a b

a bx x

x x y y y y

y y x x

y y x x y y x x

 

 

  

r W

r W

r

r r r

r R r

r R r W r R r

, (4.23) 

where 
2 T
W

a a Wa  is the weighted version of the Euclidean norm. Note that 

   2 22 1 2 1M L M L  
W  is a positive-definite weighting matrix that does not depend on a bx x

r  as 

detailed in §4.6. The cost function of a bx x
r  is given in 

   
T

WLS c c
ˆ ˆ( )a b a b a b a b a bx x y y x x y y x x

f   r r R r W r R r  (4.24) 

Which represents a convex function whose critical point 
WLS

*

( )a b

a b

x x

x x

f




r
0

r
 yields a minimum 

value when  

 
1

T Tˆ ˆ
a b a bc c cx x y y



r R WR R Wr , (4.25) 

Or equivalently, 

 

(2 1)

1
T T

(2 1)

ˆ

ˆ         

a b a b

a b

L Nx x x x

c c cL N y y











G F r

F R WR R Wr
, (4.26) 

Where the superscript “−1” denotes matrix inversion. Eq. (4.26) gives an estimate of the 

cross-spectrum matrix a bx x
G  that can be efficiently computed directly from the cross-correlation 

estimator ˆ
a by y

r  of the compressed acceleration measurements from the array of D multi-coset 

samplers, by exploiting the sparse structure of    2 2 1 2 1

c

M L N L  
R  shown in eq. (4.16). The 

latter reduces the algorithmic complexity, enabling further the efficient computation of the 

pseudo-inverse matrix in eq. (4.26). Finally, it is noted that the above mathematical framework 

can be easily reduced to the single-sensor PSBS case using the convention of a=b=1 in eqs. (4.6) 

– (4.26).  
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4.6. Design of the Multi-Coset Sampling Pattern and the Weighting Matrix  

This study employs the multi-coset sampling pattern derived by Tausiesakul & Gonzalez-

Prelcic (2013) which is optimal in the mean square error sense. It is assumed that the input signal 

x[n] is circular-symmetric complex-valued zero-mean Gaussian with second-order statistics   

  2

,E [ ] [ ]      ,x x n mx n x m n m   , (4.27) 

 E [ ] [ ] 0       ,x x n x m n m  , (4.28) 

where, 
2

x  is the variance of the input signal x[n] and ,n m  the Dirac delta function. A multi-coset 

sampling pattern sequence is designed such that the Weighted Mean Square Error (WMSE) of the 

power spectrum estimate of the input signal, ˆ
xG  (i.e., for a=b in (4.26)), is minimised. Note that 

the design of the sampling pattern is not restrictive to the temporally-white assumption for x[n] 

(which is a limiting case pertaining to input signals with extremely low signal-to-noise ratio), and 

any signal waveform can be used instead.  

Let 
WMSE ( )f s  be the cost-function of the above WMSE criterion given by Tausiesakul & 

Gonzalez-Prelcic (2013) in 

   
2

WMSE x x x4
E

1x

1 1ˆ( ) (2 1) ( 1) E ,
(2 1) ( )

N

n n

f K L L L
L N 

     


s G G
s

 (4.29) 

where, 1 1( )n
s  is a scalar value computed for every  1,2, ,n N  from the expression 

1 1

0 0

( ) 1 ( ) 1 ( )
M M

n i j i j

i j

n s s N n s s  
 

 

               s , (4.30) 

with s being the sequence of M  positive integers given in eq. (4.1).  

Eqs. (4.29) and (4.30) suggest that the optimum design of the multi-coset sampling pattern is 

determined by solving the optimisation problem derived by Tausiesakul & Gonzalez-Prelcic 

(2013), i.e.,  

WMSE

1

1
ˆ argmin ,

( )

N

n n

 
s

s
s

 (4.31) 

subject to the following constraints: 
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
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  



 
  
 
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  

s

 (4.32) 

where     is the mathematical floor operator. This optimisation problem involves nonlinear 

integer programming, while the optimal sampling pattern sequence in eq. (4.1) can be obtained 

via exhaustive search. The weighting matrix W  is further derived from the minimisation of mean 

square error (MSE) of the power spectrum estimate ˆ
xG , i.e., 

 
2

MMSE x x x x
E

ˆ ˆˆ arg min E E { } 
W

W G G , (4.33) 

which represents a convex function whose critical point  
2

x x x x*
E

ˆ ˆE E { }


 


G G 0
W

 yields 

a minimum value when 

y

1

ˆMMSE
ˆ  rW C .  (4.34) 

In the above expression, ˆyr
C  is the output covariance matrix estimator given in 

 T

ˆ
ˆ ˆ ˆ ˆE ( E { })( E { })

y x y x y y x y  rC r r r r . Under the signal assumption in eqs. (4.27) and (4.28), 

Tausiesakul & Gonzalez-Prelcic (2013) proved that eq. (4.34) can be cast in the form  

 2

1

MMSE 4

1ˆ ( )
M

x

 W Λ β I ,  (4.35) 

Where   is the Kronecker product, and the superscript -1 denotes matrix inversion. Further, 

the identify matrix of size 
2 2M M  is denoted by 2M

I , and ( )Λ β  is a diagonal matrix of size 

(2 1) (2 1)L L   , with the main diagonal taking the entries   

(2 1) 11 1 1 1 1
,

1 1

L

K K K L K L K

  
      

β        β .  (4.36) 

For the special case of W I  (i.e., the weighting matrix W is the identity matrix I), the 

following expression holds (see also Tausiesakul & Gonzalez-Prelcic (2013)) 
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where, ( ) N NΛ α is a diagonal matrix with the diagonal 1Nα given in  

1 2( ) ( ) ( )
N

  


   α s s s ,  (4.38) 

while the terms 
1 1( )n
s are obtained from eq. (4.30) for  1,2, ,n N . The above 

suggests low computational cost for the recovery of the matrices in eqs. (4.25), (4.26). Further 

details on the design criterion of the adopted multi-coset sampling pattern and the weighted matrix 

W , can be found in Tausiesakul & Gonzalez-Prelcic (2013). 

4.7. Frequency Domain Decomposition (FDD) for Modal Estimation 

Any established frequency domain algorithm for OMA can be used at this stage to retrieve 

the underlying structural modal properties. To this end, the standard FDD algorithm (e.g., 

Brincker & Ventura (2015)) is employed herein, to extract the salient modal features (i.e., natural 

frequencies, mode shapes) via application of the Singular Value Decomposition (SVD) to the 

cross-spectral matrix in eq. (4.26). 

From the theory of structural dynamics, it is well-known that the response vector ( )tx of a 

structural system with R modes of vibration, can be expressed in  

( ) ( )t tx Φ q , (4.39) 

where Φ is the mode shape matrix given in  

 1 2 RΦ φ φ φ , (4.40) 

and  
T

1 2( ) ( ) ( ) ( )Rt q t q t q tq  is a column vector collecting the uncorrelated modal 

coordinates qr(t) at the r = {1, 2, …, R} modes of vibration.  

It can be easily shown that the auto/cross power spectral density response matrix can be 

expressed in the form (see also Brincker & Ventura (2015)) 
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T

x qG Φ G Φ , (4.41) 

where q G  is the diagonal and positive-valued spectrum density matrix of the modal 

coordinates q(t).  

Consider further the SVD of the response spectrum matrix given in 

T

x G UΣV  (4.42) 

where Σ is a diagonal positive semi-definite matrix comprising the singular values Σrr, and U, 

V are the unitary singular matrices holding the left and right singular vectors respectively. It is 

readily observed from eqs. (4.41) and (4.42), that the singular values Σrr correspond to the power 

spectral densities of the modal coordinate, Gq, that carry the information of structural resonant 

frequencies. Likewise, the left singular vector U gives an estimate of the mode shapes 

 1 2 RΦ φ φ φ around the frequencies of the dominant singular values. More details on 

the FDD algorithm can be found in Brincker & Ventura (2015) and the references therein. Within 

the context of the proposed multi-sensor sub-Nyquist PSBS method (Figure 4.3), the dynamic 

structural properties can be readily obtained from eq. (4.42) using the recovered cross-spectrum 

matrix ˆ
a bx x

G  in eq. (4.26). The accuracy of the extracted mode shapes is further assessed with the 

Modal Assurance Criterion (MAC) (e.g., Brincker & Ventura (2015)), i.e.,  

2
T

2 2

2 2

ˆ
ˆ( , )

ˆ

r r

r r

r r

MAC 
φ φ

φ φ
φ φ

, (4.43) 

which measures the level of similarity between two eigenvectors, i.e., a theoretical 
rφ  and the 

estimated, ˆ
rφ . In the above expression, the 

2
 norm is denoted by 

2
 . Note that eq. (4.43) takes 

a scalar value within the range of [0, 1], suggesting perfect correlation for MAC=1, and 

uncorrelated mode shapes when MAC=0. The criterion of MAC>0.9 is commonly used for valid 

mode shape estimation. 

4.8. Concluding Remarks 

A novel multi-sensor Power Spectrum Blind Sampling approach is developed herein for low-

power wireless sensor networks used in Operational Modal Analysis applications for civil 

engineering structures. The proposed approach assumes centralised arrays of wireless sensors and 

comprises four main steps (see also Figure 1.1(c)):  
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(i) simultaneous signal acquisition and compression at the sensor front-end via the 

deterministic multi-coset sampling pattern;  

(ii) wireless transmission and signal processing at the server with the scope of deriving the 

output cross-correlations directly from the received compressed measurements;  

(iii) further signal processing for auto/cross power-spectral density estimation in the 

compressed domain by solving an overdetermined least-squares optimisation problem; 

and  

(iv) fusion with standard OMA algorithms (e.g., FDD algorithm) for structural modal 

identification.  

Overall, it can be concluded that the proposed multi-sensor PSBS technique enjoys numerous 

advantages reflected in: 

(a) the signal-agnostic nature of the adopted sampling scheme, which applies to non-sparse 

signals of any structure; 

(b) no signal pre-processing operations is undertaken at the sensor front-end prior to wireless 

transmission;  

(c) auto/cross power spectral estimates are obtained directly in the compressed domain, 

without involving signal reconstruction operations in time-domain; 

(d) a computationally-efficient approach is developed, relying on relaxed optimisation 

algorithms that can be easily solved. 

The above suggest significant energy savings in dense arrays of wireless sensors in OMA 

applications. Such energy savings can be of the order of 85-90% compared to conventional 

approaches at Nyquist rate, which is numerically verified in Chapters 6. Further, the achieved 

energy savings is translated directly into reduced computational, memory and storage 

requirements on sensor.  
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Chapter 5 

 Proposed Multi-Sensor Power Spectrum Blind 

Sampling Approach for OMA: Applications 

5.1. Preliminary Remarks 

The applicability of the proposed PSBS approach detailed in Chapter 4 (§4. Proposed Multi-

Sensor Power Spectrum Blind Sampling Approach for OMA: Theory) within the VSHM 

framework is numerically attested in this chapter for the first time in the literature based on four 

numerical examples.  

The influence of the signal compression and noise levels on the power spectral recovery 

performance of the developed PSBS method is first examined in section 5.2 (§5.2. Error 

Assessment of the PSBS Approach (Single-Sensor Case)). To this end, parametric analyses are 

performed on two case studies using simulated structural acceleration responses recorded on a 

single-sensor. It is shown that proposed method is practically insensitive to additive noise, while 

its accuracy depends strongly on the acquired number of compressed measurements, reaching up 

to 89% less data compared to conventional approaches at uniform sampling rates (Nyquist or 

above). This is verified in the second example in section 5.3 (§5.3. Numerical Evaluation with 

Field-Data from an Operational Wind Turbine (Single-Sensor Case)) for the single-sensor PSBS 

case using field-recorded data obtained from an operational wind turbine in Lübbenau, Germany.    

The next example in section 5.4 (§5.4. PSBS-based OMA with Computer-Generated Closely 

Spaced Modes of Vibration (Multi-Sensor Case)) evaluates the efficiency of multi-sensor PSBS 

approach in retrieving cross-spectral matrices from sub-Nyquist sampled structural acceleration 

responses acquired from a network of wireless sensors/multi-coset samplers. Fused with the 

standard FDD algorithm, it will be shown that the proposed PSBS approach can be efficiently 

used in OMA applications to extract quality estimates of structural mode shapes that are 

susceptible to the modal coupling effect – a challenging issue within OMA. Finally, the damage 

detection capabilities of the developed method are examined in section 5.5 (§5.5. PSBS-based 

Structural Damage Detection Using the Modal Strain Energy Index (Multi-Sensor Case)) using 

the modal strain energy index (MSEI) – a well-established in the literature damage sensitive 

quantity. It will be demonstrated that PSBS-based MSEI can identify the location and severity of 
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structural damage from the acquisition of 70% less data in noisy environments without 

reconstructing structural responses in time-domain. Concluding remarks are summarised in 

section 5.6 (§5.6. Concluding Remarks).  

It is noted that parts of this chapter have been published, or submitted for publication, in the 

journal papers and conference proceedings reported in section 1.5 (§1.5. List of Referred 

Papers). Specifically, the Monte-Carlo simulation based framework in sub-section 5.2.1 (§5.2.1. 

Structural system and simulation) has been published in [C2 – C4], and parts of the wind-turbine 

application in §5.3 have appeared in [C7]. The numerical evaluation of section 5.4 has been 

submitted for publication in [J3] while the damage detection capabilities of the developed multi-

sensor PSBS approach detailed in section 5.5 has been presented in [C5]. Finally, the parametric 

analyses undertaken in sub-section 5.2.2 (§5.2.2. Parametric analyses & results with respect to 

the number of compressed measurements) and sub-section 5.2.3 (§5.2.3. Parametric analyses & 

results with respect to additive measurement noise) have not been disseminated yet in the public 

domain.   

5.2. Error Assessment of the PSBS Approach (Single-Sensor Case)  

Prior to the implementation of the PSBS method (§4) in VSHM applications, it was deemed 

essential to examine the influence of certain parameters on the performance of the proposed 

approach. To this end, parametric analyses are performed in a simulation-based framework 

assuming structural acceleration responses acquired from a single multi-coset sampler. The aim 

is to address the following two questions: 

(1) what is the minimum number of compressed measurements, M, for a faithful recovery of 

the second-order statistics of the unknown full-length response signals?  

(2) whether and to what extent is the above affected by the measurement noise? 

The first issue can be addressed either through the consideration of various CRs for a fixed 

observation window, or equivalently by keeping a constant CR and varying the length of the 

observation window. The second issue considers the influence of the measurement noise at 

sensors level. The noise level is quantified using the signal-to-noise ratio (SNR), i.e., 

 2 2

1010 log xSNR     , where 2

x  and 2

  are the signal and the noise variance, respectively. 

A thorough examination of the above parameters is undertaken in what follows next.  
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5.2.1. Structural system and simulation 

Consider a viscously-damped linear Multi-Degree-of-Freedom (MDOF) structural system 

with R modes of vibration, excited by an ideal band-limited white-noise input with zero-mean and 

2

w  variance (i.e., OMA assumption), that observes, theoretically, a power spectrum density 

(PSD) of constant amplitude, 2( )w w G  , across all frequencies, ω, in the band of interest. Let 

x(t) be the output Gaussian process, representing a real-valued time-domain acceleration response 

signal of the MDOF system, which, in the frequency domain, observes a maximum frequency at 

ωmax. The input-output PSD relationship is expressed in    

2 22( ) ( ) ( ) ( )x w wi i     G G H H , (5.1)

 

where H(iω) is the frequency response function of the MDOF system – termed as accelerance or 

inertance in the field of modal testing (e.g., Ewins (2000)) for output acceleration response 

signals. The above expression can be cast in the form Soong & Grigoriu (1996)  

2 2 2 2 2
4

2 2 2 2 2 2 2 2
, 1

( ) ( ) 4
( )

[( ) (2 ) ] [( ) (2 ) ]

R
r s r s r s

x rs

r s r r r s s s

A
        

 
       

    
   

     
G , (5.2) 

with ωr (ωs) being the resonant frequency and ζr (ζs) the damping ratio of the MDOF structural 

system at the r-th (s-th) mode of vibration, while the amplitude Ars is a parameter associated with 

the structural modal deflected shapes and the modal participation factors due to the considered 

stationary input process (see also Soong & Grigoriu (1996)).  

A Monte Carlo simulation-based assessment framework is introduced herein, which allows 

to compare the dynamic properties of MDOF system defined by eq. (5.2) with those estimated by 

the data-driven PSBS method fused with standard OMA algorithms. The proposed framework is 

illustrated Figure 5.1, which first defines an analog MDOF structural system with known modal 

properties (ωr, Ar, ζr) attaining the PSD in eq. (5.2). This represents the “target” PSD which is 

sought to be captured by the developed PSBS approach as explained below.  

The target PSD is replaced by a surrogate discrete-time auto-regressive moving average 

(ARMA) filter of order (p, q) subject to clipped white-noise excitation, w[n] (e.g., Spanos & 

Mignolet (1989)). Based on the ARMA process, discrete-time Nyquist-sampled signals, xARMA[n], 

can be generated and treated as NR realisations of an underlying stochastic process representing 

the acceleration responses of structural systems with known modal properties (ωr, Ar, ζr). This is 

achieved by recursively computing each n sample in xARMA[n] based on past observation and 

adding a convolution term related to the white noise input w[n], i.e.,  
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      . (5.3) 

 

Figure 5.1: Adopted Monte Carlo simulation-based framework to assess the multi-coset sampling device 

for OMA applications 

The coefficients 
kb , k=(1,2,…,p) and c , (0,1,..., )q  of this ARMA filter are derived from the 

auto/cross-spectrum correlation matching algorithm by Spanos & Zeldin (1998), which is 

commonly used for spectrum compatible simulation (e.g., Giaralis & Spanos (2009), (2012)). 

The above coefficients are obtained by solving a ( ) ( )p q p q    system of linear equations such 

that the square modulus of the frequency response function of the ARMA filters closely trace the 

target PSD of the analog system in eq. (5.2), that is,  

2

( ) ( )si T

x eG H
 . (5.4) 

In the above expression, Ts, is the sampling period of the discrete-time process associated with 

the Nyquist relation, Ts=π/ωmax, and ( )si T
e


H  is the transfer function of the ARMA filter that 

satisfies the equation (e.g., Spanos (1983); Giaralis & Spanos (2009)) 

0
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








H . (5.5) 

For the considered stochastic process, the generated Nyquist-sampled discrete-time structural 

responses, xARMA[n] (coloured white noise via the ARMA filter) are contaminated further with 

additive white noise, ε[n], at various SNRs to simulate noisy structural responses, x[n]. The latter 
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are next treated by a single discrete-time model of the multi-coset sampling device depicted in 

Figure 4.2, to derive M compressed/ sub-Nyquist measurements, yi[k], in eq. (4.5) for i={0,1,…, 

1M  }, k={1, 2, …, K}, and M KM . The simulated compressed data are treated by the PSBS 

strategy in §4, to recover the unknown power spectrum, 
(2 1) 1ˆ N L

x

 G  upon solving the least-

squares optimisation problem in eq. (4.26) (i.e., for a=b=1). Thus, an approximation of the target 

PSD in eq. (5.2) can be obtained and further processed with standard OMA algorithms (e.g., the 

“peak picking” method detailed in Ewins (2000)) to retrieve the location, amplitude, and width of 

the recovered spectral peaks, providing approximations of the structural modal parameters, 

ˆ ˆˆ , ,r r rA  . The accuracy of these parameters can be assessed with respect to the known modal 

values, ωr, Ar, ζr, originally defined in the first step of the proposed framework (i.e., in deriving 

the target PSD of the MDOF system in eq. (5.2)). The significance of the developed strategy in 

Figure 5.1 can be appreciated in that parametric dynamic analyses are numerically performed in 

MDOF systems with low computational cost, bypassing the need for linear response history 

analyses using standard FE software.   

In this study, the simulation-based framework in Figure 5.1 is utilised to approximate a 

continuous MDOF structural system with R=2 degrees of freedom (i.e., 2DOF system) and a 

critical damping of ζ1 = ζ2 =5% for both modes of vibration, pertaining to the spectral coefficients 

A11=0.43, A22=0.5, A12=A21=0.46 in eq. (5.2). Note that the above coefficients can be retrieved 

from the PSDs of acceleration responses measured at the quarter-span of a 2DOF dynamically 

vibrating simply supported beam subjected to a white-noise point force applied at the 3/8 of its 

length (e.g., Figure 5.2).  

 

Figure 5.2: L-length simply supported beam with two degrees of freedom and the considered location of 

the excitation and measurement point at the 3L/8 and L/4 respectively 

Two different case studies are examined for the above 2DOF with resonances at:    

(1) ω1=20 rad/s, ω2=60 rad/s, (case of well-separated modes of vibration); and  

(2) ω1=20 rad/s, ω2=25 rad/s (case of close-spaced modes of vibration).  
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For the above systems, their PSDs (target) are first derived from eq. (5.2). It is considered 

next an ARMA filter of order (200, 20) which is convolved with a clipped white-noise input 

assuming a sampling period at Ts=0.02s (i.e., the Nyquist frequency is 157.08 rad/s). The 

auto/cross-spectrum correlation matching algorithm proposed by Spanos & Zeldin (1998) is then 

employed to compute the ARMA coefficients using eqs. (5.2), (5.4), and (5.5), and derive 

discrete-time Nyquist-sampled signals considering NR=10 realisations of the underlying 

stochastic process. The generated signals represent acceleration responses of the adopted MDOFs 

in cases (i) and (ii) under ambient vibrations, to be treated by the proposed PSBS method in §4. 

For illustration, Figure 5.3 shows the above derived PSDs for the two considered cases, 

normalised to their peak value to facilitate comparison. It is seen that the PSD curve of the ARMA 

filter (broken red curves) can efficiently represent the target power spectrum (grey curve) 

evaluated from eq. (5.2). Figure 5.3 also presents the theoretical PSD (solid blue curve) derived 

from eq. (4.18) (for a=b=1) together with the autocorrelation function of the ARMA filter, 

 [ ] E [ ] [ ]xx xr p x n  x n p  (see also eq. (4.6)), which is shown to closely trace the target PSD.  

Further to the above, Figure 5.4 plots the recovered PSDs at CR=21%, obtained from eq. 

(4.26) for M =8, N =39 and s=[0,1,3,7,9,14,18,19]T (see also Table 5-2) for the case of well-

separated (Figure 5.4(a)) and that of closely-spaced modes of vibration (Figure 5.4(b)). It is 

readily observed that the PSBS-recovered PSDs are capturing well the salient attributes of the 

systems frequency response function, such as the location of the two prominent peaks, their 

widths, and amplitudes, associated with the structural resonant frequencies, the damping ratio, 

and the modal deflected shapes, respectively, at the pertinent modes of vibration. From a 

qualitative point of view, the above confirms the efficiency of the proposed PSBS method in 

retrieving auto-spectral densities from compressed acceleration measurements acquired from a 

single sensor. 

 

Figure 5.3: Comparison of normalised PSD curves to maximum their amplitude, obtained from the target 

PSD (analytical expression in eq. (5.2)), the ARMA model, and the theoretical expression in 

the PSBS method for the two adopted case studies: 2DOF with (a) well-separated and (b) 

closely-spaced modes of vibration   

(a) (b) 
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Figure 5.4: Estimated PSDs from sub-Nyquist multi-coset sampled simulated data (K=1000, 8M  , 

39N  , L=16) with the multi-coset sampling pattern s=[0,1,3,7,9,14,18,19]T (blue curve) 

plotted against the target PSD in eq. (5.2) for the two adopted case studies: (a) 2DOF with 

well-separated and (b) closely-spaced modes of vibration 

An error metric is adopted to quantitatively assess the recovery performance of the PSBS 

method and ensure reasonable estimates of structural modal properties. In this respect, the root-

mean-square error (RMSE)  

 
2

0

ˆ ( ) ( )

1

n

x j x j

j

G G

RMSE
n

 








 

(5.6) 

is computed between the power spectral amplitudes derived from the PSBS-recovered PSDs, 

ˆ ( )x jG  , and those obtained from the target spectrum, ( )x jG  , in the frequency band [ω0, ωn]. 

For the two examined 2DOF structural systems, the adopted error metric in eq. (5.6) is 

calculated for three different frequency bands as reported in Table 5-1, i.e., one wide-band 

covering the frequency range of interest between [0, 100] rad/s, and two narrow-bands around the 

resonant frequencies of the adopted structural systems (i.e., ω1, and ω2, respectively). For 

illustration, Figure 5.5 and Figure 5.6 plot with a red curve the three different spectral ranges in 

Table 5-1 for the two 2DOF systems analysed.  

Table 5-1: Considered frequency ranges in the PSD estimates for the computation of the RMSE  

 Case Study 1 Case Study 2 

 Well-separated modes 

 (ω1=20rad/s, ω2=60rad/s) 

Closely-spaced modes 

 (ω1=20rad/s, ω2=25rad/s) 

 [ω0 - ωn] [ω0 - ωn] 

Wide-band [0 - 100] rad/s [0 - 100] rad/s 

Narrow-band around ω1 [10 - 30] rad/s [18.5 – 21.5] rad/s 

Narrow-band around ω2 [50 - 70] rad/s [24 - 27] rad/s 

(a) (b) 
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Figure 5.5: Considered frequency bands in the computation of the RMSE between recovered PSBS-PSD 

and target PSD for the 1st case study: (a) wide-band; (b) narrow-band around ω1; and (c) 

narrow-band around ω2 

 

Figure 5.6: Considered frequency bands in the computation of the RMSE between recovered PSBS-PSD 

and target PSD for the 2nd case study: (a) wide-band; (b) narrow-band around ω1; and (c) 

narrow-band around ω2  

5.2.2. Parametric analyses & results with respect to the number of compressed 

measurements  

The efficiency of the PSBS method is numerically assessed herein as a function of the 

required number of compressed measurements, M. In this respect, parametric analyses are 

performed on both considered 2DOF systems in cases (i) and (ii) using the values listed in Table 

5-2 and Table 5-3. In particular, compressed acceleration data are generated at five different CRs 

ranging between 11% and 50%. As reported in Table 5-2, the adopted CRs have been defined by 

appropriately selecting five pairs of ( ),M N  values. Each pair is associated with a sampling 

pattern sequence, s, which has been obtained by solving the constrained optimisation problem in 

eqs. (4.31), (4.32). For the five considered compression levels, Table 5-2 also reports the 

computed L values from eq. (4.21) that allow to recover the PSD estimates of the unknown full-

length acceleration responses with a frequency resolution at approximately 0.005 rad/s in all CR 

cases. 

(a) (b) (c) 

(a) (b) (c) 
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It is further assumed that the observation window comprises N samples, with N ranging from 

3900 to 39000. Note that the above range is approximated in the five CR cases listed in Table 5-3, 

since the value of N is related to both the number, K, and the length, N , of the blocks the input 

signal is divided for the application of the multi-coset sampling strategy detailed in §4.2 (i.e., 

 N K N ). The consideration of varying observation window lengths within each CR allows to 

define compressed acceleration responses of M samples, with M taking values within the ranges 

reported in Table 5-3.  

Table 5-2: Adopted multi-coset sampling values 

Compression ratio CR 11% 21% 31% 40% 50% 

Number of channels M  14 8 5 4 8 

Down-sampling N  128 39 16 10 16 

Sampling pattern  s 
[0,1,2,6,8,20,29,39, 

47,50,53,60,63,64]T 

[0,1,3,7,9, 

14,18,19]T 
[0,1,2,5,8]T [0,1,2,5]T [0,1,2,3,4,6,7,8]T 

Design Parameter  L 4 16 40 64 40 

Frequency resolution 

[rad/s] 
Δω  5.45 10-3 4.88 10-3 4.85 10-3 4.87 10-3 4.85 10-3 

Table 5-3: Adopted ranges in parametric analyses  

Compression ratio CR 11% 21% 31% 40% 50% 

Number of blocks K 30-304 100 - 1000 243-2437 390-3900 243-2437 

Nyquist samples  N 3888-38992 3900 - 39000 3888-38992 3900-39000 3840-38912 

Sub-Nyquist samples M 420-4256 800 - 8000 1215-12185 1560-15600 1944-19496 

Signal-to-Noise Ratio [dB] SNR  0 - 100 0 - 100 0 - 100 0 - 100 0 - 100 

 

Considering the 1st case study (i.e., the 2DOF case of well-separated modes of vibration) and 

the pertinent spectral ranges in Table 5-1, eq. (5.6) is employed to compute the RMSE of the 

PSBS-recovered PSDs at CR={11%, 21%, 31%, 40%, 50%} (see also Table 5-2). The obtained 

error values are presented in Figure 5.7 as a function of the length of the observation window, N. 

Notably, the consideration of lower CRs within a fixed observation window (i.e., at any given N 

value in Figure 5.7) suggests the acquisition of fewer compressed/sub-Nyquist measurements, M.   

As expected, it is seen that the RMSE decreases, in all CRs, as longer observation windows 

are considered, since larger number of compressed measurements M are retrieved. In fact, Figure 

5.7 confirms that at higher N values the RMSE tends towards a constant error value (i.e., roughly 

at 0.1 in Figure 5.7(a) and Figure 5.7(b) and 0.2 in Figure 5.7(c)) regardless of CR. This means 
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that a sufficiently large number of measurements M is obtained even for a limiting CR (e.g., at 

11% in this numerical example), and thus the accuracy of the recovered PSDs cannot improve 

further. The above also confirm that the most critical case is the consideration of short observation 

windows at lower CRs, yielding smaller M values at the cost of larger errors (e.g., CR=11%). 

Interestingly, though, it is seen in Figure 5.7 that the recovered PSDs yield approximately the 

same accuracy for CR>21% in this example, as the pertinent error curves significantly overlap 

across N. Comparing next the RMSE amplitudes among the three panels of Figure 5.7, it can be 

concluded that the PSD recovery around the 2nd natural frequency (i.e., Figure 5.7(c)) is a more 

challenging task, yielding larger error values compared to the other two cases shown in Figure 

5.7(a) and Figure 5.7(b) for the wide-band spectral range and the narrow-band around ω1.  

 

Figure 5.7: RMSE versus observation’s window length, N, for the 1st case study with ω1=20rad/s and 

ω2=60rad/s: (a) RMSE in the wide-band range of [0-100 rad/s]; (b) RMSE in the narrow-band 

range of [10-30] rad/s (around ω1); (c) RMSE in the narrow-band range of [50-60] rad/s 

(around ω2)  

Based on the above results, it is recommended for practical applications to a test range of 

different CR (off-line) for a fixed observation window to determine the order of M for which 

quality PSD estimates can be obtained, while any additional increase in M yields only marginal 

improvements in terms of RMSE. Then, one can opt either to adopt the limiting CR value achieved 

in the above configuration (i.e., pertaining to the fixed observation window initially defined) or 

to allow longer observation windows using lower sampling rates at smaller CRs as long as the 

order of M is not violated.  

An alternative aspect of Figure 5.7 is shown in Figure 5.8 by plotting the computed RMSE at 

the five adopted CRs considering three fixed observation window of N=5850, N=11700 and 

N=21450, samples, respectively. Similarly, the three panels in Figure 5.8 pertain to the three 

different spectral ranges in Table 5-1, confirming the above concluding remarks.  

(a) (b) (c) 
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Figure 5.8: RMSE versus CR for the 1st case study with ω1=20rad/s and ω2=60 rad/s: (a) RMSE in the 

wide-band range of  [0-100 rad/s]; (b) RMSE in the narrow-band range of [10-30] rad/s 

(around ω1); (c) RMSE in the narrow-band range of [50-60] rad/s (around ω2) 

For the 2nd case study (i.e., 2DOF case of closely-spaced modes of vibration), the influence 

of M on the RMSE of the PSBS-recovered PSDs is illustrated in Figure 5.9 and Figure 5.10 under 

the same considerations as in Figure 5.7 and Figure 5.8, respectively. Similar remarks hold as 

before with smaller errors observed at higher M values and the acquisition of larger number of 

compressed data. As discussed above, this is achieved by considering longer observation windows 

at a given CR (i.e., Figure 5.9) and vice versa (i.e., Figure 5.10). However, the need to examine 

the spectral recovery around the two closely-spaced natural frequencies independently, leads to 

very narrow frequency bands in Table 5-1. This results in larger RMSEs in the recovered PSDs 

around ω1 and ω2, as shown in Figure 5.9(b) and Figure 5.9(c), respectively, in contrast to the 

pertinent plots in Figure 5.7. Nonetheless, Figure 5.9 and Figure 5.10 show that the PSBS method 

yields almost the same level of accuracy for CR>21% even in this challenging case of closely-

spaced modes.   

 

Figure 5.9: RMSE versus observation’s window length, N, for the 2nd case study with ω1=20rad/s and 

ω2=25rad/s: (a) RMSE in the wide-band range of  [0-100 rad/s]; (b) RMSE in the narrow-

band range of [18.5-21.5] rad/s (around ω1); (c) RMSE in the narrow-band range of [24-27] 

rad/s (around ω2) 

(a) (b) (c) 

(a) (b) (c) 
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Figure 5.10: RMSE versus CR for the 2nd case study with ω1=20rad/s and ω2=25rad/s: (a) RMSE in the 

wide-band range of  [0-100 rad/s]; (b) RMSE in the narrow-band range of [18.5-21.5] rad/s 

(around ω1); (c) RMSE in the narrow-band range of [24-27] rad/s (around ω2) 

5.2.3. Parametric analyses & results with respect to additive measurement noise  

This sub-section numerically assesses the influence of additive noise on the recovery 

performance of the PSBS method. To this end, parametric analyses are performed considering 

structural response signals contaminated with additive Gaussian noise at 10 different SNR values 

varying between 0dB (i.e., 
2 2

e x   , extreme noise case that may not be encountered in practical 

VSHM deployments) and 100dB (i.e., 
2 10 210e x

   , relatively low-noise case) as given in Table 

5-3. The noisy signals are then treated by the PSBS method using the parameters reported in Table 

5-2, and the pertinent PSDs are recovered at five CRs. For the two considered case studies, the 

spectral ranges in Table 5-1 are further used to compute the RMSE in eq. (5.6) and the obtained 

results are presented in Figure 5.11 and Figure 5.12 as a function of SNR assuming fixed 

observation window of N=39000 samples.  

Regarding the 2DOF case of well-separated modes of vibration (case study 1), Figure 5.11 

reveals that the PSBS method is practically insensitive to additive noise for CRs above 21%, 

yielding a constant error value across the entire SNR range in [0, 100] dB. However, at lower CRs 

(below 21%) it is seen that the extreme noise level at SNR= 0 dB adversely affects the accuracy 

of the recovered PSDs. The latter is also confirmed in the 2nd case study in Figure 5.12 irrespective 

of CR, since spectral recovery in systems with closely-spaced modes of vibration is, inherently, a 

more challenging problem. Finally, it is noted that the RMSE amplitudes in Figure 5.11 and 

Figure 5.12 are in agreement with the values shown in Figure 5.7 and Figure 5.9, respectively, for 

N=39000.  

(a) (b) (c) 
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Figure 5.11: RMSE of the PSD estimates versus SNR for the two considered CRs in the 1st case study for 

(a) a wide frequency band, (b) a narrow band around ω1, and (c) around ω2; N=39000 

 

Figure 5.12: RMSE of the PSD estimates versus SNR for the two considered CRs in the 2nd case study for 

(a) a wide frequency band, (b) a narrow band around ω1, and (c) around ω2; N=39000 

5.3. Numerical Evaluation with Field-Data from An Operational Wind 

Turbine (Single-Sensor Case) 

The parametric analyses undertaken in the previous section confirm that the accuracy of the 

considered PSBS approach strongly depends on the efficiency of power spectral recovery 

operation applied to the acquired compressed measurements. This argument is numerically 

assessed herein as a function of the signal compression due to sub-Nyquist multi-coset sampling 

using field-recorded acceleration response data acquired from an actual monitoring campaign.  

5.3.1. Structural system and response signals  

The recovery performance of the PSBS-based spectral estimation approach is evaluated 

herein for the single-sensor case (i.e., a=b in Chapter 4), using structural response data obtained 

from an operational wind turbine in Lübbenau, Germany (e.g., Chatzi & Spiridonakos (2015); 

Klis & Chatzi (2015)). The considered structure was instrumented with wired sensors over a 

period of 29 days, measuring tri-axial acceleration responses for approximately 10 minutes every 

half an hour. The acquired datasets were conventionally sampled with a uniform rate at 200 Hz 

(a) (b) (c) 

(a) (b) (c) 
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(Ts=0.005s). Figure 5.13 shows the wind turbine and the sensors installation at 80 and 100 meters 

along the height of the supporting tower.  

 

Figure 5.13: Wind turbine tower and location of sensors in the monitoring set-up (image reused from 

Chatzi & Spiridonakos (2015))  

In this study, an acceleration time-series of N=172420 samples is employed recorded on the 

29/12/2013 (at 15:44pm) along the northern axis (N or y-axis in Figure 5.13) from the sensor at 

80m height. For illustration, Figure 5.14 presents the recorded response acceleration signal 

(Figure 5.14(a)) together with the velocity (Figure 5.14(b)) and displacement (Figure 5.14(c)) 

time-series, obtained from single and double integration, respectively. It is readily observed that 

unrealistically high velocity and displacement values are present within the “raw” data, which 

underpins the need for signal pre-processing operations prior to the implementation of the 

developed method. To this end, a baseline adjustment is applied to the raw data to remove the 

mean value and any potential low-frequency trend within the acceleration response signal. Next, 

a 4th-order Butterworth band-pass filter is employed within the frequency range 0.10 - 25.0 Hz. 

The “corrected” acceleration signal (i.e., baseline adjusted and band-pass filtered) and the 

computed velocity and displacement time series are presented in Figure 5.15.  

 

Figure 5.14: (a) Acceleration, (b) velocity, and (c) displacement time series acquired from sensor at 80m 

height (raw data)  

(a) (b) (c) 
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Figure 5.15: Corrected/filtered (a) acceleration, (b) velocity, and (d) displacement time series (from 

sensor at 80m height) obtained from pre-processing the acceleration response in Figure 5.14 

For the above acceleration responses (before and after filtering), the standard Welch 

periodogram is computed for the full-length signals of 172420 samples, assuming 4096 (=212) 

FFT points, eight overlapping segments with 50% overlap, windowed with a Hanning function 

Marple (1987). The derived PSD estimates are normalised to their maximum amplitude and 

plotted together in logarithmic scale in Figure 5.16(a) and in linear scale in Figure 5.16(b). It is 

readily observed that the maximum power spectral amplitude occurs at approximately 1.4 Hz, 

pertaining to the dominant resonant frequency of the wind turbine. Further, it is seen that the 

important signal information lies in frequencies below 5 Hz, while the remaining spectral peaks 

(above 5 Hz) are negligible. 

 

Figure 5.16: Welch periodogram at Nyquist rate derived from the considered acceleration response signal 

(a) before and (b) after filtering   

Given that the PSBS-based spectral estimation approach anticipates signal stationarity, it was 

deemed essential to undertake a data qualification test to appraise the stationarity attributes of the 

recorded signals. The corrected acceleration sequence in Figure 5.15(a) is divided in 7 time-

frames of 2 minutes duration and the standard non-parametric Reverse Arrangement method (e.g., 

Bendat & Piersol (2010)) is used to statistically test the stationarity hypothesis. The obtained 

reverse arrangements are presented in Figure 5.17 showing that the stationarity hypothesis is 

confirmed at the 95% confidence level. The latter suggests that the recorded and pre-processed 

response acceleration signals from the wind turbine tower can be treated as wide-sense stationary 

at a high confidence level and, therefore, the PSBS approach is applicable.   

(a) (b) 

(a) (b) (c) 
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Figure 5.17: Reverse Arrangement method applied on acceleration response signal acquired form sensor 

at 80m height; signal is divided in 7 segments of 2min duration 

5.3.2. PSBS application and power spectral estimation assessment 

Considering next the multi-coset sampling scheme in §4.2, the corrected acceleration 

response signal in Figure 5.15(a) is compressed at three different CRs of 11%, 21% and 31%, 

using the (M̅, N̅, L) values and the sampling pattern sequences, s, reported in the 3rd, 4th, and 5th 

column of Table 5-2 for CR={11%, 21%, 31%}, respectively.  

Specifically, for the case of CR= 31%, the assumed wireless sensor comprises M =5 channels 

that operate at a rate N =16 times slower than the uniform sampling rate at 200Hz. The sampling 

pattern sequence s = [0, 1, 2, 5, 8]T is utilised along the channels of the assumed multi-coset 

sampler, which has been obtained by solving the constrained optimisation problem in eqs. (4.31), 

(4.32) for M =5 and N =16 (e.g., Tausiesakul & Gonzalez-Prelcic (2013)). Following the 
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mathematical details in chapter 4, the corrected full-length acceleration signal, x[n], (of N=172420 

samples) is divided in K=10776 blocks of length N =16 (i.e., /K N N ). From each block, only 

M =5 samples are selected, which are further collected in the compressed sequences [ ]iy k  (i=0, 

1,…, 1M  , k=1,2,…,K) in eq. (4.5), resulting in the acquisition of M=53880 compressed 

samples per sensor (i.e., 69% fewer samples compared to x[n]). The unbiased estimator 
,

ˆ [ ]a b
i jy y

r  

in eq.(4.22) is then computed for a=b=1 and [ 40,40]   using the heuristically defined value of 

L=40 (see also Table 5-2). This enables the recovery of the unknown power spectrum 

1296 1ˆ
x

G  in eq.(4.26), with a frequency resolution of 3Δ 4.85 10  rad/s   (see also 

eq.(4.21)).  

The above procedure also holds for the two other cases with CR=21% and CR=11%, based 

on the pertinent sampling parameters in Table 5-2, yielding, respectively, 79% (i.e., M=35368) 

and 89% (i.e., M=18858) fewer samples compared to the uniformly-sampled full-length signal. 

Figure 5.18 - Figure 5.20 illustrate the recovered PSD estimates at CR={11%, 21%,31%} 

(solid red curves in logarithmic scale in panels (a) and in linear scale in panels (b)). These PSD 

estimates are normalised to their maximum amplitude to facilitate comparison and plotted against 

the standard Welch periodogram (dotted blue curve) in Figure 5.16 for the corrected full-length 

signal. From a qualitative point of view, it is observed that the PSBS-based PSD can closely 

approximate the Welch periodogram within the frequency range of interest (i.e., below 5 Hz), 

even for CR=11% and the power spectral recovery from 89% fewer data samples compared to 

conventional approaches (e.g., Figure 5.18). Note that the comparative PSD curves in Figure 5.18-

Figure 5.20 observe some differences for frequencies above 5 Hz - mainly in the anti-resonance 

ranges- which, however, have no practical meaning given their negligible spectral amplitudes that 

yield almost zero values. 

  

Figure 5.18: PSD estimates: Welch periodogram at Nyquist rate compared with PSBS approach for 

CR=11% (M̅=14, N̅=128) in (a) logarithmic scale, and (b) linear scale 

(a) (b) 
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Figure 5.19: PSD estimates: Welch periodogram at Nyquist rate compared with PSBS approach for 

CR=21% (M̅=8, N̅=39) in (a) logarithmic scale, and (b) linear scale 

 

Figure 5.20: PSD estimates: Welch periodogram at Nyquist rate compared with PSBS approach for 

CR=31% (M̅=5, N̅=16) in (a) logarithmic scale, and (b) linear scale  

To quantify the level of accuracy of the proposed PSBS approach in the single-sensor case, 

Table 5-4 reports the location of the retrieved spectral peaks at CR={11%, 21%, 31%}, 

corresponding to the resonant frequencies of the considered wind turbine at the R excited modes 

of vibration.  

The percentage difference error  

, ,

,

ˆ
r PSBS r Welch

r

r r Welch

f fdf

f f


  (5.7) 

is further used to measure the quality of the natural frequency estimates extracted from the PSBS 

approach, ,
ˆ
r PSBSf , and the Welch conventional spectral estimation approach, ,r Welchf , at the r-th 

mode of vibration (where r=1,2,…,R). Overall, it can be easily noticed that the PSBS approach 

can accurately retrieve the 3rd natural frequency that attains the maximum spectral peak (see also 

Figure 5.18-Figure 5.20), yielding small percentage errors, below 1%, in all considered CRs. 

Table 5-4 further confirms that the accuracy of the proposed method is adversely affected in cases 

(a) (b) 

(a) (b) 
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of inadequately excited modes of vibration, which is inherently a challenging task. For example, 

it is shown that the 4th natural frequency cannot be detected at CR=21%, while the estimation of 

the 1st natural frequency observes large percentage errors, yielding less accurate results at lower 

CRs.  

Table 5-4: Natural frequency estimates and percentage difference errors for the PSBS approach at 

CR={11%, 21%, 31%} and the standard welch modified periodogram applied on the full-length signal 

(non-compressed data with CR=100%) 

 Non-compressed  

Welch 

PSBS 

 CR=100% CR=31% CR=21% CR=11% 

f1 [Hz] 0.195 0.159 0.156 0.285 

(df1/ f1 [%])  (18.7%) (20.1%) (45.9%) 

f2 [Hz] 0.635 0.635 0.624 0.570 

(df2/ f2 [%])  (0.0%) (1.7%) (10.2%) 

f3 [Hz] 1.416 1.429 1.404 1.425 

(df3/ f3 [%])  (0.9%) (0.8%) (0.6%) 

f4 [Hz] 3.516 3.492 - 3.561 

(df4/ f4 [%])  (0.7%) - (1.3%) 

f5 [Hz] 4.102 4.127 4.056 4.131 

(df5/ f5 [%])  (0.6%) (1.1%) (0.7%) 

 

5.4. PSBS-based OMA with Computer-Generated Closely Spaced Modes of 

Vibration (Multi-Sensor Case) 

Having established the limits of accuracy of the PSBS approach in §4 for the single-sensor 

case, and verified its auto-spectral recovery performance with field-recorded data from an actual 

monitoring campaign, the focus is next placed on the numerical evaluation of the multi-sensor 

PSBS approach for cross-spectral recovery and mode shape estimation in structural systems 

susceptible to the modal coupling effect.   

5.4.1. Structural system 

Computer-simulated acceleration response data are obtained from the space truss in Figure 

5.21, in which the first two modes of vibration along the vertical direction are closely spaced. 

Specifically, the 8-bay simply supported aluminium space truss of Figure 5.21 is simulated in a 

commercially available finite element (FE) software using 100 linear one-dimensional truss 
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elements with circular hollow cross-sections. Each bay is a cube with 707mm long side and the 

horizontal members in the x-y plane have 22mm diameter and 1mm wall thickness, while the 

vertical members in the x-z planes are 30mm in diameter and 1.5mm wall thickness. The diagonal 

members in the y-z plane have been purposely omitted to derive a structural system susceptible 

to modal coupling. Gravitational masses of 0.44kg are lumped at each of the 36 nodes of the FE 

model. Additional gravitational masses of 1.75kg are assigned to nodes 1,7,30, and 34, and of 

2.75kg are assigned to nodes 20,26, and 32. 

 

Figure 5.21: Considered space truss model 

The considered space truss is assumed to be instrumented with an array of D=18 wireless 

sensors placed at nodes 1-18 in Figure 5.21, measuring vertical acceleration responses under 

ambient dynamic loading. The latter is approximated with a band-limited low-amplitude Gaussian 

white noise force of 4s duration and a time discretisation step equal to 0.001s, applied at the base 

of the structure along the z-axis. The considered excitation attains the power spectrum shown in 

Figure 5.22(a), which approximates the unit amplitude sufficiently well for the frequency range 

up to 500Hz. The adopted input force excites the first three bending modes of the vibrating space 

truss along the vertical direction, as confirmed in Figure 5.22(b), which plots together the PSD 

estimates of the acceleration responses measured at nodes #5 and #14 of the truss model in Figure 

5.21. Assuming a critical damping ratio of 1% for all modes of vibration, linear response history 

analysis is conducted, generating D=18 vertical acceleration response signals, [ ]dx n

  1,2, ,18d  , each consisting of 4000 uniform samples at Nyquist rate.  

 

Figure 5.22: Input/ output PSD estimates for the space truss in Figure 5.21; (a) input/white noise excitation 

signal; (b) output/acceleration responses measured at nodes #5 (blue curve) and #14 (red 

curve), respectively. 

(a) (b) 
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5.4.2. Multi-sensor PSBS-based FDD application and assessment  

The 18 generated acceleration responses are next sub-Nyquist sampled at three different CRs 

of approximately 31%, 21% and 11% (i.e., 69%, 79% and 89% fewer samples compared to the 

uniformly-sampled full-length signals) using the deterministic multi-coset sampling scheme 

detailed in §4.2. These three different signal compression levels are achieved using the pertinent 

pair of ( ),M N  values, the sampling pattern sequences, s, and the application-dependent 

parameters reported in Table 5-5.  

Following the mathematical details in Chapter 4, each Nyquist-sampled acceleration response 

signal (of N=4000 samples) is divided in K=250 blocks of length N =16. Then, from each block, 

only M =5 samples are selected, resulting in the acquisition of M=1250 samples per recording 

location. The acquired compressed measurements from the whole array of 18 sensors are 

collectively processed to obtain an estimate of the output cross-correlation matrix 
1025 18ˆ

a by y

r  

in eq.(4.14), based on eq.(4.8) and the unbiased estimator 
,

ˆ [ ]a b
i jy y

r  in eq.(4.22). The latter is 

computed for [ 20,20]   (i.e., L=20), which enables the recovery of the unknown power spectra 

with a frequency resolution at 3Δ 9.58 10  rad/s   (or 
3Δ 1.52 10  Hzf   ) (see also eq.(4.21)). 

The power spectral matrix 656 18ˆ
a bx x

G  is finally obtained by solving the weighted least square 

criterion in eq. (4.26) using the pattern correlation matrix 1025 656

c

R  in eq.(4.16) along with the 

DFT matrix 
656

(2 1)

656

L N



 F . 

The above procedure also holds for the two other cases with CR=21% and CR=11%, 

pertaining to sampling parameters in Table 5-5, which have been defined in a similar manner as 

above. Note that the value of L is judicially selected such that approximately the same frequency 

resolution, Δ , is achieved in the recovered power spectral matrices for all considered cases.  
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Table 5-5: Multi-coset pair (M̅, N̅) and pattern sampling sequence 

Compression Ratio CR 31% 21% 11% 

Number of channels 

per sensor 

M  5 8 14 

Down-sampling N  16 39 128 

Sampling pattern s [0,1,2,5,8]T [0,1,3,7,9,14,18,19]T [0,1,2,6,8,20,29,  

38,47,50,53,60,63,64]T 

Number of blocks K 250 102 31 

Design parameter  L 20 8 2 

Correlation support  2 1N L    656 663 640 

Frequency 

resolution 

Δω [rad/s] 9.58 10-3 9.48 10-3 9.82 10-3 

Nyquist sampled 

signals 

N 4000 4000 4000 

Sub-Nyquist 

sampled signals 

M 1250 816 432 

 

5.4.3. Modal results 

For the three considered CR cases in Table 5-5, the standard FDD algorithm (see also Brincker 

& Ventura (2015)) is further employed to “decompose” the recovered power spectral matrix ˆ
a bx x

G  

to its singular values, Σ, and singular vectors, U, as in eq.(4.42), and extract the truss modal 

properties (i.e., natural frequencies, ˆ
rf  in Hz, and mode shapes, ˆ

rφ ). The first singular values 

vectors obtained from the proposed PSBS-based FDD at CR={11%, 21%, 31%} are normalised 

to unit amplitude and plotted in Figure 5.23 within the frequency range of [0,500] Hz, in which 

the first three resonant frequencies of the truss in Figure 5.21 lie. For comparison, Figure 5.23 

presents further the pertinent singular values vector derived the traditional FDD method at 

Nyquist rate (i.e., at CR=100%). For this case, the standard Welch modified periodogram is 

applied to the full-length dataset of 4000 samples per signal, to estimate the response spectrum 

matrix, assuming that each acceleration response is divided in eight overlapping segments of 50% 

overlap and windowed with a Hanning function. 
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Figure 5.23: First singular values vector of the space truss response spectrum matrix in eq. (4.26) for 

CR={100%, 31%, 21%, 11%}  

Notably, the first two resonances exhibit a percentage difference of approximately 15%, being 

clustered together in a relatively narrow frequency-band which pertains to just the 3% of the 

considered frequency range. It is further shown that the 3rd resonance observes a relatively low 

amplitude in the first singular values plot of Figure 5.23, confirming the poor/insufficient 

excitation of the 3rd vibrating mode of the white-noise excited FE model in Figure 5.21. Table 5-6 

presents the natural frequencies extracted from the proposed multi-sensor PSBS-based FDD 

approach for the three adopted CRs (i.e., 31%, 21%, and 11%), which are compared against the 

pertinent values obtained from the conventional FDD at Nyquist rate (i.e., CR=100%). The 

accuracy of the extracted resonances is further assessed with the difference percentage error, dfr/ 

fr (r=1,2,3), computed between the frequency estimates at Nyquist (i.e., conventional FDD) and 

sub-Nyquist rates (i.e., PSBS-based FDD), and reported in Table 5-6. It is shown that small 

percentage errors are retrieved, delimited between the range of [-0.68, +1.74] %, confirming that 

the proposed multi-sensor PSBS method can efficiently detect the two closely-spaced natural 

frequencies at all considered CRs.   

Table 5-6: Natural Frequency Estimates 

 Conventional 

FDD at Nyquist 

PSBS-based FDD 

 CR=100% CR=31% CR=21% CR=11% 

f1 [Hz] 62.012 62.691 62.121 62.696 

(df1/ f1 [%]) - (0.67 %) (-0.25 %) (-0.68 %) 

f2 [Hz] 73.643 74.924 74.242 73.668 

(df2/ f2 [%]) - (1.74 %) (0.81 %) (0.03 %) 

f3 [Hz] 294.551 296.636 296.970 293.103 

(df3/ f3 [%]) - (0.71 %) (0.82 %) (-0.49 %) 
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In all cases considered, the modal deflected shapes of the truss in Figure 5.21 are further 

extracted from the left singular vector U of the decomposed power spectral matrix ˆ
a bx x

G  and the 

obtained estimates are illustrated in Figure 5.24 - Figure 5.26 for the three excited vibrating 

modes, respectively. In each figure, the panel (a) shows the mode shape vector extracted from the 

conventional FDD at Nyquist rate, while the panel (b) presents the pertinent vector retrieved from 

the multi-sensor PSBS-based FDD at the extreme sub-Nyquist case with CR=11%. The 

undeformed shape of the truss (grey grid) is also plotted in these figures to facilitate comparison.  

The accuracy of the proposed PSBS-based FDD approach in extracting quality estimates of 

the truss mode shapes is assessed with the Modal Assurance Criterion (MAC) (e.g., Brincker & 

Ventura (2015)). In this respect, Figure 5.24(c) - Figure 5.26(c) plot the MAC values in eq.(4.43) 

as a function of the three adopted CRs at 31%, 21%, and 11%, respectively. As expected, MAC 

values increase with CR, suggesting higher accuracy in the extracted mode shapes as more data 

samples are acquired. Nonetheless, the observed MAC values are above 0.9 in all cases 

considered, even for CR=11% and the acquisition of 89% fewer measurements compared to 

conventional approaches at Nyquist rate. More importantly, Figure 5.24 and Figure 5.25 prove 

the efficacy of the proposed method in separating the two closely-spaced modes of vibration 

regardless of the signal compression level. Finally, Figure 5.26 reveals the multi-sensor PSBS-

based FDD approach can efficiently detect the less excited 3rd mode of vibration, yielding MAC 

values well above threshold of 0.9. 

 

Figure 5.24: Estimation of the 1st bending mode shape of the space truss; (a) conventional FDD at 

CR=100%; (b) PSBS-based FDD at CR=11%; and (c) MAC values versus CR  



Chapter 5 –Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: 

Applications 

 
 

101 

 

Figure 5.25: Estimation of the 2nd bending mode shape of the space truss; (a) conventional FDD at 

CR=100%; (b) PSBS-based FDD at CR=11%; and (c) MAC values versus CR 

 

Figure 5.26: Estimation of the 3rd bending mode shape of the space truss; (a) conventional FDD at 

CR=100%; (b) PSBS-based FDD at CR=11%; and (c) MAC values versus CR 

5.5. PSBS-based Structural Damage Detection Using the Modal Strain 

Energy Index (Multi-Sensor Case) 

In the previous numerical example, it was shown that the developed PSBS approach is strictly 

a spectral estimation method, capable to extract structural modal properties directly from the 

acquired compressed data, yielding computationally efficient OMA. By adopting a damage-

sensitive index that measures changes in modal quantities, the efficacy of the proposed PSBS-

based approach in detecting structural damage without retrieving the time-domain signal 

information is numerically assessed herein.  

5.5.1. Structural systems and PSBS-based OMA application  

To this end, computer-simulated acceleration data are obtained from finite element (FE) 

models of a simply supported IPE300-profiled steel beam at one healthy (DS0) and three different 

damage states (DS1- DS3). The considered beam, shown in Figure 5.27, has length λ=5m and 
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flexural rigidity ԐI=16.78.103 kNm2 (i.e., elastic modulus Ԑ=210 GPa, moment of inertia around 

the z-axis I=7.99.10-5 m4). It is modelled in the commercial FE software SAP2000 using 100 

Euler-Bernoulli beam elements of equal length with mass lumped at the nodes of the FE grid 

acting along the gravitational z-axis. It is assumed that the beam is instrumented with an array of 

15 sensors distributed along the beam’s length with locations marked by an “x” in Figure 5.27 

and Figure 5.28. Three structural damage states of increasing severity are defined by locally 

reducing the stiffness of certain beam elements close to the mid-span. As illustrated in Figure 

5.28, the 1st damage state (DS1) is associated with 50% local stiffness reduction within a 0.1m 

width, the 2nd damage state (DS2) pertains to 50% reduced stiffness within a 0.2m width, and the 

3rd damage state (DS3) yields 80% local stiffness reduction within a 0.2m width.  

 

Figure 5.27: Simply supported steel beam instrumented with 15 sampling devices measuring vertical 

acceleration response signals.  

Linear response history analysis is undertaken for the FE models in Figure 5.28 (i.e., for DS0 

– DS3), subjected to a low-amplitude bandlimited Gaussian white noise base-excitation acting 

along the gravitational axis. The adopted excitation is observed for 4s with a time discretisation 

step at 0.0005s, corresponding to a Nyquist frequency of 1000Hz. A critical damping ratio of 1% 

for all modes of vibration is assumed in the analysis, and the vertical acceleration response signals 

are recorded at a sampling rate of 2000Hz (i.e., 8000 “Nyquist measurements” per signal) at the 

15 points of the FE grid where the sampling devices of the considered array of sensors are 

deployed. The considered excitation is assumed to simulate ambient noise input under operational 

conditions. It excites the first three bending modes of vibration along the gravitational direction 

of the different states of the simply supported beam. Consequently, the obtained response 

acceleration signals are treated as typical noise-free vibration/acceleration data for OMA. 

Next, the above signals are contaminated with additive Gaussian white noise at 3 different 

signal-to-noise ratios (SNRs): 1020dB (i.e., practically noise-free case), 20dB, and 10dB (extreme 

noise case). The noisy acceleration response signals [ ], [ ]a bx n x n , (a, b=1, 2, …, 15), are multi-

coset sampled, assumed to have the same specifications for all D=15 wireless sensors: number of 

channels M =5 and down-sampling parameter N̅=16, achieving a compression ratio of CR 31%. 

The adopted sampling pattern is given by the sequence s=[0, 1, 2, 5, 8]T. In this respect, every 

single channel of each sensor measures only K=500 compressed data in [ ], [ ]a b

i jy k y k  (k = {0, 1, 

…, K-1}, i, j = {0,1,…, 1M  }) out of the 8000 Nyquist samples per signal (i.e., 2500 sub-
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Nyquist samples are acquired per sensor). By collectively processing the compressed data from 

all sensors, the unbiased estimator 
,

ˆ [ ]a b
i jy y

r  in eq.(4.22) is computed in the range of L L   , 

assuming an L value equal to 20. An estimate of the cross-spectrum matrix, ˆ
a bx x

G , is obtained for 

all considered structural states (DS0-DS3) at a frequency resolution of 3Δ 9.58 10  rad/s    (see 

also eqs. (4.26) and (4.21)).  

 

Figure 5.28: Damage states; DS0: intact/healthy structure; DS1: 50% stiffness reduction over 0.1m beam 

length; DS2: 50% stiffness reduction over 0.2m beam length; DS3: 80% stiffness reduction 

over 0.2m beam length 

5.5.2. OMA results 

The FDD algorithm (§4.6) is then applied to the recovered cross-spectrum matrix, ˆ
a bx x

G , to 

extract the modal properties of the FE models in Figure 5.28 (at DS0-DS3) for the three adopted 

SNRs at 1020dB, 20dB, and 10dB. Eq. (4.42) returns the singular values, Σ, and singular vectors, 

U, of the “decomposed” matrix ˆ
a bx x

G , carrying the structural modal information at the excited 

modes of vibration. For all considered structural states of the adopted beam, the first three natural 

frequencies (f1 to f3) retrieved from the largest singular values in eq.(4.42) are reported in Table 

5-7 and Table 5-8 for the noiseless (SNR=1020dB) and extreme noisy (SNR=10dB) cases, 

respectively. In both tables, estimates of the natural frequencies obtained from the Nyquist 

measurements using conventional cross-spectral estimation and the FDD algorithm are also 

reported.  

  



Chapter 5 –Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: 

Applications 

 
 

104 

Table 5-7: Nyquist FDD versus PSBS-based FDD for natural frequency estimation at DS0-DS3 for 

SNR=1020dB 

  f1 [Hz] f2 [Hz] f3 [Hz] 

 

Nyquist 

 FDD 

(8000 

samples) 

PSBS-based  

FDD 

(2500 

samples) 

Nyquist 

 FDD 

 (8000 

samples) 

PSBS-based 

 FDD 

(2500 

samples) 

Nyquist  

FDD 

 (8000 

samples) 

PSBS-based 

 FDD 

(2500 

samples) 

DS0 40.04 39.76 310.55 311.93 717.77 718.65 

DS1 39.06 39.76 310.55 311.93 716.80 712.54 

DS2 38.09 39.76 302.73 305.81 704.10 712.54 

DS3 35.16 33.64 288.09 287.46 676.76 678.90 

Table 5-8: Nyquist FDD versus PSBS-based FDD for natural frequency estimation at DS0-DS3 for 

SNR=10dB 

  f1 [Hz] f2 [Hz] f3 [Hz] 

 

Nyquist 

 FDD 

 (8000 

samples) 

PSBS-based 

 FDD 

(2500 

samples) 

Nyquist 

 FDD 

 (8000 

samples) 

PSBS-based 

 FDD  

(2500 

samples) 

Nyquist 

 FDD 

 (8000 

samples) 

PSBS-based 

 FDD 

(2500 

samples) 

DS0 40.04 39.76 310.55 311.93 717.77 718.65 

DS1 39.06 39.76 310.55 311.93 704.10 712.54 

DS2 38.09 39.76 302.73 305.81 704.10 712.54 

DS3 35.16 33.64 288.09 287.46 676.76 678.90 

 

It is seen in the above tables that the noise level does not significantly affect the natural 

frequency estimation in this numerical example. More importantly, the estimated natural 

frequencies extracted directly from the sub-Nyquist measurements by means of the proposed 

OMA approach lie very close to the estimates obtained from the Nyquist measurements 

(maximum observed error is 4.4%). As expected, the value of the natural frequencies decreases 

with increasing damage severity, with the higher modes of vibration being more sensitive to such 

changes. 

To visualise the changes to the modal deflected shapes due to localised structural damage, 

Figure 5.29 illustrates the first three vertical mode shapes of the beam at DS0-DS3, retrieved from 

the left singular vector U of the recovered cross-spectrum matrix, ˆ
a bx x

G , for the noisy case at 

SNR=10dB. For the DS0, Figure 5.30 plots together the pertinent mode shapes derived from both 

the Nyquist FDD (8000 measurements/sensor) and PSBS-based FDD (2500 

measurements/sensor) for SNR=10dB. It is readily observed that the estimated modes retrieved 
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from about 70% less measurements in the PSBS-based FDD approach are visually close to the 

estimated ones from the conventional FDD method at Nyquist rate.  

To quantify the level of accuracy for the extracted mode shapes, the modal assurance criterion 

(MAC) in eq.(4.43) is considered. Table 5-9 and Table 5-10 report the MAC values computed for 

the first three modes of vibration for all structural states of the beam considered (DS0-DS3) and 

for SNR=1020 dB and SNR=10dB noise levels, respectively. Most of the MAC values in Table 5-9 

and Table 5-10 are close to unity, demonstrating a high level of correlation between the estimated 

mode shapes ̂  and  , confirming the good accuracy of the proposed PSBS-based OMA 

approach. In fact, MAC drops below 0.9 only in the case of the third mode shape of the DS1. 

Finally, a comparison between Table 5-9 and Table 5-10 confirms that the obtained mode shape 

estimates from sub-Nyquist measurements are not sensitive to additive Gaussian white noise. 

  

Figure 5.29: PSBS-based FDD at CR=31% for mode shape estimation at DS0-DS3 for SNR=10dB (the 

horizontal axis gives the relative distance from the left support of the beam normalised with its 

length) 

 

Figure 5.30: Nyquist FDD versus PSBS-based FDD at CR=31% for mode shape estimation at DS0 for 

SNR=10dB (the horizontal axis gives the relative distance from the left support of the beam 

normalised with its length) 

  

(a) (b) (c) 

(a) (b) (c) 
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Table 5-9: Modal Assurance Criterion (PSBS-based FDD versus Nyquist FDD) on the estimated mode 

shapes at DS0-DS3 for SNR=1020 dB 

  MAC 1st mode MAC 2nd mode MAC 3rd mode 

 
PSBS/Nyquist PSBS/Nyquist PSBS/Nyquist 

DS0 1.000 0.999 0.987 

DS1 0.999 0.999 0.888 

DS2 0.998 0.996 0.988 

DS3 0.999 0.999 0.995 

Table 5-10: Modal Assurance Criterion (PSBS-based FDD versus Nyquist FDD) on the estimated mode 

shapes at DS0-DS3 for SNR=10 dB 

  MAC 1st mode MAC 2nd mode MAC 3rd mode 

 
PSBS/Nyquist PSBS/Nyquist PSBS/Nyquist 

DS0 1.000 0.999 0.984 

DS1 0.999 0.999 0.852 

DS2 0.997 0.995 0.990 

DS3 0.999 0.999 0.991 

 

5.5.3. PSBS-based modal strain energy index (MSEI) assessment & results 

Upon retrieval of the structural mode shapes, a further step is herein pursued towards 

vibration-based structural health monitoring of civil engineering structures directly from sub-

Nyquist/compressed acceleration measurements acquired under operational conditions. To this 

aim, the modal strain energy index (MSEI) (e.g., Kim & Stubbs (1995)) is adopted to achieve 

structural damage localisation by relying on the mode shapes of a reference (healthy) state and of 

a potentially damaged state of a given structure derived from sub-Nyquist acceleration data as 

discussed in the previous sub-section. Focusing on rigid-jointed frame structures, the computation 

of the MSEI requires the division of each structural member into Z number of segments along the 

local longitudinal axis u defined by the [uz, uz+1] intervals with z=1,2,…,Z and u1=0, uZ+1=λ, with 

λ being the length of the structural member. Under the assumption that at the damaged state, 

damage is localised within a few segments and, therefore, (i) the flexural rigidity of structural 

members of the healthy structure ԐI is almost equal to the flexural rigidity of structural members 

of the damaged structure ԐI*, and (ii) the strain energy stored due to modal deformation for each 

mode shape is also equal between the healthy and the damaged states, the MSEI is defined by the 

ratio (see also Kim & Stubbs (1995); Humar et al. (2006)) 
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. (5.8) 

The above index achieves damage localization by detecting local changes to the flexural 

rigidity within each segment between the healthy and the damaged states. The flexural rigidities 

are computed from the modal curvatures (i.e., second derivative of the mode shapes) of the first 

R excited modes denoted by φr and φ*
r, r=1,2,…,R for the healthy and the damaged structure, 

respectively. Therefore, the MSEI quantifies potential local stiffness reduction inferring damage 

in small segments of structures based on the differences of the first R modal curvatures or, 

equivalently, mode shapes. In the ensuing numerical work, the following normalized version of 

the MSEI is reported 

z

z








 



, (5.9) 

where  is the mean, and   the standard deviation of the MSEI computed across all 

considered segments. The damage index in (5.9) yields positives values at the damaged locations 

of the considered structure and negative values elsewhere. Overall, the MSEI is suitable when 

only incomplete modal information is available (e.g. only few mode shapes are excited) Kim & 

Stubbs (1995), while there is no requirement on the normalisation (mass, displacement, etc.) of 

the considered mode shapes (e.g., Cornwell et al. (1999)). Although it may overestimate damage 

severity (see also Kim & Stubbs (1995)), Humar et al. (2006) showed that it is a quite reliable 

damage index, especially in case of noisy data (see also Alvandi & Cremona (2006)). 

The potential of using the MSEI for damage localisation from mode shapes estimated directly 

from sub-Nyquist measurements is numerically illustrated. The normalised damage index z  in 

eq.(5.9) is computed from the estimated mode shapes,
* * *

0 1 2 3, ,  ,  DS DS DS DS    corresponding to the 

healthy (DS0) and damaged states (DS1-DS3) respectively, upon dividing the beam in Figure 5.27 

in Z=16 segments. The second derivatives appearing in eq.(5.8) are numerically approximated 

with the standard finite difference method. The location of damage is inferred by the positive 

amplitudes of the normalised damage index z  plotted in Figure 5.31, Figure 5.32, and Figure 

5.33 for SNR=1020 dB, SNR=20dB and SNR=10dB, respectively obtained from both Nyquist 

measurements (panels (a)) and sub-Nyquist measurements (panels (b)). It is seen that for the DS2 

and DS3 states, the MSEI computed from the sub-Nyquist measurements can unambiguously 

identify the damage location (mid-span) and even discern the damage severity for SNR as low as 
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10dB. In fact, the MSEI derived from sub-Nyquist measurements performs equally well with the 

MSEI from Nyquist measurements, although 70% fewer measurements are used in mode shape 

estimation. In the case of the least severe damaged state herein considered, DS1, the MSEI 

computed by the proposed approach performs relatively well in locating damage for the noise-

less case. For noisy sub-Nyquist measurements, discriminating damage location becomes 

challenging (see also Figure 5.32(b)) for SNR=20dB and practically not possible for SNR= 10dB 

(e.g., Figure 5.33(b)). Note, however, that this is pretty much the case for the MSEI obtained for 

Nyquist sampled measurements and, therefore, the fact that the MSEI cannot accurately and 

unambiguously locate the damage from noisy signals for the DS1 case is a matter of the 

effectiveness of the particular damage index to locate relatively small and well-localised damage 

in noisy environments, rather than damage information loss due to sub-Nyquist signal sampling. 

 

Figure 5.31: (a) Nyquist and (b) PSBS-based normalised modal strain energy index for DS0-DS3 and 

SNR=1020dB. 

 

Figure 5.32: (a) Nyquist and (b) PSBS-based normalised modal strain energy index for DS0-DS3 and 

SNR=20dB 

(a) (b) 

(a) (b) 
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Figure 5.33: (a) Nyquist and (b) PSBS-based normalised modal strain energy index for DS0-DS3 and 

SNR=10dB 

5.6. Concluding Remarks 

This chapter presents four different applications aiming to assess the effectiveness of the 

proposed PSBS method in §4 for VSHM. Considering first the PSBS approach in the (simplified) 

single-sensor case, parametric analyses are performed in §5.2 using two different structural 

systems, aiming to: (1) define the required number of compressed measurements, M, for a faithful 

recovery of the second-order statistics of the unknown full-length response signals; and (2) 

examine the sensitivity of the developed method to measurement noise. The obtained results 

confirmed that the PSBS method can efficiently recover power spectral densities directly from 

sub-Nyquist-sampled acceleration data even in structural systems with closely-spaced modes of 

vibration. Further, it was demonstrated that the performance of PSBS method depends strongly 

on the acquired number of compressed measurements, M, which may differ in various 

applications, and it was proved to be practically insensitive to additive noise for SNRs as low as 

10dB.  

Considering next field-recorded data acquired from an operational wind turbine in Lübbenau, 

Germany, the recovery performance of the proposed PSBS approach was numerically evaluated 

in §5.3 at three different CR of 11%, 21% and 31%. The developed method was proved capable 

to retrieve quality auto-spectral density estimates within the frequency range of interest, even for 

the lowest adopted CR value at 11% (i.e., 89% fewer data compared to conventional sampling 

schemes), but it was shown to be adversely affected in cases of poorly excited modes of vibration.  

Using the same three CR values as above (i.e., CR={11%, 21%, 31%}), the OMA capabilities 

of the proposed multi-sensor PSBS method was numerically assessed in §5.4. Based on cross-

spectral matrices recovered directly from compressed measurements, the standard FDD algorithm 

was employed to extract the underlying modal properties (natural frequencies, mode shapes) of a 

FE truss model with 2 closely-spaced modes of vibration. The reported numerical results 

(a) (b) 
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confirmed the efficacy of the proposed approach in accurately identifying the closely-spaced 

mode shapes in all considered CRs, yielding MAC values well-above 0.9 and natural frequency 

estimates with very small percentage errors delimited in range [-0.68, +1.74] %. Finally, the 

damage detection capabilities of the PSBS approach in chapter §4 were numerically verified in 

§5.5 by adopting the well-established modal strain energy index (MSEI). The latter was applied 

to mode shapes derived from approximately 70% fewer measurements, achieving equal 

level/quality of damage localisation compared to conventional sampling schemes at Nyquist rate 

for all damaged states and SNRs considered.  

Overall, the numerical results demonstrate that the proposed multi-sensor PSBS technique 

coupled with standard OMA and damage detection approaches can achieve effective VSHM in 

noisy environments from significantly fewer acceleration measurements, without returning the 

monitored signals deterministically in time domain.  
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Chapter 6 

 Assessment of the Proposed PSBS Approach 

vis-à-vis CS-Based Approach for OMA 

6.1. Preliminary Remarks  

In this chapter, the effectiveness of the proposed Power Spectrum Blind Sampling (PSBS) 

method in Chapter 4 (§4. Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for 

OMA: Theory), is numerically assessed vis-à-vis the Compressive Sensing (CS) based approach 

developed by O’Connor et al. (2014) and detailed in Chapter 2 (§2. Compressive Sensing: Basic 

Concepts & Applications in VSHM) for Operational Modal Analysis (OMA) in vibrating 

structures under operational conditions. Recalling from the pertinent chapters that the two 

considered approaches rely on different low-rate (sub-Nyquist) non-uniform in time sampling 

schemes, and the main aim of the comparison is to appraise, for the first time in the literature, the 

potential advantages of using deterministic multi-coset sampling vis-à-vis random CS-based 

sampling in undertaking OMA.  

The above aim is facilitated by the fact that both approaches utilise the same frequency-

domain OMA algorithm (i.e., FDD). Therefore, any differences to the quality of mode shapes 

achieved by the competing methods can be attributed to the different low-rate sampling schemes, 

and to the limitations posed by the associated post-processing methods applied on the compressed 

measurements, rather than to the adopted OMA algorithm. Furthermore, the fairness of the 

comparison in relation to up-front and/or operational monitoring costs is safeguarded by the fact 

that neither of the approaches consider on-sensor data processing before transmission, while no 

prior knowledge on the properties (i.e., the sparsity) of the acquired signals is assumed available. 

The latter would theoretically benefit the CS-based approach but would require either the use of 

an additional complementary network of wired sensors (e.g., Klis & Chatzi (2015)) incurring 

additional monitoring costs, or increased energy demands due to fast (conventional) uniform-in-

time sampling and heavy data post-processing on the wireless sensors (e.g., Bao et al. (2013); 

Zou et al. (2015); Huang et al. (2016); Klis & Chatzi (2017)). Instead, this study assumes the 

availability of sensors that acquire and transmit signals directly in the compressed domain 

supporting low-power WNSs. It is expected that the gains achieved by sub-Nyquist spectral 
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estimation approaches would reflect analogously to energy savings in WSNs, mainly due to 

reduced sampling requirements and wireless transmission payloads compared to conventional 

approaches at Nyquist sampling rates or above. Thus, it was deemed essential to provide estimates 

for the anticipated energy savings achieved by the proposed approach in Chapter 4 (§4. Proposed 

Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: Theory), assuming that a 

battery-operated wireless multi-coset sampler is available.  

The above comparative assessment is numerically undertaken in section 6.3 (§6.3. Numerical 

Assessment for Simulated Signals of Different Sparsity Level) and section 6.4 (§6.4. Numerical 

Assessment for Field-Recorded Signals), using two different sets of acceleration response signals 

sub-sampled at compression rates between 11% and 31%. Specifically, the first numerical 

example in section 6.3 relies on computer-generated response acceleration signals corrupted by 

additive Gaussian white noise, yielding different sparsity levels on the DFT domain. The second 

comparative numerical evaluation in section 6.4 employs field-recorded response acceleration 

time-histories from an overpass in Zürich, Switzerland monitored under operational conditions 

Chatzi E.N. & Spiridonakos M.D. (2015); Spiridonakos et al. (2016). The daily energy 

requirements of this bridge monitoring system are further presented in section 6.5 (§6.5. Energy 

Consumption and Battery Life Savings), showcasing the benefits of the proposed PSBS approach 

at CR={11%, 21%, 31%} over conventional approaches at uniform sampling rates. Finally, 

section 6.6 (§6.6. Concluding Remarks) summarised concluding remarks.  

The comparative numerical results of sections 6.3 and 6.4 have been published in [J2], while 

the energy estimates presented in section 6.5 have been submitted for publication in [J3] (see 

also list of publications in section 1.5 (§1.5. List of Referred Papers)). 

6.2. Overview of the Comparative Approaches for Frequency Domain 

OMA Using Sub-Nyquist Sampled Measurements 

A comprehensive overview of the two considered sub-Nyquist spectral estimation approaches 

is provided in Figure 6.1 by illustrating in parallel the pertinent flowcharts that consist of three 

distinct stages (I to III).  

The left flowchart of Figure 6.1 depicts the CS-based OMA approach proposed by O’Connor 

et al. (2014), in which CS-based data sampling and sparse recovery steps are applied to an array 

of D identical CS-based sensors. In particular, Stage I involves random non-uniform in time 

sampling of D structural acceleration response signals, xd [n], d={1,2,…,D}, that attain some level 

of sparsity on the DFT basis (see also Chapter §2). The acquired compressed measurements yd[m] 

are wirelessly transmitted to a server, where they are treated (stage II) by the CoSaMP sparse 

signal recovery algorithm developed by Needell & Tropp (2009), to derive D estimates of the ST-

sparse DFT coefficients, ûd [n], of the response acceleration signals on the uniform Nyquist grid. 
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This is a computationally demanding step relying on a heuristically defined target sparsity level, 

ST, in the reconstructed signals. In stage III, the estimated ST DFT coefficients from all sensors 

are used to construct the response acceleration power spectral density (PSD) matrix (e.g., Marple 

(1987)). Lastly, the PSD matrix is fed to the FDD algorithm to estimate the structural modal 

properties (natural frequencies and mode shapes).  

 

Figure 6.1: Flowcharts of the two different sub-Nyquist sampling and spectral estimation approaches 

under comparison for frequency domain OMA 

The right flowchart of Figure 6.1 presents the proposed PSBS-based FDD method detailed in 

chapter §4 that comprises one of the major contributions of this PhD thesis. This alternative OMA 

approach supports sub-Nyquist data acquisition rates, without imposing any sparsity conditions 

to the acquired signals (i.e., is signal agnostic). Similar to the approaches of O’Connor et al. 

(2014) and Park et al. (2014), the considered PSBS approach derives directly the mode shapes in 

the frequency domain and, therefore, bypasses the need to retrieve the time-histories of the 

acquired signals. Further, it treats the structural response acceleration signals as wide-sense 

stationary random processes, in alignment with the theory of OMA. Specifically, the adopted 

PSBS approach comprises three stages delineated in the right flowchart of Figure 6.1. The first 

stage involves a low-rate (sub-Nyquist) deterministic periodic non-uniform-in-time multi-coset 

sampling scheme developed by Tausiesakul & Gonzalez-Prelcic (2013). In the next stage, the 
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acquired compressed measurements from all sensor nodes of the WSN are wirelessly transmitted 

to the server and collectively processed to obtain their cross-correlation vectors. The latter vectors 

are used in Stage III to estimate the response acceleration PSD matrix by solving an 

overdetermined system of linear equations without invoking any signal sparsity assumption (see 

also Ariananda & Leus (2012); Tausiesakul & Gonzalez-Prelcic (2013)). Lastly, the FDD 

algorithm is used to obtain natural frequencies and mode shapes.  

The performance of the two comparative methods is quantified in terms of the modal 

assurance criterion (MAC) (e.g., Brincker & Ventura (2015)) of mode shapes derived from a fixed 

number of compressed measurements. Focus is given on quantifying the sparsity requirements of 

the CS-based approach and on numerically verifying that the accuracy of the PSBS-based 

approach is insensitive to signal sparsity. Emphasis is also placed on the level of signal 

compression that can be reached by the different compressive sampling schemes utilised in the 

two approaches, while achieving accurate mode shapes with MAC>0.9.  

6.3. Numerical Assessment for Simulated Signals of Different Sparsity 

Level 

6.3.1. Computer-simulated acceleration response signals 

In this section, the effectiveness of the two sub-Nyquist spectral estimation approaches in 

Figure 6.1 for OMA is assessed by considering simulated noisy structural acceleration response 

signals obtained from the finite element (FE) model in Figure 5.27 (i.e., the IPE300-profiled 

simply supported steel beam at healthy state, DS0). As detailed in §5.5.1, the adopted structure is 

assumed to be instrumented with a dense array of D=15 sensors measuring vertical accelerations 

along its length.  

Following the same analyses steps as in §5.5.1, the considered FE model is base-excited by a 

band-limited low-amplitude Gaussian white noise force, observing a sufficiently flat spectrum in 

the frequency range up to 1000Hz. The considered excitation is applied along the gravitational 

axis of the beam, having a duration of 4s and a time discretization step equal to 0.0005s. Linear 

response history analyses are then conducted, assuming a critical damping ratio of 1% for all 

modes of vibration which is a reasonable value for a bare steel structure (e.g., Ji et al. (2013)). 

Thus, vertical response acceleration time-series are recorded at the 15 locations shown in Figure 

5.27, with Nyquist sampling rate at 2000Hz (i.e., 8000 “Nyquist samples” per signal). The 

acquired acceleration responses are further contaminated with additive Gaussian white noise 

expressed by the signal-to-noise ratio  2 2

1010 log xSNR    , where 
2

x  is the variance of the 

response acceleration signal and 
2

  is the noise variance. Two limiting SNR values are considered 
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to simulate response datasets associated with different sparsity levels: (i) a practically noiseless 

case with SNR=1020dB (i.e., the noise variance 
2

  takes on a very small value close to zero), 

yielding “high-sparse” signals on the DFT basis; and (ii) a noisy case with SNR=10dB (i.e., the 

noise variance 
2

  equals the 10% of the signal variance 
2

x ) yielding “low-sparse” signals. It is 

noted that the additive noise to the signal x[n] does influence the signal’s sparsity attributes and 

cannot be rectified during CS sparse recovery Davenport et al. (2012), since the noise term ε 

cannot be separated by the signal coefficients u[n] in eq.(2.9) (see also Chapter §2). 

For illustration, Figure 6.2 plots a typical noisy acceleration response signal with SNR=10dB 

in time (Figure 6.2(a)), its single-sided magnitude Fourier spectrum normalised to its peak value 

(Figure 6.2(b)), as well as the normalised magnitude Fourier coefficients sorted in descending 

order (Figure 6.2(c)). 

 

Figure 6.2: Typical noisy acceleration response signal with SNR=10dB; (a) time history; (b): normalised 

single-sided Fourier spectrum magnitude; (c): Normalised magnitude Fourier coefficients in 

descending order. The red broken line signifies an arbitrary threshold at normalized Fourier 

magnitude of 0.05 

From Figure 6.2(b), it is readily observed that three dominant harmonics are included in the 

signal on top of broadband noise, corresponding to the three first flexural mode shapes of the 

beam. By inspection, a threshold is set in Figure 6.2(c) (red broken line) to indicate that the 

significant signal energy is captured from about 500 Fourier coefficients and thus, a sparsity level 

of approximately S=500 may be assumed for the considered noisy signals (see also O’Connor et 

al. (2014)). It is emphasised that this threshold can only be heuristically defined and is related to 

the concept of approximating an S-sparse signal by an S-compressible signal provided that the 

coefficients of the latter on a given basis function decay rapidly when sorted by magnitude. It is 

also important to clarify that the considered CS-based spectral estimation approach assumes no 

prior knowledge on the actual sparsity level S, but this is only reported here to facilitate the 

interpretation of the comparative results presented in sub-section §6.3.3. 

(a) (b) (c) 
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6.3.2. Sub-Nyquist sampling and power spectral estimation 

The acceleration response signals generated as detailed above are next compressively 

sampled at two different CRs of approximately 31% and 11% (i.e., 69% and 89% fewer samples 

compared to the Nyquist samples) using the random CS-based sampling scheme of chapter §2 

and the deterministic multi-coset sampling scheme of chapter §4. The adopted sampling 

parameters are collected in Table 6-1. Specifically, a CR= 31% is achieved by multi-coset 

samplers comprising M =5 channels, where each channel samples uniformly in time with a rate 

N =16 times slower than the Nyquist rate. The adopted sampling pattern is s = [0, 1, 2, 5, 8]T , 

and a target frequency resolution is set at approximately 35 10 /rad s  , which is derived 

from (4.21) for L=40. In this respect, each sensor acquires only M=2500 compressed samples out 

of the N=8000 Nyquist samples. This exact pair of M, N values (i.e., M=2500, N=8000) is further 

used to define the partial IDFT matrix 
1 2500 8000

M N
 
 F  in eq.(2.8) for the CS-based approach 

(see also chapter §2). The effectiveness of the CS-based approach is assessed for various assumed 

(target) sparsity levels ST (max(M/3, S)) in the range of [50, 500]. For the case of CR=11%, the 

pertinent parameters are defined in a similar manner as above, such that the same number of 

compressed measurements are acquired and transmitted by each sensor node for both the CS and 

the multi-coset sampling schemes, while approximately the same frequency resolution is achieved 

for the PSBS approach at both CRs.  

Table 6-1: Considered parameters for the CS-based and the PSBS-based approaches for OMA of the 

structure in Figure 5.27 for two different compression ratios 

Common parameters for 

both approaches 

 

Compression ratio CR 31% 11% 

Number of samples uniformly 

acquired in time 
N 8000 8000 

Sub-Nyquist Sampling Rate*   69% 89% 

Number of Sub-

Nyquist/Compressed samples 
M 2500 875 

CS-based approach Target Sparsity Level ST 50-500 50-290 

PSBS-based approach 

Number of channels M  5 14 

Down-sampling N  16 128 

Design Parameter L 40 4 

Frequency resolution [rad/s] Δω 4.85 10-3 5.45 10-3 

Sampling pattern s [0,1,2,5,8]T 
[0,1,2,6,8,20,29,  

38,47,50,53,60,63,64]T 

* Assumed Nyquist sampling rate at 2000Hz 
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Next, power spectral density matrices collecting estimates of the auto- and cross- power 

spectra of the acceleration signals from the D=15 sensors are obtained using the two considered 

spectral estimation methods in Figure 6.1. Specifically, for the CS-based approach, the power 

spectral density functions are derived in three stages: (i) compressive sensing using the matrix 

A=ΘΨ in eq.(2.9); (ii) recovery of DFT coefficients using the CoSaMP algorithm in eq.(2.11) 

with an assumed target sparsity ST and stopping criteria determined by tolerance η=10-8 and 

predefined maximum number of iterations set at 50; and finally (iii) power spectrum estimation 

using the standard Welch’s modified periodogram (e.g., Marple (1987)). The latter is applied to 

time-domain reconstructed acceleration responses, x̂[n], obtained by application of the IDFT to 

the recovered signal coefficients, û[n], using eq.(2.1). To this end, the “cpsd” built-in function in 

MATLAB® is adopted herein, in which the reconstructed signals are divided in eight segments 

with 50% overlap and windowed with a Hanning function.  

For illustration, Figure 6.3(a) evaluates the recovery performance of the CoSaMP algorithm 

by plotting the CS reconstruction error, 
2 2

ˆ[ ] [ ] [ ]u n u n u n , as a function of the target sparsity, 

ST, for both the examined CRs (i.e., 31% and 11%), at the two limiting SNRs values (i.e., 1020dB, 

10dB). For the case of CR=31%, smaller reconstruction errors are observed at higher ST values, 

suggesting more accurate estimates as the number of recovered measurements increases. This can 

be visualised in Figure 6.3(b, c) (for the high-sparsity case at SNR=10dB), where the reconstructed 

DFT coefficients, û[n], are plotted against the pertinent uncompressed values, u[n], by 

considering two target sparsity levels at ST={100, 290}. However, the above observation is not 

confirmed for CR=11%, in which case the reconstruction error increases with ST. This rather poor 

reconstruction performance is because an overly high compression level was assumed for which 

the relatively small number of sub-Nyquist measurements y[m] in eq.(2.2) do not retain sufficient 

information of the structural response signals. Adopting, for example, the heuristic value of S=500 

in Figure 6.2 (for the low-sparse signals with SNR=10dB), the required M value should be of the 

order of S∙log(N)= 500∙log(8000)≈1950 (e.g., O’Connor et al. (2014)); however, only M=875 

sub-Nyquist samples are acquired at CR=11%, which are evidently too few. Along these lines, 

Figure 6.3(d, e) confirm that the assumption of higher ST values closer to the upper bound of 

M/3≈290 cannot compensate for the insufficient number of compressed measurements, yielding 

spurious large amplitudes in the recovered DFT coefficients that increase the reconstruction error 

and adversely affect the accuracy of the obtained modal estimates, which will be presented in the 

next sub-section. Similar conclusions have also been reported by O’Connor et al. (2013), (2014).  
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Figure 6.3: (a) Signal reconstruction error of CoSaMP algorithm versus the target sparsity level ST; (b-e) 

original and reconstructed DFT coefficients at CR={31%,11%}, ST={100, 290} for SNR=10 

dB  

Moving to the PSBS-based approach, the PSD matrix is estimated through the following three 

stages: (i) multi-coset sampling based on the sampling pattern in Table 6-1; (ii) cross-correlation 

estimation applied to the compressed measurements as in eq.(4.22); and (iii) power spectrum 

estimation using eq.(4.26). The recovered PSD estimates are illustrated in Figure 6.4 (red curve) 

for the two adopted CRs at 31% (Figure 6.4(a)) and 11% (Figure 6.4(b)), respectively, considering 

the low-sparse dataset. For comparison, Figure 6.4 also plots the pertinent PSD curves obtained 

from the standard Welch’s modified periodogram at Nyquist rate (black curve), and reports the 

mean square error (MSE) of the two comparative PSDs. It is readily observed that more ripples 

are found for lower CRs (Figure 6.4(b)), which increases the MSE value. Nonetheless, the spectral 

peaks are well captured from the PSBS approach in both amplitude and shape even for CR=11%, 

which is essential for accurate modal identification.  

 

Figure 6.4: PSBS spectral recovery and MSE for the low-sparse response accelerations (SNR=10 dB) at 

(a) CR=31% and (b) CR=11%. 

(a) (b) 
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6.3.3. Mode shape estimation 

The FDD algorithm is lastly applied to the PSD matrices obtained as detailed above to extract 

the modal properties of the beam in Figure 5.27. For illustration, Figure 6.5 presents all three 

excited mode shapes derived from the noisy (i.e., lower-sparsity) measurements, as extracted from 

the two different approaches (CS-based for ST=290 and PSBS-based) for CR=31%. In Figure 6.6 

only the first two mode shapes are shown for CR=11% and for SNR=10dB since the third mode 

is not detectable at this low CR. For comparison, Figure 6.5 and Figure 6.6 plot further the mode 

shapes obtained by application of the FDD to the conventionally (Nyquist) sampled 

measurements, considering the Welch periodogram (e.g., Marple (1987)) with the same settings 

as detailed in the previous sub-section. From a qualitative viewpoint, it is observed that both sub-

Nyquist approaches perform well for CR=31% in capturing the shape and relative amplitude of 

the modal deflected shapes compared to the conventional approach, with the PSBS-based method 

being slightly more accurate. For higher signal compression at CR=11%, the PSBS-based method 

clearly outperforms the CS-based method.  

 

Figure 6.5: Mode shape estimation for CR=31%, SNR=10dB (low-sparse signals) and target 

reconstruction sparsity ST=290 for the CS-based approach 

 

Figure 6.6: Mode shape estimation for CR=11%, SNR=10dB (low-sparse signals) and highest possible 

target reconstruction sparsity ST=290 in the CS-based approach 

The accuracy for the extracted mode shapes is quantified with the modal assurance criterion 

(MAC) in eq. (4.43) (e.g., Brincker & Ventura (2015)), measuring the correlation between the 

modes shapes, ˆ
rφ  and

rφ , estimated by means of the FDD algorithm from compressed (sub-

Nyquist) and Nyquist samples, respectively. Figure 6.7 and Figure 6.8 plot the computed MAC 

(a) (b) (c) 

(b) (a) 
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values with respect to the assumed target sparsity ST for both the relatively high-sparse (SNR=

2010 dB) and low-sparse (SNR=10dB) signals for CRs at 31% and 11%, respectively.  

 

 

Figure 6.7: MAC versus reconstruction sparsity level ST, obtained from the two considered approaches, 

PSBS-based and CS-based FDD, for CR= 31% and SNR={1020,10}dB 

 

Figure 6.8: MAC versus reconstruction sparsity level ST, obtained from the two considered approaches, 

PSBS-based and CS-based FDD, for CR= 11% and SNR={1020,10}dB 

The above figures show that for both sparsity levels, the PSBS-based approach outperforms 

the CS-based approach for the same number of acquired (and wirelessly transmitted) sub-Nyquist 

measurements regardless of the adopted target sparsity ST value. Specifically, the PSBS-approach 

can accurately retrieve the modal deflected shapes yielding MAC values close to unity. Notably, 

the PSBS method does not rely on sparsity assumptions, and therefore the obtained MAC values 

are not functions of ST. Still, Figure 6.7 shows that the CS-based approach does perform quite 

well at least for CR=31%, though its performance depends heavily on the assumed ST value. 

Importantly, for CR=31% higher accuracy is achieved for higher ST values (note also the 

decreasing trend in the reconstruction error curve in Figure 6.3), but this comes at the cost of 

higher computational cost in the signal reconstruction step.  

However, this is not the case for CR=11% and for the second and less excited mode shape in 

Figure 6.8, where the accuracy deteriorates yielding lower MAC values with increasing ST. This 

rather unfavourable condition can be explained through Figure 6.3, where it is numerically shown 

(a) (b) (c) 

(a) (b) 
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that higher CS reconstruction errors occurs at larger ST values for CR=11%, having a profound 

impact on the accuracy of the obtained CS modal results. In this case, if a priori knowledge of the 

signal sparsity was known (e.g., Bao et al. (2013); Klis & Chatzi (2015), (2017); Zou et al. (2015); 

Huang et al. (2016)), then one should normally opt to increase the average random sampling rate 

(i.e., obtain a larger number of measurements, M, within the same time-window). Nevertheless, 

the signal agnostic PSBS approach is capable to extract structural mode shapes associated with 

the local peaks of the spectrum even for CR=11% and signals with lower sparsity (at SNR=10dB) 

as long as they are not completely “buried” in noise. For instance, Figure 6.4 (b) reveals that the 

recovered PSBS-PSD at CR=11% and SNR=10dB attains relatively large amplitudes close to the 

3rd spectral peak, which hinders the extraction of the associated vibrating mode of the beam in 

Figure 5.27.  

As a final remark, it is noted that both the adopted sub-Nyquist methods yield fairly accurate 

natural frequency estimates in all considered cases (error is less than 1% compared to the 

conventional approach at Nyquist rate).  

6.4. Numerical Assessment for Field-Recorded Signals 

6.4.1. The Bärenbohlstrasse bridge case-study and pre-processing of recorded data 

Further to the previous comparison and along similar lines, the effectiveness of the two 

considered spectral estimation approaches of Figure 6.1 is herein assessed against field recorded 

data from an existing bridge, namely the Bärenbohlstrasse overpass in Zürich, Switzerland (e.g., 

Chatzi E.N. & Spiridonakos M.D. (2015); Spiridonakos et al. (2016)), vibrating under operational 

loading. The bridge is 30.90m long, having a deck of variable width, while it is almost symmetric 

along the longitudinal direction. It consists of a solid prestressed-slab with two equal-length spans 

of 14.75m each. The deck is supported, via steel bearings, in all directions at mid-span and in one 

of the abutments. The second abutment supports the deck only in the vertical and transverse 

directions. The bottom face of the deck was permanently instrumented for the 12-month period 

of 12th July 2013 to 26th July 2014 by a network of 18 tethered sensors of the Gantner Q-series 

DAQ type, equipped with an anti-aliasing filter at the cut-off frequency of 50Hz (see also 

Spiridonakos et al. (2016)). The adopted network of sensors was acquiring 18 vertical acceleration 

response signals with a sampling rate at 200Hz (Ts=0.005s) for approximately 10min per hour 

using a conventional uniform sampling scheme. A photo of the bridge and a sketch of the sensors 

layout is shown in Figure 6.9, including the relative distances in both horizontal dimensions. 

Further details regarding the bridge, the sensors installation and data acquisition can be found in 

Chatzi E.N. & Spiridonakos M.D. (2015); Spiridonakos et al. (2016).  
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Figure 6.9: (a) Bärenbohlstrasse bridge in Zurich, Switzerland (image reused from Spiridonakos et al. 

(2016)) and (b) layout of the 18 sensors recording vertical acceleration responses under 

ambient excitation 

In this study, a dataset of 18 vertical acceleration response signals is used, recorded on 

19/06/2014 between 15:08:54 and 15:17:51, comprising 107460 samples per sensing location, 

being conventionally (i.e., uniformly) sampled at 200Hz. The considered dataset pertains to 

ambient wind and traffic dynamic loads that sufficiently excite the first few modes of the 

monitored bridge. For illustration, Figure 6.10 presents a typical acceleration response signal 

recorded at sensor #13 (Figure 6.10(a)), along with the computed velocity (Figure 6.10(b)) and 

displacement (Figure 6.10(c)) time-series, obtained from application of single and double 

integration, respectively. From this figure, it is readily observed that unrealistically high velocity 

and displacement values are present within the raw data, which underlines the need for signal pre-

processing operations prior to the implementation of the developed method. To this end, a 

baseline adjustment is applied to the raw data to remove the mean value and any potential low-

frequency trend within each acceleration response signal. Next, a 4th-order Butterworth band-

pass filter is employed within the frequency range [0.15, 50] in Hz. Notably, the upper cut-off 

frequency at 50Hz is determined by the sensors’ anti-aliasing filter which defines a Nyquist 

sampling frequency at FNYQ=100Hz.  

 

Figure 6.10: Typical acceleration-velocity-displacement time series recorded at sensor #13 pertaining to 

the raw data  

(a) (b) 

(a) (b) (c) 
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Figure 6.11: (a) Typical acceleration, (b) velocity, and (c) displacement time series recorded at sensor #13 

pertaining to the corrected responses 

The “corrected” signal (i.e., baseline adjusted and band-pass filtered) are presented in Figure 

6.11 for the sensor #13. Figure 6.12(a) shows further the magnitude Fourier spectrum of the 

corrected acceleration in Figure 6.11(a), normalised to its peak value and plotted within the 

frequency range [0, 20] Hz, in which the first four modes of the vibrating bridge lie (e.g., Chatzi 

E.N. & Spiridonakos M.D. (2015); Spiridonakos et al. (2016)). Lastly, Figure 6.12(b) plots the 

normalised magnitude Fourier coefficients sorted in descending order. On the last plot, a 

heuristically selected threshold at 5% of the peak Fourier spectrum magnitude (red broken line) 

is shown indicating that the significant signal energy is captured from approximately 10000 

Fourier coefficients. Thus, the actual sparsity level of the considered field recorded signals is 

roughly S≈10000. As previously discussed, though, no such information would be available from 

the low-rate data acquisition using the two sub-Nyquist spectral estimation approaches of Figure 

6.1, but it is only reported to inform the comparison of the OMA results discussed in the following 

sub-section. 

 

Figure 6.12: (a) Normalised Fourier spectrum magnitude of the acceleration response signal measured at 

sensor #13, plotted within the frequency range of [0, 20] Hz; and (b) normalised magnitude 

Fourier coefficients sorted in descending order. The red broken line signifies an arbitrary 

threshold at normalized Fourier spectrum of 0.05. 

Given that the PSBS-based spectral estimation approach anticipates signal stationarity, it was 

deemed essential to undertake a data qualification test to appraise the stationarity attributes of the 

recorded signals. To this end, the corrected acceleration sequence in Figure 6.11(a) is divided in 

8 time-windows of one minute duration, and the standard non-parametric Reverse Arrangement 

(a) (b) (c) 

(a) (b) 
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method (e.g., Bendat & Piersol (2010)) is used to statistically test the stationarity hypothesis. The 

obtained Reverse Arrangement results are presented in Figure 6.13, showing that the stationarity 

hypothesis is confirmed at the 95% confidence level. It is concluded that the recorded and pre-

processed response acceleration signals from the Bärenbohlstrasse bridge can be treated as wide-

sense stationary at a high confidence level and, therefore, the PSBS approach is applicable.  

 

Figure 6.13: Reverse Arrangement method applied on acceleration response signal measured at sensor 

#13; signal is divided in 8 segments of 1min duration.  

6.4.2. Mode shapes estimation of the Bärenbohlstrasse bridge 

The same steps detailed in sub-sections §6.3.2 and 6.3.3 (see also Figure 6.1) are herein taken 

to estimate the mode shapes of the Bärenbohlstrasse bridge from the 18 corrected (i.e., baseline-

adjusted and band-pass filtered) field recorded acceleration responses. Table 6-2 collects the 

parameters adopted for the random CS-based and the deterministic multi-coset sampling at three 
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CRs in the range between 11% and 31%. Table 6-2 also reports the sub-Nyquist sampling rates 

achieved by the adopted CRs based on the maximum cut-off frequency of the filtering operation 

at 50Hz, which pertains to an assumed Nyquist sampling rate at 100Hz. 

Table 6-2: Considered parameters for the CS-based and the PSBS-based approaches for OMA of the 

structure in Figure 6.9 for two different compression ratios. 

Common 

parameters 

for both 

approaches 

 

Compression ratio CR 31% 21% 11% 

Number of samples 

uniformly acquired in 

time 

N 107460 107460 107460 

Sub-Nyquist Sampling 

Rate * 
 62.5% 41% 21.9% 

Number of Sub-

Nyquist/Compressed 

samples 

M 33581 22040 11753 

CS-based 

approach 
Target Sparsity Level ST 1200-11160 1200-7320 1200-3840 

PSBS-

based 

approach 

Number of channels M  5 8 14 

Down-sampling N  16 39 128 

Sampling pattern s [0,1,2,5,8]T 
[0,1,3,7,9,14,18, 

19]T 

[0,1,2,6,8,20,29,  

38,47,50,53,60,63,

64]T 

Design Parameter  L 40 16 4 

Frequency resolution 

[rad/s] 
Δω 4.85 10-3 4.88 10-3 5.45 10-3 

*Assumed Nyquist sampling rate at 100Hz 

 

Further, Table 6-2 presents the range of different ST values (<M/3) considered in the CS-based 

approach, which are directly related to the algorithmic trade-off between accuracy and 

complexity. The latter reflects on the required running time of the CS signal reconstruction 

algorithm for various ST values. As an example, Figure 6.14 plots the off-line computational time 

required by the CoSaMP algorithm to recover the 18 bridge acceleration responses from the 

acquired compressed measurements at CR=31%, 21%, and 11% (Figure 6.14 (a) - (c), 

respectively). From this figure, it is readily observed that the CS computational cost exponentially 

increases with ST. For comparison, Figure 6.14 also depicts the running time of the PSBS-based 

approach (broken line) associated with the 18x18 spectral matrix estimation in eq.(4.26). All 

reported numerical work was performed on a quadcore Intel Core i7-6700HD with 16GB RAM. 
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For the CS-based approach at the three considered CRs, Figure 6.15(a)-Figure 6.17(a) 

illustrate the randomly acquired compressed measurements, y[m], against the full-length bridge 

acceleration response, x[n], for a time-window of 2sec. The latter are also superimposed onto the 

reconstructed signals, ˆ[ ]x n (Figure 6.15(b)-Figure 6.17(b)), obtained from the CoSaMP algorithm 

in eq.(2.11) using the maximum target sparsity value ST  in Table 6-2 for each CR. From a 

qualitative point of view, it is observed that the reconstructed signal at CR=31% can faithfully 

approximate the original uncompressed signal at the expense of longer running time during 

reconstruction (e.g., Figure 6.14). In fact, based on the assumption that S=10000 for all signals 

considered in the dataset (see also Figure 6.12(b)), the number of compressed measurements that 

provides reasonably accurate signal recovery results should be in the order of M ≈ S∙log(N) ≈ 

10000∙log(107460) ≈50000 (see also O’Connor et al. (2013), (2014)). Thus, the case of CR=31% 

corresponds to the acquisition of M=33581 compressed measurements which is close to the above 

requirement. On the contrary, the reconstruction performance considerably degrades at lower 

CRs, and especially in the limiting CR value of 11% (Figure 6.17) due to the acquisition of only 

M=11753 compressed data which is well below the required order of M ≈ 50000.  

 

Figure 6.14: Total running time for off-line signal and power spectral recovery required by the CS-based 

and the PSBS-based approach, respectively, versus reconstruction sparsity level for (a) 

CR=31%, (b) CR=21%, and (c) CR=11%.  

(a) (b) (c) 
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Figure 6.15: (a) Compressive sensing at CR=31% and the acquisition of M=125 samples within a time-

window of 2sec duration with N=400 Nyquist samples and (b) CoSaMP-based signal 

reconstruction of acceleration response signal at sensor #13 for ST=11160.  

 

Figure 6.16: (a) Compressive sensing at CR=21% and the acquisition of M=82 samples within a time-

window of 2sec duration with N=400 Nyquist samples and (b) CoSaMP-based signal 

reconstruction of acceleration response signal at sensor #13 for ST=7320.  

 

Figure 6.17: (a) Compressive sensing at CR=11% and the acquisition of M=44 samples within a time-

window of 2sec duration with N=400 Nyquist samples and (b) CoSaMP-based signal 

reconstruction of acceleration response signal at sensor #13 for ST=3840.  

As a final step, the standard FDD algorithm is applied to the PSD matrices estimated by the 

CS-based method (i.e., standard Welch’s modified periodogram (e.g., Marple (1987)) applied on 

the reconstructed signals ˆ[ ]x n ), and the PSBS-based spectral estimation approach (i.e., eq.(4.26) 

(a) (b) 

(a) (b) 

(a) (b) 
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using the unbiased estimator in eq.(4.22) for the compressed measurements in eq.(4.5)), to extract 

the bridge mode shapes (see also chapter 2, 4 and sub-section §6.3.2).  

For the two considered approaches, Figure 6.18 plots the derived first singular values vector 

at the three considered signal compression levels in Table 6-2, normalised to the maximum 

amplitude and plotted against the conventional/non-compressive FDD at uniform sampling rate 

(at CR=100%). From this figure, it is readily observed that the highest singular values amplitudes 

occur at 7.617 Hz and 11.719 Hz, pertaining to the 1st and 3rd resonant frequencies of the 

monitored bridge, respectively, while relatively smaller amplitudes occur at 10.352 Hz and 12.598 

Hz, associated with the bridge natural frequencies at the less excited 2nd and 4th vibrating modes.  

Table 6-3 and Table 6-4 report the natural frequency estimates obtained from the two 

comparative approaches in Figure 6.1, respectively, at the three adopted CRs (i.e., 11%, 21%, 

31%), which are compared against the pertinent values extracted from the non-compressive FDD 

at uniform sampling rate (at CR=100%). In the latter case, the PSD response matrix has been 

computed for the full-length dataset using the standard Welch modified periodogram as detailed 

in §6.3.2. The difference percentage error, dfr/ fr (for r=1,2,3,4) is further used to quantify the 

accuracy of the proposed approach in detecting the bridge natural frequencies at the four excited 

modes of vibration, and the computed errors values are listed in Table 6-3 and Table 6-4. 

Commenting first on the multi-sensor PSBS-based FDD, small percentage errors (below ±1.6%) 

are observed in Table 6-3, confirming the efficiency of this method in retrieving the first four 

bridge resonant frequencies without being significantly affected by the signal compression at the 

considered CRs. Next, Table 6-4 reveals that the underlying bridge natural frequencies are 

extracted with high accuracy from the CS-based approach that relies on the same spectral 

estimation method as the non-compressive FDD (i.e., the Welch modified periodogram). 

 

 

Figure 6.18: First singular values vector of the bridge response spectrum matrix for CR={100%, 

31%,21%, 11%}  

  

(a) (b) (c) 
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Table 6-3: Natural Frequency Estimates from PSBS-based approach. 

 Non-compressive 

FDD 

PSBS-based FDD 

 CR=100% CR=31% CR=21% CR=11% 

f1 [Hz] 7.617 7.573 7.632 7.652 

(df1/ f1 [%]) - (-0.57 %) (+0.20 %) (+0.46%) 

f2 [Hz] 10.352 10.510 10.436 10.435 

(df2/ f2 [%]) - (+1.53 %) (+0.82 %) (+0.80 %) 

f3 [Hz] 11.719 11.747 11.682 11.652 

(df3/ f3 [%]) - (+0.24 %) (-0.31 %) (-0.57 %) 

f4 [Hz] 12.598 12.674 12.617 12.696 

(df4/ f4 [%]) - (+0.61%) (+0.15 %) (+0.78 %) 

 

Table 6-4: Natural Frequency Estimates from CS-based approach. 

 Non-compressive 

FDD 

CS-based FDD 

ST=3600 

 CR=100% CR=31% CR=21% CR=11% 

f1 [Hz] 7.617 7.617 7.617 7.617 

(df1/ f1 [%]) - (0.00%) (0.00%) (0.00%) 

f2 [Hz] 10.352 10.352 10.352 10.352 

(df2/ f2 [%]) - (0.00%) (0.00%) (0.00%) 

f3 [Hz] 11.719 11.719 11.719 11.719 

(df3/ f3 [%]) - (0.00%) (0.00%) (0.00%) 

f4 [Hz] 12.598 12.598 12.598 12.598 

(df4/ f4 [%]) - (0.00%) (0.00%) (0.00%) 

 

For illustration, Figure 6.19-Figure 6.22 plot the first four mode shapes of the considered 

bridge corresponding to two bending (modes 1 and 2) and two rotational (modes 3 and 4) vibrating 

modes. They are obtained from the standard FDD method using: (i) the 18 conventionally 

acquired signals, each comprising N=107460 samples (panels (a)); (ii) the PSBS-based approach 

for CR=11% (panels (b)); and (iii) the CS-based approach for CR=11% and ST=3840 (panels (c)). 

From a qualitative inspection of these mode shapes, it can be deduced that both the sub-

Nyquist methods can adequately capture the shapes of the modal responses as estimated from the 

uniformly sampled dataset. However, non-negligible differences are observed between the 

conventional FDD and the CS-based approach, especially for the 2nd and the 4th vibrating modes. 
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Figure 6.19: Estimation of the 1st mode shape (bending) of the Bärenbohlstrasse bridge; (a) 

conventional/non-compressive FDD; (b) PSBS-based FDD at CR=11%; and (c) the CS-based 

approach for CR=11% and target reconstruction sparsity ST=3840. 

 

Figure 6.20: Estimation of the 2nd mode shape (bending) of the Bärenbohlstrasse bridge;(a)  

conventional/non-compressive FDD; (b) PSBS-based FDD at CR=11%; and (c) the CS-based 

approach for CR=11% and target reconstruction sparsity ST=3840.  

 

Figure 6.21: Estimation of the 3rd mode shape (rotational) of the Bärenbohlstrasse bridge; (a) 

conventional/non-compressive FDD; (b) PSBS-based FDD at CR=11%; and (c) the CS-based 

approach for CR=11% and target reconstruction sparsity ST=3840. 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Figure 6.22: Estimation of the 4th mode shape (rotational) of the Bärenbohlstrasse bridge; (a) 

conventional/non-compressive FDD; (b) PSBS-based FDD at CR=11%; and (c) the CS-based 

approach for CR=11% and target reconstruction sparsity ST=3840. 

To quantify the level of similarity between mode shapes obtained from the conventionally 

sampled dataset and from the sub-Nyquist sampled acceleration responses, the MAC in eq.(4.43) 

is plotted in Figure 6.23, Figure 6.24 and Figure 6.25 for the three considered CRs, respectively, 

as a function of the assumed target sparsity ST . In these figures, the computed MAC values from 

the CS-based approach are shown with blue circular marks, while the pertinent values obtained 

from the PSBS-based approach are depicted with red broken lines of constant amplitude. The 

influence of the signal compression level to the derived MAC values is further assessed in Figure 

6.26 for the two considered approaches, based on the maximum target sparsity ST value at the 

limiting CR case of 11%.   

 

Figure 6.23: MAC versus reconstruction sparsity level ST, obtained from the two considered approaches 

(i.e., PSBS-based and CS-based FDD) for CR= 31% 

(a) (b) (c) 

(a) (b) 

(c) (d) 
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Figure 6.24: MAC versus reconstruction sparsity level ST, obtained from the two considered approaches 

(i.e., PSBS-based and CS-based FDD) for CR= 21% 

 

 

Figure 6.25: MAC versus reconstruction sparsity level ST, obtained from the two considered approaches 

(i.e., PSBS-based and CS-based FDD) for CR= 11%. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 6.26: MAC with respect to CR; PSBS-based approach compared against CS-based approach for 

ST=3600  

The above figures confirm that the PSBS-based method outperforms in accuracy the CS-

based approach, yielding higher MAC values in most of the cases considered. More importantly, 

the PSBS-based approach provides mode shapes exhibiting nearly unit MACs, even in the case 

of CR=11% without the need to assume a target sparsity level. On the antipode, the CS-based 

approach is considerably affected by the assumed ST values. In fact, for the smaller compression 

level considered (CR=31%), better accuracy is achieved for larger ST values for all mode shapes, 

at the expense of higher computational cost during the sparse recovery step (see Figure 6.14). 

However, such monotonic trends of MAC with ST are not confirmed for all the mode shapes for 

the case of CR=11% in Figure 6.25, while the 2nd and 4th modes are not satisfactorily estimated 

regardless of the ST value (i.e., MAC values lying below 0.9 are commonly used as a practical 

criterion for rejecting mode shapes as inaccurate). As discussed before, this poor performance of 

the CS-based approach is related to the underlying level of sparsity of the acquired signals with 

respect to the number of compressed measurements, M, which is approximately 4 time smaller 

from the required value of M (i.e., M ≈S∙log(N)) for faithful reconstruction of the compressed 

datasets (see also the discussion above).  

Remarkably, it appears that the performance of the PSBS approach in terms of MAC values 

is almost insensitive to CR observing a constant value close to unity in all cases of Figure 6.26, 

with the exception of the 4th mode at CR=11%. Nevertheless, it was deemed prudent not to 

consider lower CR values in this numerical assessment, since this would require a large number 

of cosets ( M >14) or parallel channels (e.g., Figure 4.1) to satisfy the theoretical constraint of 

2M N , as discussed in chapter 4. In fact, one may note that even the consideration of 14M 

channels may be unrealistic in practice. However, this is a setting that has been used before in 

(a) (b) 

(c) (d) 
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pertinent theoretical studies (e.g., Ariananda & Leus (2012); Jingchao et al. (2015); TauSiesakul 

et al. (2015); Gkoktsi et al. (2016)), while recent advancements in the hardware implementation 

of multi-coset samplers provide CRs independently of the number of interleaved ADCs (e.g., 

Moon et al. (2015)). 

As a final remark, it is expected that the gains to the CR achieved by the PSBS approach 

compared to the CS-based approach in accomplishing quality OMA estimates, as those reported 

above, would reflect analogously to energy savings in WSNs (e.g., Lynch et al. (2003); O’Connor 

et al. (2014)). This is because wireless data transmission is by far the most power-hungry 

operation in wireless sensors, being directly related to the amount of data, M, transmitted from 

each sensor in the considered setting. This issue is addressed in the next section.  

6.5. Energy Consumption and Battery Life Savings 

This numerical example showcases the daily energy savings of the bridge monitoring system 

in section §6.4, based on the sampling rate reductions achieved by the proposed multi-sensor 

PSBS approach. To this end, a star network topology of equidistant wireless sensors is assumed, 

measuring bridge acceleration responses of approximately 10min every hour (i.e., a dataset of 

Q=24 acceleration time-series are collected per wireless sensor within a day). 

Table 6-5: Wireless Sensor WiseNode_v4 technical specifications 

Mode Current Drawn Power Consumption 

Idle 27 μA 81 μW 

Sampling variable Es/Ts (Es=55.3 μJ) 

ADC 0.72 mA 2.16 mW 

Transmit 34.6 mA 103.8 mW 

 

Energy consumption estimates are then computed for the three case studies in Table 6-2, 

considering a battery-operated wireless multi-coset sampler of M  interleaved channels that 

operates at the sub-Nyquist sampling rates reported in Table 6-2. In active mode, the channels 

sampling activity is assumed to run concurrently with the analog-to-digital conversion (ADC), 

followed by the wireless data transmission operation. Table 6-5 reports the power requirements 

of the considered wireless sensor in idle and active modes, which have been adopted from a 

commercially available wireless sensor, i.e., the WiseNode_v4, developed by Novakovic et al. 

(2009). Table 6-5 reports further the current drawn in each functionality mode assuming a supply 

voltage at 3V. It can be seen in Table 6-5 that the wireless transmit mode is the most power-

consuming operation of the considered sensor, while the channel sampling activity has increased 

power demands at faster sampling rates, Ts.  
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It is assumed further that the sensor’s power supply consists of two Energizer L91 AA-size 

lithium batteries with a nominal voltage of V=1.5V and a capacity of C=3000 mAh, providing a 

total energy of Eb=64800 J (i.e., Eb= (2C)∙(2V)∙602). A continuous discharge current is assumed 

to occur across the lifetime of the battery, pertaining to an annual battery energy loss due to 

leakage expressed in the percentage ratio of ξ=1%. In this respect, the following expression can 

be used 

b
b

tot b

E
T

E E


 
, (6.1) 

to estimate the remaining battery life of the adopted wireless multi-coset sampler under 

various sampling rates, with Etot being the total energy requirements of the sensor in all considered 

functionality modes. 

Table 6-6 reports the daily energy demands and the required time in each functionality mode 

of the adopted multi-coset sampler for the three considered CR cases (i.e., 31%, 21% and 11%). 

Specifically, for the case of CR=11%, the considered multi-coset sampler comprises M =14 

channels, each operating at a sampling rate of Ts,CR=0.64 s, which is N =128 times slower than 

the conventional sampling, Ts=0.005 s, reported in sub-section §6.4.1. The above parameters 

define the power consumption due to sampling in , ,( / ) 1.21 mWs CR s s CRP M E T     , with Es 

given in Table 6-5. In this respect, the daily acquisition and discretisation of Q=24 compressed 

acceleration responses of M=11746 samples each requires 3.58 hours (=Q∙M∙Ts,CR/ M ) of the 

sensor’s sampling activity, consuming Es,ADC= 43.45 Joules of energy per day. Assuming next 

that each ADC has a resolution of 16 bits (i.e., 2 bytes), IFWD≈23507 bytes of data package 

information are generated per compressed acceleration sequence, which are wirelessly 

transmitted to the server within a time interval of 
1 1)/ 68.13T FWD T Tt t s (I I   , where IT1=7 bytes 

is the information carried within one data package and tT1= 0.02s is the time required for its 

wireless transmission (e.g., Novakovic et al. (2009)). Thus, 0.45 hours are required for the daily 

transmission of the considered dataset (i.e., 24 compressed acceleration responses), consuming 

169.73 ( )T T TE  P t    Joules of energy per day. The adopted wireless sensor is assumed to be in 

the idle mode for the remaining 19.96zt   hours of the day, using 5.82 J ( )z z zE    P t    of 

energy. Table 6-6 reports further the total energy requirements, Etot, of the sensor per day, obtained 

from the superposition of the pertinent values in all considered functionality modes. Eq. (6.1) is 

used next to estimate the charging capacity of the battery source, which is presented in the last 

row of Table 6-6. The above PSBS-based energy consumption and battery life estimates are 

compared in Table 6-6 against the conventional approach at uniform sampling rate (i.e., Figure 

1.1(c) versus Figure 1.1(a)), assuming two different types of wireless sensors, i.e., one that 

performs off-line lossless signal compression using the Huffman coding at CR=77.6% (e.g., 
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Lynch et al. (2003)) and a second one that treats full-length datasets (i.e., CR=100%) being in 

alignment with relevant studies in the literature (e.g., O’Connor et al. (2013), (2014); Klis & 

Chatzi (2017)). 

Table 6-6: Daily energy consumption and remaining battery life for various CRs 

 Conventional  PSBS 

Mode CR=100%* CR=77.6%** CR=31% CR=21% CR=11% 

 Time  Energy Time  Energy Time Energy  Time Energy  Time Energy  

 [h] [J] [h] [J] [h] [J] [h] [J] [h] [J] 

Idle 16.27  4.74 17.20 5.01 19.12 5.58 19.57 5.71 19.96 5.82 

Sampling& 

ADC 

3.58  170.48 3.58  170.48 3.58 72.42 3.58 57.11 3.58 43.45 

Transmit 4.15 1551.85 3.22 1204.23 1.30 484.95 0.85 318.33 0.45 169.73 

Etot [J] - 1727.06 - 1379.72 - 562.95 - 381.14 - 219.01 

Tb [months] - 1.25 - 1.56 - 3.82 - 5.64 - 9.78 

*Non-compressive; **Off-line lossless compression 

 

The above table shows that the concurrent sampling and discretisation of a fixed time-window 

(i.e., 10 mins per hour) of the observed bridge acceleration responses requires 3.58 hours 

regardless of signal compression. However, the benefits of the lower sampling rates are reflected 

to the reduced power consumption due to sampling, given its inverse proportionality to the 

sampling time Ts (see also Table 6-5), which, for the case of CR=11%, yields up to 4 times lower 

energy requirements compared to the conventional approaches. More importantly, significant 

energy gains are obtained at lower CRs due to the wireless transmission of a considerably smaller 

number of measurements. In this respect, substantial energy reduction is achieved in transmit 

mode, being directly proportional to the number of transmitted data. For the proposed multi-

sensor PSBS approach with CR=11%, this energy reduction is of the order of 85-90% compared 

to conventional approaches at uniform sampling (i.e., 86% compared to the conventional 

sampling scheme with off-line lossless compression and 89% for the non-compressive case). On 

the antipode, the decrease in the transmit time results in the prolongation of the idle state of the 

sensor and the associated energy consumption, which, however, is negligible compared to the 

power demands in the other modes, contributing very little to the total energy consumption 

reported in Table 6-6.  

For illustration, Figure 6.27(a) plots the total energy consumption, Etot, of the sensor per day 

as a function of CR, which decreases linearly at higher signal compression levels. The reduced 

energy consumption has a positive effect on the elongation of battery lifetime as shown in Figure 

6.27(b). In fact, the battery life expectancy increases exponentially with lower CRs, leading to a 
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more sustainable bridge monitoring system with reduced costs associated with labour expenses 

and/or interruption of the normal operation of the monitored bridge.  

 

Figure 6.27: Estimates of (a) the total energy requirements and (b) the battery life with respect to CR for 

the bridge case study 

The adopted sampling considerations also affect the distribution of the energy demands 

among the various sensor activities, expressed as the percentage ratio of the total energy 

consumption in each case. For example, Figure 6.28 illustrates the energy distribution for two 

different sampling schemes, i.e., the conventional with off-line compression at CR=77.6%, and 

multi-coset sampling with CR=11%. It is readily observed in Figure 6.28 that the energy 

requirements in the wireless transmit mode dominate the performance of the wireless sensor, 

yielding a significantly higher percentage compared to all other functionality modes (i.e., 87% 

and 77% for two sampling schemes, respectively). Comparing the two panels in Figure 6.28, it is 

seen that the slower sampling rate (Figure 6.28(b)) observes an increase in the contribution of the 

concurrent sensing and ADC operation to the total energy demands (e.g., from 12% to 20% in 

Figure 6.28). A similar increase occurs in the percentage energy consumption during the idle 

mode, which however remains negligible for this case study (i.e., 1% and 3% in the two panels 

of Figure 6.28, respectively). 

 

Figure 6.28: Energy distribution in the various sensor activities for (a) the conventional sampling with 

CR=77.6% off-line lossless compression and (b) the multi-coset sampling scheme with 

CR=11% for the bridge case study 

(a) (b) 

(a) (b) 
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It is noting in passing that the above energy and battery estimates have computed for the 

sensors activity during data acquisition and transmission, without considering the on-board off-

line computational demands during lossless signal compression for the conventional approach. 

Further, any information related to the communication reliability (i.e., communication protocol, 

loss of information due to packet error, multi-path fading, etc.) as well as external parameters that 

can adversely affect the operationality of the monitoring system (e.g. harsh environmental 

conditions, power shutdown at server, network failure etc.) were beyond the scope of this 

numerical evaluation. Finally, the network size has not been considered herein but a simplified 

case was employed pertaining to the power demands of a single wireless sensor operating under 

various sensing schemes. This simplified approach can be regarded as a rather conservative 

treatment since higher energy savings can be observed at larger WSNs, as reported by Novakovic 

et al. (2009); O’Connor et al. (2014).  

6.6. Concluding Remarks 

The performance of the novel PSBS-based spectral estimation approach proposed in §4 is 

numerically assessed vis-à-vis a recently developed in the literature CS-based approach in 

undertaking OMA. Both the approaches aim to reduce data transmission payloads facilitating 

reliable and cost-efficient long-term OMA via WSNs operating on different sub-Nyquist 

sampling schemes, i.e., deterministic multi-coset (PSBS-based) versus random sub-Nyquist 

sampling (CS-based). The above is accomplished by considering compressed structural 

acceleration responses acquired at sub-Nyquist rates of CRs up to 31%, (i.e., 31% below the 

conventional uniform sampling rate at Nyquist or above), and wirelessly transmitted to a base 

station without any local on-sensor data processing. The adopted approaches estimate the PSD 

matrix of the acceleration signals by processing sub-Nyquist/compressed measurements at the 

base station. Then, the standard FDD algorithm for OMA is applied to the estimated PSD matrix 

to extract the inherent modal properties of the monitored structures. The percentage difference 

error and the MAC have been used as error metrics to quantify the accuracy of the extracted 

natural frequencies and mode shapes, respectively, at the excited modes of vibration. These error 

metrics have been computed with respect to the modal quantities retrieved from Nyquist sampled 

acceleration signals.  

Two sets of acceleration signals have been considered. The first set was generated through 

linear response history analysis of a simply supported steel beam excited by white-noise. Additive 

white Gaussian noise was considered at SNR=10dB to produce a suite of relatively low-sparse 

acceleration signals in the frequency domain, aiming to gauge the influence of signal sparsity to 

the performance of the considered approaches vis-à-vis the high-sparse noiseless signals. The 

second set of signals was acquired from an array of 18 tethered sensors deployed onto a particular 
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overpass in Zürich, Switzerland open to the traffic. Pertinent post-processing and statistical 

stationarity tests were applied to the field recorded data prior to compressive sampling. 

It has been numerically shown and theoretically justified, that, for a given sub-Nyquist 

sampling rate, the capability of the CS-based approach to extract faithful estimates of the mode 

shapes depends heavily on the target sparsity level, ST, which needs to be assumed in the CS signal 

reconstruction step. It has also been demonstrated that the accuracy of the CS-based approach 

improves at larger ST values at the cost of higher computational effort reflected on the increased 

required runtime of the adopted CS sparse signal recovery algorithm. However, no increase to the 

assumed ST value can compensate for the acquisition of an excessively small number of 

compressed measurements which is the case for CR=11% for all the sets of acceleration signals 

considered in this work. In this regard, it is concluded that conservative compression ratios should 

be adopted in using the CS-based approach to ensure acceptable quality of modes shapes, 

especially in the case where no prior knowledge on the acceleration signal sparsity is available. 

On the antipode, it was numerically shown that the PSBS-based approach, which treats 

response acceleration signals as wide-sense stationary stochastic processes without imposing any 

signal sparsity conditions, performs equally well and consistently better than the CS-based 

approach in extracting mode shapes for all the herein considered sets of compressively sampled 

acceleration signals. In fact, the PSBS-based approach yields MAC>0.96 even for the low-sparse 

signals contaminated with white noise at SNR=10dB and for low sampling rates at CR=11% (i.e., 

89% below the Nyquist rate). It was further confirmed that significant energy gains can be 

achieved by the proposed method at such low CRs in battery-operated wireless sensors. This was 

numerically verified based on the power requirements of a commercially available wireless sensor 

in idle and active (i.e., sampling, transmit) mode. The estimated energy savings were evaluated 

against two conventional approaches at uniform sampling rates – one that involves off-line 

lossless signal compression on-board at an assumed CR of approximately 77.6%, and a second 

one applied on full-length signals (i.e., no compressive case). 

Overall, the herein numerical data demonstrate that the inherent signal agnostic attributes of 

the PSBS-based approach render this method more advantageous compared to the CS-based 

approach in cases where high signal compression levels are desired to address sensor power 

consumption and wireless bandwidth transmission limitations. Still, further research is warranted 

to assess the potential of the considered PSBS-based spectral estimation approach in actual field 

deployments. Such an assessment necessitates the development of custom-made wireless sensors 

featuring either multi-coset samplers at the hardware level or, alternatively, efficient algorithms 

for off-line on-sensor multi-coset sampling. These aspects are an open area of research in the 

sensors community.  
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Chapter 7 

 A Novel MUSIC-Based Approach for Structural 

Damage Detection from Sub-Nyquist 

Measurements 

7.1. Preliminary Remarks 

In this chapter, a sub-Nyquist pseudo-spectral estimation method is proposed as a viable 

alternative for low-cost and power efficient wireless sensors in monitoring heavily instrumented 

structures (see also Figure 1.1(d)). This approach couples the deterministic sub-Nyquist co-prime 

sampling scheme proposed by Vaidyanathan & Pal (2011) with the multiple signal classification 

(MUSIC) algorithm for spectral estimation (e.g., Marple (1987)) – a fusion that was originally 

developed in radar applications to address the bandwidth limitations in wireless communications 

and detect unoccupied bands in telecommunication signals buried in noise (see also Vaidyanathan 

& Pal (2011)).  

Similar to the multi-coset PSBS method of Chapter 4 (§4. Proposed Multi-Sensor Power 

Spectrum Blind Sampling Approach for OMA: Theory), the herein adopted co-prime MUSIC 

strategy does not rely on any signal sparsity condition while it treats the acquired signals as wide-

sense stationary stochastic processes (random signals), being consistent with the OMA framework 

that assumes stochastic input excitation and linear structural responses (e.g., Brincker & Ventura 

(2015)). Further, it is a signal reconstruction-free compressive power spectral estimation approach 

that utilises the spatial smoothing technique developed by Pal & Vaidyanathan (2011) to retrieve 

auto-correlation functions of stochastic structural response processes directly from noisy 

compressed measurements without undertaking any pre-processing operation to remove noise. 

Despite the above similarities, the co-prime sampling scheme is fundamentally different from 

the multi-coset sampling, as it considers two sensors per acceleration channel operating at 

different sub-Nyquist rates and accumulating collectively in time a much smaller number of 

measurements than a single sensor operating at Nyquist rate. Moreover, the adopted MUSIC 

algorithm is a “super resolution” pseudo-spectral estimator (i.e., not a true PSD estimator) that 

relies on the eigenvalue decomposition of autocorrelation matrices, yielding a spectrum-like 
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shape with very sharp peaks at the frequency components of the analysed signals. As opposed to 

the PSBS-based approach in Chapter 4, the co-prime MUSIC algorithm does not return cross-

spectral estimates between structural responses, but it is particularly useful in estimating closely-

spaced natural frequencies from compressed structural responses contaminated with high level 

noise.  

The advantages offered by the co-prime MUSIC algorithm are exploited in the current 

research study for the first time to address the modal coupling effect in OMA applications in the 

presence of noise. To this end, parametric analyses are undertaken using computer-simulated 

acceleration structural responses derived from a multi-degree-of-freedom system with two 

closely-spaced modes of vibration. The focus is primarily placed on the performance assessment 

of the sub-Nyquist pseudo-spectral estimator in resolving the two closely-spaced resonances 

under various signal compression and noise levels.  

Motivated further by recent OMA-based studies for rapid condition assessment of 

instrumented structures in the aftermath of earthquake events Jiang & Adeli (2007); Rainieri et 

al. (2012); Foti et al. (2014), a novel damage detection strategy is proposed herein aiming to infer 

structural damage due to low-intensity earthquake excitations by monitoring small shifts to the 

resonant frequencies directly from compressed response acceleration measurements without 

involving time-domain signal reconstruction operations and without imposing signal sparsity 

constraints. The effectiveness and applicability of the proposed approach is numerically assessed 

by considering simulated acceleration response signals corrupted by different levels of additive 

white noise, originating from a low-amplitude white-noise excited 3-storey reinforced concrete 

frame building before and after being exposed to a particular ground motion, pertaining to a 

healthy and to a potentially damaged state, respectively. Two earthquake intensities are 

considered through scaling of the input ground motion, yielding different levels of structural 

damage. Special attention is given in modelling the different levels of earthquake-induced 

damage, based on localised stiffness degradation at the formed plastic hinge zones, as this is 

captured by the well-known Takeda hysteretic model in conducting non-linear response history 

analysis. 

It is noted in passing that the MUSIC algorithm has also been considered in the past for 

earthquake-induced damage detection in building structures (e.g., Jiang & Adeli (2007)), using 

conventional sensors to acquire structural acceleration signals at Nyquist rate. Furthermore, this 

pseudo-spectrum technique has found to outperform conventional FFT-based spectral estimators 

for VSHM applications (e.g., Amezquita-Sanchez et al. (2012); Camarena-Martinez et al. 

(2014)). The latter is attributed to the high resolution achieved by the MUSIC spectral estimator, 

which is capable to capture very small changes in resonant frequencies of linear structural 

response acceleration (random) signals between healthy and damaged structural states. 
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Thus, it is envisioned that the consideration of the proposed sub-Nyquist MUSIC-based 

damage detection approach will facilitate the widespread installation of VSHM systems in civil 

engineering structures located in seismically prone areas (e.g., Gattulli et al. (2014)). This will 

lead to reduced installation, operational and maintenance cost of the monitoring systems, paving 

the way towards more resilient communities against the seismic hazard.  

The next section of this chapter (§7.2. Theoretical Background) outlines the theory of the 

adopted co-prime sampling method along with the spatial smoothing technique for auto-

correlation function estimation, and reviews the mathematical details of the MUSIC algorithm. 

Section 7.3 (§7.3. Performance Assessment of the Sub-Nyquist MUSIC Algorithm with Simulated 

Closely-Spaced Modes of Vibration in Noisy Environments) appraises the usefulness of the 

adopted sub-Nyquist pseudo-spectral estimation method in OMA applications and numerically 

attests its efficiency in separating two closely-spaced natural frequencies from compressed data 

contaminated with noise. Section 7.4 (§7.4. Sub-Nyquist MUSIC for Earthquake Damage 

Detection) showcases the damage detection capabilities of this method and furnish novel 

numerical results originating from noise-corrupted response acceleration signals recorded on a 3-

storey frame building subjected to seismic excitations of increased intensity. Finally, section 7.5 

(§7.5. Concluding Remarks) summarises concluding remarks.  

The mathematical details of the co-prime sampling and the MUSIC algorithm given in §7.2 

along with the novel post-earthquake damage detection results of section 7.4 have been published 

in the conference proceedings in [C8] (see also section 1.5 (§1.5. List of Referred Papers)). It is 

further noted that the numerical assessment in §7.3 has not been disseminated yet in the public 

domain. 

7.2. Theoretical Background 

7.2.1. Co-prime sampling and auto-correlation estimation of stationary stochastic 

processes 

Let x(t) be a real-valued wide-sense stationary band-limited stochastic process (or random 

signal), expressed as a superposition of R sinusoidal functions with frequencies fr, real amplitudes 

Br, and uncorrelated random phases θr uniformly distributed in the interval [0, 2π], where 

r=1,2,…,R. That is, 

 
1

cos(2 )
R

r r r

r

x t B f t


    , (7.1) 

where 1j   . Co-prime sampling (e.g., Pal & Vaidyanathan (2011); Vaidyanathan & Pal 

(2011)) assumes that the signal x(t) is simultaneously acquired by two sampling devices, operating 
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at different (sub-Nyquist) sampling rates, 1/(N1Ts) and 1/(N2Ts), where N1, N2 are co-prime 

numbers (N1 < N2), and 1/Ts= 2fmax is the Nyquist sampling rate with fmax being the highest 

frequency component in (7.1). The signal x(t) is then divided in time blocks of (2N1-1)N2Ts 

duration and, within each such block, only 2N1+N2-1 samples are retained from a total number of 

floor{2(N1+N2)-1-N2/N1} acquired measurements. The thus retained samples of x(t) from the two 

different samplers are 

 
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1 1 1 1 2
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  

  

, (7.2) 

where  1 k  and 
2[ ]  are zero-mean Gaussian white noise sequences, assumed to have the 

same power, 2
 . Notably, the noise sequences  1 k  and 

2[ ]  in eq.(7.2) are added at the output 

of the two sampling devices and assumed to be uncorrelated with the signals and from each other. 

In this manner, N2 samples are obtained from the first device, which operates at sampling rate 

1/(N1Ts). Similarly, 
1(2 1)N   samples are retrieved from the second device with sampling rate 

1/(N2Ts). This choice is not arbitrary; it was shown by Vaidyanathan & Pal (2011) that the cross-

difference set of numbers  21 12= {0, , 1}, {1, ,2 1}, kN NN k N       contains all 

possible integers within the range [-N1N2, N1N2]. Thus, the cross-correlation function of the 

sequences  1x k , 
2[ ]x , whose support involves all the time-lags included in the set Ω, can be 

continuously estimated in the above range of interest. To this aim, the sequences in eq.(7.2) are 

first stacked in a vector 1 2(2 1)N N

n

 y  as in 

   
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T T
1 2 2 1
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e ε       
, (7.3) 

where the superscript “T” denotes vector/matrix transposition, 1 2(2 1)N N

n

 ε  is the vector 

collecting the noise terms, and 1 2(2 1)( ) N N

rf
 e  is given by 





1 2 1

T
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( ) 1 cos(2 ) cos(2 ( 1) )
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 



e  

                    
. (7.4) 

Notably, in eq.(7.3), the inclusion of the non-negative integer index 
*n  allows for 

arbitrarily placing the co-prime sampling block in time (e.g., for n=0 the time block starts at t=0 

and corresponds to the block considered in eq.(7.2)). Therefore, an arbitrary large number of 
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blocks (and corresponding vectors ny ) can be used for co-prime sampling a theoretically 

infinitely long random signal x(t). The position of each block in time depends on the adopted 

values of n. The autocorrelation matrix of 
ny  is given as (see also Pal & Vaidyanathan (2011)) 

 T 2 T 2

1

E = ( ) ( )
R

n n r r r

r

B f f


 yyR y y e e I    , (7.5) 

in which 1 2 1 2(2 1) (2 1)N N N N    I  is the identity matrix, while the mathematical expectation 

operator E{∙} averages over n. In other words, the matrix Ryy in eq.(7.5) is computed by averaging 

over all the time blocks considered in sampling, within a Monte Carlo-based context. 

Next, following the spatial smoothing technique by Pal & Vaidyanathan (2011), the 

autocorrelation matrix in eq.(7.5) is first stacked in a column vector,  vecy yyr R , with 

2
1 2(2 1) 1N N  yr . Then, the elements of ry are sorted and truncated within the range [-N1N2, 

N1N2], while the repeated terms are eliminated, so that the integer indices of the exponential terms 

in eq.(7.4) are given in increasing order with no repetition. The thus generated reduced 

autocorrelation vector ˆ
yr  (i.e. sorted and truncated), is subsequently divided into i={ 1,2,…, 

N1N2+1 } overlapping subarrays, ˆ
iyr , each consisting of (N1N2+1) elements, which are averaged 

as in 

1 2

T

1

11 2

1
ˆ ˆ

1 i i

N N

ss

iN N








 y yR r r , (7.6) 

to generate the spatially smoothed matrix Rss 1 2 1 2( 1) ( 1)N N N N  
 . In the following section, this 

matrix is used as input to a specific super-resolution spectral estimator to detect the R frequencies 

fr, (r= 1,2,…,R), of the considered stochastic process x(t). 

7.2.2. Multiple signal classification (MUSIC) algorithm for resonant frequencies 

estimation 

The Multiple Signal Classification (MUSIC) algorithm (e.g., Marple (1987)) is a super-

resolution pseudo-spectrum estimation method, which relies on the eigenvalue decomposition of 

autocorrelation matrices estimated by field measurements. For the purposes of this study, the 

MUSIC algorithm is applied to the autocorrelation matrix Rss in eq.(7.6), which is decomposed 

as in 

1 2 1
2 T 2 T

1 1

( )
N NR

ss i i i i i

i i R

   


  

   R v v v v , (7.7) 
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where the eigenvectors iv  are orthonormal, i.e. 
T 0i j v v  for i j . The first term in eq.(7.7) 

represents the signal sub-space with R eigenvalues 
2( )i     , i=1,…,R, and R principal 

eigenvectors spanning the same subspace with the signal vector in eq.(7.4). Likewise, the second 

term corresponds to the noise sub-space with (N1N2-R) identical eigenvalues 
2
 , and (N1N2-R) 

eigenvectors. 

The cost function of the unbiased MUSIC estimator is then given as 

1 2 1
T T

1

1
( )

( ) ( )

MUSIC N N

i i

i R

G f

f f


 


 
  
 
e v v e

, 
(7.8) 

The above estimator (pseudo-spectrum) relies on the orthogonality condition between the 

signal vectors and the noise sub-space, that is, 

 
1 2 1

T

1

( ) 0,   for  1,...,
N N

r i

i R

f r R


 

 
   
 
e v , (7.9) 

which attains, theoretically, infinite values at the locations on the frequency axis where the 

natural frequencies of the considered system lie, i.e. at f=fr in eq.(7.8). In practical numerical 

applications, though, involving errors in solving the eigenvalue problem and other estimation 

errors, eq.(7.8) takes finite values observing sharp peaks at each fr and resulting in a spectrum-

like shape. Limitations of the MUSIC algorithm are the a priori knowledge on the number of R 

signal components required, as well as the increased computational demands of the eigenvalue 

decomposition in eq.(7.7). Nonetheless, the significance of utilising the MUSIC algorithm 

together with the co-prime sampling strategy and the spatial smoothing technique lies on its 

capability to capture up to RN1N2 natural frequencies in noisy signals, at the high frequency 

resolution of 1/(N1N2Ts) (in Hz), outperforming conventional approaches at Nyquist rate that can 

only retrieve up to (2N1+N2-2) frequencies (see also Pal & Vaidyanathan (2011)). 

7.3. Performance Assessment of the Sub-Nyquist MUSIC Algorithm with 

Simulated Closely-Spaced Modes of Vibration in Noisy Environments 

7.3.1. Structural system and simulated noisy acceleration responses 

In this section, the potential of the MUSIC algorithm to resolve closely-spaced natural 

frequencies from co-prime sampled response acceleration signals contaminated with high level 

noise is numerically assessed. To this end, the simulation-based framework presented in §5.2 is 

adopted herein to generate discrete-time Nyquist-sampled acceleration responses of white-noise 
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excited MDOF structural dynamical systems with R vibrating modes and PSDs given by eq.(5.2). 

Recall from chapter 5 that the above is accomplished by considering the steady-state response of 

several different white-noise excited discrete-time auto-regressive moving average (ARMA) 

filters. The coefficients of these ARMA filters are defined via the auto/cross correlation matching 

algorithm by Spanos & Zeldin (1998) using eqs. (5.2), (5.4), and (5.5).  

Note that this approach of obtaining response acceleration signals enables the consideration 

of a range of different MDOF structural systems (i.e., with different dynamic/modal properties) 

which are conveniently defined in terms of their natural frequencies, ωr, damping ratios, ζr, and 

mode shapes at the R vibrating modes (r=1, 2, …, R). Note that any information related to the 

modal deflected shapes can be efficiently captured by the weighting factors Ars in the R2
 

contributing terms of eq.(5.2) (see also §5.2). Therefore, the requirement for defining explicitly a 

mass, a damping, and a stiffness matrix for each system is by-passed. This consideration facilitates 

significantly the following comprehensive parametric analyses where two different structural 

systems are utilised with heuristically defined natural frequencies and relative spectral peak 

amplitudes.  

Specifically, a continuous MDOF structural system with R=3 degrees of freedom (i.e., 3DOF 

system) is assumed with two equally-excited closely-spaced modes of vibration and a third less 

excited mode of relatively low spectral amplitude. The above system is approximated via the 

simulation-based framework in §5.2, considering a critical damping of ζr =5% (r=1,2,3) in all 

vibrating modes along with the spectral (weighting) coefficients A11= A13= A31=A22= A23= A32=1, 

A12=A21=2, A33=0.25 in eq.(5.2). Two different case studies are examined for the above 3DOF 

system with natural frequencies: 

(1) f1=67 Hz, f2=70 Hz, and f3=120 Hz (i.e., the percentage difference between f1 and f2 is 

df/f=4.5%); and 

(2) f1=66 Hz, f2=70 Hz, and f3=120 Hz (i.e., the percentage difference between f1 and f2 is 

df/f=6%).  

For the two adopted systems, Figure 7.1 illustrates the PSDs derived from eq.(5.2), representing 

the “target” spectra that are sought to be captured by the proposed sub-Nyquist pseudo-spectral 

estimation method (i.e., MUSIC algorithm fused with co-prime sampling techniques). In this 

respect, each target PSD is first replaced by a surrogate discrete-time ARMA filter of order (120, 

12) subject to a clipped white-noise excitation of 20s duration, sampled at a Nyquist rate of Fs=1/ 

Ts=500Hz (i.e., Ts=0.002s). The auto/cross correlation matching algorithm by Spanos & Zeldin 

(1998) is then employed to compute the ARMA coefficients using eqs. (5.2), (5.4), and (5.5), and 

derive (noiseless) discrete-time acceleration response signals at Nyquist, treated as realisations of 

an underlying stochastic process. 
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Figure 7.1: Normalised target PSD curves to their maximum amplitude (derived from eq. (5.2)) for the two 

adopted 3DOF system with closely-spaced natural frequencies pertaining to (a) df/f=5% 

(f1=67Hz, f2=70Hz) and (b) df/f=6% (f1=66Hz, f2=70Hz). 

To assess the efficacy of the proposed sub-Nyquist pseudo-spectral estimation method at 

various noise levels, the above generated discrete-time acceleration responses are then corrupted 

with additive white noise at five SNRs (i.e.,  2 2

1010 log xSNR     , with 2

x  and 2

  denoting 

the signal and noise variance, respectively) between 0 dB and 20 dB to simulate structural 

responses buried in high level noise. Note that the limiting case of SNR=0 dB corresponds to equal 

power in signal and noise components (i.e., extreme noise case with 
2 2

e x   ), while the case of 

SNR=20 dB pertains to a relatively lower noise level with 
2 20.01e x   . 

7.3.2. Sub-Nyquist pseudo-spectral estimation 

The obtained noisy acceleration responses are sub-Nyquist sampled (compressed) at 4 

different levels, using the co-prime sampling strategy reviewed in sub-section §7.2.1 with the 

sampling parameters reported in Table 7-1. In particular, 4 different pairs of co-prime numbers, 

(N1, N2), are considered, pertaining to different average sub-Nyquist sampling rates, 

   1 21  1s sN T N T , spectral resolutions, 1/(N1N2Ts), and other sampling features as listed in 

Table 7-1 (e.g., cross-difference set Ω, number of non-overlapping time-blocks the signal is 

divided, number of Nyquist and compressed samples per block, size of spatially smoothed 

autocorrelation matrix, etc.).  

For example, consider the sub-Nyquist sampling case with co-prime N1=7 and N2=11. The 

underlying assumption is that two samplers are deployed per recording location to acquire 

uniform samples of the same acceleration response signal (in time), with sampling rates equal to 

1/(7Ts) and 1/(11Ts), respectively. Therefore, the two co-prime samplers accumulate 

measurements at an average rate of 1/(7Ts) + 1/(11Ts) samples per second, which is about 76.6% 

lower than the Nyquist rate. Further, the assumed co-prime numbers define the cross-difference 

(a) (b) 
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set     11  7 ,  0,10 , 1,13k k     , which includes all discrete time lags within the support 

[-77, 77] of the cross-correlation function between the measurements of the two sensors (see also 

section §7.2.1). It is further assumed that the measured acceleration signal is divided in K=69 

non-overlapping time-blocks that are further used for the computation of the autocorrelation 

matrix in eq.(7.5). Each block contains (2N1-1)N2=143 Nyquist samples from which only 

2N1+N2-1= 24 samples are taken to populate the Ryy 
24 24 matrix in eq.(7.5). Next, the 

spatially smoothing technique by Pal & Vaidyanathan (2011) is employed to generate the semi-

positive correlation matrix Rss 
78 78  in eq.(7.6) directly from the coprime-sampled 

(compressed) measurements. Finally, the MUSIC algorithm reviewed in sub-section §7.2.2 is 

applied, by first considering the eigenvalue decomposition of the spatially smoothed matrix Rss 

in eq.(7.7). Finally, the MUSIC estimator in eq.(7.8) is evaluated, based on the assumption of R=3 

degrees of freedom being present in the measured acceleration response signals. For the other 

sub-Nyquist sampling cases in Table 7-1 the pertinent co-prime parameters are defined in a 

similar manner as above.  

Table 7-1: Adopted co-prime sampling values   

Co-prime Numbers (N1, N2) (3,7) (5,7) (7,11) (7, 13) 

Average sampling rate [Hz] 

1 2

1 1
 

s sN T N T
   

238.10 171.43 116.88 109.89 

(below Nyquist rate) (52.4%) (65.7%) (76.6%) (78.0%) 

Frequency Resolution [Hz] 
1 2

1

sN N T
 23.81 14.29 6.49 5.49 

cross-difference set Ω 

 7 3k   7 5k   11 7k   13 7k  

 1,7   1,9   1,13   1,13  

 0,6k    0,6k    0,10k    0,12k   

Co-prime Numbers (N1, N2) (3,7) (5,7) (7,11) (7, 13) 

Size of spatially smoothed 

autocorrelation matrix 
   1 2 1 21 1N N N N    22 22 36 36 78 78 92 92 

Number of blocks K 285 144 69 59 

Nyquist samples / block (2N1-1) N2 35 63 143 169 

Sub-Nyquist samples / block 2N1+N2-1 12 16 24 26 

 

7.3.3. Identification of closely-spaced structural resonances from noisy data    

Further to the above, Figure 7.2 and Figure 7.3 illustrate the obtained pseudo-spectra for the 

two 3DOF structural systems, respectively. In each figure, the four co-prime cases of Table 7-1 
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are presented in different panels which present in three-dimensional plots the five PSD curves 

derived from co-prime sampled noisy acceleration responses at the five adopted SNR values in 

the range [0, 20] dB. The derived PSDs are normalised to unity amplitude to facilitate comparison 

and plotted with different colours along a horizontal axis labelled after the pertinent SNRs.It is 

readily observed from Figure 7.2 and Figure 7.3 that the efficacy of the adopted sub-Nyquist 

MUSIC algorithm in extracting two closely-spaced natural frequencies depends strongly on the 

frequency resolution supported by the considered co-prime sampling scheme.  

For instance, consider the 1st case study in Figure 7.1(a), in which the first two natural 

frequencies are located very close to each other, yielding a percentage difference of approximately 

df/f=4.5%. For this case, Figure 7.2 (a) reveals that the co-prime MUSIC algorithm associated 

with a low frequency resolution at 23.81Hz (for N1=3, N2=7) cannot separate the closely-spaced 

frequencies; instead, it merges together the two underling resonances, yielding a unique spectral 

peak at an average frequency value. Notably, the third and less excited natural frequency can be 

efficiently retrieved from the resolved spectral peak at 120Hz. Nonetheless, the combination of 

low resolution and high noise level (below 10dB) can lead to false frequency estimation since 

spurious spectral peaks are observed at higher frequencies which lie beyond the range of interest. 

Similar remarks hold for the co-prime sampling case in Figure 7.2 (b) for N1=5, N2=7, pertaining 

to a relatively coarse frequency resolution (at 14.29 Hz) for the problem at hand. On the antipode, 

at a higher resolution of 6.49 Hz, Figure 7.2 (c) confirms that the co-prime MUSIC algorithm 

yields sharper spectral peaks, capable to isolate the two closely-spaced natural frequencies and 

retrieve the poorly excited mode of vibration with high accuracy. It is further observed that the 

adopted pseudo-spectral estimator is practically immune to noise, yielding exactly the same 

performance for SNRs as low as 5dB. More importantly, the proposed sub-Nyquist MUSIC 

algorithm attains higher resolution as larger co-prime numbers are employed (i.e., N1=7, N2=11) 

which are associated with slower sampling rates (i.e., 76.6%) and stronger signal compression 

(see also Table 7-1). Interestingly, Figure 7.2 (d) suggests that the obtained results do not improve 

any further at higher spectral resolution (e.g., 5.49 Hz for N1=7, N2=13) in this particular study.  
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Figure 7.2: Parametric analysis with respect to SNR for the MUSIC and co-prime method for df/f=5% 

(f1=67Hz, f2=70Hz); (a) N1=3, N2=7, resolution 23.81Hz (b) N1=5, N2=7, resolution 14.29Hz 

(c) N1=7, N2=11, resolution 6.49Hz (b) N1=7, N2=13, resolution 5.49Hz 

The above observations are also confirmed in Figure 7.3 for the 2nd case study, which yields 

a larger percentage difference of approximately 6% between the first two resonances of the 

adopted structural system. The latter suggests that the modal coupling effect is less severe in this 

case compared to the previous one, which explains the slightly improved performance of the low-

resolution pseudo-spectral estimators of Figure 7.3 (a, b) in approximating the three underlying 

spectral peaks from compressed measurements.  
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Figure 7.3: Parametric analysis with respect to SNR for the MUSIC and co-prime method for df/f=6% 

(f1=66Hz, f2=70Hz); (a) N1=3, N2=7, resolution 23.81Hz (b) N1=5, N2=7, resolution 14.29Hz 

(c) N1=7, N2=11, resolution 6.49Hz (b) N1=7, N2=13, resolution 5.49Hz 

7.4. Sub-Nyquist MUSIC for Earthquake Damage Detection 

Having proved the efficiency of the sub-Nyquist MUSIC algorithm in resolving closely-

spaced natural frequencies, this numerical example illustrates its usefulness for OMA and 

structural damage detection in low-intensity earthquake excitations by measuring small changes 

in resonances between healthy and damaged structural states.  

7.4.1. Adopted structure and seismic action 

In this numerical example, a planar 3-storey single-bay reinforced concrete frame is 

considered. Figure 7.4 illustrates the adopted structure and provides further the geometrical 

properties of the frame along with the longitudinal and transverse reinforcement of its beams and 

columns. The nominal concrete strength is taken equal to 20MPa, while the characteristic steel 

yielding strength is fyk=400MPa for both the longitudinal and transverse reinforcement and the 
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steel hardening ratio is taken as fuk/fyk=1.15. In computing the axial forces carried by the columns, 

a gravitational uniform distributed load along the beams equal to 35 kN/m is assumed. 

 

Figure 7.4: Configuration details of the adopted reinforced concrete frame 

 

Figure 7.5: Considered Chuetsu-oki (Japan, 2007) horizontal ground motion component: (a) Time-history, 

(b) Squared amplitude of Fourier spectrum 

The structure in Figure 7.4 is then exposed to the horizontal ground motion shown in Figure 

7.5 and to a scaled version of this ground motion by a factor of 0.5, leading to two different levels 

of structural damage. Notably, the considered (unscaled) ground motion of Figure 7.5 was 

recorded from the “Sanjo Shinbori” station during the Mw=6.8 Chuetsu-oki earthquake 

(16.7.2007) that occurred in Japan (see also Ancheta et al. (2014)). It has a peak ground 

acceleration (PGA) equal to 3.17m/s2 and is characterised by high energy in a wide range of 

frequencies. The two different damaged states of the structure in Figure 7.4 are modelled in a 

finite element (FE) software, as detailed in the following sub-section. 

7.4.2. Finite element modelling of earthquake-induced damage 

Non-linear response history analysis is undertaken using the Ruaumoko FE software to 

quantify the structural damage induced to the structure in Figure 7.4 due to the earthquake 

excitation in Figure 7.5 scaled by a factor of 0.5 (damaged state 1) and its unscaled version 

(damaged state 2). To this aim, a non-linear lumped-plasticity FE model is developed, based on 

(a) (b) 
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the material properties, geometry, and detailing of the considered structure given in the previous 

sub-section. This is accomplished by first conducting a section analysis to determine the values 

of the moment capacity- curvature pairs at yielding, My-φy, and at collapse, Mu-φu, at the critical 

(energy dissipation) zones of all the frame members (i.e., ends of all beams and columns in Figure 

7.4). Then, the secant flexural rigidity at yielding, ԐIy=My/φy, corresponding to cracked reinforced 

concrete sections at all the critical zones are obtained. In this respect, Table 7-2 reports the average 

ԐIy values of the two ends at each frame member. Next, the plastic hinge length of all critical 

zones is estimated by the empirical formula (e.g., Priestley et al. (2007)) 
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where Lo is the shear span taken herein as half the structural member length, dbl is the diameter 

of the longitudinal reinforcement, and fyk, fuk/fuk are the steel strength and strain hardening ratio, 

respectively, given in the previous sub-section. In this study, eq. (7.10) yields the value 

Lpl=0.352m for the critical zones in all beams and columns with the exception of the beam at the 

3rd storey exhibiting plastic zones with Lpl=0.246m at both ends. 

Table 7-2: Average secant flexural rigidity at yielding, ԐIy, at the ends of the frame structural members of 

Figure 7.4 

 
Beams Columns 

1st storey 2nd storey 3rd storey 1st storey 2nd storey 3rd storey 

ԐIy [kNm2] 23531 20719 16219 19709 18237 16573 

 

Having obtained the moment capacity-curvature pairs at yielding, My-φy, and at collapse, Mu-

φu, as detailed above, non-linear rotational springs with moment-curvature curves, M-φ, governed 

by the Takeda hysteretic model (e.g., Takeda et al. (1970)), are used to capture the behavior of 

the plastic hinges that may develop at the critical zones of the considered frame under seismic 

excitation. The sections of beams and columns in between the critical zones are modelled as 

linear-elastic with flexural rigidity equal to ԐIy, that is, equal to the secant values at yielding given 

in Table 7-2. 

Non-linear response history analysis is applied to the developed non-linear FE model for the 

ground motion of Figure 7.5 scaled-down by a factor of 0.5 and for the original ground motion 

(unscaled). For both considered ground motion intensities, it is observed that all beam members 

yield, while columns remain elastic. In this regard, the inelastic behaviour of the considered 
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structure represents well the case of a properly detailed reinforced concrete frame structure for 

earthquake resistance. To further illustrate this point and to demonstrate the impact of scaling-

down the considered ground motion by 0.5 in terms of non-linear response behavior, Figure 7.6 

plots the moment-curvature curves at the left plastic hinge on the beam of the 1st storey, for the 

two damaged states considered. Notably, the maximum curvature ductility in Figure 7.6(a) is 

close to unity (i.e., μφ=1.45) associated with a very small structural damage near yield. From 

Figure 7.6, it is readily observed that maximum stiffness degradation occurs at the maximum 

curvature ductility characterised by an effective flexural rigidity, ԐIeff (slope of red dashed lines 

in Figure 7.6), smaller than the secant flexural rigidity at yielding, ԐIy (slope of green dashed lines 

in Figure 7.6, also reported in Table 7-2). In this regard, the average ratio ԐIeff/ԐIy (flexural 

stiffness reduction factor) at the critical zones is herein considered to represent local earthquake-

induced damage related to stiffness degradation as captured by the Takeda hysteretic model 

(which, however, does not take into account the strength deterioration and pinching effects due 

to cyclic loading). Table 7-3 presents the thus defined stiffness reduction factors for the two 

considered damaged states, which yield smaller values within the second case pertaining to a 

seismic event of increased intensity. As expected, the increased severity of the second damage 

state reflects on lower values of stiffness reduction factors for the beams, while columns remain 

practically linear. 

 

Figure 7.6: Moment-curvature (M-φ) hysteretic curves at the left plastic hinge of the 1st storey beam for 

(a) damage state 1 and (b) damage state 2. 

Table 7-3: Flexural rigidity reduction factor (ԐIeff/ԐIy) at critical member zones of the structure in Figure 

7.4 for the two different damage states considered due to different seismic intensity excitation 

 
Beams  Columns 

1st storey 2nd storey 3rd storey 1st storey 2nd storey 3rd storey 

Damaged state 1 0.71 0.53 0.46 1.00 1.00 1.00 

Damaged state 2  0.21 0.15 0.17 1.00 1.00 1.00 

 

(a) (b) 



Chapter 7 – A novel MUSIC-based Approach for Structural Damage Detection from 

 sub-Nyquist Measurements 

 
 

156 

The reduction factors of Table 7-3, obtained from Non-linear response history analysis as 

detailed above, are used to model earthquake-induced structural damage to the structure of Figure 

7.4 due to the two different levels of seismic excitation adopted. Specifically, two equivalent 

linear FE models are defined, corresponding to the two different damage states, in which the 

earthquake-induced damage is represented by means of the flexural stiffness reduction factors of 

Table 7-3. In particular, the latter are assigned to linear beam elements of length Lpl at the 

considered plastic hinge zones, while the remaining non-critical frame members exhibit the 

flexural rigidities in Table 7-2. Notably, this modelling of local structural damage is deemed more 

realistic compared to the arbitrary reductions of floor stiffness (i.e., along the whole length of 

structural members), commonly considered in the relevant literature (e.g., Humar et al. (2006); 

Yan et al. (2010); Loh et al. (2016)). Further, it is assumed that the pre-damage/“healthy” state of 

the considered structure (before the seismic event) is available and is modelled by a linear FE 

model with the secant flexural rigidities at yield presented in Table 7-2, which are assigned to the 

full length of structural members. Moreover, it is assumed that environmental conditions (e.g., 

temperature, humidity, etc.), whose fluctuations may influence the structural dynamic properties 

extracted from standard OMA techniques, are the same before and after the seismic event. Thus, 

in this particular study, any potential change to the modal properties of the considered structure 

is only associated with the seismic action. The latter assumption is reasonable given the small 

duration of a typical earthquake and the fact that a power-efficient VSHM system is installed to 

the structure supported by sensors sampling at a sub-Nyquist rate, allowing for more frequent data 

acquisition and processing. 

7.4.3. System identification and damage detection using co-prime sampling and the 

MUSIC spectrum 

Linear response history analyses are undertaken for the three FE models defined in the 

previous sub-section (healthy plus two damaged states), which are subjected to the same low 

amplitude white noise base excitation of 80s duration. A time discretization step of Ts=0.01s is 

taken corresponding to a Nyquist frequency of 50Hz. The considered excitation models ambient 

wide-band noise input under operational conditions. A critical damping ratio of 5% for all modes 

of vibration is assumed in the analysis. Horizontal response acceleration signals at all floor levels 

are recorded at the Nyquist rate Fs=1/Ts= 100Hz (i.e., 8000 Nyquist measurements per signal) and 

stored. They are treated as noise-free structural response acceleration time-histories due to 

ambient noise, field-recorded by sensors located at each floor. Further, these response signals are 

contaminated with additive Gaussian white noise at three different signal-to-noise ratios (SNRs): 

1020dB (practically noise-free case), 30dB, and 10dB. 
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The obtained discrete-time noisy response acceleration signals from the healthy and the two 

damaged states are compressively sensed using the co-prime sampling strategy reviewed in sub-

section §7.2.1. Considering the optimal performance of the the adopted pseudo-spectral estimator 

shown in §7.3.3, it was deemed reasonable to select herein the co-prime numbers N1=7 and N2=11 

along with the pertinent sampling values reported in Table 7-1. Thus, two co-prime samplers are 

assumed per recording location that operate on uniform sampling rates N1=7 and N2=11 times 

slower than Nyquist, respectively, yielding an average rate which is about 76.6% lower than 

Nyquist. In this numerical evaluation, the autocorrelation matrix in eq.(7.5) is computed from 492 

time-blocks. Each block contains 143 Nyquist samples from which only 24 samples are taken to 

populate the Ryy 
24 24 matrix. It is noted that a certain level of overlapping between the 

considered time blocks occurs, given that the structural response acceleration signals are only 

8000 Nyquist samples long. However, under the wide-sense stationary assumption and implied 

ergodicity in the data, this overlapping does not affect the obtained numerical results. Following 

the same lines as in §7.3.2, the coprime-sampled (compressed) measurements are next used to 

derive the spatially smoothed correlation matrix Rss 
78 78  in eq.(7.6). The latter is further 

treated by the MUSIC algorithm in §7.2.2 to compute the pseudo-spectral estimator in eq.(7.8), 

assuming R=3 degrees of freedom in the measured response acceleration signals.  

Compared to traditional Discrete Fourier Transform (DFT) based spectral estimators, the 

MUSIC algorithm yields a pseudo-spectrum with sharp peaks corresponding to the natural 

frequencies of the white-noise excited 3-storey frame (following standard OMA and linear 

random vibrations considerations), while filtering out additive broadband noise. As an example, 

aiming at system identification, Figure 7.7 plots the conventional periodograms (DFT-based 

spectral estimators) of Nyquist-sampled noisy response acceleration signals (at SNR=10dB), 

recorded at all floors of the healthy 3-storey white-noise excited structure. Figure 7.7 also 

superimposes the MUSIC pseudo-spectra, obtained from both Nyquist-sampled signals (red 

broken line) and co-prime sampled signals (solid blue line) using the approach detailed in section 

§7.1. All spectra are normalised to their peak amplitude to facilitate comparison. It is seen that it 

is not possible to extract the natural frequencies of the structure from the periodogram of the 

considered noisy signals sampled at the Nyquist rate (e.g. the 3rd natural frequency is masked by 

noise). However, the MUSIC pseudo-spectrum estimated directly from the co-prime sampled 

signals (using less than 76% measurements from the sub-Nyquist rate) can be readily used to 

detect the resonant frequencies of the structure with high resolution, even for this extreme noise 

level. More importantly, it is found that the MUSIC pseudo-spectrum derived from the Nyquist 

and the sub-Nyquist sampled signals practically coincide in this case. Thus, the signal information 

pertaining to the natural frequencies of the system is not lost due to a more than 76% signal 

compression at acquisition (sub-Nyquist sampling). 
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Figure 7.7: Spectrum estimation from noisy acceleration response signals with SNR=10dB at the (a) first, 

(b) second, and (c) third floor of the structure in Figure 7.4 (healthy state) subject to 80s 

duration white noise base excitation 

Having demonstrated numerically the capability of the MUSIC spectrum to identify structural 

resonant frequencies from the compressively sensed signals buried in noise, structural damage 

detection is next pursued based on the shifts of the natural frequencies between the healthy state 

of the structure in Figure 7.4, and the two damaged states due to different levels of ground motion 

excitation, as detailed in previous sub-sections. For illustration, Figure 7.8 and Figure 7.9 plot the 

MUSIC spectra obtained by co-prime sampled measurements for damaged states 1 and 2, 

respectively, at all three floors (recording locations). The MUSIC spectra of co-prime sampled 

measurements from the healthy state are superimposed in all panels of Figure 7.8 and Figure 7.9. 

In all plots, a shift of the natural frequencies towards smaller values (more flexible structure) is 

evident indicating structural damage. Apparently, these shifts are relatively much smaller for the 

damage state 1 (i.e., lighter damage near yield pertaining to the scaled-down input ground 

motion), rendering the damage detection problem as a more challenging task. It is further 

important to note that in each panel of Figure 7.8 and Figure 7.9 only two out of the expected 

three structural natural frequencies are detected. Specifically, the MUSIC spectra at the first floor 

do not capture the first (fundamental) natural frequency, while the spectra at the 2nd and the 3rd 

floor do not capture the highest (third) natural frequency. In this regard, the three natural 

frequencies, for each of the three different FE models considered, are estimated by averaging the 

natural frequency values obtained from the MUSIC spectra across all three floors. Table 7-4 and 

Table 7-5 report the thus estimated three natural frequencies (i.e., averaged over the three floors) 

for the different FE models and for three different SNR levels i.e. 1020dB (practically noise-free 

case), 30dB, and 10dB. The “exact” natural frequencies obtained from standard modal analysis 

in Ruaumoko are also reported. It is seen that the MUSIC algorithm coupled with co-prime 

sampling can retrieve the underlying resonant frequencies of the adopted frame in the three 

considered structural states (i.e., one healthy and two damage states, respectively), with a small 

error of 1-5% with respect to the exact solution. Table 7-4 and Table 7-5 further report the 

percentage differences computed between the natural frequencies of the healthy and the damaged 

states in all cases considered – a quantity that is used as an indicator of structural damage. Notably, 

(a) (b) (c) 
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the reported percentages derived from the co-prime MUSIC spectra yield almost the same values 

within the entire SNR range, and closely approximate the percentage differences retrieved from 

the exact modal values (i.e., from the standard modal analysis in Ruaumoko). Thus, the numerical 

results show that the proposed methodology is capable to infer structural damage even in low-

intensity earthquake excitations by capturing small changes to the natural frequencies while being 

practically insensitive to noise. 

 

 

Figure 7.8: MUSIC pseudo-spectra with co-prime sampling of noisy acceleration response signals with 

SNR=10dB at the (a) first, (b) second, and (c) third floor for the healthy and the damaged state 

1 structure in Figure 7.4 

 

Figure 7.9: MUSIC pseudo-spectra with co-prime sampling of noisy acceleration response signals with 

SNR=10dB at the (a) first, (b) second, and (c) third floor for the healthy and the damaged state 

2 structure in Figure 7.4 

Table 7-4: Assessment of MUSIC spectra from co-prime sampled noisy measurements for damage 

detection based on structural natural frequency shifts: damage state 1 

SNR 

[dB] 

 f1 [Hz] 1 1df f  f2 [Hz] 2 2df f  f3 [Hz] 3 3df f  

State* H D [%] H D [%] H D [%] 

∞ exact 1.51 1.40 7% 4.96 4.62 7% 9.68 9.46 2% 

2010  

MUSIC 

1.56 1.44 8% 4.97 4.67 6% 9.69 9.76 1% 

30 1.56 1.43 8% 4.97 4.67 6% 9.68 9.75 1% 

10 1.56 1.43 8% 4.96 4.66 6% 9.58 9.74 2% 

*H: healthy; D: damaged 

  

(a) (b) (c) 

(a) (b) (c) 
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Table 7-5: Assessment of MUSIC spectra from co-prime sampled noisy measurements for damage 

detection based on structural natural frequency shifts: damage state 2 

SNR 

[dB] 

 f1 [Hz] 1 1df f  f2 [Hz] 2 2df f  f3 [Hz] 3 3df f  

State* H D [%] H D [%] H D [%] 

∞ exact 1.51 1.07 29% 4.96 3.97 20% 9.68 9.09 6% 

2010  

MUSIC 

1.56 1.13 27% 4.97 3.98 20% 9.69 9.38 3% 

30 1.56 1.13 28% 4.97 3.98 20% 9.68 9.36 3% 

10 1.56 1.13 28% 4.96 3.97 20% 9.58 9.21 4% 

*H: healthy; D: damaged 

7.5. Concluding Remarks 

This chapter explored the potential of a recently established sub-Nyquist pseudo-spectral 

estimation method for VSHM in civil engineering structures instrumented with wireless sensors 

of reduced power demands. The adopted approach relies on a deterministic sub-Nyquist sensing 

technique – termed co-prime sampling – to acquire compressed structural data at a much lower 

average sampling rate than Nyquist. The acquired measurements are treated as stationary 

stochastic processes free from sparsity requirements. Further, the considered method exploits the 

MUSIC super-resolution pseudo-spectrum estimator to identify structural natural frequencies by 

processing noise-corrupted compressed data. This involves signal processing operations directly 

in the compressed domain, without requiring any filtering and/or computationally expensive 

signal reconstruction operations in time-domain.  

It was shown that the adopted co-prime MUSIC-based strategy is a potent tool for OMA, 

capable to efficiently address the structural modal coupling effect even by treating response 

signals buried in noise. This was numerically verified within a simulation-based framework using 

accelerations responses originating from a white-noise excited structural system with 2 closely-

spaced modes of vibration carrying the same amount of energy, and a 3rd less excited vibrating 

mode under the considered forcing case. Parametric analyses were conducted using noise-

corrupted compressed data at five SNRs between 0 and 20 dB, by employing four different pairs 

of co-prime numbers associated with different sub-Nyquist rates and spectral resolutions. It was 

shown that higher resolution is achieved at stronger signal compression levels (i.e., larger co-

prime numbers), which further allows the separation of very closely-spaced structural resonant 

frequencies (with a percentage difference of roughly 4.5%) from a significantly reduced number 

of noisy measurements at SNRs as low as 5dB.   

Further to the above, a novel structural damage detection approach was proposed, based on 

small changes to the structural natural frequencies, before and after a seismic event of low-

intensity. These resonant frequencies are extracted from sub-Nyquist sampled acceleration 
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response signals within an operational modal analysis framework. It is assumed that within this 

short time interval (i.e., pre- and post- earthquake), the environmental conditions remain the same 

and thus any (likely to be slight) change to the natural frequencies is caused by the input seismic 

action to the structure. The effectiveness and applicability of the proposed approach was 

numerically evaluated using a white-noise excited linear reinforced concrete 3-storey frame in a 

healthy and two damaged states caused by two ground motions of increased intensity. The 

damaged models were simulated with locally reduced effective flexural rigidities (i.e., along the 

plastic hinge zones), computed by non-linear response history analysis and the Takeda hysteretic 

model. The numerical results demonstrate that the considered approach is capable to detect very 

small structural damage directly from the compressed measurements even for high noise levels at 

SNR=10dB. It was further shown that any additive broadband noise during data acquisition does 

not affect the damage detection capabilities of the proposed approach (at least for the noise levels 

encountered in practical applications) as such kind of noise is filtered out by application of the 

MUSIC spectral estimator.  

The above results suggest that the adopted approach makes a dependable noise-immune 

structural damage detection technique that can be potentially embedded within arrays of wireless 

sensors for cost-efficient (in terms of data sampling and wireless transmission rates) VSHM in 

seismically prone regions. 
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Chapter 8 

 Conclusions 

This thesis has focused on novel algorithmic approaches supporting sub-Nyquist data 

acquisition and processing techniques to reduce the power consumption in wireless sensor 

networks used for operational modal analysis and data-driven damage detection in civil 

engineering structures. By exploiting recent theoretical and technological advances, the proposed 

methods achieve simultaneous data acquisition and compression at the sensor front-end, 

eliminating the need for local on-sensor data processing. The latter consideration directly 

translates into minimum sensor complexity with reduced computational, power, and memory 

requirements, enabling low-cost and power-efficient monitoring deployments in densely 

instrumented structures. This final section summarises the milestones reached in each chapter and 

highlights the main contributions of this research, concluding with recommendations for future 

work.  

8.1. Summary and Main Contributions 

The latest advances in sub-Nyquist data acquisition strategies for low-power and reliable 

wireless VSHM in civil engineering structures have been reviewed in Chapter 2 (§2. Compressive 

Sensing: Basic Concepts & Applications in VSHM). These strategies rely on random sampling 

schemes and signal reconstruction operations, originating from the theory of compressive sensing 

(CS). In this respect, Chapter 2 explained the basic principles of the CS theory followed by an 

extensive literature survey on the state-of-the-art CS-based VSHM approaches and discussed their 

limitations which are summarised as follows.  

• Limitation 1: Time-domain signal reconstruction, sparsity constraints and computational 

cost   

The aim of CS signal reconstruction operations is to retrieve time-domain response data at 

Nyquist rate (or above) from a considerably reduced number of measurements. This is an 

underdetermined problem with increased computational demands that yields a unique solution 

when subjected to signal’s sparsity constraints.  
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Limitation 2: Sparsity requirements on a pre-defined vector basis  

The signal compression level for which quality CS-based signal reconstruction can be 

achieved is limited by the sparsity level of the monitored response acceleration signals on a pre-

defined vector basis. It was observed that the widely-used discrete Fourier transform (DFT) basis 

does not provide significantly sparse representations of structural responses due to detrimental 

noise folding and spectral leakage, while the consideration of alternative expansion bases, such 

as the discrete Haar wavelet basis, does not significantly improve the underlying signal sparsity. 

It was recognised that generalised harmonic wavelet bases or over-complete dictionaries may 

enhance the signals’ sparsity attributes, although such practices depend strongly on the 

application at hand. 

• Limitation 3: Unknown signal sparsity and noise influence in practical applications 

In practice, field-recorded structural response signals are not strictly sparse on a given domain 

(i.e., compressible signals) but they can be adequately approximated as sparse representations. 

Further, the actual sparsity/compressibility level of real-time monitored signals is not known in 

advance while it is adversely affected by environmental noise. Notably, information on the sparse 

signal structure can only be retrieved from signal processing operations at the expense of 

increased computational, power, and memory demands. In the absence of such information, a 

target sparsity level should be assumed in the CS sparse signal recovery step, the selection of 

which is not trivial since it is associated with a trade-off between reconstruction accuracy and 

computation complexity.  

Aiming to address Limitation 2 and improve the efficiency of CS-based VSHM approaches, 

Chapter 3 (§3. CS-based Damage Detection Using the Relative Wavelet Entropy) examined the 

“sparsest” representation of structural acceleration responses on the wavelet transform domain 

using four energy-preserving wavelet analysis filter banks (i.e., Haar, smooth Daubechies, Meyer, 

Harmonic) with different frequency domain attributes. The suitability of the adopted wavelet 

bases was numerically assessed in terms of data-driven structural damage identification results 

(i.e., damage detection and localisation) considering the relative wavelet entropy (RWE) index – 

a damage-sensitive quantity that has been efficiently embedded on wireless sensors for VSHM 

deployments. This comprehensive numerical study was mainly driven by the signal sparsity 

requirements of the CS theory and motivated by the lack of comparative studies and practical 

recommendations for the computation of the RWE. 

Thus, the conventional RWE approach was numerically tested on full-length response 

acceleration datasets obtained from a healthy and a damaged state of a benchmark structure 

subject to broadband excitations, and RWE values were reported vis-à-vis for the four different 

wavelet filter banks. The reported numerical data confirmed that frequency selectivity and 

resolution across the scales of the wavelet analysis filter bank are the key for achieving enhanced 
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RWE-based stationary damage detection/localisation drawing information about damage from 

multiple mode shapes. It was shown that the widely-used Haar wavelets in conjunction with the 

standard dyadic discrete wavelet transform suffer from significant energy leakage across scales 

and may not be able to detect damage based on information carried at relatively high frequencies. 

It was further confirmed that wavelet filter banks with enhanced frequency selectivity among 

scales reduce spectral leakage, enabling the detection of damage in the vicinity of structural 

resonances at the excited modes of vibration. Thus, it was verified that the harmonic wavelets are 

the most effective for RWE-based stationary damage detection as they are not limited by the 

dyadic discrete wavelet transform discretisation and can achieve any level of frequency 

resolution.  

An important contribution of Chapter 3 was the development of a novel data-driven damage 

detection approach that couples the CS theory with the RWE damage index using sparse signal 

representations on the harmonic wavelet transform. Based on random sub-Nyquist sampling 

schemes, the proposed method can significantly reduce the number of acquired and wirelessly 

transmitted measurements. Considering a “partial” harmonic wavelet basis matrix saved at the 

server, standard CS-reconstruction algorithms (e.g., CoSaMP) can be used to retrieve the 

underlying harmonic wavelet coefficients and derive the CS-based RWE damage index directly 

from the received compressed data without recovering the full-length acceleration response 

signals in time-domain. It was shown that this novel approach yields highly sparse structural 

response signals on the harmonic wavelet transform, being capable to detect structural damage 

equally well with the conventional RWE method while drastically reducing the required number 

of data samples by 80%-90% compared to traditional uniform-in-time sampling schemes. The 

numerical results suggest that the proposed CS-based RWE is a potent tool for inexpensive data-

driven damage detection implementations in civil structures instrumented with wireless sensors 

of low energy demands.  

Chapter 4 (§ 4. Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: 

Theory) provided the theoretical development of a multi-sensor power spectrum blind sampling 

(PSBS) approach capable to circumvent the CS limitations detailed above. This innovative 

approach extends a previously considered PSBS technique supporting single sensor deployments 

and it was proposed herein, for the first time, as a viable alternative for low-power WSNs used 

for operational modal analysis (OMA) and data-drive damage detection in civil structures. This 

is a fundamentally different approach that enjoys numerous advantages over the current CS-based 

approaches, in that:  

• It relies on a common deterministic multi-coset sampling pattern among sensors, capable 

to acquire signals at sub-Nyquist rates (i.e., compression) without imposing sparsity 

conditions; 
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• It is genuinely signal agnostic, theoretically and numerically, and, therefore, it does not 

require any a priori knowledge of the signal structure (e.g., sparsity); 

• It only requires that signals be wide-sense stationary which is in alignment with OMA 

theory;  

• It retrieves auto/cross power-spectral density estimates directly from compressed data by 

solving a least-squares optimisation problem while by-passing signal reconstruction 

operations in time-domain; 

• It attains a computationally efficient and relatively fast algorithm that mathematically relies 

on overdetermined systems of linear equations that can be easily solved; 

• It can be fused with standard OMA algorithms (e.g., FDD algorithm) for structural natural 

frequency and mode shape estimation, and combined further with data-driven damage 

detection strategies based on the extracted modal information (e.g., the modal strain energy 

damage index). 

The efficacy of the developed PSBS approach was numerically assessed in Chapter 5 (§5. 

Proposed Multi-Sensor Power Spectrum Blind Sampling Approach for OMA: Applications) while 

its superiority over a recently proposed CS-based approach (e.g., O’Connor et al. (2014)) was 

numerically verified in Chapter 6 (§6. Assessment of the Proposed PSBS Approach vis-à-vis CS-

based Approach for OMA). The numerical evaluation was performed with wide-sense stationary 

acceleration response signals measured on structures under low-amplitude ambient excitations. 

The considered datasets involved both synthetic (computer-simulated) data – generated either by 

linear analyses in white-noise excited finite element models or by white-noise sequences coloured 

via ARMA filters – and field-recorded acceleration responses originating from actual monitoring 

campaigns (i.e., an operational wind turbine in Lübbenau, Germany, and an overpass in Zurich, 

Switzerland). By adopting an optimal multi-coset sampling scheme in the mean square error 

sense, simulated compressed acceleration data were derived at various compression ratios (CRs) 

ranging between 11% and 50% (i.e., 89% and 50% fewer measurements compared to 

conventional uniform-in-time sampling schemes).  

In this study, the primary focus was on extracting quality modal estimates (natural frequencies 

and mode shapes) from a significantly reduced number of measurements with special attention 

drawn on identifying closely-spaced and poorly excited modes of vibration in noisy environments 

pertaining to signal-to-noise-ratios (SNRs) as low as zero decibel (i.e., 0 dB – extreme noise case 

yielding equal power in signal and noise components). The identification of local structural 

damage has also been addressed within the OMA context, using sub-Nyquist noisy acceleration 

response datasets at various structural states (i.e., reference/healthy and damaged states).  
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It was observed that the accuracy of the proposed method depends on the power spectral 

recovery performance of the PSBS strategy. The latter was found to be a function of the acquired 

number of compressed measurements, controlled by the adopted CR value in a fixed observation 

time-window. It was further confirmed that the PSBS method can efficiently recover power 

spectral densities (PSDs) directly from sub-Nyquist-sampled acceleration data even in cases of 

closely-spaced structural vibrating modes whose resonant frequencies are spaced less than 1 Hz 

apart (i.e., 20rad/s and 25rad/s). This novel spectral estimation method was shown to be 

practically insensitive to additive noise for SNRs as low as 10dB. At higher noise levels, though, 

of the order of 0 dB, larger errors were observed on the recovered PSDs estimates. However, such 

extreme noise cases may not be encountered in practical VSHM deployments.  

Overall, it was confirmed that multi-sensor PSBS approach can retrieve quality modal 

estimates even for the lowest considered CR value at 11% pertaining to 89% fewer data compared 

to conventional uniform-in-time sampling schemes (at Nyquist rate or above), yielding natural 

frequency estimates with small errors of the order of 1-5% (depending on the application), and 

modal deflected shapes with MAC values well above 0.9 (i.e., the established modal assurance 

criterion for accurate mode shape extraction).   

The damage detection capabilities of the PSBS method were tested for CR=31% and a wide 

range of SNR values. The numerical results demonstrated that the proposed multi-sensor PSBS 

technique coupled with standard OMA and damage detection approaches can identify the location 

of light structural damage of equal quality compared to conventional approaches at Nyquist rate, 

using less than 69% of data samples buried in high level noise with SNR at 10 dB. Thus, it was 

confirmed that the PSBS approach can infer structural damage directly from the recovered PSDs 

in the compressed domain without returning the monitored signals deterministically in time 

domain.     

The comparison against the CS-based approach by O’Connor et al. (2014) revealed that the 

inherent signal agnostic attributes of the proposed multi-sensor PSBS-based approach renders the 

latter method more advantageous in cases where high signal compression levels are desired to 

address sensor power consumption and wireless bandwidth transmission limitations. In fact, it 

has been numerically shown and theoretically justified, that, for a given sub-Nyquist sampling 

rate, the capability of the CS-based approach to extract faithful estimates of the mode shapes 

depends heavily on the target sparsity level, ST, which needs to be assumed in the CS signal 

reconstruction step. It has also been demonstrated that the accuracy of the CS-based approach 

improves at larger ST values at the cost of higher computational effort reflected on the increased 

required runtime of the adopted CS sparse signal recovery algorithm. However, no increase to the 

assumed ST value can compensate for the acquisition of an excessively small number of 

compressed measurements which is the case for CR=11% for all the sets of acceleration signals 

considered in this work. In this regard, it is concluded that conservative compression ratios should 
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be adopted in using the CS-based approach to ensure acceptable quality of modes shapes, 

especially in the case where no prior knowledge on the acceleration signal sparsity is available. 

On the antipode, it was numerically shown that the signal-agnostic PSBS-based approach 

performs equally well and consistently better than the CS-based approach in extracting mode 

shapes from compressively sampled acceleration signals. In fact, the PSBS-based approach yields 

MAC>0.96 even for the low-sparse signals contaminated with white noise at SNR=10dB and for 

low sampling rates at CR=11% (i.e., 89% below the Nyquist rate). It was further confirmed that 

significant energy gains can be achieved by the proposed method at such low CRs using battery-

operated wireless sensors, leading to drastic reductions on individual sensor power consumption 

and, therefore, to considerable increase of battery life expectancy which enables the sustainability 

of OMA monitoring systems.  

Finally, a novel structural damage detection approach was developed in Chapter 7 (§7. A 

Novel MUSIC-Based Approach for Structural Damage Detection from Sub-Nyquist 

Measurements), capable to capture small shifts in structural natural frequencies before and after 

a seismic event of low intensity using compressed acceleration data contaminated with broadband 

noise. This novel approach relies on a recently established sub-Nyquist pseudo-spectral 

estimation method which combines the deterministic co-prime sensing technique with the MUSIC 

super-resolution pseudo-spectrum estimator. The latter shares certain common features with the 

PSBS technique, given the signal-agnostic nature of the co-prime sampling scheme which applies 

to wide-sense stationary signals without being limited by sparsity constraints. Despite these 

similarities, these two strategies are fundamentally different, in that:  

• the co-prime sampling scheme relies on two sensors per acceleration channel operating at 

different sub-Nyquist rates and accumulating collectively in time a much smaller number 

of measurements than a single sensor operating at Nyquist rate; 

• the MUSIC algorithm is not a true PSD estimator, yielding a spectrum-like shape with very 

sharp peaks at the frequency components of the monitored accelerations responses (i.e., 

structural resonances) based on a priori knowledge of the number of the excited structural 

vibrating modes; 

• the sub-Nyquist MUSIC-based approach retrieves only auto power-spectral estimates 

directly from compressed measurements using a spatially smoothing technique, by-passing 

signal reconstruction operations in time-domain; 

• it solely identifies structural natural frequencies but it does not retrieve any information 

related to the modal deflected shapes of the monitored structure. 

The numerical results confirmed that the considered sub-Nyquist pseudo-spectral estimation 

approach can efficiently address, with high resolution, the modal coupling effect in extreme noise 
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environments with SNRs as low as 5dB. In fact, it was verified that higher spectral resolution is 

achieved at stronger signal compression levels (i.e., larger co-prime numbers) which are 

associated with lower average sub-Nyquist sampling rates. The damage detection capabilities of 

the proposed approach were also verified even in cases of very small structural damage using 

compressed data corrupted with high noise levels (of SNRs up to 10dB). Thus, it was concluded 

that the proposed method supports a dependable noise-immune structural damage detection 

technique that can be potentially embedded within arrays of wireless sensors for cost-efficient (in 

terms of data sampling and wireless transmission rates) VSHM in seismically prone regions. 

8.2. Recommendations for Future Research 

The development of this thesis sets an agenda for further research in structural health 

monitoring algorithms supporting the use of low-energy wireless sensors.  

One potential line for future research lies on the consideration of advanced wavelet analysis 

tools to improve further the CS-based RWE damage index. Among others, the wavelet packet 

transform is a potent tool, which relaxes the strict dyadic discretisation of the discrete wavelet 

transform to “zoom-in” specific frequency bands of interest while it is applicable to any energy-

preserving wavelet family. Thus, the wavelet packet transform can be used in to “target” natural 

frequencies of a given structure and, therefore, to capture changes to the wavelet energy 

distribution of response signals associated with structural damage (e.g., Yen & Lin (2000); Sun & 

Chang (2004)). Another recommendation is the utilisation of a harmonic wavelet transform 

spanning frequency bins of non-constant width (e.g., Giaralis & Spanos (2009)) to achieve 

enhanced frequency resolution in the vicinity of the known natural frequencies and, therefore, to 

yield more efficient CS-based RWE damage detection. 

Within this context, it is recognised that the sparsest signal representation can be achieved in 

basis functions that are as close as possible to the analysed structural vibrating responses. In this 

respect, the derivation of customised wavelet basis that closely trace the shape of time-varying 

structural signals may be a promising tool for stronger signal compression and more efficient 

signal reconstruction based on standard CS algorithms. A stepping-stone in this line of research 

could be the customised wavelet bases derived from single-degree-of-freedom under-damped 

linear oscillators (see also Dick et al. (2012)), in which the impulse response signals of civil 

engineering structures are expected to be sufficiently sparse. 

The distributed compressive processing framework (e.g., Baron et al. (2009)) can be cast as 

another field for future research in CS-based VSHM applications with the scope of reducing 

further the power and computational demands in wireless sensor network (WSN) deployments. 

This can be achieved by exploiting the inherent temporal, spatial and joint sparsity attributes of 

structural dynamic signals recorded at different locations on the monitored structure. Thus, a 
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minimum number of encoded (compressed) measurements can be acquired by each sensor and 

directly transmitted to the server, eliminating the communication among sensors. The encoded 

measurements can be collectively processed to jointly recover multiple response signals, thus, 

providing a viable tool for fast and power efficient VSHM implementations, especially in densely 

instrumented structures.  

The above idea of distributed processing in the compressed domain may also be applicable 

within the multi-sensor PSBS strategy developed in this thesis. This interesting extension can be 

investigated under the consideration of multiple wireless sensors operating on different multi-

coset sampling patterns to achieve higher signal compression at lower sub-Nyquist sampling rates 

per sensor, yielding significant gains in energy. The proposed research may be facilitated by 

recent findings of Ariananda et al. (2014) focused on cooperative compressive power spectrum 

estimation of a single input signal entering multiple multi-coset samplers that operate on different 

sampling patterns.  

The multi-sensor PSBS approach and the mathematical framework in Chapter 4 could be 

possibly extended to non-stationary structural response data, observing time-dependent amplitude 

and frequency content (e.g., structural responses subject to nonlinear phenomena). Such 

theoretical developments may be facilitated by the recent study of Lim & Wakin (2016), expected 

to be particularly useful into VSHM applications under extreme events and actions by providing 

important information about the onset of structural damage and/or changes in dynamic 

characteristics in real-time. 

Another aspect that sets the scene for promising future research is the consideration of the 

PSBS strategy to rectify the problem of data loss in WSNs for VSHM applications, which, to the 

best of the author’s knowledge, has yet to be addressed in the literature. Thus, the potential 

applicability of the proposed method should be explored in cases when random or continuous data 

packet loss occurs. In such cases, special attention should be given on assessing the efficiency of 

the power spectral recovery from incomplete measurements using the deterministic multi-coset 

sampling technique which relies on pre-defined sample delays (i.e., the entries of the sampling 

pattern sequence).  

Further, it is envisioned that the developed multi-sensor PSBS strategy fused with multi-coset 

sampling will open new directions within the research field of optimal sensor placement (e.g., 

Papadimitriou (2004)) by exploiting the spatial attributes of structural responses to achieve 

compression in space-domain (i.e., spatial compression). For example, in structural modal 

identification applications, the number and location of sensors required to capture a given number 

of significant modes of vibration would coincide with the number of cosets and the delay values 

in the adopted sampling pattern sequence, respectively. If successful, this can pave the way 

towards concurrent compression in both time and space domains (i.e., spatio-temporal 

compression), leading towards optimal VSHM applications using the minimum information and 
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effort required for quality structural condition assessment. Within this context, the co-prime 

sampling scheme could also be advantageous, since it has proved efficient in both temporal and 

spatial compression to address the direction-of-arrival estimation problem in telecommunication 

signals (see also Pal & Vaidyanathan (2011); Vaidyanathan & Pal (2011)).  

As a final note, new insights will be gained regarding the feasibility of the novel algorithmic 

approaches discussed in this thesis through experimental testing in actual field deployments, 

which is warranted for future work. Currently, this remains a challenging task due to the lack of 

commercially available sensing units with embedded compressive sampling schemes. The latter 

may be facilitated by the rapid technological advances in efficient design of compressive sensor 

prototypes, but such aspects are an open area of research in the sensors community.  

It is aspired that the benefits gained from the multidisciplinary approaches presented in this 

thesis and the novel directions suggested for future research will enable cost-efficient VSHM 

deployments in terms of power, computational, and monetary cost, paving the way towards more 

resilient civil engineering structures. 

 

  



 



173 

 

Bibliography 

 

Akyildiz, I.F., Lo, B.F. & Balakrishnan, R., 2011. Cooperative spectrum sensing in cognitive 

radio networks: A survey. Physical Communication, 4(1), pp.40–62.  

Amezquita-Sanchez, J.P. & Adeli, H., 2016. Signal Processing Techniques for Vibration-Based 

Health Monitoring of Smart Structures. Archives of Computational Methods in 

Engineering, 23(1), pp.1–15.  

Amezquita-Sanchez, J.P. et al., 2012. High-resolution spectral-analysis for identifying the natural 

modes of a truss-type structure by means of vibrations. Journal of Vibration and Control, 

19(16), pp.2347–2356.  

Ancheta, T.D., Darragh, R.B. & Stewart, J.P., 2014. Pacific Earthquake Engineering PEER NGA-

West2 Database.  

Ariananda, D.D. & Leus, G., 2012. Compressive Wideband Power Spectrum Estimation. Signal 

Processing, IEEE Transactions on, 60(9), pp.4775–4789. 

Ariananda, D.D. & Leus, G., 2012. Cooperative compressive wideband power spectrum sensing. 

In 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems 

and Computers (ASILOMAR). IEEE, pp. 303–307.  

Ariananda, D.D., Romero, D. & Leus, G., 2014. Cooperative compressive power spectrum 

estimation. In 2014 IEEE 8th Sensor Array and Multichannel Signal Processing 

Workshop (SAM). IEEE, pp. 97–100.  

Axell, E., Leus, G., Larsson, E. & Poor, H., 2012. Spectrum Sensing for Cognitive Radio : State-

of-the-Art and Recent Advances. IEEE Signal Processing Magazine, 29(3), pp.101–116. 

Bajwa, W.U., Haupt, J.D., Raz, G.M., Wright, S. J., & Nowak, R.D., 2007. Toeplitz-Structured 

Compressed Sensing Matrices. In 2007 IEEE/SP 14th Workshop on Statistical Signal 

Processing. IEEE, pp. 294–298.  

Bao, Y. Li, H., Sun, X., Yu, Y. & Ou, J., 2013. Compressive sampling-based data loss recovery 

for wireless sensor networks used in civil structural health monitoring. Structural Health 

Monitoring, 12(1), pp.78–95. 

Bao, Y., Beck, J.L. & Li, H., 2011. Compressive sampling for accelerometer signals in structural 

health monitoring. Structural Health Monitoring, 10(3), pp.235–246.  

Bao, Y., Li, H. & Ou, J., 2014. Emerging data technology in structural health monitoring: 

Compressive sensing technology. Journal of Civil Structural Health Monitoring, 4(2), 

pp.77–90.  

Bao, Y., Shi, Z., Wang, X. & Li, H., 2017. Compressive sensing of wireless sensors based on 

group sparse optimization for structural health monitoring. Structural Health 

Monitoring: An International Journal, p.147592171772145. 

Baraniuk, R. Davenport, M., Duarte, M. F. & Hegde, C., 2011. An Introduction to Compressive 

Sensing. Connexions, Rice University, Houston,Texas, p.118.  



174 

Baraniuk, R., 2007. Compressive Sensing [Lecture Notes]. IEEE Signal Processing Magazine, 

24(4), pp.118–121.  

Baron, D., Duarte, M.F., Wakin, M.B., Sarvotham, S. & Baraniuk, R.G., 2009. Distributed 

Compressive Sensing. arXiv:0901.3403v1.  

Becker, S.R., 2011. Practical compressed sensing : modern data acquisition and signal 

processing. Ph.D thesis in California Institute of Technology Pasadena, California. 

Bendat, J.S. & Piersol, A.G., 2010. Random Data: Analysis and Measurement Procedures 4th 

ed., Hoboken, New Jersey: John Wiley & Sons, Inc.  

Bjornson, E. & Ottersten, B., 2010. A Framework for Training-Based Estimation in Arbitrarily 

Correlated Rician MIMO Channels With Rician Disturbance. IEEE Transactions on 

Signal Processing, 58(3), pp.1807–1820. 

Black, W.C. & Hodges, D.A., 1980. Time Interleaved Converter Arrays. IEEE Journal of Solid-

State Circuits, 15(6), pp.1022–1029. 

Blanco, S., Figliola, A., Quian Quiroga, R., Rosso, O. A. & Serrano, E., 1998. Time-frequency 

analysis of electroencephalogram series. III. Wavelet packets and information cost 

function. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related 

Interdisciplinary Topics, 57(1), pp.932–940. 

Brincker, R. & Ventura, C.E., 2015. Introduction to Operational Modal Analysis, Chichester, 

UK: John Wiley & Sons, Ltd.  

Brown, J.C., 1991. Calculation of a constant Q spectral transform. The Journal of the Acoustical 

Society of America, 89(1), p.425. 

Brownjohn, J.M.W., 2007. Structural health monitoring of civil infrastructure. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 

365(1851), pp.589–622. 

Bruckstein, A.M., Donoho, D.L. & Elad, M., 2009. From Sparse Solutions of Systems of 

Equations to Sparse Modeling of Signals and Images. SIAM Review, 51(1), pp.34–81. 

Camarena-Martinez, D., Amezquita-sanchez, J. P., Valtierra-rodriguez, M., Romero-troncoso, R. 

J., Osornio-rios, R. A. & Garcia-perez, A., 2014. EEMD-MUSIC-Based Analysis for 

Natural Frequencies Excitations. The Scientific World Journal, 2014, pp.1–12. 

Candès, E., 2006. Compressive sampling. Proceedings of the International Congress of 

Mathematicians: Madrid, pp.1433–1452. 

Candès, E.J., 2008. The restricted isometry property and its implications for compressed sensing. 

Comptes Rendus Mathematique, 346(9–10), pp.589–592.  

Candès, E.J., Romberg, J. & Tao, T., 2006. Robust uncertainty principles: Exact signal 

reconstruction from highly incomplete frequency information. IEEE Transactions on 

Information Theory, 52(2), pp.489–509. 

Chatzi E.N. & Spiridonakos M.D., 2015. Incorporating Uncertainty in Vibration-Based 

Monitoring and Simulation. In Fourth International Conference on Soft Computing 

Technology in Civil, Structural and Environmental Engineering (CIVIL-SOFT-COMP 

2015). Prague, Czech Republic. 

Chatzi, E.N. & Spiridonakos, M.D., 2015. Structural Identification and Monitoring based on 

Uncertain/Limited Information. In MATEC Web of Conferences, EVACES’15, 6th 

International Conference on Experimental Vibration Analysis for Civil Engineering 

Structures. 

Cohen, D. & Eldar, Y., 2014. Sub-Nyquist Sampling for Power Spectrum Sensing in Cognitive 

Radios: A Unified Approach. IEEE Transactions on Signal Processing, 62(15), 

pp.3897–3910. 



175 

Cohen, L., 1995. Time-frequency analysis, Prentice Hall PTR. 

Comerford, L., Kougioumtzoglou, I.A. & Beer, M., 2015. Compressive sensing based stochastic 

process power spectrum estimation subject to missing data. Probabilistic Engineering 

Mechanics, 44, pp.66–76. 

Cornwell, P., Doebling, S.W. & Farrar, C.R., 1999. Application of the Strain Energy Damage 

Detection Method To Plate-Like Structures. Journal of Sound and Vibration, 224(2), 

pp.359–374. 

Daubechies, I., 1992. Ten lectures on wavelets, Society for Industrial and Applied Mathematics 

(SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104). 

Davenport, M.A. & Wakin, M.B., 2012. Compressive sensing of analog signals using Discrete 

Prolate Spheroidal Sequences. Applied and Computational Harmonic Analysis, 33(3), 

pp.438–472.  

Davenport, M.A., Boufounos, P.T., Wakin, M.B. & Baraniuk, R.G., 2010. Signal Processing With 

Compressive Measurements. Selected Topics in Signal Processing, IEEE Journal of, 

4(2), pp.445–460. 

Davenport, M.A., Laska, J.N., Treichler, J.R. & Baraniuk, R.G., 2012. The Pros and Cons of 

Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic 

Range. IEEE Transactions on Signal Processing, 60(9), pp.4628–4642. 

Dick, A.J., Phan, Q.M., Foley, J.R. & Spanos, P.D., 2012. Calculating scaling function 

coefficients from system response data for new discrete wavelet families. Mechanical 

Systems and Signal Processing, 27, pp.362–369. 

Doebling, S.W., Farrar, C.R. & Prime, M.B., 1988. A summary Review of Vibration-Based 

Damage ldentification Methods. The Shock and Vibration Digest, 30(2), pp.91–105. 

Donoho, D.L., 2006. Compressed sensing. IEEE Transactions on Information Theory, 52(4), 

pp.1289–1306.  

Duarte, M.F. & Baraniuk, R.G., 2013. Spectral compressive sensing. Applied and Computational 

Harmonic Analysis, 35(1), pp.111–129.  

Duarte, M.F., Shen, G., Ortega, A. & Baraniuk, R. G., 2012. Signal compression in wireless 

sensor networks. Philosophical transactions. Series A, Mathematical, physical, and 

engineering sciences, 370(1958), pp.118–35. 

Ewins, D.J., 2000. Modal testing: Theory practice and application, 2nd ed., Research Studies 

Press. Baldock. 

Feng, P. & Bresler, Y., 1996. Spectrum-blind minimum-rate sampling and reconstruction of 

multiband signals. Proceedings of 3rd IEEE International Conference on Image 

Processing, 1, pp.1688–1691. 

Foti, D., Gattulli, V. & Potenza, F., 2014. Output-Only Identification and Model Updating by 

Dynamic Testing in Unfavorable Conditions of a Seismically Damaged Building. 

Computer-Aided Civil and Infrastructure Engineering, 29(9), pp.659–675.  

Ganesan, V., Das, T., Rahnavard, N. & Kauffman, J. L., 2017. Vibration-based monitoring and 

diagnostics using compressive sensing. Journal of Sound and Vibration, 394, pp.612–

630. 

Gattulli, V., Potenza, F., Graziosi, F., Federici, F., Colarieti, A. & Faccio, M., 2014. Distributed 

Structural Monitoring for a Smart City in a Seismic Area. Key Engineering Materials, 

628, pp.123–135.  

Giaralis, A. & Spanos, P.D., 2009. Wavelet-based response spectrum compatible synthesis of 

accelerograms—Eurocode application (EC8). Soil Dynamics and Earthquake 

Engineering, 29(1), pp.219–235.  



176 

Giaralis, A. & Spanos, P.D., 2012. Derivation of response spectrum compatible non-stationary 

stochastic processes relying on Monte Carlo-based peak factor estimation. Earthquakes 

and Structures, 3(5), pp.581–609. 

Gkoktsi, K. & Giaralis, A., 2014. On the influence of frequency selectivity of wavelet bases for 

relative wavelet entropy-based structural damage localization. In 6th World Conference 

on Structural Control and Monitoring (6WCSCM). pp. 1366–1378. 

Gkoktsi, K. & Giaralis, A., 2015. Effect of frequency domain attributes of wavelet analysis filter 

banks for structural damage localization using the relative wavelet entropy index. 

International Journal of Sustainable Materials and Structural Systems (IJSMSS), 2(1/2), 

pp.134–160. 

Gkoktsi, K. & Giaralis, A., 2016. Assessment of sub-Nyquist deterministic and random data 

sampling techniques for operational modal analysis. In 8th European Workshop On 

Structural Health Monitoring (EWSHM 2016). Bilbao, Spain. 

Gkoktsi, K. & Giaralis, A., 2017. A multi-sensor sub-Nyquist power spectrum blind sampling 

approach for low-power wireless sensors in operational modal analysis applications. 

Mech. Syst. Signal Process. (under review, submitted September 2017). 

Gkoktsi, K. & Giaralis, A., 2017. Assessment of sub-Nyquist deterministic and random data 

sampling techniques for operational modal analysis. Structural Health Monitoring: An 

International Journal, 16(5), pp.630–646. 

Gkoktsi, K., Giaralis, A. & TauSiesakul, B., 2016. Sub-Nyquist signal-reconstruction-free 

operational modal analysis and damage detection in the presence of noise. In J. P. Lynch, 

ed. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health 

Monitoring. International Society for Optics and Photonics, p. 980312.  

Gkoktsi, K., Giaralis, A. & Tausiesakul, B., 2017. A reconstruction-free sub-Nyquist sensing 

approach for earthquake damage detection using the MUSIC algorithm. In 16th World 

Conference on Earthquake Engineering. 

Gkoktsi, K., Giaralis, A., Klis, R.P., Dertimanis, V. & Chatzi E., 2017. Vibration-based structural 

performance assessment via output-only sub-Nyquist / compressive wireless sensor data. 

In 4th International Conference on Smart Monitoring, Assessment and Rehabilitation of 

Civil Structures (SMAR). 

Gkoktsi, K., TauSiesakul, B. & Giaralis, A., 2015. Multi-channel sub-Nyquist cross-Spectral 

Estimation for Modal Analysis of Vibrating Structures. In International Conference on 

Systems, Signals and Image Processing (IWSSIP 2015). 

Gkoktsi, K., TauSiesakul, B. & Giaralis, A., 2015. Multi-channel sub-Nyquist cross-Spectral 

Estimation for Modal Analysis of Vibrating Structures. In International Conference on 

Systems, Signals and Image Processing (IWSSIP 2015). 

Goswami, J.C. & Chan, A.K., 1999. Fundamentals of Wavelets: Theory, algorithms, and 

applications, New York, USA: John Wiley & Sons, Inc. 

Huang, Y., Beck, J. L., Wu, S. & Li, H., 2016. Bayesian compressive sensing for approximately 

sparse signals and application to structural health monitoring signals for data loss 

recovery. Probabilistic Engineering Mechanics, 46, pp.62–79. 

Humar, J., Bagchi, A. & Xu, H., 2006. Performance of Vibration-based Techniques for the 

Identification of Structural Damage. Structural Health Monitoring, 5(3), pp.215–241. 

Jayawardhana, M. ,Zhu, X., Liyanapathirana, R. & Gunawardana, U., 2017. Compressive sensing 

for efficient health monitoring and effective damage detection of structures. Mechanical 

Systems and Signal Processing, 84, pp.414–430. 

Jerri, A.J., 1977. The Shannon sampling theorem-Its various extensions and applications: A 

tutorial review. Proceedings of the IEEE, 65(11), pp.1565–1596.  



177 

Ji, X., Hikino, T., Kasai, K. & Nakashima, M., 2013. Damping identification of a full-scale 

passively controlled five-story steel building structure. Earthquake Engineering & 

Structural Dynamics, 42(2), pp.277–295.  

Jiang, X. & Adeli, H., 2007. Pseudospectra, MUSIC, and dynamic wavelet neural network for 

damage detection of highrise buildings. International Journal for Numerical Methods in 

Engineering, 71(5), pp.606–629. 

Jingchao, Z., Peizhuo, L., Ning, F. & Xiyuan, P., 2015. Prototype design of multicoset sampling 

based on compressed sensing. In 2015 IEEE 12th International Conference on 

Electronic Measurement & Instruments (ICEMI’2015). Qingdao，Shandong，China., 

pp. 1303–1308. 

Kim, J.-T. & Stubbs, N., 1995. Damage Detection In Offshore Jacket Structures From Limited 

Modal Information. International Journal of Offshore and Polar Engineering, 5(1).  

Klis, R. & Chatzi, E., 2015. Data recovery via Hybrid Sensor Networks for Vibration Monitoring 

of Civil Structures. Int. J. Sustainable Materials and Structural Systems, 2(1/2), pp.161–

184. 

Klis, R. & Chatzi, E.N., 2017. Vibration monitoring via spectro-temporal compressive sensing 

for wireless sensor networks. Structure and Infrastructure Engineering, 13(1), pp.195–

209. 

Lee, S.G., Yun, G.J. & Shang, S., 2014. Reference-free damage detection for truss bridge 

structures by continuous relative wavelet entropy method. Structural Health Monitoring, 

13(3), pp.307–320.  

Leus, G. & Ariananda, D.D., 2011. Power Spectrum Blind Sampling. Signal Processing Letters, 

IEEE, 18(8), pp.443–446. 

Lim, C.W. & Wakin, M.B., 2016. Reconstruction of Frequency Hopping Signals From Multi-

Coset Samples. arXiv:1603.06886v1, (Mc), pp.1–13.  

Loh, C.-H., Chan, C.-K. & Lee, C.-H., 2016. Application of time series based damage detection 

and localization algorithms to structures under ambient excitations. In J. P. Lynch, ed. 

SPIE Smart Structures and Materials + Nondestructive Evaluation and Health 

Monitoring. International Society for Optics and Photonics, p. 98031Q.  

Lynch, J.P. & Loh, K.J., 2006. A Summary Review of Wireless Sensors and Sensor Networks for 

Structural Health Monitoring. The Shock and Vibration Digest, 38(2), pp.91–128.  

Lynch, J.P., 2007. An overview of wireless structural health monitoring for civil structures. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 365(1851), pp.345–372. 

Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S. & Carryer E., 2003. Power-efficient 

data management for a wireless structural monitoring system. In F.-K. Chang, ed. From 

Diagnostics and Prognostics to Structural Health Management - Proceedings of the 4th 

International Workshop on Structural Health Monitoring, IWSHM 2003. Stanford 

University; United States: DEStech Publications, pp. 1177–1184. 

Marple, S.L., 1987. Digital spectral analysis, Englewood Cliffs, London: Prentice-Hall. 

Mascarenas, D., Cattaneo, A., Theiler, J. & Farrar, C., 2013. Compressed sensing techniques for 

detecting damage in structures. Structural Health Monitoring, 12(4), pp.325–338. 

Mishali, M. & Eldar, Y.C., 2009. Blind Multiband Signal Reconstruction: Compressed Sensing 

for Analog Signals. IEEE Transactions on Signal Processing, 57(3), pp.993–1009. 

Mishali, M. & Eldar, Y.C., 2010. From Theory to Practice : Sub-Nyquist Sampling of Sparse 

Wideband Analog Signals. IEEE Journal of Selected Topics in Signal Processing, the 

special issue on Compressed Sensing, 4(2), pp.375–391. 



178 

Mishali, M., Eldar, Y.C., Dounaevsky, O. & Shoshan, E., 2009. Xampling : Analog to Digital at 

Sub Nyquist Rates. Elect. Eng. Dept., Technion, Haifa, Isreal, CCIT Rep. no. 751, 

arXiv.org 0912.2495 

Misiti, M., Misiti, Y., Oppenheim, G. & Poggi J.-M., 1997. Wavelet ToolboxTM 4 User’s Guide 

Product enhancement suggestions Wavelet ToolboxTM User’s Guide. 

Moon, T. et al., 2015. Wideband Sparse Signal Acquisition with Dual-rate Time-Interleaved 

Undersampling Hardware and Multicoset Signal Reconstruction Algorithms. IEEE 

Transactions on Signal Processing, 63(24), pp.6486–6497. 

Nagarajaiah, S. & Yang, Y., 2017. Modeling and harnessing sparse and low-rank data structure: 

a new paradigm for structural dynamics, identification, damage detection, and health 

monitoring. Structural Control and Health Monitoring, 24(1), p.e1851. 

Nagayama, T. & Spencer, B.F.J., 2007. Structural health monitoring using smart sensors. Report 

No NSEL-001 Newmark Structural Engineering Laboratory University of Illinois at 

Urbana-Champaign, p.186.  

Nagayama, T., Sim, S.H., Miyamori, Y. & Spencer, B.F., 2007. Issues in structural health 

monitoring employing smart sensors. In Smart Structures and Systems. pp. 299–329. 

Needell, D. & Tropp, J.A., 2009. CoSaMP: Iterative signal recovery from incomplete and 

inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), pp.301–321.  

Needell, D. & Tropp, J.A., 2010. CoSaMP: Iterative signal recovery from incomplete and 

inaccurate samples. Communications of the ACM, 53(12), p.93. 

Newland, D.E., 1994. Harmonic and Musical Wavelets. Proceedings of the Royal Society of 

London A: Mathematical, Physical and Engineering Sciences, 444(1922), pp.605–620.  

Newland, D.E., 1999. Ridge and phase identification in the frequency analysis of transient signals 

by harmonic wavelets. Journal of Vibration and Acoustics, Transactions of the ASME, 

121(2), pp.149–155. 

Novakovic, A., Meyer, J., Bischoff, R., Feltrin, G., Motavalli, M., El-Hoiydi, A., Restrepo, A. & 

Decotignie, J.-D., 2009. Low power wireless sensor network for monitoring civil 

infrastructure, Technical report, Empa, Swiss Federal Laboratories for Materials Testing 

and Research. CSEM, Swiss Center for Electronics and Microtechnology. 

O’Connor, S.M., Lynch, J.P. & Gilbert, A.C., 2013. Implementation of a compressive sampling 

scheme for wireless sensors to achieve energy efficiency in a structural health 

monitoring system. In T. Y. Yu et al., eds. Proceedings of SPIE - The International 

Society for Optical Engineering. p. 86941L.  

O’Connor, S.M., Lynch, J.P. & Gilbert, A.C., 2014. Compressed sensing embedded in an 

operational wireless sensor network to achieve energy efficiency in long-term 

monitoring applications. Smart Materials and Structures, 23(8), p.85014.  

Pal, P. & Vaidyanathan, P.P., 2011. Coprime sampling and the music algorithm. 2011 Digital 

Signal Processing and Signal Processing Education Meeting, DSP/SPE 2011 - 

Proceedings, 0(1), pp.289–294. 

Papadimitriou, C., 2004. Optimal sensor placement methodology for parametric identification of 

structural systems. Journal of Sound and Vibration, 278(4–5), pp.923–947. 

Park, J.Y.., Wakin, M.B.. & Gilbert, A.C.., 2014. Modal analysis with compressive 

measurements. IEEE Transactions on Signal Processing, 62(7), pp.1655–1670. 

Priestley, M.J.N., Calvi, G.M. & Kowalsky, M.J., 2007. Displacement-based seismic design of 

structures, IUSS Press. 



179 

Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M. & Lee, S., 2013. Compressive sensing: From 

theory to applications, a survey. Journal of Communications and Networks, 15(5), 

pp.443–456. 

Rainieri, C., Fabbrocino, G., Manfredi, G. & Dolce, M., 2012. Robust output-only modal 

identification and monitoring of buildings in the presence of dynamic interactions for 

rapid post-earthquake emergency management. Engineering Structures, 34, pp.436–

446. 

Ren, W.-X. & Sun, Z.-S., 2008. Structural damage identification by using wavelet entropy. 

Engineering Structures, 30(10), pp.2840–2849.  

Reynders, E., 2012. System Identification Methods for (Operational) Modal Analysis: Review 

and Comparison. Archives of Computational Methods in Engineering, 19(1), pp.51–124. 

Romero, D., Ariananda, D.D., Tian, Z. & Leus, G., 2016. Compressive Covariance Sensing: 

Structure-based compressive sensing beyond sparsity. IEEE Signal Processing 

Magazine, 33(1), pp.78–93.  

Rosso, O.A., Martin, M.T., Figliola, A., Keller, K. & Plastino, A, 2006. EEG analysis using 

wavelet-based information tools. Journal of Neuroscience Methods, 153(2), pp.163–

182. 

Rubinstein, R., Bruckstein, A.M. & Elad, M., 2010. Dictionaries for Sparse Representation 

Modeling. Proceedings of the IEEE, 98(6), pp.1045–1057.  

Rudelson, M. & Vershynin, R., 2008. On sparse reconstruction from {Gaussian} and {Fourier} 

measurements. Comm. Pure Appl. Math., 61, pp.1025–1045.  

Slavinsky, J.P. et al., 2011. The compressive multiplexer for multi-channel compressive sensing. 

In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP). IEEE, pp. 3980–3983.  

Sohn, H. & Farrar, C.R., 2001. Damage diagnosis using time series analysis of vibration signals. 

Smart Materials and Structures, 10, pp.446–451. 

Soong, T.T. & Grigoriu, M., 1996. Random Vibration of Mechanical and Structural Systems, 

Prentice Hall PTR. 

Spanos, P.D. & Mignolet, M.P., 1989. Arma Monte Carlo Simulation in Probabilistic Structural 

Analysis. The Shock and Vibration Digest, 21(11), pp.3–14. 

Spanos, P.D. & Zeldin, B.A., 1998. Monte Carlo Treatment of Random Fields: A Broad 

Perspective. Applied Mechanics Reviews, 51(3), pp.219–237. 

Spanos, P.D. et al., 2007. Numerical Treatment of Seismic Accelerograms and of Inelastic 

Seismic Structural Responses Using Harmonic Wavelets. Computer-Aided Civil and 

Infrastructure Engineering, 22(4), pp.254–264.  

Spanos, P.-T.D., 1983. ARMA Algorithms for Ocean Wave Modeling. Journal of Energy 

Resources Technology, 105, pp.300–309. 

Spencer, B.F. & Yun, C., 2010. Wireless Sensor Advances and Applications for Civil 

Infrastructure Monitoring. Report No NSEL-024 Newmark Structural Engineering 

Laboratory University of Illinois at Urbana-Champaign. 

Spiridonakos, M.D., Chatzi, E.N. & Sudret, B., 2016. Polynomial Chaos Expansion Models for 

the Monitoring of Structures under Operational Variability. ASCE-ASME Journal of Risk 

and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(3), p.B4016003.  

Sun, Z. & Chang, C.C., 2004. Statistical wavelet-based method for structural health monitoring. 

Journal of Structural Engineering, 130(7), pp.1055–1062. 



180 

Taha, M.M.R., 2006. Wavelet Transform for Structural Health Monitoring: A Compendium of 

Uses and Features. Structural Health Monitoring, 5(3), pp.267–295. 

Takeda, Sozen & Nielsen, 1970. Reinforced Concrete Response to Simulated Earthquakes. 

Journal of the Structural Division, 96(12), pp.2557–2573.  

Tausiesakul, B. & Gonzalez-Prelcic, N., 2013. Power Spectrum Blind Sampling Using Minimum 

Mean Square Error and Weighted Least Squares. In 47th Asilomar Conference Signals, 

Systems and Computers (ACSSC ). pp. 153–157. 

Tausiesakul, B., Gkoktsi, K. & Giaralis, A., 2014. Compressive Sensing Spectral Estimation For 

Output-Only Structural System Identidication. In 7th International Conference on 

Computational Stochastic Mechanics. pp. 1–12. 

TauSiesakul, B., Gkoktsi, K. & Giaralis, A., 2015. Compressive power spectrum sensing for 

vibration-based output-only system identification of structural systems in the presence 

of noise. In SPIE Sensing Technology + Applications. 

Tropp, J.A., Laska, J. N., Duarte, M. F., Romberg, J. K. & Baraniuk, R. G., 2010. Beyond Nyquist: 

Efficient Sampling of Sparse Bandlimited Signals. IEEE Transactions on Information 

Theory, 56(1), pp.520–544. 

Tropp, J.A., Wakin, M.B., Duarte, M.F., Baron, D. & Baraniuk, R.G., 2006. Random Filters for 

Compressive Sampling and Reconstruction. In 2006 IEEE International Conference on 

Acoustics Speed and Signal Processing Proceedings. IEEE, p. III-872-III-875.  

Vaidyanathan, P.P. & Pal, P., 2011. Sparse Sensing With Co-Prime Samplers and Arrays. IEEE 

Transactions on Signal Processing, 59(2), pp.573–586.  

Vaidyanathan, P.P. & Pal, P., 2011. Sparse Sensing With Co-Prime Samplers and Arrays. IEEE 

Transactions on Signal Processing, 59(2), pp.573–586.  

Vaswani, N. & Zhan, J., 2016. Recursive Recovery of Sparse Signal Sequences from Compressive 

Measurements: A Review. IEEE Transactions on Signal Processing, 64(13), pp.3523–

3549. 

Venkataramani, R. & Bresler, Y., 2000. Perfect reconstruction formulas and bounds on aliasing 

error in sub-Nyquist nonuniform sampling of multiband signals. IEEE Transactions on 

Information Theory, 46(6), pp.2173–2183. 

Venkataramani, R. & Bresler, Y., 2001. Optimal sub-Nyquist nonuniform sampling and 

reconstruction for multiband signals. IEEE Transactions on Signal Processing, 49(10), 

pp.2301–2313.  

Vetterli, M. & Herley, C., 1992. Wavelets and filter banks: theory and design. IEEE Transactions 

on Signal Processing, 40(9), pp.2207–2232. 

Wang, Y. & Hao, H., 2015. Damage Identification Scheme Based on Compressive Sensing. 

Journal of Computing in Civil Engineering, 29(2), p.4014037.  

Worden, K., Farrar, C.R., Manson, G. & Park, G., 2007. The fundamental axioms of structural 

health monitoring. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 463(2082), pp.1639–1664. 

Yan, G., Duan, Z., Ou, J. & De Stefano, A., 2010. Structural damage detection using residual 

forces based on wavelet transform. Mechanical Systems and Signal Processing, 24(1), 

pp.224–239.  

Yang, Y. & Nagarajaiah, S., 2014. Structural damage identification via a combination of blind 

feature extraction and sparse representation classification. Mechanical Systems and 

Signal Processing, 45(1), pp.1–23. 



181 

Yang, Y. & Nagarajaiah, S., 2015. Output-only modal identification by compressed sensing: Non-

uniform low-rate random sampling. Mechanical Systems and Signal Processing, 56–57, 

pp.15–34. 

Yao, R., Pakzad, S.N. & Venkitasubramaniam, P., 2016. Compressive sensing based structural 

damage detection and localization using theoretical and metaheuristic statistics. 

Structural Control and Health Monitoring, 24(4), pp.1–14. 

Yen, G.G. & Lin, K., 2000. Wavelet Packet Feature Extraction for Vibration Monitoring. IEEE 

Transactions on Industrial Electronics, 47(3), pp.650–667. 

Yun, G.J., Lee, S.-G., Carletta, J. & Nagayama, T., 2011. Decentralized damage identification 

using wavelet signal analysis embedded on wireless smart sensors. Engineering 

Structures, 33(7), pp.2162–2172. 

Zhang, L., Brincker, R. & Andersen, P., 2005. An Overview of Operational Modal Analysis : 

Major Development and Issues. 1st International Operational Modal Analysis 

Conference, (1). 

Zou, Z., Bao, Y., Li, H., Spencer, B.F. & Ou, J., 2015. Embedding compressive sensing-based 

data loss recovery algorithm into wireless smart sensors for structural health monitoring. 

IEEE Sensors Journal, 15(2), pp.797–808.  

  



 


	zBinder3.pdf
	zBinder2.pdf
	zBinder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1








	Chapter_2_CS
	zBinder1
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1









	3.Table_Content_Lists_v3
	z_blank
	zBinder2
	zBinder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1








	Chapter_2_CS
	zBinder1
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1










	Chapter_5_PSBS_applications
	zBinder3
	zBinder2.pdf
	zBinder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1








	Chapter_2_CS
	zBinder1
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1









	3.Table_Content_Lists_v3
	z_blank
	zBinder2
	zBinder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1








	Chapter_2_CS
	zBinder1
	PhD_Gkoktsi_final_20180128.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1







	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1






	Chapter_7_MUSIC
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1





	Chapter_6_Comparison_PSBS_CS
	Binder1
	PhD_Gkoktsi_final_20180128_new.pdf
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1




	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128_new
	Binder1.pdf
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1



	Chapter_7_MUSIC
	Binder1
	PhD_Gkoktsi_final_20180128.pdf
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1


	3.Table_Content_Lists_v2
	PhD_Gkoktsi_final_20180128
	1.cover
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	1.Cover_2

	final.pdf
	z_blank_1
	1.cover.pdf
	1.Cover.pdf
	1.Cover_2

	2.Abstract_Acknowledgements
	3.Table_Content_Lists_v2
	Chapter_1_Intro
	Chapter_2_CS
	Chapter_3_RWE
	Chapter_4_PSBS_theory
	Chapter_5_PSBS_applications
	Chapter_6_Comparison_PSBS_CS
	z_blank_1
	Chapter_7_MUSIC
	z_blank_1
	Chapter_8_Conclusions
	z_blank_1
	4.Bibliography
	z_blank_1











