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Abstract

This paper addresses a new problem in the literature, which is how to con-

sider reserving issues for a portfolio of general insurance policies when there

is excess-of-loss reinsurance. This is very important for pricing considerations

and for decision making regarding capital issues. The paper sets out how this

is currently often tackled in practice and provides an alternative approach

using recent developments in stochastic claims reserving. These alternative

approaches are illustrated and compared in an example using real data. The

stochastic modelling framework used in this paper is Double Chain Ladder,

but other approaches would also be possible. The paper sets out an approach

which could be explored further and built on in future research.
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1 Introduction

The subject of this paper is the distribution of outstanding claims for a portfolio

of general insurance policies in the presence of excess-of-loss reinsurance protection.

This is a subject area which, to the best knowledge of the authors, has not previously

appeared in the actuarial literature. It is a very important subject from a practical

point of view, and there have been many papers on the estimation of outstanding

claims and reinsurance separately to develop both the theory and practical tools for

actuaries. To date, they have not been considered together.

This is perhaps surprising because the estimation of outstanding claims net of

reinsurance for such a portfolio is very commonly needed, for example when a rein-

surance underwriter is pricing either a retrospective loss portfolio transfer treaty or

a prospective proportional quota share on the retention. These are both actively

used for solvency capital management and it would therefore be desirable to have

estimates of both the expected net outstanding claims and the uncertainty around

these. Better still would be estimates of the distribution of net outstanding claims.

This paper develops methods to address all of these issues for excess-of-loss reinsur-

ance and compares the results with what is often done in the practical context using

existing reserving methods.

With the advances in stochastic reserving methodology, it is now possible to

develop coherent theoretical frameworks for the estimation of the distribution of

outstanding claims net of excess-of-loss reinsurance. It is important to note that the

most commonly used stochastic claims reserving methods, such as bootstrapping the

over-dispersed Poisson model (England and Verrall, 1999, 2002), will be of limited

value in this context. The fundamental issue that needs to be addressed is how

to consider the net outstanding claims such that the effect of the excess-of-loss

reinsurance contract can be accurately taken into account. The only way to do this

is to use a model which considers individual claims, or at least one which simulates

future claims individually rather than aggregated.

Individual claims reserving, or reserving based on granular data, has been the

subject of increased attention in actuarial literature. See for example Antonio and

Plat (2014). The majority of the methods which have been developed operate en-

tirely at the level of individual claims and this can perhaps make them appear to

be overly complex to implement and use in a practical context. In contrast, a series

of papers beginning with Verrall, Nielsen and Jessen (2010) and continuing with

Mart́ınez-Miranda, Nielsen, Nielsen and Verrall (2011), Mart́ınez-Miranda, Nielsen

and Verrall (2012), Mart́ınez-Miranda, Nielsen and Verrall (2013b) and Mart́ınez-

Miranda, Nielsen, Verrall and Wüthrich (2015) has developed a hybrid approach

which uses data aggregated in the standard way into triangles in order to estimate
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models for claims at the individual level. We believe that this makes it easier to

apply the fundamental advantages of stochastic reserving for individual claims using

the theory which has recently been developed to more complex practical issues such

as excess-of-loss reinsurance. Of course, it would be possible to investigate these

practical issues using other individual claims reserving methods, and we anticipate

that this may be done in the future by other authors.

In this paper, we bring together all the methodology developed in the papers

above based around the Double Chain Ladder (DCL) method. It is clear that in

the practical context it is important to have stable estimates of all parameters if

practically useful simulations of future claims are to be generated. This means that

it is important to use the full range of methods available within the framework of

DCL, paying particular attention to the way claims increase with accident period.

The paper is set out as follows. Section 2 outlines the approach which is com-

monly used in practice when considering reserves with reinsurance. Section 3 sum-

marises the theoretical model which we will use in this paper, DCL. Section 4 revisits

the Bayesian DCL method of Mart́ınez-Miranda, Nielsen and Verrall (2013b) and

the basic assumptions of a Bornhuetter-Ferguson approach giving a modification to

DCL of Mart́ınez-Miranda, Nielsen and Verrall (2012), which we call Bornhuetter-

Ferguson Double Chain Ladder prior (BDCL prior). In section 5 we describe how

the data are usually prepared in practice in order to analyse the claims net of rein-

surance (and the reinsurers claims). In section 6 we show how this can be done in a

more coherent way within the framework of DCL and BDCL prior. Sections 5 and

6 also contain illustrations and comparison of the practical approach and the new

approach. Section 7 contains the conclusions.

2 The practical approach

In general insurance or casualty portfolios (including general third party liability,

motor third party liability, employer’s liability, medical malpractice) insurance com-

panies commonly seek excess-of-loss reinsurance protection on an occurrence year

basis. This means that the insurer’s exposure to any individual loss occurring in any

given year is limited to a predefined amount called the retention or priority. The re-

tention is usually chosen taking into account the volatility of claims which are likely

to arise from the portfolio, the insurer’s risk appetite and solvency position. And

in practice it is also driven by past experience of claims from the portfolio and the

available price in the market. Typically, these reinsurance treaties have a one year

duration and are renegotiated every year so that the retention level may change from

year to year. There may be clauses in the treaties which affect the actual retention
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on claims each year: for example, an indexation clause. Thus, whenever data are

considered over a period of years for such portfolios, the insurer’s retained amounts

for any individual loss will be dependent on the year in which the loss occurred.

The estimation of the ultimate net incurred claims in order to set the net total

unpaid reserve for such a portfolio is a common actuarial task for reinsurance un-

derwriters when asked to price either a retrospective loss portfolio transfer (LPT)

treaty or a prospective proportional quota share (QS) on the retention. In the case

of a LPT, the cession to the LPT reinsurer can be either on a gross basis, in which

case the cedant will transfer the right of recoveries from excess-of-loss reinsurers to

the LPT reinsurer, or a net basis, which means that only the retained loss port-

folio is ceded. However, irrespective of the cession basis (assuming an acceptable

counterparty rating of the excess-of-loss reinsurers) the evaluation of the reserves

is to be done on the loss portfolio net of historical inuring excess-of-loss recoveries.

In the case of the prospective QS, the actual historical excess-of-loss retentions are

ignored as the estimation of the net outstanding claims is carried out on an ‘as-if’

basis using a common historical retention equal to that of a prospective excess-of-

loss treaty. From a theoretical point of view, QS is a simpler subcase of what would

be the more generalized case of the LPT where instead of one common excess-of-loss

retention for all years there can be different historical retentions depending on the

conditions of each year’s excess-of-loss treaty. In this paper, we will consider the QS

case, thereby assuming one common retention for all occurrence years.

Typically, the kind of data the reinsurer receives for the purpose of pricing these

treaties may come in various formats. If the systems of the insurer are set to account

for the existence of excess-of-loss reinsurance, it is possible to receive triangular

data with incurred losses already capped at the historical retention. In short, these

are known as net triangles. In addition to this, most insurers should be able to

query their databases to produce net triangles at a given common retention. In

practice, however, the insurance company will either supply gross triangles plus the

recoveries triangles, or in the case of QS, gross triangles plus the triangulations of

large individual claims, for example with incurred amount at 50% of the prospective

retention or above. This is the typical threshold that an excess-of-loss reinsurer

sets for the claims data requirement. If sufficient data about individual claims are

available (particularly large claims), the QS reinsurer will be able to construct the

recoveries triangles and price the treaty at different levels of prospective excess-of-

loss retention.

In practice, the reinsurance underwriter or actuary will estimate the net out-

standing claims (in the case of an LPT) or the ultimate claims (in the case of QS)

for each accident year by applying traditional actuarial reserving methods on the

net triangles which result from subtracting the reinsurance recovery triangle from
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the gross triangle.

The problem with this approach is that although actuarial reserving methods

can be applied to the resulting net triangle in the same way as they are applied to

gross triangles, reinsurance recoveries for potential future development of individual

claims or newly reported claims are not taken into account because the recoveries

triangle construction is limited to the development period already observed. In other

words, the recoveries triangle is constructed on the basis of the incurred value at the

given valuation date and not on the basis of the ultimate cost of each claim. This

presents many issues for the reinsurer to consider. Not only is the ultimate incurred

value of a claim unknown, just the incurred value at the particular development point

in time, but also the observation period for each of these claims depends on when

they were reported. This typically results in there being no recoveries observed in

recent accident years. In addition to this, different accident years may have different

reporting lags. Ultimately this is a problem of incorrect sampling of the recoveries

triangle and this leads to problems with the net triangle to which actuarial reserving

methods are applied. As a result of this, it is not clear whether estimating the net

reserve using the net triangles constructed in this way leads to reasonable point

estimates.

As reinsurance is a very competitive business, price is the principal factor for

an insurer in deciding whether to cede the portfolio to one particular reinsurer

or another. In the case of capital motivated reinsurance transactions, reinsurance

competes with other forms of capital such as subordinated debt, and the pricing

implications of the estimation of net outstanding claims can also lead to a decision

not to cede at all if the cost of reinsurance is directly compared to the cost of the

capital relief such a transaction achieves. For these reasons, having more information

about the accuracy of the estimation would be very desirable.

The ideal solution to this problem would be to estimate the ultimate incurred

for each individual claim. This could be done by modelling the individual aspects

of each claim, which could include (for example) loss of income, dependants, future

inflation, medical expenses etc. This is the aim of claims adjusters, and it has to be

recognised that their estimates can be quite volatile. An actuarial approach would

be to simulate from the individual claims so that to estimate the ultimate recoveries

per accident year. While there have been considerable advances in the consideration

of individual claims data in recent years, the application of the methods would

probably still present challenges in practical settings. For this reason, the approach

in this paper is to use methods which use aggregated data for the estimation but

which are designed in order to allow inferences and simulation to be carried out at

the level of individual claims. The framework we use is Double Chain Ladder and

its extensions, which are set out in the next section.
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3 Double Chain Ladder

This section summarises the Double Chain Ladder (DCL) method developed in

Verrall et al. (2010) and Mart́ınez-Miranda et al. (2011 and 2012). The formulation

of DCL and related models in Mart́ınez-Miranda et al. (2011, 2012, 2013a,b) allows

us to estimate the settlement delay and therefore to predict Reported But Not

Settled (RBNS) and Incurred But Not Reported (IBNR) reserves separately. In

contrast with other approaches (for example Antonio and Plat (2014)) which are also

based on individual claims (micro models), our aim is not to perform the estimation

using the individual claims data. It would be possible to use such an approach, but

we believe that DCL offers a simpler procedure which should be easier to use in

the practical context described in section 2 since DCL and the related models are

estimated using only data in the aggregated triangles which are usually available in

practice.

The approach of DCL is based on a model defined at the level of individual

claims (a micro model) but estimated using data in aggregated triangles. We first

describe the micro model, and then show how this can be estimated using conven-

tional triangles of data. The micro model is constructed from three components:

the settlement delay, the individual payments and the reported numbers of claims

(known as the counts).

This section sets out the model assumptions from Mart́ınez-Miranda et al. (2015),

which pointed out that it would be possible to use more general modelling assump-

tions if the only question of interest was the mean or best estimate. For the more

general case, Mart́ınez-Miranda et al. (2015) generalized the original assumptions

of DCL in order to add prior knowledge. Therefore, we will refer to this model as

DCL prior.

DCL makes use of both the data and expert knowledge extracted from incurred data.

The information required to apply DCL are the aggregated incurred counts (data),

aggregated payments (data) and aggregated incurred payments (expert knowledge).

All of these three objects will have the same structural form, and without loss of

generality they are assumed to consist of the usual triangles defined on I, where

I = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m− 1; i+ j ≤ m}.

Here, m > 0 is the number of underwriting or accident years observed. It will be

assumed that the reporting delay (the time from the occurance of a claim until it

is reported), and the settlement delay (the time between the report of a claim and

its settlement) are both bounded by m. This, in contrast to the classical CLM, will

make it possible to also get estimates in the “tail” where the reporting delay plus

the settlement delay is greater than m. The information required is as follows.
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Aggregated incurred counts: NI = {Nik : (i, k) ∈ I}, with Nik being the total

number of claims which were incurred in year i and reported in year i + k

(i.e. a reporting delay of k). Note that each of these Nik reported claims is

assumed to generate a number of payments, i.e. a claims payment cash flow.

Aggregated payments: XI = {Xij : (i, j) ∈ I}, with Xij being the total payments

from claims incurred in year i and paid with j periods delay from year i.

Note that the meaning of the second suffix of triangle I varies between the two

different sets of data. In the counts triangle it represents the reporting delay and in

the payments triangle it represents the development delay, which is reporting delay

plus settlement delay. For the aggregated incurred payments, some theory at the

level of individual claims is required.

Let Npaid
ikl denote the number of the future payments originating from the Nik

reported claims, which are paid with a delay of k + l, where l = 0, . . . ,m− 1.

Also, let Y
(h)
ikl denote the individual settled payments which arise from Npaid

ikl , h =

1, . . . , Npaid
ikl .

Finally, define Xikl to be the aggregate claims originating from underwriting year i,

which are reported after a delay of k and paid with an overall delay of k + l. Then

Xikl =

Npaid
ikl∑
h=1

Y
(h)
ikl , (i, k) ∈ I, l = 0, . . . ,m− 1,

The observed aggregated payments can be written as

Xij =

j∑
l=0

Xi,j−l,l =

j∑
l=0

Npaid
i,j−l,l∑
h=1

Y
(h)
i,j−l,l.

With these definitions, we make the following distributional assumptions.

A1. The numbers of reported claims, Nik, are independent random variables for all

(i, k) and have a Poisson distribution with cross-classified mean E[Nik] = αiβk

and identification
∑m−1

k=0 βk = 1.

A2. Given Nik, the numbers of paid claims follow a multinomial distribution, so

that the random vector (Npaid
i,k,0 , . . . , N

paid
i,k,m−1) ∼ Multi(Nik; p0, . . . , pm−1), for

each (i, k), where m − 1 is the assumed maximum delay and (p0, . . . , pm−1)

denote the delay probabilities such that
∑m−1

l=0 pl = 1 and 0 ≤ pl ≤ 1,∀l =

0, . . . ,m− 1.
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A3. The individual payments Y
(h)
i,j−l,l are independent and have a mixed type distri-

bution with Qi being the probability of a “zero-claim” i.e. P
{
Y

(h)
i,j−l,l = 0

}
=

Qi. We assume that Y
(h)
i,j−l,l|Y

(h)
i,j−l,l > 0 has a distribution with conditional

mean µij and conditional variance σ2
ij, for each i = 1, . . . ,m, j = 0, . . . ,m− 1.

We also assume that the mean depends on the accident year and payment

year such that µij = µγiδj. Here, µ is a common mean factor and δj and γi

can be interpreted as being the inflation in the payment year and the accident

year, respectively. The variance follows a similar structure, with σ2
ij = σ2γ2i δ

2
j ,

where σ2 is a common variance factor.

A4. Independence: We assume that settled payments, Y
(h)
ikl are independent of the

numbers of reported claims, Nik.

Assumption A1 is, apart from the distribution, the classical chain ladder assump-

tion applied to the counts triangle, with the main point being the multiplicativity

between underwriting year and reporting delay. Assumptions A2-A4 are necessary

to connect reporting delay, settlement delay and development delay - the main idea

of DCL. A3 also acknowledges the fact that reported claims can be closed without

a payment being made - the so-called zero-claims.

This is the model which was set out in Mart́ınez-Miranda et al. (2015) and it

is a more general situation than Mart́ınez-Miranda et al. (2012) since it assumes

that the distribution depends on the accident year and the development year and

also allows for zero-claims. Under these assumptions, the first two moments of the

unconditional distribution of Y
(h)
i,j−l,l are given by:

E[Y
(h)
i,j−l,l] = γiδj(1−Qi)µ (1)

V(Y
(h)
i,j−l,l) = γ2i δ

2
j (1−Qi)

(
σ2 +Qiµ

2
)

(2)

Following the similar calculations as Mart́ınez-Miranda et al. (2012), it can be

shown that under the above assumptions the unconditional mean of Xij can be

written as

E[Xij] = γi(1−Qi)µαiδj

j∑
l=0

βj−lpl = α̃iβ̃j, (3)

where

α̃i = γi(1−Qi)µαi

and

β̃j = δj

j∑
l=0

βj−lpl.
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Equation (3) is the key in deriving the outstanding loss liabilities.

Note that when Qi = 0 ∀i = 1, ...,m and δj = 1 ∀j = 0, . . . ,m− 1, the situation

reverts back to the DCL model as set out Mart́ınez-Miranda et al. (2012).

4 Parameter estimation for the DCL method

In this section we first set δj = 1 ∀j and Qi = 0 ∀i and show how to estimate

the remaining parameters in DCL. The approach to incorporating the development

inflation and the zero-claims probability will be described in the next section.

The case when δj = 1 ∀j and Qi = 0 ∀i was proposed in Mart́ınez-Miranda

et al. (2012) which developed the DCL method to estimate the parameters and a

summary of this is provided in this section. The DCL method considers the simple

chain-ladder algorithm applied to the triangles of paid claims, XI , and incurred

counts, NI . Therefore, as implied by the name Double Chain Ladder, the classical

chain-ladder model (CLM) is applied twice and from this everything needed to

estimate the outstanding claims is available. It was also shown that this estimation

procedure can give identical results as the CLM for paid data when the observed

counts are replaced by their fitted values.

An appealing feature of the DCL estimation method is that it uses the esti-

mates of the chain ladder parameters from the triangle of counts and the triangle

of payments. Assumption A1 in Section 3 defined a standard chain-ladder model

for the counts data, Nij. A similar model can be defined for the triangle of paid

data, Xij, with parameters α̃i and β̃j. We denote the estimates of the parameters,

using the chain-ladder model on each triangle, by (α̂i, β̂j) and ( ̂̃αi, ̂̃βj), respectively,

for i = 1, . . . ,m, j = 0, . . . ,m − 1. Note that it is straightforward to obtain these

estimates using the development factors provided by the chain ladder algorithm, as

follows.

Consider the counts triangle (a similar approach can be used for the parameters of

the paid triangle) and denote by λ̂j, j = 1, 2, . . . ,m−1, the corresponding estimated

development factors. Then the estimates of βj for j = 0, . . . ,m−1 can be calculated

by

β̂0 =
1∏m−1

l=1 λ̂l
(4)

and

β̂j =
λ̂j − 1∏m−1
l=j λ̂l

(5)

for j = 1, . . . ,m− 1 . The estimates of the parameters for the accident years can be
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derived from the latest cumulative entry in each row through the formula:

α̂i =
m−i∑
j=0

Nij

m−1∏
j=m−i+1

λ̂j. (6)

The same procedure can be used to produce ( ̂̃αi, ̂̃βj) from the triangle of paid

data, and the DCL method estimates the rest of the parameters in the model for-

mulated in A1-A4 using just the above estimates. Specifically, the reporting delay

probabilities {p0, . . . , pm−1} can be estimated by solving the linear system given

below to obtain estimates of {π0, . . . , πm−1}.
̂̃
β0
...
...

̂̃
βm−1

 =


β̂0 0 · · · 0

β̂1 β̂0
. . . 0

...
. . . . . . 0

β̂m−1 · · · β̂1 β̂0




π0
...
...

πm−1

 . (7)

Once the solution {π̂0, . . . , π̂m−1} is obtained, these preliminary delay parameters

are adjusted to have the desired probability vector, (p̂0, . . . , p̂m−1) which satisfies the

restrictions that 0 ≤ p̂l < 1 and
∑m−1

l=0 p̂l = 1. For more details of this estimation

procedure, see Mart́ınez-Miranda et al. (2012).

For the mean and variance of the distribution of individual payments DCL es-

timates the inflation parameters, γ = {γi : i = 1, . . . ,m}, and the mean factor, µ,

through the expression:

γ̂i =
̂̃αi
α̂iµ̂

i = 1, . . . ,m. (8)

To ensure identifiability DCL sets γ1 = 1, so that µ can be estimated by

µ̂ =
̂̃α1

α̂1

. (9)

The inflation parameters, γ̂i, are estimated by substituting µ̂ into equation (8). It

only remains to adjust the final µ̂ according to the estimates p̂l and in order to ensure

that
∑m−1

k=0 β̃k = 1. This is done by dividing µ̂ by κ, where κ =
∑m−1

j=0

∑j
l=0 β̂j−lp̂l.

Hereafter, in a slight abuse of notation, we will retain the notation µ̂ for the corrected

estimator of µ.

The estimate of outstanding claims is obtained by substituting the above esti-

mates into the expression for the unconditional mean. In doing this, it is useful to

split it into the Reported But Not Settled (RBNS) and Incurred But Not Reported
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(IBNR) components by considering payments on already reported claims and claims

which will be reported in the future. For i+ j > m, we define

X̂rbns
ij =

j∑
l=i−m+j

N̂i,j−lp̂lµ̂γ̂i (10)

and

X̂ ibnr
ij =

i−m+j−1∑
l=max(0,j−m+1)

N̂i,j−lp̂lµ̂γ̂i, (11)

respectively, where N̂ij = α̂iβ̂j.

The estimate of total outstanding claims is calculated by adding the RBNS and

IBNR components i.e. X̂DCL
ij = X̂rbns

ij + X̂ ibnr
ij . This is equivalent to the aim of

the standard CLM in just the lower triangle (ignoring any tail effects), i.e. for

(i, j) ∈ J1 = {i = 2, . . . ,m; j = 0, . . . ,m− 1 so i+ j = m+ 1, . . . , 2m− 1}. For the

DCL, the estimates of outstanding claims extend further to provide tail estimates

by considering i = 1, . . . ,m and j = m, . . . , 2m− 1.

Finally to provide the full cash flow the predictive distribution can be approx-

imated using parametric bootstrap methods as Mart́ınez-Miranda et al. (2011) de-

scribed. In order to do this, it is necessary to estimate the variances, σ2
i (i =

1, . . . ,m). Verrall et al. (2010) showed that assumptions similar to A1–A4 can be

used to show that the conditional variance of Xij is approximately proportional to

its mean. Using this result, it is straightforward to estimate the variance using over-

dispersed Poisson distributions with common over-dispersion parameter, ϕ.

As in Verrall et al. (2010), the over-dispersion parameter ϕ can be estimated by

ϕ̂ =
1

n−m
∑
i,j∈I

(Xij − X̂DCL
ij )2

X̂DCL
ij γ̂i

, (12)

where n = m(m + 1)/2 and X̂DCL
ij =

∑j
l=0Ni,j−lp̂lµ̂γ̂i. Then the variance factor of

individual payments can be estimated by

σ̂2
i = σ̂2γ̂2i (13)

for each i = 1, . . . ,m, where σ̂2 = µ̂ϕ̂− µ̂2.

4.1 The BDCL prior method

This section summarises the methodology developed in Mart́ınez-Miranda et al.

(2013b) and Mart́ınez-Miranda et al. (2015) using the DCL method as set out in

section 4 and incorporating information about inflation in the severity of individual

11



claims and the number of zero claims. The approach is to first assume that the

parameters for this are known, and note that they cannot be estimated using the

triangles XI and NI . The estimation of these parameters requires some extra data,

which is described at the end of this section.

As in the DCL prior method in Mart́ınez-Miranda et al. (2015), the payments

triangle Xij is first adjusted by dividing by the development inflation δj and the

zero-claims probability Qi. This gives a triangle of adjusted payments:

X̃ij =
Xij

δj(1−Qi)
.

It is easy to verify that the triangle {X̃ij; (i, j) ∈ I} together with the counts triangle

NI follow model assumptions A1-A4 with Qi = 0 ∀i and δj = 1 ∀j. The DCL

method is applied to the adjusted payments triangle and the reported counts triangle

as usual and all the DCL parameters are estimated.

Since estimating the underwriting year inflation, γi, in DCL is a weak point

because it might be estimated with significant uncertainty (see Mart́ınez-Miranda

et al. (2013b)), the underwriting year inflation is estimated from the less volatile

incurred data.

The model for the incurred triangle, which is technically based on expert knowl-

edge and not actual data is as follows.

Aggregated incurred payments : II = {Iik : (i, k) ∈ I}, where

Iik =
k∑
s=0

m−1∑
l=0

E[Xisl| Fi+k]−
k−1∑
s=0

m−1∑
l=0

E[Xisl| Fi+k−1],

and Fh is an increasing filtration illustrating the expert knowledge at time

point h.

Note that this definition is slightly different from Mart́ınez-Miranda et al. (2013b).

This definition is used to emphasise that the incurred triangle is cumulative and

should be constructed in such a way that for every additional year an additional

diagonal is added to the bottom of the current incurred triangle while the rest of

the triangle stays the same as for the year before.

The incurred data are also adjusted in the following way

Ĩik =
Iik

(1−Qi)
.

so that the adjusted payments triangle X̃ij and the adjusted incurred triangle Ĩik

have the same underwriting year inflation.

12



We provide a theoretical justification in the appendix for replacing the unstable

estimates of the severity inflation from the payments by the more stable estimates

from the incured data. The appendix shows that

E
[
Ĩik

]
= E

[
Iik

(1−Qi)

]
= αiγiµβkδk,

which shows that X̃ij and Ĩik have the same underwriting year parameters. This

justifies that we replace γ̂i which we obtained by applying DCL on X̃ij by the

accident year inflation γ̂i
I we got by applying DCL on the adjusted incurred triangle

Ĩik.

The next step is based on the so called BDCL method in Mart́ınez-Miranda

et al. (2013b), which allows us to use the underwriting year inflation of the incurred

data. Since the expected value of Ĩik has the same multiplicative structure as the

expected value of Xik with Qi = 0, the DCL estimation method may be applied to

the triangles of reported counts, Nik, and the adjusted aggregated incurred claims,

Ĩik. The parameters {γi : i = 1, . . . ,m} are estimated exactly as described in Section

4, except that the triangle of aggregate paid claims is replaced by the triangle of

adjusted aggregated incurred claims. Then we can replace the DCL underwriting

year inflation estimates by those obtained from the adjusted incurred data.

The last step is now to multiply the estimates of the outstanding liabilities we

obtained in this procedure by the development inflation δj and the zero-claims prob-

ability (1−Qi) again. Let X̃BDCL
ij be the predicted value of X̃ij by using the above

described BDCL method. This is obtained exactly as described in the DCL method

above by adding the RBNS and IBNR, but with the replaced underwriting year infla-

tion using the adjusted incurred triangle. Then the predicted value of Xij including

the prior information will be given by X̃new
ij =δj(1−Qi)X̃

BDCL
ij , for (i, j) ∈ J1. This

way it is possible to generate the distribution of future values incorporating the prior

information.

The method then consists of the following six-step procedure:

• Step 1: Payments triangle adjustment.

Divide the payments triangle by the development inflation δj and the zero-

claims probability (1−Qi) to get the adjusted payments triangle X̃ij =
Xij

δj(1−Qi)

to attain to the DCL framework.

• Step 2: Incurred data adjustment.

Divide the aggregated incurred data by the zero-claims probability (1 − Qi)

to get the adjusted incurred triangle Ĩik = Iik
(1−Qi)

so that the estimate of the

underwriting year inflation doesn’t change. Note that Iik are incurred claims

for accident year i and development period k.

13



• Step 3: Parameter estimation.

Estimate the model parameters using DCL for the data in the triangles NI

and X̃I and denote the parameter estimates by (p̂0, . . . , p̂m−1), µ̂, σ̂2 and {γ̂i :

i = 1, . . . ,m}.
Repeat this estimation using DCL but replacing the adjusted triangle of paid

claims by the adjusted triangle of incurred data: ĨI = {Ĩik : (i, k) ∈ I}.
Keep only the resulting estimated inflation parameters, denoted by {γ̂Ii : i =

1, . . . ,m}.

• Step 4: Bornhuetter-Ferguson adjustment.

Replace the inflation parameters {γ̂i : i = 1, . . . ,m} from the adjusted paid

data by the estimates from the adjusted incurred triangle, {γ̂Ii : i = 1, . . . ,m}.

• Step 5: DCL prediction.

Get the prediction of the outstanding liabilities using DCL, more precisely the

RBNS and IBNR estimates as in (10) and (11).

• Step 6: Prediction readjustment.

Readjust the RBNS and IBNR estimates by multiplying them with the devel-

opment inflation δj and the zero-claims probability (1 − Qi) and sum them

up to get the final estimate of the total outstanding claims in our original

framework.

While Mart́ınez-Miranda et al. (2015) did assume prior knowledge on severity

development inflation and zero-claims, it did not take advantage of prior knowledge

of accident year inflation that often could be extracted from incurred data, see

Mart́ınez-Miranda et al. (2013b).

Finally, we give an example showing how additional data can be used to provide

prior information in practice. As in Mart́ınez-Miranda et al. (2015), the develop-

ment inflation and the zero-claims probability can be estimated by using a new

run-off triangle. Specifically we observe the total number of non-zero payments in

accounting year i+ j from claims with accident year i and denote this by Rij. The

corresponding triangle is denoted byRI = {Rij : (i, j) ∈ I}. Note that the variables

Rij have cross-classified mean E[Rij] = αRi β
R
j for all (i, j). Therefore, we can use

the three triangles (NI ,RI , XI) simultaneously and simply apply the chain ladder

algorithm three times:

NI provides the chain ladder estimators α̂i and β̂j for αi and βj,

RI provides the chain ladder estimators α̂Ri and β̂Rj for αRi and βRj ,

XI provides the chain ladder estimators ̂̃αi and
̂̃
βj for α̃i and β̃j.

14



Now the probability of zero-claims in the underwriting year, Qi, can be estimated

from the expression

Q̂i = 1− α̂Ri
α̂i
. (14)

Furthermore, the development inflation parameters can be estimated by

δ̂j =

̂̃
βj∑j

l=0 β̂j−lπ̂l
=

̂̃
βj

β̂Rj
. (15)

5 Classical chain ladder split

This section explains how the reinsurance split is done in practice. For the purposes

of this paper we have used motor third party liability bodily injury loss data from

a medium-sized Greek insurer. The triangular data provided were on an accident

year basis with yearly development periods for accident periods from 2000 to 2014

and included all gross bodily injury claims incurred during the period and reported

by 31 December 2014, which is the valuation date. The total portfolio exposure

measured as earned vehicle years was by 2014 around 400,000 in comparison to

around 100,000 in 2000. In addition to the incurred and paid triangles, we also

received the corresponding reported (non-zero) counts triangle and the open claims

counts triangles. Individual claim triangulations were received for claims above EUR

200,000. For this illustration, we have applied a common priority of EUR 500,000.

In order to create the recoveries triangles, we first identify all individual claims for

which the excess-of-loss reinsurer has a participation, i.e. for losses whose incurred

value based on cumulative payments and the case reserve as at the valuation date

exceeds the priority threshold of EUR 500,000. Then the reinsurance recoveries

triangles for those individual claims is constructed and aggregated on an accident

year basis to match the gross triangles. Finally to construct the net triangles we

subtracted the recoveries triangles from the gross triangles.

Tables 1, 2 and 3 show the gross payments triangle as well as the net payments

triangle and the recoveries triangle after the split.
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345115 550155 1165973 1703483 1890192 1165754 1112124 1172613 424153 401842 147602 171353 79772 281345 266548

350771 1307179 1843726 2746214 2587467 1844121 768873 307287 600012 37169 955466 209065 273838 25515

495836 1698146 2426735 4139259 3010904 3245849 2424486 2040852 722079 1836805 885848 226836 619320

618012 1711657 2560425 3288447 2973974 2834974 1397271 766589 1327613 692792 525813 159328

948012 2809693 3788681 3993582 2964559 3255971 812468 1953830 810337 624285 128553

953333 2325650 4075835 5574008 5441890 4169716 2838634 2334831 1134118 542453

1266559 3436062 3840499 5820558 5346293 5101668 1912277 2327070 1806402

1590238 3794768 4470900 4917158 5652933 4753303 3542325 2247495

1484722 2726065 3958068 4602047 4100856 3243477 1490074

1832755 2174965 4105838 3803571 3609703 4316400

1829793 2603989 3768836 4089502 2826510

1569902 2820043 4116023 2578524

1391136 3576140 1997271

2260336 3695117

981728

Table 1: Gross payments in Euro.

345115 550155 1165973 1703483 1890192 1165754 1112124 1172613 269840 397567 142807 161728 79772 281345 266548

350771 1307179 1843726 2746214 2566190 1844121 768873 307287 600012 37170 917356 209065 273838 25515

495836 1698146 2425159 4051087 3010904 3131364 2212115 1751729 717586 1558083 612638 217397 499180

618012 1711657 2560425 3258378 2903194 2741042 1392506 761189 1125816 607190 523861 158426

948012 2744998 3782286 3954751 2872013 3096314 805336 1945795 789209 604091 96978

953333 2325650 4075835 5444170 5235030 3869351 2793398 2224029 1040856 516568

1266559 3436062 3840500 5669342 5345112 4861694 1807798 2244928 1802414

1590238 3794768 4470899 4917158 5613373 4488985 3438274 2246031

1484722 2726066 3958068 4590839 4100856 3243477 1490074

1832755 2174965 4105838 3785096 3605612 4314345

1829793 2603989 3768836 4037457 2416537

1569902 2820044 4116022 2578524

1391136 3576141 1997270

2260336 3695117

981728

Table 2: Net payments in Euro.

We can now apply different reserving methods to all three of these triangles and

compare the results. First, for the gross payments triangle, the classical CLM as

well as DCL (with the adjustments set out in Mart́ınez-Miranda et al., 2012) give

a reserve of EUR 138,952,059. In a practical context, the appropriateness of all

estimators should be considered. However, for the purposes of the illustration of

the methods in this paper, we will assume that this is an appropriate estimate and

are therefore trying to get a similar result. While the BDCL method of Mart́ınez-

Miranda et al. (2013b) with δj = 1 ∀j and Qi = 0 ∀i (EUR 168,124,495) as well

as the DCL prior method of Mart́ınez-Miranda et al. (2015) (EUR 160,468,905) give

a much higher reserve, the BDCL prior method has a reserve of EUR 139,434,204,

which is very close to the CLM result and may provide some justification for the

new modification.

Applied to the net payments triangle, the CLM and DCL provide a reserve of

EUR 133,200,160. Similar to the results for the gross payments, the BDCL (EUR

161,432,377) and the DCL prior method (EUR 153,728,832) have a much higher

reserve, whereas the BDCL prior method comes to a reserve of EUR 133,724,859,

which is again very close to the CLM reserve.

While it may not always be suitable to appply chain ladder models to recoveries

triangles, it is interesting in the context of this paper to examine what the results
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0 0 0 0 0 0 0 0 154313 4275 4795 9625 0 0 0

0 0 0 0 21277 0 0 0 0 0 38110 0 0 0

0 0 1576 88172 0 114485 212371 289123 4493 278722 273209 9440 120140

0 0 0 30069 70780 93931 4765 5400 201797 85601 1953 902

0 64695 6396 38830 92545 159658 7132 8035 21128 20196 31574

0 0 0 129838 206860 300365 45235 110803 93262 25886

0 0 0 151216 1180 239975 104479 82142 3988

0 0 0 0 39561 264317 104051 1465

0 0 0 11209 0 0 0

0 0 0 18475 4091 2055

0 0 0 52045 409973

0 0 0 0.00

0 0 0

0 0

0

Table 3: Recoveries in Euro.

show. For these data, the results for the recoveries triangle are a bit different. As

predicted in section 2, the CLM and DCL reserves are slightly overestimated at

EUR 3,667,605. While the BDCL method gives an even bigger reserve of EUR

4,010,271, the DCL prior reserve appears to be better estimated with a value of

EUR 2,437,866. Again, the BDCL prior method calculates a reserve which appears

to be more appropriate at EUR 2,502,285.

Given these results, the conclusion for this practical approach is that we should

apply a bootstrap method based on the BDCL prior method described in section

4.1. For simplicity we do not include the option for zero-claims probability in the

bootstrap results in this paper. Figure 1 shows the results of the BDCL prior

bootstrap method applied to the gross payments triangle. This shows the cash flow

on the left hand side, and the reserve on the right hand side, split into IBNR and

RBNS as well as the total reserve, all in Euros. The corresponding estimates, such

as the mean for the total reserve of EUR 135,826,096, can be found in Table 4 in

the Appendix.

The more interesting results for this bootstrap can be found in Figure 2, which

shows the reserves for the net triangle on the left side together with the recoveries

triangle on the right side. These results will be compared to the split done using

the BDCL prior method and simulation of individual claims in the following section.

The corresponding estimates can be found in Table 5 for the net triangle (mean total

reserve = EUR 130,115,416) as well as Table 6 for the recoveries triangle (mean total

reserve= EUR 2,346,690).
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Figure 1: BDCL prior bootstrap applied on the gross payments triangle, 10,000

times. The cash flow as well as the reserves in Euros. The results are given for the

IBNR, RBNS and the total.

6 The prior knowledge double chain ladder split

In this section we consider an alternative method for the split into net payments

triangle and recoveries triangle to that used in practice and outlined in the previous

section. This method simulates individual claims using the model in section 3 which

requires just the aggregated data and then splits the simulated individual claims

using a given retention. When these individual claims are split into a net and

a recoveries part, they will be aggregated again and a bootstrap method will be

applied. In the following, this simulation method will be explained in detail.

First, the development inflation needs to be extracted using the approach of

Martinez-Miranda et al. (2015). Then, following the approach of this paper, the

development inflation is divided out of the payments, so that the original DCL type

of model can be applied. The BDCL method is applied and we obtain the corre-

sponding parameters, which are used to calculate the mean and variance which are

required for the simulation of individual claims. The individual claims are simulated

with a Gamma distribution, using the counts which are simulated with a Poisson

18



Figure 2: BDCL prior bootstrap results for the reserves given in Euros, separated

into IBNR and RBNS together with the Total reserves. On the left hand side the

bootstrap method was applied on the net payments triangle and on the right hand

side on the recoveries triangle. The bootstrap was done 10,000 times.

distribution in line with the DCL framework.

In contrast with the practical approach outlined in the previous section, the split

between insurance and reinsurance can be done for each individual claim, where it

is simply decided whether the value of the claim is smaller than a predetermined

value given by the reinsurance assumptions. If the claim is smaller, it is added to the

insurance triangle. If it is bigger, the predetermined value is added to the insurance

triangle and the excess is added to the reinsurance triangle.

This process is done separately for IBNR and RBNS claims. Then, the indi-

vidual claims can be added up to the usual aggregated IBNR and RBNS triangles.

This procedure is repeated multiple times. Finally, we multiply the development

inflation back to the results and calculate any required statistics such as the mean,

quantiles etc.

The simulation method consists of the following procedure, following along the

steps of section 4.1:

• Step 1: Payments triangle adjustment.
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Divide the payments triangle by the development inflation δj and the zero-

claims probability (1−Qi) to get the adjusted payments triangle X̃ij =
Xij

δj(1−Qi)

to attain to the DCL framework.

• Step 2: Incurred data adjustment.

Divide the aggregated incurred data by the zero-claims probability (1 − Qi)

to get the adjusted incurred triangle Ĩik = Iik
(1−Qi)

so that the estimate of the

underwriting year inflation doesn’t change. Note that Iik are incurred claims

for accident year i and development period k.

• Step 3: Parameter estimation.

Estimate the model parameters using DCL for the data in the triangles NI

and X̃I and denote the parameter estimates by (p̂0, . . . , p̂m−1), µ̂, σ̂2 and {γ̂i :

i = 1, . . . ,m}.
Repeat this estimation using DCL but replacing the adjusted triangle of paid

claims by the adjusted triangle of incurred data: ĨI = {Ĩik : (i, k) ∈ I}.
Keep only the resulting estimated inflation parameters, denoted by {γ̂Ii : i =

1, . . . ,m}.

• Step 4: Bornhuetter-Ferguson adjustment.

Replace the inflation parameters {γ̂i : i = 1, . . . ,m} from the adjusted paid

data by the estimates from the adjusted incurred triangle, {γ̂Ii : i = 1, . . . ,m}.

• Step 5: Mean and variance.

Calculate estimates of γiµ and γ2i σ
2.

• Step 6: Simulate counts.

Simulate IBNR counts, NIBNR, and RBNS counts, NRBNS, separately using

pois(αiβj).

• Step 7: Simulate individual payments.

Simulate individual payments (IBNR and RBNS separately) using gamma(E2/V ar, V ar/E)

NIBNR-times and NRBNS-times, respectively.

• Step 8: Split.

The individual claims are split into a net part for the insurance company as

well as a recoveries part for the reinsurance company. The split is done by

comparing the values of the individual claims to a given retention value for

each accident year.

• Step 9: Aggregate data.

The split claims are aggregated into triangles.
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• Step 10: Repeat multiple times.

The process is repeated multiple times.

• Step 11: Prediction readjustment.

Readjust the RBNS and IBNR estimates by multiplying them with the devel-

opment inflation δj and the zero-claims probability (1 − Qi) and sum them

up to get the final estimate of the total outstanding claims in our original

framework.

• Step 12: Calculate mean, quantiles etc.

Finally, statistical values such as the mean and variance can be calculated.

Figure 3 shows this simulation applied to the gross payments data triangle given

in Table 1 with 10,000 repetitions. This gives the reserves in Euros, split into IBNR

and RBNS together with the total reserves. On the left hand side we have the plots

for the net triangle resulting from the simulated split, and on the right hand side

the results for the recoveries triangle.
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Figure 3: Results of the simualtions for the reserves given in Euros and seperated

into IBNR and RBNS, together with the Total reserves. On the left hand side

the net payments triangle is shown, where the split was done for the individually

simulated claims. On the right hand side the recoveries triangle is presented. The

simulation was done 10,000 times.

The results of the new method can be applied to those of the practical approach

in the previous section. This is summarised in Figure 4.

The left side shows the Total reserves for the net triangles. While the graph for

the BDCL prior bootstrap in clearly higher, the tail for the simulation method is

clearly bigger on both sides. The results for the Total reserves for the recoveries

triangles are similar. The graph for the BDCL prior bootstrap starts lower around

zero, but the rest of the two graphs is very similar. However, the distributions

of the two different approaches have some similarities but need to have greater

consideration in a practial context.

7 Conclusions

As presented in Figure 4, the results of our new simulation split method can be

compared to the results given by the method used in practice. For the new method,

the split via simulation presented in Chapter 6 is carried out by estimating individual
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Figure 4: Total reserves for the BDCL prior bootstrap, applied on the split data

from Chapter 5, in comparison to the Total reserves from the bootstrap simulation

from Chapter 6

claims from aggregate data and applying a bootstrap method afterwards. This gives

a more credible, coherent and flexible framework and it would be very interesting

to test this in a practical context where the retention level varies by year. It would

also be useful to assess the usefulness of this approach by considering a range of

different types of data and to compare with other individual reserving methods. We

believe that the framework of DCL is probably easier to use in practice and yet still

has enough flexibility for a more coherent consideration of the effects of reinsurance

on reserves.
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A Appendix

To justify the BDCL method introduced in chapter 4.1, we need to calculate the

expectation of the adjusted incurred triangle.

First, we use the definition of Iik, the tower property and the definition of Xikl
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to get

E[Iik] = E

[
k∑
s=0

m−1∑
l=0

E[Xisl| Fi+k]−
k−1∑
s=0

m−1∑
l=0

E[Xisl| Fi+k−1]

]

=
k∑
s=0

m−1∑
l=0

E[Xisl]−
k−1∑
s=0

m−1∑
l=0

E[Xisl]

=
m−1∑
l=0

E[Xikl]

=
m−1∑
l=0

E

Npaid
ikl∑
h=0

Y
(h)
ikl

 .
Now, using (A4), we can apply Wald’s equation and use the tower property again.

Hence, we obtain

E[Iik] =
m−1∑
l=0

E
[
Npaid
ikl

]
E
[
Y

(h)
ikl

]
=

m−1∑
l=0

E
[
E
[
Npaid
ikl |Nik

]]
E
[
Y

(h)
ikl

]
.

Therefore, using (A2), (A1), (A3), and (1), we conclude the following unconditional

mean for the incurred claims

E[Iik] =
m−1∑
l=0

E[Nikpl]E
[
Y

(h)
ikl

]
=

m−1∑
l=0

αiβkplγiδk(1−Qi)µ

= αiγi(1−Qi)µβkδk

m−1∑
l=0

pl

= αiγi(1−Qi)µβkδk.

Finally, we consider the expectation of Ĩik, which is the incurred claims triangle

where we Divided out the zero-claims probability.

E
[
Ĩik

]
= E

[
Iik

(1−Qi)

]
= αiγiµβkδk.

This means that X̃ij and Ĩik have the same underwriting year parameters. Therefore,

using either one of these triangles, we estimate the same DCL parameters, including

the accident year inflation parameter γi. That justifies that we replace γ̂i which

we obtained by applying DCL on X̃ij by the accident year inflation γ̂i
I we got by

applying DCL on the adjusted incurred triangle Ĩik.
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B Appendix: results

mean.total sd.total Q1.total Q5.total Q50.total Q95.total Q99.total

1 26097618.95 2392931.78 20886771.49 22324140.69 26032394.84 30174384.25 32079872.39

2 24158342.00 2521628.99 18748036.29 20192400.26 24091427.19 28492022.04 30484948.59

3 21139107.92 2530340.00 15801701.38 17228688.02 21014715.81 25525694.20 27528586.39

4 17091987.23 2379023.40 12055839.23 13347033.36 16983395.41 21181064.02 23252390.09

5 13372286.22 2323742.40 8653948.82 9808879.04 13216264.91 17435683.34 19528445.78

6 9353233.12 1938764.78 5505334.88 6405189.05 9234879.15 12725025.87 14589337.48

7 7270948.52 1782991.56 3830245.99 4640998.13 7126495.58 10452121.69 12142565.81

8 5092876.23 1565939.62 2152866.47 2815683.11 4930607.05 7959667.88 9439412.66

9 3962208.40 1526824.45 1300943.34 1856061.17 3763333.34 6731605.89 8528455.08

10 2834724.63 1403185.60 604038.64 986673.29 2617255.21 5409836.47 7127125.04

11 1966353.27 1273631.19 183392.94 412683.67 1713562.13 4430254.95 6110966.12

12 1665933.68 1263099.74 55024.65 211665.11 1369893.70 4069701.90 5879908.19

13 1081440.15 1211645.98 0.00 3929.37 693181.94 3515330.99 5457305.15

14 739036.15 1258684.81 0.00 0.00 197604.85 3293106.90 5580981.11

Tot. 135826096.47 6838341.10 120590726.18 124742962.72 135733838.59 147245419.76 152650623.32

Table 4: Results from the BDCL prior bootstrap of Chapter 5 for the gross payments

triangle in Euro. These are the total reserves, so the sum of the IBNR and RBNS.

The bootstrap was done 10,000 times.

mean.total sd.total Q1.total Q5.total Q50.total Q95.total Q99.total

1 25375456.64 2309316.00 20410202.99 21812817.43 25272033.15 29356647.09 31145553.62

2 23367871.35 2391471.13 18264214.15 19600152.45 23304682.05 27451256.58 29394697.61

3 20374818.94 2435560.18 15175869.33 16509581.78 20282202.40 24608492.86 26523551.82

4 16413241.22 2287170.69 11487626.17 12906855.53 16295219.87 20434716.77 22162714.95

5 12717529.98 2223454.61 8145667.34 9350835.16 12539153.03 16613696.28 18518427.48

6 8838253.04 1808325.93 5274691.37 6130174.30 8692292.16 12008506.92 13727742.86

7 6778492.54 1711673.76 3445007.42 4273133.05 6610866.19 9837135.77 11560686.36

8 4737099.84 1455547.35 2077801.13 2629966.98 4581030.90 7373478.63 8819808.31

9 3615560.12 1405362.20 1198578.44 1685708.15 3406266.55 6214069.17 7716290.78

10 2627966.69 1307648.92 552692.38 926132.07 2411894.66 5038921.62 6740394.75

11 1895212.46 1236013.10 154656.55 378060.29 1651657.82 4237719.26 5827700.68

12 1580611.59 1196904.29 51467.78 211778.91 1291175.73 3880311.90 5580858.46

13 1074318.33 1203949.11 0.00 4932.29 679491.51 3577721.41 5309385.83

14 718983.45 1174810.48 0.00 0.00 197268.01 3101279.38 5554770.14

Tot. 130115416.19 6562266.35 115379290.79 119627422.38 129969539.83 141239104.59 145533609.00

Table 5: Results from the BDCL prior bootstrap of Chapter 5 for the net payments

triangle in Euro. These are the total reserves, so the sum of the IBNR and RBNS.

The bootstrap was done 10,000 times.

26



mean.total sd.total Q1.total Q5.total Q50.total Q95.total Q99.total

1 585872.24 941073.48 3137.43 9692.16 234273.07 2324506.56 4640738.44

2 293379.56 516258.50 282.59 1565.84 99755.80 1255333.65 2582023.85

3 327232.59 652097.26 325.07 3114.14 108482.10 1371200.64 3107224.35

4 295013.89 623676.31 52.34 903.10 82677.89 1370850.44 3250473.11

5 285731.58 693697.94 0.09 22.14 50689.04 1307049.38 3516983.09

6 143036.48 593527.17 0.00 0.09 6699.26 590149.50 2798207.32

7 82530.96 242632.80 0.00 0.00 3369.64 437610.08 1128328.50

8 216566.46 976588.86 0.00 0.00 539.53 996581.57 4397546.27

9 35267.81 188761.48 0.00 0.00 0.00 144058.40 948118.52

10 33907.97 239799.97 0.00 0.00 0.00 86469.40 1014379.78

11 6000.67 47366.28 0.00 0.00 0.00 6537.46 168103.36

12 42150.26 277582.67 0.00 0.00 0.00 135258.32 1185302.35

Tot. 2346690.46 1988645.51 243455.77 447488.14 1791080.87 6151492.72 9678591.63

Table 6: Results from the BDCL prior bootstrap of Chapter 5 for the recoveries

triangle in Euro. These are the total reserves, so the sum of the IBNR and RBNS.

The bootstrap was done 10,000 times.

mean.total net sd.total net Q1.total net Q5.total net Q50.total net Q95.total net Q99.total net

1 25905055.39 3727872.86 18100170.70 20132476.50 25711255.14 32201375.33 35508312.24

2 23932228.36 3965650.38 15820465.78 17946494.20 23679016.53 30885342.55 34376799.12

3 20917492.41 3926735.56 12793883.25 14877169.70 20690675.61 27788991.01 31208214.31

4 17049799.96 3786929.48 9634375.59 11338190.75 16765247.54 23598688.19 27331568.40

5 13240383.34 3585513.43 6547856.46 8031280.04 12866692.70 19726623.28 23318292.49

6 9248605.85 2926938.34 3933173.83 5117001.41 8882062.82 14567816.43 17615450.70

7 7219015.05 2807373.23 2490929.63 3427338.94 6835029.89 12397890.85 15656106.74

8 5114767.79 2446660.80 1175107.61 1911161.06 4723691.15 9712334.84 12595022.88

9 3928749.50 2327558.23 561106.50 1058269.55 3510452.03 8218138.60 11571565.67

10 2908164.48 2210888.76 179192.80 463185.85 2362591.36 7073530.70 10415142.51

11 1947509.09 1916662.98 12757.13 95797.52 1397202.77 5713283.57 9201440.39

12 1665008.85 1940642.31 1420.44 22588.46 1015936.26 5613686.03 9156401.85

13 1098807.18 1928443.07 0.00 0.81 294000.20 4877308.49 9461457.99

14 758933.18 1923947.33 0.00 0.00 13448.57 4233172.23 9580323.43

Tot. 134934520.44 10884256.09 111265162.53 117982934.21 134411921.90 153765855.98 162619948.01

Table 7: Results for split via the simulation of Chapter 6. Presented are the resulting

net payments in Euro. These are the total reserves, so the sum of the IBNR and

RBNS. The simulation was done 10,000 times.
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mean.total Ex sd.total Ex Q1.total Ex Q5.total Ex Q50.total Ex Q95.total Ex Q99.total Ex

1 263869.44 490083.99 0.00 0.00 0.00 1262238.30 2279729.73

2 305291.26 572326.32 0.00 0.00 12446.89 1395779.60 2519679.49

3 316386.93 602782.84 0.00 0.00 0.00 1519499.66 2759573.25

4 301615.74 621647.67 0.00 0.00 0.00 1527947.84 2883860.62

5 283558.21 643016.92 0.00 0.00 0.00 1479181.86 2963271.38

6 198625.05 516634.95 0.00 0.00 0.00 1183692.09 2368634.91

7 161994.67 495942.87 0.00 0.00 0.00 1034987.24 2399881.13

8 124559.56 443331.70 0.00 0.00 0.00 855657.13 2190795.45

9 121863.37 519594.03 0.00 0.00 0.00 793234.00 2456611.84

10 92518.12 436308.94 0.00 0.00 0.00 582338.07 2281324.28

11 78236.23 493011.67 0.00 0.00 0.00 222062.24 2175314.15

12 50266.04 412240.24 0.00 0.00 0.00 0.00 1572289.27

13 43666.00 414266.48 0.00 0.00 0.00 0.00 1526001.39

14 33882.15 460701.52 0.00 0.00 0.00 0.00 164083.49

Tot. 2376332.76 1933288.21 0.00 213633.08 1947229.02 5954247.89 8892712.70

Table 8: Results for split via the simulation of Chapter 6. Presented are the resulting

recoveries in Euro. These are the total reserves, so the sum of the IBNR and RBNS.

The simulation was done 10,000 times.
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