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Robust Optimisation for Hydroelectric System
Operation under Uncertainty

Dimitra Apostolopoulou, Member, IEEE, Zacharie De Grève, Member, IEEE, and Malcolm McCulloch,
Senior Member, IEEE

Abstract—In this paper, we propose an optimal dispatch
scheme for a cascade hydroelectric power system that maximises
the head levels of each dam, and minimises the spillage effects
taking into account uncertainty in the net load variations, i.e.,
the difference between the load and the renewable resources, and
inflows to the cascade. By maximising the head levels of each
dam the volume of water stored, which is a metric of system
resiliency, is maximised. In this regard, the operation of the
cascade hydroelectric power system is robust to the variability
and intermittency of renewable resources and increases system
resilience to variations in climatic conditions. Thus, we demon-
strate the benefits of coupling hydroelectric and photovoltaic
resources. To this end, we introduce an approximate model for a
cascade hydroelectric power system. We then develop correlated
probabilistic forecasts for the uncertain output of renewable
resources, e.g., solar generation, using historical data based on
clustering and Markov chain techniques. We incorporate the gen-
erated forecast scenarios in the optimal dispatch of the cascade
hydroelectric power system, and define a robust variant of the
developed system. However, the robust variant is intractable due
to the infinite number of constraints. Using tools from robust
optimisation, we reformulate the resulting problem in a tractable
form that is amenable to existing numerical tools and show that
the computed dispatch is immunised against uncertainty. The
efficacy of the proposed approach is demonstrated by means of
an actual case study involving the Seven Forks system located
in Kenya, which consists of five cascaded hydroelectric power
systems. With the case study we demonstrate that the Seven
Forks system may be coupled with solar generation since the
“price of robustness” is small; thus demonstrating the benefits
of coupling hydroelectric systems with solar generation.

Index Terms—Robust Optimisation, Hybrid Hydro-Solar, Op-
timal Dispatch Scheme, Solar Forecast, Markov Chain.

I. INTRODUCTION

Renewable-based resources have been integrated into power
systems at a very high pace the last decades. As a result, the
net load, i.e., the difference of load demand and generation
of renewable resources, is highly variable and uncertain.
Operators need to schedule adequate flexible resources to cope
with the increased uncertainty and variability in the system. If
they fail to do so, the demand and generation do not match;
and this may lead to outages experienced by consumers. Over
2003-2012, weather-related outages are estimated to have cost
the U.S. economy an inflation-adjusted annual average of $18
billion to $33 billion [1]. In this regard, developing methods
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that help minimise the occurance of outage events is of high
importance.

Uncertainty and variability in renewable-based resources
affects everyday power systems operations (see, e.g., [2]). The
existence of advanced forecast techniques that may predict the
output of the renewable resources, such as solar, help in power
system operations since it improves the quality of the energy
delivered to the grid and reduces the ancillary costs associated
with weather dependency. Several methodologies have been
developed to forecast renewable-based generation output; a
detailed literature review may be found in [3]. However, most
methodologies focus on single-valued forecasts and do not
provide a probability associated with a certain renewable-
based resource generation realisation. Probabilistic predictions
are useful since they may be used as input to decision making
processes under uncertainty. For example, the authors in [4]
provide reliable probabilistic predictions of photovoltaic (PV)
generation of very-short term, i.e., 10-minute and one-hour
lead times. As the forecast horizon increases, i.e., 24-hour
lead times, the uncertainty rises significantly from less than
1% to more than 20% [5]. The aforementioned uncertainty
caused by imperfect renewable energy forecast raises signifi-
cant challenges to power grid operation (e.g., [6]).

A method of mitigating the risks associated with uncer-
tainty sources related to renewable-based generation is with
the development of hybrid energy systems. Several studies
have been made to present the value of hybrid systems.
For instance, the authors in [7] propose the development of
grid-tied photovoltaic-wind hybrid systems with centralised
battery back-up. The hybridisation of energy systems is useful
especially when complementary resources are coupled, e.g.,
the value of hybrid hydro-solar generation is discussed in [8]
and [9]. The advantage of hydroelectric power is its low gen-
erating cost and short initiating time. With the fast expansion
of renewable resources, there is a growing interest in using
hydroelectric power systems as good candidates for smoothing
the output of renewable resources since they have high ramp
rates and may considered to be “storage” devices with energy
shifting capabilities. For example, pumped storage is viewed
as the most promising technology to increase renewable energy
source penetration levels in power systems and particularly in
small autonomous island grids, where technical limitations are
imposed by the conventional generating units [10]. In order to
integrate renewable-based resources and maximise their ben-
efits for operational and planning purposes new mathematical
models and algorithms that are able to effectively deal with
the uncertainty of future hybrid energy systems need to be
developed.

Several papers have addressed the problem of investigating
how renewable resources may be smoothly integrated into
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power systems, e.g., see [11] and references therein. In [12],
dynamic programming is used to determine hydroelectric
power scheduling. The authors in [13] use Monte Carlo tech-
niques for the short-term operation of the Itaipu hydroelectric
power system subject to inflow uncertainties. Another case
study is presented in [14] where a model predictive control
scheme for the Mid-Columbia hydropower system is proposed.
In [11], stochastic mixed-integer programming is formulated
to account for hydrological uncertainty by using moment-
based scenario reduction techniques to reduce the complexity.
A two-stage robust scheduling approach for a hydrothermal
power system taking into account water inflow uncertainty is
presented in [15].

In this paper, we propose a robust short-term optimal dis-
patch framework for a cascade hydroelectric power system tak-
ing into account uncertainty in the net load due to renewable-
based generation and the inflows to the cascade. In particular,
we extend a deterministic hydroelectric dispatch framework
given in [16] that uses water efficiently, i.e., uses the minimum
amount of water to meet the energy target; and increases the
system resiliency in dry months and benefits irrigation. The
maximum efficiency of the hydroelectric power plant occurs
when the reservoir is full because the power output for a
given amount of water is higher. In this regard, we construct
the hydroelectric system optimal dispatch by appropriately
choosing the objective function, i.e., maximise the water level
in the dam, and representing the physical and power balance
constraints. In order to incorporate the uncertainty sources
from renewable-based generation we develop correlated proba-
bilistic forecasts; we use historical data and based on clustering
and Markov chain techniques we determine the probabilistic
forecasts. It should be noted that instead of the Euclidean
distance, typically used in such cases, we use a shape-based
distance (or SBD), recently published in the machine learning
community. Predictions computed on the training set are then
compared with actual training data to calculate empirical
cumulative distribution functions of the relative forecast errors.
Next, we incorporate the generated forecast scenarios in an
optimisation and define a robust variant of the hydroelectric
dispatch problem. We present a methodology of incorporating
uncertainty both in the net load that the hydroelectric system
has to meet as well as in the inflows to the reservoirs. The
resulting optimisation problem is intractable due to the infinite
number of constraints. In this regard, we use tools from
robust optimisation and we reformulate the resulting problem
in a tractable form that is amenable to existing numerical
tools, while offering immunisation of the computed dispatch
against uncertainty. The resulting tractable robust variant of
the hydroelectric dispatch problem may be used to quantify
the “cost of robustness” in a particular hydroelectric power
system. We design an actual detailed case study for the Seven
Forks cascade. We demonstrate the proposed approach through
the Seven Forks system located in Kenya, which consists of
five cascaded hydroelectric power systems. We quantify the
benefits of coupling hydroelectric and solar generation and
demonstrate how hydro may increase the amount of solar
generation a system may accommodate by smoothing the
variability introduced by the renewable-based resources.

The remainder of the paper is organised as follows; in
Section II, we present the preliminaries of hydroelectric power
system dispatch by defining the objective function and con-

straining factors, e.g., maximum live volume, maximum power
output. The cascading effect of a system of hydroelectric
power systems and spillage constraints are explicitly modelled.
In Section III, we formulate the forecasting algorithm based on
historical data where a Markov chain is developed to model the
transitions between states. In Section IV, we use the forecasts
and define a robust variant of the hydroelectric dispatch
problem and recast it into a tractable form. In Section V, we
illustrate the proposed methodology through the Tana river
cascade located in Kenya; and discuss the cost of robustness.
In Section VI, we make some concluding remarks and discuss
on future work.

II. PRELIMINARIES

In this section, we describe the simplified deterministic
hydroelectric power system dispatch problem by defining the
objective function and constraining factors. More details may
be found in [16].

A detailed hydroelectric power system dispatch model re-
sults into a highly non-linear and non-convex optimisation
problem due to the electrical and hydraulic coupling of the
dams; and for every plant, the nonlinear dependence between
the power output, the water discharged, and the head of the
associated reservoir (e.g., [17, Ch. 7]). Such an event is a
challenge for independent system operators (ISOs), who are
responsible for the operation of hydroelectric power plants and
do not usually have optimisation tools to efficiently use the
generation resources [18]. Thus, there is a need to develop
cascade hydroelectric power system dispatch tools that provide
a balance between accuracy and complexity; and may be used
for the short-term operation of cascade hydroelectric power
plants [19]. This need is exacerbated when uncertainty is
taken into consideration; thus, it is imperative to use as a
starting basis a computationally efficient deterministic model.
In this regard, several approximation methodologies have been
proposed based on semidefinite programming (e.g., [20]),
or on piecewise affine approximations with integer variables
(e.g., [19]). However, such methodologies remain complex
(e.g., [21]) and are not scalable (e.g., [22]) due to cost in
terms of computation; and would likely be intractable for use
in system operators. The advantage of the proposed model
compared to other works is that it approximates the system
behaviour in satisfactory levels and is scalable to incorporate a
large number of hydroelectric systems in a cascade. Numerical
results validating the good accuracy of the used model may
be found in [16].

We consider a hydroelectric power system with H hydro-
electric power plants indexed by H = {1, . . . ,H} that we
wish to schedule for a time period T = {T1, . . . , TT }. We
denote by ∆t = Tt+1 − Tt the time intervals, which cannot
be smaller than half-hour, since only the steady-state system
behaviour is modelled.

1) Objective Function: In order to formulate the hydroelec-
tric system optimal dispatch, we define a set of requirements
that the system must satisfy: (i) maximise the system effi-
ciency, and (ii) minimise the spillage effects. The maximum
efficiency of the hydroelectric power plant occurs when the
reservoir is full. The main reason behind this statement is that
for a given water discharge the higher the head the higher
the power output. To this end, we wish to maximise the
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head of each reservoir at every time instant, i.e., hi(t), for
all i ∈ H , t ∈ T . The minimisation of the spillage effects
are accomplished by including in the objective function the
term

∑
t∈T

∑
i∈H Mσi(t), with M a large positive number

and σi(t) the spillage discharge of hydroelectric power plant
i during time to t. In this regard, the objective function is:∑

t∈T

∑
i∈H

hi(t)−
∑
t∈T

∑
i∈H

Mσi(t). (1)

2) Power balance constraint: The output of a hydroelectric
power system is used to meet the load at every time instant
t ∈ T . In this regard, we have∑

i∈H

Pi(t) = ∆PL(t),∀t ∈ T , (2)

where ∆PL(t) is the net load at time t and Pi(t) the power
of a hydroelectric power plant i at time t.

3) Power output of hydroelectric power plant: A hydro-
electric power plant i ∈H may be characterised by its input-
output curves. The input is in terms of water discharge and the
output is in terms of power generation. The power generated
by a hydroelectric power plant depends on the characteristics
of the net hydraulic head, i.e., the difference between the level
of the reservoir and the tail water, and the water discharge.
In particular, the power of a hydroelectric power plant i at
time t is defined as Pi(t) = ηi(hi(t), qi(t)) ρ g hi(t) qi(t),
∀i ∈ H , ∀t ∈ T , where ρ is the density of the water in
kg/m3; g is the gravitational acceleration in m/s2; hi(t) is
the net head of water (the difference in water level between
upstream and downstream of the turbine) of hydropower plant
i at time t in m; qi(t) is the discharge of water of plant i
during time t in m3/s; ηi(hi(t), qi(t)) is the efficiency of the
turbine generator at head hi(t) and discharge qi(t). There are
minimum and maximum limits associated with the discharge
rate, the head levels, and power output:

qmi ≤ qi(t) ≤ qMi ,∀t ∈ T , i ∈H , (3)
hmi ≤ hi(t) ≤ hMi ,∀t ∈ T , i ∈H , (4)
Pmi ≤ Pi(t) ≤ PMi ,∀t ∈ T , i ∈H . (5)

The non-convex relationship of the output of a hydroelectric
power system, the head and the water discharge is a bilinear
function for a constant turbine efficiency. We assume the
efficiency is constant, i.e., ηi(hi(t), qi(t)) = ηi and replace
the remaining bilinear term with a convex envelope con-
sisting of linear over- and underestimating inequality con-
straints to transform the non-convex constraint into a set
of linear inequality constraints. In particular, we have that
Pi(t) = νi hi(t) qi(t), with νi = ηi ρ g. By using McCormick’s
envelopes (e.g., [23]), we obtain:

Pi(t) ≥ νi(q
m
i hi(t) + hmi qi(t)− hmi qmi ), (6)

Pi(t) ≥ νi(q
M
i hi(t) + hMi qi(t)− hMi qMi ), (7)

Pi(t) ≤ νi(q
m
i hi(t) + hMi qi(t)− hMi qmi ), (8)

Pi(t) ≤ νi(q
M
i hi(t) + hmi qi(t)− hmi qMi ). (9)

4) Reservoir constraints: The modelling of water stored
in a reservoir and its mapping to a certain head level is
important. This relationship in most reservoirs is determined
from topographical surveys of the dam site and is highly
nonlinear, which is denoted by hi(t) = φi(Vi(t)), where Vi(t)

is the live volume of hydroelectric power plant i at the end
of time t in m3 [24]. In this regard, we convert the nonlinear
mapping of the head level to the volume to a piecewise affine
relationship, since one of the most useful applications of the
piecewise affine representation is for approximating nonlinear
functions. We consider j = 1, . . . , J intervals and thus have:

hi(t) = βji v
j
i (t) + γji , v

j
i (t) ∈ [ζj , ζj+1], for j = 1, . . . , J,

(10)
where βji , γ

j
i ∈ R+ = {x ∈ R|x ≥ 0}, for j = 1, . . . , J ,

ζ1 < ζ2 · · · < ζJ+1, vji (t) ∈ R+ with Vi(t) =
∑J
j=1 v

j
i (t).

An analysis of the piecewise affine approximation of the head
to the volume of existing reservoirs based on data found
in [25] showed that β1

i > β2
i > · · · > βJi . Usually, piecewise

affine functions are formulated as mixed integer programming
problems, which would increase the proposed dispatch model.
However, a special case for representing piecewise affine
functions arises when diseconomies of scale apply, i.e., when
β1
i > β2

i > · · · > βJi and we are maximising hi(t), which is
this case (e.g., [26]). Thus, we may rewrite the equations as

hi(t) =

J∑
j=1

(βji v
j
i (t)) + γ1

i , v
j
i (t) ∈ [0, ζj+1 − ζj ],

for j = 1, . . . , J. (11)

Notice the slight abuse of notation with the term vji (t); the in-
terpretation will always be clear from the context. Expressing
the concave piecewise affine function with the min operator,
i.e., hi(t) = minj=1,...,J(βji Vi(t) + γji )); and formulate its
max(hi(t) = minj=1,...,J(βji Vi(t) + γji )) would not work
since we have double sided inequalities, i.e., hmi ≤ hi(t) ≤
hMi , making the resulting optimisation problem non-convex.

5) Hydroelectric cascade constraints: Another physical
constraint that needs to be taken into consideration in the
operation of a cascade hydroelectric power system is the water
balance between reservoirs. A mathematical formulation of the
water balance of the cascade hydroelectric power system with
the use of the hydraulic continuity equations is given below:

J∑
j=1

vj1(t) =

J∑
j=1

vj1(t− 1) + (r1(t)− q1(t)

−σ1(t))∆t, (12)
J∑
j=1

vj2(t) =

J∑
j=1

vj2(t− 1) + (r2(t) + q1(t− τ1)

+σ1(t− τ1)− q2(t)− σ2(t))∆t, (13)
...
J∑
j=1

vkH(t) =

J∑
j=1

vjH(t− 1) + (rH(t) + qH−1(t− τH−1)

+σH−1(t− τH−1)− qH(t)− σH(t))∆t, (14)

where ri(t) is the inflow into hydroelectric power plant i
during time to t; this is an input to the optimisation problem
and is a function of several parameters, e.g., rainfall or
evaporation, τi is the time delay between reservoir i and
i + 1, i.e., the time water needs to travel from one to the
other. Some additional physical constraints that may be taken
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into consideration are the initial and terminal reservoir storage
volumes, i.e.,

J∑
j=1

vji (1) = Vi(start), i ∈H , (15)

J∑
j=1

vji (T ) = Vi(end), i ∈H . (16)

The upper and lower limits associated with the storage
volume are given below:

vj
m

i ≤ vji (t) ≤ vj
M

i ,∀j = 1, . . . , J, t ∈ T , i ∈H . (17)

6) Hydroelectric power system dispatch: The proposed
optimal dispatch of a hydroelectric power system may be
rewritten as

max
hi(t),Pi(t),σi(t),

qi(t),v
j
i (t)

∑
t∈T

∑
i∈H

hi(t)−
∑
t∈T

∑
i∈H

Mσi(t)

subject to (2)− (9), (11)− (17). (18)

The output of (18) determines the power output, live vol-
ume, spillage and water discharge for every hydroelectric
power plant at every time instant.

III. FORECAST OF THE SOLAR PRODUCTION

The robust optimisation formulation presented in Section IV
models the forecast uncertainty by two components: a nominal
(or deterministic) forecast, plus a forecast error around that
nominal prediction. In the present section, a solar forecasting
methodology which fits particularly well with that optimisation
formulation is proposed. The procedure is summarised in
Fig. 1, and can be decomposed into three steps:

1) Pre-processing: arrange the historical solar production
dataset in a database of N objects, each object X(i) =

{X(i)
1 , . . . , X

(i)
t , . . . , X

(i)
T }, i = 1, . . . , N, t = 1, . . . , T

being a time series of solar production with T entries.
Hourly data and daily solar profiles are considered in
the present paper, so that T = 24. A clustering phase
is then performed on the database in order to extract K
representative objects µ(k), k = 1, . . . ,K. The prototype
(or centroid, or representative object) of each cluster will
play the role of the nominal forecast in step 2.

2) Nominal forecast: assign each cluster prototype to a
state of a high order Markov chain of order r with K
states, and identify that Markov chain, so that transitions
between successive days are modelled. Given a past
sequence of solar production days, the model is able
to output the next day (i.e. the prototype of the cluster
that will occur the next day).

3) Uncertainty modelling: compare the forecast model
outputs with the real training data to compute forecast
error quantiles.

The contributions of the proposed methodology compared
to the existing literature are threefold:

1) a clustering algorithm and a high order Markov chain
are combined to provide a three-step procedure for the
forecast of solar production which fits naturally with
robust optimisation. This is original in the Power Sys-
tems community to the best of the authors’ knowledge.
More particularly, compared to reference [27] which is
dedicated to scenario-based stochastic optimisation, the
clustering algorithm is not employed for merging the
forecasts obtained by sampling a given model (i.e., not
employed for performing scenario reduction), but as a
preprocessing step for generating the nominal forecasts
requested by our robust optimisation tool. Moreover, the
clustering algorithm in step 1 does not require to make
any assumptions on the probability density functions
of the input data, whereas the AutoRegressive Moving
Average models employed in [27] work with normal
distributions.

2) a shape-based distance, based on the time correlation
between series and recently proposed in the Machine
Learning community [28], is employed to compare the
solar production patterns during the clustering step.
Its superiority over the classical Euclidean distance
is demonstrated numerically for time series of solar
production, which had never been done so far.

3) the uncertainty around predictions is modelled by ex-
tracting quantiles from the forecast error cumulative dis-
tribution functions of each possible past observed state
(or days) sequence. By doing so, the error behaviour
as a function of the transitions between days is finely
captured. Moreover, the level of risk assumed during
the subsequent optimisation procedure can be adjusted
easily by selecting the appropriate quantiles.

Nominal prediction at

observed sequence
day Dd+1 given past

{Dd, . . . , Dd−r+1}:
t

Identification

t

t

(K ≪ N)

Markov Chain

order r, K states
Markov chain of

k = 1, . . . ,K

Clustering

P [kW]

P [kW]

P [kW]

(e.g. r = 2,K = 2)

Transition probabilities:

Predict

X(i), i = 1, . . . , N

Time Series

PPV (Dd+1|
{Dd, . . . , Dd−r+1})

t

Daily time series

P [kW]

t = 1, . . . , T

Database of N objects K prototypes

µ(1)

µ(k)

µ(K) P (Dd+1 = µ(k)|{Dd, . . . , Dd−r+1})

= µ(k)

Error models θ(t) for
each past sequence

Fig. 1: Solar forecasting methodology.
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The methodology is further detailed in the following sub-
sections, and results are presented in Section V-B.

A. Database

The database used in this study contains solar production
profiles recorded at a quarter-hourly resolution, from the 1st

of February 1994 to the 31st of January 2016, for three solar
production sites located on the Tana River in Kenya, namely
Masinga, Gitaru, and Kiambere sites [24], [29]. The data from
the three sites are aggregated into one solar generation plant
and are arranged in daily profiles for the purpose of this study.
They are then averaged in order to work with hourly time
series of solar production. Zeros of solar production occurring
during nights are finally removed to reduce the computational
times.

B. Clustering

The clustering step aims at computing K typical daily solar
profiles from the historical database. Particular attention is
paid on the distance employed to compare the objects, on the
methodology for computing the cluster representative patterns
(or prototypes), and on the features representing the objects.

a) Distances: The choice of a distance measure is crucial
in clustering algorithms, as it quantifies the similarity between
objects and influences the obtained partition. It is furthermore
strongly context-dependent: a user might want to focus on
different characteristics when comparing objects, depending
on the application. Consequently, the clustering literature does
not provide a must-use distance which performs best in all
cases. When clustering temporal data patterns for instance, one
can be interested in grouping time series with similar shapes,
even if the phase (or alignment) is slightly different from one
sequence to another. This is particularly relevant in the case
of solar profiles clustering, since the patterns shape is directly
related to the cloud cover of the considered day.

In this work, a shape-based distance (or SBD), recently pub-
lished in the machine learning community [28], is employed to
compare the solar patterns. It is preferred to more conventional
shape-preserving distances such as dynamic time warping
(DTW) for its rapidity of computation: it is computed with
a O(T log T ) complexity, with T the length of the sequences,
compared toO(T 2) for DTW. The classical Euclidean distance
is also used for benchmarking since it consists in a good trade-
off between performance and rapidity (O(T )) for time series
clustering [30].

b) Prototype computation: The cluster k representative
object µ(k) (or prototype, or centroid) must summarise the
characteristics of the objects belonging to that cluster. A
simple averaging of the cluster objects is in that way not
acceptable in shape-based grouping, since it can produce
artificial patterns in the prototype sequence which are not
present in the cluster objects. Therefore, in the present work, a
shape-preserving prototype computation technique (or shape-
extraction as proposed in [28]) is employed when using SBD.
With the Euclidean distance, the cluster medoids are used as
prototypes (a cluster medoid is the object which minimises the
accumulated distance with all other cluster objects).

c) Features: In some cases, a transformation is first
performed on raw data in order to extract meaningful and non-
redundant information (or features), on which the clustering
algorithm is applied. The computation of good features is
highly context-dependent, and relies on the knowledge the user
has of the data at hand. In this work, clearness indices (CI),
defined as the ratio between the real observed solar production
and the ideal solar production obtained using a clear-sky
deterministic atmospheric model [31], are used as features.
A clustering on raw data is also performed for comparison.

C. Nominal forecast with high order Markov chains
A Markov chain of order r with K states is identified

to model the transitions between days, each state corre-
sponding to the representative object µ(k) of cluster C(k).
To that end, the training dataset and the cluster member-
ships obtained above are translated into a training state
sequence which is employed for fitting the Markov chain.
More particularly, the transition probabilities P (Dd+1 =
µ(k)|{Dd, . . . , Dd−r+1}), namely the probability that day
Dd+1 will be represented by µ(k) given the past observed
sequence of days {Dd, . . . , Dd−r+1}, are estimated using
an algorithm extracted from [32], which scales in O(rK2),
compared to conventional high order Markov chains which
scale in O(Kr).

D. Uncertainty Modelling
Predictions computed on the training set are compared

with actual training data to calculate empirical cumulative
distribution functions (or cdfs) of the relative forecast errors.
For each one of the Kr possible past observed state sequences,
T error cdfs have to be computed (one for each hour t). In
total, T × Kr hourly error cdfs are thus computed, which
allows to finely capture the error behaviour as a function of the
transitions between days. Quantiles are finally computed for
each cdf to provide upper and lower error bounds, which may
be used as θ(t) variables in the robust optimisation formulation
of Section IV. By selecting appropriate quantiles, the risk
assumed during the optimisation can be adjusted easily.

IV. ROBUST OPTIMISATION

In this section, we introduce uncertainty into the net load
that the hydroelectric power system needs to meet. In particu-
lar, we assume that this uncertainty is due to solar generation
that is present in a hydro-solar hybrid system. The uncertainty
levels are determined by using the forecast framework de-
scribed in Section III. We will perform a stochastic analysis,
taking forecast errors into account. The resulting optimisation
problem is intractable; thus, we recast it into a tractable form
that is immune to uncertainty. The goal is to preserve the
computational tractability of the nominal problem. We also
present how uncertainty in the inflows to the dams may be
included in the formulation.

A. Net Load Uncertainty Modelling
Let us assume that the net load contains a random fore-

cast error that is identified in Section III using the forecast
errors computed on a validation dataset. We model the net
load ∆PL with two components: (i) the nominal prediction,
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i.e., ∆PL; and (ii) a random forecast error vector δ =
[δ(1), . . . , δ(T )]> ∈ ∆ ⊂ RT . Thus we have: ∆PL =
∆PL + δ. We use the vector δ to construct bounds of the
forecast error, which are modelled as follows:

δ(t) ∈ ∆t = [−θ(t)∆PL(t), θ(t)∆PL(t)],∀t ∈ T , (19)

with θ(t) > 0, ∀t ∈ T . The power balance constraint given
in (2) may now be written as∑

i∈H

Pi(t) = ∆PL(t) + δ(t),∀δ(t) ∈ ∆t, t ∈ T . (20)

However, (20) has to be met for every δ(t); thus making it
infeasible. In this regard, we “move” the uncertainty of δ(t)
to the inequality constraints of (18) making the new stochastic
optimisation feasible. More specifically, we introduce piece-
wise affine control rules as presented in [33]. We now define
the decision variable of the output of the hydroelectric power
plant i at time t to consist of a deterministic component P di (t)
and another term that depends on the uncertain error:

Pi(t) = P di (t)+ai(t)δ(t),∀i ∈H , δ(t) ∈ ∆t,∀t ∈ T , (21)

where
∑
i∈H ai(t) = 1, ∀t ∈ T . The stochastic terms imply

that if an uncertain error is realised, it is allocated to the
hydroelectric power plants according to the coefficients ai(t),
adjusting their set-point P di (t). If the total forecast error is
positive, the hydroelectric power plants decrease their output,
while if it is negative they increase it. Based on this formula-
tion (20) now becomes

∑
i∈H P di (t) = ∆PL(t),∀t ∈ T , i.e.,

we moved the uncertainty from the equality constraint to the
inequality constraints. In particular, the uncertainty sources are
introduced the power output of the hydroelectric plants given
in (5)-(9).

max
hi(t),P

d
i (t),ai(t),σi(t),

qi(t),v
j
i (t)

∑
t∈T

∑
i∈H

hi(t)−
∑
t∈T

∑
i∈H

Mσi(t)

subject to (3)− (4), (11)− (17)∑
i∈H

P di (t) = ∆PL(t),∀t ∈ T ,

P di (t) + ai(t)δ(t) ≥ νi(qmi hi(t) + hmi qi(t)

− hmi qmi ),∀i ∈H , δ(t) ∈ ∆t, t ∈ T ,

P di (t) + ai(t)δ(t) ≥ νi(qMi hi(t) + hMi qi(t)

− hMi qMi ),∀i ∈H , δ(t) ∈ ∆t, t ∈ T ,

P di (t) + ai(t)δ(t) ≤ νi(qmi hi(t) + hMi qi(t)

− hMi qmi ),∀i ∈H , δ(t) ∈ ∆t, t ∈ T ,

P di (t) + ai(t)δ(t) ≤ νi(qMi hi(t) + hmi qi(t)

− hmi qMi ),∀i ∈H , δ(t) ∈ ∆t, t ∈ T ,

Pmi ≤ P di (t) + ai(t)δ(t) ≤ PMi ,

∀i ∈H , δ(t) ∈ ∆t, t ∈ T ,∑
i∈H

ai(t) = 1,∀t ∈ T ,

− 1 ≤ ai(t) ≤ 1,∀i ∈H , t ∈ T . (22)

Thus, we now have the decision variables P di (t), ai(t) instead
of Pi(t), ∀i ∈H , t ∈ T .

B. Equivalent Tractable Reformulation

The optimisation problem given in (22) cannot be solved
directly because some constraints apply for all δ(t) ∈ ∆t, t ∈
T ; thus, the intersection of an infinite number of constraints.
In this regard, we recast (22) into a tractable problem (see,
e.g., [34], [35], [36]). To make this reformulation more clear,
we first go through a simple inequality constraint, i.e., Pmi ≤
P di (t) + ai(t)δ(t) ≤ PMi and follow this procedure for all of
the constraints that contain δ(t). For the upper bound, we have
that:

P di (t) + ai(t)δ(t) ≤ PMi
(19)⇔

P di (t) + |ai(t)|θ(t)∆PL(t) ≤ PMi ⇔
− PM

i −Pd
i (t)

θ(t)∆PL(t)
≤ ai(t) ≤ PM

i −Pd
i (t)

θ(t)∆PL(t)
. (23)

In the same vein, for the lower bound we have that:

P di (t) + ai(t)δ(t) ≥ Pmi
(19)⇔

P di (t)− |ai(t)|θ(t)∆PL(t) ≥ Pmi ⇔
− Pd

i (t)−Pm
i

θ(t)∆PL(t)
≤ ai(t) ≤ Pd

i (t)−Pm
i

θ(t)∆PL(t)
. (24)

The resulting tractable linear programming may be written as:

max
hi(t),P

d
i (t),ai(t),

σi(t),qi(t),v
j
i (t)

∑
t∈T

∑
i∈H

hi(t)−
∑
t∈T

∑
i∈H

Mσi(t)

subject to (3)− (4), (11)− (17)∑
i∈H

P di (t) = ∆PL(t),∀t ∈ T ,

P di (t)− |ai(t)|θ(t)∆PL(t) ≥ νi(qmi hi(t)
+ hmi qi(t)− hmi qmi ),∀i ∈H , t ∈ T ,

P di (t)− |ai(t)|θ(t)∆PL(t) ≥ νi(qMi hi(t)
+ hMi qi(t)− hMi qMi ),∀i ∈H , t ∈ T ,

P di (t) + |ai(t)|θ(t)∆PL(t) ≤ νi(qmi hi(t)
+ hMi qi(t)− hMi qmi ),∀i ∈H , t ∈ T ,

P di (t) + |ai(t)|θ(t)∆PL(t) ≤ νi(qMi hi(t)
+ hmi qi(t)− hmi qMi ),∀i ∈H , t ∈ T ,

− PMi − P di (t)

θ(t)∆PL(t)
≤ ai(t) ≤

PMi − P di (t)

θ(t)∆PL(t)
,

∀i ∈H , t ∈ T ,

− P di (t)− Pmi
θ(t)∆PL(t)

≤ ai(t) ≤
P di (t)− Pmi
θ(t)∆PL(t)

,

∀i ∈H , t ∈ T ,∑
i∈H

ai(t) = 1,∀t ∈ T ,

− 1 ≤ ai(t) ≤ 1,∀i ∈H , t ∈ T . (25)

C. Uncertainty in the Inflows to the Cascade

If we would like to take uncertainty of the inflows to the
cascade ri(t) into account then we would follow a similar
procedure. We model the inflows ri(t) with two components:
(i) the nominal prediction, i.e., ri(t); and (ii) a random forecast
error vector δ̃i(t). Thus we have: ri(t) = ri(t) + δ̃i(t), such
that δ̃i(t) ∈ ∆̃i(t) = [−θ̃i(t)ri(t), θ̃i(t)ri(t)],∀t ∈ T , with
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θ̃i(t) > 0, ∀t ∈ T . We assume that δ̃i(t) are independent for
all i ∈ H and t ∈ T . The hydroelectric cascade constraints
given in (12)-(14), e.g., for i = 1 and ∆t = 1 (without loss
of generality) may now be written as
J∑
j=1

vj1(t) =

J∑
j=1

vj1(t−1)++r1(t)+δ̃i(t)−q1(t)−σ1(t). (26)

This could be equivalently written as
J∑
j=1

vj1(t) =

J∑
j=1

vj1(start) +

t∑
t′=2

r1(t′) +

t∑
t′=2

δ̃i(t
′)

−
t∑

t′=2

q1(t′)−
t∑

t′=2

σ1(t′), (27)

We now define affine policies for the water discharge and the
spillage at time t:

q1(t) = qd1(t) + ãq1(t)δ̃1(t),∀δ̃1(t) ∈ ∆̃1(t),∀t ∈ T , (28)
σ1(t) = σd1(t) + ãσ1 (t)δ̃1(t),∀δ̃1(t) ∈ ∆̃1(t),∀t ∈ T , (29)

with ãq1(t) + ãσ1 (t) = 1. Thus, any error introduced by error
in the forecast of the inflow is dealt with the amount of water
that is discharged or spilled at time t. Based on this formu-
lation (27) now becomes

∑J
j=1 v

j
1(t) =

∑J
j=1 v

j
1(start) +∑t

t′=2 r1(t′) −∑t
t′=2 q

d
1(t′) −∑t

t′=2 σ
d
1(t′). To modify the

inequality constraints that contain q1(t) we use the same
procedure as given in Section IV-B.

The question is what happens once both uncertainty in the
net load as well as the inflows are taken into account at the
same time. There are some constraints, e.g., (6), where both
uncertainty sources are included. In this case we have:

P di (t)− |ai(t)|θ(t)∆PL(t) ≥ νi(qmi hi(t)
+hmi (qdi (t) + |ãqi (t)|θ̃i(t)ri(t)− hmi qmi ). (30)

V. NUMERICAL RESULTS

In this section, we illustrate the robust optimal dispatch of a
cascade hydroelectric system with the hydroelectric plants of
the Tana river in Kenya, which consists of five hydroelectric
power plants from Masinga Main Reservoir to Kiambere [24],
i.e., N = {1, 2, . . . , 5}. We assume that the cascade is
working synergistically with a solar generation plant. The time
horizon we wish to schedule the hybrid system operation is
over one day, i.e., T = {1, 2 . . . , 24}, with hourly intervals,
i.e., ∆t = 1. More specifically, we will demonstrate how
the forecasting algorithm works, validate the results of the

Reservoir Masinga Kamburu Gitaru Kindaruma Kiambere
PM
i [MW] 40 93 225 72 165

v1
M

i [Mm3] 400 14 6 4 292
v2

M

i [Mm3] 731 37 9 3 137
v3

M

i [Mm3] 622 82 6 3 90
v1i (start) [Mm3] 400 14 6 3.7 292
v2i (start) [Mm3] 731 37 6 0 127
v3i (start) [Mm3] 425 66 0 0 0

hMi [m] 51 78 140 35 151
hmi [m] 25 61 131 31 134
qMi [m3/s] 198.8 161.82 189 265.68 132

TABLE I: Tana river cascade data.

Fig. 2: Load, solar output and net load that the hydro-solar
hybrid system needs to meet.

robust optimisation with Monte Carlo simulations; quantify the
“cost” of uncertainty; and compare the results with stochastic
programming.

A. System Description

The constraints of the Tana river cascade in terms of power
output, live volume, head, and ramping characteristics may be
found in [25] and are shown in Table I. The minimum power
output, live volume, and water discharge rate for all reservoirs
are zero, i.e., Pmi = 0, vj

m

i = 0, j = 1, . . . , 3, qmi = 0 for
i = 1, . . . , 5. The turbine generators efficiencies for the five
dams are: η1 = 0.9, η2 = 0.9, η3 = 0.92, η4 = 0.89, and η5 =
0.9. The analysis of deriving a simplified model for the Tana
River Cascade system are given in [16] and summarised in
Section II; here the results are given and then used to illustrate
the robust optimal dispatch of a cascade hydroelectric system.

For all the dams, we choose J = 3, i.e., we calculate the
piecewise affine functions into three segments. For the five
reservoirs we have:

h1(t) = 0.0281v1
1(t) + 0.0131v2

1(t) + 0.0084v3
1(t) + 25,

h2(t) = 0.3077v1
2(t) + 0.1351v2

2(t) + 0.0964v3
2(t) + 61,

h3(t) = 0.6349v1
3(t) + 0.4301v2

3(t) + 0.1667v3
3(t) + 131,

h4(t) = 0.5779v1
4(t) + 0.4117v2

4(t) + 0.2955v3
4(t) + 31,

h5(t) = 0.0648v1
5(t) + 0.0468v2

5(t) + 0.0398v3
5(t) + 134,

The units for the live volumes are in Mm3 and for the head in
m. The time delays between the dams were calculated in [16]
to be: Masinga-Kamburu, τ1 = 2 hours; Kamburu-Gitaru,
τ2 = 0 < 1 hour; Gitaru-Kindaruma, τ3 = 0 < 1 hour; and
Kindaruma-Kiambere, τ4 = 4 hours. In the Tana river cascade

Fig. 3: Power output of every hydroelectric power system in
the Tana River cascade.
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there are three main inflow streams; in Masinga, Kamburu
and Kiambere. The remaining inflow into the dams is due to
rainfall data. Kenya Electricity Generating Company (KenGen)
provided hourly historical data of the power output of all the
hydroelectric power output; dams head levels; and inflow data
for all the hydroelectric power system from July 2015-June
2016. The starting volume constraint for each reservoir are
given in Table I; there is no ending volume constraint. We
assume that the cascade operates together with solar generation
of 70 MW capacity; where the uncertainty is inserted. We use
solar data from Solargis [29]. The shape of the national load
duration curve of Kenya for 2011 is used to determine the load
levels [37]. In order to determine PL(t) for t ∈ T , we need
to make sure that the installed capacity of the hydroelectric
power system is sufficient. Thus, we constrain the load to a
maximum value of 590 MW <

∑5
i=1 P

M
i . We will use the

five hydroelectric power system to meet this load.

B. Uncertainty modelling

We define the operation of the Tana River cascade for a
one day so that the net load is met. The net load is the
difference between the actual load and the solar generation; as
depicted in Fig. 2. For these inputs, each of the hydroelectric
power systems participates as shown in Fig. 3 which are
the outcomes of (18). More specifically, in order to achieve
maximum system efficiency, the first two hydroelectric power
stations work at maximum output. Next, Gitaru dam, the third
system in row, is dispatched until the subsequent dams reach
close to the maximum volume limit around t = 13 h. Then,
the fourth and fifth dams, i.e., Kindaruma and Kiambere, are
used to meet the demand. However, the actual output of the
solar generation may be different that forecasted. In Fig. 4,
the output of various sample paths of the solar output for
forecast error up to 40% are depicted. It may be seen that
the solar power output for, e.g., the peak hour varies from 20-
60 MW. We run the hydroelectric power system scheduling
algorithm as described in (18) for sample paths of the solar
output for forecast errors 10-40%. Some representative results
are depicted in Fig. 6. It may be seen in Fig. 6b that for higher
forecast errors the value of the objective function changes for
different sample paths. To provide the reader a measure of how
important it is to have even a faction of the meter difference
in head levels we calculate how many days it takes to make
the live volume zero with maximum turbine discharge, i.e.,
change the head level 26, 17, 9, 4.2, and 17 m, based on the
data given in Table I. These are: 102, 9.5, 1.28, 0.43, and
45.3 days respectively. This is a result of different scheduling
decisions based on the solar generation output. It is interesting
to see how the dispatch framework changes if the hydro-solar
hybrid system needs to be able to respond to changes in the
solar output.

Now the solar forecasting methodology presented in Sec-
tion III is illustrated. A centroid-based partitional clustering
algorithm, i.e. K-means, is employed for performing clustering
experiments. Fig. 5(a) depicts the Silhouette Index (one of the
most efficient clustering validity index [38]) as a function of
the number of clusters K, when using: the SBD distance on
Clearness Indices or CIs (plain line), the SBD distance on
raw data (dashed line), the Euclidean distance on CIs (dotted
line) and the Euclidean distance on raw data (dash-dotted

1 4 8 12 16 20 24
0

20

40

60

80

Fig. 4: Sample paths of solar output for a 24-hour period.

line). For each value of K, 5 random initialisations of the K-
means algorithm have been simulated (in order to avoid being
trapped into a local minimum during the clustering procedure),
and the solutions providing the best results for each K have
been selected to produce the plots. As observed, the best
configuration (i.e. which maximises the Silhouette Index) on
the whole range of K combines the SBD distance and the CIs.
The superiority of the SBD distance over the Euclidean one is
in that way clearly demonstrated in the case of the clustering
of solar production patterns, regardless of the features which
are used (i.e. CIs or raw data).

An example of a day-ahead prediction with its upper and
lower error bounds (the 90% and 10% quantiles respectively)
is also depicted on Fig. 5(b). In the present case, an optimal
number of clusters of 4 has been found to provide the pre-
dictions with the narrowest error bounds, which is correlated
with the best Silhouette Indices obtained in Fig. 5(a). A
Markov chain of order 2 has been employed: the training
dataset is indeed too small to accurately identify the transition
probabilities of higher order chains, even if it consists in
22 years of solar production data: for K = 4 and r = 3,
(43)2 = 4096 transition probabilities must be identified in the
Markov chain, out of a database made of 22 × 365 = 8030
objects. In fact, in the authors’ experience, it is very difficult
to find larger datasets in the power system community, so that
the maximum Markov chain order is practically limited to 2
in most cases with the proposed methodology. This drawback
will be addressed in a future work by investigating other
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Fig. 5: (a) Silhouette index as a function of the number of
clusters, when using the SBD distance on CIs (plain line),
the SBD distance on raw data (dashed line), the Euclidean
distance on CIs (dotted line) and the Euclidean distance on
raw data (dash-dotted line), and (b) an example of solar day-
ahead forecast with its upper and lower error bounds (the 90
and 10% error quantiles respectively in this case).
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(a) θ = 10%.
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(b) θ = 40%.

Fig. 6: Sum of head levels of the Tana River cascade for different uncertainty levels θ for a one-day period.

Machine Learning techniques to model the state transitions.

C. Influence of Uncertainty on Objective Function
In order to quantify how the uncertainty levels influence

the value of the objective function, i.e., the head levels
of the Tana River cascade, and the dispatch decisions we
use the robust optimisation formulation presented in (22).
First, we need to build a reference case against which we
will be comparing the robust optimisation results. To this
end, we run 500 experiments, i.e., Monte Carlo simulations,
where the solar generation output period t was drawn at
random, according to the uniform distribution on the segment
[(1 − θ)Ps, (1 + θ)Ps] where Ps is the solar output and θ is
the “uncertainty level” characteristic for the experiment. We
calculate the mean and standard deviation of the objective
function, i.e.,

∑24
t=1

∑5
i=1 hi(t) −

∑24
t=1

∑5
i=1Mσi(t), with

M = 108. In particular, we only have
∑24
t=1

∑5
i=1 hi(t) in

the objective since there is no spillage in the time period we
are investigating. This mean value of the objective function
for the different θ’s, when all the solar generation output
were known to us in advance, is found by using (18) to
determine the optimal solution and is referred to as the “ideal”
case. The results of the robust optimisation reformulation
could be compared with Monte Carlo simulations of the
non-linear original model. However, we compared the results
of the robust optimisation reformulation with Monte Carlo
simulations of the approximate model, as given in (18). The
approximate model differs with the original non-linear model
in two elements: (i) the linearisation of the equation used to
calculate the hydropower; and (ii) the relationship between
the water head and the storage volume. In order to test how
accurate the two approximations are and to justify the rationale

Fig. 7: Power output of Kindaruma hydroelectric plant for a
day, i.e., P4(t).

behind this choice, we calculate the difference between the
power output of each hydroelectric system as the output
of the optimisation problem and the actual output of each
hydroelectric system calculated for a period of a whole year;
the maximum error for the total power output is 3.82 MW,
which is considered to be negligible. In this regard, we claim
that the comparison of the robust optimisation reformulation
with Monte Carlo simulations of the approximate model is
meaningful due to the high accuracy and low complexity of
the latter.

We solve the robust optimisation problem given in (22) to
determine the influence of the solar generation uncertainty θ
on the head levels of the Tana River cascade. To this end,
we test the optimal solution of the equivalent tractable robust
reformulation of (22) with the “ideal” case for uncertainty
levels of 10−40%. The results are summarised in Table II. As
expected, the less is the uncertainty, the closer is the objective
function to the ideal ones. However, we may notice that even
at 40% level of uncertainty the “price of robustness” is only
1.28%.

In Fig. 7 we depict the power output of Kindaruma hydro-
electric plant for a one day period for various uncertainty levels
θ. As we saw in Section V-B in order to achieve maximum
system efficiency, the first two hydroelectric power stations
work at maximum output. Gitaru dam is dispatched until
the subsequent dams reach close to the maximum volume
limit around t = 13 h. Then, the fourth and fifth dams,
i.e., Kindaruma and Kiambere, are used to meet the demand.
However, as we see in Fig. 7 as the uncertainty level increases
the participation of Kindaruma dam increases. This is a result
of the affine policy rules introduced in (21) and is quantified
in terms of “cost of uncertainty” in Table II.

In order to assess the influence of uncertainty during differ-
ent seasons we randomly select four days in the four seasons,
i.e., winter, spring, summer, and autumn, and calculate the
summation of the head levels of the cascade for a day-period,
i.e.,

∑24
t=1

∑5
i=1 hi(t), for the different seasons. The results

are given in Table III. We notice that the effect of uncertainty

Uncertainty Tractable robust Ideal case Price of robustnessreformulation Mean Std
10% 10,649

10,651

0.0119 0.02 %
20% 10,635 0.0219 0.15 %
30% 10,595 0.0318 0.52 %
40% 10,515 0.0391 1.28 %

TABLE II: Head levels vs. uncertainty level.
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Season Winter Spring Summer Autumn

Uncertainty

0% 10,651.5 10,648.0 10,648.7 10,644.9
10% 10,651.1 10,647.4 10,648.2 10,643.3
20% 10,650.6 10,646.7 10,647.6 10,641.5
30% 10,650.1 10,646.1 10,647.0 10,639.5
40% 10,649.7 10,645.4 10,645.9 10,636.9

TABLE III: Head levels from tractable robust reformulation
for various uncertainty level for different seasons.

is higher in the summer months as expected.

D. Comparison with Stochastic Programming

Another methodology vastly used to incorporate uncertainty
in optimisation problems is with stochastic programming (see,
e.g., [27]); thus it is interesting to compare the results of the
proposed methodology with the aforementioned. In this regard,
we model the net load at time t as a stochastic process which
is represented by ∆PL(t, ω(t)), ω(t) = 1, . . . , NΩ(t); where
ω(t) is the scenario index, NΩ(t) is the number of scenarios
considered, and Ω(t) is the set of scenarios at time t. To ease
notation, we assume that the number of scenarios is the same
for every time t; thus ω(t) is no longer time dependent and
may be denoted simply as ω = 1, . . . , NΩ. We denote by
∆PL(t)Ω the set of possible realisations of random variable
∆PL(t), i.e., ∆PL(t)Ω = {∆PL(t, 1), . . . ,∆PL(t,NΩ)}.
Each realisation ∆PL(t, ω) is associated with a probability
χ(ω, t) defined as χ(ω, t) = Prob[ω|∆PL(t) = ∆PL(t, ω)],
where

∑
ω∈Ω χ(ω, t) = 1 for all t. The resulting two-stage

stochastic program is:

max
hi(t),Pi(t,ω),σi(t),

qi(t),v
j
i (t)

∑
t∈T

∑
i∈H

hi(t)−
∑
t∈T

∑
i∈H

Mσi(t)

subject to (3)− (4), (11)− (17)∑
i∈H

Pi(t, ω) = ∆PL(t, ω),∀t ∈ T ,

ω ∈ Ω,

Pi(t, ω) ≥ νi(qmi hi(t) + hmi qi(t)− hmi qmi ),

∀i ∈H , t ∈ T , ω ∈ Ω,

Pi(t, ω) ≥ νi(qMi hi(t) + hMi qi(t)− hMi qMi ),

∀i ∈H , t ∈ T , ω ∈ Ω,

Pi(t, ω) ≤ νi(qmi hi(t) + hMi qi(t)− hMi qmi ),

∀i ∈H , t ∈ T , ω ∈ Ω,

Pi(t, ω) ≤ νi(qMi hi(t) + hmi qi(t)− hmi qMi ),

∀i ∈H , t ∈ T , ω ∈ Ω,

Pmi ≤ Pi(t, ω) ≤ PMi ,∀t ∈ T , i ∈H ,

ω ∈ Ω. (31)

In this two-stage stochastic linear programming problem, with
first stage decisions hi(t), σi(t), qi(t), v

j
i (t) and second stage

decisions Pi(t, ω), it is possible to reduce a large scenario
set to a simpler one by using the Kantorovich distance. In
this case study we use fast forward selection and reduce the
number of scenarios to build the set of selected scenarios
ΩS . We then use this reduced set of scenarios, i.e., replace
Ω with ΩS , in (31). Here we select 200 for the number

of reduced scenarios ΩS for every t from a pool of 500
scenarios with uncertainty 10%. The result of the two-stage
stochastic program is

∑24
t=1

∑5
i=1 hi(t) = 10, 651.48 m for

a winter day. We compare this result with the result of the
robust optimisation for 10% uncertainty for a winter day
as given in Table III, i.e., 10, 651.1 m. As expected the
result of the robust optimisation is more conservative, than
the stochastic programming result; while further reduction
the number of scenarios can only improve the value of the
objective function. However, the probability of a realisation
of ∆PL(t), t = 1, . . . , 24 occurring that will violate the con-
straints is higher. Whereas with the use of linear decision rules
Pi(t) = P di (t) + ai(t)δ(t) how much each dam participates
in the net load is know before hand thus offering a policy
that could be deployed in real time upon measurement of the
realisation of the uncertainty without the need of solving a
new optimisation program [39]. A nice extension of this work
would be to use the scenario reduction heuristic of [27] for the
forecast methodology and the calculation of the error. This is
not the case for stochastic programming where the values of
the second stage decisions, i.e., Pi(t), are not known until the
actual realisation of the uncertainty; to incorporate the latter a
new optimisation problem needs to be solved. A nice extension
of this work would be to use the scenario reduction heuristic
of [27] for the forecast methodology and the calculation of the
error.

VI. CONCLUDING REMARKS

In this paper, we addressed the question of maximising the
energy per cubic meter of water in the cascade hydroelectric
system, by an optimal dispatch scheme, taking into account
uncertainty from renewable-based generation coupled with
the cascade, i.e., a hybrid system. In order to incorporate
the uncertainty sources from renewable-based generation we
develop correlated probabilistic forecasts; we use historical
data and based on clustering and Markov chain techniques we
determine the probabilistic forecasts. This advanced forecast
technique that predicts the output of renewable resources helps
in power system operations. Especially, these probabilistic
predictions are useful since they may be used as input to
decision making processes under uncertainty. We incorporated
the aforementioned uncertainty into a robust variant of the
hydroelectric dispatch problem. We used tools from robust
optimisation to reformulate the original intractable problem
to an amenable form while preserving immunisation against
uncertainty.

In the case study, we demonstrated the robust optimal dis-
patch of a cascade hydroelectric system with the hydroelectric
plants of the Tana river in Kenya, which consists of five
hydroelectric power plants from Masinga Main Reservoir to
Kiambere and showed how the forecasting algorithm works,
validated the results of the robust optimisation with Monte
Carlo simulations; and quantified the “cost” of uncertainty.
As expected, the less is the uncertainty, the less the cost
of robustness to the objective function is. However, we may
notice that even at 40% level of uncertainty the “price of
robustness” is only 1.28%.

ACKNOWLEDGMENT

The authors would like to thank Kenya Electricity Gener-
ating Company for providing useful data for the case study



11

and support in making this work possible. The work of the
authors was supported in part by the FCO under project PPF
AFR 160011 and the Oxford Martin School programme of
Integrating Large-scale Renewables for a Secure, Affordable
and Sustainable Energy Future.

REFERENCES

[1] “Economic benefits of increasing electric grid resilience to weather
outages,” Executive Office of the President, The White House, Tech.
Rep., 2013.

[2] D. Apostolopoulou, A. D. Domı́nguez-Garcı́a, and P. W. Sauer, “An
assessment of the impact of uncertainty on automatic generation control
systems,” IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 2657–
2665, Jul. 2016.

[3] R. H. Inman, H. T. Pedro, and C. F. Coimbra, “Solar forecasting methods
for renewable energy integration,” Progress in Energy and Combustion
Science, vol. 39, no. 6, pp. 535–576, 2013.

[4] F. Golestaneh, P. Pinson, and H. B. Gooi, “Very short-term nonpara-
metric probabilistic forecasting of renewable energy generation – with
application to solar energy,” IEEE Transactions on Power Systems,
vol. 31, no. 5, pp. 3850–3863, Sep. 2016.

[5] G. Giebel, P. Sorensen, and H. Holttinen, “Forecast error of aggregated
wind power,” Tradewind, Tech. Rep., 2007.

[6] D. Lew, D. Piwko, N. Miller, G. Jordan, K. Clark, and L. Freeman, “How
do high levels of wind and solar impact the grid? the western wind and
solar integration study,” National Renewable Energy Laboratory, Tech.
Rep., 2010.

[7] M. B. Shadmand and R. S. Balog, “Multi-objective optimization and
design of photovoltaic-wind hybrid system for community smart dc
microgrid,” IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2635–
2643, Sep. 2014.

[8] P. Karampelas and L. Ekonomou, Electricity Distribution: Intelligent
Solutions for Electricity Transmission and Distribution Networks, ser.
Energy Systems. Springer Berlin Heidelberg, 2016.

[9] D. Apostolopoulou and M. McCulloch, “Optimal short-term operation
of a cascade hydro-solar hybrid system,” under review in IEEE Trans-
actions on Sustainable Energy.

[10] S. V. Papaefthymiou, E. G. Karamanou, S. A. Papathanassiou, and
M. P. Papadopoulos, “A wind-hydro-pumped storage station leading to
high res penetration in the autonomous island system of ikaria,” IEEE
Transactions on Sustainable Energy, vol. 1, no. 3, pp. 163–172, Oct.
2010.

[11] E. Gil, I. Aravena, and R. Cardenas, “Generation capacity expan-
sion planning under hydro uncertainty using stochastic mixed integer
programming and scenario reduction,” IEEE Transactions on Power
Systems, vol. 30, no. 4, pp. 1838–1847, Jul. 2015.

[12] H. I. Skjelbred, “Finding seasonal strategies for hydro reservoir schedul-
ing under uncertainty,” in International Conference on Renewable En-
ergy Research and Applications (ICRERA), Oct. 2013, pp. 579–583.

[13] R. E. Oviedo-Sanabria and R. A. Gonzalez-Fernandez, “Short-term
operation planning of the itaipu hydroelectric plant considering uncer-
tainties,” in Power Systems Computation Conference (PSCC), Jun. 2016,
pp. 1–6.

[14] A. Hamann, G. Hug, and S. Rosinski, “Real-time optimization of
the mid-columbia hydropower system,” IEEE Transactions on Power
Systems, vol. 32, no. 1, pp. 157–165, Jan. 2017.

[15] H. Dashti, A. J. Conejo, R. Jiang, and J. Wang, “Weekly two-stage
robust generation scheduling for hydrothermal power systems,” IEEE
Transactions on Power Systems, vol. 31, no. 6, pp. 4554–4564, Nov.
2016.

[16] D. Apostolopoulou and M. McCulloch, “Hydroelectric power system
model and its application to an optimal dispatch design,” in IREP’ 2017
- 10th Bulk Power Systems Dynamics and Control Symposium, Aug.
2017, pp. 1–6.

[17] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, ser. A Wiley-Interscience publication. Wiley, 1996.

[18] M. Cordova, E. Finardi, F. Ribas, V. de Matos, and M. Scuzziato,
“Performance evaluation and energy production optimization in the real-
time operation of hydropower plants,” Electric Power Systems Research,
vol. 116, pp. 201 – 207, 2014.

[19] A. L. Diniz and M. E. P. Maceira, “A four-dimensional model of hydro
generation for the short-term hydrothermal dispatch problem considering
head and spillage effects,” IEEE Transactions on Power Systems, vol. 23,
no. 3, pp. 1298–1308, Aug. 2008.

[20] Y. Zhu, J. Jian, J. Wu, and L. Yang, “Global optimization of non-convex
hydro-thermal coordination based on semidefinite programming,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 3720–3728, Nov.
2013.

[21] J. W. Labadie, “Optimal operation of multireservoir systems: State-of-
the-art review,” Journal of Water Resources Planning and Management,
vol. 130, no. 2, pp. 93–111, 2004.

[22] B. Gatner and J. Matousek, Approximation Algorithms and Semidefinite
Programming. Springer-Verlag Berlin Heidelberg, 2012.

[23] F. A. Al-Khayyal and J. E. Falk, “Jointly constrained biconvex program-
ming,” Mathematics of Operations Research, vol. 8, no. 2, pp. 273–286,
1983.

[24] M. Mbuthia, “Hydroelectric system modelling for cascaded reservoir-
type power stations in the lower tana river (seven forks scheme) in
kenya,” in 3rd AFRICON Conference, Sep. 1992, pp. 413–416.

[25] “Development of a power generation and transmission master plan,
kenya,” Ministry of Energy and Petroleum, Republic of Kenya, Tech.
Rep., May 2016.

[26] “Integer programming,” Massachusetts Institute of Technology, Tech.
Rep.

[27] A. Conejo, M. Carrion, and J. Morales, Decision making under un-
certainty in electricity markets, 1st ed., ser. International Series in
Operations Research and Management Science. Springer US, 2010,
vol. 153.

[28] J. Paparrizos and L. Gravano, “k-Shape: Efficient and accurate clustering
of time series,” SIGMOD Rec., vol. 45, no. 1, pp. 69–76, Jun. 2016.

[29] (2017, Mar.). [Online]. Available:
http://solargis.com/products/pvplanner/overview/

[30] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and
E. Keogh, “Experimental comparison of representation methods and
distance measures for time series data,” Data Mining and Knowledge
Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[31] C. S. Lai, Y. Jia, M. D. McCulloch, and Z. Xu, “Daily clearness index
profiles cluster analysis for photovoltaic system,” To appear in IEEE
Transactions on Industrial Informatics, 2017.

[32] W.-K. Ching, M. K. Ng, and E. S. Fung, “High order multivariate
markov chains and their applications,” Linear Algebra and its Appli-
cations, vol. 428, pp. 492–507, 2008.

[33] K. Margellos and S. Oren, “Capacity controlled demand side man-
agement: A stochastic pricing analysis,” IEEE Transactions on Power
Systems, vol. 31, no. 1, pp. 706–717, Jan. 2016.

[34] J. Warrington, P. Goulart, S. Mariethoz, and M. Morari, “Policy-based
reserves for power systems,” IEEE Transactions on Power Systems,
vol. 28, no. 4, pp. 4427–4437, Nov. 2013.

[35] D. Bertsimas and M. Sim, “Tractable approximations to robust conic
optimization problems,” Mathematical Programming, vol. 107, no. 1,
pp. 5–36, 2006.

[36] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable
robust solutions of uncertain linear programs,” Mathematical Program-
ming, vol. 99, no. 2, pp. 351–376, Mar. 2004.

[37] “Power sector medium term plan 2015-2020,” Energy Regulatory Com-
mission, Tech. Rep., 2015.

[38] O. Arbelaitz et al., “An extensive comparative study of cluster validity
indices,” Pattern Recognition, vol. 46, pp. 243–256, 2013.

[39] D. Bertsimas and C. Caramanis, “Finite adaptability in multistage linear
optimization,” IEEE Transactions on Automatic Control, vol. 55, no. 12,
pp. 2751–2766, Dec 2010.

Dimitra Apostolopoulou was awarded a Ph.D. and
a M.S. in Electrical and Computer Engineering
from University of Illinois at Urbana-Champaign
in 2014 and 2011, respectively. She received her
undergraduate degree in Electrical and Computer
Engineering from National Technical University of
Athens, Greece in 2009. She is currently a Lecturer
at City, University of London. Previously, she was
a Postdoctoral researcher at University of Oxford
and a Lecturer at Christ Church College. Priorly,
she worked at the Smart Grid and Technology De-

partment at Commonwealth Edison Company. Her research interests include
power system operations and control, market design and economics.



12
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